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Summary

The transition to de-fossilized energy systems plays a central role in achieving climate neutrality in
Europe, and the transport sector is pivotal in this transformation. Nowadays, passenger vehicles repre-
sent an important share of the final energy consumption and the greenhouse gas emissions. As internal
combustion engine vehicles (ICEVs) are gradually phased out and replaced by battery electric vehicles
(BEVs), and hydrogen fuel cell electric vehicles (FCEVs), understanding the evolving energy demand
profile of passenger transport becomes more and more critical. This thesis addresses this challenge
by quantifying the way in which the differences in powertrain technologies, in the vehicle types, and in
weather conditions influence the energy consumption and the total energy demand across European
regions.

The core of this research is the enhancement of the Vehicle Consumption Assessment Model (VCAM),
a simulation platform capable of evaluating the energy consumption of different powertrains under
various environmental and operational conditions. The model was extended to include a detailed rep-
resentation of FCEVs and used under dynamic weather profiles and region-specific fleet compositions.
These advancements allowed the simulation of real-world driving scenarios by using both historical and
projected climate data, as well as the assessment of policy pathways and fleet evolution trends through
2050.

The methodological framework followed a multi-layered approach. First, a powertrain comparison for
BEVS, FCEVs, and ICEVs has been made to evaluate them across different vehicle segments, con-
sidering performance under different driving cycles. Second, a temperature sensitivity analysis has
been made for forty years of temperature data for Greece, Germany, and Finland, which were used to
quantify the impact of cold and hot conditions on energy consumption and range for each powertrain
technology. Lastly, a scenario-based analysis has been performed to scrutinize the effects of different
IEA policy pathways (STEPS, SDS, NZE) and IPCC climate scenarios (RCP 2.6, 4.5, 8.5), as well as
the influence of the growing SUV market share, on the passenger vehicle energy demand in 2050.

The results show that the energy demand is highly sensitive to the selection of powertrain technology,
with BEVs offering the highest efficiency, as well as the highest sensitivity to ambient temperature. The
FCEVs perform more consistently across extreme temperatures, but consume more energy than BEVs.
ICEVs are the least efficient vehicles, but they present a moderate sensitivity to temperature because of
their capability to use the engine’s waste heat to cover the thermal loads. Vehicle size can significantly
alter consumption, especially for electrified vehicles in extreme climates.

Regarding the regional effects, the projections for the passenger vehicle energy demand differ substan-
tially. Germany’s demand remains the highest due to population and mobility volume, while Finland
shows the greatest sensitivity to climate conditions. Greece, where the most moderate climate condi-
tions exist, presents the lowest variability. Across all technologies, BEVs offer the highest efficiency
but also the greatest vulnerability to temperature extremes, with the energy consumption rising to more
than 40% in cold conditions. FCEVs, which are less efficient overall, keep a more stable performance
across temperature variations. The scenario analysis made shows that the ambitious decarbonization
strategies (STEPS, SDS, NZE) could reduce total passenger vehicle energy demand by more than 60%
relative to 2019 levels. However, this reduction is sensitive to fleet composition. To be more specific,
for example, an annual SUV market growth of 2 percent could increase energy demand by up to 19% in
Germany compared to a no-growth baseline. Similarly, consumptiom in the coldest years can exceed
the warmest by 8 - 15 % for FCEVs and BEVs, depending on the region.

In conclusion, this thesis provides a detailed and geographically differentiated understanding of the
passenger vehicle energy demand during the energy transition. It underlines the need to plan, while
considering climate conditions, segments, and technologies to ensure that the electrification of the
transport sector aligns with the broader goals.
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1
Introduction

This chapter provides the foundation of this thesis by first presenting the role of the transport sector
in global and European greenhouse gas emissions. Following this, it examines the most important
developments in electric mobility and the broader energy transition. It continues by examining the
way in which the different powertrain technologies interact with climate conditions to influence vehicle
energy use. The last section defines the core research questions, sets the boundaries of the research,
and previews the organization of the remaining chapters. Together, these sections provide the context
and rationale for the modeling and scenario analysis that follow.

1.1. Transport sector emissions and challenges
The transport sector plays a crucial role in global greenhouse gas emissions since it is responsible for
approximately a quarter of energy-related CO2 emissions, totaling around 8 Gt of CO2 annually (OWD,
2021). The highest share of these emissions comes from road transport, which contributes about 74.5%
of the transport sector. while the rest are divided into aviation, shipping, and rail, as depicted in Figure
1.1.

Figure 1.1: Global CO2 emissions from transport (OWD, 2021)

Passenger vehicles, such as cars, motorcycles, and buses, constitute the majority, as they are respon-
sible for around 45% of the transport sector’s CO2 emissions and 10% of the global CO2 emissions
(IEA, 2024). This positions the passenger transport sector as a top priority target for climate change
mitigation efforts.

In Europe, the situation is similarly critical. Transportation is responsible for 25% of the EU’s total
greenhouse gas emissions, making the sector the second largest one in terms of emissions, with pas-
senger transport, and especially cars, being responsible for around 15% of the EU’s CO2 emissions

1



1.1. Transport sector emissions and challenges 2

(Agency, 2023; Eurostat, 2025). Surprisingly, transport sector emissions in the EU have not decreased
since 1990, in contrast with other sectors, a fact that makes it one of the most difficult sectors towards
decarbonization (Eurostat, 2025).

One of the main obstacles to overcome is the high dependence of the transport sector on fossil fuels.
The vast majority of the passenger cars moving continue to use internal combustion engines (ICEs),
which consume petrol or diesel. Petroleum-based fuels constitute more than 95% of the energy con-
sumption in the transport sector, making it a crucial pollutant source (IEA, 2024). This long-term de-
pendence on ICE vehicles resulted in continuously increasing petroleum consumption and relevant
CO2 emissions (IEA, 2024). In addition, the total CO2 output of the passenger vehicles is significantly
impactful because of the increased number of vehicles and the kilometers driven. Around the world,
the passenger car fleet exceeds one billion vehicles, and demand for mobility keeps rising. These pipe
emissions not only degrade air quality, but also contribute to the accumulation ofCO2 in the atmosphere,
undermining all efforts to limit the global warming effect.

Technological shifts in the automotive sector are now underway to address these challenges. There is
a clear trend in low or zero-emission technologies as alternatives to conventional ICEs. Battery electric
vehicles (BEVs) are rapidly increasing because of the technology improvements and increased political
support. The global sales of BEVs have increased from around 4% in 2020 to around 18% in 2023 (IEA,
2023). Europe is a pioneer in this transition: electric vehicles (including plug-in hybrid vehicles) consti-
tuted around 18% of the new entries in EU in 2021 and continued to increase over 20% until 2023 (Eu-
rostat, 2025). Concurrently, fuel-cell electric vehicles (FCEVs), which directly produce electric energy
by using hydrogen, are evolving with their use; however, they remain limited because of the increased
cost and the lack of refueling infrastructure. At the same moment, conventional vehicles are becoming
more and more efficient by using hybrid systems and enhancing the combustion process, decreasing
the consumption and the CO2 emissions. Still, to align with climate objectives, studies indicate that the
electrification of road transport must accelerate further and reach near-total adoption of zero-emission
vehicles in the coming decades (IEA, 2023). However, the increase in larger and heavier vehicles
(e.g., SUVs) has partially offset efficiency gains, showing that both technology and consumer choices
will determine how quickly emissions can decline. Overall, the powertrain landscape is rapidly evolving,
with BEVs leading the decarbonization charge, supported by hybrids in the interim, and FCEVs being
explored for the longer term – all in response to the pressing need to mitigate transport’s environmental
impact.

These technology trends are strongly driven by environmental and regulatory pressures, especially in
Europe. The EU has posed ambitious targets in the context of the European Green Deal and the ”Fit
for 55” package, which compels significant CO2 emissions reduction in the transport sector. The Green
Deal aims to achieve climate neutrality by 2050, including decreasing transport emissions by 90% in
relation to 1990 (Commission, 2023b). To reach this long-term vision, the EU introduced the Fit for 55
package, which tightens interim targets: the EU aims to reduce overall GHG emissions by at least 55%
by 2030 (from 1990 levels)(Commission, 2023b). For road transport, this means strict CO2 emission
limits for the new vehicles. In 2023, the EU officially adopted a regulation requiring that by 2035, all
new cars and vans sold must be zero-emission, effectively phasing out the sale of new gasoline and
diesel cars. Before that, until 2030, manufacturers have to decrease the average CO2 emissions of
new cars by 55% in relation to 2021 levels (Commission, 2023b). These regulations aim to facilitate
and accelerate electric transport and enhance innovation in clean mobility.

Many European countries set their own national goals beyond the mutual plan. Norway, for example,
aims to have 100% zero-emission new passenger cars by the end of 2025, way earlier than the rest
of the European Union (on Clean Transportation, 2023). The Netherlands, Ireland, and Sweden aim
to phase out new ICE vehicles by 2030, while countries such as the United Kingdom and Denmark by
2035 (on Clean Transportation, 2023). These regulatory interventions, coupled with incentives such as
subsidies and tax breaks, and infrastructure investment (e.g., expanding charging networks), are rapidly
reshaping the passenger car market. They create a market pull for BEVs and other zero-emission
vehicles driven by policies while making the high-emitting vehicles less attractive or even non-compliant
with the regulations.

In summary, the transport sector, and especially passenger cars, faces a significant challenge to com-
ply with the global and European climate goals. The increased percentage of CO2 emissions makes
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the decarbonization of this sector crucial. The powerful regulatory frameworks, such as the European
Green Deal and Fit for 55, set clear end-dates for conventional vehicles, and technological adoption
trends indicate an ongoing shift toward electrification. This context of a mandated energy transition in
mobility sets the stage for the detailed analyses to follow. In the following sections of this introduction,
the path to the transition to more sustainable powertrains will be explained, as well as the way to quanti-
tatively assess it through energy modeling and scenario analysis. Understanding the current emissions
landscape and the forces driving change is a necessary first step before delving into the modeling of
future transport energy systems and evaluating pathways to achieve climate-neutral mobility.

1.2. Background on the energy transition and mobility trends
A milestone in the energy transition of the transport sector in Europe is the rapid growth of electric
mobility. In recent years, the adoption of electric vehicles (EVs) - and especially battery electric vehicles
and Plug-in Hybrid Electric Vehicles (PHEVs) - has steadily increased. According to recent data, in 2023
EVs constituted around 22.7% if the total new entries of passenger cars in the EU, whereas a decade
ago this number was at zero levels. This means that 2.4 million new electric cars were sold in 2023,
an increased number from the 2.0 million in 2022 (Agency, 2024).

The majority of these vehicles were BEVs, with a share of around 15%, whereas PHEVs covered
around 8% of the new sales (Agency, 2024). Battery electric vehicle sales overcame those of PHEVs,
with an increase of 37% in 2023, while plug-in hybrid sales plateaued or even declined slightly (Agency,
2024; Commission, 2023a). This trend reflects the advancements in battery technologies and the
stricter regulations that aid electric vehicles’ growth. Because of the increased adoption of EVs, the
average CO2 emissions of new cars in Europe have decreased by around 27% between 2019 and
2022 (Commission, 2023a).

Europe is a global leader in the EV market in the new cars market share, second only to China in abso-
lute numbers. In Norway, electric vehicles constituted around 88-91% of new sales in 2023 (Agency,
2024). In Sweden, the relevant percentage was 61%, while in Germany, which is the biggest car market
in Europe, it reached 31% (Agency, 2024).

This dynamic is not limited to passenger cars. Light-duty vehicles, such as vans, are starting to be
electrified: around 7.7% of new van entries in the EU in 2023 were electric (Agency, 2024). Accordingly,
many cities invest in electric buses, whereas manufacturers have introduced new electric trucks for
short-distance transportation.

While electric mobility with the use of batteries represents the main pole in decarbonization, there are
other technologies, such as fuel-cell electric vehicles, that use hydrogen to produce electricity in the
vehicle. FCEVs offer increased autonomy and faster refueling, a fact that makes them perfect for heavy-
duty vehicles or long distances. However, they remain in the early development stage in Europe: only
a thousand new entries annually and less than six thousand by the end of 2023 (Europe, 2023). The
main obstacles are the cost, the lack of refueling stations, and the low efficiency in comparison with
BEVs.

The growth of EVs also requires the growth of the relevant charging infrastructure. By 2023, Europe
had around 632,000 public charging points built ((ACEA), 2024). However, the infrastructure increased
only six times between 2017 and 2023, while electric vehicle sales increased by 18 times ((ACEA),
2024). In addition, 60% of the charging points are in three main countries (the Netherlands, France,
and Germany), and other regions have sparse coverage ((ACEA), 2024).

To address these gaps, the EU has introduced the Alternative Fuels Infrastructure Regulation (AFIR) as
part of the Fit for 55 package, setting binding targets for charger availability. For example, AFIR requires
that by 2025, fast-charging stations (≥ 150kW ) be installed every 60 km along core TEN-T transport
corridors. The European Commission estimates that roughly 3.5 million public charging points will be
needed by 2030 to support the envisioned EV growth and meet the 55% emissions-cut target for cars
(Commission, 2023a). The European Commission suggests that around 3.5 million public charging
points will be required by 2030, while others increase this number to around 6-8 million, taking into
account more promising EV adoption scenarios ((ACEA), 2024).

Finally, electric vehicles’ effectiveness relies on a cleaner energy supply and broader shifts in transport
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habits. As the renewable energy sources’ share is increasing in Europe, electric vehicles become
”cleaner” per kilometer driven (Agency, 2025). In parallel, other sustainable alternatives such as vehicle
sharing, multi-modal transport integration, and active travel (cycling, walking) are being promoted to
reduce vehicle demand and energy use.

1.3. Relevance of powertrain technologies and weather impacts
The decarbonization of passenger transport leads the way to transition from conventional internal com-
bustion engine vehicles to alternative powertrain technologies, such as battery electric vehicles, plug-
in hybrids, and fuel-cell electric vehicles. Each of these powertrains operates with different energy
sources and efficiencies, and importantly, each is affected differently by external conditions like ambient
temperature and seasonal weather. Understanding the way weather influences energy consumption
and vehicle autonomy is crucial not only for evaluating their real-world performance but also for planning
sustainable energy systems, especially in Europe, where there are various climate conditions, such as
the cold winters in the North and the mild Mediterranean conditions, influence how each powertrain
performs throughout the year.

Regarding battery electric vehicles, they are highly sensitive to ambient temperature fluctuations and
present a significant range in autonomy and efficiency between summer and winter (U.S. Department
of Energy, 2024). In lower temperatures, the electrochemical reactions of the battery slow decelerating,
whereas systems such as cabin heating and battery consume even more energy. For example, in -7◦C,
a typical BEV can present a decrease in autonomy by 39-41% in comparison with a temperature of 25
◦C (U.S. Department of Energy, 2024). Under certain circumstances, even two-thirds of the additional
consumption in winter is solely due to cabin heating (U.S. Department of Energy, 2024).

Even inmilder conditions, the effect is visible: a study in the United Kingdom showed the EVs’ autonomy
in urban driving routes in temperatures of range 0-15 ◦C was around 28% lower than in temperatures of
range 15-25◦C (Y. Al-Wreikat et al., 2022). In summer, the losses are lower - around 10-15% because of
the use of air conditioning and battery cooling (Henning et al., 2019). This fluctuation varies significantly
according to the EV model: newer BEVs, which use heat pumps, can retain up to 95% of the rated
autonomy, whereas older models without such systems can decrease even down to 63%, with an
average of 80% in cold conditions (Norwegian Automobile Federation, n.d.). This seasonality is crucial
for Europe: a BEV that easily achieves its advertised range in a Southern European summer might
struggle to do so during a Scandinavian winter, necessitating more frequent charging and careful route
planning for drivers.

As far as plug-in hybrid vehicles are concerned, they combine electric and thermal motion, and so they
are doubly affected by weather conditions. When these vehicles use electricity to move, they present
the relevant losses of the BEVs in lower temperatures. In addition, in cold conditions, the thermal
system kicks in more often either to supplement power or provide the heating demand, thus reducing
the electric autonomy. On the other hand, when the combustion engine is running, a PHEV’s behavior
resembles that of a hybrid ICE vehicle. In low temperatures, the engine must overcome increased
friction and suboptimal thermal efficiency, and it may idle to provide cabin heat – factors which lead to
higher fuel consumption per kilometer (U.S. Department of Energy, 2024). Studies show that hybrid
vehicles can present a decrease in fuel consumption by 30-34% during winter, more than conventional
ICEs (U.S. Department of Energy, 2024). In warm conditions, their efficiency is less influenced, as the
air conditioning can be supported by the engine and the battery (Henning et al., 2019). Overall, PHEVs
provide flexibility under varying weather conditions. Instead, the impact of weather on PHEVs shifts
the balance between electric and engine use, affecting fuel consumption and electric demand in ways
that must be accounted for in energy models.

Regarding fuel-cell electric vehicles, which use hydrogen fuel cells to generate electricity in the vehicle,
they exhibit a different set of weather sensitivities. They use the waste heat of the fuel cell for cabin
heating, thus reducing the need for additional energy, and because of this, they can offer increased
autonomy in cold conditions in comparison with the BEVs (Henning et al., 2019). However, in this
study, both FCEVs and BEVs were modeled using the same HVAC energy demand profiles in VCAM.
This simplification was chosen due to the lack of robust data for HVACmodeling in FCEVs. For instance,
in temperature ranges from 15 to -5 ◦C, the autonomy of a BEV had decreased by 37.8%, whereas
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in a FCEV this decrease was only 23.1% (Henning et al., 2019). However, in extremely cold weather
conditions, hydrogen consumption increases a lot to provide heating and prepare the systems. In a
tryout in Canada, hydrogen consumption increased by 40% in below-zero temperatures (Martin, 2024).
During summer, the need to cool down the fuel cell and the cabin adds a little bit to the consumption,
but the effect is deemed limited. In addition, FCEVs are not affected by temperature in refueling time,
thus offering functionality advantages in extreme weather conditions. However, the total hydrogen
consumption per kilometer is significantly increased in both hot and cold weather extremes.

