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Abstract

Having the floorplan of an incident site upon arrival allows first responders to operate quickly
and efficiently. This thesis explores the potential of using robotic swarms for environment
mapping, intending to deploy these swarms to create maps before emergency personnel arrive
on the scene. We present BICLARE, a lightweight collaborative algorithm for robust exploration.
Inspired by ant colony behaviour, specifically how they use pheromones for communication
and navigation, BICLARE implements a confidence model to determine the occupancy of cells
within a map. Target selection, considering the travel time and estimated battery power, ensures
efficiency. Including computation-saving parameters ensures its lightweight execution, enabling
it to work on inexpensive hardware. The algorithm’s performance was evaluated through a
series of simulated experiments in various environments, proving it can generate accurate maps
with adequate coverage in noisy, volatile environments. A real-world experiment demonstrated
the feasibility of the proposed system, successfully running on low-cost, commercially accessible
hardware.
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Nomenclature

αϕ Pheromone evaporation factor
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length 2R
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cupancy confidence.

loccupied Log-odds decrease of occupancy con-
fidence when a cell is observed as oc-
cupied.

m Factor from the frontier selection prob-
ability formula

n Factor from the frontier selection prob-
ability formula

NA Number of agents in the swarm
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considered in frontier selection

Ns Maximum number of route sections

Ncc Number of covered cells by an agent

Ncc Number of covered cells

Oi(j) Occupancy of cell j according to agent
Ai

Po Occupied probability threshold

Ra Agent alignment radius

Rc Agent cohesion radius
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Rf Frontier search radius

Ro Object avoidance radius

Rs Agent separation radius
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Rcomm Communication range

Rrandom Random walk radius

Rsensor Distance sensor threshold

Si State of agent Ai

Tϕ Pheromone evaporation time
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Nomenclature vi

Tf Minimum time between frontier checks

Tmap Map exchange interval

Tspawn Average inter-arrival time for dynamic
obstacles (Poisson)

Tsync Time synchronization interval
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1
Introduction

In emergencies, every second counts. It is vital that first responders can operate quickly and
effectively. When searching through buildings or fighting fires, information about a scene is
crucial for firefighters to operate safely. A map of the environment showing, among others, the
accessibility of rooms is crucial[45]. In 2010, 72 firefighters died in the line of duty. Eight of
these fatalities resulted from being trapped within a structure. In 2011, deaths due to becoming
trapped increased by 4%, and a civilian dies in a residential fire every 208 minutes[44]. It is
therefore essential for first responders to know their surroundings and locate victims quickly.
Here, robotic swarms can be of assistance.

Discussing the possible role of swarm robotics in fire rescue, [9] states that dealing with the
fire is not the problem. Finding the location of the fire and the casualties is important. They
indicate that robots are not yet trusted with complex tasks. However, robots are potentially
valuable for straightforward tasks such as building mapping, locating casualties, large-area
search, and exit route guidance. Furthermore, they should be easy to handle, deploy, and
maintain. In various countries, like the Netherlands and the United States, fire departments
are continuously facing budget cuts [29] [14], leaving little room for expensive equipment.
We believe robotic swarms could be used to map the potentially quickly changing indoor
environment before the first responders arrive. Most fire departments deploy so-calledQuick
Response Vehicles (QRV) for medical calls [18]. On average, these QRVs arrive 1 minute and 59
seconds earlier at a scene than big fire engines. Here, we believe a QRV could also be used to
deploy a robotic swarm at the scene, allowing them to start mapping well before the fire crew
arrives. It will be beneficial if the potential loss of robots due to fire or collapsing structures
results in no significant financial loss. This introduces the need for a swarming algorithm which:

• Creates a map of the environment: The algorithm should create a human-readable
map for first responders.

• Works in dynamic environments: Obstacles produced throughout the mission should
be present in the final map.

• Is robust against sensor and pose estimation errors: Indoor environments are prone
to inaccurate sensor readings, but an accurate map should still be created.

• Can run on inexpensive hardware: Limited budget and potential hardware loss require
low-cost hardware.

• Is efficient: The algorithm should maximize mapping coverage and accuracy while
minimizing battery usage, saving cost.

1



2

This algorithm can be extended to support any additional sensors required for fire or victim
detection.

We present BICLARE: A Bio-Inspired Collaborative and Lightweight Algorithm for Robust
Exploration. Our algorithm is a multi-robot frontier-based exploration algorithm aimed at
working in noisy, volatile environments where communication limitations can be present.
It is designed to create accurate maps of any potential dynamic environment while being
computationally inexpensive. BICLARE uses a confidence model to determine the occupancy
of cells in our map. Each cell will have an occupancy value of 0, 1, or 2 if it is determined to
be free, occupied, or ambiguous, respectively. In our model, we categorize any cell for which
we are unsure about its occupancy (free or occupied) as ambiguous. These cells can be fully
unexplored, very little explored, or have their confidence decay over time. The pheromone
value ϕi(j, t) represents the confidence that cell j is free at time t according to agent Ai. When
ϕi(j, t) = 0.5, agent Ai is fully ambiguous about cell j’s occupancy. From this point, whenever
we discuss ’higher pheromones’, we are indicating that the value is further from 0.5, meaning
we are more certain about the cell being either free or occupied, i.e., 0.3 and 0.7 have the same
pheromone strength. Furthermore, pheromone decay indicates that the certainty decreases.
Unlike existing studies, we include confidence in our definition of a frontier. Formally, we define
F as a list of frontier regions. A frontier region Fk ∈ F is a region of adjacent non-occupied cells,
separating explored and certain cells from uncertain or unexplored cells. Setting frontier regions
as navigational targets enables agents to increase confidence in uncertain areas. Frontier regions
consist of adjacent frontier cells. A cell j in an agent Ai’s map is recognized as a frontier cell if
and only if the following properties are met: (1) Oi(j) = 0 ∨ 2 and (2) ∃j′ ∈ N8(j) : Oi(j

′) = 2.
Here Oi(j) denotes the occupancy of cell j according to agent Ai.

Our main contributions are:

1. A bio-inspired novel lightweight algorithm for accurate indoor multi-robot ex-
ploration

2. An ant-inspired frontier selection function
3. A lightweight path planning algorithm based on wall-following behaviour

This thesis proceeds as follows. Chapter 2 discusses the relevant literature, followed by the
implementation of our algorithm in chapter 3. The setup of our experiments is discussed in
chapter 4, and results are presented in chapter 5. We discuss our interpretation of the results in
chapter 6. Finally, chapter 7 concludes our findings and suggests directions for future research.



2
Related Work

2.1. Swarming in Fire Rescue
Research has been done on swarming for fire fighting, but they are concerned with extinguishing
the fire [7] [innocente219self] or assistive swarming [30] [31].

2.2. Models for navigation in Animals
In the paper “Flocks, Herds, and Schools: A Distributed Behavioral Model” [32], Reynolds
introduces a powerful model for simulating the collective motion of flocks of birds or schools of
fish. The model is based on three simple local rules: separation, avoiding collisions; alignment,
steering towards the average heading of neighbouring flockmates; and cohesion, moving towards
the average position of neighbouring flockmates. Each agent decentrally adheres to these rules,
given the location and heading of its flockmates. Reynolds’ study demonstrated that despite its
simplicity, the flock displayed a fluid and lifelike interactive motion.

Ants deploy pheromones to recruit other ants. Scout ants leave Chemical trails behind when
food is found. No further aid from the scout ant is required for other ants to follow this route
[46]. Ants also incorporate negative feedback when locating food. When ants leave pheromone
trails behind, each trail’s strength indicates the source’s quality. This allows for the exploitation
of the most profitable resources. However, over-exploitation occurs when too many ants go
to a single location. [48] shows that ants often choose sources with fewer ants over sources
with many other ants. Also, fewer pheromones are deposited on routes leading to occupied
sources. Some ants even deposit negative pheromones [33]. This prevents crowding when other
food sources are available and colonies trapping themselves in local optima [48]. Deposited
pheromones do not exist forever. They decay over time, which also directly depletes their effect
on ants [21]. Attractive and repellent pheromones decay with similar gradients [33]. However,
repellent pheromones have a higher initial effect, resulting in them also having a longer-lasting
effect. Ant pheromones seem to follow exponential decay:

ϕ(z, t) = ϕ(z, t0) · e−λ(t−t0) (2.1)

where λ is a constant [33][21][13], and can be effectively modelled with this formulation [34].
Ants can have knowledge about their environment separate from pheromone information. They
can completely ignore pheromone trails when their memory conflicts with the route [48]. Ant
behaviour based on pheromone levels can be modelled mathematically as well. When given
two route options, right and left, formula 2.2 shows how the probability Pant of an ant choosing

3



2.3. Swarming 4

the right route is calculated.

Pant =
(k +R)n

(k +R)n + (k + L)n
(2.2)

In this equation, R and L are the qualities of the right and left routes, respectively, determined
by the number of ants that have visited that route previously. k and n are chosen constants. n
influences the degree of nonlinearity. A high value means that a slight quality difference has a
high influence on the probability. k influences the attraction to other routes, meaning a high k
shifts the probability towards random [3][12]. Bianchi et al. [4] introduced a variation of this
formula, adding a state transition heuristic. For a set of candidate locations for Jk(i) for ant ai,
any two connected states (i.e., an ant’s current location i, and a candidate location j ∈ Jk(i)),
the probability at time t can be calculated with

Pant(i, j, t) =
ϕ(ij, t) · ηmij∑

r∈Jk(i) ϕ(ir, t) · η
m
ir

(2.3)

where ϕ(ij, t) is the pheromone intensity along route ij at time t, and ηmij = 1/dij , the inverse
distance between i and j. Here,m is a parameter influencing the effect of the distance on the
probability.

2.3. Swarming
2.3.1. Stigmergy
The mechanism through which inter-animal communication occurs is called stigmergy. It
explains how insects operate individually yet seem coordinated as a whole. Ant pheromones
are an example of stigmergy. There are two main types: qualitative stigmergy and quantitative
stigmergy. In the former, stimuli of different types will result in different responses from
swarm members. The latter entails that locations with many pheromones are more attractive
than locations with fewer [41]. De Nicola et al. studied stigmergy in a multi-agent system.
The stigmergy was implemented as a decentralized data structure that contained their local
knowledge. This knowledge is exchanged through messages with neighbours [11]. Salman et al.
[36] simulated stigmergy by projecting UV light. The light simulated a pheromone trail. The
colour of the floor, which was covered in a special coating, changed from white to magenta.
After about 50 seconds, it changed back to white—this simulated pheromone decay.

