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Abstract

Temporal Action Localization (TAL) aims to localize
the start and end times of actions in untrimmed videos
and classify the corresponding action types. TAL plays
an important role in understanding video. Existing
TAL approaches heavily rely on deep learning and re-
quire large-scale data and expensive training processes.
Recent advances in Contrastive Language-Image Pre-
Training (CLIP) have brought vision-language model-
ing into the field of TAL. While current CLIP-based
TAL methods have been proven to be effective, their
capabilities under data and compute-limited settings
are not explored. In this paper, we have investigated
the data and compute efficiencies of the CLIP-based
STALE model. We evaluate the model performances
under data-limited open/close-set scenarios. We find
that STALE can demonstrate adequate generalizabil-
ity using limited data. We experimented with the
training time, inference time, GPU utilization, MACs,
and memory consumption of STALE by inputting with
varying video lengths. We discover an optimal input
length for STALE to inference. Using model quan-
tization, we find a significant forward time reduction
for STALE on a single CPU. Our findings shed light
on the capabilities and limitations of CLIP-based TAL
methods under constrained data and compute resources.
The insights gained from this research contribute to en-
hancing the efficiency and applicability of CLIP-based
TAL techniques in real-world scenarios. The results
provide valuable guidance for future advancements in
CLIP-based TAL models and their potential for broader
adoption in resource-constrained environments.

1. Introduction
With the rapid growth of video media and advances
in deep learning, there has been a significant surge in
interest and focus on deep learning-based video under-
standing. Temporal Action Localization (TAL) is one
of the key tasks for video understanding. TAL con-
cerns the detection of when and what actions happen
given an untrimmed video. Applications of TAL in-
clude video summarization [65], behavior analysis [7],
and human-robot interaction [45]. Current TAL meth-
ods [46, 52, 55, 67] rely on deep learning and mostly
focus on delivering high-performing models. However,
decent performance typically requires massive amounts
of data and computationally expensive training pro-
cesses [2]. To tackle this issue with limited resources,
it is urgent to reconsider and develop new approaches
that are data- and compute-efficient. Moreover, we ob-
serve a trend to conduct TAL via vision-language mod-

Figure 1. Illustration of the CLIP model [41] (a) and a
one-stage pipeline for CLIP-based TAL (b). The classes
are treated as textual prompts and are trained to pair with
vision instances. In (b), the outputs are the action class
and action start/end time for each action instance in each
untrimmed video.

eling, which is based on Contrastive Language-Image
Pre-Training (CLIP) [41].

Recent research on CLIP has gained wide attention,
which demonstrates the effectiveness of pairing natural
language signals with vision through contrastive learn-
ing [41]. As illustrated in Figure 1a, CLIP takes an im-
age and all possible textual descriptions of this image
to output the description that best matches the image.
During training, the vision-language module encodes
the image and its corresponding caption independently
into latent embeddings. Then, CLIP attempts to pair
the text embedding with the image embedding via con-
trastive learning. Benefiting from CLIP’s large-scale
image-caption data, it has shown the notable capabil-
ity of “zero-shot” generalization, such that unseen class
in unseen input can be predicted.

Subsequently, CLIP-based methods [19, 36] are
adopted in video tasks such as TAL and demonstrated
remarkable zero-shot capability. As shown in Fig-
ure 1b, a one-stage CLIP-based TAL method takes
untrimmed video and textual prompt of action class
as input and outputs the action class that best de-
scribes the action instance as well as action start/end
time. Traditional TAL methods encode action classes
into one-hot vectors which lose the semantic meaning
of these classes. Furthermore, open domain recogni-
tion is still a challenging topic, and natural language
signals in CLIP-based models have natural advantages
to help recognize unseen or more granular actions than
the commonly used one-hot encoding for action labels.
Therefore, it is worth exploring the full capacity of
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CLIP-based TAL methods to generalize on a target
domain without being trained or significantly trained
on this domain, as well as evaluating their compute
efficiency. We hereby raise a research question: How
well do current CLIP-based TAL methods perform and
generalize in a limited data and compute setting?

In this study, we conducted a comprehensive eval-
uation of the STALE model’s data and compute ef-
ficiencies. This research makes the following contri-
butions: (1) We find that STALE can demonstrate
adequate generalizability using limited data. (2) We
discover an optimal input length for STALE to infer-
ence, and (3) using model quantization there is sig-
nificant forward time reduction for STALE on CPU.
These findings have positive implications for enhanc-
ing the efficiency and practicality of CLIP-based TAL
techniques in real-world scenarios. Our results pro-
vide guidance for future advancements in CLIP-based
TAL models, paving the way for broader adoption in
resource-constrained environments.

2. Related Work
Action recognition Action recognition concerns the
interpretation of human actions from videos, each video
is trimmed to contain frames of one action instance.
While deep convolutional neural networks (CNN) out-
performed classical methods in diverse image tasks
[21, 40], they were yet to show significant improve-
ment in action recognition [20,69]. A Two-Stream Net-
work [50] was proposed to add another optical flow
stream to incorporate temporal and spatial informa-
tion and demonstrated significant improvement in ac-
tion recognition. This approach then became one of
the mainstream model architectures for action recogni-
tion [10,13,57]. Another trend was the use of 3D CNN,
such as I3D [6], R3D [16], SlowFast [12]. 3D CNN
uses an additional dimension of convolutional layers to
model temporal information. I3D proposed to inflate
2D ConvNets into 3D in a two-stream network.