Conventional petrol or diesel vehicles remain the baseline for weather performance comparisons. ICEVs
present lower affection in consumption due to weather conditions. In low temperatures, engine oil and
drivetrain fluids become viscous, and it takes longer for the engine to reach optimal operating temper-
ature, leading to higher fuel burn in winter, especially during short trips (U.S. Department of Energy,
2024). However, unlike BEVs, ICEVs can utilize waste heat from engine operation to meet cabin heat-
ing demands, making winter HVAC loads effectively ”free” in energy terms and reducing the relative
impact on fuel economy. Despite this, the average efficiency decrease is around 10-20%, and this
number can rarely reach 24-33% (U.S. Department of Energy, 2024). In warm weather conditions, air
conditioning increases the load on the engine. Studies show around a 14% drop in range or fuel econ-
omy at 35 ◦C (Henning et al., 2019). Consequently, even while ICEVs’ drivers are not directly affected,
seasonal fluctuations in consumption are crucial for computing the fleet’s fuel needs and emissions.

The varying climate zones in Europe make the relationship between technology and weather critical.
Northern European countries like Norway, Sweden, and Finland face long, harsh winters with mean
temperatures well below freezing. BEVs there can lose up to 30% of their autonomy even in milder
winter conditions (Norwegian Automobile Federation, n.d.). This requires a more dense charging infras-
tructure and careful energy planning, especially as Northern European countries lead in EV adoption
rates. By contrast, Southern European countries such as Greece, Italy, and Spain have milder winters,
where BEV performance remains close to optimal for most of the year, but they experience very hot
summers. High temperatures can affect battery performance and increase the use of air condition-
ing. While according to Henning et al. (2019) and Norwegian Automobile Federation (n.d.) the summer
range loss for EVs is generally smaller than winter losses, heatwaves in southern Europe could induce
additional stress on both electric and combustion vehicles.

Finally, factors such as precipitation, snow, and road conditions affect the consumption of all types of
vehicles through increased rolling resistance and aerodynamic drag. The effect of weather on con-
sumption has significant consequences for energy and transport policy, as it affects both the everyday
driving experience and the seasonal energy demand planning. For instance, BEV fleets in Scandi-
navia require significantly more electricity in January than in July, whereas FCEVs and PHEVs have
increased seasonal fuel demands. These phenomena are crucial in modeling energy consumption in
the transport sector and in strategic planning and evolving the required technologies per geographic
region (Henning et al., 2019; Martin, 2024).
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1.4. Problem statement, scope, and thesis outline
As the transport sector becomes an increasingly central component of the global energy transition,
accurately modeling the energy consumption of emerging vehicle technologies has become essential
not only for estimating demand but also for understanding their role in energy system flexibility. In
decarbonized systems, which are heavily relying on variable renewable energy sources like wind and
solar, periods of low generation, such as the Dunkelflaute in winter, when both solar irradiance and
wind availability are low, can strain the balance between supply and demand. In countries such as
Switzerland, these events often lead to increased electricity imports and system dependency. In such
contexts, passenger electric vehicles represent both a significant load and a potential flexibility asset
through demand-side management (DSM), such as smart charging. However, the extent in which
the EVs can support or stress the grid heavily depends on accurate estimations of their consumption in
different regions, climates, and driving conditions. The misrepresentation of this load, especially during
extreme weather conditions or congestion scenarios, has the risk of underestimating grid vulnerabilities
and flexibility needs.

The core problem addressed in this thesis is the lack of comprehensive modeling tools that can rep-
resent the energy consumption of different passenger vehicle powertrains, including battery electric
vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), internal combustion engine vehicles (ICEVs),
and FCEVs, under realistic conditions of European driving, climate, and fleet composition. While BEVs
are expected to be the dominant technology in the future market, FCEVs are included due to their
potential to offer system-level benefits in niche but critical use cases. For instance, FCEVs can decou-
ple electricity consumption spatially and temporally, by allowing hydrogen production in regions with
low grid congestion, which relocates the energy demand geographically. Moreover, in regions that
have highly limited transmission infrastructure, hydrogen mobility could provide an alternative pathway
towards decarbonization, which eases grid stress. Existing models often oversimplify or omit these
interdependencies, which leads to limited insight into energy demand patterns and weakens the inte-
gration between transport modeling and broader energy system analysis.

This research is driven by the overarching question: To what extent is the energy demand from pas-
senger mobility influenced by variations in powertrain technologies, vehicle types, and weather
conditions? In order to address this question, the thesis investigates three supporting sub-questions:

1. What are the quantified differences in consumption and range between various powertrain
technologies across vehicle segments?

2. To what degree does weather variability impact the energy consumption of passenger ve-
hicles with different powertrains?

3. To what extent does the energy demand for passenger mobility differ across European
regions, and what role do vehicle fleet compositions and climate zones play?

To address these questions, the thesis focuses on extending and applying the Vehicle Consumption
Assessment Model (VCAM). The work involves modeling and comparing the energy consumption of
BEVs, FCEVs, and ICEVs, while explicitly incorporating temperature variability to reflect weather condi-
tions across Europe. The analysis is geographically focused on European countries and uses regional
data on fleet composition and ambient conditions, whereas standardized driving cycles are used. The
outputs are designed to support integration into broader energy systemmodels, enabling cross-sectoral
assessments of future transport energy demand. While the study emphasizes physical and environmen-
tal determinants of consumption, it does not explicitly model behavioral factors such as driver habits,
traffic congestion, or long-term technological evolution beyond the defined fleet scenarios.

The thesis is structured into six chapters. Chapter 1 introduces the motivation, background, and struc-
ture of the research. Chapter 2 presents a literature review of existing vehicle consumption models,
identifying gaps related to hydrogen powertrains and environmental effects. Chapter 3 describes the
methodology, including the extension of VCAM to cover additional technologies and the integration
of regional data. In this Chapter, Section 3.3 presents the model quality assessment that has been
made in order to validate the model against real-world data. Chapter 4 presents the simulation results,
comparing powertrains under different temperatures, regions, and use cases. Chapter 5 discusses the
findings in light of decarbonization goals and energy system planning and reflects on the limitations of
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the study, while offering key insights and recommendations for future research. Chapter 6 concludes
the thesis by answering the research questions posed.



2
Literature Review

This chapter presents a complete examination of the current vehicle fuel consumption approaches and
tools. Firstly, it categorizes the models into macroscopic, mesoscopic, and microscopic frameworks,
examining their theoretical foundations, their typical applications, and the relevant advantages and
limitations. The following section offers a comparative analysis of the most used simulation platforms
as far as the computational efficiency, the powertrain coverage, the incorporation of environmental
conditions, the accessibility and customizability, and the overall level of detail are concerned. Using this
comparative analysis as a baseline, the review identifies research gaps, which mostly have to do with
the poor representation of the fuel cell electric vehicles, the limited treatment of weather fluctuations,
and the European regional demand. It concludes by positioning the Vehicle Consumption Assessment
Model as a promising foundation in order to deal with these gaps in the present thesis.

2.1. Overview of vehicle consumption models
Studying energy consumption in road vehicles has emerged into three crucial modeling frameworks:
macroscopic, mesoscopic, and microscopic (Chen et al., 2024). Each of these approaches offers a
different level of detail and range, and their understanding is crucial in order to select the most appropri-
ate tool to evaluate energy demand under various conditions. Figure 2.1 illustrates this categorization,
while Table 2.1 includes a comparison of the frameworks. This section examines these categories,
focusing on European studies, highlighting their historical development, their advantages and their lim-
itations, as well as the way they handle different vehicle types, driving patterns, and environments in
estimating energy use.

8
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Figure 2.1: Modeling frameworks (Chen et al., 2024).

2.1.1. Macroscopic energy consumption models
Macroscopic models operate at the highest level of aggregation, treating an entire road network or
region as the unit of analysis over extended periods (typically months or years) (Chen et al., 2024).
In these models, vehicle energy consumption is calculated using complete statistical data, such as
the total kilometers driven, the fleet composition, and the average fuel economy for each vehicle type
(Chen et al., 2024). For instance, a typical formulation will sum energy use across vehicle categories k
and fuel types i by multiplying the number of vehicles, their average annual distance, and an average
energy intensity (fuel per distance) for each category.

Classic macroscopic models include national inventory tools, such as COPERT (Computer Program
to Calculate Emissions from Road Transport) in Europe, which offers standardized fuel consumption
and emission factors for different vehicle types (passenger cars, vans, trucks, etc.) based on European
data inputs such as total mileage, fleet composition, average speed, and environmental parameters like
external temperature and humidity (Chen et al., 2024). These models have been extensively used in
policy analysis and emissions inventories to track trends and assess mitigation strategies (Ntziachristos
et al., 2009).

Macroscopic models offer various advantages and thus are widely used. Their main one is their simplic-
ity and applicability in large-scale scenarios. They require relatively coarse input data (often obtainable
from travel surveys or registration statistics) and are computationally light, making them suitable for na-
tional energy demand projections or long-term scenario modeling. Due to their extended scope, they
are useful in order to analyze trends. For example, they can be used to evaluate how total passenger
transport energy consumption changes with fleet electrification or fuel economy improvements on a
country basis (Chen et al., 2024).

On the other hand, these models present some limitations. The high degree of spatial and temporal
aggregation means macroscopic approaches cannot capture fine-grained variations in driving behavior
or road conditions. Geographical or operational details, such as the differences between urban traffic
and highway driving, are averaged out in these models. As a result, macroscopic tools are inadequate
for real-time or localized analysis. Another disadvantage is the accuracy loss that can happen due to
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their reliance on default or test-cycle-based factors, as consumption factors often come from laboratory
driving cycles and do not fully represent real driving conditions. This can lead to systematic errors –
for example, older European inventory methods using steady-state cycles underestimated the impact
of aggressive acceleration or congestion (Chen et al., 2024).

2.1.2. Mesoscopic energy consumption models
Mesoscopic models represent an intermediate scale between macro and micro, capturing vehicle en-
ergy consumption at the level of specific road types, traffic situations, or time periods (e.g., corridor-level
or city-scale over minutes to hours). Instead of simulating each vehicle independently, mesoscopic ap-
proaches use aggregated descriptions of vehicle standards in a given road part or network slice, such
as the average speed, frequency of stops/starts, or statistical distributions of acceleration in order to
estimate energy use (Chen et al., 2024). They try to integrate some dynamics of traffic conditions
without the full complexity that microscopic models have.

Early mesoscopic methods were based on standardized driving cycles for characterizing typical driving
conditions. For example, the European model Artemis used libraries of driving cycles to represent
urban, rural, and highway driving, assigning fuel consumption or emission factors based on the cycle
that best fit the average speed and driving aggression of the scenario (Mądziel, 2023). More specifically,
Artemis, which was developed in the 2000s, is notable for selecting representative driving cycles by
clustering real-world driving patterns and then computing emissions and consumption factors for each
cluster, applying additional correction factors to improve accuracy (Chen et al., 2024).

This approach enhanced the simplified average speed models by understanding, for instance, that
driving in an urban environment with starts and stops at 50 km/h presents a different energy behavior
than driving in steady state speed. However, even purely cycle-based mesoscopic models still struggle
with highly localized effects, such as the extra fuel used near traffic lights or bus stops, since a single
cycle averages over many driving events (Chen et al., 2024).

A major advance in mesoscopic modeling was the introduction of Vehicle Specific Power (VSP) as a
unifying parameter in the late 1990s. VSP, developed by Jimenez-Palacios (1999) at MIT, measures
the instantaneous power demand per unit vehicle mass in kW per tonne required to move the vehicle,
considering speed, acceleration, road grade, and aerodynamic drag (Chen et al., 2024). Researchers
found out that the distribution of VSP over time is a strong indicator of fuel consumption, better than
usingmean speed or acceleration statistics, because it is related to the engine load. VSP-basedmodels
work by dividing vehicle operating modes into VSP bins, such as idle, low power cruise, high power
demand, and assigning each bin an energy consumption rate. The American model MOVES (Motor
Vehicle Emission Simulator) is an example of this approach, since it specifies the working modes of
the vehicles related to VSP regions and estimates the fuel consumption in accordance with the time
spent in each operating mode (Chen et al., 2024). By taking advantage of big databases with driving
data, second by second, MOVES achieves higher accuracy than older mean speed methods, as it
captures the effect of aggressive driving or road grade via VSP without micro-simulation (Chen et al.,
2024). The trade-off is the increased needs for data and calibration, since MOVES is strongly based
on extensive local data, a fact which makes its use outside the U.S. a challenge (Chen et al., 2024).
A similar international model, IVE (International Vehicle Emissions), has been developed in order to
extend VSP-bin modeling on a global scale, but it requires detailed inputs and has suffered from data
aging in regions where the data are not well updated (Chen et al., 2024).

In Europe, mesoscopic modeling has also advanced through projects and tools that incorporate de-
tailed vehicle simulations in broader traffic contexts. The Handbook of Emission Factors for Road
Transport (HBEFA) is one such tool, which is widely used in European countries. HBEFA provides
fuel consumption and emissions factors for a broad range of traffic conditions based on a mesoscopic
philosophy: use data produced by micro-simulations and calculate average fuel consumption rates
for every driving pattern (Mądziel, 2023). In practice, HBEFA and similar models, such as earlier ver-
sions of COPERT and Artemis, offer analysts the possibility to estimate energy use and emissions by
applying the calibrated factors, thus bridging the gap between aggregate national models and highly de-
tailed simulations. These approaches are invaluable in Europe for ”eco-driving” studies, where different
routes or traffic management strategies on energy demand are evaluated (Mądziel, 2023).



2.1. Overview of vehicle consumption models 11

Mesoscopic models have many strengths, but the one that stands out is the balance they succeed be-
tween realism and complexity. They integrate more driving details than macroscopic models, capturing
the way speed variability, road grade, and starts-and-stops affect consumption, but they still remain way
more computationally efficient than simulating every vehicle movement. This makes them well-suited
for policy analysis and network planning. Many mesoscopic methods are also based on empirical data,
a fact that adds to increased accuracy (Chen et al., 2024; Ye et al., 2019).

Despite the advantages, mesoscopic models also have limitations. They are still relying on aggregate
representations of driving. They usually assume that an average driving pattern or a mean distribution
can represent all types of vehicles in a given road segment, which omits the extreme behaviors or the
interactions between vehicles. They cannot capture the real-time coupling between vehicles because
they typically leave out the vehicle-to-vehicle interactions, in contrast with the complete microscopic
simulations. In addition, their accuracy is strongly connected to the quality of calibration data (Chen
et al., 2024).

2.1.3. Microscopic energy consumption models
Microscopic energy models simulate vehicle energy use at the finest level of detail, as the individual
vehicles are modeled on a second-by-second basis, while they move along a driving cycle or a traf-
fic simulation. These models usually use physical equations of motion and powertrain response to
estimate the instantaneous fuel or energy consumption, or they use empirical relations calibrated for
specific vehicles. The development of microscopic models for vehicle consumption started earlier than
mesoscopic and macroscopic approaches, because understanding vehicle dynamics represents the
basis for all the higher-level models(Chen et al., 2024). Innovative works at the start of the 1980s intro-
duced fuel consumption modeling based on power. Post et al. (1984) formulated fuel consumption as
a function of the engine power demand, taking into account the losses and the efficiency, while Akçelik
and Biggs (1989) refined this by integrating vehicle parameters such as drag force and rolling resis-
tance. By the early 1990s, researchers An and Ross (1993) had further improved these formulations
and complete texts, such as Wong (2001), had consolidated the physics of vehicle energy use into
computational models. These efforts concluded in more flexible frameworks such as the Virginia Tech
Comprehensive Power-Based Fuel Consumption Model (VT-CPFM), which was developed by Rakha
et al. (2011). VT-CPFM offered a generic parametrized equation to estimate fuel rate based on the
instantaneous speed and acceleration of the vehicle, as well as vehicle-specific constants such as ve-
hicle mass and engine size (Rakha et al., 2011). This marked a significant milestone, since the need to
perform extensive real-world calibration for every new vehicle was overcome, thus making microscopic
models based on physics more practical and extendable in different passenger car models.

In parallel, purely empirical microscopic models have been developed, using statistical fits to driving
data and not detailed mechanics. A significant example is the VT-micro model by Ahn et al. (2004),
which expresses the instantaneous fuel consumption as a polynomial equation of speed and accelera-
tion. These models are typically derived from a large set of test data to find the best formula. They have
the advantage of simplicity and easy integration, since they require only kinematic variables as inputs,
and can be easily plugged into traffic simulations or fed with recorded drive cycle data to estimate fuel
consumption (Chen et al., 2024).

Another branch of microscopic modeling includes software that fully simulates vehicles. Tools like the
PTV, VISSIM, SUMO, AIMSUN, and others focus on creating realistic vehicle trajectories, taking into
account car following and lane changing, while complementary models like CMEM (Comprehensive
Modal Emissions Model) or the aforementioned VT-CPFM compute instantaneous fuel use for these
trajectories (Chen et al., 2024). CMEM, developed in UC Riverside, is a typical micromodel example
based on simulation, as it uses vehicle parameters and instantaneous driving inputs such as speed,
acceleration, and road grade, to compute the engine load and then the fuel rate (Scora & Barth, 2006).
This model and its successors have been widely applied in research in order to evaluate the way
vehicles consume fuel in different driving patterns and routes (Chen et al., 2024; Kan et al., 2018).
European researchers also significantly contributed to this sector. For example, PHEM (Passenger
car and Heavy Duty Engine Model), developed by TU Graz, is a microscopic energy/emission simula-
tion, which uses engine maps for different vehicle segments to predict the fuel consumption under any
driving pattern. PHEM’s results have significantly contributed to creating HBEFA factors, showing that
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microscopic tools underpin mesoscopic ones (Chen et al., 2024). Nowadays, microscopic simulations
are frequently used to create virtual test drives for new powertrain technologies. Users can model
hybrid-electric or battery-electric vehicles through a standardized driving cycle to evaluate energy con-
sumption and range under certain conditions. This practice is at the core of evaluating the impacts of
powertrain technologies on energy demand, and is one of the reasons why the Vehicle Consumption
Assessment Model (VCAM) in this thesis is built to do.

