

Delft University of Technology

An approach for data extraction, validation and correction using geometrical algorithms
and Model View Definitions on building models

Luttun, Johan; Krijnen, T.F.

DOI
10.1007/978-3-030-51295-8_38
Publication date
2020
Document Version
Accepted author manuscript
Published in
Proceedings of the 18th International Conference on Computing in Civil and Building Engineering (ICCCBE
2020)

Citation (APA)
Luttun, J., & Krijnen, T. F. (2020). An approach for data extraction, validation and correction using
geometrical algorithms and Model View Definitions on building models. In E. Toledo Santos, & S. Scheer
(Eds.), Proceedings of the 18th International Conference on Computing in Civil and Building Engineering
(ICCCBE 2020) (pp. 529-543). (Lecture Notes in Civil Engineering; Vol. 98). Springer.
https://doi.org/10.1007/978-3-030-51295-8_38
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-51295-8_38
https://doi.org/10.1007/978-3-030-51295-8_38

An approach for data extraction, validation and

correction using geometrical algorithms and Model View

Definitions on building models

Johan Luttun1 and Thomas Krijnen2

1 AECgeeks, 5616TW Eindhoven, The Netherlands
2 Delft University of Technology, 2628BL Delft, The Netherlands

lncs@springer.com

Abstract. The Industry Foundation Classes (IFC) cover a wide variety of subdo-

mains in the construction industry. Model View Definitions (MVD) enable to

specify a subset of the IFC schema to assess the content of a model for specific

use cases and information exchanges.

However, IFC and MVD paradoxically complexify the workflow since it re-

quires a deep understanding of the schema combined with construction

knowledge to carry out simple use cases such as quantity checking or data export.

This gap between domain specific queries and their expression in a computer-

readable language weakens the opportunities provided to the building industry

by Building Information Modeling.

Our research consists in the implementation of MVDs in a high-level pro-

gramming language to extract data from building models, an assessment of the

extraction results and geometrical processing algorithms to correct the explicit

quantities and properties that are supplied as metadata alongside the elements in

IFC building models.

Geometrical processing can be used to reduce and eventually correct errors on

property values. We use a generic geometrical representation of IFC entity in-

stances and apply geometrical transformations on those to obtain geometrical

shapes. Boolean operations are used to identify relationships between elements.

Eventually, incorrect data values are corrected directly in the IFC models accord-

ingly to the IFC schema.

For instance, we authored an MVD to extract data pertaining to external walls

from different IFC models and corrected the value of the IsExternal property of

the models’ IfcWall entities. This use case is of great importance for the cost

estimation of a thermal renovation on a building as it gives a good estimate of the

outer surface area of the building envelope.

Keywords: Building Information Modeling (BIM), Industry Foundation

Classes (IFC), Model View Definitions (MVD).

2

1 Introduction

1.1 Industry Foundation Classes

The Industry Foundation Class (IFC) standard, developed by buildingSMART, a

worldwide community of actors from the construction industry, aims to provide in-

teroperability between software applications while describing specific domain-related

products. Indeed, the density of information conveyed between the project actors and

used by different software applications requires a neutral format for import and export.

However, the IFC models used in the industry contain several errors [1] regarding to

data accuracy, structure, or existence, which compromises the benefits brought by a

BIM workflow: saving time and increasing project quality thanks to the storing of reli-

able data. The multiple translations between software applications, the heterogeneity of

domain activities, and the diversity of use cases make digital exchanges error prone. In

addition to data related errors, geometry errors are also responsible for unusable models

and depreciating BIM added value.

Elements in a building element model have one or more geometrical representations,

a placement that locates the element in 3D space and a set of associated semantic con-

structs such as material information and property sets, in which the latter allow for more

user- or application defined key-value pairs. A subset of the property names in a model

follows standardized patterns by buildingSMART, for example for IfcWall elements

information, a field IsExternal is typically available to document whether the element

is part of the external façade of the building. There are also numeric properties such as

volume and surface area available in quantity sets.