Recent research has demonstrated that methods
based on Vision Transformers [11,30,42,66] achieve sig-
nificantly better performance in image tasks compared
to previous CNN-based methods. Adopting similar
ideas from video CNNs to transform 2D transformers to
3D to incorporate temporal information, video trans-
formers [1, 31, 39] have gained popularity in the field
of video understanding due to their exceptional perfor-
mance, establishing them as a mainstream approach.
Action recognition models can be used to predict ac-
tion types from video proposals in solving TAL [19].
In our work for TAL, before localization and classifica-
tion, we adopt a temporal vision transformer to model
the temporal and spatial information of each video.

Temporal action localization Temporal action lo-
calization, sometimes known as temporal action detec-
tion, aims to localize the start and end time of ac-
tions in untrimmed videos and classify the correspond-
ing action types. A video clip can include more than
one action instance and background frames without ac-
tions. Unlike action recognition, most models for TAL
follow a proposal-then-prediction two-stage paradigm
[53]. These models first propose frames that can con-
tain actions and attempt to classify the action types in
these frames [62].

There are two main approaches to generating pro-
posals: anchor-based and anchor-free. Anchor-based
methods [14, 15, 47] generate temporal proposals in
videos by distributing dense and multiscale intervals of
pre-defined lengths across uniformly distributed tem-
poral locations in the input. Anchor-free methods
[29,68] are often based on predicting actionness, start-
ness, and endness scores (probability of action occur-
ring, starting or ending at a temporal position of the
video). They are capable to generate proposals with
precise boundaries and flexible duration. At the predic-
tion stage, models from action recognition can be incor-
porated to classify action types from proposals. How-
ever, two-stage methods suffer from localization errors
propagated to prediction. One-stage framework [4, 28]
tackles proposal and prediction simultaneously hence
alleviating the propagation of localization errors. Two
commonly used datasets to evaluate TAL models are
Thumos14 [37] and ActivityNet1.3 [18]. Differing from
most TAL works that target at best performance on
these datasets, we aim to investigate the model perfor-
mance under resource-constrained scenarios.

Since 2019, we observe a trend of adopting the classi-
fication results from UntrimmedNets [56] for uncertain
predictions [26,27,36,63] in ActivityNet. These uncer-
tain predictions normally arise from videos of classes
that have relatively low data. UntrimmedNets is a
weakly-supervised method that performs well in such
videos. To fairly and comprehensively evaluate the per-
formance of our selected model in data-limited settings,
we report the results with/without the use of predic-
tions from UntrimmedNets.

Vision-language models Prior research [34] has
investigated the relationship between images and words
through the use of paired text documents. Recently,
CLIP [41] demonstrated outstanding performance of
vision-language modeling through large-scale training.
Using contrastive learning to pair images with natural
language signals, CLIP has shown that paired image-
caption data can be leveraged to learn powerful visual
representations for zero-shot recognition.
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Subsequently, CLIP was widely used as the back-
bone model for vision tasks that accompany natural se-
mantic meaning, such as image captioning [33], object
detection [25], semantic segmentation [24]. Since each
action instance contains natural semantic meaning, Ac-
tionCLIP [58] was proposed to incorporate CLIP for
action recognition and investigate its zero-shot/few-
shot capability. Efficient-prompt [19] introduced a
lightweight temporal information encoder with a trans-
former for efficient training and sets baselines for zero-
shot action recognition and TAL. Unlike the two-stage
framework in Efficient-prompt for TAL, STALE [36]
proposed a one-stage CLIP-based method to reduce lo-
calization error propagation in two-stage TAL and out-
performed Efficient-prompt in zero-shot scenarios. In
our work, we aim to explore the efficiency of TAL via
vision language modeling, the one-stage CLIP-based
STALE is selected to conduct experiments.

Data efficiency Data efficient deep learning has
gained increasing attention [3, 22, 59] recently. In
video tasks, the self-supervised VideoMAEs [52, 55]
were claimed to be data efficient learners with the
Masked Autoencoders (MAE) [17] for data augmenta-
tion. However, VideoMAEs still require the full dataset
to train, and hence are not in “limited data settings”.
Zero-shot/few-shot video understanding [19, 36, 43, 58]
can be seen to be data efficient as they demand few
or zero training samples from the target classes to pre-
dict. Zero-shot is also known as the open-set scenario.
Closed-set scenario refers that all classes in the test
set also exist in the training set. Oosterbaan et al.
demonstrated the performances of predicting a rare
class using a classifier trained on different amounts of
synthetic samples of that rare class plus the original
training data [38]. We perform data efficiency exper-
iments by training on subsets of the original training
data in both open-set and closed-set scenarios.

Compute efficiency Common metrics to evaluate a
model’s compute efficiency are the number of floating-
point operations (FLOPs), the number of multiply-
accumulate operations (MACs), memory consump-
tion, the number of model parameters, and train-
ing/inference time [2]. Hardware differences in used
GPUs can lead to different model performances [51].
Approaches to enhance compute efficiency include us-
ing mixed precision to store decimal numbers to re-
duce memory consumption [32], and using quantiza-
tion to reduce inference time [5]. Quantization in deep
learning refers to the technique of approximating a
floating-point-based neural network with a neural net-
work that uses low bit-width numbers to alleviate com-

putation. We adopt MACs, GPU memory consump-
tion, and training/inference time to measure the com-
pute efficiency in our experiments due to their repre-
sentativeness in quantifying a model’s compute perfor-
mance. We measure how well a GPU is utilized during
model inference by dividing the experimental MACs/s
by the theoretical maximum MACs/s of the GPU. We
further study the extent that our selected model’s in-
ference time can be reduced with quantization.