Microscopicmodels offer the highest analysis and physical realism. They can conceive the effects of the
differences in the vehicles and operating conditions that other models have to simplify. For example, a
microscopic model can directly simulate the way a heavier vehicle consumes more energy when going
up a hill or the way the use of an HVAC system on a warm day increases fuel consumption. Experiments
have quantified effects under extreme weather conditions, when vehicles can consume significantly
more energy than under milder conditions (Giechaskiel et al., 2021). These can be incorporated into a
microscopic simulation, allowing weather impacts on energy consumption to be evaluated. Microscopic
approaches are also required to assess new powertrain technologies and control strategies, such as
when hydrogen fuel cell vehicles or advanced driver-assistance features are introduced. All thesemake
microscopic models crucial for research and innovation.

On the other hand, there is complexity. Microscopic models require a handful of input data and detailed
calibration against experimental data. Composing a trustworthy micromodel can be work-intensive,
and simulating a large number of vehicles through second-to-second simulations is computationally
demanding. This makes microscopic modeling less practical in modeling country fleets or future sce-
narios, where the uncertainty is high and many parameters have to be evaluated. In addition, while
microscopic models can include almost any effect, such as grade, weather, and traffic, they are only
as accurate as the assumptions that are being made and the data provided. A detailed model can
misestimate fuel consumption if the engine map or the rolling resistance is not representative of the
real world. Furthermore, many times the models are developed and validated for one specific vehicle,
and then this model is used for all vehicles of this type, which can cause errors in the results. However,
despite these challenges, the trend in Europe and globally is to continuously improve microscopic tools
and integrate them into wider modeling frameworks, since computing power grows and more empirical
data become available (He et al., 2023).

Table 2.1: Comparison of Macroscopic, Mesoscopic, and Microscopic Vehicle Energy Consumption Models

Criterion Macroscopic Mesoscopic Microscopic

Temporal Resolution Year, Month Hours or Days Hours or Seconds

Spatial Resolution National / Regional
level

Urban network / Road
segments

Individual vehicles
and routes

Inputs Average speeds,
number of vehicles

VSP, road type, typical
conditions

Speed, acceleration,
load, temperature

Vehicle Types Fleet categories Typical driving profiles
per class

Individual technical
specifications

Computational Demand Low Moderate High

Suitability for New
Technologies

Limited Moderate High

Examples COPERT, HBEFA MOVES, ARTEMIS,
HBEFA

CMEM, VT-CPFM,
PHEM
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2.2. Comparative evaluation of key tools
The field of vehicle energy consumption modeling has seen the development of several frameworks,
each excelling in particular areas while facing specific limitations. Instead of merely listing these tools,
this section highlights key aspects of modeling frameworks—computational efficiency, powertrain di-
versity, environmental integration, and accessibility—and evaluates how various tools address these
challenges.

Computational efficiency
Efficient simulations are essential for large-scale fleet analyses and time-sensitive studies. FASTSim,
developed by NREL, achieves computational efficiency by simplifying vehicle dynamics while maintain-
ing accurate results with errors under 10% (Holden et al., 2015). This balance makes it highly suit-
able for analyzing large fleets. In contrast, ADVISOR, another tool from NREL, provides detailed and
accurate results using backward-forward simulation techniques but requires significant computational
resources due to its dependence on engine maps and extensive parametrization (Masclans Abelló,
2021). Similarly, VT-CPFM and VT-CPEM adopt power-based methodologies, offering high accuracy
for steady-state conditions but struggling with transient or large-scale dynamic simulations (Fiori et al.,
2016).

Powertrain diversity
Modeling frameworksmust account for diverse powertrain technologies, including ICEVs, BEVs, PHEVs,
and FCEVs. FASTSim supports ICEVs, BEVs, and PHEVs effectively, allowing for a broad range of
powertrain analyses, although it does not fully address hydrogen fuel cell vehicles (FCEVs) (Bi et al.,
2021; Grubwinkler et al., 2016). ADVISOR, while historically significant for hybrid and electric vehicle
modeling, faces challenges adapting to emerging technologies. VT-CPFM and VT-CPEM are tailored
to ICEVs and BEVs, respectively, but lack features to evaluate hybrid or hydrogen technologies com-
prehensively (Park et al., 2013).

Integration of environmental factors
Environmental conditions, particularly temperature variability, significantly affect vehicle energy con-
sumption, especially for electrified powertrains with sensitive battery thermal dynamics. Many frame-
works, including FASTSim, offer limited capabilities for modeling these external factors (Bi et al., 2021).
For instance, while FASTSim allows for user-defined speed profiles and vehicle parameters, it struggles
to model temperature impacts or road-grade variability comprehensively (Grubwinkler et al., 2016). VT-
CPEM focuses primarily on steady-state conditions and overlooks transient environmental effects (Fiori
et al., 2016). Innovative approaches, such as Grubwinkler et al. (2016) real-time data-driven model, in-
corporate environmental factors effectively, achieving estimation errors as low as 7%. However, these
approaches rely heavily on large datasets, limiting their adaptability.

Accessibility and customizability
Open-source and customizable frameworks are vital for researchers and policymakers. FASTSim and
ADVISOR are freely available, making them accessible for a wide range of studies (Holden et al.,
2015; Markel et al., 2002). FASTSim’s simplicity and support for user-defined inputs further enhance
its versatility, enabling a wide range of scenarios to be modeled. Customizability remains a key strength
of FASTSim, while other tools often rely on predefined datasets or require complex reconfiguration to
adapt to new scenarios.

Level of detail
Balancing model simplicity and accuracy remains a persistent challenge. FASTSim strikes a practi-
cal balance, providing sufficient detail for energy consumption studies without overwhelming computa-
tional resources (Holden et al., 2015). ADVISOR and CMEM, on the other hand, are highly detailed,
enabling accurate simulations of specific vehicle dynamics, but their complexity and extensive input
requirements hinder broader or real-time studies (Boriboomsin et al., 2012; Masclans Abelló, 2021).
VT-CPFM and VT-CPEM excel in power-based modeling but are less capable of representing diverse
driving behaviors or integrating weather variability (Fiori et al., 2016).
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Limitations and research gaps
Despite the advances in vehicle energy modeling, important gaps exist in integrating external factors
and powertrain diversity. Most models find it difficult to consider weather variability, which has a remark-
able effect on EV efficiency, mainly because of the sensitivity of the battery to temperature fluctuations
and the increased HVAC loads in extreme conditions (Ahn et al., 2002; Fiori et al., 2016). Furthermore,
hydrogen fuel cell vehicles (FCEVs) and hybrid technologies, critical to achieving decarbonization in
specific sectors, remain poorly represented in most tools (Masclans Abelló, 2021). Moreover, modeling
regional demand, mainly in Europe, requires tools capable of integrating localized driving cycles, fleet
compositions, and regulatory contexts that are rarely present in current frameworks (Bi et al., 2021;
Yue et al., 2013).

Positioning the Vehicle Consumption Assessment Model (VCAM)
The Vehicle Consumption Assessment Model (VCAM) addresses many critical gaps in the already es-
tablished transport energy models, offering a highly flexible platform that can simulate vehicle energy
consumption under various conditions. Its ability to recreate almost any vehicle, using certain inputs,
such as powertrain type, allows researchers to analyze a wide range of vehicle configurations and
performance characteristics. Additionally, VCAM integrates external factors, such as ambient temper-
ature and driving profiles, making it extremely effective for analyzing BEV performance under varying
real-world scenarios.

However, despite its flexibility, VCAM currently lacks features for hydrogen vehicle modeling and ad-
vanced regional demand integration, particularly in European contexts where localizedmobility patterns
and environmental conditions play a critical role in achieving transport decarbonization goals (Masclans
Abelló, 2021). By enhancing VCAM’s capabilities to include these factors, this thesis aims to bridge
the identified gaps, providing a more comprehensive and adaptable tool for transport energy modeling
and system-level analysis.

2.3. Gaps and their connection to research objectives
The gaps identified in the existing vehicle energy consumption frameworks highlight critical limitations
that must be dealt with to support the energy transition. The limited capacity of current tools to fully
integrate hydrogen vehicles and to take into account weather variability is a significant obstacle to accu-
rately evaluating future energy demands. This is important for regions such as Europe, where diverse
climates, regulatory landscapes, and mobility patterns require detailed and region-specific analyses.

Moreover, most models struggle to bridge the gap between vehicle-level simulations and regional de-
mand assessments, limiting their relevance in broader energy system planning. This disconnect seems
particularly problematic in scenarios that require holistic integration of transport and renewable energy
systems, as decreasing emissions in the transport sector should align with the evolving dynamics of
energy generation and consumption at the system level.

To address these gaps, this thesis aims to enhance the Vehicle Consumption Assessment Model
(VCAM) with the following objectives:

1. Incorporate Hydrogen Vehicle Modeling: Develop and integrate features for simulating hy-
drogen fuel cell vehicles (FCEVs), enabling VCAM to represent a broader range of powertrain
technologies and assess their contributions to decarbonization.

2. Model Weather Variability: Extend VCAM’s capabilities to simulate the impacts of external con-
ditions, such as extreme temperatures, on vehicle energy consumption and range, particularly
for BEVs and other electrified powertrains.

3. Regional Demand Integration for Europe: Adapt VCAM to account for localized driving cycles,
fleet compositions, and climate variability across European regions, providing actionable insights
into regional transport energy demand and emissions.

By addressing these gaps, this thesis will bridge the divide between vehicle-level and system-level mod-
eling, offering a complete tool that evaluates different powertrain technologies and supports strategic
energy planning. This thesis is directly connected to the continued effort to decarbonize the transport
systems while ensuring the effective integration of renewable energy sources.



3
Methodology

The Methodology section provides a complete description of the steps followed in order to extend and
apply the Vehicle Consumption Assessment Model in evaluating fuel cell electric vehicles in real-world
European conditions (see Figure 3.1. In Section 3.1, the architecture of the original model is enhanced
by integrating the new entry of hydrogen fuel cell electric vehicles, which is complete with detailed fuel
cell efficiency maps, idle mode behavior, and HVAC system modeling. In this section, the complete
description of the governing equations is provided. In Section 3.2, the data collection procedure is
described, which includes the collection of data for each of the European countries’ fleet composition,
the selection of driving cycles, and the compilation of different weather year time series.

Literature review &
gap identification

VCAM extension:
add FCEV module, HVAC/weather, regional inputs

Data collection:
fleet mix, driving cycles, temperatures

Model implementation:
configure inputs & equations

Model validation:
tractive force & hydrogen consumption

Scenario simulations:
2050, regional & weather years

Results analysis:
FCEV metrics, powertrain & temperature

Discussion

Conclusions & recommendations

Figure 3.1: Flowchart of the thesis methodology
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3.1. VCAM structure
This section presents the main features, capabilities, and structure of the established Vehicle Consump-
tion Assessment Model. VCAM acts as a virtual test bench, simulating energy consumption based on
specific inputs. These inputs can be organized by vehicle specifications and external factors. Model
specifications define crucial efficiency characteristics, such as curb weight, maximum power, and drag
coefficient. Respectively, external factors such as driving cycle profiles and outer temperature are
independent of the vehicle model.

VCAM functions mainly as a backward simulation model, which means that it computes vehicle con-
sumption based on predefined driving cycles, without taking into account any interaction with the driver.
However, it integrates some forward modeling elements by including dynamic constraints, such as
power or torque limitations, which introduce feedback loops into the consumption calculation.

The current model structure is represented in Figure 3.2 and has been developed and thoroughly ex-
plained by Sanvito (2022). The model structure varies depending on the powertrain type that is being
simulated. In the figure, current inputs and outputs concerning BEVs and ICEVs are depicted. On top
of these, there are other inputs and outputs concerning FCEVs that will be discussed.

Figure 3.2: VCAM modeling structure

3.1.1. FCEV inputs
As already said, the model inputs are categorized by vehicle-dependent and vehicle-independent vari-
ables. The latter are present in all types of powertrains:

• Driving Cycle (DC): The driving cycle serves as the model’s demand component and is com-
posed of various profiles: (i) the time profile of the driving cycle (DC), (ii) the speed profile, (iii) the
acceleration profile, and (iv) the road grade. To maintain consistency in units of measurement,
the inputs follow specific conventions: timestep are customizable, speed is given in m · s−1, ac-
celeration in m · s−2, and road grade in percentage, which corresponds to the tangent of the road
angle multiplied by 100. Driving cycles may either be standard ones, used for vehicle certification,
or custom-defined according to user requirements.

• External Temperature: the ambient temperature varies throughout the year. The model can
take as input a specific temperature or time series data related to countries and different weather
years

There are also some common inputs between FCEVs and other powertrain types. These are:
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• Vehicle Weight: expressed in kilograms [kg] and accounts for the curb weight plus driver/pas-
sengers (on average),

• Frontal Area: expressed in [m2],
• Drag Coefficient: a parameter that concerns the aerodynamic efficiency of the vehicle,
• Auxiliary load: This variable accounts for the additional electrical load generated by various ve-
hicle components, including power steering, onboard controllers, windshield wipers, infotainment
systems, and other auxiliary devices. It is represented as a constant power load, measured in
watts [W].

The unique inputs for FCEV modeling are:

• Fuel Cell Max Power: it represents the maximum power output in [kW] that the fuel cell can
provide,

• Fuel Cell Efficiency Map: it expresses the efficiency of the fuel cell for each power output
• Battery Size: overall battery capacity in [kWh],
• Idle Power: the power consumed by the fuel cell when the vehicle is idle in [kW],
• Fuel Cell Ramp-up Time: the time that the fuel cell needs to reach peak power.
• Hydrogen Tank Size: the size of the tank for the stored hydrogen expressed in [kg]

3.1.2. Model outputs
The model has some default outputs:

• Vehicle Consumption: the output result computed is the FCEV consumption expressed in [kgH2/100km],
as well as the fuel efficiency in MPGe,

• Driving Cycle Report: a .csv output file containing all the driving cycle variables relevant to each
time step,

• Fuel cell electric vehicle range: the total range in [km] is computed.

3.1.3. Governing equations
This section covers the equations used to simulate Fuel Cell Electric Vehicles, as well as vehicle dy-
namics in the software.

Vehicle longitudinal dynamics
The initial modeling block transforms the driving cycle inputs into corresponding forces and power de-
mands. The longitudinal dynamics of a vehicle are typically modeled by summing four primary resistive
forces: aerodynamic drag, rolling friction, road grade, and inertial forces. This modeling framework is
well established in the literature and has been widely applied in vehicle propulsion and control studies
(Guzzella & Sciarretta, 2013; Muneer et al., 2004; Rajamani, 2012; Tate & Boyd, 2000; X. Wu & Peng,
2005). To begin, the traction power is determined using Equation 3.1:

Ftraction = Faerodynamic + Frolling friction + Froad grade + Finertia (3.1)

where Faerodynamic represents the aerodynamic resistance (Equation 3.2), Frolling friction accounts for the
interaction between the tires and the road (Equation 3.3), Froad grade corresponds to the force exerted
due to road incline (Equation 3.5), and Finertia denotes the inertial force (Equation 3.6).

Each force component is described as follows:

Faerodynamic =
1

2
· ρair ·Af · Cd · v2 (3.2)

where ρair is the air density, Af is the vehicle’s frontal area, Cd is the aerodynamic drag coefficient, and
v represents the vehicle speed. The rolling friction force is calculated using Equation 3.3:
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Frolling friction = m · g · Cr · cos δ (3.3)

where m represents the vehicle mass, including the driver and passenger contributions, g is the gravi-
tational acceleration, Cr is the rolling friction coefficient, and δ is the road angle in radians. The rolling
friction coefficient varies as a function of vehicle speed and external temperature, as detailed in Ta-
ble A.1.

The conversion from road slope to road angle is expressed in Equation 3.4:

δ = arctanα (3.4)

where α denotes the road slope in percentage.

The force due to road grade is given by Equation 3.5:

Froad grade = m · g · sin δ (3.5)

The inertia force is determined as follows:

Finertia = m · a (3.6)

Finally, the computed forces are transformed into power by multiplying them by the vehicle speed.

Auxiliary systems
This section focuses on the modeling of the auxiliary Heating, Ventilation, and Air Conditioning (HVAC)
system in Fuel Cell Electric Vehicles (FCEVs). The HVAC modeling determines the heating or cool-
ing load based on external temperature conditions, assuming steady-state operation. The fundamental
equations used for this modeling approach are derived from the study of Lajunen (2017). This methodol-
ogy is consistent with the HVAC modeling applied to BEVs, ensuring a unified framework for evaluating
auxiliary thermal loads.

