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ABSTRACT

Cholera is an infectious disease caused by the bacterium Vibrio cholerae. Infections can occur
directly via contact with infected people, but also indirectly via infected water. Because of these
direct, but especially indirect infections, it is useful to investigate the spread of the disease using
mathematical epidemic models. In this report a compartmental epidemic model for cholera is
discussed: the SIRB model. This model consists of four compartments: susceptibles, infected, re-
covered and the bacterial concentration in water. The interaction between the groups is given by a
system of differential equations. The equilibrium solutions and their stability are mathematically
analysed. The main focus of this report, however, is on two different spatial models. The patches
model consists of multiple patches connected by migration of people. Different measures against
cholera are studied using this model. The second spatial model that has been numerically im-
plemented is a diffusion SIRB model. The influence of the diffusion coefficients on the solution
patterns will be researched for different initial conditions. The results presented in this report are
building blocks for further research into compartmental models that simulate the spatial dynam-
ics of cholera.
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1 INTRODUCTION

Cholera is an infectious disease caused by the bacterium Vibrio cholerae. Although there are more
than two hundred different types of V. cholerae, there are two that can cause the disease in hu-
mans. [1] For most people a cholera infection is mild or without symptoms. However approxi-
mately 10% of infected will suffer more severe symptoms such as watery diarrhea, vomiting and
leg cramps. [2] Humans can get infected by drinking infected water or eating food with the bacte-
ria in it, but also by direct contact with infected feces. The source of infection of most epidemics
is contamination of water or food by the feces of an infected individual. [2]

In some regions cholera remains a serious threat to public health. An estimation of the num-
ber of cases in the world is roughly 1.3 to 4.0 million a year. [3] Of all reported cases of cholera
54% occurred in Africa. A supply of safe water and sanitation is important to control the further
spread of the disease.

To be able to control infectious diseases, such as cholera, it is critical to understand the transmis-
sion patterns of these diseases. Mathematical epidemiology is an important tool to study spread,
but also to simulate the outcome of possible measures against an infectious disease. Compart-
mental models make the mathematical modelling simpler. The basic principle of compartmental
modelling is the division of the population into multiple compartments, such as susceptibles and
infected. The interaction between the different groups is then simulated using differential equa-
tions. Such deterministic epidemic models originate from the beginning of the 20th century. [4]

Since cholera is a disease where its primary source of infections is indirect contact, the disease
is very interesting to study using mathematical compartmental models. Since the interactions
between the different compartments such as the infected and susceptibles is not direct, adjust-
ments have to be done to the basic compartmental model. Different cholera models have already
been constructed and examined. [5][6][7][8] It is not only important to consider the total number
of infected in a given region at a certain time, but also how the disease spreads itself within the
region. To consider different measures against the infectious disease cholera, it is very useful to
know how the infections will spread spatially. Such spatial compartmental disease models have
already been widely created and studied for various diseases.[9][10][11]

The main objective of this research is to find and study a spatial compartmental model specific
for the infectious disease cholera. In the first section the most basic compartmental model, the
SIR model, will be discussed and extended into the specific cholera model being the SIRB model.
In chapter 3 this SIRB model will be analysed mathematically by computing the reproduction
number and by looking at the stability and existence of equilibriums. In the following chapters
two spatial extensions of the SIRB model will be numerically implemented and discussed. The
first spatial model in chapter 4 is made up of patches which are connected with each other by
means of migration. Two different measures that could be taken to minimise the effects of a dis-
ease like cholera, quarantine and a medicine, are studied. The last model considered in chapter 5
is a diffusitive form of the SIRB model. Different initial infections and diffusion constants will be
considered.
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2 EPIDEMIC COMPARTMENTAL MODELS

Mathematical epidemic models can be used to investigate the spread of an infectious disease. A
comparison of different measures can be performed to get better insight in how they might pre-
vent further spreading in the population. Compartmental models are often used as a method to
study the dynamics of these epidemics. In this chapter some of the simplest models for infectious
diseases will be discussed.

2.1 SIR MODEL

One of the most basic compartmental models is the SIR model.[12] The assumption made in the
SIR model is that a population can be divided into three groups: susceptibles, infectious and re-
covered. The susceptible part of the population consists of people that are still able to get the
disease. When these people become infected they move to the infected group. From the infected
it is possible to move to the recovered. For now it will be assumed that the recovered consist of
people that have had the disease and that they are not able to get the disease again. The interac-
tions between the three groups can also be seen in figure 2.1.

Figure 2.1: Visualisation of exchanges between the three groups of the SIR model (S=susceptibles,
I=infected, R=recovered)

We will first study this SIR model without vital dynamics. This means that we leave out both
births and deaths. The total population will therefore be constant. Without vital dynamics the
model above can be described using the following differential equations:

dS

d t
=−βh I S

N
(2.1)

d I

d t
= βh I S

N
−γI (2.2)

dR

d t
= γI (2.3)

Here S are the susceptibles, I the infected and R the recovered. The total population is indicated
by N = S + I +R and is in this case constant. The parameter βh is referred to as the transmission
number. It depends on the number of contacts per individual per time unit and the probability of
disease transmission between an infected and a susceptible. When we multiply this transmission
number βh with the number of susceptibles (S) and the fraction of infected in the entire popu-
lation (I /N ), the number of people that is moved from the susceptibles to the infected can be
determined. These people are added to the group of infected and taken out of the susceptibles.
From the infected compartment people that recover will cross to the recovered group R. The pa-
rameter γ is referred to as the recovery rate. The recovery rate indicates how fast people recover
from the disease. When the average duration of an infectious disease is D , the recovery rate is
γ= 1

D .

The solution of this model can be approximated using for example an Euler Forward numeri-
cal scheme. In figure 2.2 a result of this model is shown. The model is presented for different
values of the recovery rate γ and the transmission number βh . At time t = 0 days the population
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consists of 10 infected people and 1000 susceptibles. In the beginning no one has recovered from
the infectious disease yet, so we have 0 recovered. The total population N is therefore 1010.

(a) γ= 1
3 and β= 1

2 (b) γ= 1
3 and βh = 4

5

(c) γ= 1
3 and βh = 1

3

Figure 2.2: SIR model using different values of γ and βh over a period of 100 days

In figure 2.2a we find the decomposition of the population over a period of 100 days. For γ= 1
3 and

βh = 1
2 we indeed see an epidemic arising. After around 40 days the infected people have left the

population, i.e. the population now only consists of susceptibles and recovered. We would expect
that by increasing the transmission coefficient the epidemic will be larger as more people will get
infected. This is indeed what we find in figure 2.2b. The peak in infected during the epidemic
seems to occur earlier then in the previous model and is also higher. After 40 days the population
is left with a larger group of recovered, than for the case of a lower transmission number. More
people were infected by the disease. What happens if we choose a smaller transmission coeffi-
cient is illustrated in figure 2.2c. In this figure the number of infections does not peak as in in the
other figures. Consequently a lot less people are infected.

Now the SIR model with vital dynamics will be considered. This will be done by taking into ac-
count deaths and births inside the population. When we take these into account, we obtain the
following differential equations:

dS

d t
=−βh I S

N
−µS +ΓN (2.4)

d I

d t
= βh I S

N
−γI −µI (2.5)

dR

d t
= γI −µR (2.6)
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We assume that a newborn inside the population is susceptible for the infectious disease. All ba-
bies that are born therefore enter the susceptible category. The birth rate Γ indicates the average
amount of births per person per unit time inside the population. Furthermore we assume that in
every category people die. For now we will assume that the mortality rate µ is the same in each of
the groups. In reality this is often not true. A lot of infectious diseases can increase the chance of
mortality. In figure 2.3 the results of the model are shown with and without vital dynamics.

(a) γ= 1
3 and β= 1

2 without vital dynamics (b) γ= 1
3 and β= 1

2 with vital dynamics

Figure 2.3: SIR model with and without vital dynamics over a period of 100 days, Γ=µ= 0.001

In the solution showed above the mortality rate and the birth rate were taken equal (µ= Γ= 0.001).
This implies that every day 1.01 people die and are born in the population consisting op 1010 peo-
ple. The total population size will stay the same, since each day the number of deaths is the same
as the number of births. The models in figure 2.3 are similar when we compare the number of
infected people during the epidemic. From 2.3b it can be seen that when vital dynamics are taken
into account after around 45 days the number of recovered people starts descending. This makes
sense as no new infections occur and the number of people that ever had the disease (recovered)
becomes less due to mortality. At the same time this implies that the number of susceptible people
starts increasing. Since the disease never leaves the population entirely, the increasing number of
susceptibles might lead to a second wave of infections. In figure 2.4 this is illustrated.

Figure 2.4: SIR model over a period of 2000 days with vital dynamics showing a second wave of
the infectious disease, Γ=µ= 0.001
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Figure 2.4 shows the same solution as in 2.3b, but over a period of 2000 days. The first peak in
infections is again at 20 days, but a second peak can be found after 1350 days (3.7 years). The
number of infections is lower than during the first epidemic, since already more people are inside
the recovered group and therefore will not be able to get the disease. In a model without vital dy-
namics a second wave of infections is not possible. The solution will reach an equilibrium where
the number of susceptibles is constant.