The geometry definitions in IFC constitute a large part of the IFC schema and a large

part of the considerable implementation effort for applications to fully support IFC.

These constructs, called representation items, can be simple explicit polyhedra or fairly

complex sweeps and revolutions with boolean operations applied to them. The implicit

geometry definitions and hierarchical placements make discovering simple geometric

relationships between elements such as containment and adjacency, computationally

expensive. Therefore, these relationships such as spatial containment in the project de-

composition structure, connectivity information between walls and space boundaries

are explicitly provided in the model as objectified relationships.

One of the most investigated topics in the construction industry is the reduction of

the energy consumption of buildings and the limitation of their environmental hazards,

particularly the carbon footprint, at each phase of their whole life cycle [2]. Thanks to

IFC specifications, forecasting the CO2 released by a building throughout these phases,

which requires an accurate modeling of quantities and materials used, is more afforda-

ble. The data stored in an IFC file offers a real opportunity to carry out such use cases,

that depend on specific and accurate data. For example, the capacity to extract infor-

mation about the external walls to calculate the façade area of a building is an important

step towards the appropriation of BIM by end-users because it can be incorporated into

3

decision-making processes, for instance at design or at earlier phases. The estimation

of physical quantities allows for use cases that answer to other than purely technical

rules, such as the financial ones. Thermal losses are determining variables for the cal-

culation of energy consumption, which is a main part of a building’s CO2 emissions

[2]. Since conductive heat transfer takes place between heated and non-heated volumes

through their common surface [3], insulating the building façade with less permissive

materials reduces this transfer rate, and thus mitigates the amount of energy needed to

maintain the thermal comfort temperature. In addition, façade geometry and materials

intervene in the comfort, financial, and esthetic metrics of a building, and has been the

object of optimization research[3, 4]. Therefore, using IFC to model external walls in

terms of geometry, composition, quantities, and extract information about them brings

several benefits to the construction industry.

1.2 Model View Definitions

The mvdXML format [5] is an open-standard developed by buildingSMART, whose

function is to define a subset of an IFC model. This subset is called a Model View

Definition (MVD) and represents a certain part of the IFC data available in the model.

The objective of an MVD is to ensure the delivery of the right and valid IFC data in the

exchanges of the project actors, throughout the digital chain.

In order to do so, the MVD standard uses Concepts objects, which are the imple-

mentation of Concept Templates. Concept Templates represent a general notion such

as the relationship between an element and associated properties, that can be applied to

one or many entities in the model. This notion can be represented as a tree structure.

For example, the notion of externality for an IfcWall element can be modelled as shown

in Fig. 1.

The nodes of the Concept Template tree are Rule or Constraint objects. The Attrib-

uteRule nodes impose the name of attributes while the EntityRule nodes define the type

that should be used for a value. Moreover, the nodes can be constrained by adding

Constraint nodes. Those rules can also be expressed as logical expression, as detailed

in [6, 7].

4

Fig. 1. The externality of IfcWall concept edited in the IfcDoc tool [8]

Overall an mvdXML file is a hierarchical structure forming a tree graph, with a root node

mvdxml:root, and two main branches: the mvd:Templates, and the mvd:Views. In the templates

branch, the Concept Templates are defined. In the Views branch, there can be one or several

Concept Root nodes respectively representing an IFC entity towards which the concepts defined

in the Concept Template nodes are applied. Moreover, Constraint nodes can be applied on the

Rules nodes to impose a value of entity or attribute.