For FCEVs, different HVAC system configurations can be selected, including:

• Heat Pump with Waste Heat Recovery (HP-WH): If the HVAC system utilizes a heat pump with
waste heat recovery (hvac_mode = ”hp_wh”), the COP is computed as a function of the external
temperature:

COP = max(1, copHP-WH(Tout)) (3.7)

• Heat Pump with PTC Heating (HP-PTC): If the HVAC system integrates a Positive Temperature
Coefficient (PTC) heater alongside a heat pump (hvac_mode = ”hp_ptc”), the COP follows:

COP = max(1, copHP-PTC(Tout)) (3.8)

• Heat Pump with PTC Heating and Waste Heat Recovery (HP-PTC-WH): In this case, the
HVAC system combines a heat pump, a PTC heater, and waste heat recovery (hvac_mode =
”hp_ptc_wh”), leading to a COP defined as:

COP = max(1, copHP-PTC-WH(Tout)) (3.9)

The thermal load from the HVAC system is converted into an electrical power demand using the coef-
ficient of performance:

PHVAC =
Pth

COP
(3.10)
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Additionally, Fuel Cell Electric Vehicles (FCEVs) require an extra thermal management load associ-
ated with the battery (BTMS), which ensures proper temperature. The total auxiliary thermal load is
computed as:

Pth, aux = PHVAC, aux + PBTMS (3.11)

The auxiliary efficiency (ηaux) in FCEV modeling accounts for:

• The DC/DC converter efficiency used to supply the HVAC system.
• The round-trip efficiency of the auxiliary fuel cell power system.

Vehicle modeling
Fuel Cell Electric Vehicles (FCEVs) present a unique powertrain architecture that combines a fuel cell
system, a battery pack, and an electric drivetrain to provide traction power while maintaining optimal
energy efficiency. This section details the computational approach used tomodel power demand, power
split strategy, and efficiency characteristics in FCEVs. The conceptual layout of an FCEV, as depicted
in Figure 3.3, illustrates the key power flow pathways between the fuel cell system, battery, and electric
motor.

Figure 3.3: Conceptual architecture of an FCEV drivetrain, illustrating power flow pathways.

As depicted in the Figure, the fuel cell system is modeled as a black box with the efficiency used
containing all the components present in the fuel cell (e.g., air compressor, pressure regulator, hydrogen
circulation pump, etc.) as well as the necessary inverters/converters. The power management strategy
in an FCEV balances fuel cell output and battery contribution, ensuring that the fuel cell operates
efficiently. The fuel cell system operates at optimum power output to achieve increased efficiency,
as outlined by Purnima and Jayanti (2020):

PFC, max · 0.1 ≤ PFC ≤ PFC, max · 0.9 (3.12)

The power split strategy is implemented as follows:

• If the total power demand is low, the battery provides power while the fuel cell operates at idle,
• If the demand exceeds the fuel cell’s optimal efficiency range, the battery supplements additional
power,

• If regenerative braking occurs, excess energy is stored in the battery.
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Battery power contribution is determined dynamically, ensuring that State of Charge (SOC) remains
within predefined limits:

SOCmin ≤ SOC ≤ SOCmax (3.13)

where the lower limit prevents excessive discharge, and the upper limit ensures the battery does not
overcharge.

The fuel cell efficiency varies depending on output power levels. An example of Toyota Mirai’s fuel
cell system and stack efficiencies is shown in Figure 3.4. The fuel cell system efficiency (ηFC,sys) is
generally lower than the fuel cell stack efficiency (ηFC,stack) due to additional system losses, including
compressors, thermal management, and DC/DC conversion losses.

Figure 3.4: Fuel cell efficiency map: stack efficiency vs. system efficiency as a function of output power (Q. Wu et al., 2025).

Fuel cell efficiency is interpolated from empirical data, ensuring accurate performance prediction:

ηFC = f(PFC) (3.14)

where f(PFC) is a function derived from test data. The efficiency declines at higher power outputs due
to increased parasitic losses and reactant flow constraints.

The power at the motor outlet is given by equation 3.15:

Pout =
Ptraction

ηdt
(3.15)

while motor’s power is computed as:

Pmotor =
Pout

ηmotor
(3.16)

The motor efficiency, ηmotor, is dependent on the vehicle’s partial load, which is the ratio of the actual
motor power demand to the vehicle’s maximum power output, Pmax (Brooker et al., 2015). Additionally,
the peak motor efficiency is expressed as a function of the maximum power itself (Basso et al., 2014).

FCEVs recover energy during braking through regenerative braking, where the electric motor acts as
a generator to charge the battery. The braking power is given by:



3.1. VCAM structure 21

Pbrake = −Ptraction (3.17)

The recovered power is limited by:

• The battery’s maximum charge acceptance rate.
• The state of charge (SOC) of the battery.
• The efficiency of the power electronics.

If the battery is full or charging power exceeds system limits, the excess braking energy is dissipated
as heat through mechanical brakes, and it is computed as:

Pregen = min(−Pmotor · ηregen, Pmax, charge) (3.18)

where: Pmax, charge is the maximum allowable battery charging power.

If the battery State of Charge (SOC) is below its upper limit (e.g., 85% SOC), the recovered energy is
stored in the battery. When the vehicle requires additional power beyond the fuel cell’s or motor’s direct
supply, the battery discharges to meet the demand. However, this process is subject to a discharge
efficiency factor (ηdischarge), accounting for losses.

The actual power supplied by the battery during discharge is adjusted as:

Pbatt, out =
Pbatt

ηdischarge
, if Pbatt > 0 (3.19)

To prevent overcharging or deep discharge, the battery power output and input are constrained within
predefined operational limits:

Pbatt =


Pmax, discharge, if Pbatt > Pmax, discharge

−Pmax, charge, if Pbatt < −Pmax, charge

Pbatt, otherwise
(3.20)

where Pmax, discharge represents the battery’s maximum discharge power.

The SOC of the battery is updated dynamically based on the net power exchange and the battery’s
total capacity:

SOC = SOCprev −
Pbatt ·∆t

Ebatt, capacity
(3.21)

where:

• ∆t is the timestep duration.
• Ebatt, capacity represents the battery’s energy storage capacity (kWh).

Outputs
The estimation of hydrogen consumption for fuel cell electric vehicles (FCEVs) in this study is based on
second-by-second power demand from the drive cycle and an interpolated fuel cell efficiency map. The
method accounts for traction power, fuel cell system efficiency, auxiliary loads, and the lower heating
value (LHV) of hydrogen.

At each time step, the fuel cell power demand Pfc is determined from the drive cycle simulation. Fuel
cell efficiency ηfc is then interpolated from a predefined efficiency map based on the power level. The
instantaneous hydrogen consumption in kilograms is computed as:
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∆H2(t) =
Pfc(t) ·∆t/3600

ηfc(t) · LHVH2

(3.22)

where:

• Pfc(t) is the power provided by the fuel cell in kilowatts (kW),
• ∆t is the simulation time step in seconds (typically 1 s),
• ηfc(t) is the interpolated fuel cell efficiency at time t,
• LHVH2 is the lower heating value of hydrogen, taken as 33.7 kWhkg−1.

The total hydrogen consumed over the drive cycle is given by the sum of instantaneous hydrogen
usage:

Htotal =
∑
t

∆H2(t) (3.23)

To express consumption in standard terms, hydrogen use is normalized per 100 kilometers:

Hnorm =
Htotal

dkm
· 100 (3.24)

where dkm is the total distance traveled in kilometers, computed from the drive cycle speed profile.

The model also computes the equivalent electric energy delivered by the fuel cell, taking into account
efficiency losses:

Efc,total =
∑
t

Pfc(t) · ηfc(t) ·
∆t

3600
(3.25)

From this, the average specific energy consumption of the fuel cell system can be derived:

efc =
Efc,total

dkm

[
kWh
km

]
(3.26)

Finally, the estimated driving range R in kilometers is calculated based on the onboard hydrogen tank
capacity Htank:

R =
Htank

Hnorm
· 100 (3.27)

This formulation captures both the physics of fuel cell operation and the vehicle-specific parameters.
Auxiliary loads and idle power consumption are included within Pfc at each time step. The model can
be easily adapted if more vehicle-specific data becomes available.
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3.2. Data collection for scenario analysis
In order to be able to evaluate the way in which the passenger vehicle energy demand might evolve in
the future, this study is based on a dataset that combines vehicle characteristics and climate projections.
This section outlines the key sources and assumptions used to generate the necessary inputs for the
scenario analysis that will follow. The data collection process is structured around the current and
projected fleet composition in Europe, the historical and future temperature time series, and travel
demand statistics.

3.2.1. Vehicle fleet mix in Europe
VCAM generates time-series consumption data for different vehicle segments. In order to have accu-
rate relevance to real-world data, vehicle segments A, C, and E are used, which correspond to the
vehicle fleet mix in Europe as small, medium, and large passenger vehicles. This car fleet composition
is reported by Eurostat (2025) for the reference year 2023. The classification followed is based on the
engine size of petrol and diesel engine vehicles, since they represent the largest share of vehicles cur-
rently. To be more specific, small cars correspond to engines of size Size ≤ 1399cm3, whereas medium
cars correspond to size 1400cm3 ≤ Size ≤ 1999cm3 and large cars refer to engines of Size ≥ 2000cm3.
Figure 3.5 presents the car stock distribution for each country. In cases where fleet composition data
is unavailable, values are estimated using a proximity or similarity-based approach. A summary of all
assumptions is provided in Table 3.1.

Figure 3.5: Passenger Vehicle Fleet Composition in European Countries
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Table 3.1: Data sources and assumptions used for estimating passenger vehicle fleet composition in European countries.

Country Country Code Car Fleet Composition
Data (2023)

Estimated using
neighbors

Albania AL 3 -
Austria AT 3 -
Belgium BE 3 -
Bosnia and Herzegovina BA 3 -
Bulgaria BG 7 RO, RS, MK
Croatia HR 3 -
Czechia CZ 3 -
Denmark DK 7 DE, SE
Estonia EE 3 -
Finland FI 3 -
France FR 3 -
Germany DE 3 -
Greece GR 7 AL, IT
Hungary HU 3 -
Iceland IS 7 NO, DK
Ireland IE 3 -
Italy IT 3 -
Latvia LV 3 -
Lithuania LT 3 -
Luxembourg LU 3 -
North Macedonia MK 7 RS, AL
Moldova MD 3 -
Montenegro ME 7 BA, RS, AL
Netherlands NL 3 -
Norway NO 3 -
Poland PL 7 DE, CZ, LT
Portugal PT 3 -
Romania RO 3 -
Serbia RS 3 -
Slovakia SK 7 CZ, AT, HU, PL
Slovenia SI 3 -
Spain ES 3 -
Sweden SE 3 -
Switzerland CH 3 -
Türkiye TR 3 -
Ukraine UA 7 PL, RO, MD
United Kingdom GB 3 -
Kosovo(¹) XK 3 -

(¹) 2021 data used instead of 2023.

3.2.2. Weather year time series data
The weather year temperatures used in this study were obtained from the Renewables Ninja database,
an open-access platform created by Professor Stefan Pfenninger. The complete dataset includes forty
individual historical years, which cover the period from 1980 to 2019. For each simulation, the am-
bient temperature input was population-weighted. Using a population-weighted temperature makes
sure that the climate conditions driving the vehicle consumption simulations closely reflect the thermal
environment experienced by the majority of the population.
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3.2.3. Passenger car energy demand calculation
Understanding and projecting passenger vehicle energy demand is crucial for evaluating the effects
of transport decarbonization strategies. In this section, the methodology used to compute the current
and future energy demand for selected countries is presented. The VCAM model is used to generate
segment-specific consumption profiles for different climate conditions and fleet compositions. This
analysis aims to quantify the way in which the temperature variations, powertrain mix, and vehicle
share affect the energy demand at the national level in the transport sector.

Reference year
For the scenario analysis of this study, three main countries are used: Greece, Germany, and Finland.
These countries represent the three main climatic zones that are present in the European territory. In
order to compute the energy demand in these countries year 2019 was used as a reference year for
the hourly consumption values. It is assumed that the vehicle fleet of these countries consisted of 100
percent Internal Combustion Engine Vehicles. This is justified because Battery Electric Vehicles made
up less than 0.5 percent of the fleet at the time.

The core of this analysis is the VCAM tool, which generates the hourly fuel consumption profiles for dif-
ferent vehicle segments A(small), B(medium), and C(large), which correspond to the aforementioned
analysis of the vehicle fleet share. All consumption simulations are based on the Worldwide Harmo-
nized Light Vehicles Test Procedure (WLTP) driving cycle, which is assumed to be representative of
typical passenger car operation in European conditions.

To accurately represent each country’s fleet, the hourly consumption series from VCAM for each seg-
ment was combined using country-specific segment weights. That means that for each country, the
hourly fleet-average consumption is calculated as a weighted sum of the segment profiles, using the
national fleets’ share of each segment.

To move from fuel consumption per 100 kilometers to total national passenger car energy demand, the
following methodology has been used:

• National statistics for annual passenger kilometers (pkm) were gathered for each country.
• These passenger kilometers total have been converted to vehicle kilometers (vkm) by dividing by
the occupancy rate of vehicles for each country.

• To distribute total annual vkm across the year, country-specific hourly mobility profiles were used.
These profiles indicate how travel activity is distributed across the 8,760 hours of a year and were
normalized so that their sum over all hours equals one. The profiles were provided by Francesco
Sanvito and are part of the open-access RAMP-mobility project (Mangipinto et al., 2022).

• For each hour, the total passenger car kilometers driven were allocated using the mobility profile.

The final hourly energy demand has been calculated for each country as a function of the fleet-weighted
fuel consumption (l/100km) multiplied by the number of vehicle kilometers driven at the time and the
energy content of the fuel. Estimated and European Commission, Joint Research Centre (2021) vehicle
km data are presented in Table 3.2. Summing the hourly energy demand over all 8,760 hours gives
the annual national passenger car energy demand. These are shown in the following equations:

Weighted Consumptionc(t) =
∑
seg

wseg,c · Consseg,c(t) (3.28)

vehicle-kmc =
passenger-kmc

λc
(3.29)

vehicle-kmc(t) = vehicle-kmc ·Mc(t) (3.30)

Ec(t) =
Weighted Consumptionc(t)

100
· vehicle-kmc(t) · ηfuel (3.31)
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Eannual
c =

∑
t

Ec(t) (3.32)

Where,

• wseg,c: Share of vehicle segment seg in country c

• Consseg,c(t): Hourly fuel consumption (l/100km) for segment seg in country c at hour t
• λc: Average vehicle occupancy (persons per vehicle) in country c

• passenger-kmc: Total annual passenger-kilometers in country c

• vehicle-kmc: Total annual vehicle-kilometers in country c

• Mc(t): Normalized hourly mobility profile for country c at hour t (
∑

t Mc(t) = 1)
• Ec(t): Hourly passenger car energy demand (kWh) for country c at hour t
• Eannual

c : Annual passenger car energy demand (kWh) for country c

Table 3.2: Comparison of estimated vehicle kilometers (based on passenger km and occupancy) and JRC IDEES data.
Vehicle kilometers are in billions.

Country Passenger km (billion) Estimated Vehicle km JRC IDEES Vehicle km
Greece 60 46.15 40.9
Germany 920 647.89 484.6
Finland 66.8 47.37 38.8

2050 climate scenario projections
To quantify the way in which future temperature increases will affect passenger car energy demand,
for the different powertrain technologies, three main scenarios for regional mid-century temperature
are applied by the IPCC’s Representative Concentration Pathways (RCPs) to each country’s 1980-
2019 baseline (on Climate Change, 2014). Country-specific projections derived from climate model
ensembles, such as CMIP5 and those summarized in the IPCC AR5 Synthesis Report (on Climate
Change, 2014) and subsequent regional assessments (IPCC, 2014) are directly applied. First, each
country’s annual mean temperature baseline is computed by averaging the 365 daily mean values for
each year and then averaging those 40 annual means:

T 80–19 =
1

40

2019∑
y=1980

(
1

365

365∑
d=1

( 1

24

24∑
h=1

Ty,d,h

))

Then, for each RCP scenario, regional mid-century temperature projections based on country-level
deltas extracted from the literature and IPCC sources are applied. These projections vary by country
due to geographic and climatic differences.

TRCP x
2050 = T 80–19 + ∆TRCPx (x ∈ {2.6, 4.5, 8.5})

The projections, for each RCP scenario, are summarized in Table 3.3.

Table 3.3: Projected mid-century (2041–2060) regional temperature anomalies under IPCC RCP scenarios for selected
countries, relative to the 1986–2005 baseline. Ranges reflect the spread across CMIP5 ensemble models (IPCC, 2014).

Country RCP 2.6 RCP 4.5 RCP 8.5
(∆T in ◦C) (∆T in ◦C) (∆T in ◦C)

Greece 1.0 – 1.6 1.4 – 2.1 2.2 – 2.9
Germany 1.4 – 2.1 1.8 – 2.4 2.7 – 3.5
Finland 1.6 – 2.2 2.1 – 2.9 3.5 – 4.5
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2050 powertrain share projections
In the data collection part of this thesis, three main scenarios are used for the powertrain share in
2050, obtained from the International Energy Agency (IEA): The Stated Policies Scenario (STEPS),
the Sustainable Development Scenario (SDS), and the Net Zero Emissions by 2050 Scenario (NZE).
These provide a comprehensive basis in order to model the future fleet composition of Europe, under
different policy ambitions.

The IEA Stated Policies Scenario (STEPS) assumes that only the current measures and policies will
be followed and projects that the fleet composition will consist of 10% ICEVs, 5% HEVs, 5% PHEVs,
70% BEVs, and 10% FCEVs by 2050 (IEA, 2019a).

According to the IEA Sustainable Development Scenario (SDS), more carbon emission reduction and
air-quality policies will be imposed. This will result in a fleet composition of 5% ICEVs, 2% HEVs, 3%
PHEVs, 75% BEVs, and 15% FCEVs by 2050 (IEA, 2019b).