2.3.2. Exploration
Much research has been done on environment exploration with robotic swarms. Most works are
concerned with static environments. Smith et al. [38] perform fast exploration of environments
by inferring unobserved map portions through a library. Simulated sensor readings from the
library are matched with real sensor readings, and the enclosed unobserved space is inferred.
This uses the assumption that most environmental structures are similar to existing structures.
SLAM was used for robot localization. In [49], Yanguas-Rojas et al. concern themselves with
victim search, identification, and evacuation in disaster environments. Part of their swarm’s
task set is an exploration of the mission environment. They use a frontier-based algorithm that
tracks the weighted centroid of an area. They consider the time it takes each robot to reach a
point. 8-neighbour breadth-first search is used to calculate the route distance to each point, as
opposed to using Euclidean distance. Zhou et al. [51] proposed a Capacitated Vehicle Routing
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Problem (CVRP). This minimizes the lengths of each agent’s coverage path and balances the
workload. They also prevent repeated exploration. The map is saved in a 3D hierarchical grid
(octree) to decrease memory usage. The CVRP involves creating a (Nh + 3) × (Nh + 3) cost
matrix whereNh is the number of cells in the grid. This describes the cost of moving to adjacent
cells and reduces computation for calculating connection costs. A minimal navigation solution
is introduced by McGuire et al. [26]. Their algorithm, called the Swarm Gradient Bug Algorithm
(SGBA), gives each agent its own preferred direction in which it will travel. When an obstacle
is encountered, an agent will follow the wall until its preferred direction is free again. They
use RSSI for inter-agent collision avoidance, navigating back to the base station, and odometry
for position estimation. McGuire et al. stated that the agents revisited rooms without proper
organization. Exploration by setting waypoints is achieved by Kamalova et al. [22]. Global
waypoints are set on frontiers, which agents will navigate to. When an agent encounters an
obstacle, five equally distributed local waypoints are generated in front of it. It then determines
which waypoints will lead to avoiding the obstacle, and one of them is randomly selected.
Division of work is important in swarming. Wang et al. [47] achieve this by assigning each
agent their sub-area. This avoids collisions and decreases revisitation. The algorithm uses a
frontier-based approach for exploration, prioritising frontiers close by and in front of the agent,
as moving and turning require energy. A walking state is entered when the sub-area is fully
explored, which uses Particle Swarm Optimization (PSO) to decide the movement. Five variants
of a random walk model were explored by Kegeleirs et al. [23]. They ported single-robot models
to swarming scenarios and state that it is not the best approach to achieve swarm mapping. An
agent chooses a random direction in each variant and moves towards it until some condition is
met. These conditions, e.g., some set time or until an obstacle was encountered, were varied over
the variants. Couceiro et al. [10] utilized a heterogeneous swarm with different roles throughout.
They implemented deployment robots, which handle the initial deployment of their exploration
robots. They ensure the latter stays communicationally inter-connected by staying spatially
close. In [17], Hengstebeck et al. extend Boids for the purpose of search and rescue. In their
Boids_Extended algorithm, they add goal-seeking and obstacle avoidance without modifying the
three Boids rules. They achieve this by adding ghost boids. These are invisible boids that do not
move on their own and are not physically there. They only function as virtual influences. They
use solely repelling ghost boids on area boundaries, and ghost boids that only affect alignment to
steer other boids towards a goal. They extended even further with their BOIDS_CBF algorithm,
which adds a control barrier function. This defines the safe and unsafe states for all possible
agent states (position and velocity). Agents are prevented from leaving the safe state set. Both
algorithms have the same coverage, but the latter results in fewer collisions. Tran et al. [43]
also built on the Boid approach, and introduced some new forces to determine the heading of
each agent: previous heading and attraction to the closest frontier cell. Obstacle avoidance is
achieved with a dynamic scale factor for the vector weights. They verified that their work still
performed adequately with different communication ranges. They extended their algorithm
to work with dynamic environments in [42]. In this study, they present their FSP algorithm.
Their agents use virtual pheromones to ensure repeated coverage. They each keep two matrices
containing these pheromone values: a coverage matrix containing explored and obstacle-free
cells, and an obstacle matrix containing occupied cells. They extend Boids with a virtual wall
avoidance force to keep agents within specified bounds, and a frontier attraction force. The
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latter is a vector towards the navigational goal point defined as:

GFj
=

∑
Fj,k∈Fj

Fj,k

|Fj|
(2.4)

with |Fj| the number of cells in frontier region Fj . A frontier region is a group of adjacent
frontier cells. The region used in this vector is selected through

F ∗ = argmin
∀Fj∈F

(ΩD

∥∥pi −GFj

∥∥
2
− ΩS |Fj|) (2.5)

where ωD and ωS are weights and pi is the agent Ai position.

vfrontieri =

{
GF ∗ − pi, if vsi = 0

0, else

}
(2.6)

To calculate the cohesion, separation, and alignment vectors we use information from neigh-
bouring agents. For a team of N agents, A1, A2, ..., AN , at time t neighbours are defined as
follows:

N c
i = {Ak|k 6= i ∧ ‖pi(t)− pk(t)‖ < Rc} (2.7)

N s
i = {Ak|k 6= i ∧ ‖pi(t)− pk(t)‖ < Rs} (2.8)

Na
i = {Ak|k 6= i ∧ ‖pi(t)− pk(t)‖ < Ra} (2.9)

where Rc, Rs, and Ra are defined radii. These are then used to determine the average position
of neighbours:

Cv
i (t) =

∑
k

pk(t)

|A|
,∀k ∈ N v

i (2.10)

The cohesion vector is defined as a vector towards the average position of neighbours:

vci (t) = Ci(t)
c − pi(t) (2.11)

Separation is calculated inversely:

vsi (t) = pi(t)− Cs
i (t) (2.12)

Differently, the alignment vector used the average velocity of neighbours:

vai (t) =

∑
k

vhk (t)

|A|
,∀k ∈ N v

i (2.13)

where vhk is agent k’s velocity vector.

They also used a virtual wall avoidance vector to keep the agents within specified bounds,
vwi

All combined, the resulting swarm vector for agent Ai is calculated with

vswarm
i (t+1) = v̂swarm

i (t)+ωcv̂ci (t)+ωsv̂si (t)+ωav̂ai (t)+ωwv̂wi (t)+ωfrontierv̂frontieri (2.14)
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where ωc, ωs, ωa, ωw, and ωfrontier are weights1.

Obstacles are detected using LIDAR and entered into the obstacle matrix. Once a cell has
been determined to contain an obstacle, no new observation can change this. When an obstacle
cell is within the obstacle avoidance radius Ro from the agent, the agent determines which
angles around it are blocked for movement. Given all cells within Ro from agent Ai: C , the
object-agent safety radius Rp, and each cell’s center Cj , the blocked angles [−β;βj] for that cell
are calculated with:

[−βj; βj] = [− arcsin
Rp

AiCj

; arcsin
Rp

AiCj

] (2.15)

Fig. 2.1 illustrates how blocked angles are determined in practice.

Figure 2.1: Illustration of the determination of blocked angles βj by an obstacle cell.

The total set of blocked angles is determined by

Dj : {θi :≤ θι ≤ θAi
+ βj, θι ∈ Θ} (2.16)

where Θ = {θ|θ = kθs, k ∈ Z, θ ≤ θ < 360◦}. This is the set of all angles [0, 360] given step
size θs the set of all angles From the set of free-to-move angles χ = Θ \Dj , the direction αr is
the smallest difference between the target vector (combined force vector vtarget) direction αt

and all angles in L. It determines the acting force vector with2

vi =

vix
viy

T

=


viswarmx

· cos(αr)−
viswarmy

· sin(αr)

viswarmx
· sin(αr)+

viswarmy
· cos(αr)



T

(2.17)

1Normalization of vectors was not explicitly stated in the original publication [42]. However, the author
confirmed via personal correspondence that this is intended.

2Personal correspondence with the author confirmed an error in the original publication of this formula. The
form presented here is correct.



2.3. Swarming 8

Work Decentralized Unknown Dynamic Mapping Designed for Verified with Ran on low- Rea -life proof
environments environments sensor errors limited comm. cost hardware of concept

[10] X X × × × range X X

[17] × X × × × N.A. N.A. ×
[20] X X × × × × X X

[22] × X × X × × × X

[23] X X × X × N.A. X X

[26] X X × × × × X X

[27] X X X X × × N.A. ×
[38] X X × X × range × X

[40] X X X × X range X X

[42] X X X X × range × X

[43] X X × X X range × X

[47] X X × X × × N.S. X

[49] X X × X × range N.A. ×
[51] X X × X × X X X

Table 2.1: Comparison of algorithms from existing works.

Pheromones linearly evaporate over time according to a set evaporation time. When a cell’s
pheromone value reaches zero, it is deemed undiscovered again. Given a rectangular area of X
by Y meters and matrix resolution ρ, the memory requirement of each matrix is O(X/ρ · Y /ρ)

Mendonça et al. [27] also uses ant-inspired pheromones as inter-agent markers. They use
Ant Colony Optimization (ACO) to explore dynamic environments, creating fuzzy maps. It is
aimed towards disaster site exploration so rescue teams can increase response times. The agents
in their experiments were fitted with sensors to detect the pheromones, making it difficult to
implement in real life.

We give an overview of the features of algorithms from existing works in Table 2.1. Here,
we indicate which algorithms are decentralized, work in entirely unknown and/or dynamic
environments, and if they create a map of their environment. Their robustness is marked by
indicating whether they verified their works with limited communication (range and loss, as well
as potential sensor and pose estimation errors. We also note whether they ran their algorithm
on low-cost hardware. We deem the used hardware low-cost when the microcontroller and
obstacle detection sensors are commercially available for under 40 euros a piece.

2.3.3. Localization
Indoor localization is an ongoing challenge. Itani et al. [20] tackle the challenge by using
acoustic ‘chirps’ to calculate the Euclidean distance between robots. Using a base station and
related reference points allows their agents to determine their global position. They showed
that their method achieved a median localization error of 15cm. Sun et al. [39] achieved indoor
localization by combining UWB (anchor), IMU, and odometry data. Placing anchors around the
environment, they consider line-of-sight (LOS) and non-line-of-sight situations (NLOS) for the
UWB. They show that even in NLOS situations, their proposed method achieves a maximum
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localization error of 1.033m.

2.3.4. Communication in dynamic environments
Talamami et al. [40] claim to show that less inter-robot communication allows the robots to
better react to environmental changes. They task a swarm with reaching a consensus about the
highest quality site in the environment, with each agent exchanging their own opinion. In their
experiments, they proved that reducing the range of communication made the swarm react
better to changing site quality as it averted local optima.

2.3.5. Mapping
Memory-efficient mapping is crucial for robots with limited resources. Octrees divide a 3D space
into a hierarchical voxel grid [19] [15]. The same concept can be applied to 2D environments,
reducing the trees to Quadtrees [51]. These trees ensure that only explored cells need to be
stored. OctoMap uses a confidence-based model to determine the occupancy of a cell. Cell
observations are combined using the log-odds notation, allowing simple addition. Limiting the
lower and upper bounds of the L-confidence limits the number of updates required to change
the state of a voxel, ensuring a quicker reaction to changing environments.



3
A Bio-Inspired Collaborative and Lightweight

Approach for Robust Exploration

In this thesis, the exploration algorithm called BICLARE is inspired by Dynamic Frontier-Led
Swarming[42]. Dynamic Frontier-Led swarming achieved repeated coverage while running on
robots fitted with a Raspberry Pi 4 [35]. In this study, their work is extended with a confidence
model to account for sensor and pose estimation inaccuracies (section 3.2.1), a novel target
selection algorithm including probability-based frontier selection (section 3.1.2), and a quadtree
for memory-optimized map storing (section 3.2). We show two versions of the algorithm:
BICLARE-WF and BICLARE-PP. The former uses wall-following behaviour to navigate around
obstacles (section 3.1.4), and the latter uses a simple path-planning algorithm based on wall-
following behaviour (section 3.1.5). The codebase will be made available at a later date.

3.1. Exploration Algorithm
Agents have five possible states. Described by Si, an agent’s state can be either no_mission,
exploring, returning, finished_exploring, and map_relayed, denoted as 0, 1, 2, 3, and 4,
respectively.

Agents start in no_mission, in which they do nothing but communicate. When an agent
receives the mission start signal, it transitions to exploring. This is the main state in which
exploration and mapping occur. Agents can only drive straight forward or turn in place, either
way. When the mission timer ends, agents transition to returning, where they attempt to return
to their deployment site, and conditionally transition to finished_exploring and map_relayed
(see section 3.3). Every timestep, an agent starts by broadcasting all relevant information, like
its estimated position and its current target, to agents within communication range Rcomm.
Maps are only exchanged every Tmap seconds, with some random variations to ensure not all
exchanges occur at the same time. Only cells that were updated since the earliest last exchange
of all agents within range are sent to reduce unnecessary communications. The pseudocode for
the main agent algorithm is given in Alg. 1.