2 Literature review

2.1 Checking and validation

The diversity of disciplines and stakeholders involved in a construction project leads to

an important number of rules to comply with [7, 9]. Indeed, checking whether a build-

ing project respects regulations require a set of numerous, precise, and reliable pieces

of information about specific activities. BIM workflow allows to store, access, modify

and share an unlimited amount of data about a construction project. The data enables

to derive knowledge about the project and use it for rule checking, among other use

cases [10]. However, the time saved will be only transferred from on operator to another

if attributes values need to be analytically derived and then fulfilled to the model. The

challenge is to write algorithms that can retrieve the implied knowledge of a building

model by limiting the time-consuming tasks of data input and preprocessing [11]. To

fulfill this objective, an assurance of the reliability of data is necessary. It depends on a

strict formalization of the structure of the IFC information as well as compliance with

minimal requirements on the model, such as minimal space requirements or absence of

geometric collision [12].

The IFC model needs to respect storing requirements, that include the needs of ap-

plication programs, in order to be useful for other applications than the one it has been

originally edited on. In addition, rules are imposed on the data by regulatory conven-

tions. Those rules have been acknowledged in previous research [6, 7] and concern the

data existence and cardinality, the data content, the data uniqueness, and conditional

dependency of data. The data existence imposes the presence of certain entities in the

model, or as attributes of other entities. The data content requires a certain type or a

certain value for data. The data uniqueness necessitates that for example only one Glob-

alId or one Name attributes should exist for any instance of an IfcRoot subclass. Fi-

nally, since there could be several ways to store data, the conditional dependency can

be used in some cases to check the coherence of linked information.

2.2 State of the art of Model View Definition uses

As stated in [7], an MVD is an IFC subschema used for checking data compliance with

diverse requirements. While is it mostly used to check the storing requirements, there

are differences in the way MVD are embedded in a whole checking system. Moreover,

5

the output of the validation process is often a viewer displaying in highlighting the

geometric representation of non-compliant IFC instances.

In the state of the art section of [6], the different MVD methods are listed and cate-

gorized according to various parameters: IDM, Model subset extraction, Validation

Rules, Implementation of the validation function, OpenStandard, Edit tool. Among the

five methods listed, none of them implements a validation function. In this work, the

authors check the data storing structure of the model as described earlier. They give

detailed examples of MVDs structure as well as a logical definition of the rules. The

elements checked are part of BIM regulations. The output consists in BCF files that

report the non-compliant entities in a shareable way.

In [13], mvdXML files are used to check space requirements for the design of a hospi-

tal. This work illustrates how MVDs can be implemented at the project scope, for a

construction project. For example, this study mentions how the MVDs are defined with

the building experts, to ensure interoperability between software applications. In addi-

tion, an effort is made to involve the building end-users in the MVD definition process,

by fulfilling their requirements through CSV spreadsheets. The validation output is ren-

dered in a viewer.

In [7] the MVD presented is used to comply with the Precast Concrete Industry (PCI)

requirements, which shows the reusability of the method for a specific types of building

elements, as in [6]. This research also provides a logical notation of the MVDs. Indeed,

the set of rules defined by the PCI are registered into what the authors called a PCI

MVD. The MVD is edited into the IfcDoc tool and a building project is checked against

it. The results of the validation are shown within the IfcDoc tool.

More recently, Eastman [10] used a BACnet MVD that offers promising perspec-

tives for data communication between IFC files and Building Automation System

(BAS). This work allows the integration of a BAS in the design process, until now

excluded from BIM workflow, and enables its operation by creating new IFC modeling

types. A prototype is tested, which shows how BAS object families can be modeled in

the authoring tool Revit. The BACnet MVD is used to export these Revit objects con-

tent to populate IFC files and import the data in a web-based application, considered as

more accessible than the IfcDoc tool. This study demonstrates how an MVD formali-

zation can fix the interoperability problem on use cases that had not been tackled until

now and thus expand BIM benefits.

2.3 Conclusion

Regarding checking processes, the distinction between data and geometric checking is

well marked but there are few works which attempt to fix semantic-geometric coher-

ence of models [14, 15]. The identification of this issue is of great importance to accu-

rately deliver high quality models, and it is where BIM offers real opportunities, when

it enables to detect implicit knowledge as a domain expert would [16].