In contrast, the IEA Net Zero Emissions by 2050 Scenario (NZE), proposes that the passenger transport
sector will be almost completely electrified, while there will be no more ICEV sales after 2035. This will
result in a fleet composition with 0% ICEVs, 0% HEVs, 5% PHEVs, 80% BEVs, and 15% FCEVs by
2050 (IEA, 2021).

In order to streamline the temperature-dependent consumption analysis, the five powertrain technolo-
gies are consolidated into three main ones: ICEVs, BEVs, and FCEVs. This is done by assuming that
PHEVs and HEVs deliver roughly 80 percent of their mileage in combustion mode. The resulting 2050
stock shares are shown in Table 3.4.

Table 3.4: 2050 passenger�car stock shares under IEA scenarios

Scenario ICEV (% stock) BEV (% stock) FCEV (% stock)

STEPS 18% 72% 10%
SDS 9% 76% 15%
NZE 4% 81% 15%

Projection of vehicle shares in 2050
Recent market data and mobility outlooks show a persistent increase in the vehicle share of Sport Utility
Vehicles (SUVs) in the European passenger car fleet. According to IEA (2023), the share of SUVs in
new passenger car sales in Europe has been increased from about 25 percent in 2015 to approximately
50 percent in 2023. This shows that SUVs are the fastest-growing vehicles in recent years.

To take this into account for the future fleet composition, this thesis includes a scenario where the large
segment share continues growing. According to historical data, this growth has been reported to be
around 1-2% per year (IEA, 2023). For the purpose of this analysis, this thesis applies a range of
yearly growth rates: 1%, 1.5%, and 2%. It assumes that the large segment share linearly increases
by the specified annual rate. To maintain the integrity of the total fleet share the shares of the other
segments are proportionally decreased. The resulting projected shares are used in the weighted energy
consumption calculations for 2050 under all RCP and powertrain mix scenarios.
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3.3. Model quality assessment
The credibility and usefulness of every computational model are not only based on its theoretical founda-
tion, but also on the validation, consistency, and transparency of the results it produces. In the context
of this thesis, where the VCAM model has been adapted to include and simulate different powertrain
technologies under various climate conditions and driving cycles in Europe, it is crucial to evaluate
the quality of the model and the produced results. This section offers a structured evaluation of the
model’s reliability, focusing on its plausibility, transparency, internal consistency, and alignment with
empirical data. The aim is to show that the results of the model are robust enough and suitable to
support different analyses in the transport sector in the broader context of energy systems. In addition,
the limitations of the model are discussed as well as their consequences in translating the findings and
for potential future improvements.

3.3.1. Validation of traction force calculation
One of the foundational components in vehicle energy modeling is the calculation of traction force,
which determines the required propulsive effort to overcome resistive forces during driving. Since this
parameter directly influences energy consumption estimates across all powertrain types, validating its
accuracy is essential for ensuring the overall reliability of the model.

The value for traction force computed by the model has been validated against empirical data provided
by the Argonne National Laboratory (ANL). The comparison is based on a standard urban driving cycle
for a mid-size passenger vehicle using data from ANL’s Advanced Powertrain Research Facility. The
results are illustrated in Figures 3.6 and 3.7.

Figure 3.6: Comparison of Modeled Tractive Force vs. ANL’s Tractive Force

As depicted in Figure 3.6, the modeled traction force closely aligns with the measurements from ANL.
To quantify the level of agreement, both the Root Mean Squared Error (RMSE) and the Normalized
RMSE (NRMSE) were calculated.

The RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(Fmodeled,i − Fmeasured,i)2 (3.33)

where Fmodeled,i and Fmeasured,i denote the modeled and measured traction force values at time step i,
respectively. RMSE offers an absolute error metric, with lower values indicating better agreement.

To provide a relative metric, the Normalized RMSE (NRMSE) is used:

NRMSE =
RMSE

Fmax − Fmin
(3.34)
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where Fmax and Fmin are the maximum and minimum measured traction forces during the cycle (Blog,
2019). In general, NRMSE values below 10% are indicative of high model accuracy, while values
between 10% and 20% suggest acceptable but imperfect alignment.

For this validation case, the calculated RMSE was 17.48N and the NRMSE was 0.0209. These results
demonstrate that the modeled outputs fall well within expected bounds, indicating excellent agreement
between simulation and experimental data.

Figure 3.7: Modeled vs. Measured Tractive Force

As shown in Figure 3.7, the observed discrepancies are minimal and can be attributed to reasonable
factors such as sensor noise, uncertainty in road load coefficients, or minor simplifications in the mod-
eled physics. The validation confirms that the traction force sub-model used in VCAM performs reliably
across realistic urban driving conditions and provides a solid basis for subsequent energy consumption
modeling.
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3.3.2. Validation of hydrogen consumption estimation
To validate the hydrogen consumption estimates produced by the model, a series of simulation tests
were conducted using the Toyota Mirai 2016 fuel cell electric vehicle (FCEV) as a reference platform.
All tests were performed under the standard Urban Dynamometer Driving Schedule (UDDS) to ensure
consistency in driving conditions. The model’s results were compared against empirical data obtained
from the Argonne National Laboratory (ANL), focusing on the sensitivity of hydrogen consumption to
varying levels of auxiliary power under different ambient temperature scenarios.

Test 1: Baseline conditions (20°C Ambient, HVAC Off)
The first validation test was conducted at an ambient temperature of 20 °C, which represents neutral
weather conditions where no HVAC demand is present. Figure 3.8 shows the comparison between
the modeled hydrogen consumption and the reference values provided by ANL. As depicted in the
graph, the model closely aligns with the empirical data, with the error ranging from –2.91% to +4.98%
depending on the auxiliary power level. The minimum error occurs near the optimal auxiliary power
level of approximately 300W, where the model and the reference data converge almost exactly.

Figure 3.8: Hydrogen consumption validation under neutral weather conditions (20°C ambient)

Test 2: Cold weather conditions (-7°C Ambient, HVAC On)
In the second test, the ambient temperature was set to represent cold weather conditions, simulat-
ing HVAC demand for cabin heating and fuel cell system conditioning. As shown in Figure 3.9, the
deviation between modeled and measured consumption increased with auxiliary load, reaching up to
+12.34%. This increased error is attributed primarily to the lack of detailed empirical data on thermal
power consumption in FCEVs under low temperatures. The model estimates auxiliary thermal loads
based on generic assumptions, which introduces uncertainty in colder scenarios.
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Figure 3.9: Hydrogen consumption validation under cold weather conditions

Test 3: Hot weather conditions (35°C Ambient, HVAC On)
The third validation scenario simulated high ambient temperatures typical of summer operation. In this
case, the HVAC system is assumed to draw power for cabin cooling and fuel cell thermal management.
As presented in Figure 3.10, the model again shows a rising positive deviation from the reference
values, with maximum error reaching +13.46%. Similar to the cold weather case, this is mainly due
to limited empirical data on the behavior of HVAC and cooling systems in FCEVs during hot operation.
Nevertheless, the model maintains a coherent and monotonic trend in response to increasing auxiliary
power, which supports its internal consistency.

Figure 3.10: Hydrogen consumption validation under hot weather conditions

Overall, the validation results confirm that the hydrogen consumption estimates produced by the model
are consistent with known empirical data, particularly under moderate thermal loads. The maximum
deviations observed in extreme cold and hot conditions highlight the challenges of modeling HVAC-
related energy use in FCEVs due to limited transparency in OEM data. However, across all three
scenarios, the model accurately captures the expected trend: hydrogen consumption increases with
auxiliary power demand, and deviations remain within an acceptable range for system-level energy
modeling.
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Toyota Mirai technical specifications
To improve clarity and reproducibility, Table 3.5 summarizes the main technical characteristics of the
Toyota Mirai used in the validation process.

Table 3.5: Key Specifications of the Toyota Mirai 2016 FCEV (Argonne National Laboratory, 2016)

Variable Value / Unit Notes
Fuel cell max power 114 kW Maximum power output of PEM fuel cell
Battery capacity 1.6 kWh Nominal battery energy capacity
Vehicle weight 1925.25 kg Including fuel and passengers
Frontal area 2.1m2 Aerodynamic cross-sectional area
Drag coefficient (Cd) 0.29 Aerodynamic resistance
Wheel radius 0.3m Effective rolling radius
Transmission efficiency 0.90 Drivetrain efficiency
Idle consumption power 0.94 kW Fuel cell idle system consumption

Additional validation for FCEVs
To further assess the generalizability of the hydrogen consumption model, two additional FCEV plat-
forms were simulated and compared against measured data under the Worldwide Harmonized Light
Vehicles Test Procedure (WLTP). The vehicles tested were the Hyundai Nexo and the Hyundai Tuc-
son FCEV, both widely used fuel cell vehicles with known physical parameters (Car and Driver, 2015,
n.d. Hydrogen Cars Now, n.d.). Table 3.6 summarizes the main technical specifications used for each
simulation.

Table 3.6: Specifications of Additional FCEV Models Used in Validation

Parameter Hyundai Nexo Hyundai Tucson
Fuel cell max power [kW] 95 100
Battery size [kWh] 1.56 0.95
Vehicle weight [kg] 1854 1882
Frontal area [m2] 2.577 3.016
Drag coefficient (Cd) 0.32 0.355
Wheel radius [m] 0.336 0.316
Auxiliary power [W] 300 280
Fuel cell idle power [kW] 0.94 0.94
Hydrogen tank capacity [kg] 5.6 5.63

In both cases, it is important to note that the efficiencymap and idle power consumption values used
in the simulations were taken from the Toyota Mirai 2016, due to the absence of published manufacturer
data for the Hyundai models. These represent key assumptions in the modeling process. If more
accurate or vehicle-specific performance maps were available, the model could potentially produce
even closer matches to measured consumption.

The simulated and measured hydrogen consumption values are compared below, along with their rel-
ative error, computed using the standard formula:

Relative Error (%) = Hsim −Hreal

Hreal
× 100 (3.35)

Table 3.7: Hydrogen Consumption Validation Results under WLTP

Vehicle Hreal [kg/100km] Hsim [kg/100km] Error (%)
Hyundai Nexo 0.84 0.90 +7.14%
Hyundai Tucson 1.00 1.07 +7.00%
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The model shows good alignment with measured data, with errors under 8% in both cases. These
results confirm that the simulation framework remains robust when applied to different FCEV architec-
tures. The slightly higher simulated values may be attributed to the use of non-vehicle-specific fuel cell
efficiency characteristics and HVAC dynamics. Nonetheless, the accuracy is sufficient for system-level
energy analysis, and the model can be easily refined should more detailed performance data become
available.



4
Results

This chapter presents a quantitative assessment of hydrogen fuel cell electric vehicles (FCEVS), bat-
tery electric vehicles (BEVs), ans internal combustion engine vehicles (ICEVs), focusing on how their
energy consumption responds to temperature and how these effects evolve across time, geography,
and future scenarios. The analysis begins at the vehicle level, exploring the thermal sensitivity and pow-
ertrain behavior of FCEVs under various driving cycles and ambient conditions. It then continues with
a comparative analysis between the powertrain technologies, showing the way in which temperature
extremes affect energy demand differently for each technology. From then, the analysis is extended
into region-specific analysis of long-term weather variability and its influence on the vehicle energy use
in three different European countries: Greece, Germany, and Finland, which represent three different
climate zones present in Europe. Building on this, the chapter concludes with a scenario-based projec-
tion for passenger vehicle energy demand in 2050, incorporating policy and global warming scenarios,
and evaluating the impact of changing fleet compositions, especially the rise of SUV penetration. This
approach helps in understanding how technical, environmental, and behavioral factors shape the future
transport sector.

4.1. FCEV powertrain related results
Figure 4.1 presents the variation of energy consumption and the estimated autonomy of C-Segment
FCEVs, under WLTP driving cycle conditions, as a function of ambient temperature, in a range from
−15◦C to 35◦C. The diagram illustrates two main trends. First, the energy consumption, which is shown
as a solid blue line and represented by the left y-axis, presents a strong dependence on temperature.
On the other hand, the estimated driving range, which is depicted as a red dashed line and represented
by the right y-axis, shows an inverse relationship to the consumption. Both lines start their y-axis from
zero for clarity.

It is clear from the graph that at low temperatures, especially below 0◦C, the energy consumption of
FCEVs sharply increases, reaching a peak of more than 45 kWh/100km at −15◦C. The cause of this
significant rise is the increased energy demand in order to heat the cabin and the thermal management
systems. As the temperature increases, the consumption decreases steadily, reaching a minimum be-
tween 15◦C and 25◦C, when the cooling and heating demand is relatively low. In this optimal condition,
the consumption stabilizes at approximately 21-23 kWh/100km. After a specific point, when there is
cooling demand, the consumption starts increasing again.

Regarding the estimated driving range, the opposite trend is depicted. To be more specific, the driving
range increases as temperature increases from −15◦C to 25◦C, reaching a peak of 780 km. However,
in temperatures above 30◦C, the driving range starts decreasing because of the increased HVAC loads
for cooling, which reduces the available driving range to below 650 km at 35◦C.

Overall, the results present a significant sensitivity of the efficiency of the FCEVs to ambient tempera-
ture. Weather extremes, both cold and hot, result in a marked reduction in efficiency and driving range,
showing the increased need for optimal thermal management strategies in FCEV design. This finding

34
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is crucial when examining the possibility of using this powertrain technology in the world and planning
the hydrogen mobility infrastructure, especially when considering regions that face extreme seasonal
variations.

Figure 4.1: Energy consumption and range of FCEV powertrain vs temperature. Reference vehicle: C-Segment. Reference
driving cycle: WLTP

Figure 4.2 depicts the temporal distribution of power between the fuel cell system and the battery in
the FCEV powertrain, adapted for C-Segment vehicles and the UDDS driving cycle. The chart shows
three main power flows in the system over time: the power production of the fuel cell system (blue), the
battery discharge (orange), and the battery charge via the regenerative braking (green).

The plot highlights the hybrid nature of the FCEV powertrain technology. The fuel cell system operates
as the main power source, offering the majority of the traction power needed for vehicle propulsion, as
it is depicted by the large blue spikes, which correspond to accelerating or high-load events. During
periods of increased power demand, such as rapid acceleration, the battery provides supplementary
power, which results in the positive battery discharge values (orange). This allows the fuel cell system
to operate closer to the optimal efficiency range by smoothing out transient power demands.

In contrast, during deceleration events and braking, some part of the kinetic energy of the vehicle is
recovered through the regenerative braking technology, which charges the battery. This is shown by
the negative green regions of the chart. These charging events happen periodically during the driving
cycle and contribute to the improvement of the overall efficiency.

It is worth mentioning that the fuel cell power output does not fluctuate as much as the battery does.
This shows that the control strategy followed during the modeling phase of this thesis prioritized fuel
cell longevity and efficiency by avoiding continuous changes in the fuel cell load, using the battery to
cover short-term fluctuations instead. This kind of strategy enhances fuel cell durability and also allows
the system to maximize energy recovery while minimizing hydrogen consumption.

In summary, the power split strategy followed shows the synergy between the fuel cell and the battery
systems in FCEVs, which balances the energy efficiency. The effectiveness of this approach in manag-
ing power contribution is further reflected in the relatively low hydrogen consumption and the increased
autonomy mentioned previously.
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Figure 4.2: Power split between fuel cell (blue), battery discharge (orange), and battery charging (green) in the C-segment
FCEV during UDDS driving cycle.

To give further insights into the dynamic power management, Figure 4.3 depicts a zoomed section of
the UDDS driving cycle, which now includes the speed profile, with green color taking advantage of
the right y-axis, besides the fuel cell and battery power contributions. This detailed view illustrates the
way in which the powertrain components respond to transient speed changes and acceleration events.
The peaks in fuel cell and battery power lines coincide with the periods of rapid acceleration, while the
charging of the battery is happening during decelerating phases, as shown by the drops in the speed
signal. This plot clearly shows the complementary roles of the fuel cell and battery, with the latter
absorbing the short-term fluctuations and allowing the effective regenerative braking when the vehicle
speed decreases.

Figure 4.3: Zoomed-in view of fuel cell power, battery power, and vehicle speed over a segment of the drive cycle for the
C-segment FCEV

Figure 4.4 depicts the distribution of fuel cell and battery power as a function of the acceleration of the
vehicle. The fuel cell power, marked with red scatter points, is close to zero but never reaches it, even
during deceleration or zero acceleration events. This happens because of the idle power consumption
of the fuel cell, which makes sure that the fuel cell system is constantly operational and ready to adapt
to power demands. During positive acceleration, especially in sudden or rapid acceleration peaks, the
battery, marked with green scatter points, supplies the extra power, which is clearly depicted in the
increased battery power distribution above zero, allowing the fuel cell system to avoid rapid changes
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of power demand and operate closer to its optimal range. In contrast, during decelerating events,
the battery absorbs the regenerative energy, as shown by the negative values of the battery power,
while the fuel cell operates at idle mode. This shows the hybrid control strategy, where the battery
buffers short-term power fluctuations and supports the energy recovery as well as the dynamic driving
demands.

Figure 4.4: Fuel cell and battery power as a function of vehicle acceleration for the C-segment FCEV. Raw data are shown as
scatter points, while bold lines indicate moving averages.

Figure 4.5 offers a comparative analysis of two standard driving cycles, UDDS and WLTP, highlighting
their influence on the operation of the fuel cell system in C-Segment FCEVs. The speed profiles,
depicted in red color, show the time-varying speed demands, with WLTP being characterized by higher
peak speeds and increased frequency of aggressive acceleration events in comparison with UDDS.
The power output of the fuel cell follows these dynamic demands, with sharp power increases, which
correspond to rapid acceleration phases.

In the right-hand panels, the fuel cell power output frequency distributions are depicted for each driving
cycle. Both distributions tend to lower power levels, reflecting the prolonged periods of idle power
consumption and low speed operation, which are usually present in urban driving scenarios. However,
the WLTP distribution presents a wider tail, showing the higher frequency of moderate and high power
demands that happen because of the more varying and demanding speed profile.