10
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Algorithm 1 Main Agent Loop
1: procedure MainAgentLoop
2: if Si = 0 then DoNothing return
3: BroadcastMessage(p, F ∗)
4: BroadcastMapIfCloseAgents
5: BroadcastMessage(heading)
6: TimeSyncWithCloseAgents
7: CheckAndParseMessages
8: if Si = 3 ∨ 4 then
9: StopDriving
10: if Si = 3 then
11: if recently exchanged maps with another agent then
12: Si ← 4

13: else
14: CheckForObstacles
15: CalculateNextPosition
16: Step . Drive or Turn
17: CheckMissionEnd
18: t← t+ ttick

BICLARE assumes an agent is fittedwith a number of distance sensors. In CheckForObstacles,
the value of each distance sensor is read. Suppose a sensor ray is intersected within Rsensor,
then the corresponding map cell is updated as observed occupied (see section 3.2.1) unless the
detected obstacle is estimated to be another agent. All cells between the agent and the collision
are updated as observed free. If no obstacles are detected by a sensor, cells covered by the sensor
within Rsensor are updated as observed free.

In CalculateNextPosition, the agent cohesion, avoidance, and alignment vectors are
calculated as described in section 3.1.1. If the agent is in state exploring, it evaluates if it has to
determine a new target. This depends on any of these conditions:

• If the agent is random-walking but has walked far enough (see section 3.1.2).
• If the agent is its current target.
• If it has been at least Tf since the last check and the distance from the agent to the current
selected frontier≤ Rd and the difference between our target heading and the vector angle
from the agent to the frontier ≤ θturn.

• Distance from agent to current selected frontier ≤ Ro.

Obstacle avoidance is done according to equation 2.17. However, additionally, as we account
for pose estimation inaccuracy, the forward-facing sensor, denoted by y, is read. If this detects a
ray intersection within 0.5Ro, Dj is extended with [θy − 45◦, θy + 45◦].

3.1.1. Vector Forces
Agent cohesion, separation, and alignment vectors are calculated according to equations 2.11,
2.12, and 2.13, respectively. In our implementation, we assume that the map boundaries are solid
walls, so the agent cannot escape the boundaries. Thus, vw is not included in our implementation.
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Similar to [42], our swarm vector is calculated according to:

vswarm
i (t+ 1) = v̂swarm

i (t) + ωcv̂ci (t) + ωsv̂si (t) + ωav̂ai (t) + ωtargetv̂targeti (3.1)

with

vtargeti =

{
Gi − pi, if vsi = 0

0, if vsi 6= 0

}
(3.2)

The method for determining the target location Gi is described in section 3.1.3.

3.1.2. Frontier-Led Swarming
New frontiers to discover are determined by creating frontier regions. Frontier regions are
created by merging adjacent frontier cells. We use a non-optimal merging algorithm, which is
presented in Alg. 2. In our algorithm, potentially separately created but adjacent groups are
not merged later. This ensures frontier regions are limited in size. With complete merging, one
agent could navigate to a region’s centre, where multiple agents can navigate to sub-regions of
the same frontier. Our merging algorithm and a smaller choice of maximum considered frontier
regions Nf decrease the computation required to select a target. Fig. 3.1 shows the difference
between optimal merging and our algorithm.

(a) Full merging (b) BICLARE merging

Figure 3.1: Optimal frontier region creation vs. BICLARE frontier region creation.
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Algorithm 2 Frontier Cell Merging
1: Cq ← {c ∈ C | c ∈ BRf

(pAi
) and O(c) ∈ {0, 2}}

2: Fq ← {cq ∈ Cq | Oi(cq) = 0 ∨ 2 and ∃c′q ∈ N8(cq) : Oi(c
′
q) = 2}

3: F ← ∅
4: for Fq,k ∈ Fq do
5: added← false
6: for Fi ∈ F do
7: for Fi,j ∈ Fi do
8: if Fq,k ∈ N8(Fi,j) then
9: Fi,j ← Fi,j ∪ {Fq,k}
10: added← true
11: break
12: if added then
13: break
14: if ¬added then
15: F ← F ∪ {{Fq,k}}
16: if |F | > Nf then
17: F ← sort(F, key = len, reverse = true)
18: |F | ← nq

Not all frontier regions obtained from Alg. 2 are considered by the agent. To stimulate agent
dispersion, frontier regions whose centre is close to another agent’s position or selected frontier
are discarded, that is:

F u = {Fj ∈ F |dFj ,k > Rx ∧ dFj ,k > Rd ∧ Fj /∈ Γ∗,∀k ∈ A, k 6= i} (3.3)

where dFj ,k =
∥∥GFj

− pk
∥∥.

Rx is the frontier separation radius, and Rd is the distance at which we deem a frontier
reached, and new targets are considered.

When we have established F u for the given Rf , we determine the probability of choosing
every region Fj ∈ F u. We use a variation on equations 2.2 and 2.3:

Pagent(p, Fj, t) =
(k + Φ(Fj, t))

−n · |Fj|l ·H(p, Fj)
−m∑

Fr∈Fu

(k + Φ(Fr, t))−n · |Fr|l ·H(p, Fr)−m
(3.4)

where

H(p, Fj) = ωt · T (p, Fj) + ωb ·B(p, Fj) (3.5)

T (p, Fj) is the estimated time it takes an agent to go from position p to the centre of the region
Fj . B(p, Fj) is the estimated battery power it takes the agent to go from position p to the
centre of the region Fj . For these estimations, BICLARE-PP uses the route generated from
PeriPlanner (section 3.1.5), and BICLARE-WF uses Euclidean distance. Battery estimations are
made according to the specifications of two TT DC gearbox motors [1]. Only motion-related
estimations are used here, as only that is directly affected by the route.
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For our purposes, the pheromones are seen as repellent pheromones. This entails higher
pheromone values in an area, making it less favourable. The multiplication with |Fj|l ensures
bigger frontier regions aremore favourable, resulting in a trade-off between ambiguity and region
size. H(p, Fj) ensures a trade-off between region quality and time and battery considerations.
Time and battery usage are combined in the term as they are closely related. Φ represents the
pheromone value of a region and is calculated according to Alg. 3.

Algorithm 3 Φ

1: Input: Fj, t
2: ϕi(Fj, t)← 0
3: for each Fj,k ∈ Fj do
4: for each Fn,l ∈ N8(Fj,k) do
5: if ϕi(Fn,l, t) = 0.5 then
6: ϕi(Fj,k, t)← 0.5
7: break
8: else
9: ϕi(Fj,k, t)← argmin

u∈{ϕi(Fj,k,t),ϕi(Fnl,t)}
(|u− 0.5|)

10: ϕi(Fj, t)← ϕi(Fj) + ϕi(Fj,k, t)

11: return ϕi(Fj ,t)

|Fj |

Different from [42], agents use a randomly generated number in combination with a Cumu-
lative Distribution Function to determine their frontier objective F ∗. The corresponding target
point is calculated using equation 2.4.

It can occur that even though a route to a target is established, the route is not actually
viable, for example, with narrow passages or mapping inaccuracies. When an agent is unable to
proceed towards its target for an extended period of time, its FrontierEvaluator will make it
temporarily avoid that target and the closest corresponding subtargets. A set Γ is established
with Alg. 4. Then a set of all blocked locations Γ∗ is generated with equation 3.6.

Γ∗ = {l ∈ L| ‖l − γ‖ < Rx,∀γ ∈ Γ} (3.6)
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Algorithm 4 FrontierEvaluator
1: Global countG, θe,Γ
2: if ‖Gprevious −Gi‖ < 1

2
Rx then

3: if |θα| > θe then
4: countG = countG + 1
5: θe ← min(θe + 1

3
ftick, 89)

6: if countG > countthreshold then
7: Γ← Γ ∪ {Gi} ∪ {Gi,sub}
8: countG ← 0
9: else
10: θe ← max(θe − 1, 0)

11: else
12: countG ← 0
13: θe ← 89

14: Gprevious ← Gi

Whenever no frontier within range can be considered (F u = ∅), agents perform random-
walk behaviour. A random point along the perimeter of the root cell of an agent’s quadtree is
selected and set as Gi,random such that Gi,random /∈ Γ∗. Whenever an agent has moved outside
Rrandom from the random walk deployment site, a new random target is selected.

3.1.3. Target Selection
An agent Ai’s target Gi is set according to

Gi =


Gi,sub, if Si < 2 ∧Gi,sub 6= 0

Gi,random, if Si < 2 ∧Gi,sub = 0

Gi,t0,sub, if Si ≥ 2

(3.7)

The determination of Gi,sub is described in section 3.1.5, and Gi,t0,sub is the subtarget towards
the agent’s deployment position, i.e. the agent’s position at t = 0 (see section 3.3).

3.1.4. Wall Following
When an agent notices there is no free angle within 90 degrees towards the target, it initiates
wall-following. It chooses a random direction (left or right), in which it will follow the wall.
When the direction towards the target becomes free again, it will stop wall-following. When
the initial chosen direction leads it back to the position at which it started wall-following, it will
detect that it is in a loop, and progress in the other direction. Fig. 3.2 illustrates this.
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Figure 3.2: Wall-following implementation. 1 The agent randomly chooses to follow the wall to the
right. 2 The agent keeps following the wall. 3 The agent detects a loop, and continues in the other

direction.

3.1.5. Path Planning
We present our novel simple path planner: PeriPlanner, which plans routes along the perimeter
of obstacles and is thus based on wall-following behaviour. The algorithm raytraces a straight
line from a start coordinate (agent position) to a given target coordinate and follows the outline
of the first obstacle it encounters in the given wall-following direction. It utilizes the fact that
in our quadtree, adjacent highly likely occupied cells (ϕ(z, t) < Po) are 4-connected. For each
route section, we perform ray tracing towards the target. If the nearest intersection with an
occupied cell is at least half the resolution away, we classify that direction as free. If for any route
section, an unobstructed straight line can be traced towards the agent, all sections before that are
removed from the route, optimizing the route. Lines are raytraced using the Amanatides-Woo
voxel traversal algorithm [2]. Then the intersected edge is determined using the Liang-Barsky
line clipping algorithm [24]. Alg. 5, 6, and 7 show the pseudocode for the main functions of
PeriPlanner.

As we perform raytracing for each route section, we set a maximum number of route
sections Ns for which we deem a route viable. This saves computation time by discontinuing
the establishment of a route when it contains too many sections, preventing many raytracing
operations. Note that this does not represent the actual distance traversed by the route, as edge
sections will most often be much shorter than ray-traced sections.

BICLARE initiates PeriPlanner to establish routes with both wall-following directions, and
the shortest one is returned (Fig. 3.3). If a potential new target is close to the agent’s current
target, the same wall-following direction used for the route towards the current target is used
to find a new route. This prevents an agent from frequently switching directions.
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Figure 3.3: Illustration of how PeriPlanner determines a route. The dotted lines display the full
generated route. The solid lines show the route after optimization. In this case, the cyan route is the

shortest and would be returned.

Occasionally, PeriPlanner may fail to establish a route to a target. This occurs when it
overlaps its own route, at which point it terminates. An illustration of this phenomenon can be
seen in Fig. 3.4. When this happens in both directions, the target is deemed unreachable at this
time.