In figure 2.5 the direction field of the solution of the SIR model is shown with and without vi-
tal dynamics. The right figure illustrates the same reoccurring peaks as figure 2.4. In figure 2.5a
vital dynamics are left out and it can be concluded that the solution ends up in an equilibrium,
after reaching a peak of 70 infected people. In figure 2.5b multiple infection waves can be seen.
After each epidemic wave is over the number of susceptibles starts increasing again, creating a
new wave. The number of infections during each wave becomes smaller.

(a) γ= 1
3 and β= 1

2 without vital dynamics (b) γ= 1
3 and β= 1

2 with vital dynamics

Figure 2.5: Direction field of the SIR model with and without vital dynamics, Γ = µ = 0.001. On
the horizontal axis: susceptibles (S). On the vertical axis: infected (I ). The green line indicates the
solution curve over time of the SIR models described in figure 2.3

The SIR model is one of the most basic and general mathematical epidemic models. It can rea-
sonably predict the course of an infectious disease that is transmitted from humans to humans.
This model can be extended to more disease specific models, such as for cholera.

2.2 SIRB MODEL

In this section we will examine a mathematical epidemic model more specific for cholera based
on the research of Codeço et al.[6]. We will use the same parameter values as for the SIR model to
compare the solutions of the different models. As mentioned before cholera is a bacterial disease
that not only spreads from human to human, but can also spread via contact with infected water.
In other words a big part of the infections does not happen through contact with another human
being, but with the environment. In this section the SIR model will be further extended to the SIRB
model which has an environmental aspect. In figure 2.6 the different groups that make up this
model are shown. The interaction between the compartments is specified by means of arrows.
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Figure 2.6: Visualisation of interactions between the four groups of the SIRB model
(S=susceptibles, I =infectious, R=recovered, B=bacteria)

In figure 2.6 it can be seen that an extra group is added to the compartmental model. This group,
the bacteria group, is the concentration of V. cholerae bacteria in the water. This group is not part
of the population, but influences the dynamics between the other groups (indicated by the striped
arrows). When we extend the SIR model with vital dynamics by adding this extra group, we gain
the following system of four differential equations:

dS

d t
=−βh I S

N
−µS +ΓN −βeλ(B)S (2.7)

d I

d t
= βh I S

N
−γI −µI +βeλ(B)S (2.8)

dR

d t
= γI −µR (2.9)

dB

d t
= εI + (gb − lb)B (2.10)

From the first equation it can be seen that in comparison to the SIR model an additional term is
added. This term indicates the number of susceptible people that get infected by the infectious
water per unit time. The parameter βe is the rate of exposure to the (contaminated) water. It
shows how often susceptibles get in contact with the cholera infected water. The term λ(B) is
the probability of someone being infected by the water and logically depends on the bacteria
concentration B in the water. In the paper of Codeço et al. the following equation for this term is
suggested [6]:

λ(B) = B

B +K
(2.11)

where K is the concentration of the cholera bacteria in water for which the chance of susceptibles
becoming infected is 50% when being in contact with the water. In figure 2.7 this relation between
the probability of infection is represented against the bacteria concentration in the water for the
value K = 1000. It illustrates that when the bacteria concentration in the water is already high
(more than 1000), an even higher concentration has less effect on the probability of becoming
infected, then when the concentration is low (less than 1000).
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Figure 2.7: Probability of being infected against the concentration of V. cholerae in the water for
K = 1000

The fourth equation 2.10 is the differential equation that describes the change in the bacteria
concentration. The V. cholerae concentration in the water is influenced by infected people that
come in contact with the water. The parameter ε indicates the influence of an infected individual
on the bacteria concentration. Each time unit all infected people add the concentration ε to the
bacteria group. The concentration of the cholera bacteria is additionally influenced by the growth
and death of the bacterial population. The constant parameter gb is referred to as the growth rate
of the bacteria and lb as the loss of the bacterial concentration. These differential equations can
again be implemented using Euler Forward. The SIRB model will be compared to the SIR model of
the previous section. The values of the parameters are stated in table 2.1. The values used are not
realistic numbers and are taken unitless. They will be applied to show the properties of the SIRB
model. For a realistic application of this model units and realistic numbers should be considered.

Parameter Value
Bh

1
2

Be
1
4

γ 1
3

µ 0.001
Γ 0.001
ε 1

gb 0
lb 0.1
K 1000

Table 2.1: Parameter values for the SIRB model

In the solution of figure 2.8 the same parameters are chosen as for the SIR model in figure 2.3.
A clear difference can be seen between the solutions of the different models. Although the pa-
rameters for γ and βh are chosen the same as for the SIR model, the number of infections is a lot
bigger. This is mainly due to the additional influence of the environment. Because the number
of infections is a lot bigger we end up with a population where the largest group is the recovered.
The epidemic is also over faster, since after 20 days almost the entire population is recovered and
therefore immune.
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Figure 2.8: SIRB model over a period of 100 days using the parameters of table 2.1

In figure 2.9 the concentration of the cholera bacteria in the water corresponding to figure 2.8 is
shown over the period of a 100 days. From the figure it appears that the bacterial concentration
keeps increasing until day 20. After 20 days the influence of the infected people on the concentra-
tion becomes less than the dying of the bacteria. Therefore the bacterial concentration will start
to decrease. The peak in the bacterial concentration occurs roughly at the same time as the peak
of infections. This is in agreement with what would be expected. When there are a lot of infections
inside the population, these infected people contribute more to the concentration of V. cholerae
in the water.

Figure 2.9: Bacterial concentration of the SIRB model using the parameters of table 2.1

A possible measure against the spreading of cholera is cleaning the water regularly. The concen-
tration loss each time unit will be larger and the peak concentration will become a lot lower. In
figure 2.10 the same solution as in figure 2.9 is shown, but with a higher dying ratio within the
bacteria compartment. It can be seen that the peak of the bacteria concentration is a lot lower.
If this result is compared with figure 2.7 it follows that the chance of catching the disease is a lot
smaller for this concentration. The number of infections due to infected water and therefore the
total infections will be smaller.

11



(a) Susceptibles,Infected,Recovered (b) Bacteria concentration

Figure 2.10: SIRB over a period of 100 days using lb = 0.75
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3 MATHEMATICAL ANALYSIS

To understand the behaviour of the SIRB model we will discuss some properties of the system of
equations belonging to the model in this section. Different equilibrium solutions will be deter-
mined and studied.

3.1 REPRODUCTION NUMBER

Firstly the disease free equilibrium (DFE) will be calculated. As the name already suggests this
equilibrium solution does not have any infected people and can be calculated by setting dS

d t =
d I
d t = dR

d t = dB
d t = 0. The equilibrium values of the four different compartments will be denoted as

So , I o , Ro and B o . Substituting I o = 0 the following equilibrium can be determined:

DF E = (So , I o ,Ro ,B o) = (
ΓN

µ
,0,0,0) (3.1)

This implies that if there are no infections and no bacteria in the environment, the population
size will be constant and equal to So . Another very important property of an epidemic model is
the basic reproduction number R0. The basic reproduction number is defined as the expected
number of secondary infections coming from an infected individual during the period where the
person is infectious. This number is mostly used to see if a disease will spread through a popu-
lation. If R0 < 1 each infected person infects on average less than one susceptible person. The
infected group will therefore become smaller and instinctively it would make sense if the disease
would eventually leave the population. If R0 > 1 the number of infected will increase and the dis-
ease will consequently take over a larger part of the population.

Using the method of Hoffernan et al. [13] and applying it to the model, similar as was done by
van den Driessche et al. [14], the basic reproduction number can be calculated. According to
Hoffernan et al. the reproduction number can be found by computing the largest eigenvalue of
the next generation matrix FV −1 with F and V as follows assuming there are n compartments of
which 1, ...,m are infected:

F =
[
∂Fi (DF E)

∂x j

]
V =

[
∂Vi (DF E)

∂x j

]
(3.2)

with i , j = 1, ...,m and where Fi is the appearance of new infections in compartment i and Vi is
the rate of transfer of individuals to and from compartment i . These matrices have to be analysed
at the disease free equilibrium (DF E), which has just been determined. Applying this to our SIRB
model, similarly as done by van den Driessche et al., the following matrices are obtained:

F =
[
βhΓ
µ

βeΓN
µk

0 0

]
V =

[
µ+γ 0
−ε −(lb − gb)

]
(3.3)

Here the growth of bacteria has not been taken as a form of new infections, so it does not appear
in matrix F . Taking the inverse of V and multiplying both matrices the next generation matrix can
be gained:

FV −1 =
[

Γβh

µ(µ+γ) +
εΓNβe

kµ(µ+γ)(lb−gb )
ΓNβe

µk(lb−gb )

0 0

]
(3.4)

By taking the largest eigenvalue the reproduction number R0 is obtained, which can be divided
into human and bacterial infections, as can be seen below:

R0 = Rh
0 +Re

0

= ΓNβh

µ(µ+γ)N
+ εΓNβe

kµ(µ+γ)(lb − gb)
(3.5)
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We will now examine two cases to study the influence of the reproduction number on the solution
of the model. In figure 3.1 two solutions of SIRB models are presented using different parameters.
The figure shows that for the reproduction number less than one no real peak in infections can be
seen. Although still a part of the population gets infected, the number of infections is significantly
lower than in figure 3.1b.