In cited research [13], MVDs are used as validation tools for data structure compli-

ance with Exchange Requirements. Generally, studies agree on the benefits of

mvdXML standards, attributed to metrics such as simplicity of edition and reusability

6

[6]. Current validation processes using MVDs consists in the edition of an mvdXML

file, use a program to extract data from the IFC file, and eventually execute the

mvdXML file on the IFC file. However, while there is a uniform way to define the

requirements, the data extraction depends on a specific programming language, and set

of tools. While it shows the strength of open standards, which is to read and edit data

from any tools it also compromises reusability of such use cases.

In terms of the limitation of MVDs for data validation, [7] acknowledges that there is

neither an easy nor convenient way for domain users to carry out the validation process

by themselves. The IFC schema and mvdXML data model represent a barrier towards

the adoption of this validation method. It is indeed necessary to provide user-friendly

tools, as IfcDoc, to reduce computer science proficiency requirements from of the end-

users.

Most of the exchange in a building project are not linear, and there is not always an

order to follow in the validation. Efforts are concentrated on designing a system of

exchange which can be hard to implement in a construction project. There are few men-

tions of a reactive approach instead, a tool or method that would allow any user in the

chain to make the extraction and validation for its own use case. Generally, research

assumes models have been validated throughout the phases of a project. However, these

assumptions are valid when the collaboration is effective and BIM proficiency is ad-

vanced among the construction actors. In most situations, the model is wrong and there

are few ways that give unfamiliar users to take advantage of the model it receives [7].

3 Contribution

3.1 Approach overview

We propose a set of open-source tools that use MVDs to extract, filter, and eventually

export data from an IFC model coupled with corrective geometrical algorithms, assur-

ing coherence between geometric and semantic information in the model. Our approach

enables a wide variety of use cases such as quality assurance and code checking thanks

to powerful extractive features. It relies on a formal and shareable definition of IFC

data extraction, through mvdXML Concept Templates, and offers the possibility to ex-

port the data in an easily readable format such as a spreadsheet.

The method is based on the definition of one or multiple queries on the IFC file

through an easily generable but formal and shareable specification in the form of

MVDs. The gap existing between the information needed and the data formulation re-

lies on knowledge about buildings and IFC format. For example, if the total surface of

the façade is to be known, building practitioners must extract the surface quantity of all

the external walls, assuming there are no curtain walls, and sum them up. Once that

formulation is stated and transformed in an MVD, data can be extracted from the IFC

file for domain specific activities.

As a drawback of the freedom offered by a neutral format, the data is not stored in

uniformly in all IFC files [6] and makes it necessary to explore the model first in order

to find how the hierarchical layout is articulated. For instance, for two different building

7

projects, the information about the wall area is stored in an IfcQuantitySet entity type

whereas in the Duplex file it is stored in an IfcPropertySet entity type. In our approach,

it obliges the user to build a new Concept Template per feature value. Therefore, we

believe in a potential learning effect from this framework, enabled through the habit of

editing trees of MVD to extract data.

Fig. 2. The framework used for our approach. IFC values are collected throughout Concepts. The

process shows the iteration over the Concepts, and the retaining of values mapped to entities.

Those concepts can filter the entities as an mvdXML Applicability. For example, acts as a filter

and only IfcWall instances pertaining to external walls will be extracted, also for each of the

remaining concepts.

As shown in Fig. 2, the program developed through this research extracts data from

Concept Templates units applied in series on IFC entities, whose type is determined

through a Concept Root. Two functionalities exist in the program. First, as the entities

pass the Concept Template units, the data required is collected. In addition, some Con-

cept Templates can be made restrictive by constraining some of the values and thus

excluding entities that do not comply with those constraints. Therefore, the data struc-

ture validation as in [6, 7] is also embedded in our extraction process, since data that

do not comply will not be extracted.