Figure 3.4: Illustration of a case where PeriPlanner fails (purple line). 1 PeriPlanner follows the
wall to the right. 2 It keeps following the contours of the obstacle. 3 Direction to the target free. 4 It
overlaps its route, resulting in a fail. PeriPlanner still generates a route in the other direction, which

will be chosen.
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Algorithm 5 PeriPlanner Function
1: function PeriPlanner
2: Input: pstart, ptarget, wfd
3: Output:ψ . Route
4: (cisec, eisec)← U(pstart, ptarget)
5: if ¬cisec then
6: return {(pstart, ptarget)}
7: (pL, pmid, pR)← eisec
8: ψ = ((pstart, pmid))
9: if wfd = 1 then . Left
10: ψ←ψ _((pmid, pL))
11: else . Right
12: ψ←ψ _((pmid, pR))

13: FollowWallToTarget(cisec, eisec, ptarget, wfd, ψ)
14: if ¬ψ then
15: return ()
16: a = 0
17: for i = 0 to |ψ|) do
18: s = ψ[i]
19: if s[0] = pAi

then
20: a = i
21: TruncateFront(ψ, a)
22: ψ←ψ _((ψ[−1][1], ptarget))
23: return ψ
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Algorithm 6 followWallToTarget Function
1: function followWallToTarget(pAi

, c, e, ptarget, wfd, ψ)
2: if |ψ| > Ns then
3: ψ←()
4: return
5: d = dirToTargetFree(c, e, ptarget, wfd, ψ)
6: if d > 0 then
7: if d = 1 then
8: cisec, eisec←U(c, ptarget)
9: followWallToTarget(pAi

, cisec, eisec, ptarget, wfd, ψ)
10: return
11: (e, c)← GetConnectedEdgeAndCell(ψ[−1])
12: if ¬c then
13: ψ←
14: else
15: (pe,start, pe,end)←e
16: cisec,Ai

, eisec,Ai
←U(pAi

, pe,end)
17: if 6=cisec,Ai

then
18: ψ←ψ _((pAi

, pe,start))
19: ψ←ψ _((pe,start, pe,end))
20: followWallToTarget(pAi

, c, e, ptarget, wfd, ψ)
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Algorithm 7 DirToTargetFree Function
1: function dirToTargetFree(c, e, ptarget, wfd, ψ)
2: if ptarget = c then
3: return 2
4: cisec, eisec←U(start, target)
5: if cisec then
6: if cisec = c then
7: return 0 .We are intersecting the same cell, we are on the edge of
8: if eisec ∈ψ then
9: return 0 .We cannot go over the same edge twice
10: if ‖e− eisec‖ > size(cisec)/2 then
11: elast←ψ[−1]
12: pstart,elast , pmid,elast , pend,elast ←elast
13: RemoveLast(ψ)
14: ψ←ψ _((pstart,elast , pmid,elast))
15: pstart,eisec , pmid,eisec , pend,eisec ←eisec
16: ψ←ψ _((pmid,elast , pmid,eisec))
17: if pend,elast = pstart,eisec then
18: ψ←ψ _((pmid,eisec , pend,eisec))
19: else if pend,elast = pend,eisec then
20: ψ←ψ _((pmid,eisec , pstart,eisec))
21: else
22: if wfd = 1 then
23: ψ←ψ _((pmid,eisec , pstart,eisec))
24: else
25: ψ←ψ _((pmid,eisec , pend,eisec))
26: return 1 . Line to target is partly free
27: return 0
28: elast←ψ[−1]
29: pstart,elast , pmid,elast , pend,elast ←elast
30: RemoveLast(ψ)
31: ψ←ψ _((pstart,elast , pmid,elast))
32: return 2 . Line to target is fully free

U(start, target) gives the first intersection and the corresponding cell with an obstacle on
the line from start to target. Raytracing with the Amanatides-Woo Voxel algorithm is employed
here.

When a route ψ is established, an agent’s sub-target Gi,sub will be set according to Alg. 8.
This algorithm chooses the next route section required to progress towards the target.
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Algorithm 8 FollowPath
1: Input: ψi

2: Global variables: ψcurrent, kcurrent
3: if ψcurrent 6= ψj then
4: ψcurrent ← ψj

5: kcurrent ← 0

6: start, end← ψcurrent[kcurrent]
7: Gi,sub ← end
8: if ‖Gi,sub − pi‖ < 3r0 then
9: if ¬U(pi, Gi,sub) then
10: kcurrent ← kcurrent + 1
11: startnext, endnext ← ψcurrent[kcurrent]
12: Gi,sub ← endnext

13: return Gi,sub

3.1.6. Time Synchronization
In a simulation, all agents’ steps are started in sequence. This means that potential CPU overload
or time oscillator drift will not cause misalignment of perceived mission time between agents. In
real life, however, this can happen. Mission time alignment is crucial for pheromone evaporation
calculations. So to counter misalignment, we implemented a TimeSynchronizer to balance
mission time between agents. Based on [37], it calculates the difference between message
propagation from i to j and vice versa for every pair of neighbouring agents ij. The differences
are averaged, and each agent’s mission time is compensated accordingly. This ensures that, for
any drift between agents, a consensus in mission time is reached over all agents in a matter
of cycles. A time synchronization cycle is initiated every Tsync seconds, with some random
variations to ensure that not all message exchanges occur at the same time.

3.2. Mapping
As a local map, agents use a single quadtree. A quadtree is a hierarchical tree where each node
that is not a leaf contains four children (see Fig. 3.5). The benefit of using a quadtree is that
groups of unexplored cells are not unpacked to leaves, and can be contained in some higher-level
node. Also, cells with similar confidence can be merged and also be contained by some parent
nodes. The quadtree is updated through agent observations and through maps exchanged with
agents. The maximum depth of the quadtree is determined by setting the desired resolution ρ.
Then depth = log2(

L
ρ
) where L is the diameter of the square containing the environment, i.e.,

the size of the quadtree root.

3.2.1. Confidence
In BICLARE, the occupancy confidence level [0,1] of a cell describes the confidence an agent
has that that cell is free. When a cell has a value of 0.5, the agent is entirely ambiguous about its
occupancy. A confidence value closer to 0 or 1 means the agent is more certain that the cell is
occupied or free, respectively. Our implementation is inspired by [19].

When an agent observes the map, it updates the corresponding cells in its map. When agent



3.2. Mapping 22

Figure 3.5: Illustration of the workings of a quadtree.

Ai gets information X(z, t) about node z at time t, either being its own observation Xown(z, t)
or information received from another agent Xother(z, t)), its confidence (and thus pheromone
level) is updated according to equation 3.8.

L(ϕi(z, t)) = max(min(L(ϕi(z, t− 1)) + L(P (z | X(z, t))), lmax), lmin) (3.8)

with
Li(P ) = log

[
P

1− P

]
(3.9)

L(0.5) = 0, so fully ambiguous information about a cell will not change its confidence level.

lmin and lmax denote the lower and upper bounds on the log-odds value. These clamping
values limit the number of updates to change the occupancy of a cell and prevent potential
overconfidence in noisy environments. As we are assuming obstacles are ever existing, but
new obstacles can spawn, it is sensible to choose lmax < −lmin. This ensures free space decays
towards uncertainty faster than occupied space.

Xown(z, t) will be an observation about the cell, i.e., the cell is observed free or occupied.
L(P (z | Xown(z, t)) = lfree > 0 or L(P (z | Xown(z, t)) = loccupied < 0 respectively. What this
entails is that if lfree = −loccupied, a cell that is observed as occupied N times and observed
as free N times will have a confidence value of 0.5. t0,i(z) is the time at which cell z was last
observed according to agent Ai. After updating with Xown(z, t), the agents sets t0,i(z)← t.

A discount factor ζ is introduced when info is received from another agent Aj . Because
pheromone values of cells received from other agents will probably already have been influenced
by observations from the receiving agent Ai, ζ prevents overconfidence due to their own
observations. Using the discount factor and received pheromone value ϕj(z, t) from agent Aj ,

Pi(z | Xother(z, t)) =

{
ζ · (ϕj(z, t)− 0.5) + 0.5, if t0,j(z) > t0,i(z)

0, else
(3.10)
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Hereafter, agent Ai sets t0,i(z)← max(t0,i(z), t0,j(z)). The condition ensures that if agent Ai is
the last to observe cell z according to agent Aj , Xother,j(z, t) does not affect ϕi(z, t).

As we design for dynamic environments, certainty, |ϕi(z, t)− 0.5| decays over time. Cer-
tainty decay occurs according to equation 2.1, adapted to our confidence implementation:

ϕ(z, t) = (ϕ(z, t0)− Px) ∗ e−λ(t−t0) + Px (3.11)

with
λ = − log

[
αϕ

Tϕ

]
(3.12)

Tϕ is the time after which our pheromone value will have dissipated to αϕ · ϕ(z, t0).

Pi,x(z) =

{
Po, if Oi(z) = 1

0.5, else
(3.13)

This ensures cells deemed occupied will never be considered otherwise, solely due to time decay.
Note that observations about the cell being free can change its occupancy.

When all children of a node have similar pheromone values, that is, the minimum and
maximum pheromone values are within φ∆, they are ’merged’, by deleting them and having
their parent obtain their average pheromone value. This saves significant memory. Cells with
ϕ(z, t) < Po are not merged, as lowest-level cells and neighbours are required for PeriPlanner
to function properly.

3.3. Return strategy and mission end
When an agent is in the returning (2) state, it attempts to return to the position it was at when
the mission started, pi,t0 . It uses PeriPlanner to determine the best route ψreturn, and switches
to a random walk when no viable route is found. Gi,sub is obtained with FollowPath(ψreturn),
which is then used to calculate vtargeti according to equations 3.7 and 3.2.

When an agent estimates that it is within Rreturn from its deployment location, it transitions
to the finished_exploring state. Since agents occasionally get stuck, Rreturn is dynamic,
and increases when an agent does not progress towards the deployment location (Alg. 9). In
finished_exploring, an agent makes sure it has recently exchanged maps with another agent
so that other not yet finished agents have relayed the latest information. Depending on Rcomm,
this exchange will contain most, if not all, information from the remaining agents. Hereafter,
it switches to map_relayed, as shown in Alg. 1, and its mission is finished. It still exchanges
messages in this final state, for inter-agent collision avoidance, and remaining map updates.

Algorithm 9 Return strategy
1: if ‖pi − pi,t0‖ ≤ Rreturn then
2: Si ← 3
3: else
4: if agent Ai got closer to pi,t0 then
5: Rreturn ← max(Rdeployment − 0.01, 0.1)
6: else
7: Rreturn ← Rreturn + 0.002



3.4. Complexity Analysis 24

3.4. Complexity Analysis
3.4.1. Time Complexity
Frontier selection requires the most computation time. Frontier merging is O(N3

fc), where Nfc

is the maximum number of cells within a box with sides of 2 ·Rf . This gives

Nfc = max(
⌈
2Rf

ρ
+ 1

⌉2

, Nl) (3.14)

since we are including any cell intersected by the bounding box. Nl is the maximum number of
leaves in the quadtree, i.e., its map is completely filled with cells of ρ size (Nl = (L/ρ)2, where
L is the size of the square sides containing the environment, i.e., the size of the quadtree root).
However, N3

fc is a very loose upper bound. Since in Alg. 2 whenever F gets bigger, Fi will
get smaller. PeriPlanner has a worst case time complexity if O(max(Nl, Ns) ·

√
Nl), as the

Amanatides-Woo Voxel algorithm has time complexity O(
√
Nl). For each frontier region in

F , we run PeriPlanner twice. Updating leaves in the quadtree takes O(log
√
Nl) time, and

exchanging maps takes O(Nl). Note that our cell ’merging’ of non-occupied cells will greatly
decrease the occupation time by reducing the number of leaves. The fact that agents only
exchange cells with newly observed changes ensures that the actual number of exchanged cells
will often be much less than Nl.

So BICLARE’s worst-case time complexity is O(N3
l ) if

⌈
2Rf

ρ
+ 1

⌉2
, Nf , and Ns are all

bigger than Nl. However, when we ensure they are smaller, we get O
(⌈

2Rf

ρ
+ 1

⌉2)
+

O
(
Nf ·Ns ·

√
Nl

)
+O(log

√
Nl) +O(Nl).