3. Methodology
3.1. Temporal Action Localization

To formally define TAL, we first denote Vi as an
untrimmed video, each Vi in the training set Dtrain =
{(Vi, Ψi)}N

i=1 is labeled with Ψi = {(aj , ej , yj)}Mi
j=1,

where Mi denotes the number of action instances in
Vi, and aj/aj represent the action start/end time for
the action instance j. The action class of an instance is
denoted as yj . Given Dtrain, TAL attempts to predict
each action instance in each video in the corresponding
test set Dtest.

Metrics Mean Average Precision (mAP) is TAL’s
most commonly adopted evaluation metric. Average
Precision (AP) is the average precision of all videos of
a class, and mAP is the average precision of all test-
ing videos of each class. Temporal IoU (tIoU) is the
ratio of the temporal intersection divided by the union
between two temporal intervals in a video. Denote Ip

as the predicted temporal interval likely to contain an
action of interest and denote Ig as its closest interval
of a ground-truth action. tIoU(Ip, Ig) = Ip∩Ig

Ip∪Ig
.

To declare a prediction as true positive, the pre-
dicted class should match the ground truth with a
tIoU score above a given threshold. Different thresh-
olds hence affect mAP. A dataset typically pre-defined
specific thresholds and Average-mAP, average of the
mAP scores under all pre-defined thresholds, is used to
compare the performance of different models.

Closed and open-set TAL There are two main sce-
narios to examine methods for TAL: closed-set and
open-set. Let Ctrain/Ctest denote the sets of action
classes that exist in Dtrain/Dtest. In the closed-set sce-
nario for TAL, the action classes in the training and
test sets are identical, such that Ctrain = Ctest. While
in open-set TAL, the actions classes for training and
testing are disjoint, such that Ctrain ∩Ctest = ∅. Open-
set TAL can be referred to as zero-shot TAL: zero sam-
ples of target classes are given to train and the goal is
to predict each unseen class in each unseen video.
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Figure 2. Overview of the STALE model [36]. Action class prompts and videos are encoded and modeled then given to learn
their inter-relationships via conservative learning. A localizer is used to localize the action instance. Finally, classification
and localization are refined to output consistently using an inter-branch consistency loss.

3.2. Model

Zero-Shot Temporal Action Detection via Vision-
Language Prompting (STALE) [36] is selected to con-
duct data and compute efficiency experiments, which
is the most recent and state-of-the-art method on zero-
shot TAL. The overview of STALE can be seen in Fig-
ure 2. STALE uses a temporal vision transformer [11]
to encode videos into video embeddings and a text
transformer [54] to encode class prompts into text em-
beddings. The embedding of a video is divided into
snippets and each snippet is masked with a ground
truth label. The contrastive learning module receives
the text and masked video embeddings and attempts to
learn how text embeddings are matched with masked
video embeddings via cross-attention [54]. A local-
izer module is used to learn to localize the action in-
stances in parallel with classification. To ensure the
classified action instance is consistent with the local-
ized start/end time, an inter-branch consistency loss
is equipped between the classification and the local-
ization branch. At inference time, all possible action
classes are given as textual prompts, and STALE pre-
dicts the prompt that best matches the given video.

3.3. Data Efficiency

To evaluate STALE in a data-limited closed-set
scenario, we uniformly sampled different amounts of
the training sets without replacement. The selected
amounts in percentage are 10%, 20%, 40%, 60%, 80%.
We further restrict that all action classes were repre-
sented by at least one sample in the subset. While the
zero-shot setting already demonstrated data efficiency:
to predict target classes without using any data of tar-

get classes, it is interesting to see if the STALE still gen-
eralizes in a data-limited open-set scenario. We used
the same sampling method for closed-set to sample 50%
of training data. We conducted open-set experiments
with both 75/25 and 50/50 class splits, that is, only
training samples of 75% or 50% selected seen classes
were used to train, and evaluate the test samples of
the remaining 25% or 50% unseen classes. We use the
same closed-set and open-set train splits as provided
in [36]. To ensure statistical significance in our results,
the experiments were repeated five times to take aver-
age results. We did not modify the test set.

Score enhancement We discovered that STALE
uses the following technique during post-processing: if
STALE’s confidence score in a prediction of a video
is lower than the confidence score of the weakly-
supervised UntrimmedNets [56], then STALE will
adopt the prediction of UntrimmedNets. This tech-
nique is referred to as score enhancement and we study
STALE’s performance with and without the use of
score enhancement for data efficiency experiments.

3.4. Compute Efficiency

To evaluate STALE’s compute efficiency for train-
ing, we record the training time and produced Average-
mAP in the closed-set scenario. We repeat this exper-
iment five times with the same training configuration
and using the same GPU.