3.2 Description of the extraction and validation algorithm for quantities of

external walls

The extractive functionality of our program relies on a recursive function that extracts

attribute values from IFC entity instances while traversing the MVD Concept Tem-

plates. First, the program maps an mvdXML file to a high-level programming

8

language to access its underlying structure. The mapping enables to store the Concept

Template nodes applied on the ConceptRoot we want to extract data from in a varia-

ble to iterate over them. The program extracts the entities referenced by a Concep-

tRoot. Then, for each iteration over the Concept Template nodes, a traverse function

is called, taking as input the entities and an mvdXML node, root of the considered

MVD Concept Template tree, and will return a collection of EntityRule nodes map-

ping to literal value in IFC or literal values. Therefore, for each iteration, the results of

the function correspond to one column of the spreadsheet export.

As presented in Fig. 3, the function recursively traverses the Concept tree while stor-

ing the data required by the AttributeRule, EntityRule, and Constraint mvdXML objects

along the nodes. The behavior of the function differs based on the nature of its MVD

node argument. Usually, for the initial call of the function all the IFC entities are passed

with the root node of the Concept tree, an AttributeRule. The base case of the recursion

occurs when the mvdXML node considered by the function is a leaf or when the child

node of an EntityRule node is a Constraint. When the MVD node is an EntityRule the

subset of currently supplied instances is taken that matches the IFC entity supplied and

the recursive traversal continues. When the MVD node is a Constraint or leaf node the

currently supplied literal values are passed to the higher-level invocation in the call

stack. When the MVD node is an EntityRule there can be multiple AttributeRules

meaning that at this point the results obtained from the lower level invocation on the

call stack need to be combined. When the MVD node is an AttributeRule the different

IFC instances can result in different attribute valuations so the size of the result set

grows. For more details, we refer the reader to the open source repository containing

the tools at https://github.com/opensourceBIM/python-mvdxml.

Fig. 3. Example of the extractive function applied on an IfcPropertySet EntityRule node. Enti-

tyRule, AttributeRule, Constraint are respectively represented by rectangular, slightly rounded

edges, and bolded edges boxes. Output values are attached to the leaves by dotted lines and

bolded arrows show the output process.

https://github.com/opensourceBIM/python-mvdxml

9

3.3 Limits of BIM and proposition of a corrective approach

MVDs are efficient tools to extract data from specific entities but reliability of infor-

mation is necessary to bring a real value to the construction industry. Indeed, as stated

previously, many models delivered in the professional sector lack coherence and com-

port errors. For example, there can be errors on the quantities directly calculated in the

attribute values of the entities. Moreover, non-trivial information must also be verified,

as the externality of elements such as the walls. The main use example of our work

aims to show that it is possible to use easily edited MVD to export data to a well-known

format, to gather the necessary quantity information necessary to carry out the cost es-

timation of façade insulation or run a thermal analysis. Nevertheless, this simple use

case in theory is unfeasible without the assurance that the IFC data exported is reliable.

The models shared in practice are not reliable when received by a project actor. The

exchange that appears throughout the digital chain can be a cause because each export

uses its own export module and the accumulated errors result in a flawed model. More-

over, there can be modeling errors, such as not defining the spaces correctly. Finally,

one of the most important sources of errors is the absence of systematic checking on

project. And this is more globally due to an absence of BIM execution plan at the pro-

ject scope. The use cases not defined before the beginning of the design phase results

in uncontrolled exchanges.

Hopefully, primary -or low-level errors- can be fixed thanks to geometrical algo-

rithms. Open source tools such as IfcOpenShell [17] enable access to the geometry de-

scription of IFC entities. Moreover, it also provides functionalities to access the schema

at runtime, to delete the wrong entities values and their relationships, to eventually con-

struct new entity instances and write them onto a newly corrected file. Almost all the

geometric and data related can be fixed using such methods, but the difficulty is that

there is no finite set of errors to check. It is therefore hard to fully automate data fixing

for every case, especially when all the error cases are unknown. However, it can be

done for frequently used data such as quantities or elements externality. The adoption

of BIM by end-users relies on the confidence they have in the tool and their capacity to

use it to fulfill their needs. It is better to be able to have basic information reliable than

a lot of derived information based on false primary data.