(a) R0 = 0.8 (b) R0 = 1.9

Figure 3.1: SIRB over a period of 100 days for different reproduction numbers R0

If we look at the long term solutions of these models described in figure 3.1 another difference can
be noted. In figure 3.2 these models are shown over a period of 8000 days. It can be seen that the
groups inside the model go to an equilibrium solution. It illustrates that for a higher reproduction
number the equilibrium solution of susceptibles is lower, than for a small reproduction number.
This makes sense as more people get infected.

(a) R0 = 0.8 (b) R0 = 1.9

Figure 3.2: SIRB over a period of 8000 days for different reproduction numbers R0

3.2 STABILITY OF THE DISEASE FREE EQUILIBRIUM

To study the stability of the disease free equilibrium the Jacobian matrix will be determined and
evaluated at (So , I o ,Ro ,B o). For now it will be assumed that the population size N is fixed. This
also means that the mortality rate must equal the birth rate (µ= Γ). From equations (2.7-2.10) the
following Jacobian matrix is obtained:

J =


−βh I

N −µ−βh
B

B+k
−βh S

N −βe
k

(B+k)2 S
βh I
N +βh

B
B+k

βh S
N −γ−µ βe

k
(B+k)2 S

0 ε gb − lb

 (3.6)
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Substituting in the disease free equilibrium we get:

J (DF E) =
−µ −βh −βe

N
k

0 βh −γ−µ βe
N
k

0 ε gb − lb

 (3.7)

The equilibrium solution is stable if the real part of the eigenvalues of this matrix are all smaller
than zero. A method of bounding the eigenvalues is Gershgorin’s circle theorem. Applying this
theorem to our matrix we obtain three bounds for the eigenvalues λi of this matrix:

−βh −βe
N

k
−µ ≤λi ≤ βh +βe

N

k
−µ (3.8)

−βe
N

k
+βh −γ−µ ≤λi ≤ βh

N

k
+βh −γ−µ (3.9)

−ε+ gb − lb ≤λi ≤ ε+ gb − lb (3.10)

For all parameter values where the upper bounds of these eigenvalues are smaller than zero the
DFE is guaranteed stable. However, simulations show that also for some parameters values for
which the upper right bound is larger than zero the equilibrium solution is still stable. Although
part of the Gershgorian disks lies in the right half of the imaginary plane, it does not necessarily
imply that there must be eigenvalues with real part larger than zero. To say more about the gen-
eral stability we need to consider a different method.

By studying the characteristic polynomial it can be seen that one of the eigenvalues is λ1 = −µ,
which is always negative. When this eigenvalue is divided out, the following characteristic poly-
nomial is left for the remaining eigenvalues:

λ2 − (βh −γ−µ+ gb − lb)λ+ (βh −γ−µ)(gb − lb)−εβe
N

k
= 0 (3.11)

For this characteristic polynomial a Routh table can be constructed [15]:

1 (βh −γ−µ)(gb − lb)−εβe
N
k

−(βh −γ−µ+ gb − lb) 0
(βh −γ−µ)(gb − lb)−εβe

N
k

Table 3.1: Routh table for equation 3.11

According to Routh’s theorem all zeroes of the characteristic polynomial have negative real part
and imaginary part nonzero if and only if all entries in the first column have the same sign. So we
obtain two new bounds for the parameter values that imply a stable disease free equilibrium.

−βh +γ+µ− gb + lb > 0 (3.12)

(βh −γ−µ)(gb − lb)−εβe
N

k
> 0 (3.13)

Still this bound does not cover all stable parameter values. Eigenvalues which have negative real
part and zero imaginary part are also stable, but are not considered using Routh’s theorem.

To be sure that all stable eigenvalues are found we compute the eigenvalues and check for which
parameters these are stable. For a general 2x2 matrix A we obtain the following eigenvalues:

A =
[

a b
c d

]
λi = a +d

2
±

√
(a −d)2 +4bc

2
(3.14)
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Since we already found a bound for imaginary eigenvalues we will focus on real eigenvalues only.
For stability all eigenvalues need to be negative, so it is enough to study the largest eigenvalue and
bound it by zero:

a +d

2
+

√
(a −d)2 +4bc

2
< 0 (3.15)√

(a −d)2 +4bc <−(a +d) (3.16)

Since we considered this to be the largest eigenvalue we at least need (a+d) < 0 for the eigenvalue
to be negative. Squaring both sides we then obtain:

(a −d)2 +4bc < (a +d)2 (3.17)

a2 +d 2 −2ad +4bc < a2 +d 2 +2ad (3.18)

4(bc −ad) < 0 (3.19)

ad −bc > 0 (3.20)

Stability of a 2x2 matrix is therefore guaranteed if the following three properties hold:

1. (a −d)2 +4bc > 0

2. a +d < 0

3. ad −bc > 0

Substituting the values of our matrix we obtain the following criteria:

1. (βh −γ−µ− gb + lb)2 +4εβe
N
k > 0

2. βh −γ−µ+ gb − lb < 0

3. (βh −γ−µ)(gb − lb)−εβe
N
k > 0

This last property can be connected to the reproduction number R0. Since the mortality rate was
taken equal to the birth rate, we have the following reproduction number:

R0 = βh

µ+γ +βeε
N

k

1

(µ+γ)(lb − gb)
(3.21)

This R0 can be substituted into the third property and the following inequality is obtained assum-
ing that (gb − lb) < 0:

(βh −γ−µ)(gb − lb)+ (R0(µ+γ)−βh)(gb − lb) > 0 (3.22)

−γ−µ+R0(µ+γ) < 0 (3.23)

(R0 −1)(µ+γ) < 0 (3.24)

R0 < 1 (3.25)

So it turns out that if the reproduction number R0 is smaller than one the DFE is stable. This is
in agreement with the intuition that for a reproduction number smaller than one, the number of
infections will decrease. When there is a small disturbance around the disease free equilibrium
the solution will again converge to an equilibrium of zero infected. When R0 is larger than one, the
third property is not satisfied. A small disturbance will than lead to a further increase of infected
away from the disease free equilibrium. The equilibrium is unstable.
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3.3 ENDEMIC EQUILIBRIUM

Not all solutions reach an equilibrium where the number of infected people is zero. Such a non-
zero equilibrium is called the endemic equilibrium (EE) and can be calculated by setting dS

d t =
d I
d t = dR

d t = dB
d t = 0. Again it is assumed that the total population N is constant. The endemic

equilibrium will be denoted by (S∗, I∗,B∗). Substituting this notation and setting the derivatives
equal to zero we obtain the following system of equations.

dS∗

d t
=−βh I∗S∗

N
−µS∗+ΓN −βeλ(B∗)S = 0 (3.26)

d I∗

d t
= βh I∗S∗

N
−γI∗−µI∗+βeλ(B∗)S = 0 (3.27)

dB∗

d t
= εI∗+ (gb − lb)B∗ = 0 (3.28)

Expressing B∗ and S∗ in terms of I∗ the following expressions can be derived:

B∗ = εI∗

lb − gb
S∗ = ΓN

µ
− (µ+γ)I∗

µ
(3.29)

Substituting these both inside the second equation, the following equation is gained:

βh

N
I∗(
ΓN

µ
− (µ+γ)

µ
I∗)−γI∗−µI∗+βh

εI∗

εI∗+k(lb − gb)
(
ΓN

µ
− (µ+γ)

µ
I∗) = 0 (3.30)

Dividing this equation once by I∗, which gives us the solution of the disease free equilibrium
I o = 0, this equation can be written as a quadratic equation of the form:

p2I∗2 +p1I∗+p0 = 0 (3.31)

with

p0 = k(lb − gb)(Γβh −µ(µ+γ))+εNΓβe (3.32)

p1 =−(lb − gb)k
βh

N
(µ+γ)+ε(Γβh −µ(µ+γ))−βeε(µ+γ) (3.33)

p2 =−εβh

N
(µ+γ) (3.34)

The positive non-zero solutions of this equation give the endemic equilibrium I∗. These zeroes
can be calculated using known formulas. Moreover, it can be studied under which circumstances
this quadratic equation has such a positive non-zero solution. We know that the two zeroes I∗1
and I∗2 of the quadratic equation 3.31 must satisfy:

I∗1 I∗2 = p0

p2
(3.35)

I∗1 + I∗2 =−p1

p2
(3.36)

Firstly note that p2 is always negative, since all parameters in the equation are larger than zero.
Two cases will be considered to study the existence of a positive non-zero solution:

• R0 > 1:
Using the reproduction number of equation 3.5 we get the following:

Γβh

µ(µ+γ)
+ εΓNβe

kµ(µ+γ)(lb − gb)
> 1 (3.37)

βhΓk(lb − gb)+βeεNΓ−kµ(µ+γ)(lb − gb) > 0 (3.38)

p0 > 0 (3.39)

Since p0 > 0 and p2 < 0 equation 3.35 implies that I∗1 I∗2 < 0. This entails that one of the
zeroes is positive and non-zero. So if R0 > 1 the non-zero endemic equilibrium exists.