To evaluate STALE’s compute efficiency for infer-
ence, we input video samples of varying lengths to
STALE. During the inference of each sample, we record
different compute metrics. The video samples are ran-
domly generated PyTorch tensors. We adopt MACs,
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Class Split Enhanced
Score

Avg Train
Data

ActivityNet v1.3
0.5 0.75 0.95 Avg

75% Seen
25% Unseen

with 6575 39.5 21.5 4.2 21.7
3304 39.1 22.4 3.7 21.7

w/o 6575 15.7 8.0 1.4 8.4
3304 15.4 8.5 1.7 8.5

50% Seen
50% Unseen

with 4353 39.1 20.1 4.1 21.1
2198 38.7 20.3 4.0 21.0

w/o 4353 3.0 1.9 0.4 1.8
2198 3.6 1.9 0.5 2.0

Table 1. Comparison of open-set mAP results of STALE with/without the use of score enhancement and trained on all or
roughly half of data. Class split refers to the split of the portion of classes for STALE to learn and the remaining portion of
classes for STALE to conduct zero-shot prediction. STALE can generalize comparably with roughly 50% of training data.

the number of multiply-accumulate operations, to cal-
culate the computing power consumed by STALE dur-
ing inference. We use fvcore [44] developed by Face-
book Research to derive MACs. We record the infer-
ence time to calculate the MACs per second. For the
GPU utilization score, we divide the recorded MACs/s
by the theoretical MACs/s of the used GPU to demon-
strate what percentage of GPU’s computing power is
utilized to inference a particular input. We also record
the memory consumption during inference. We use
CUDA’s event function to record time and configure
it to wait for all kernels in all streams on a CUDA de-
vice to complete before calculating inference time. We
repeat this experiment five times using the same GPU.
To enable the STALE model to process, we change the
temporal scale parameter of STALE to be equal to the
input video length.

Quantization Quantization aims to approximate
the same model outcome while replacing model weights
with lower precision to reduce computation. An 8-
bit integer precision typically leads to an accuracy loss
of less than 1% in neural networks [61]. The original
STALE model is configured to use 32-bit float as the
precision for model weights. We config all linear trans-
formations and convolutional layers in STALE to be
quantized using Pytorch’s dynamic quantization. We
record the time consumption of model forward passes
with varying input lengths. Furthermore, since GPUs
are not widely considered affordable, we perform this
experiment five times with a single CPU with ample
memory. We enable only a single thread for inference.
We compare the quantization effects across 8-bit inte-
ger, 16-bit float, and 32-bit float (baseline) on a single
CPU as well as 32-bit float on a single GPU.

4. Experiments
ActivityNet We adopt ActivityNet1.3 to conduct
experiments. The original ActivityNet1.3 dataset con-
tains 10,024 videos for training and 5,044 videos for
testing, with 200 action classes. To alleviate the mas-
sive training time caused by using raw videos to train,
we adopted the CLIP pre-processed video features pro-
vided by [36]. The videos were processed frame by
frame through CLIP [41]. The provided video features
correspond to 8840 training videos and 4350 testing
videos. The mismatch between the number of samples
from our ActivityNet and the original ActivityNet is
because many raw videos are no longer downloadable
with their links. The commonly used tIoUs for Activi-
tyNet are 0.5, 0.75, and 0.95.

4.1. Data Efficiency in Open-set

Can STALE’s zero-shot ability still hold with limited
training data? We uniformly sample subsets contain-
ing 50% samples of the original training set of Activ-
ityNet. We ensure all classes for the model to “see”
are represented at least once in these subsets for zero-
shot learning. The full training set contains 6575 and
4353 samples for 75/25 and 50/50 splits respectively.
On average in five experiments, 50.2% of training data
are used for data-limited 75/25 zero-shot learning and
50.5% for 50/50 zero-shot learning. We further com-
pare results with or without score enhancement.

The experimental results are shown in Table 1. With
score enhancement and the full training set, we see a
slight drop in average-mAP shifting from 75/25 split
to 50/50 split (21.7 → 21.1) and a significant drop if
we disable score enhancement (8.4 → 1.8). This is
because the 50/50 split has fewer classes to “see” and
more classes to conduct zero-shot prediction.
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Figure 3. Closed-set mAP scores produced by STALE with different p training data amounts with score enhancement
(a), without score enhancement (b), and average-mAPs comparison between STALE with/without score enhancement and
ActionFormer [67] (c). We further plot the indicators of the numbers of training samples at the top of each subplot. The
ActivityNet dataset used by ActionFormer contains 9251 total training samples, while STALE used 8840 samples. Without
score enhancement and p = 0.8, STALE can reach closely to the average-mAP produced by STALE when p = 1.0.

Within the same split and using the full training
set, we observe a huge decrease in all mAP results if we
disable score enhancement. This demonstrates that the
use of score enhancement helps with STALE’s zero-shot
performance substantially. Moreover, for both splits,
no matter whether we use score enhancement or not,
training with roughly half of the original samples does
lead to notable changes in mAP. This suggests that
STALE’s zero-shot ability still holds with even 50% of
the training data.

4.2. Data Efficiency in Closed-set

How does STALE perform and generalize in the
closed-set scenario as we gradually increase the amount
of training data? We uniformly sample 10%, 20%, 40%,
60%, and 80% of training data from the training set.
As shown in Figure 3a, with varying amounts of train-
ing data, the mAP produced with score enhancement
demonstrated a stable tendency under all tIoUs. How-
ever, in Figure 3b, if we disable score enhancement, we
can observe a clear learning curve with an increasing
amount of training data under each tIoU. The tIoU of
0.50 produced the most rapid increase, followed by the
tIoU of 0.75. The increasing tendency under the tIoU
of 0.95 is much less insignificant.