As discussed in the Introduction section, the IFC schema offers for a wide variety of

geometry definitions that are potentially complicated to evaluate. Existing software can

be used to transform the implicit engineering constructs in IFC into an explicit and

universal description called a Boundary Representation (BRep). It is not an approxima-

tion (as would be the case for a triangle mesh for example) but has full geometric fidel-

ity for arbitrarily curved surfaces. A BRep is a hierarchical structure of topological

items: Solid, Shell, Face, Loop, Edge, Vertex. A Face for example contains one or more

Loops that bound an area over a surface. A Loop contains a pairwise connected se-

quence of Edges. Three of the topological constructs have associated geometry. A Face

has an underlying Surface, an Edge is associated to a Curve and Vertex is located at a

Point. In this research IfcOpenShell is used to convert the IFC geometry into the BRep

format of Open CASCADE [18], the latter implements a wide variety of modeling and

10

analysis functionality, such as Boolean operations and the calculation of area and vol-

ume.

We consider an external wall as a wall that is not separating two internal spaces. For

the simplicity of our example, we did not add additional constraints on the definition of

externality for a wall. Checking the externality of a wall demonstrates the complexity

of assigning a degree of trust to an IFC model and reinforces the need for the systematic

verification of such cases. The IfcWall and IfcSpace representations enable to store the

faces of those objects. Thus, we spot the internal walls as the one which have two of

their biggest vertical faces intersecting shell representations of spaces. If a wall shares

two common faces with a space, then it is not external.

Fig. 4. Illustration of the spreadsheet output resulting from our program which has successfully

exported the Name (name column) and the Area (surface column) values of IfcWall instances

whose IsExternal attribute value is set to true. The summation of the area demonstrates the sim-

plicity of the use case.

name surface external

Basic Wall:Party Wall - CMU Residential Unit Dimising Wall:139234 12 TRUE

Basic Wall:Party Wall - CMU Residential Unit Dimising Wall:139347 12 TRUE

Basic Wall:Party Wall - CMU Residential Unit Dimising Wall:139374 0 TRUE

Basic Wall:Foundation - Concrete (417mm):140479 11 TRUE

Basic Wall:Foundation - Concrete (417mm):140520 22 TRUE

Basic Wall:Foundation - Concrete (417mm):140554 10 TRUE

Basic Wall:Foundation - Concrete (417mm):140602 21 TRUE

Basic Wall:Foundation - Concrete (435mm):140913 5 TRUE

Basic Wall:Foundation - Concrete (435mm):140987 5 TRUE

Basic Wall:Foundation - Concrete (435mm):141018 2 TRUE

Basic Wall:Party Wall - CMU Residential Unit Dimising Wall:143239 38 TRUE

Basic Wall:Exterior - Brick on Block:138157 50 TRUE

Basic Wall:Exterior - Brick on Block:138310 48 TRUE

Basic Wall:Exterior - Brick on Block:143410 17 TRUE

Basic Wall:Exterior - Brick on Block:143534 17 TRUE

Basic Wall:Exterior - Brick on Block:138062 14 TRUE

Basic Wall:Exterior - Brick on Block:138237 12 TRUE

Basic Wall:Exterior - Brick on Block:143478 41 TRUE

Basic Wall:Exterior - Brick on Block:143590 41 TRUE

Basic Wall:Exterior - Brick on Block:184944 5 TRUE

Basic Wall:Exterior - Brick on Block:185014 11 TRUE

Basic Wall:Exterior - Brick on Block:185064 5 TRUE

Basic Wall:Exterior - Brick on Block:185101 10 TRUE

503

11

Fig. 5 . Visualization of the filtered entities on Haus Elite and Smiley-West files. Source: [19]

Fig. 6 . Visualization of the filtered entities (the internal walls) for the Duplex file before and

after applying the geometrical fixing. The wall on the first floor was incorrectly classified as

external before the fixing.