17



• R0 < 1:
Using the same reasoning as above we obtain that p0 < 0 when R0 < 1. This implies that
I∗1 I∗2 > 0. So we can conclude that either I∗1 , I∗2 > 0 or I∗1 , I∗2 < 0. We again consider the
reproduction number:

Γβh

µ(µ+γ)
+ εΓNβe

kµ(µ+γ)(lb − gb)
< 1 (3.40)

Suppose lb > gb , then it must be true that

Γβh

µ(µ+γ)
< 1 and

εΓNβe

kµ(µ+γ)(lb − gb)
< 1 (3.41)

If we now take a closer look at p1 and use one of the inequalities above we get the following:

p1 =−(lb − gb)k
βh

N
(µ+γ)+ε(Γβh −µ(µ+γ))−βeε(µ+γ) (3.42)

p1

(µ+γ)µ
=−(lb − gb)k

βh

Nµ
+ εΓβh

(µ+γ)µ
−ε− βeε

µ
(3.43)

Now applying the left equality of equation 3.41 we obtain that

p1

(µ+γ)µ
<−(lb − gb)k

βh

Nµ
+ε−ε− βeε

µ
(3.44)

=−(lb − gb)k
βh

Nµ
− βeε

µ
(3.45)

< 0 (3.46)

Since µ(µ+γ) > 0 we can conclude that if R0 < 1 and lb > gb we have that p1 < 0. Using
this and equation 3.36 it can be seen that I∗1 + I∗2 < 0. This implies that both I∗1 and I∗2 are
negative. Therefore if R0 < 1 there exists no non-zero endemic equilibrium.

So an endemic equilibrium only exists for R0 > 1. For R0 < 1 the solution will always go to the
disease free equilibrium, where the number of infected people is zero.
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4 SPATIAL SIRB PATCHES MODEL

So far no spatial aspect was added to the SIRB model. In this section we will consider a spatial
extension of the model by looking at different patches.[16] This method was earlier applied by
Arino et al. to a different epidemic model (SEIRS)[17] and by Eisenberg et al. to a similar cholera
model [18]. In this section it will be applied to our SIRB model.

4.1 DERIVATION PATCHES MODEL

This model expansion consists of a population divided over n patches. Each patch p = 1, ...,n has
its own population of susceptibles (Sp ), infected (Ip ) and recovered (Rp ). The entire population
in patch p is given by Np = Ip +Sp +Rp . Furthermore it is possible that travel or migration occurs
between the different patches. Moreover it is assumed that each patch has its own water reser-
voir where the bacterial concentration is denoted by Bp . The population size inside a patch can
change due to mortality and birth, but also due to travel. The difference in population size inside
a patch p due to travel to and from other patches denoted by N ′

p is given by:

N ′
p =

n∑
q=1

(mpq Nq −mqp Np ) (4.1)

where mpq denotes the travel/migration rate from patch q to patch p. If we combine the migra-
tion term determined above with the single compartmental SIRB model the following system is
obtained for each of the patches p = 1, ...,n:

dSp

d t
=−βhp Ip Sp

Np
−µp Sp +Γp Np −βepλ(Bp )Sp +

n∑
q=1

(mpq Sq −mqp Sp ) (4.2)

d Ip

d t
= βhp Ip Sp

Np
−γp Ip −µp Ip +βepλ(Bp )Sp +

n∑
q=1

(mpq Iq −mqp Ip ) (4.3)

dRp

d t
= γp Ip −µp Rp +

n∑
q=1

(mpq Rq −mqp Rp ) (4.4)

dBp

d t
= εp Ip + (gbp − lbp )Bp (4.5)

where the parameters βhp , βep , µp , Γp , γp , εp , gbp and lbp are the same as described in the pre-
vious section, but can now be patch dependent. Multiple patch structures can be considered.
We will first investigate matrix like patch structures and later on ring structures. In figure 4.1 the
interaction between the patches due to travel/migration is shown. Each patch can only interact
with adjacent patches.

Figure 4.1: Matrix structure migration between the patches shown for n = 4 and n = 9 patches
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This model has been simulated for 4 and 9 patches. The parameters βh , βe , µ, Γ, γ, ε, gb and lb

were taken equal on each patch with the values described in 2.1. The migration rate between two
adjacent patches p and q is given by mpq and is taken the same between all adjacent patches. The
initial values at t = 0 for the different population groups inside the patches are given by Sp (0) =
1000, Ip (0) = 0, Rp (0) = 0 and Bp (0) = 0 for p = 2, ...,n. Only in the first patch cholera infected
people occur. The initial conditions for p = 1 are Sp (0) = 1000, Ip (0) = 10, Rp (0) = 0 and Bp (0) = 0.
In figure 4.2 the solution of the number of infected in each patch is shown.

(a) 4 patches (b) 9 patches

Figure 4.2: Number of infected people over a period of 100 days for the SIRB patches model for
mpq = 0.001 (matrix structure)

In figure 4.2a it can be seen that the first peak happens in patch p = 1. Since this patch was the only
patch with infections as initial value this makes sense. The following peaks (a little lower) happen
in patch p = 2 and p = 3. These are the adjacent patches to the patch were the first epidemic
occurred, so again this agrees with what one would expect. The patch with the furthest distance
from the infection origin reaches a peak latest. The same can be seen in figure 4.2b if we look at
a bigger patch structure. Now patch p = 2 and p = 4 are the adjacent patches to the first patch
and therefore will be the first to also reach an epidemic. When more migration takes place the
infections between the patches will happen earlier, since infected people will sooner reach the
not yet infected patches. This is exactly what can be seen in figure 4.3 below.

Figure 4.3: Number of infected people over a period over 100 days for mpq = 0.01 (matrix struc-
ture)
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Figure 4.3 illustrates that the epidemic waves in each of the patches happen sooner after each
other when there is more travel. The migration rate between the patches is ten times larger and
therefore also the exchange of infected people. By changing the migration rate the influence of
different measures, such as quarantine, can be considered. This will be done later in this section.
Another interesting patch structure is the ring structure shown in figure 4.4 below. We will con-
sider two possibilities: one way traffic and two way traffic. In the figure one way traffic is indicated
by the black arrows. People from patch p can only travel to patch p +1 or when p = n to patch 0.
When two way traffic is considered the green arrows are also taken into account. So additional to
the travel described above, people from patch p can also travel to patch p −1.

Figure 4.4: Ring structure migration between the patches shown for n = 12 patches

Both the one way and two way ring structures were implemented using the same parameters as
in figure 4.2. The number of infected people in each of the ring structures can be seen in figure
4.5. One of the first things that catches the eye is the difference in shape of spread. In figure 4.5a
patch p = 10 is the last patch to obtain the peak. The patch is furthest away from the initial source
and consequently last reached by migrating infected people. It will therefore be the last patch to
experience an epidemic. When two way traffic is considered patch p = 10 is after patch 1 the first
patch to have a peak in infections. With two way traffic that patch is the first to be reached due
to infected migration and patch p = 6 will be last reached as also can be seen in the figure. This
explains the difference in shape of spread between the patches for one and two way traffic.

(a) One way traffic (b) Two way traffic

Figure 4.5: Number of infected people over a period of 100 days for the SIRB patches model for
mpq = 0.001 (ring structure using 10 patches)
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The model has also been implemented for a large number of patches. In figure 4.6 the number
of infected people are shown at the different patches. To better represent the spreading of the
disease the different are patches are plotted and the darker the colour the more infected people
that patch includes. The initial infection is in patch 113 and examining the figures it can be seen
that the infections spread outwards due to migration.

(a) 10 days (b) 25 days

(c) 40 days (d) 70 days

Figure 4.6: Number of infected people at multiple time instances for the SIRB patches model for
mpq = 0.001 (matrix structure 15x15). Initial infection at patch 113

4.2 INFLUENCE OF MEASURES: QUARANTINE AND MEDICINE

Using this large number of patches we will consider two different solutions that possibly min-
imise epidemics: quarantine and medicine. When a patch goes into quarantine it means that no
migration with other patches occurs. It will be assumed that a patch goes into quarantine if it has
reached a minimal number of infections. Since creating a new medicine takes time, we will as-
sume that a medicine is available after a certain amount of days (30 days in our implementation)
and that it will increase the recovery rate. In other words, people will recover sooner from the
disease and will move faster from the infectious to the recovered. In figure 4.7 these measures are
compared to the original infection spread.
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(a) No measure (b) Quarantine at Ip = 10 (c) Medicine after 30 days

Figure 4.7: Number of infected people after 50 days for the SIRB patches model for mpq = 0.001
(matrix structure 15x15). Initial infection at patch 113.