3.4.2. Memory Complexity
BICLARE requires each robot to keep a quadtree of the map. The number of nodes is determined
by the depth of the tree depth = log2(

L
ρ
). Nl will be to 4L. However, due to merging, the actual

number of leaves nl will be smaller in practice. The total amount of nodes in the quadtree will
be nn = 4nl−1

3
. So the worst-case memory complexity in a full non-merged quadtree is O(Nl),
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Experiments

4.1. Environments
4.1.1. Simulated Environments
The first set of experiments was conducted in simulation. The simulated experiments were
executed on PCs running Ubuntu and in the ARGoS3 robot simulator [8]. ARGoS3 is suitable for
simulating large-scale robotic swarms in a multi-physics simulator. Its open-source nature makes
it easy to implement adaptations to existing robots. In our simulations, an agent is fitted with
four ultrasonic distance sensors pointed forwards, right, left, and backwards. Performance was
evaluated on three maps, which were designed to represent typical structures that firefighters
might encounter: a house, an office building, and a museum. Each of these maps was also
rotated by 20◦ to evaluate BICLARE’s performance when the agent’s map grid is not aligned with
walls and other structures. This gives us a total of six maps with which we run our simulated
experiments: house, house_tilted, office, office_tilted, museum, and museum_tilted. Fig.
4.1 illustrates the maps and notes their accessible (AA) and inaccessible area (IA). A cell is
considered inaccessible if it is entirely occupied by static obstacles or walls. For both accessible
and inaccessible cells we only look at cells at least partially within the arena’s bounds. If this
holds, an agent cannot observe any part of the cell. Here, we only account for static obstacles.
Cells at any point reachable during the experiment are counted towards AA. Experiments in
house and house_tilted have a mission timer Tend of 400 seconds, in office and office_tilted
Tend = 600 seconds, and in museum and museum_tilted Tend = 1000 seconds. All agents are
deployed close together, at the side of each map (Fig. 4.5), which likely reflects how they would
be deployed in a real-life disaster site exploration. For more realism, message transmission time
was simulated with a transmission speed of 10 Mbps with 10ms jitter. Map exchange happened
in blocks of 50 nodes. We also introduce a new parameter Ploss, which is the communication
message loss probability. This portrays the random chance of each message being lost in
transmission. For BICLARE, the root node’s width and height, and thus FSP’s coverage and
obstacle matrix width and height, were set to max(map width+ 1,map height+ 1), to account
for possible inferred cells outside the area bounds due to pose estimation and sensor inaccuracy,
which is described below.

As real-life sensor readings and indoor pose estimations are not perfect, we tested the
performance of our algorithm with simulated sensor inaccuracy and noise. As our algorithm
expects four distance sensors, we chose to simulate the HC-SR04 ultrasonic sensor [28]. We base
our implementation on a study by Gandha et al. [16]. Our implementation uses their accuracy
data combined with simulated noise to compose an equation simulating a sensor’s reading given

25



4.1. Environments 26

(a) house. ρ = 0.203125,
AA = 75.299m2, IA = 15.472m2

(b) house_tilted. ρ = 0.24375,
AA = 78.605m2, IA = 12.715m2

(c) office. ρ = 0.1640625,
AA = 173.154m2, IA = 30.443m2

(d) office_tilted. ρ = 0.18125,
AA = 176.347m2, IA = 28.055m2

(e) museum. ρ = 0.2421875,
AA = 689.311m2, IA = 44.108m2

(f) museum_tilted. ρ = 0.265625,
AA = 701.827m2, IA = 34.503m2

Figure 4.1: Six virtual maps used for performance evaluation.
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the actual distance in meters:

dmeasured = dactual − (0.027dactual + 0.00543)fe + dnoise (4.1)

where
di,noise = Jd() + nd,i, Jd() ∼ N (0, σ2

d) (4.2)

with σd = 5fe. nd,i is noise individual to agent Ai, based on its position and id. This simulates
inter-robot differences. Jd() is regenerated every assignment of di,noise.

ni = K(Zi + round((pi,actual,x + pi,actual,y) · 100), 2σ)− σ (4.3)

Zi is an individual value for each agent.

K(a, b) =

{⌊
a
b

⌋
mod b, if

⌊
a
b

⌋
= 0

b− (
⌊
a
b

⌋
mod b), else

(4.4)

To simulate indoor pose estimation errors, heatmaps were generated for each map, which
determine the offset and direction of the pose estimation errors. These heatmaps were based on
a study by Sun et al. [39]. Their localization solution depends on anchors placed around the
environment. This could be done in firefighting scenarios by, for example, placing beacons at
entrances or windows of the structure. They achieved the following performance:

Spec Value (m)
min 0.004
max 1.033
µ 0.227
median 0.193
σ 0.154

Table 4.1: Specifications of localization error simulation.

We ensured our generated heatmaps for position error magnitude had similar specifications
and simulated (non-) line-of-sight areas. They are depicted in Fig. 4.2. The direction of the
position estimation error was also determined using heatmaps. These can be seen in Fig. 4.3.
The _tilted variants were simulated with the same heatmaps.

Using the position estimation magnitude and direction heatmaps,Mmag andMdir respec-
tively, are used to determine the simulated estimated position pi of each agent Ai:

pi = pi,actual + vi,offset (4.5)

vi,offset =

[
εp cos θp
εp sin θp

]
(4.6)

εp =Mmag(pi,actual,x, pi,actual,x)fe + pi,noise (4.7)
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(a) house

(b) office

(c) museum

Figure 4.2: Localization error magnitude
heatmapsMmag . For all maps:

µ : 0.226,min : 0.004,max : 1.033,σ :
0.152,median : 0.193

(a) house

(b) office

(c) museum

Figure 4.3: Localization error direction
heatmaps. Mdir
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pi,noise = Jp() + np,i (4.8)

θp =Mdir(pi,actual,x, pi,actual,x)fe + θi,noise (4.9)

θi,noise = Jθ() + nθ,i (4.10)

σp = 0.05fe σθ = 0.0698fe in radians

Orientation estimation errors were also simulated inMθ, shown in Fig. 4.4.

(a) house (b) office

(c) museum

Figure 4.4: Orientation error heatmapsMθ .

θi = θi,actual +Mθ(pi,actual,x, pi,actual,x)fe + θi,noise (4.11)

4.1.2. Dynamic Spawning Obstacles
We also verified the adaptability of the swarm when new obstacles emerged in free spaces. For
each map, dynamic obstacles were created. Tspawn determines the average inter-arrival time
between two obstacles, this is randomized between repeated experiments according to a Poisson
process. When we state that Tspawn =∞ no dynamic obstacles are spawned.
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(a) house (b) office

(c) museum

Figure 4.5: Dynamic obstacles with spawn order (red), and agent deployment positions (blue) in each
map.
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We test the performance of BICLARE for varying configurations. Additionally, we compare
its performance to that of the Dynamic Frontier-Led Swarming (FSP) algorithm [42]. For better
comparison, we also combine FSP with our quadtree and confidence implementation: FSP-QT,
and observe how that performs against BICLARE-PP and BICLARE-WF. Tran et al. discuss how
they ensured grouping and alignment in their swarm by setting ωc and ωa. In our experiments,
we found that setting both to 0 ensured the best results. For a fair comparison, we tested FSP
both with ωc = ωa = 0 and with ωc = 0.23 and ωa = 0.5. The latter will be referred to as
FSP-G.

4.1.3. Real-life proof of concept environment
Our real-world experiment is conducted on a homogeneous set of small robots (Fig. 4.6). Each
agent runs a Raspberry Pi Pico 2W [25], which has two 150MHz cores and 520kB of SRAM and
is commercially available from €6.50. Obstacle detection was done with four HC-SR04 ultrasonic
sensors, which typically cost €3.00. The robots propelled themselves with two TT DC gearbox
motors [1]. For pose estimation, each agent features a Bitcraze CrazyFlie 2.1 drone[5]. These
drones did not apply any propulsion or run any part of the algorithm and were solely used
for pose estimation. The Bitcraze Loco position system [6] was used for the localization of the
agents. This uses ultra-wideband to localize the drones. Their orientation was obtained from the
drone’s IMU. The drone communicates the location and orientation with the Pico over UART.

Figure 4.6: Robot used in the real-life experiment. On top is a CrazyFlie 2.1.

Fig. 4.7 shows the environment in which the experiment was run. Tend was set to 200
seconds.

4.1.4. Parameters
The parameters that are constant overall in simulated experiments can be found in Appendix A
unless stated otherwise. Distance values are given in meters. Their values were tuned manually.
Performance was better with ωc = ωa = 0 as this encouraged agent separation for increased
coverage. Note that not all parameters are used in both BICLARE and FSP. All algorithms ran
at 16 ticks per second. We used homogeneous swarms of Pi-Puck robots [50]. These agents
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Figure 4.7: Map used for the real-life experiment. ρ = 0.284375,
AA = 32.348m2, IA = 3.882m2

feature two parallel wheels that allow them to rotate in place. They have a radius of 3.62cm, an
inter-wheel distance of 5.65cm, and a mass of 400g. The robots’ max speed and rotation speed
were set to 0.53 m/s and 1.77 rad/s, respectively.

The real-life robots also ran at 16 ticks per second. They achieved a maximum speed of 0.23
m/s, had a radius of 10.5cm, and a mass of 400 grams. They also featured two parallel wheels
with an inter-wheel distance of 12.4cm. The parameter configuration for the real-life experiment
can be found in Appendix B.

4.2. Performance Metrics
All experiments were repeated 5 times, with random seeds 1-5, and the average of each metric
was taken over all repetitions. While their deployment position was constant, each agent’s
deployment orientation was randomized for each repetition. We ran experiments with varying
swarm sizes (NA) of 2, 4, 6, 10, and 15 agents.

4.2.1. Coverage Metrics
Coverage is a significant metric for exploration. The coverage percentage CP (t) at time t is
defined as

CP (t) =
Ncc(t)ρ

2

AA
(4.12)

where Ncc(t) is the number of covered cells in the agent’s map. Note that when there are pose
estimation or distance sensor inaccuracies, cells outside the map borders or in IA might be
added to an agent’s map. These are counted towards Ncc. Cells merged by our algorithm are
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divided into cells of size ρ.

We also compare the coverage metric of the final gathered map from the agent, in which we
do ignore cells outside the arena, and in IA:

CPm =
Nmcρ

2

AA
(4.13)

where Nmc is the number of covered cells inside the map boundaries and outside IA in the map.

To compare which configuration results in the fastest increase in coverage, we also include
the average coverage percentage during the mission, ACP :

ACP =

∑Tend

t=0 CP (t)

Tend
(4.14)

As officially FSP considers cells with fully evaporated pheromones uncovered, we include
previously covered but evaporated pheromone-cells in Ncc for a fair comparison.

4.2.2. Confidence Metrics
For BICLARE it is interesting to observe the average certainty at time t, AC(t) = |ϕ(z, t)− 0.5|.
To compare which configuration can ensure the highest overall certainty, we define the mean
average certainty during the entire mission:

AAC =

∑Tend

t=0 AC(t)

Tend
(4.15)

4.2.3. Mapping accuracy
To evaluate the accuracy of the created maps, we use the precision and recall metrics. Here, we
define cell z in a generated map to be an obstacle cell if ϕ(z, t) < 0.5, and free if ϕ(z, t) ≥ 0.5.
Splitting the actual map up in cells of size ρ, we define cells to be truly occupied when obstacles
cover 10% of their area. Given the number of correctly identified obstacle cells TP , falsely
identified obstacle cells FP , and falsely identified free cells FN :

precision =
TP

TP + FP
(4.16)

and
recall =

TP

TP + FN
(4.17)

To determine TP , FP , and FN , only cells in Ncc that were at any point reachable during the
experiment are considered. To get a more general impression of the accuracy of the created
map for comparison between algorithms, we use the F1-score, which is the harmonic mean of
precision and recall:

F1 =
2 · precision · recall
precision+ recall

(4.18)

For each experiment, we take the map of the agent who finished first (Si = 4), at its finish time.
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4.2.4. Obstacle avoidance
We report the number of agent-obstacle collisions and the number of inter-agent collisions. The
former shows the average collisions with static or dynamic obstacles per agent. The latter is
also shown on average per agent, meaning that two agents colliding is one inter-agent collision
per agent.