This analysis also has real-world relevance, as it demonstrates how the different usage patterns, the
urban UDDS versus the mixed/real-world WLTP, can significantly alter the operating regime of the fuel
cell system. Taking into account that the efficiency and the degradation of the fuel cell system are highly
sensitive both to the load level and to the transient dynamics, understanding these patterns is crucial
to be able to optimize the fuel cell electric vehicle’s system design, to predict hydrogen consumption,
and to ensure they are durable under real-world conditions.
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Figure 4.5: Speed profiles (red) and corresponding fuel cell power outputs (green) for the UDDS (top) and WLTP (bottom)
driving cycles (left), with fuel cell power probability density distributions (right) for each cycle

Figure 4.6 presents the segment-dependent variability of the FCEV performance as a function of am-
bient temperature, with hydrogen consumption depicted in subplot (a) and estimated range in subplot
(b). These results come by using as reference for the weather variability the country of Greece and a
WLTP driving cycle. Furthermore, for this analysis, A-segment FCEVs are assumed to exist and are
modeled with a 3kg hydrogen tank, while C and E-segment vehicles represent the typical mid and large
size passenger vehicles.

As shown in Figure 4.6 (a), the hydrogen consumption [kg/100km] increases for larger segments and
shows a U-shaped curve for temperature dependence across all segments. Theminimum consumption
occurs at around 20◦C - 25◦C, where the thermal loads are lowest, as discussed previously. Figure
4.6 (b) shows the corresponding estimated driving range for each segment. The range peaks in mild
temperatures for all segments and decreases in weather extremes. The total range is also determined
by the hydrogen tank size. For example, even though A-Segment vehicles are the most efficient, their
range is limited by the smaller 3kg tank.

Regarding the trends, both subplots appear smooth. However, it is worth mentioning the underlying
nonlinearities that exist due to vehicle parameters such as weight and frontal area. Heavier vehicles
present increased sensitivity in the auxiliary loads, which results in a rapid decrease of autonomy and
increased hydrogen use in temperature extremes. Together, these results show the significant impact
of vehicle sizing and powertrain configuration on FCEVs’ efficiency and usability across different seg-
ments.
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(a) Hydrogen consumption.

(b) Estimated range.

Figure 4.6: Temperature dependence of (a) hydrogen consumption and (b) driving range for A-, C-, and E-segment FCEVs.
Reference country: Greece. Reference drive cycle: WLTP

Figure 4.7 illustrates the relationship between vehicle weight and the mean energy consumption for
different FCEV segments, under WLTP driving cycle and a temperature range between −15◦C and
40◦C. As vehicle weight increases from A-Segment to F-Segment, the mean energy consumption
[kWh/100km] also increases. However, this trend is not strictly linear. The increase in energy con-
sumption is caused not only by the increased mass of the vehicle, but also by other critical factors,
such as the frontal area, the aerodynamic drag, and the fuel cell system sizing, which are indicated as
annotations for each segment in the graph.

The error bars in the diagram represent the minimum and maximum values of energy consumption,
which were observed in the given temperature range, highlighting this nonlinearity even more. Heavier
and larger vehicles present both higher mean energy consumption and greater variability, a fact that
shows their increased sensitivity to changing the operating conditions. This is the result of the complex
effects of the mass and aerodynamic drag, as well as the decreased operating efficiency of larger
vehicles in temperature extremes.

Consequently, these results show that even though heavier FCEVs inherently consume more energy,
the relation between weight and consumption is shaped by a complex, non-linear interaction of design
parameters. Therefore, optimizing FCEV performance requires a holistic approach that takes into ac-
count not only the mass but also the aerodynamic drag and the powertrain configuration to minimize
energy use, especially in larger vehicle segments.
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Figure 4.7: Average energy consumption (mean ± min/max) for FCEVs across vehicle segments as a function of vehicle
weight. Annotations indicate maximum fuel cell power and frontal area for each segment. Reference driving cycle: WLTP.

4.2. FCEV, BEV, and ICEV powertrain comparison results
Figure 4.8 illustrates the dependence of the energy consumption on temperature for ICEVs and BEVs,
which are presented in the subplots (a) and (b) respectively, while the relevant FCEVs results have
been discussed previously. In Figure 4.8 (a), the ICEV curve remains relatively flat at low temperatures,
with only a slight decrease within the −20◦C to 35◦C temperature range, while a notable increase is
experienced in higher temperatures. This shows the small influence of the cold weather in conventional
vehicles, where the engine’s waste heat is enough to cover the cabin’s heating demand, and the more
significant load from the air-conditioning and the engine cooling at higher temperatures. To quantify
this, a ”cold penalty” is calculated of roughly 5%, which means that the ICEV consumption at −20◦C is
about 5 % higher than at the 20◦C baseline. Furthermore, a ”hot penalty” is calculated at around 25%,
which means that the consumption at +40◦C is approximately 25% above the 20◦C level (see Table
4.1).

Figure 4.8 (b) depicts an important U-shaped relationship for BEVs, where the energy consumption
is decreased when going from −20◦C to a minimum at 20◦C - 25◦C and it then increases in higher
temperatures. The significant rise in energy consumption in colder temperatures (cold penalty (∼85%)
happens due to the increased demand for heating, while higher temperatures allow a milder hot penalty
(∼15%), which comes from the cooling demand of the cabin and the battery. BEVs and ICEVs present
similar absolute volatility (σ ≈ 3.7 and 3.9 kWh/100 km, respectively), but this represents a much larger
percentage of BEVs’ baseline, which makes them far more sensitive to temperature variations.

FCEVs present similar qualitative trends to BEVs and, as discussed previously, their energy consump-
tion is similarly extremely sensitive to temperature, with a U-shape and even higher baseline consump-
tion (approximately 26 kWh/100km at 20◦C). However, FCEVs experience the greatest volatility (σ ≈ 77
kWh/100 km), which means that they nearly double their consumption from 20◦C to −20◦C. Their hot
penalty (∼14%) is comparable to that of BEVs.

These results, which are summarized in Table 4.1 and visualized in Figure 4.8, show that while ICEVs
are relatively robust to temperature fluctuations, both BEVs and FCEVs suffer significant increases in
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energy consumption at temperature extremes, especially in colder climates. This suggests that the
thermal management strategies for electrified vehicles are crucial in making them more efficient.

(a) ICEV energy consumption as a function of temperature. (b) BEV energy consumption as a function of temperature.

Figure 4.8: Temperature dependence of energy consumption for (a) ICEVs and (b) BEVs. Both powertrains display increased
consumption at temperature extremes, with BEVs showing much greater relative sensitivity. Reference drive cycle: WLTP.

Table 4.1: Temperature sensitivity of energy consumption for FCEV, BEV, and ICEV powertrains. Metrics shown are the
standard deviation (σ) of consumption across the temperature range, and the percentage increase in consumption at −20 ◦C

(“cold penalty”) and +40 ◦C (“hot penalty”) relative to 20 ◦C.

Powertrain σ Consumption (kWh/100 km) Cold penalty (%) Hot penalty (%)
FCEV 7.0 87.0 14.3
BEV 3.7 83.3 15.3
ICEV 3.9 5.0 24.9
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4.2.1. Consumption variability of FCEVs, BEVs, and ICEVs for different European
Countries

In order to perform this analysis, 40 weather years were selected, for the time frame between 1980
and 2019, for three different European countries: Greece, Germany, and Finland, which represent
3 different climate zones. The results consider C-Segment vehicles and the WLTP driving cycle, as
reference, in 1-hour time steps. Blank strips are shown in the graph, and they represent non-leap years
in correspondence with the missing day.

Figure 4.9 illustrates heatmaps for the hourly energy consumption of FCEVs for C-Segment vehicles
for the three countries mentioned previously. Each row in the thermal map corresponds to one weather
year, whereas each column represents the months of the year. The color range shows the energy
consumption in kWh/100km, with darker colors indicating higher consumption values.

The diagrams reveal significant seasonal fluctuation in hydrogen consumption, which is directly con-
nected to the local climate patterns. In Finland, for example, the impact of cold winters is easily visible
as large high-consumption regions during the first months of every year, with some years presenting
significantly cold extreme periods. This shows that the below-zero temperatures in Northern Europe
can significantly increase FCEV energy use. In contrast, in Greece, the consumption profile is steadier
over the 40-year period, with slight increases during the summer peaks and relatively low winter penal-
ties, a fact that reflects the Mediterranean climate. Central European countries, like Germany, present
an intermediate pattern, with both summer and winter effects that are visible, but not as extreme as in
Finland.

Besides the intra-annual seasonal variability, inter-annual differences are also shown, with certain years
presenting periods of significant energy consumption, sometimes even twice that of other years. These
points correspond to particularly extreme cold events, or less frequently, extreme summer heatwaves.
This variability highlights the need to take into account both yearly and seasonal weather fluctuations
when planning hydrogen demand, refueling infrastructure, and vehicle range in the future expansion of
FCEVs across Europe.
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Figure 4.9: Hourly temperature effect on fuel cell electric vehicle consumption considering different weather years from 1980 to
2019. The color code identifies the level of consumption of the FCEV. reference vehicle: C-segment. Countries: Greece,

Germany, and Finland. Reference driving cycle: WLTP.
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Figures 4.10 and 4.11 present the inter-annual variability of the hourly temperatures and the corre-
sponding energy consumption of the FCEVs for Finland, Germany, and Greece. Figure 4.10 presents
the results for Greece, while in Figure 4.11, the results for Finland and Germany are shown. In each
figure, the top panel shows the annual distribution of hourly temperatures, highlighting the coldest
and the warmest year, whereas the bottom panel shows the distribution of hydrogen consumption in
kWh/100km, with darker colors indicating higher mean annual consumption.

A key observation from these plots is that the years with the highest and the lowest mean temperatures
do not always correspond to the lowest and the highest energy consumption, respectively. This hap-
pens because the entire temperature distribution, which includes the frequency and duration of weather
extremes, plays a crucial role in defining the overall vehicle consumption. For example, one year with
a short period of extreme cold can lead to higher overall hydrogen use than a year with a lower mean
temperature but fewer frequent cold events.

This is more easily observed in Finland, where the extreme cold winters produce large fluctuations both
in temperature and in consumption, which result in significant inter-annual variability. Germany presents
similar but not so extreme patterns. In Greece, both temperature and consumption distributions are
narrower and show smaller yearly variations, which reflects the milder climate conditions. However, the
relationship between mean temperature and consumption remains non-trivial because of the influence
of the impactful weather extremes.

In summary, these results show that it is important to consider both average climate conditions and
frequency and intensity of temperature extremes when assessing the hydrogen demand of the FCEV
performance across European countries. This variability must be considered to ensure the FCEVs can
operate under different weather conditions reliably.

Figure 4.10: Hourly temperature (top) and hydrogen consumption (bottom) distributions for FCEVs in Greece, 1980–2019.
C-Segment vehicles. Reference driving cycle: WLTP.
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(a) Finland

(b) Germany

Figure 4.11: Hourly temperature (top) and hydrogen consumption (bottom) distributions for FCEVs in (a) Finland and (b)
Germany, 1980–2019. C-Segment vehicles. Reference driving cycle: WLTP.
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To further highlight the impact of temperature variability on vehicles’ energy demand, Figures 4.12,
4.13, and 4.14 present the seasonal consumption distributions for the three powertrain technologies
for the three countries used as reference. Each panel shows the 100%, 90%, and 50% percentile
bands of vehicle consumption (left) and ambient temperature (right) considering different weather years
from 1980 to 2019. These percentile tiers show the frequency and the extremity of the temperature
conditions that most strongly affect vehicle consumption.

Regarding FCEVs, Figure 4.12 reveals a seasonal pattern, with the strongest variability and highest
consumption observed during the winter months, especially in northern climates, such as in Finland.
This increased sensitivity to winter happens due to the significant energy demand for cabin heating, and
results in wide percentile bands and a strong divergence between the 90th and 10th percentiles. As
temperatures become more and more moderate during spring and summer months, both the median
and the spread in consumption are decreased, but there are also extremely high values observed in
summer due to the cooling demand, especially in warmer countries like Greece.

Comparing the FCEV to BEVs and ICEVs distributions, we see similar trends for the BEVs, with in-
creased winter variability and bigger sensitivity to temperature extremes. In contrast, ICEVs present
flatter consumption profiles, with minimal effect due to lower temperatures, because the engine’s waste
heat is used to warm up the cabin. However, there are some increases observed in consumption during
periods with high ambient temperatures, mostly because of the cooling loads.

These results show that considering a constant efficiency for BEVs and FCEVs is not appropriate for
weather years, as seasonal and inter-annual variability can cause significant fluctuations in energy
consumption. Furthermore, temperature scenarios should be included alongside renewable energy
source scenarios to be able to integrate hydrogen and electric vehicles in the energy system. The
significant spread, which is observed during winter and the relative risk for high consumption peaks,
suggests that there is a need for critical energy planning, especially in regions that face temperature
extremes.
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Figure 4.12: Hourly temperature variability (on the right) and hourly temperature effect (on the left) on fuel cell electric vehicle
consumption considering different weather years from 1980 to 2019 (on the left). Temperature distribution according to the
selected weather years. Colors identify the percentile of temperature occurrence. Driving cycle: WLTP. Reference vehicle:

C-segment.
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Figure 4.13: Hourly temperature variability (on the right) and hourly temperature effect (on the left) on battery electric vehicle
consumption considering different weather years from 1980 to 2019 (on the left). Temperature distribution according to the
selected weather years. Colors identify the percentile of temperature occurrence. Driving cycle: WLTP. Reference vehicle:

C-segment.
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Figure 4.14: Hourly temperature variability (on the right) and hourly temperature effect (on the left) on internal combustion
engine vehicle consumption considering different weather years from 1980 to 2019 (on the left). Temperature distribution
according to the selected weather years. Colors identify the percentile of temperature occurrence. Driving cycle: WLTP.

Reference vehicle: C-segment.

4.3. 2050 scenario analysis
Taking into consideration all the above, this thesis results chapter concludes by making a scenario
analysis for the passenger vehicle energy demand in 2050. As already mentioned in Chapter 3, there
are three temperature scenarios considered for 2050 according to ICCP, where the global temperature
will rise by 1◦C, 1.4◦C, and 2◦C. Furthermore, according to the IEA, there are three policy scenarios for
the powertrain technology mix. This sums up to nine scenarios in total, when considering the vehicle
share between small, medium, and large cars remains stable over the years. The second part of the
scenario analysis considers that there will be an annual growth in the sales of SUVs of about 1%, 1.5%,
and 2% under the minimal temperature increase scenario, and the three powertrain mix scenarios. This
brings a total of 18 scenarios for the analysis. It is important to note that three European countries are
considered, the vehicle kilometers driven are assumed to remain steady, and the WLTP driving cycle
has been used for the simulations.

4.3.1. Current passenger vehicle energy demand and future consumption projec-
tions

In order to be able to forecast the passenger car energy demand of Greece, Germany, and Finland,
first, the energy demand in the current years is computed. Figure 4.15 shows this estimated energy
demand for the three countries. As can be seen clearly from the graph, Greece and Finland have similar
passenger car energy demand (around 27 TWh for Greece and 29 TWh for Finland), whereas Germany
has more than 10 times this number, reaching 379 TWh. This shows that the impact of passenger
vehicle electrification in larger countries like Germany, which need more energy, is expected to affect
Europe’s energy demand on a larger scale.
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The European Commission, Joint Research Centre (2021) provides also estimations for the current
passenger vehicle energy demand. According to this source, Greece’s current passenger vehicle en-
ergy demand is 27.6 TWh, a number really close to the estimated one. Same applies for Finland, as
the provided energy demand is about two TWh lower than the estimated one, standing at 26.2 TWh.
Germany has the highest difference, as the European Commission suggests that the current passenger
vehicle energy demand is 340 TWh, which means a 40 TWh offset from the modeled one.

Figure 4.15: Passenger vehicle energy demand in three countries: Greece, Germany, and Finland. Reference driving cycle:
WLTP.

In order to be able to predict the passenger car energy demand for 2050, a prediction for the consump-
tion of BEVs, ICEVs, and FCEVs had to be made. In this analysis, it is assumed that there will not
be any technological improvement in the powertrains, and their future consumption is computed solely
by using the temperature increase that is expected to happen in each country. In order to make this
projection, the 40-year period from 1980-2019 has been used, in order to first find a trend that has
been followed during this period for the consumption. Figures 4.16 and 4.17 show the annual mean
trends for consumption of FCEVs and temperature for Finland and Germany, respectively, whereas
Figure 4.18 depicts the ones of Greece. As can be seen from the bottom panels, the temperature has
been increasing during the last 40 years, which has the opposite effect on the consumption of FCEVs,
since they are more efficient in milder temperatures. This effect is more significant for countries with
cold extremes like Finland, where we can see that the historical trend for the consumption is -0.028
kWh/year, while in Germany the slope is about -0.019 kWh/year, and in Greece this drops down to
-0.009 kWh/year.
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Figure 4.16: Finland: Annual mean consumption (top) and temperature (bottom) trends (1980–2019).

Figure 4.17: Germany: Annual mean consumption (top) and temperature (bottom) trends (1980–2019).
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Figure 4.18: Greece: Annual mean consumption (top) and temperature (bottom) trends (1980–2019).