In figure 4.7b we can see that the number of infections with quarantine is not necessarily lower
than when no measures are taken, but we can see that the infectious disease spreads slower be-
tween the patches. This agrees with what we would expect. It was assumed that a patch goes into
quarantine if the number of infected is larger than 10. If the number of infections becomes lower
the quarantine is over and migration starts again. These infections than are still able to reach
nearby patches, but it goes slower than when no measures are taken.

In figure 4.7c the number of infections is shown when after 30 days a medicine is available that
shortens the average duration of the disease from 3 days (γ = 1

3 ) to 2 days (γ = 1
2 ). It can be seen

that the number of infections is significantly smaller than when no measures are taken. The
spread between patches also goes a little slower. Since the number of infections in the patches
is lower, also the migration of infected individuals is less. It therefore takes more time for a neigh-
bouring patch to also obtain a number of infected people that can start an epidemic.

A stricter quarantine (decreasing the minimum number of infected) or an even better medicine
(increasing recovery rate) can amplify these effects. In table 4.1 the maximum number of infec-
tious is shown in certain patches for the different possible measures. Which patches are studied is
shown in figure 4.8. These patches are chosen, because of their different locations and distances
with respect to the initial infection patch.

Figure 4.8: Patches studied in table 4.1
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Patch 113 Patch 114 Patch 66 Patch 49
Tmax Imax Tmax Imax Tmax Imax Tmax Imax

No measures 10.5 265 20.5 258 44.3 258 66.0 258
Medicine γ= 1/2 10.5 265 20.5 258 45.9 150 72.0 150

Medicine γ= 1 10.5 265 20.5 258 55.3 37 100.0 31
Quarantine Ip > 10 10.5 266 27.9 262 50.8 262 72.3 262
Quarantine Ip > 5 10.5 266 59.2 257 83.3 262 100.0 93

Both Ip > 10, γ= 1/2 10.5 266 27.9 262 53.7 153.34 79.5 153.34

Table 4.1: Maximum number of infections and the corresponding time instance for different
patches (112, 113, 66 and 49) for different measures taken.

Table 4.1 shows that the different measures not necessarily influence the patch where the first epi-
demic occurs. The different measures affect mostly the speed and intensity of the further spread.
For the patches neighbouring the initial patch, like patch 13, the medicine does not influence the
number of infections and the corresponding time this peak occurs. Since the medicine was only
developed after 30 days, it can only influence patches that get infected after this moment. We do
see that the quarantine influences the speed of spread to this patch. It appears that for the quar-
antine the smaller the minimum number of infections for quarantine is chosen, the slower the
disease spreads between the patches. The number of infections is not lower (even a little higher),
but the total number of people that is sick at any given time is. If for example, an area has to deal
with low treatment supplies, quarantine can make sure that the number of infections at one time
is lower and therefore no shortages of supplies occur.

In table 4.1 it can be seen that after the developing period the medicine has a big influence on
the number of infections and also on the speed of spread. The table shows that by decreasing the
infection duration from 3 to 2 days the number of maximum infections for patches that can use
this medicine decreases from 258 to 150. For an even better medicine that decreases the infection
period to 1 day the maximum number of infections is even lower. Furthermore it can be noted
that the spread between the patches becomes slower.

The best solution, according to table 4.1 is a combination of the two measures. By slowing down
further spread of the disease using quarantine, less patches have been infected by the time a
medicine is developed. More people therefore have access to the medicine when they become
infected.

4.3 ONE RESERVOIR

So far it was assumed that each patch has its own water supply. This model can represent for
example a group of villages where each has its own water well. Another possibility of course is
that multiple villages share the same water supply, therefore we will now consider a shared water
reservoir. Equations 4.2-4.4 still hold, but equation 4.5 now has to be written as:

dB

d t
=

n∑
p=1

εp Ip + (gb − lb)B (4.6)

where εp is again the influence of a single infected person on the bacterial concentration in the
water in each patch. This parameter can vary for each patch (village), since different villages might
have different accessibility to the water. This one-reservoir model has also been implemented. In
figure 4.9 the number of infected is shown for each of the patches at different time instances.
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(a) 5 days (b) 10 days

Figure 4.9: Number of infected people at multiple time instances for the SIRB patches model for
mpq = 0.01, εp = 0.01, βe = 1

40

Due to infections in the initial patch the bacterial concentration in the water increases. Since the
water reservoir is shared between the entire domain, in all patches people will get infected due
to the cholera bacteria inside the water. This is exactly what we see in the second picture. The
number of infections due to infected water is much larger then the number of infections due to
human interaction. Therefore all patches will start their epidemic almost at the same time, when
we include this shared reservoir in our model. By decreasing the environmental impact βe the
outward spreading pattern we saw earlier comes back.

4.4 RIVER

The patches model is a very flexible model. Since the parameters can be taken patch depended,
the spatial model is a simple method to study the influence of different circumstances in each of
the patches. An environmental impact that can be researched is for example a river going through
some of the patches. People living near the river can get infected faster than people who do not
have the same contact with the water source. We will consider such a river going through our
domain. Two assumptions are made. Firstly, infections due to the environment (the cholera bac-
terial concentration) only happen in patches where the river runs through. The infections that
arise in non-river patches are exclusively caused by human interaction and migration. Secondly,
the spreading of the bacteria through water is simulated using migration. So for the river patches
an extra term is added to equation 4.5:

dBp

d t
= εp Ip + (gbp − lbp )Bp +

n∑
q=1

(bmpq Bq −bmqp Bp ) (4.7)

where bmpq is the migration number of the bacteria from patch q to p. This bacterial migration
number can be used to simulate the flow direction of the river water. The model has been imple-
mented for an upward stream. For the upward migration the parameter was chosen as bm = 0.1
and for downward migration as bm = 0.05. For the people living in the river patches the rate of
exposure to the water is βe = 1

4 . For the non-river patches the value was set to zero. In figure 4.10
the number of infected is presented.
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(a) 10 days (b) 15 days

(c) 30 days (d) 50 days

Figure 4.10: Number of infected people at multiple time instances for the SIRB patches model for
mpq = 0.03 (matrix structure 15x15). Initial infection at beginning (bottom) of the river

The figure above reveals that most infections happen at river patches. This makes sense since
the only environmental infections occur there. In figure 4.10a the initial infection is shown at the
bottom of the river. It can be seen that the bacteria spreads itself through the water and creates
new infections inside these patches. From the river patches the infections spread to the outward
patches by means of human migration. There the number of infections is a lot less, since they are
not in contact with infected water. In figure 4.11 on the next page the bacterial concentration of
different river patches is shown for the model described above.

In figure 4.11 it can be seen that indeed the V. cholerae spreads upwards the river. The peak in
bacterial concentration in the initial patch (7) is lower than in the patches further up the river
(97 and 172). This might be explained by the fact that these patches are positioned further up the
stream and get diffusion from both patches upward and downward the river. During the epidemic
of the initial infection patch it is the only patch with a high amount of V. cholerae in their part of
the river. They do not receive as much bacteria from other river patches.
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(a) Patches investigated

(b) Bacterial concentration over a period of 100 days

Figure 4.11: Bacterial concentration of different selected patches over a period of 100 days for the
SIRB patches model for mpq = 0.03. Initial infection at beginning (bottom) of the river

As explained earlier the bacterial migration number bm can simulate the flow direction of the
water. To show that effect more clearly, in figure 4.12 the number of infected is shown at three
time instances. The upward migration was chosen as bm = 0.1 and the downward migration as
bm = 0.025. Figure 4.12b illustrates that after 25 days the disease has spread faster upward than
downward. This coincides with what would be expected for a river with upward stream.

(a) 10 days (b) 25 days (c) 40 days

Figure 4.12: Number of infected people at multiple time instances for the SIRB patches model for
mpq = 0.03 (matrix structure 15x15). Initial infection at the middle of the river

4.5 DISCUSSION

The examples in this section already show the flexibility of the patches model. Since the param-
eters can be taken patch dependent and the migration between the patches can be customised,
the model is very adaptable. In this section it was shown that different measures can be tested
and different environmental situations can be simulated. This makes the patches model widely
applicable to many different circumstances.

However the patches model requires a situation where the population can be divided into dif-
ferent patches. Sometimes it can be desirable to consider a more continuous spread inside a pop-
ulation. This way general spreading patterns inside a population can be studied. Adding diffusion
to the original system could have this effect.
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5 SPATIAL SIRB DIFFUSION MODEL

In this section a spatial diffusion model will be implemented and studied. The model will be
applied to two different initial situations: one point spread and random spread.