The overall tendency of performances with/without
score enhancement can be reflected in Figure 3c, where
the average-mAPs are plotted. We can only observe
an overall learning trend of STALE if we disable score
enhancement. The average-mAP curve without score
enhancement tends to converge to the flat one pro-
duced with score enhancement but never surpasses it.
The reason why the curves with score enhancement
are always flat can be that the STALE’s confidence

scores are largely bounded by UntrimmedNets’ confi-
dence scores [56]. STALE with 80% of training data,
that is roughly 7000 samples can produce an average-
mAP of less than 0.5 smaller than it trained with the
full dataset of 8840 samples.

Furthermore, we plot a similar average-mAP curve
of ActionFormer [67] for data efficiency as reported
in [60], where ActionFormer was trained and tested
in its original configuration. ActionFormer is a re-
cent TAL model based on a vision transformer archi-
tecture. It is noticed that this is not a direct com-
parison between STALE and ActionFormer since the
ActivityNet1.3 they used contains different numbers of
training and testing samples. The sampled subsets for
data efficiency are not the same for these two evalu-
ations. As demonstrated in Figure 3c, while STALE
is the current state-of-the-art in the open-set scenario,
there is still a considerable amount of gap from reach-
ing the state-of-the-art in the full-data or data-limited
closed-set scenario.

4.3. Compute-Efficient TAL

Configuration In the data-efficiency experiments,
we fixed all parameters from the original STALE re-
lease [36] throughout our experiments, including ran-
dom seed. To ensure certain variability in input ten-
sors, for each of the experiments, we choose a different
random seed. The random seed is equal to the exper-
iment number (0-4) multiplied by 100. We used the
NVIDIA V100S GPUs [8] consistently for our experi-
ments. The reported theoretical MACs/s of the V100
GPU is 8.2 TMACs per second. We configure CUDA
to be non-deterministic. We use Intel’s Cascade Lake
refresh CPU [9], with 8GB memory for the quantiza-
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Figure 4. Inference time and GPU utilization (a), GMACs and GPU memory consumption in GB (b) with varying input
video lengths. We record these metrics for a full inference cycle for each video. Sub-plot (c) demonstrates the effects of
quantization on model forward pass time across different precisions on a CPU. We vary input video length. The forward
time on GPU has a linear increasing tendency from 0.080s at length 200 to 0.101s at length 3000. A video length of 200 can
lead to the best GPU utilization. Quantizing STALE into 8-bit precision can drastically reduce forward time on the CPU
compared to the original 32-bit.

tion experiments. 8GB is ample to run STALE since
STALE consumes less than 1GB of memory. All ex-
periments are conducted in the Linux environment on
the DelftBlue high-performance computer [9].

Table 2. Comparison of training time, number of model pa-
rameters (in millions), average-mAP between ActionFormer
(AF) [67] and STALE [36] on ActivityNet.

Model #params[M] Time[s] Avg-mAP
STALE 170.7 400.7 19.4

AF 29.3 1944.9 35.9

Training efficiency We record and compare the
training efficiency of STALE with ActionFormer [60].
Both experiments are conducted under the same
methodology and training configuration from their
original code release. ActivityNet used by STALE
contains 8840 training samples, while STALE used
9251 samples. STALE’s average-mAP is obtained
using score enhancement. As shown in Table 2,
while STALE’s trainable model parameters are 5.8
times higher than ActionFormer, STALE’s training
time consumption is only 20% of ActionFormer’s.
However, ActionFormer outperformed STALE by
16.5 in average-mAP. We hence suggest the use of
STALE if short training time is favored. Moreover,
STALE/ActionFormer uses video features processed
by CLIP [41] or I3D [6] rather than raw videos.
They both use the predictions and confidence scores
of UntrimmedNets. Thus, the time of pre-processing
video features and training UntrimmedNets should also
be considered if training on a new dataset.

Inference efficiency How much computing power
does STALE consume and utilize for inferencing videos
of different lengths? By inputting videos of lengths
spanning from 200 to 3000 with 200 increments, we
record each video’s time, GPU memory, and MACs of
an inference cycle and calculate the GPU utilization
score. As shown in Figure 4, the inference time and
memory consumption increase linearly as we increase
video length. The colored area along the curves are
standard deviations of those data points. We observe
a relatively large variability exhibited in model infer-
ence time. In Figure 4b, GMACs also follow a similar
smooth increasing trend after increasing video length
from 400. It is noticed a significant jump in GMACs
changing from a video length of 200 to 400. On the op-
posite, in Figure 4a, GPU utilization gradually drops
as we increase video lengths and converge to around
14% since a video length of 1400. This suggests that
to let STALE better utilize the computing power of
GPU for inference, it is recommended to input videos
of smaller lengths, such as 200. This can produce a
GPU utilization score of around 19%.

Quantization on forward time How does model
quantization of different precisions affect forward pass
time? The original weights of STALE are in 32-bit
float. We first record forward times using the 32-bit
STALE on a CPU and a GPU. Then, we quantize
STALE into 16-bit float and 8-bit integer to record
forward times on the CPU. Figure 4c demonstrates the
forward time curves across precisions. While the 32-bit
STALE on GPU produces an increasing trend in for-
ward time from 0.080s to 0.101s, this curve has yet to
show a notable tendency since other curves increase on
a greater scale. Quantizing model into lower precisions
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should theoretically lead to a faster forward pass. This
is evident from those curves on a CPU. 8-bit integer
consistently outperforms 16-bit and 32-bit float. 32-bit
float on a CPU produces a relatively rugged curve and
higher variability. Overall, the quantization of STALE
from 32-bit to 8-bit reduced CPU forward pass time by
a factor of 2.73. The memory consumption of STALE
also decreased by a factor of 2.44. However, we dis-
cover that the forward time of 32-bit STALE on GPU
can outperform 8-bit STALE on CPU by a factor of
14.15. This is because STALE running on GPU is in-
tensively parallelized through Pytorch and CUDA.