4.2.5. Efficiency
To determine the efficiency of our algorithm, we compare the total travelled path and estimated
battery usage by each agent throughout the mission. The battery estimation is based on the
estimated power drawn by the motors and from sending and exchanging messages. We also
track the distribution of observations throughout the map by counting the number of times each
cell is observed. One observation of a cell is defined as a sensor ray crossing or being intersected
in that cell. To determine the memory efficiency of our quadtree, we compare the number of
quadtree nodes with the number of cells in the map if it were a matrix. .

4.2.6. Return rate
We report the number of swarm agents that successfully returned to the deployment site. We
define an successful return for agent Ai when ‖pi − pi,t0‖ < 2m.
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Results

For each metric, the average was taken over all repetitions for each configuration. The standard
deviation over all repetitions was also calculated. Plots show the standard deviations over
the repetitions per experiment if not stated otherwise. When aggregating over one or more
variables, we show the pooled standard deviation where applicable.

5.1. Experiment 1: Varying sensor error
We ran experiments with sensor error levels fe ∈ {0, 0.5, 1, 1.5}, and evaluated the performance
of our algorithm with these values.

Parameter Values
Rcomm [∞]
Ploss [0]
Tϕ [100]
Tspawn [100,180,∞]
fe [0,0.5,1,1.5]
Rf [∞]
Nf [∞]
Ns [∞]

Table 5.1: Variable parameter combinations for experiment 1

Aggregating results over all maps, NA and Tspawn, we can see from Figs. 5.1 and 5.2 that all
algorithms achieve similar CPm and F1 when fe = 0, except for FSP-QT. However, when the
sensor error increases, the scores of FSP-G and FSP decrease at a higher rate than BICLARE.
Both BICLARE algorithms and FSP-QT have high F1 scores with low variance for each value of
fe. We can see that BICLARE-PP and BICLARE-WF perform similarly, with greatly overlapping
pooled standard deviations. The same observation can be made of FSP and FSP-G. From Fig. 5.3
we can observe that BICLARE ensures a higher return rate on average. Interestingly, at higher
fe values, FSP has increased the average return rate. However, there is a significantly increased
variance.

In Fig. 5.3, we can see that BICLARE-PP ensures the average highest return rate of robots.

35
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Figure 5.1: CPm as a function of fe, averaged
over all maps, NA, and Tspawn.

Figure 5.2: F1 as a function of fe, averaged
over all maps, NA, and Tspawn.

While the FSP algorithms already have higher pooled standard deviations at fe = 0, for all
algorithms, the variance of the return rate increases with the noise.

Figure 5.3: Average return rate as a function of fe, averaged over all maps, NA, and Tspawn.

We can see from Figs. 5.4 and 5.5 that BICLARE tends to have further traveling agents and
higher battery usage. However, all algorithms have a significant pooled standard deviation for
these metrics.

Fig. 5.6 shows three maps from experiments with the highest sensor error level fe = 1.5, for
different swarm sizes and dynamic object inter-arrival times.
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Figure 5.4: Traveled path as a function of fe,
averaged over all maps, NA, and Tspawn.

Figure 5.5: Estimated battery usage as a
function of fe, averaged over all maps, NA, and

Tspawn.

(a) house_tilted with
NA = 2 and Tspawn = 0.
F1 score is 87.2% and

CPm is 78.9%.

(b) office with NA = 6 and
Tspawn = 180. F1 score is 88.8%

and CPm is 91.9%.

(c) museum_tilted with NA = 15
and Tspawn = 100. F1 score is

89.6% and CPm is 99.8%.

Figure 5.6: Some maps extracted from certain experiments with fe = 1.5

In Fig. 5.7 we compare the algorithms by looking at the observation count distribution for
the cells in the agent’s map, aggregated over all values of Tspawn. To enhance visual clarity, we
truncated the right tail of the distribution by removing all bins after the last bin with a weight
larger than 10 cells. This excluded up to 8% of cell counts. Fig. 5.7a shows that, as opposed to the
other algorithms, the BICLARE-PP algorithm resulted in the highest frequency of cells, not in the
lowest observation bin (1-51), but rather in the 101-151 bin. This seems to happen for allNA > 2
configurations in both house and house_tilted. In no other map or algorithm is this observed.
FSP-QT shows the steepest slopes between the bins. In Fig. 5.7b, we see that BICLARE-PP and
FSP-G have observably smaller slopes between adjacent bins than BICLARE-WF and FSP. We
observed that this slope difference decreased when the swarm size increased. Finally, in 5.7c, we
do observe similar slopes. We observed similar trends for the other experiments in both museum
and museum_tilted. However, with lower swarm sizes, BICLARE-PP resulted in lower slopes
and a lower total amount of cell observations. FSP-QT had very few cell observations overall.
In Fig. 5.8, we can see that FSP-QT got some of the agents stuck in some corners, reducing the
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overall cell observations and coverage. The agents with BICLARE-PP resulted in much more
balanced cell observations.

(a) house_tilted, NA = 15, fe = 0

(b) office, NA = 4, fe = 0 (c) museum_tilted, NA = 6, fe = 1

Figure 5.7: Cell observation count distribution. Averaged over Tspawn.

(a) BICLARE-PP (b) FSP-QT

Figure 5.8: Heatmaps of cell observations for one of the experiments with fe = 0, Tspawn = 0, and
NA = 6.

Table 5.2 shows the ACP and AAC for fe = 0 across all maps and for all swarm sizes. We
can see that the _tilted variants of the maps often result in lowerACP scores for all algorithms.
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In turn, AAC scores show the opposite relation. We also clearly observe that the number of
agents in the swarm greatly influences both ACP and AAC . FSP-QT performs evidently worse
than its FSP counterparts. BICLARE-PP and BICLARE-WF also mostly ensure higher AAC
values than FSP-QT, even at similar ACP scores. Overall, BICLARE-PP always ensures the
highest AAC , and BICLARE-WF most often has the highest ACP score. Fig. 5.9 shows CP (t)
up to Tend for BICLARE-WF and FSP. BICLARE-WF ensures a much smoother increase of CP
than FSP. The latter seems to increase coverage in intervals.

Table 5.2: Performance of different algorithms across all maps and swarm sizes, for fe = 0.

Map NA ACP AAC

BICLARE-PP BICLARE-
WF

FSP-QT FSP-G FSP BICLARE-PP BICLARE-
WF

FSP-QT

house

2 69.40 66.68 49.12 61.19 61.68 0.2023 0.2001 0.1543
4 82.74 78.30 68.23 70.00 69.33 0.2450 0.2259 0.1849
6 84.78 84.41 75.09 75.77 77.05 0.2733 0.2420 0.1977
10 84.65 85.67 80.47 84.49 86.71 0.3053 0.2769 0.2551
15 88.73 87.77 84.56 85.44 87.47 0.3203 0.2896 0.2812

house_tilted

2 61.01 69.86 43.69 56.87 63.91 0.2145 0.2002 0.1979
4 75.80 79.37 56.19 71.58 72.29 0.2470 0.2342 0.2191
6 80.11 81.25 63.43 64.11 75.41 0.2730 0.2550 0.2423
10 84.86 84.34 70.35 77.09 81.13 0.3071 0.2772 0.2676
15 87.27 86.99 74.63 83.83 87.48 0.3195 0.2850 0.2867

office

2 53.92 57.30 44.51 46.25 50.83 0.1660 0.1337 0.0915
4 67.42 71.77 46.31 59.04 57.78 0.2006 0.1747 0.1007
6 73.09 79.32 61.54 64.25 77.50 0.2192 0.1815 0.1443
10 83.45 83.38 65.01 79.74 82.05 0.2402 0.2033 0.1839
15 85.48 88.94 69.31 83.88 85.70 0.2688 0.2201 0.2244

office_tilted

2 45.07 58.64 44.41 46.86 32.53 0.1808 0.1473 0.0971
4 49.75 56.43 50.11 51.34 57.84 0.2163 0.1732 0.1594
6 63.49 71.34 53.18 66.97 61.59 0.2257 0.1859 0.1676
10 71.84 80.88 56.03 72.96 72.22 0.2543 0.2236 0.2015
15 83.63 86.32 63.14 80.34 80.57 0.2653 0.2257 0.2126

museum

2 23.52 32.05 10.63 37.70 28.38 0.1161 0.0988 0.1055
4 37.90 49.41 21.80 41.98 54.26 0.1246 0.1006 0.0956
6 50.59 66.90 21.59 60.86 59.26 0.1435 0.1191 0.1068
10 65.76 65.63 24.85 61.48 70.62 0.1612 0.1387 0.1180
15 71.99 75.52 39.41 77.58 75.12 0.1841 0.1497 0.1245

museum_tilted

2 24.47 30.81 12.39 29.69 31.63 0.1297 0.1118 0.1096
4 37.47 41.72 16.49 45.82 51.68 0.1451 0.1229 0.1257
6 46.49 63.00 28.44 47.66 57.10 0.1538 0.1361 0.1114
10 57.32 65.91 30.01 66.06 68.27 0.1748 0.1434 0.1142
15 69.12 74.24 40.99 65.72 80.32 0.1948 0.1579 0.1360

(a) BICLARE-WF (b) FSP

Figure 5.9: CP over time in house_tilted with fe = 0 and Tspawn = 0. The dotted lines indicate
ACP .

Fig. 5.10 shows the average maximum number of nodes and leaves that were in each agent’s
quadtree throughout the experiments for BICLARE-PP. We chose the experiments with fe = 1.5
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and Tspawn = 100 as those settings result in the least amount of quadtree merging. Furthermore,
the swarm size with the highest average max leaves and nodes was chosen for each map. The
number of leaves and nodes is compared to the number of cells in a matrix, like one constructed
with FSP. Note that FSP uses two matrices, one for coverage and one for obstacles. We can see
that, especially in office, BICLARE’s quadtree stores considerably fewer leaves and nodes than
is required if a matrix is used.

Figure 5.10: The maximum number of leaves and nodes for maps house with NA = 10, office with
NA = 15, and museum with NA = 15. fe = 1.5 and Tspawn = 100.

We can see from Table 5.3 that BICLARE-PP, BICLARE-WF, and FSP-QT collide with more
obstacles than FSP-G and FSP. This table shows the average number of collisions with obstacles
and with other agents for each sensor error level, averaged over all maps, swarm sizes, and
dynamic obstacle inter-arrival times. We observe significantly more collisions with obstacles
than with other agents.
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BICLARE-PP

fe Obstacle Agent

0.0 1.217± 0.380 0.009± 0.038
0.5 1.536± 0.474 0.005± 0.023
1.0 3.194± 1.072 0.005± 0.019
1.5 6.954± 3.453 0.011± 0.025

BICLARE-WF

fe Obstacle Agent

0.0 2.646± 1.602 0.048± 0.110
0.5 3.336± 2.287 0.025± 0.061
1.0 7.811± 4.449 0.025± 0.057
1.5 13.133± 6.877 0.028± 0.052

FSP-QT

fe Obstacle Agent

0.0 1.331± 0.830 0.037± 0.113
0.5 1.290± 0.926 0.017± 0.053
1.0 1.952± 1.254 0.020± 0.074
1.5 2.685± 1.677 0.031± 0.087

FSP-G

fe Obstacle Agent

0.0 0.044± 0.032 0.142± 0.544
0.5 0.052± 0.047 4.430± 14.031
1.0 0.044± 0.041 0.192± 0.368
1.5 0.031± 0.038 0.064± 0.136

FSP

fe Obstacle Agent

0.0 0.055± 0.051 0.056± 0.231
0.5 0.061± 0.054 3.146± 10.645
1.0 0.039± 0.032 0.082± 0.178
1.5 0.040± 0.054 0.014± 0.042

Table 5.3: Average number of collisions of agents with obstacles and agents. Averaged over all
maps, NA, and Tspawn.