5.1 DERIVATION DIFFUSION MODEL

The SIRB model of Coveço et al. [6] was further extended by Mawuena Afi and Anas [10] by adding
a spatial aspect. It was again assumed that the population size is fixed. By making this assumption
the third equation can be left out. The recovered group of the population is then N −S − I . Since
the distribution of individuals can be considered as random, Fick’s law holds and therefore we
can add diffusion terms to the differential equations (2.7-2.10) [19]. The following spatial system
is obtained:

dS

d t
=−βh I S

N
−µS +ΓN −βeλ(B)S +D1∇2S (5.1)

d I

d t
= βh I S

N
−γI −µI +βeλ(B)S +D2∇2I (5.2)

dB

d t
= εI + (gb − lb)B +D3∇2B (5.3)

where ∇2 is the two dimensional Laplacian operator and D1, D2 and D3 are the diffusion coef-
ficients. Furthermore we will consider Neumann boundary conditions at the boundary of our
domain ∂Ω:

∂S

∂n
= ∂I

∂n
= ∂B

∂n
= 0 (5.4)

A two dimensional finite difference scheme has been implemented to simulate the solution of
this model. Applying a double uniform grid with spatial step d x gives the following Euler Forward
time stepping scheme:

S t+1
i , j = S t

i , j +d t (
dS t

i , j

d t
+D1∇2S t

i , j ) (5.5)

I t+1
i , j = I t

i j +d t (
d I t

i , j

d t
+D2∇2I t

i , j ) (5.6)

B t+1
i , j = B t

i , j +d t (
dB t

i , j

d t
+D3∇2B t

i , j ) (5.7)

where i and j are the nodes in the x and y direction and where
dS t

i , j

d t ,
d I t

i , j

d t and
dB t

i , j

d t are the same
equations as 2.7, 2.8 and 2.10 at each of the nodes. The Laplacian is discretized as follows:

∇2ui , j =
−4ui , j +ui+1, j +ui−1, j +ui , j+1 +ui , j−1

d x2 (5.8)

We will consider a two dimensional area where x, y ∈ [0,20]. The above model was discretized
through x → (x0, x1, x2, ..., xN ) and y → (y0, y1, y2, ..., yN ) where N = 200, so d x = 0.1. The time step
was chosen as d t = 0.005. An Euler forward time stepping scheme has been used to approximate
the solution. [20] [21] The derivation of the specific scheme can be found in appendix D.

5.2 ONE POINT SPREAD

On the next page two figures are shown that illustrate the spread of infected people from the
centre. In figure 5.1 the spread is presented for diffusion constants D1 = D2 = D3 = 0.01. It can be
seen that the outward spread of the disease is similar to that of the spatial patches model.
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(a) 10 days (b) 30 days

(c) 60 days (d) 100 days

Figure 5.1: Portion of infected people at multiple time instances for the SIRB model using diffu-
sion for D1,D2,D3 = 0.01

(a) 10 days (b) 30 days

(c) 60 days (d) 100 days

Figure 5.2: Portion of infected people at multiple time instances for the SIRB model using diffu-
sion for D1,D2,D3 = 0.02
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In figure 5.2 the spread is shown for two times larger diffusion constants, so D1 = D2 = D3 = 0.02.
It can be observed that for larger diffusion constants cholera spreads faster. A comparison can be
made with increasing the migration constant inside the spatial patches model, described in the
previous section.

Next two situations are considered: no diffusion of bacteria throughout the domain (D3 = 0) and
bacteria diffusion throughout the domain (D3 = 0.04). When no diffusion of bacteria is taken into
account, the growth of the bacterial concentration in a certain node is only possible if the node
gets infected due to diffusion of infected individuals. In figure 5.3 the spread of the two different
diffusion rates is presented at T = 60 days. It can be seen that the spreading of the disease goes
faster when the diffusion term is added. This is in agreement with what one would expect. By
applying diffusion to the bacterial concentration of infected nodes, the water of other nodes gets
infected faster (not only due to infected individuals). When we translate this to the real world we
can relate the fact that there is no bacterial diffusion to everyone having their own clean water
supply. The cholera bacteria cannot spread between the water in the different households, but it
is possible to get infected by water that is contaminated by someone else inside the household.

(a) 60 days (D3 = 0) (b) 60 days (D3 = 0.04)

Figure 5.3: Portion of infected people at T = 60 the SIRB model without diffusion of bacterial
concentration (D3 = 0) and with diffusion (D3 = 0.04)

Although the diffusion model is not as flexible as the patches model, it is possible to look at other
initial situations. Instead of starting the infection wave inside one node, the infection could start
for example in two different nodes, such as is shown in figure 5.4.

(a) 10 days (b) 50 days (c) 70 days

Figure 5.4: Portion of infected people at different time instances using the SIRB model with D1 =
D2 = D3 = 0.02 and the initial infection starting at two nodes
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One might expect that the two different infection spreads (waves) cause an interference pattern.
However in figure 5.4 it can be seen that no such pattern forms. Since the number of susceptibles
is very low in the regions where the disease already occurred a second infection wave is not possi-
ble, until some time has passed for the group of susceptibles to grow due to birth of newborns. So
therefore 5.4 illustrates that the two infection waves merge and cause further spread of cholera.

5.3 RANDOM SPREAD

Another possible initial situation is a random pattern as shown in figure 5.5a. The initial number
of infected people I0 inside each node was randomly selected between 0 and 0.001 and the total
number of people in each node has been taken 1. It can be seen in figures 5.5b-5.5d that due to
diffusion the pattern becomes smoother over time.

(a) 0 days (b) 10 days

(c) 20 days (d) 40 days

Figure 5.5: Portion of infected people at multiple time instances for the SIRB model using random
initial conditions and D1 = D2 = D3 = 0.01

By increasing the diffusion constants the number of infected is more spread and the patterns
become more smooth. This is shown in figure 5.6, where the diffusion constants were taken as
D1 = D2 = D3 = 0.02. The exact same random situation as in figure 5.5 was used, but we see
that at the same instances the pattern looks more smooth for the model with higher diffusion. If
we consider the maximum values of infected for both the low and high diffusion, we see that at
each time instances these are nearly the same. In this case the diffusion constants do not seem
to influence the number of infected, but do influence how they are spread over the domain. To
confirm this finding, for another random initial situation the average number of infected was
calculated at different time instances and for different diffusion constants. In table 5.1 the results
are shown.
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(a) 0 days (b) 10 days

(c) 20 days (d) 40 days

Figure 5.6: Portion of infected people at multiple time instances for the SIRB model using random
initial conditions and D1 = D2 = D3 = 0.02

10 days 20 days
D1,D2,D3 Average Maximum Minimum Average Maximum Minimum

0.01 0.01901 0.02147 0.01671 0.19527 0.19552 0.19467
0.02 0.01902 0.02082 0.01749 0.19529 0.19551 0.19497
0.06 0.01902 0.01995 0.01830 0.19530 0.19543 0.19513
0.10 0.01902 0.01967 0.01967 0.19530 0.19540 0.19515

Table 5.1: Average, maximum and minimum number of infected for different diffusion constants
D1,D2,D3 = [0.01,0.02,0.06,0.10] at different time instances 10 and 20 days.

In table 5.1 it can be seen that the average number of infected is (almost) the same for all values of
the diffusion constants. The differences however can be found in the minimums and maximums.
For low values of the diffusion constant there is more variety between the minimum, maximum
and average. For large values of the diffusion constant the pattern is very smooth and therefore
the minimum, maximum and average will be relatively close together. However the table illus-
trates that at a later time instance (in this case 20 days) the difference between the maximums of
the diffusion constants decreases. This can be explained, since at this point all models are more
evenly spread due to diffusion and the differences become smaller. To show the influence of the
diffusion constants even better the model has also been plotted in 3D. This is presented in figure
5.7.
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(a) D1,D2,D3 = 0.01 (b) D1,D2,D3 = 0.02

Figure 5.7: Portion of infected people at 10 days for the SIRB model using random initial condi-
tions and two different values for the diffusion constants

In the 3D figure above the influence of the diffusion coefficient is very clear. The figure supports
the findings from table 5.1. As we already saw in figures 5.5 and 5.6 the pattern for a higher value
of diffusion is smoother than for a lower value. The 3D image illustrates clearly that the peaks in
infections are less high.

5.4 DISCUSSION

Although the diffusion model is less flexible than the patches model it can still be used to study
spreading patterns of airborne diseases. In this section we saw that it can be applied to different
initial situations. The diffusion constants D1, D2 and D3 turned out to influence the speed of spa-
tial spread and the smoothness of the patterns arising.

Certain epidemic patterns that are studied are so called Turing patterns. [11] [22] [23] In 1952 Tur-
ing [24] suggested that passive diffusion could interact with reaction in such a way that diffusion
could destabilise the symmetric solutions of the reaction-diffusion model. When this happens
Turing patterns occur. Turing patterns can be found in nature, chemistry and also in epidemic
models if the parameters are properly chosen. The epidemic diffusion models can then give rise
to Turing stationary patterns as a result of diffusion. [22]

In this section we already saw some patterns arising from the diffusion model, but a study into
Turing stability and patterns arising from diffusion driven instability, would give better insight in
under which circumstances these patterns could occur. Very little research has yet been done into
Turing patterns for epidemic models concerning indirect infectious diseases, like cholera.
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6 CONCLUSION

The reproduction number R0 turns out to be one of the most important indicators to see if an
infectious disease will cause a large epidemic. In chapter 3 it has been shown that when R0 < 1
the solution will go to the disease free equilibrium. This DFE only turns out to be stable for R0 < 1.
When R0>1 there are two equilibrium solutions: the disease free equilibrium and the endemic
equilibrium. Since the DFE is unstable for these values of the reproduction number the solution
will go to the EE unless the initial state is the DFE.