Now, using these trends and the projections for each region’s temperature, a projection for the con-
sumption of the FCEVs has been made for 2050. Figure 4.19 presents these projections for the FCEV
energy consumption for the three countries. As can be seen clearly from the graphs, as the tempera-
ture increases under the different RCP scenarios, the consumption of FCEVs increases. For example,
in Finland, the different RCPs are used to forecast a consumption of 31.27 kWh/100km under RCP2.6,
30.88 kWh/100km under RCP4.5, and 28.89 kWh/100km under RCP8.5, which results in a difference
of 1.38 kWh/100km for the three scenarios. This difference is almost half in Germany at around 0.55
kWh/100km and even less in Greece, around 0.25 kWh/100km. This reflects the global warming effect
in the different climate zones in Europe. This analysis has been made for all three segments of BEVs
and ICEVs, and the relevant plots for the projection of the consumption can be found in Appendix A.
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(a) Finland

(b) Germany

(c) Greece
2

Figure 4.19: Projected 2050 FCEV energy consumption vs. temperature under RCP scenarios for Finland, Germany, and
Greece.
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4.3.2. Passenger vehicle energy demand projections under different IEA policies
and ICCP scenarios

These projections have been used in combination with the scenarios to estimate the average passenger
vehicle energy demand in the three European countries in 2050. The first scenario analysis presented
estimates the energy demand, while assuming that the vehicle share mix (small, medium, and large)
remains steady throughout the years. The results are summarized in Table 4.2. Figure 4.20 presents
the forecasted passenger vehicle energy demand for Greece for 2050 under the 9 scenarios.

The most significant source of variation in the energy demand comes from the IEA scenarios applied.
To be more specific, under the STEPS scenario, the energy demand remains at the highest level, with
values ranging from 11.316 to 11.363 TWh. This reflects a path with lower levels of electrification in
the transport sector and only incremental policy progress. In comparison with the aforementioned, the
SDS scenario produces lower demand levels, around 9.832 to 9.893 TWh, which reflects the stronger
policies and regulations applied and the accelerated adoption of electric vehicles. The NZE scenario
predicts an energy demand of around 8.866 to 8.934 TWh, as it assumes that deep decarbonization of
the sector will happen.

The influence of the climate pathways (RCPs) on passenger car energy demand is evident but comes
secondary to the one of the transport policies. Within the different IEA scenarios, the variation in RCPs
produces only a small decrease in energy demand, of around 30-70 GWh. The relationship observed
is inverse, and it reflects the impact of ambient temperature in vehicle energy use, especially for cabin
heating needs.

Across the total scenario range the projected energy demand in Greece in 2050 varies between 11.4
TWh (STEPS, RCP2.6) and 8.8 TWh (NZE, RCP8.5), which means a nearly 2.5 TWh spread. This
variation suggests that the policies followed play a significant role in forming the long-term energy de-
mand. On the other hand, the effect of climate change on consumption is relatively mild, but consistent
across policy cases.
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Figure 4.20: Projected passenger vehicle energy demand in Greece in 2050, under three IEA scenarios (STEPS, SDS, NZE)
and three IPCC RCPs (2.6, 4.5, 8.5).

Figure 4.21 presents projections of total passenger vehicle energy demand in Germany for the year
2050 under the 9 scenarios defined by the three IEA policies and the three climate futures. In general
terms, Germany’s projected energy demand is significantly higher than that of Greece, with national
totals ranging between around 129 TWh and 164 TWh. reflecting the larger population, the increased
vehicle stock, and the more extensive travel demand. The fluctuation between the IEA policy scenarios
represents the majority of this range. Under the STEPS scenario, the demand is above 161 TWh in
all climate scenarios, whereas under the NZE scenario, it falls to approximately 130 TWh. This means
a 30 TWh deviation, which reflects the impact of the energy transition and decarbonization strategies
that will be followed.

The role of global warming is also evident in the figure. The temperature rising under the RCP sce-
narios produces a mild reduction in energy use of around 1-2%, for each policy case. This effect is
more evident in Germany than in Greece, because of the colder climate baseline and the larger pro-
portion of energy used in passenger vehicles. However, the climate’s influence on interaction with
vehicle powertrain technology brings a more significant influence at scale. For example, under the
NZE-RCP8.5 scenario, Germany’s passenger transport demand is approximately 35 GWh lower than
under the NZE-RCP2.6 scenario.

In contrast to the case of Greece, Germany’s larger thermal gradient makes the country a more inter-
esting candidate to examine the climate-related shifts in seasonal vehicle energy consumption, but it
remains clear that the policies play the most important role in determining the long-term energy con-
sumption.
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Figure 4.21: Projected passenger vehicle energy demand in Germany in 2050, under three IEA scenarios (STEPS, SDS, NZE)
and three IPCC RCPs (2.6, 4.5, 8.5).

Figure 4.22 illustrates Finland’s passenger vehicle energy demand in 2050 under the 9 scenarios men-
tioned previously. In contrast to the larger energy totals of Germany, Finland’s absolute demand values
are lower, ranging between 10.1 TWh and 12.8 TWh across the different scenarios. This is because
of the country’s smaller vehicle stock and population. However, Finland shows the most significant
variation in projected demand due to climatic factors.

A clear deviation is observed both in the IEA policy axis and in the RCP scenario axis. The energy
demand is significantly reduced from STEPS to SDS and to NZE, according to the decarbonization
policy ambitions. For example, in STEPS the demand remains at around 12,500 - 12.8 TWh, whereas
transitioning to SDS lowers these numbers by around 1.3 - 1.5 TWh, and transitioning to NZE makes
a final total of around 10.1 - 10.5 TWh. These values reveal a decline of around 20% of the business-
as-usual path.

What differentiates Finland from Germany and Greece is the relative strength of the RCP effect. For
each IEA policy scenario, warmer climates consistently produce lower energy demand. The difference
between RCP2.6 and RCP8.5 ranges between 200 GWh and 400 GWh, depending to the policy sce-
nario. These differences are more evident than in Greece and slightly larger than in Germany, showing
the sensitivity of vehicle energy demand to ambient temperature conditions. Given Finland’s long win-
ter periods, heating requirements increase the consumption, and as the climate warms under RCPs,
the reduction in this heating demand results in a larger decrease in energy use. This finding further
reflects the importance of accounting for regional climatic baselines when evaluating climate mitigation
impacts.
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Figure 4.22: Projected passenger vehicle energy demand in Finland in 2050, under three IEA scenarios (STEPS, SDS, NZE)
and three IPCC RCPs (2.6, 4.5, 8.5).

Table 4.2: Projected passenger�vehicle energy demand in 2050 (TWh) and percentage reduction from 2019 levels, using both
the estimated 2019 baselines and the JRC IDEES 2021 baselines.

Scenario RCP Greece Germany Finland

STEPS
RCP 2.6 11.36 (–58.6% / –58.8%) 163.61 (–56.9% / –51.9%) 12.85 (–55.3% / –51.0%)
RCP 4.5 11.35 (–58.7% / –58.9%) 163.31 (–56.9% / –52.0%) 12.76 (–55.6% / –51.3%)
RCP 8.5 11.32 (–58.8% / –59.0%) 161.81 (–57.3% / –52.4%) 12.52 (–56.4% / –52.2%)

SDS
RCP 2.6 9.89 (–64.0% / –64.2%) 144.31 (–62.0% / –57.6%) 11.44 (–60.2% / –56.3%)
RCP 4.5 9.87 (–64.1% / –64.2%) 143.97 (–62.0% / –57.6%) 11.33 (–60.6% / –56.7%)
RCP 8.5 9.83 (–64.2% / –64.4%) 142.27 (–62.5% / –58.2%) 11.07 (–61.5% / –57.7%)

NZE
RCP 2.6 8.93 (–67.5% / –67.6%) 131.43 (–65.3% / –61.3%) 10.49 (–63.5% / –60.0%)
RCP 4.5 8.91 (–67.6% / –67.7%) 131.08 (–65.4% / –61.4%) 10.38 (–63.9% / –60.4%)
RCP 8.5 8.87 (–67.7% / –67.9%) 129.31 (–65.9% / –62.0%) 10.11 (–64.8% / –61.4%)
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4.3.3. Passenger vehicle energy demand projections under SUV growth scenar-
ios

For the second part of this scenario analysis, passenger vehicle energy demand in 2050 is estimated
assuming a steady annual growth rate in SUVs. Different scenarios have been made according to the
current sales trend for 1%, 1.5%, and 2%growth. For this analysis, the shares of small andmedium cars
have been proportionally decreased. The 9 scenarios presented consider the three different percent-
ages of growth rates and the three IEA policy scenarios under RCP 2.6. The results are summarized
in Table 4.3.

Figure 4.23 illustrates the expected passenger vehicle energy demand in Greece in 2050 for the differ-
ent SUV growth rates. As it can be seen clearly from the graph, the increasing penetration of SUVs
significantly increases the energy demand across all different policies. According to STEPS scenario,
which reflects low electrification, the energy demand increases from 12.6 TWh with 1% SUV growth
to 13.8 TWh with 2% growth, which means a relative increase of around 10%. Even according to the
ambitious NZE scenario, which leads to decarbonization, the expected energy demand increases from
9.7 TWh to 10.6 TWh, around 8.5%.

This reflects the importance of the vehicle type composition when shaping national energy use, even
under transformative policy scenarios. The relatively high sensitivity of the energy demand to the SUV
market sales reflects their low efficiency in real-world conditions in comparison with smaller vehicle
segments. Moreover, the absolute demand differences between IEA scenarios remain larger than the
differences caused by the SUV growth rate alone. For example, at 1.5% growth, demand increases
from 13.2 TWh in STEPS to 10.2 TWh in NZE, a decrease of around 23%, compared to the approxi-
mately 9% variation which is caused by SUV growth under a certain policy.

This shows the need to coordinate vehicle electrification with polices that target vehicle downsizing.
Without measures like these, the benefits of decarbonization could be significantly reduced by shifts in
the vehicle fleet that would drive the energy demand upward, even as emissions decline.
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Figure 4.23: Projected passenger vehicle energy demand in Greece in 2050 under three IEA policy scenarios (STEPS, SDS,
NZE) and varying SUV market growth rates (1.0%, 1.5%, and 2.0% annually), assuming RCP 2.6 climate conditions.

Figure 4.24 shows how projected passenger vehicle energy demand in Germany responds to varying
SUV growth rates. As depicted in the Figure, across all policies, the increased penetration of SUVs
in the market leads to increasing energy demand. According to the STEPS scenario, the demand is
increased from 181.5 TWh to 199.3 TWh, which means around 10%. Similar results come from the
other two scenarios, SDS and NZE, with increases of 8.8% and 8.4% respectively.

Because of Germany’s larger vehicle fleet and higher mobility, these percentage shifts mean important
absolute differences, which can reach up to 17.8 TWh within a single scenario. Compared to Greece,
the energy impact of SUVs growth in Germany is significant in scale, though similar in relative terms.
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Figure 4.24: Projected passenger vehicle energy demand in Germany in 2050 under three IEA policy scenarios (STEPS, SDS,
NZE) and varying SUV market growth rates (1.0%, 1.5%, and 2.0% annually), assuming RCP 2.6 climate conditions.

Figure 4.25 presents the results for the SUV growth scenario for Finland under the different IEA scenar-
ios. As in the other countries, the SUV penetration leads to consistent rises in energy demand. Under
the STEPS scenario, demand increases from 14.1 TWh to 15.4 TWh (+9.3%), under the SDS demand
increases from 12.4 TWh to 13.5 TWh (+8.1%) and under the NZE demand increases from 11.4 TWh
to 12.2 TWh (+7.7%). While percentage increases are comparable to those of Germany and Greece,
the absolute impact is smaller due to the country’s low baseline mobility. Nonetheless, taking into ac-
count Finland’s long winters and higher heating energy demands, the cumulative event of heavier, less
efficient vehicles remains non-negligible.
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Figure 4.25: Projected passenger vehicle energy demand in Finland in 2050 under three IEA policy scenarios (STEPS, SDS,
NZE) and varying SUV market growth rates (1.0%, 1.5%, and 2.0% annually), assuming RCP 2.6 climate conditions.

Table 4.3: Projected 2050 passenger�vehicle energy demand (TWh) under RCP 2.6 for varying SUV growth rates, with dual
percentage reductions relative to the estimated 2019 baselines and the JRC IDEES 2021 baselines.

Scenario SUV growth Greece Germany Finland

STEPS
1.0% 12.61 (–54.1% / –54.3%) 181.46 (–52.2% / –46.6%) 14.11 (–50.9% / –46.1%)
1.5% 13.23 (–51.9% / –52.1%) 190.38 (–49.8% / –44.0%) 14.79 (–48.5% / –43.5%)
2.0% 13.85 (–49.6% / –49.8%) 199.30 (–47.4% / –41.4%) 15.43 (–46.3% / –41.1%)

SDS
1.0% 10.85 (–60.5% / –60.7%) 158.16 (–58.3% / –53.5%) 12.45 (–56.7% / –52.5%)
1.5% 11.33 (–58.7% / –58.9%) 165.09 (–56.5% / –51.4%) 12.95 (–54.9% / –50.6%)
2.0% 11.81 (–57.0% / –57.2%) 172.01 (–54.6% / –49.4%) 13.45 (–53.2% / –48.7%)

NZE
1.0% 9.76 (–64.5% / –64.6%) 143.40 (–62.2% / –57.8%) 11.36 (–60.5% / –56.6%)
1.5% 10.17 (–62.9% / –63.2%) 149.39 (–60.6% / –56.1%) 11.80 (–58.9% / –55.0%)
2.0% 10.59 (–61.5% / –61.6%) 155.38 (–59.0% / –54.3%) 12.23 (–57.4% / –53.3%)
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Discussion

5.1. Interpretation of the main findings
This thesis investigated the effect of powertrain technologies, vehicle characteristics, and ambient
weather conditions on the passenger vehicle energy demand in Europe. The enhanced VCAM tool
allowed the simulation for BEVs, FCEVs, and ICEVs in various vehicle segments and European re-
gions.

The findings confirm the ambition that BEVs are the most energy-efficient powertrain technology under
standard conditions. However, their consumption and range are sensitive to temperature, especially
under below-zero temperature conditions. At -20 degrees Celsius, BEVs presented an increase in
consumption of around 80%, in comparison with their optimal consumption, significantly reducing their
autonomy. This confirms and extends the observations previously made from empirical studies, such
as the DOE and NAF reports, revealing the thermal limitations of battery and heating systems.

FCEVs presented the most stable thermal behavior, but with their increased baseline energy consump-
tion as a cost. Because modern BEVs and FCEVs typically offer comparable ranges on a single charge
or fill, the biggest benefit of FCEVs in cold or hot climates is this lower percentage drop in efficiency.

ICEVs showed low sensitivity to temperature during winter because of the availability of waste heat,
but had low performance under extreme hot conditions, when the HVAC and engine cooling loads
increased the energy use. Under all climate conditions, ICEVs remained the least efficient technology,
supporting the policies that suggest their phase-out.

Vehicle segment analysis showed a steady increase in consumption as vehicle size increases. This
effect was bigger in BEVs and FCEVs under extreme temperature conditions due to higher HVAC loads
and auxiliary power needs. These results highlight the importance of vehicle downsizing as a possible
policy design.

Regarding the different regions, the simulations showed that the climate diversity shapes the different
national energy demand standards. Finland. where long and harsh winters are experienced, presented
a peak seasonal demand of more than 30% of that of Greece. The scenario analysis showed that
while policy interventions play the most important role in shaping the future passenger vehicle energy
demand, the effects of vehicle fleet composition and global warming are still notable.

In summary, the findings suggest the need for regional and temperature-oriented energy planning
towards the decarbonization of the passenger transport sector. The efficiency gains of the sector’s
electrification can be undermined by poor vehicle performance, vehicle sales trends, or poor climatic
adaptation.

5.2. Comparison with literature
The findings of this thesis are broadly consistent with existing literature on vehicle energy modeling,
especially in relation to climate sensitivity, fuel cell electric vehicle performance, and the broader system

62



5.3. Implications 63

implications of electric vehicle demand.

Various European studies confirm that BEVs are particularly sensitive to the ambient temperature varia-
tions. M. Al-Wreikat et al. (2022) showed that when the temperature drops from 25 ◦C to 0 ◦CBEV range
can decrease by 28%, mainly because of the increased HVAC loads and battery inefficiency. Similarly,
Bicer et al. (2023) observed that energy consumption can increase by up to 40% in below-zero condi-
tions based on real-world data. This thesis confirms these findings by using 40 years of climate data in
three European countries and showing that seasonal and regional temperature variations lead to big
variations in BEV energy demand. In contrast with many previous studies that evaluate only static or
ideal testing conditions, this thesis offers a more dynamic and regionally detailed perspective.

Regarding FCEVs, this research contributes to a less explored sector. While many modeling tools ex-
clude hydrogen vehicles or oversimplify them, this thesis integrates detailed thermal and operational
modeling. Hydrogen Insight (2024) reports that in very cold climates (e.g., −6 ◦C in Québec) FCEVs
can show significant consumption increases up to 40%. This thesis expands this knowledge by sys-
tematically comparing FCEV performance across different climate zones and driving cycles in Europe.

From a system perspective, the results underline the importance of accurate EV demand modeling in
order to plan the electricity system. The thesis supports the conclusions of International Council on
Clean Transportation (ICCT) (2024), which highlight that smart charging and vehicle-to-grid strategies
can offer significant grid flexibility, especially for handling peak loads. However, it also addresses more
extreme challenges, such as the “Dunkelflaute” phenomenon, where low wind and solar availability
during winter can severely constrain supply. As highlighted by Energy Central (2024), failing to accu-
rately model EV load during these periods can lead to a significant underestimation of system stress,
especially in regions that are highly dependent on imports or lack storage. Including FCEVs in this
context adds another layer of value, as they offer the possibility to geographically transfer electricity
demand by producing hydrogen in uncongested regions.

Overall, this thesis not only confirms many of the already existing observations but also expands the
literature by offering a long-term, geographically differentiated modeling of passenger vehicle energy
demand under realistic European conditions. It connects the detailed vehicle performance analysis to
energy system planning, contributing to bridging the gap between transport models and infrastructure
investment strategies.