We measured the amount of collisions with BICLARE-PP when Rp = ρ + 0.3362 and
Rp = ρ+ 0.4362 in Table 5.4. We can see that the number of collisions with obstacles slightly
decreased, while the inter-agent collisions slightly increased.

BICLARE-PP

fe Obstacle Agent

0.0 0.785± 0.324 0.030± 0.078
0.5 1.150± 0.301 0.024± 0.074
1.0 2.900± 0.918 0.017± 0.046
1.5 5.449± 2.288 0.024± 0.067

Table 5.4: Average number of collisions of agents with obstacles and agents for BICLARE-PP
with Rp = ρ+ 0.3362. Averaged over all maps, NA, and Tspawn.

5.2. Experiment 2: Computation-saving parameters
In this experiment, we change the frontier search range Rf , the maximum frontier regions Nf ,
and the maximum route length Ns. These values save computation time, and we evaluate their
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effects. We evaluate combinations of the parameters noted in Table 5.5.

Parameter Values
Rcomm [∞]
Ploss [0]
Tϕ [100]
Tspawn [100,180,∞]
fe [0,1]
Rf [5,15,∞]
Nf [20,∞]
Ns [30,∞]

Table 5.5: Variable parameter combinations for experiment 2

We tested the effect of Rf on the CPm and F1 performance of all algorithms. For the
BICLARE algorithms, Nf and Ns were set to∞ to isolate the effect. The results are displayed in
Table 5.6. We can see that for the smaller-sized map house_tilted withNA = 2, both BICLARE
algorithms and FSP-QT show a slightly decreased CPm score when Rf = 15 compared to
Rf = 5, while FSP-G shows a slight increase. For six agents, both BICLARE algorithms
show an increase from Rf = 5 to 15, with a more prominent change from BICLARE-WF. The
FSP-based algorithms show no consistent trends. For 15 agents, there is a negligible change
across all algorithms. The F1 score also shows insignificant change. For our medium-sized
office_tilted map, BICLARE-WF’s CPm score peaks when Rf = 15 and NA = 2. The FSP
algorithm’s coverage seems to decrease when Rf increases. However, with NA = 6, both
BICLARE algorithms and FSP-QT have the lowest score withRf = 15, while the performance of
the other FSP algorithms increases. With a swarm size of 15, the coverage score increases with
Rf for the BICLARE algorithms, FSP-G, and FSP. FSP-QT’s score decreases when Rf increases.
With our largest-sized museum_tilted map, both BICLARE algorithms showed peak coverage
when Rf = 15 with 2 and 6 agents, but the FSP algorithms show decreased performance with
increased Rf . With 15 agents, FSP-QT shows decreased coverage while the other algorithms
have increased coverage with increased Rf . Overall, the F1 score showed very little variability
(≤ 0.63%).

We can see from Fig. 5.11 that the∞ assignment toNf andNs results in lower scores in both
coverage and accuracy for BICLARE-PP than when they are 20 and 30, respectively. However, all
values fall within each other’s pooled standard deviation. For BICLARE-WF, Nf =∞ ensures
higher coverage, outperforming BICLARE-PP, but a similar F1 score than when Nf = 20.

Overall, higher standard deviations were observed for lower swarm sizes. Interestingly,
fe = 1 resulted in a lower standard deviation than no sensor errors throughout all maps and
configurations.
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NA Rf Map CPm F1 score

BICLARE-PP BICLARE-WF FSP-QT FSP-G FSP BICLARE-PP BICLARE-WF FSP-QT FSP-G FSP

2

5
house_tilted 88.37 92.24 59.55 73.12 84.66 97.55 97.57 96.54 95.69 95.57
office_tilted 65.95 84.82 44.70 63.11 42.49 98.25 97.55 97.89 97.70 97.50
museum_tilted 32.31 52.07 13.79 41.87 44.05 97.95 97.11 97.62 97.90 98.10

15
house_tilted 83.42 87.92 52.88 77.41 84.52 97.49 97.26 97.05 95.65 95.59
office_tilted 65.22 86.01 49.79 59.01 41.32 98.25 97.79 97.47 97.58 97.62
museum_tilted 41.58 52.23 13.50 40.68 38.65 98.33 97.25 97.88 98.02 98.11

∞
house_tilted 83.42 87.92 52.88 77.41 84.52 97.49 97.26 97.05 95.65 95.59
office_tilted 65.93 85.98 49.20 59.01 41.32 98.22 97.73 97.60 97.58 97.62
museum_tilted 33.68 51.60 13.50 40.68 38.65 98.08 97.36 97.88 98.02 98.11

6

5
house_tilted 98.32 94.59 78.87 76.84 98.75 98.22 97.96 97.30 95.29 95.44
office_tilted 90.86 97.79 64.18 79.30 78.94 98.47 98.27 98.01 97.33 97.36
museum_tilted 67.37 67.87 33.87 58.15 80.16 98.50 97.68 97.42 97.88 97.59

15
house_tilted 98.78 98.65 78.20 77.96 98.56 98.26 97.97 97.16 95.44 95.39
office_tilted 89.55 96.67 61.77 87.72 82.69 98.34 98.33 98.08 97.28 97.20
museum_tilted 70.58 91.14 30.41 65.81 86.70 98.37 97.74 97.80 97.67 97.45

∞
house_tilted 98.78 98.65 78.20 77.96 98.56 98.26 97.97 97.16 95.44 95.39
office_tilted 90.77 97.12 61.81 87.72 82.69 98.31 98.36 98.02 97.28 97.20
museum_tilted 68.03 88.99 32.54 65.51 85.08 98.45 97.92 97.81 97.69 97.49

15

5
house_tilted 99.14 98.90 93.05 99.32 98.49 98.52 97.92 97.53 95.29 95.58
office_tilted 96.84 97.82 81.27 97.64 97.73 98.48 98.53 98.36 97.03 97.02
museum_tilted 93.96 95.76 65.52 91.61 99.17 98.63 98.03 98.11 97.33 97.24

15
house_tilted 99.14 98.88 89.75 98.81 98.32 98.56 97.74 97.46 95.52 95.60
office_tilted 98.04 97.87 78.35 97.79 98.32 98.52 98.43 98.05 96.99 97.01
museum_tilted 92.90 96.92 50.17 92.80 99.72 98.68 98.18 97.48 97.33 97.22

∞
house_tilted 99.14 98.88 89.75 98.81 98.32 98.56 97.74 97.46 95.52 95.60
office_tilted 98.05 98.00 73.65 97.79 98.32 98.54 98.46 98.17 96.99 97.01
museum_tilted 96.63 97.63 49.50 93.00 99.48 98.68 98.11 97.53 97.34 97.28

Table 5.6: Comparison of the effect of Rf on CPm and F1 score metrics across different
environments. fe = 0 and Tspawn = 0. Standard deviations are between 0.04 and 1.19 for CPm

and 0.09 and 0.33 for F1 score.

(a) CPm for NA = 2

(b) F1 score for NA = 2 (c) ACP for NA = 6

Figure 5.11: CPm and F1-score for fe = 0, Tspawn = 0 and Rf =∞, averaged over all maps. As Ns

is only applicable when PeriPlanner is used, BICLARE-WF shows no value when Ns = 30.



5.3. Experiment 3: Environment volatility and pheromone evaporation 44

5.3. Experiment 3: Environment volatility and pheromone
evaporation

In this set of experiments, we observed the effects of different inter-arrival times of new obstacles
and different evaporation rates. We evaluated a variety of combinations from Table 5.7.

Parameter Values
Rcomm [∞]
Ploss [0]
Tϕ [50,100,150,∞]
Tspawn [100,180,∞]
fe [0,1]
Rf [∞]
Nf [∞]
Ns [∞]

Table 5.7: Variable parameter combinations for experiment 3

Fig. 5.12 shows the effects of Tspawn and Tϕ on exploration performance with BICLARE-
PP and FSP-G. We can see that a faster-changing environment (lower Tspawn value) results
in a slightly lower F1 score for both algorithms. We observe similar patterns, as shown, for
NA = 4, 6, 10, which show decreased differences with larger swarm sizes. Tϕ seems to have
little effect on F1 score for both algorithms. We observe minor increased F1 performance with
NA = 15 when Tspawn = 100 and Tϕ = 100 with BICLARE-PP compared to the algorithm’s
other results, but this increase falls well within the pooled standard deviations. However, CPm

and ACP scores show slight improvement for BICLARE-PP with increasing evaporation times,
but deterioration for FSP-G.

5.4. Experiment 4: Communication range and loss
We tested the effects of communication range and message loss probability on performance,
using the parameter values stated in Table 5.8.

Parameter Values
Rcomm [5,10,15,∞]
Ploss [0,0.25,0.5]
Tϕ [100]
Tspawn [100,180,∞]
fe [0,1]
Rf [∞]
Nf [∞]
Ns [∞]

Table 5.8: Variable parameter combinations for experiment 4
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(a) F1 score

(b) CPm score

(c) ACP score

Figure 5.12: The effect of Tspawn and Tϕ on F1, CPm, and ACP score for NA = 2 and NA = 15 with
fe = 0. Plotted for BICLARE-PP and FSP-G. The scores are averaged over all maps. The error bars show

the pooled standard deviation over the experiments for all maps.
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Table 5.9 shows the effects of Rcomm and Ploss on F1, CPm, and ACP score for algorithms
BICLARE-PP and FSP-G. We tested with our most volatile environment configuration Tspawn =
100. We can see that Ploss has a slight positive effect on the F1 score for BICLARE-PP, being
more evident when the swarm is larger. It has a slight negative effect on the F1 score for FSP-G.
A larger Ploss also has a negative effect on CPm and ACP scores for both algorithms, for allNA

values. Calculating the percentage decrease ( score atRcomm=5
score at Rcomm=∞−1) we see that BICLARE-PP shows

a higher decrease in CPm, with 5.23% on average, than FSP-G with 4.88%. Only at NA = 10
and 15 BICLARE showed much less decrease (3.44% and 1.21% respectively) than FSP (6.09%
and 12.11% respectively). The other metrics performed similarly. A largerRcomm shows no clear
effect on the F1 score for either algorithm, but does show a clear positive effect on CPm and
ACP scores for both algorithms.