Furthermore two spatial extensions to the SIRB model have been considered. The spatial patches
model turned out to be a very flexible model. Two different measures against the infectious dis-
ease cholera, quarantine and medicine, were studied for the different patches. Since developing
a medicine takes time there is no short term influence of this measure on the number of infected.
Long term a medicine can drastically decrease the number of infected. Quarantine, on the other
hand, does not influence the number of infected inside each of the patches, but does slow the
spread of the disease between the patches. This can be useful when there is for example a chance
on shortages of supplies. A combination of both measures would give the most optimal situation;
the spread of cholera is slowed by quarantine, until a medicine is produced.

Using the patches model, it is not only possible to study the influence of certain measures against
cholera, but it is also quite easy to incorporate other environmental circumstances, such as a river.
The best feature of the patches model is likely the flexibility. Different parameters can be taken in
each of the patches and the migration between the patches can also be customised. The patches
model can therefore be used to study a wide range of circumstances.

The diffusion model might be a little less flexible, but does give general information about pattern
formation. The results for disease spread originating in one point is similar to that of the patches
model. By increasing the diffusion coefficients the disease will spread faster to the boundary of
the domain, but the number of infections will be the same as for a low diffusion number. When
considering an initial situation with random infection spread it can be concluded that the dif-
fusion coefficients influence the smoothness of the solutions. For the random initial situation a
pattern of peaks and holes appears. For a larger diffusion number these peaks are less high and
more smooth.

Further research into these spatial cholera models would definitely be worthwhile. A cholera in-
fection can be deadly if not treated fast (within a few hours).[3] The treatment consists simply of
hydration. The mortality of the disease was not currently taken into account. It could be inter-
esting to study the influence of this mortality on the total number of infections. Furthermore, the
flexibility of the diffusion model could be challenged by for example trying to implement differ-
ent measures against cholera inside the model. Also environmental impacts could possibly be
implemented. More research into pattern formation for the diffusion model of cholera would be
recommended. A study into Turing instability for spatial cholera models will provide more infor-
mation about certain patterns that can arise from these models.

Lastly it would be interesting to verify the spatial models with existing data of cholera epidemics.
Especially the patches model can be used to simulate the spread of cholera between different vil-
lages in a certain region. The primary reason for mathematical modelling of infectious diseases is
to get a better understanding of how the disease will develop inside a population and study pos-
sible measures that can minimise this spread. By linking the mathematical models for cholera to
real data we get closer to the goal of understanding the disease spread in certain regions.
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A FINITE DIFFERENCE MATRIX

The Laplacian operators in equations 5.1-5.3 have been discretized as follows:

∇2ui , j =
−4ui , j +ui+1, j +ui−1, j +ui , j+1 +ui , j−1

d x2

Discretizing through x → (x0, x1, x2, ..., xN ) and y → (y0, y1, y2, ..., yN ) and applying Neumann bound-
ary conditions at the boundary of the domain the following scheme can be obtained:

St+1 = St +d t
dSt

d t
+d tD1 ASt (A.1)

It+1 = It +d t
d It

d t
+d tD2 AIt (A.2)

Bt+1 = Bt +d t
dBt

d t
+d tD3 ABt (A.3)

where St . It and Bt are in lexicographic order and A can be determined using the boundary con-
ditions and the discretization of the Laplacian:

∇2Xi , j =
−4Xi , j +Xi+1, j +Xi−1, j +Xi , j+1 +Xi , j−1

h2

applying Neumann boundary conditions:

∇2X0,0 =
−4X0,0 +2X0,1 +2X1,0

h2

∇2X1,0 =
−4X1,0 +X0,0 +X2,0 +2X1,1

h2

∇2X0,Ny =
−4X0,Ny +2X1,Ny +2X0,Ny−1

h2

∇2X1,Ny =
−4X1,Ny +X0,Ny +X2,Ny +2X1,Ny

h2

∇2X2,0 =
−4X2,0 +X3,0 +X1,0 +2X2,1

h2

∇2XNx ,0 =
−4XNx ,0 +2XNx−1,0 +2XNx ,1

h2

∇2XNx ,2 =
−4XNx ,2 +2XNx−1,2 +XNx ,1 +XNx ,3

h2

So the following matrix is obtained for A:

A = 1

h2



−4 2 0 2
1 −4 1 0 2
0 1 −4 1 0 2
...

. . .
. . .

. . .
. . .

. . .

0 2 −4 0 2
1 0 −4 2 1
0 1 1 −4 1 1

. . .
. . .

. . .
. . .

. . .

2 0 −4 2
0 2 0 1 −4 1

0 2 2 −4


37



B CODE SIRB MODEL

The code below belongs to the non-spatial SIRB model discussed in section 2.2

import matplotlib.pyplot as plt
import numpy as np

#Initial values
S = 1000
I = 10
R = 0
B = 0
N = S+I+R

#Timestep and endtime
dt = 0.01
T = 100

#Transmission constants
B_h = 1/2 #Human-human
B_e = 1/4 #Environment-human
g = 1/3 #Recovery rate
m = 0.001 #Mortality
k = 0.001 #Birth rate
a = 0#5 #Disease induced mortality
eps =1 #Infected people-water
nb = 0.1 #Cholera loss in water
mb = 0 #Cholera growth in water

#Functions for calculating dt
def dtS(S,I,R,B,N):

return - B_h*I*S/N-m*S+k*N-B_e*B*S

def dtI(S,I,R,B,N):
return B_h*I*S/N-(g+m+a)*I+B_e*B*S

def dtR(S,I,R,B,N):
return g*I-m*R

def dtB(S,I,R,B,N):
return eps*I-(nb-mb)*B

#Using Euler Forward to calculate epidemic
def Epidemic (S,I,R,B,N,dt,T):

S_list,I_list,R_list,B_list,N_list =[],[],[],[],[]
for i in range (int(T/dt)):

#Make copies
Sc,Ic,Rc,Bc = S,I,R,B
#Caculate newvalues
S = Sc + dt * dtS(Sc,Ic,Rc,Bc,N)
I = Ic + dt * dtI(Sc,Ic,Rc,Bc,N)
R = Rc + dt * dtR(Sc,Ic,Rc,Bc,N)
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B = Bc + dt * dtB(Sc,Ic,Rc,Bc,N)
N = S+I+R
S_list.append(S)
I_list.append(I)
R_list.append(R)
B_list.append(B)
N_list.append(N)

return S_list,I_list,R_list,B_list,N_list
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C CODE PATCHES MODEL

The code below belongs to the spatial patches model discussed in chapter 4. An Euler forward
scheme has been used.

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

#Spatial patches model:

np_x = 15 #Patches in x direction
np_y = 15 #Patches in y direction

np_t = np_x*np_y #Total number of patches

#Initial values in each of the patches:
S = np.array([1000 for patch in range(np_t)],dtype=float)
I = np.array([0 for patch in range(np_t)],dtype=float)
R = np.array([0 for patch in range(np_t)],dtype=float)
B = np.array([0 for patch in range(np_t)],dtype=float)
#Start of disease:
I[112] = 10

N = S+I+R

#Parameters:
B_h = 1/2
B_e = 1/4
g = 1/3
mu = 0.001
k = 0.001
e = 1
g_b =0
l_b =0.1
c =1000

#Time
dt = 0.1
T = 100

#Create Migration
m = np.zeros((np_t,np_t))
mi = 0.001
for i in range(np_t):

#Top left corner
if i==0:

m[i][i+np_x] = mi
m[i][i+1] = mi

#Top row
elif i<(np_x-1):

m[i][i+1]=mi
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m[i][i-1]=mi
m[i][i+np_x]=mi

#Top right corner
elif i==np_x-1:

m[i][i-1]=mi
m[i][i+np_x]=mi

#Bottom left corner
elif i ==(np_x*np_y-np_x):

m[i][i+1]=mi
m[i][i-np_x]=mi

#Bottom row
elif i <(np_x*np_y-1) and i>(np_x*np_y-np_x):

m[i][i+1]=mi
m[i][i-1]=mi
m[i][i-np_x]=mi

#Bottom right corner
elif i == (np_x*np_y-1):

m[i][i-1]=mi
m[i][i-np_x]=mi

#Left row
elif (i%np_x)==0:

m[i][i+1]=mi
m[i][i+np_x]=mi
m[i][i-np_x]=mi

#Right row
elif ((i+1)%np_x)==0:

m[i][i-1]=mi
m[i][i+np_x]=mi
m[i][i-np_x]=mi

else:
m[i][i-1]=mi
m[i][i+1]=mi
m[i][i+np_x]=mi
m[i][i-np_x]=mi

def Epidemic (S,I,R,B,N,dt,T):
S_matrix =np.zeros((np_t,int(T/dt)))
I_matrix =np.zeros((np_t,int(T/dt)))
R_matrix =np.zeros((np_t,int(T/dt)))
B_matrix =np.zeros((np_t,int(T/dt)))
N_matrix =np.zeros((np_t,int(T/dt)))
for i in range (int(T/dt)):

print(i)
Sc,Ic,Rc,Bc,Nc = S,I,R,B,N
for p in range(np_t):