4 Discussion

4.1 The importance of data extraction

The ability to read IFC values is a fundamental part of checking a model or a project

[9]. Indeed, the diversity of use cases and software applications has not delivered a

unique way to validate data yet. We state that any validation operation requires a data

extraction first. Before there could be any uniform way to validate data, extracting data

could be formalized in a standard way.

The use of a formal and shareable extraction through mvdXML files encourages

BIM adoption as different methods for querying make it a complex task for end-users.

In several works, a different approach has been used to query the information of IFC

files in order to check the rule compliance, whereas extraction is at the heart of BIM.

However, MVD was often used for software use cases, which was essentially checking

the data structure, uniqueness, or existence. With our approach, mvdXML files can be

used to directly extract information about the model for end-users in an easily accessi-

ble format. Therefore, we think of our approach as a method reducing the gap between

12

end-users programming proficiency needs and the ability to exploit IFC data, while

getting familiar with the mvdXML open-standard.

4.2 Results discussion

Extracting the data and executing a validation regarding an MVD offers a real ad-

vantage for a whole range of users. Indeed, our approach can also be used by more

experienced users who wish to reduce complexity of extraction and validation. We

therefore hope to provide a robust support for MVD validation of IFC data.

The most common uses of MVDs can be extended to data extraction, for example in

an easily readable way such as a spreadsheet for end-users. Also, MVDs can be con-

strained in a way so that IFC entities not complying with mvdXML Rules will not be

extracted, thus marked as not conform. Eventually, filtered entities can be rendered in

a viewer application.

Results are successfully extracted from the MVD and displayed in Fig.5. and Fig.6.

The results from Fig. 6 demonstrate that some external walls been have correctly ful-

filled by the model’s authors. However, there are still errors that cannot be totally spot-

ted by our algorithm. For example, on Fig.6, the IsExternal value of a wall was not

correctly classified and could lead to estimation errors if repeated on bigger projects.

The geometric algorithm used to identify external walls relies on a proper definition of

entities and a correct modeling of spaces. Without these conditions, it misclassifies the

walls regarding to their externality. For example, Fig.7 shows the walls identified as

external by the algorithm. Although the result may seem correct, there are still errors,

especially small elements which are IfcWall instances, but which does not really repre-

sent a wall. Regarding this topic, Krijnen [16] implemented an unsupervised machine

learning algorithm to carry out anomaly detection on the Duplex model, resulting in the

discovery of misclassified elements.

Fig. 7 . Visualization of external walls on a model from the construction industry after

applying the fixing algorithm. The model was delivered without any IsExternal classi-

fication, since all the walls were marked as external.

13

4.3 Validation levels and follow-up works

IFC models must be validated, particularly regarding their semantic-geometric coher-

ence, before using them to check project compliance with building codes. There is still

a vast majority of models containing lacking, unverified, wrong, or misleading infor-

mation. A model that contains errors, or whose data quality has not been checked ap-

propriately, should not represent a trusty basis for real-life checking use cases such as

structural analysis or cost estimation [14].

In the same way [9] proposes a hierarchy of rules, we believe in the necessity of the

construction of a hierarchical level of trust for IFC models. This level of trust should

start by checking that IFC instances representation correspond to their nomination, such

as what has been initiated by Krijnen [16]. Then, the model should be observed and

corrected. Our approach wishes to accomplish those use cases. Nevertheless, the iden-

tification of geometric-semantic potential issues should be made, as we did for instance

for walls externality and elements quantities. Finally, the structuration of the data in the

model, and the real-life checking will be properly be carried out.