5.5. Experiment 5: Real-life proof-of-concept
We ran a real-life experiment with four agents. Unfortunately, over time, three out of four agents
stopped communicating after 16, 126, and 133 seconds, respectively. The first was removed
from the map, while the others remained, functioning as dynamic obstacles. We observed that
ultrasonic signals from other agents were picked up by an agent’s own sensors, resulting in
inaccurate readings. Fig. 5.13a shows the map including the final positions of the stranded
agents. Fig. 5.13b and 5.13c show the surviving agent’s confidence map at the end of the mission
and the resulting final map, respectively. We can see that most of the map is covered, and
the general outline of the map is clear. Throughout the mission, the surviving agent had zero
collisions and successfully returned to its deployment position 34 seconds after the mission
timer ended. The final map had a CPm score of 87.0% and an F1 score of 84.6%.
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NA Rcomm Ploss
F1 Score CPm ACP

BICLARE-PP FSP-G BICLARE-PP FSP-G BICLARE-PP FSP-G

2

5
0.0 96.87 96.30 58.01 62.18 42.03 45.94
0.25 96.72 96.26 54.72 58.80 39.33 45.14
0.5 97.25 96.06 57.08 57.75 40.74 42.83

10
0.0 97.07 96.32 58.82 62.58 43.35 45.95
0.25 97.03 96.23 58.56 59.60 41.89 45.56
0.5 97.04 95.98 58.27 55.96 42.14 42.55

15
0.0 97.09 96.27 60.71 61.87 44.35 46.11
0.25 97.08 96.33 58.26 59.90 41.96 45.64
0.5 97.10 95.97 58.00 55.59 42.55 42.49

∞
0.0 97.13 96.30 61.69 62.54 44.73 46.29
0.25 97.20 96.33 59.22 60.29 42.47 45.84
0.5 97.08 96.04 57.95 56.16 42.43 42.68

4

5
0.0 97.45 96.43 72.44 75.31 53.10 54.08
0.25 97.41 96.35 72.01 71.64 52.42 52.16
0.5 97.29 96.24 68.42 71.29 50.24 50.52

10
0.0 97.42 96.35 75.10 73.45 56.57 55.72
0.25 97.53 96.24 74.55 74.87 56.48 55.28
0.5 97.52 96.04 71.61 71.25 53.14 52.28

15
0.0 97.59 96.42 77.02 73.65 57.29 55.51
0.25 97.48 96.19 77.64 72.02 57.53 54.82
0.5 97.41 96.16 75.25 71.74 54.94 53.48

∞
0.0 97.57 96.37 77.60 73.40 57.09 55.43
0.25 97.53 96.15 78.19 73.62 57.67 54.88
0.5 97.54 95.99 75.00 70.79 54.70 53.33

6

5
0.0 97.61 96.40 81.14 77.21 61.34 56.04
0.25 97.64 96.46 78.73 77.35 59.74 57.66
0.5 97.39 95.96 75.84 76.55 58.10 56.02

10
0.0 97.66 96.40 86.02 80.93 65.61 61.12
0.25 97.62 96.23 84.47 82.94 63.85 61.42
0.5 97.65 96.05 83.34 82.80 63.65 61.90

15
0.0 97.58 96.45 84.29 81.40 64.91 61.96
0.25 97.63 96.33 87.46 83.35 65.70 62.42
0.5 97.64 95.99 83.91 82.42 64.25 63.34

∞
0.0 97.61 96.49 86.18 80.45 66.03 61.95
0.25 97.70 96.25 86.13 83.53 64.74 62.70
0.5 97.65 96.05 85.94 82.75 64.76 63.47

10

5
0.0 97.78 96.69 91.41 86.03 69.76 67.18
0.25 97.80 96.55 90.25 86.16 69.74 65.81
0.5 97.68 96.15 88.86 83.70 66.97 61.28

10
0.0 97.76 96.46 94.71 91.16 73.90 71.61
0.25 97.86 96.45 93.16 89.99 73.75 71.06
0.5 97.90 95.98 92.24 88.90 71.85 65.68

15
0.0 97.79 96.48 93.65 92.38 73.53 72.16
0.25 97.83 96.45 94.17 90.60 74.91 71.30
0.5 97.91 95.96 93.81 89.46 73.22 67.07

∞
0.0 97.75 96.47 94.23 92.79 74.26 73.10
0.25 97.82 96.44 93.31 90.15 74.77 71.23
0.5 97.87 95.89 92.62 89.58 72.63 67.15

15

5
0.0 98.04 96.88 96.40 86.72 77.56 70.96
0.25 97.95 96.88 94.83 83.23 75.90 69.72
0.5 97.99 96.21 96.54 82.12 75.96 64.74

10
0.0 97.96 96.72 96.06 92.05 78.96 76.58
0.25 97.97 96.56 96.96 91.71 79.55 74.81
0.5 98.03 95.90 96.85 93.89 79.70 72.27

15
0.0 97.89 96.61 97.31 93.98 79.62 77.44
0.25 98.00 96.44 97.02 93.32 79.81 75.88
0.5 98.07 95.74 97.65 93.94 79.24 72.62

∞
0.0 97.90 96.51 97.27 96.10 80.07 79.14
0.25 97.93 96.44 98.12 94.09 81.07 75.34
0.5 98.04 95.69 95.96 96.65 78.25 73.70

Table 5.9: Effect of Rcomm and Ploss on F1, CPm, and ACP score for different swarm sizes.
Average over all maps. fe = 0, Tspawn = 100
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(a) Real final map
including stranded robots
(red), and the surviving

robot (blue).

(b) Confidence map (c) Final map

Figure 5.13: The actual map at the end of the real-life mission, the agent’s confidence map, and the
final inferred map for the real-life experiment.



6
Discussion

Both BICLARE algorithms ensure similar higher coverage overall and mapping accuracy com-
pared to the FSP algorithms when sensor errors increase, achieving over 87% F1 score and 80%
coverage on average. In the final maps, we can see that even in the noisiest areas, the general
outline of the environment is clear. This shows the effectiveness of the confidence model in
BICLARE’s mapping algorithm. However, coverage shows high variability, where smaller swarm
sizes achieve low coverage in big maps. BICLARE does result in much bigger total traveled
paths and thus more battery usage than FSP. Battery usage increases with higher fe values
while the traveled path decreases. This might indicate robots grouping more, resulting in more
exchanged messages. FSP showed a higher return rate with a higher fe. This is because FSP
also shows less coverage on average when sensor errors increase compared to BICLARE. This
means the agents have displaced themselves less far from their initial deployment site, allowing
easier return. So we can state that overall, BICLARE, especially BICLARE-PP, ensures a higher
return rate of its swarm. We observe that all algorithms seem to follow a similar cell observation
distribution. However, in one of the smaller-sized maps house_tilted, BICLARE-PP’s highest
peak was not in the left-most bin. This indicates a higher level of re-exploration than the
other algorithms. While this might affect total coverage, re-exploration is highly important in
dynamic environments. Overall, having lower peaks indicates that fewer cells were explored;
these agents spent most of the mission time close to walls or obstacles, limiting the number
of cells covered by a single sensor measurement, as visible in Fig. 5.8. We have also seen that
BICLARE’s quadtree implementation saves considerable memory compared to FSP’s 2-matrix
implementation. The improvement is the most significant in our mid-sized office map. Overall,
BICLARE-WF achieves higher coverage than BICLARE-PP, especially with bigger maps. How-
ever, BICLARE-PP ensures a higher return rate, suggesting that PeriPlanner enables agents to
consistently reach their targets.

From Table 5.2 we could see that the _tilted variants of the maps resulted in lower AAC .
This indicates that whenever the overall structure of the environment is not aligned with the
map grid, as is often the case in real life, agents will be less confident about their surroundings.
It is expected that AAC decreases whenever ACP increases, since Ncc is lower. We observe
that FSP agents tend to increase their coverage in intervals. This, in turn, indicates intervals
of re-exploration. However, from the F1 scores, we can conclude that there is no significant
improvement in performance due to this re-exploration compared to the BICLARE algorithms.

The introduction of the quadtree seems to increase the number of collisions with obstacles
significantly. Even with an increased obstacle avoidance radius, significantly more collisions
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occur than with FSP and FSP-G. The confidence model does not appear to infer obstacles quickly
enough, and the attempt to mitigate collisions by checking the front-facing sensor has not
helped. If we compare the BICLARE algorithm collisions with FSP-QT, it may even contribute
to additional collisions. The reduced coverage performance of FSP-QT compared to the other
algorithms when Rf increases indicates that the confidence model causes agents to get stuck
more often without wall-following or path planning. A lower Rf would result in closer targets,
mitigating the issue. We further observe that reduced Rf increased BICLARE’s performance in
small maps, especially for small swarm sizes. The infinite frontier search range did not result in
the best performance for any maps, and for medium- and large-sized maps, Rf = 15 performed
the best.

Furthermore, when no sensor error is simulated, we can see that overall BICLARE achieves
higher coverage than FSP for small and mid-sized maps, but scores significantly lower on large
maps, especially with small swarm sizes. BICLARE-PP’s improved performance when Nf = 20
andNs = 30 indicates some flaws in BICLARE.These values result in not all target options being
considered, proving that the frontier selection algorithm is not optimal. Most likely, this can be
solved by re-tuning the parameters, especially k, l,m, and n. However, increased performance
with lower values for Rf , Nf , and Ns does drastically reduce the worst-case time complexity of
our algorithm, requiring fewer computational resources.

We have seen that BICLARE and FSP react to the volatility of the environment in a similar way,
displaying a slight decrease in mapping accuracy when dynamic obstacles appear faster. Varying
the evaporation time has little effect on coverage and mapping accuracy for any spawn rate of
dynamic obstacles. This shows that even without evaporation, a high level of re-exploration
takes place.

With bigger swarm sizes, a higher message loss probability resulted in better mapping accu-
racy performance. This indicates that new observations can be dominated by older information
echoed between the agents, and thus, either received information should be discounted more,
or alternate implementations for handling information by other agents should be explored. This
suggests that less communication might increase reactability to environmental changes [40].
However, our experiments did not show increased mapping accuracy in our most dynamic
experiments when the communication range decreased. Increased communication range posi-
tively affects the coverage for both BICLARE and FSP. This can be caused by the information
mentioned above echoing, which might result in lower confidence, triggering re-exploration of
the corresponding places. BICLARE performs better in scenarios with lower communication
range than FSP for larger swarm sizes, whereas FSP performs better with smaller swarm sizes
in these scenarios.

Our real-life proof of concept shows that the algorithm can successfully run on a low-cost
Raspberry Pi Pico 2W in a small environment. However, performance seems inconsistent,
with some robots failing during the experiment. We believe this is due to the limited available
memory, even with our memory-efficient mapping implementation. Message exchange and
handling, combined with the RTOS, required a significant portion of the available SRAM. Also,
mapping errors due to interference from sensor signals originating from other agents represent a
significant oversight in our implementation, and future work should account for these scenarios.
Despite these complications, an adequate map of the environment was generated.
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Conclusion

In this thesis, we proposed BICLARE, a bio-inspired collaborative and lightweight algorithm
for robust exploration. Inspired by ant colony behaviour, BICLARE is designed for efficient
exploration in complex scenarios to create maps for emergency responders, enabling them to
understand and navigate unfamiliar terrain quickly. We designed our algorithm to be robust
against sensor measurement errors and pose estimation errors common in the real world.
It is also designed to work in dynamic environments like collapsing structures and to run
on inexpensive hardware, making it suitable for disaster scenarios where limited budget and
potential hardware losses are no rare occurrence. We compared BICLAREwith the FSP algorithm
by Tran et al., which provided the foundation of our implementation, demonstrating BICLARE’s
superior mapping accuracy in noisy conditions. It proved effective even in highly volatile
and communication-limited scenarios. We presented the algorithm’s potential on real-world
hardware, showing adequate performance even with failing agents. Future work will focus on
expanding the hardware trials, potentially slightly upgrading the microcontroller. It will also
focus on handling interference between agents’ sensors, for example, by varying the decrease of
occupancy confidence when a cell is observed as occupied whenever neighbouring agents are
present. Furthermore, future work will examine the potential domination of older information
over new environmental changes. Finally, elaborate parameter optimization will be performed.
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A
Simulation experiments constant parameter

configuration

Parameter Values
αϕ 0.05

ωa 0

ωc 0

ωs 1.15

ωt 0.3

ΩD 1

ΩS 0.1

φ∆ 0.05

θturn 15

ζ 0.6

k 0.1

l 0.8

lfree 0.405465

lmin −2.94444
lmax 2.19722

Parameter Values
loccupied −0.619039
m 2.5

n 3

Po 0.3

Ra 1

Rc 1.5

Rd 0.5

Ro ρ+ 0.2362

Rp ρ+ 0.1362

Rs 0.5

Rsensor 2

Rx 1

Tf 5

Tmap 15

Tsync 5
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B
Hardware experiment parameter

configuration

Parameter Values
αϕ 0.05

ωa 0

ωc 0

ωs 1.15

ωt 0.3

ΩD 1

ΩS 0.1

φ∆ 0.05

θturn 20

ζ 0.6

k 0.1

l 0.8

lfree 0.120144

lmin −2.94444
lmax 2.19722

loccupied −0.619039
m 1.5

Parameter Values
n 3

Nf 20
Ns 30
Po 0.3

Ra 1

Rc 1.5

Rd 0.5

Rf 3
Rp ρ+ 0.205

Ro ρ+ 0.505

Rs 0.5

Rsensor 1.5

Rx 1

Tf 5

Tmap 10

Tsync 5
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