5. Discussion
In this study, we conducted a comprehensive inves-

tigation into the data and compute efficiencies of the
CLIP-based STALE model. Our evaluation encom-
passed the model’s performance analysis within data-
limited scenarios, specifically focusing on both open-set
and close-set scenarios. Furthermore, we conducted ex-
periments utilizing varying video lengths to assess the
training/inference time, GPU utilization, MACs, and
memory consumption of the STALE model. We also
accessed the power of model quantization on the for-
ward pass time and model memory consumption.

From our experiments, we conclude the following
points. First, the CLIP-based STALE model demon-
strates adequate generalizability with limited training
data in the open-set scenario. In a closed-set setting,
without score enhancement, STALE trained with 7000
samples can produce comparable results to that trained
with 8840 samples. With score enhancement, STALE
can consistently produce comparable results with only
884 training samples. Second, STALE has a consider-
able gap in mAP performance compared with recent
transformed-based TAL models such as ActionFormer.
However, STALE’s training time is also significantly
shorter, this property can facilitate sectors that prefer
shorter training time. Third, during model inference,
we discover that STALE can utilize GPU better when
the input video length is small. We recommend setting
the input video length to smaller than or equal to 200
for fast inference and higher computational efficiency.
Lastly, 8-bit model quantization can remarkably reduce
the time consumption of forward pass on STALE with
a single CPU.

There are limitations exhibited in our research. We
did not perform data efficiency experiments on Thu-
mos14 due to the lack of CLIP pre-processed video
features. A future supplementary investigation can be
re-performing the data efficiency experiments on Thu-
mos14 to support our conclusions. Moreover, we can
investigate other techniques to boost model compute

efficiency, such as distributed training with multiple
GPUs, and multi-threaded inference. We observe an-
other promising direction to add prior knowledge of
physics [23] to the model to enhance data efficiency.
What and how physics priors can be incorporated to
help with TAL is a promising research direction since
TAL inherently deals with physical activities.

The outcomes of our study provide valuable insights
into both the strengths and limitations of CLIP-based
TAL methods when confronted with limited data and
computing resources. These findings have significant
implications for improving the efficiency and practical-
ity of CLIP-based TAL techniques in real-world set-
tings. Moreover, our results offer valuable guidance for
future advancements in CLIP-based TAL models and
their potential for wider adoption, particularly in envi-
ronments with resource constraints.

6. Responsible Research
Our research was independently conducted for pure

research purposes, and there are no conflicts of inter-
est to disclose. We have taken numerous measures
throughout the research process to ensure the integrity
of our findings and adhere to rigorous ethical stan-
dards. We evaluate our methodology based on the fol-
lowing primary aspects: ethical implications, integrity,
and reproducibility of our research.

6.1. Ethical Implications

Data privacy Since ActivityNet [18] concentrates on
human activities, it is necessary to consider the privacy
of the human subjects in the data used. The videos
in ActivityNet were collected from publicly available
sources such as YouTube. The search queries were
purely text-based such as “Preparing pasta” and hence
contained no information about any target groups.
Moreover, during the annotation phase, only informa-
tion concerning action instances is labeled to minimize
the risk of person re-identification. We further ensure
data privacy and anonymity by adopting pre-processed
video features instead of raw videos in our research.

Data annotation The annotations of ActivityNet
were collected by Amazon Mechanical Turk (MTurk)
workers [18]. As indicated in [35], (1) the majority
of participants do not perceive MTurk as a source of
stress, nor do they encounter abusive behavior from
requesters. (2) MTurk provides flexibility and bene-
fits that are highly valued by most individuals. Hence,
the ethical concerns regarding annotation workers can
be largely alleviated. When annotating data through
crowdworkers, we strongly encourage employers to ad-
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here to these standards for responsible research, ac-
cording to Silberman et al. [48,49]: (1) Pay workers at
least minimum wage. (2) Respond quickly, clearly, con-
cisely, and respectfully to worker questions and feed-
back. (3) Offering workers legal protections.

Bias Machine learning models can be biased towards
some particular features if trained inappropriately.
TAL models typically process spatial information hence
certain human characteristics can be recorded during
training, such as the ethnicity and gender of a person
acting. To our best knowledge, there is no study on
human characteristics in ActivityNet. Thus, when de-
ploying a TAL model, we advise thoroughly checking if
the model is biased toward a particular group. Possi-
ble solutions include using a diverse and representative
training dataset, using adversarial training [64] which
encourages the model to ignore irrelevant attributes
such as gender or race when making predictions.

Surveillance One of the potential applications of
TAL is to monitor human activities in the background.
For example, it can detect whether any worker is sleep-
ing in an office. However, current spatial-temporal ac-
tion localization methods do not inherently allow hu-
man identification. Hence, there is still human jus-
tification required to identify who is acting and the
surveillance system is yet to be fully automated to tar-
get a human subject. When deploying a TAL-based
surveillance system, we advise ensuring that individu-
als are aware of the presence of the surveillance system
and its purpose. We also suggest limiting the use of
the system to specific authorized purposes, ensuring it
is not used for discriminatory practices or infringing on
individuals’ rights [70].