5.3. Implications
The results of this thesis have several important implications for energy system planning, transport
policy, and sustainable mobility strategies. Besides the validation of already known trends, this thesis
offers new, applicable insights that can inform the way in which the electrification strategies are formed.

First, it is worth noting that efficiency is not enough without thermal robustness, which is the ability to
keep the range up when temperatures stray far from 20 degrees Celsius. While BEVs outperform all
other powertrains under optimal conditions, they suffer up to 80% range loss in extreme cold, in the
worst case scenario, making temperature sensitivity a limiting factor in their wide adoption.

Second, it is important to keep in mind that vehicle size can seriously undermine decarbonization. Pro-
liferation of SUVs significantly offsets the efficiency gain from electrification. Even with the adoption
of the most ambitious policy scenarios, such as NZE, the SUV growth of only 1.5% can increase the
national energy demand by 8-10% in 2050, which in scale has a crucial impact on the demand. Down-
sizing polices are necessary to avoid falling back on climate goals.

Third, although FCEVs are not the absolute winner in raw consumption, they can play crucial roles that
BEVs struggle to. By pairing a relatively small battery with a hydrogen fuel cell stack, FCEVs reduce
the need for really large batteries, thus reducing vehicle cost, weight, and charging footprint. At the
same time, they refuel in a few minutes and maintain long ranges, making them suitable for heavy-
duty transportation, where BEVs requirements for battery size and charging time can be prohibitive.
Furthermore, because FCEVs use only modest power for on-board battery charging, they help to de-
congest the grid and the public fast-charging infrastructure, helping to smooth peak electricity demand
as vehicle electrification emerges.
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Last, it is important to note that while warming climates may slightly reduce the vehicle energy use, this
passive effect cannot substitute for transitioning to efficient powertrains. Decarbonization is driven by
policies and not by temperature alone. Relying on future warming to reduce energy demand creates
the risk of having a false sense of progress. Robust transitions towards more efficient powertrains and
smart fleet management strategies should remain a priority to decarbonize the sector.

5.4. Limitations of the study
Despite its contributions, this study has several limitations, mainly related to the assumptions made
and the available data. First, the simulation of fuel cell electric vehicles was limited by the availability
of actual power split strategies, as the current FCEV algorithm did not consider a dynamic or variable
power split, but static options were used. This thesis followed a fixed power split strategy based on
the literature. A more robust approach could involve an optimization technique to determine the ideal
power split control strategy under various constraints, thereby reducing the modeling error.

Second, the FCEV modeling used a system efficiency to represent the entire fuel cell system. Incorpo-
rating each component of the fuel cell system with its specific efficiencies could enhance the accuracy
of the simulations, especially under high-load or extreme temperature scenarios. Third, because of the
lack of FCEV HVAC performance data, the thermal modeling has been based on BEV performance.
Although this provides a reasonable approximation, it introduces an error during temperatures when
the HVAC system is turned on. This is also depicted in the validation results, where the error with the
HVAC system turned on can reach 10-13%. Additionally, the number of validated FCEV configurations
was limited. The lack of sufficient experimental data restrained the ability to generalize findings for all
FCEV types.

Finally, the use of the WLTP driving cycle for the scenario analysis introduces another limitation. While
WLTP provides a good basis for the analysis, it does not show the localized driving behavior, such
as regional traffic, road grade, or regional speed profiles. The inclusion of site-specific or empirically
recorded driving cycles would provide a more accurate representation of actual consumption, in partic-
ular in spatial modeling of energy demand.

5.5. Recommendations for further research
Future work should focus, as a priority, on refining FCEV modeling by using more accurate and robust
optimization to form the power split control strategies, and finding more accurate HVAC designs based
on hydrogen-specific systems. Expanding the validation could also increase robustness. Furthermore,
integrating region-specific driving profiles would allow for regional assessments beyond the WLTP stan-
dard. This could enhance the accuracy of the passenger vehicles’ energy demand projections for both
urban and rural mobility. Last, because FCEVs combine a compact battery pack with a hydrogen fuel
cell stack, they can achieve fast refueling and increased autonomy without the increased battery cost
and weight. This makes them increasingly attractive for long-distance transportations and heavy-duty
vehicles, where the charging time and the grid congestion are critical. Consequently, future work should
develop detailed models for FCEV-powered trucks and commercial fleets, exploring optimal battery siz-
ing, hydrogen infrastructure needs, and impacts on electricity demand, in order to clarify the role of
hydrogen in decarbonizing the full spectrum of the transport sector.



6
Conclusion

This thesis research aims to investigate how different powertrain technologies, vehicle types, and envi-
ronmental conditions affect the passenger car energy demand, with a specified focus on the European
territory. By enhancing the Vehicle Consumption Assessment model (VCAM) to incorporate hydrogen
fuel cell electric vehicles (FCEVs) and taking into consideration the temperature variability and the
regional fleet composition, this research aimed to cover crucial gaps in current vehicle energy con-
sumption models. The following sections present conclusive answers to the research questions posed
in the beginning by summarizing the key findings and their implications.

What are the quantified differences in consumption and range be-
tween various powertrain technologies across vehicle segments?
The results of the simulations made during this thesis indicate significant and quantifiable differences
both in passenger vehicle energy consumption and in driving range between the different powertrain
technologies. The battery electric vehicles (BEVs) consistently presented the highest energy efficiency,
with the energy consumption values ranging from around 14 kWh/100km to 20 kWh/100km in A, C,
and E segments under WLTP driving conditions. This increased efficiency is a result of the increased
drivetrain efficiency of the electric motors and the capability of regenerative braking.

Regarding fuel cell electric vehicles (FCEVs), which were added to VCAM through this research, they
presented a relatively intermediate energy efficiency. To be more specific, at optimal temperatures
between 15 and 25 degrees celcius, C-Segment FCEVs achieved energy consumption levels of around
21 to 23 kWh/100km, corresponding to ranges near 800 km for a standard tank. However, during cold
conditions the consumption rises significantly, reaching values of more than 45 kWh/100km due to the
increased thermal demand, which reduce range by more than 20%. These results show that while
FCEVs offer longer ranges than BEVs, they are also significantly affected by ambient temperature
conditions. The segment-specific analysis made during this research confirmed that the vehicle mass
and the aerodynamic characteristics strongly influence both energy use and range.

As far as internal combustion engine vehicles (ICEVs) are concerned, they presented the highest en-
ergy consumption levels across all segments. Their specific fuel consumption differed a lot with varying
driving cycles and vehicle segments, but it was always higher than that of FCEVs and BEVs, thus reflect-
ing the relatively low thermal efficiency of the combustion process and the absence of energy recovery
technologies.

It is worth noting here the nonlinear relationships that exist between vehicle segments and energy
consumption as a result of the interacting effects of mass, frontal area, drivetrain sizing, and thermal
demand. To be more specific, while increased mass generally means higher consumption, the extent
of this impact varies depending on the driving cycle and temperature.

In summary, BEVs offer higher efficiency, but they are suffering from the limited thermal resilience and
range. FCEVs offer an attractive balance between range and efficiency, but require effective strategy

65



66

planning to manage operating under extreme temperature conditions. ICEVs remain the least efficient,
but they are less sensitive to cold. These findings underline the need to plan the energy systems
according to climate sensitivity to deploy low-carbon emission technologies in Europe.

To what degree does weather variability impact the energy con-
sumption of passenger vehicles with different powertrains?
The impact of weather variability on passenger vehicle energy demand is crucial, especially for electri-
fied powertrain technologies. This thesis assessed the sensitivity of fuel cell electric vehicles, the bat-
tery electric vehicles, and the internal combustion engine vehicles to ambient temperature variations,
using historical hourly weather data for the period 1980 - 2019 in three European countries: Greece,
Germany, and Finland, which represent three different climate zones present in Europe.

Quantitatively, BEVs and FCEVs present increased sensitivity to ambient temperature, especially in
colder climates. This is indicated by the ”cold penalty” values of 83.3% and 87.0% for BEVs and
FCEVs, respectively in -20 degrees in comparison with their consumption at 20 degrees. ICEVs, on
the other hand, present a moderate increase in consumption in cold climates (5.0%), which is the result
of their capability to use engine waste heat to cover the cabin’s heating demand. However, ICEVs still
present increased consumption in warmer conditions, even up to 25%, because of the cooling demand.

Beyond point-based assessments, the study used a time-series analysis for 40 years of weather data
to evaluate both the seasonal and the inter-annual variability in consumption. The heatmap analyses
of hourly energy consumption patterns revealed that FCEVs in colder countries, such as Finland, pre-
sented consistently increased hydrogen consumption during winter months, with clear peaks during
years when long winters were experienced. In contrast, in Mediterranean countries like Greece, the
consumption remains relatively steady throughout the year, with small increases during the summer
months when the cabin cooling loads are high.

What is worth noting is that the results show that the mean annual temperature alone is not enough to
explain the inter-annual variation in consumption. The distribution, frequency, and duration of extreme
temperature events have a larger impact on the overall energy consumption than the annual averages.
For example, one year with short but severe cold periods could result in higher overall energy consump-
tion than a year with generally lower average temperatures.

The seasonal distributions presented in the results section of this thesis further depict the increased
difference in consumption during winter months for BEVs and FCEVs, especially in colder regions.
The 90th percentile values of the winter period consumption are significantly higher than the median,
highlighting the importance of modeling weather extremes and not relying on average conditions

In conclusion, temperature conditions variability, including both seasonal and annual fluctuations, plays
a key role in shaping the energy consumption profile of electrified vehicles. FCEVs and BEVs are partic-
ularly sensitive to ambient temperature extremes, a fact that leads to significant operational uncertainty
and challenges when planning infrastructure. The findings underline the need to integrate detailed
weather data when planning long-term energy and mobility, especially when evaluating the resilience
and resource requirements of vehicle fleets that emit less in Europe.

To what extend does the energy demand for passenger mobility
differ across European regions, and what role do vehicle fleet com-
positions and climate zones play?
The passenger vehicle energy demand in Europe presents significant regional differences, which is
shaped by a combination of demographic, climatic, technological, and behavioral factors. This research
investigated the future landscape of vehicle energy demand in 2050 for three representative countries,
Greece, Germany, and Finland, where each one of them was selected to reflect distinct climate zones
and fleet characteristics.

The scenario analysis, which combines International Energy Agency (IEA) policies and Representative
Concentration Pathways (RCPs) revealed that the national energy demand is driven mainly by two
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factors: the degree of decarbonization achieved through the policy implementation and the temperature
profiles, which are connected with climate change pathways.

Germany, with its large population and high vehicle stock, presented the highest absolute demand
projections, ranging between 129 and 164 TWh depending on the scenario. In contrast, Greece and
Finland showed significantly lower values because of the smaller fleet and the less intensive travel
demand. However, the influence of climate and fleet composition was more evident in Finland, where
cold winters and extended heating demands enhance the impact of policy and climatic changes.

For all the countries, the IEA policy scenarios represent the majority of the variation, with the energy
demand being decreased by over 30% when moving from STEPS to NZE. For example, in Finland, the
demand under the STEPS-RCP 2.6 scenario was approximately 12.8 TWh, and it dropped to around
10 TWh under the NZE-RCP 8.5 scenario, which means a 20% reduction solely by policy ambitions.
RCP-related changes produced smaller but still notable effects. Warmer climates resulted in lower
energy demand for all policy scenarios because of the reduced heating needs, with Finland showing
the highest sensitivity, followed by Germany and then Greece.

In addition, fleet composition, and especially the growth of SUVs, appeared to be a critical factor that
influences future energy demand. The simulations considered different SUV sales growth rates, ac-
cording to market trends, and this revealed an upward pressure on energy use, even under the most
ambitious policy scenarios. For instance, in Germany under the NZE scenario, the energy demand was
increased by 12 TWh between the 1.0% and 2.0% SUV growth cases. These results are important in
scale, and they are opposing the decarbonization efforts.

These findings indicate that the regional differences in energy demand are determined by different
factors, including policy design and technological choices. As the climate gets colder across European
regions, it plays a more important role, whereas in warmer climates, policies are the key influencers.
However, the interaction between the variables must be addressed to ensure that electrification and
decarbonization strategies produce the expected outcomes.

To what extent is the energy demand from passenger mobility in-
fluenced by variations in powertrain technologies, vehicle types,
and weather conditions?
The passenger vehicle energy demand is significantly influenced by the interaction of selecting the
powertrain system, the vehicle configuration, and environmental conditions. This thesis demonstrates
that these factors operate in a cooperative way to shape the future energy demand landscape of the
European transport sector.

First, the powertrain technology has a foundational impact on the energy demand. TO be more specific,
BEVs offer the highest efficiency under optimal conditions, but they have unstable consumption rates,
because of their temperature sensitivity. Furthermore, FCEVs are less efficient in absolute terms, but
they present a smoother energy consumption pattern for different driving conditions, because of their
hybrid architecture and better thermal load management. On the other hand, ICEVs are the least
affected by temperature, but they present the highest energy requirements and lowest overall system
efficiency, and thus, they confirm the need to phase them out in the future.

Second, both the vehicle segment and the fleet composition play an important role. Larger and heavier
vehicles have significantly higher energy consumption because of the increased mass, aerodynamic
resistance, and auxiliary power needs. The trend to multiply SUVs represents a structural challenge
that could alter the energy gains of the electrification of the transport sector and they need to be offset
by downsizing policies or stricter efficiency regulations.

Third, the weather variability produces crucial temporal and regional variation in energy demand. Both
BEVs and FCEVs show important nonlinear responses to extreme cold and hot temperature events,
which lead to increased seasonal requirements, especially in northern climates. These effects, which
are connected to the temperature, are getting worse over time, due to the increased inter-annual cli-
matic fluctuations and the long-term global warming scenarios, highlighting the need to integrate dy-
namic weather modeling into energy system planning.
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Finally, the regional context is in the middle of the outcome of these factors. Countries such as Finland,
Germany, and Greece show how demographic scale, climate zone, and vehicle use interact with poli-
cies and technology selection to produce different energy demand pathways. Even under similar pow-
ertrain changes, different countries can face different infrastructure needs and storage requirements
due to the localized effects.

In conclusion, this research confirms that the future passenger vehicle energy demand in Europe does
not solely depend on the electrification rate or the powertrain technology adoption. It is the complex
interaction of powertrain efficiency, vehicle fleet mix, and climate profile that will decide the final en-
ergy demand needs of the transport sector. Consequently, the effective decarbonization requires an
integrated planning that combines powertrain innovation, behavioral change, climatic resilience, and
specific policy interventions both at regional and European levels.
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A
Projections for consumption

(a) Segment A

(b) Segment C

(c) Segment E

Figure A.1: Finland BEV consumption vs. temperature projections by vehicle segment under RCP scenarios.
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(a) Segment A

(b) Segment C

(c) Segment E

Figure A.2: Finland ICEV consumption vs. temperature projections by vehicle segment under RCP scenarios.
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(a) Segment A

(b) Segment C

(c) Segment E

Figure A.3: Germany BEV consumption vs. temperature projections by vehicle segment under RCP scenarios.
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(a) Segment A

(b) Segment C

(c) Segment E

Figure A.4: Germany ICEV consumption vs. temperature projections by vehicle segment under RCP scenarios.
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(a) Segment A

(b) Segment C

(c) Segment E

Figure A.5: Greece BEV consumption vs. temperature projections by vehicle segment under RCP scenarios.
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(a) Segment A

(b) Segment C

(c) Segment E

Figure A.6: Greece ICEV consumption vs. temperature projections by vehicle segment under RCP scenarios.



B
Small vehicle policy scenario

An additional scenario for a promising small vehicle policy has been made and is presented here.
Figures B.1, B.2, and B.3 present the results for Finland, Germany, and Greece, respectively. Table
B.1 summarizes the results.

Figure B.1: Projected passenger vehicle energy demand in Finland in 2050 under three IEA policy scenarios (STEPS, SDS,
NZE) and varying small vehicle growth rates (1.0%, 1.5%, and 2.0% annually), assuming RCP 2.6 climate conditions.
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Figure B.2: Projected passenger vehicle energy demand in Germany in 2050 under three IEA policy scenarios (STEPS, SDS,
NZE) and varying small vehicle growth rates (1.0%, 1.5%, and 2.0% annually), assuming RCP 2.6 climate conditions.
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Figure B.3: Projected passenger vehicle energy demand in Greece in 2050 under three IEA policy scenarios (STEPS, SDS,
NZE) and varying small vehicle growth rates (1.0%, 1.5%, and 2.0% annually), assuming RCP 2.6 climate conditions.

Table B.1: Energy demand in 2050 under Small Vehicle Growth scenarios, relative to 2019 baseline

Scenario Small Growth Greece Germany Finland

STEPS
1.0% 10,889 (–60.4%) 156,742 (–58.7%) 12,296 (–57.2%)
1.5% 10,652 (–61.2%) 153,307 (–59.6%) 12,019 (–58.2%)
2.0% 10,415 (–62.1%) 149,872 (–60.5%) 11,743 (–59.2%)

SDS
1.0% 9,529 (–65.3%) 138,980 (–63.4%) 11,008 (–61.7%)
1.5% 9,347 (–66.0%) 136,317 (–64.1%) 10,793 (–62.5%)
2.0% 9,164 (–66.6%) 133,653 (–64.8%) 10,578 (–63.2%)

NZE
1.0% 8,622 (–68.6%) 126,826 (–66.6%) 10,116 (–64.8%)
1.5% 8,466 (–69.2%) 124,526 (–67.2%) 9,930 (–65.5%)
2.0% 8,310 (–69.7%) 122,226 (–67.8%) 9,743 (–66.1%)
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