#Determine migration:
Sm,Im,Rm = 0,0,0
for q in range(np_t):

mqp = m[q][p]
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mpq = m[p][q]
Sm = Sm + Sc[q]*mqp - Sc[p]*mpq
Im = Im + Ic[q]*mqp - Ic[p]*mpq
Rm = Rm + Rc[q]*mqp - Rc[p]*mpq

#Update new population
Sp,Ip,Rp,Bp = Sc[p],Ic[p],Rc[p],Bc[p]
S[p] = Sp + dt*(k*Nc[p]-mu*Sp-B_h*Sp*Ip/Nc[p]-B_e*Sp*(Bp/(Bp+c))+Sm)
I[p] = Ip + dt*(B_h*Sp*Ip/Nc[p]-mu*Ip-g*Ip+B_e*Sp*(Bp/(Bp+c))+Im)
R[p] = Rp + dt*(g*Ip-mu*Rp+Rm)
N[p] = S[p]+I[p]+R[p]
#And Bacteria
B[p] = Bp + dt*(e*Ip+(g_b-l_b)*Bp)

S_matrix[p][i] = S[p]
I_matrix[p][i] = I[p]
R_matrix[p][i] = R[p]
B_matrix[p][i] = B[p]
N_matrix[p][i] = N[p]

return S_matrix,I_matrix,R_matrix,B_matrix,N_matrix

Sr,Ir,Rr,Br,Nr = Epidemic (S,I,R,B,N,dt,T)

time = np.array(range(int(T/dt)))*dt

#Plot infections in each patch
def plotEpidemic(Ir,T):

timesegment = int(T/dt)
for p in range(np_t):

colores = Ir[p][timesegment-1]*-180.0/300.0+180
plt.plot(p%np_x,int(p/np_x),marker = "s",markersize=20,

color=(colores/255.0, colores/255.0, colores/255.0))
plt.title(str(T))
plt.show()
return

For the study of the potential measures quarantine and a medicine the following Euler forward
code has been used:

def Epidemic (S,I,R,B,N,dt,T):
S_matrix =np.zeros((np_t,int(T/dt)))
I_matrix =np.zeros((np_t,int(T/dt)))
R_matrix =np.zeros((np_t,int(T/dt)))
B_matrix =np.zeros((np_t,int(T/dt)))
N_matrix =np.zeros((np_t,int(T/dt)))
for i in range (int(T/dt)):

#Condition for medicine
if i>300:

g = 1/2
else:

g=1/3
Sc,Ic,Rc,Bc,Nc = np.copy(S),np.copy(I),np.copy(R),np.copy(B),np.copy(N)
for p in range(np_t):
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#Determine migration:
Sm,Im,Rm = 0,0,0
for q in range(np_t):

#Condition for quarantine
if Ic[p]>10 or Ic[q]>10:

mqp = 0
mpq = 0

else:
mqp = m[q][p]
mpq = m[p][q]

Sm = Sm + Sc[q]*mqp - Sc[p]*mpq
Im = Im + Ic[q]*mqp - Ic[p]*mpq
Rm = Rm + Rc[q]*mqp - Rc[p]*mpq

#Update new population
Sp,Ip,Rp,Bp = Sc[p],Ic[p],Rc[p],Bc[p]
S[p] = Sp + dt*(k*Nc[p]-mu*Sp-B_h*Sp*Ip/Nc[p]-B_e*Sp*(Bp/(Bp+c))+Sm)
I[p] = Ip + dt*(B_h*Sp*Ip/Nc[p]-mu*Ip-g*Ip+B_e*Sp*(Bp/(Bp+c))+Im)
R[p] = Rp + dt*(g*Ip-mu*Rp+Rm)
N[p] = S[p]+I[p]+R[p]
#And Bacteria
B[p] = Bp + dt*(e*Ip+(g_b-l_b)*Bp)

S_matrix[p][i] = S[p]
I_matrix[p][i] = I[p]
R_matrix[p][i] = R[p]
B_matrix[p][i] = B[p]
N_matrix[p][i] = N[p]

return S_matrix,I_matrix,R_matrix,B_matrix,N_matrix
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D CODE DIFFUSION MODEL

The code in this section belongs to chapter 5 where the diffusion SIRB model was discussed.

import numpy as np
import matplotlib.pyplot as plt
import scipy.sparse as sp
import scipy.sparse.linalg as la
import math
import random
from mpl_toolkits.mplot3d import Axes3D

xsize = 15
ysize = 15
dx = 0.1
Nx = int(xsize/dx)
Ny = int(ysize/dx)

#Grid point x and y
xgrid = [dx*i for i in range(0,Nx+1)]
ygrid = [dx*i for i in range(0,Ny+1)]

#Create the diagonals
def createA(Nx,Ny,dx,xsize,ysize,xgrid,ygrid):

#Diagonal 1
diagonal_1 =np.array([-4*dx**-2 for y in ygrid for x in xgrid ])
#Diagonal 2
diagonal_2 =np.array([1*dx**-2 for y in ygrid for x in xgrid])
diagonal_2 = np.delete(diagonal_2,-1)
pos_2 = [-2+(Nx+1)*(y+1) for y in range(Ny+1)]
pos_0 = [-1+(Nx+1)*y for y in range(1,Ny+1)]
for pos in pos_2:

diagonal_2[int(pos)] = 2*dx**-2
for pos in pos_0:

diagonal_2[int(pos)] = 0
#Diagonal 3
diagonal_3 =np.array([1*dx**-2 for y in ygrid for x in xgrid])
diagonal_3 = np.delete(diagonal_3,-1)
pos_2 = [0+(Nx+1)*y for y in range(Ny+1)]
pos_0 = [-1+(Nx+1)*y for y in range(1,Ny+1)]
for pos in pos_2:

diagonal_3[int(pos)] = 2*dx**-2
for pos in pos_0:

diagonal_3[int(pos)] = 0*dx**-2
#Diagonal 4
diagonal_4 =np.array([[1/dx**2 for x in xgrid] for y in ygrid[:-1]]).flatten()
pos_2 = [(Nx+1)*(Ny)-x-1 for x in range(Nx+1)]
for pos in pos_2:

diagonal_4[int(pos)] =2*dx**-2
#Diagonal 5
diagonal_5 =np.array([[1/dx**2 for x in xgrid] for y in ygrid[1:]]).flatten()
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pos_2 = [x for x in range(Nx+1)]
for pos in pos_2:

diagonal_5[int(pos)] =2*dx**-2
matrixsize = (Nx+1)*(Ny+1)

L = sp.diags([diagonal_1,diagonal_2,diagonal_3,diagonal_4,diagonal_5],
[0,-1,1,-(Nx+1),Nx+1],shape=(matrixsize,matrixsize),format="csc")

return L

#Diffusion constants
D_1,D_2,D_3=0.01,0.01,0.01

#Time constants
dt = 0.01
endtime =10

#Other constants
B_h = 1./2.
B_e = 1./8.
g = 1./3.
mu = 0.001
k = 0.001
eps = 1.
g_b =0
l_b =0.1
c =1.

N = 1

#Initial state of infections(Random):
I0 = np.array([[random.randint(0,100)/100000.0 for x in xgrid] for y in ygrid])
S0 = np.ones((Nx+1,Ny+1))-I0
B0 = np.array([[0 for x in xgrid] for y in ygrid])

I0 = I0.flatten()
S0 = S0.flatten()
B0 = B0.flatten()

#Initial state of infections(Specific node):
I0 = np.zeros((Nx+1,Ny+1))
I0[int(Nx/2)][int(Ny/2)]=1
S0 = np.ones((Nx+1,Ny+1))-I0
B0 = np.array([[0 for x in xgrid] for y in ygrid])

I0 = I0.flatten()
S0 = S0.flatten()
B0 = B0.flatten()

#Non spatial function parts
def dS(S,I,B,N):
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return - B_h*I*S/N-B_e*(B/(B+c))*S - mu*S + k*N

def dI(S,I,B,N):
return B_h*I*S/N-g*I+B_e*(B/(B+c))*S-mu*I

def dB(S,I,B,N):
return eps*I-(l_b-g_b)*B

def Euler(dt,endtime,S0,I0,B0,N,A):
S = S0
I = I0
B = B0
for time in range(int(endtime/dt)):

print(time*dt)
Sc,Ic,Bc = np.copy(S),np.copy(I),np.copy(B)
S = Sc + dt*dS(Sc,Ic,Bc,N) + dt*D_1*A*Sc
I = Ic + dt*dI(Sc,Ic,Bc,N) + dt*D_2*A*Ic
B = Bc + dt*dB(Sc,Ic,Bc,N) + dt*D_3*A*Bc

return S,I,B
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