6.2. Integrity and Reproducibility

We place a strong emphasis on the principles
of integrity and reproducibility. To ensure trans-
parency and facilitate reproducibility, we are com-
mitted to releasing the complete source code at
https://github.com/yunhanwang1105/Efficient-
TAL-vision-language-modeling, including all con-
figurations used in our experiments.

While we acknowledge that perfect replication of our
results may be challenging due to the inherent variabil-
ity associated with deep learning models and hardware
differences, we have taken several measures to mini-
mize randomness and promote consistency. Specifi-
cally, we employ fixed random seeds throughout our
experiments and incorporate other techniques to re-
duce variability, such as fixing the training and testing

configuration and hardware used. Furthermore, to ob-
tain robust and reliable results that do not stem from
random factors, we conduct each experiment at least
five times and compute the average performance. By
following these rigorous practices, we aim to foster a re-
search environment that encourages transparency and
replicability in the field of TAL.

Our research was independently conducted without
any external funding. Our motives are purely driven to
derive scientific significance in the community. There
are no conflicts of interest to disclose.
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Koltun, and René Ranftl. Language-driven semantic
segmentation. arXiv preprint arXiv:2201.03546, 2022.
3

[25] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
Grounded language-image pre-training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10965–10975, 2022. 3

[26] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao
Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue
Huang, and Yanwei Fu. Learning salient boundary fea-
ture for anchor-free temporal action localization. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3320–
3329, 2021. 2

[27] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei
Wen. Bmn: Boundary-matching network for tempo-
ral action proposal generation. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 3889–3898, 2019. 2

[28] Tianwei Lin, Xu Zhao, and Zheng Shou. Single shot
temporal action detection. In Proceedings of the 25th
ACM international conference on Multimedia, pages
988–996, 2017. 2

[29] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang,
and Ming Yang. Bsn: Boundary sensitive network for
temporal action proposal generation. In Proceedings of

10

https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1


the European conference on computer vision (ECCV),
pages 3–19, 2018. 2

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages
10012–10022, 2021. 2

[31] Vittorio Mazzia, Simone Angarano, Francesco Sal-
vetti, Federico Angelini, and Marcello Chiaberge. Ac-
tion transformer: A self-attention model for short-time
pose-based human action recognition. Pattern Recog-
nition, 124:108487, 2022. 2

[32] Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017. 3

[33] Ron Mokady, Amir Hertz, and Amit H Bermano. Clip-
cap: Clip prefix for image captioning. arXiv preprint
arXiv:2111.09734, 2021. 3

[34] Yasuhide Mori, Hironobu Takahashi, and Ryuichi Oka.
Image-to-word transformation based on dividing and
vector quantizing images with words. In First interna-
tional workshop on multimedia intelligent storage and
retrieval management, pages 1–9. Citeseer, 1999. 2

[35] Aaron J Moss, Cheskie Rosenzweig, Jonathan Robin-
son, Shalom N Jaffe, and Leib Litman. Is it ethical
to use mechanical turk for behavioral research? rele-
vant data from a representative survey of mturk partic-
ipants and wages. Behavior Research Methods, pages
1–20, 2023. 8

[36] Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xi-
ang. Zero-shot temporal action detection via vision-
language prompting. arXiv e-prints, pages arXiv–
2207, 2022. 1, 2, 3, 4, 5, 6, 7

[37] University of Central Florida. Thumos challenge.
http://crcv.ucf.edu/, 2013slurm-8561742.out. (Ac-
cessed on 23/06/2023). 2

[38] Justin Oosterbaan, Robert-Jan Bruintjes, Attila
Lengyel, and Jan van Gemert. Data-efficient gan for
synthetic samples of rare classes. TU Delft Bachelor
Thesis, 2021. 3

[39] Chiara Plizzari, Marco Cannici, and Matteo Mat-
teucci. Spatial temporal transformer network for
skeleton-based action recognition. In Pattern Recogni-
tion. ICPR International Workshops and Challenges:
Virtual Event, January 10–15, 2021, Proceedings, Part
III, pages 694–701. Springer, 2021. 2

[40] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman
Tian, Yudong Tao, Maria Presa Reyes, Mei-Ling Shyu,
Shu-Ching Chen, and Sundaraja S Iyengar. A survey
on deep learning: Algorithms, techniques, and applica-
tions. ACM Computing Surveys (CSUR), 51(5):1–36,
2018. 2

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.

Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021. 1, 2, 5,
7

[42] Maithra Raghu, Thomas Unterthiner, Simon Korn-
blith, Chiyuan Zhang, and Alexey Dosovitskiy. Do
vision transformers see like convolutional neural net-
works? Advances in Neural Information Processing
Systems, 34:12116–12128, 2021. 2

[43] Hanoona Rasheed, Muhammad Uzair khattak,
Muhammad Maaz, Salman Khan, and Fahad Shahbaz
Khan. Finetuned clip models are efficient video
learners. In The IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023. 3

[44] Facebook Research. fvcore. https: // github.
com/facebookresearch/fvcore, 2023. (Accessed on
15/06/2023). 5

[45] Isidoros Rodomagoulakis, Nikolaos Kardaris, Vas-
silis Pitsikalis, E Mavroudi, Athanasios Katsamanis,
Antigoni Tsiami, and Petros Maragos. Multimodal
human action recognition in assistive human-robot
interaction. In 2016 IEEE international conference
on acoustics, speech and signal processing (ICASSP),
pages 2702–2706. IEEE, 2016. 1

[46] Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia
Li, and Dacheng Tao. Tridet: Temporal action detec-
tion with relative boundary modeling. arXiv preprint
arXiv:2303.07347, 2023. 1

[47] Zheng Shou, Dongang Wang, and Shih-Fu Chang.
Temporal action localization in untrimmed videos via
multi-stage cnns. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
1049–1058, 2016. 2

[48] M Six Silberman, Lilly Irani, and Joel Ross. Ethics and
tactics of professional crowdwork. XRDS: Crossroads,
The ACM Magazine for Students, 17(2):39–43, 2010.
9

[49] M Six Silberman, Bill Tomlinson, Rochelle LaPlante,
Joel Ross, Lilly Irani, and Andrew Zaldivar. Re-
sponsible research with crowds: pay crowdworkers at
least minimum wage. Communications of the ACM,
61(3):39–41, 2018. 9

[50] Karen Simonyan and Andrew Zisserman. Two-stream
convolutional networks for action recognition in videos.
Advances in neural information processing systems, 27,
2014. 2

[51] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xi-
aowen Chu. The impact of gpu dvfs on the energy and
performance of deep learning: An empirical study. In
Proceedings of the Tenth ACM International Confer-
ence on Future Energy Systems, pages 315–325, 2019.
3

[52] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
VideoMAE: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. In
Advances in Neural Information Processing Systems,
2022. 1, 3

11

http://crcv.ucf.edu/
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore


[53] Elahe Vahdani and Yingli Tian. Deep learning-based
action detection in untrimmed videos: a survey. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 2022. 2

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez,  Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30,
2017. 4

[55] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong,
Yinan He, Yi Wang, Yali Wang, and Yu Qiao. Video-
mae v2: Scaling video masked autoencoders with dual
masking, 2023. 1, 3

[56] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc
Van Gool. Untrimmednets for weakly supervised ac-
tion recognition and detection. In Proceedings of the
IEEE conference on Computer Vision and Pattern
Recognition, pages 4325–4334, 2017. 2, 4, 6

[57] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao,
Dahua Lin, Xiaoou Tang, and Luc Van Gool. Tem-
poral segment networks: Towards good practices for
deep action recognition. In European conference on
computer vision, pages 20–36. Springer, 2016. 2

[58] Mengmeng Wang, Jiazheng Xing, and Yong Liu. Ac-
tionclip: A new paradigm for video action recognition.
arXiv preprint arXiv:2109.08472, 2021. 3

[59] Ximei Wang, Jinghan Gao, Mingsheng Long, and Jian-
min Wang. Self-tuning for data-efficient deep learn-
ing. In International Conference on Machine Learning,
pages 10738–10748. PMLR, 2021. 3

[60] Jan Warchocki. Benchmarking Data and Computa-
tional Efficiency of ActionFormer on Temporal Action
Localization Tasks. Bachelor’s thesis, Delft University
of Technology, 2023. 6, 7

[61] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev,
and Paulius Micikevicius. Integer quantization for deep
learning inference: Principles and empirical evalua-
tion. arXiv preprint arXiv:2004.09602, 2020. 5

[62] Huifen Xia and Yongzhao Zhan. A survey on temporal
action localization. IEEE Access, 8:70477–70487, 2020.
2

[63] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Tha-
bet, and Bernard Ghanem. G-tad: Sub-graph localiza-
tion for temporal action detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10156–10165, 2020. 2

[64] Jenny Yang, Andrew AS Soltan, David W Eyre, Yang
Yang, and David A Clifton. An adversarial training
framework for mitigating algorithmic biases in clinical
machine learning. NPJ Digital Medicine, 6(1):55, 2023.
9

[65] Serena Yeung, Alireza Fathi, and Li Fei-Fei. Videoset:
Video summary evaluation through text. arXiv
preprint arXiv:1406.5824, 2014. 1

[66] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen
Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng
Yan. Metaformer is actually what you need for vi-
sion. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 10819–
10829, 2022. 2

[67] Chen-Lin Zhang, Jianxin Wu, and Yin Li. Action-
former: Localizing moments of actions with transform-
ers. In European Conference on Computer Vision, vol-
ume 13664 of LNCS, pages 492–510, 2022. 1, 6, 7

[68] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu,
Xiaoou Tang, and Dahua Lin. Temporal action detec-
tion with structured segment networks. In Proceedings
of the IEEE international conference on computer vi-
sion, pages 2914–2923, 2017. 2

[69] Yi Zhu, Xinyu Li, Chunhui Liu, Mohammadreza
Zolfaghari, Yuanjun Xiong, Chongruo Wu, Zhi Zhang,
Joseph Tighe, R Manmatha, and Mu Li. A compre-
hensive study of deep video action recognition. arXiv
preprint arXiv:2012.06567, 2020. 2

[70] Shoshana Zuboff. The age of surveillance capitalism:
The fight for a human future at the new frontier of
power: Barack Obama’s books of 2019. Profile books,
2019. 9

12


	. Introduction
	. Related Work
	. Methodology
	. Temporal Action Localization
	. Model
	. Data Efficiency
	. Compute Efficiency

	. Experiments
	. Data Efficiency in Open-set
	. Data Efficiency in Closed-set
	. Compute-Efficient TAL

	. Discussion
	. Responsible Research
	. Ethical Implications
	. Integrity and Reproducibility