5 Conclusion

This research seeks to highlight the opportunities offered by mvdXML files to extract

data destinated to domain specific use cases from IFC files, as well as to show IFC

values can be corrected by processing the underlying description of their geometry. In

the Introduction part, we demonstrated the role of IFC files and how we can use them

to ease completion of use cases that would bring significant advances in the construc-

tion industry. The repository containing the set of tools used in our approach is available

on https://github.com/opensourceBIM/python-mvdxml. We also showed MVD use to

validate and filter IFC values and how it provides value to the digital transmission

chain, improves models’ quality, and offers promising perspectives through new use

cases.

However, we noticed that while our results are encouraging, difficulties persist:

- In the industry, many of the models are made of errors and BIM processes

not rooted yet into practice.

- MVDs rely upon a project-based organization responsible for the BIM work-

flow processes, such as data exchanges. Current approaches seek to forecast

all the use cases rather than to give every project member the power to ex-

tract and check data independently.

- The end-users often cannot use the IFC data in an independent way. They

need a viewer application or an authoring tool, which is an intermediary be-

tween themselves and the IFC data, that can hide the full information extrac-

tion and validation possibilities offered by IFC and MVD standards.

- The data extraction and checking are usually made within software applica-

tions from a GUI, without the possibility to reuse rules from one application

to another.

https://github.com/opensourceBIM/python-mvdxml

14

Assessing these difficulties and aware of their impacts, we developed an approach

seeking to:

- Show how simple a query can be translated into an mvdXML Concept tree

- Give the ability for end-users to extract data in a familiar format to gain inde-

pendence

- Give the ability for most experienced user to build upon our work to develop

more complex parsing programs and elaborated uses of MVDs

- Show a non-trivial to detect example of errors in the building model

- Prove that it can be corrected with geometrical algorithms

- Provide a flexible way to work with IFC data and process it digitally rather

than depending on viewers or authoring tools

- Acknowledge the unknown regarding the IFC values to correct and how to

check them

Regarding the last point, we are open to collaborate on verifying the basic data of

IFC files, which can be wrongly identified, such as the space definition or the IFC en-

tity types, in order to ensure a high level of confidence for the most used IFC entity

types .

References

1. Solihin, W., Eastman, C., Lee, Y.-C.: Toward robust and quantifiable automated

IFC quality validation. Adv. Eng. Inform. 29, 739–756 (2015).

https://doi.org/10.1016/j.aei.2015.07.006

2. Wang, W., Zmeureanu, R., Rivard, H.: Applying multi-objective genetic algo-

rithms in green building design optimization. Build. Environ. 40, 1512–1525

(2005). https://doi.org/10.1016/j.buildenv.2004.11.017

3. Zemella, G., Faraguna, A.: Evolutionary Optimisation of Façade Design: A New

Approach for the Design of Building Envelopes. Springer-Verlag, London (2014)

4. Evins, R.: A review of computational optimisation methods applied to sustainable

building design. Renew. Sustain. Energy Rev. 22, 230–245 (2013).

https://doi.org/10.1016/j.rser.2013.02.004

5. Chipman, T., Liebich, T., Weise, M.: Specification of a standardized format to

define and exchange Model View Definitions with Exchange Requirements and

Validation Rules.

6. Zhang, C., Beetz, J., Weise, M.: Model view checking: automated validation for

IFC building models. In: Mahdavi, A., Martens, B., and Scherer, R. (eds.) eWork

and eBusiness in Architecture, Engineering and Construction. pp. 123–128. CRC

Press (2014)

7. Lee, Y.-C., Eastman, C.M., Solihin, W.: Logic for ensuring the data exchange in-

tegrity of building information models. Autom. Constr. 85, 249–262 (2018).

https://doi.org/10.1016/j.autcon.2017.08.010

8. IfcDoc, https://technical.buildingsmart.org/resources/ifcdoc/

15

9. Solihin, W., Eastman, C.: Classification of rules for automated BIM rule checking

development. Autom. Constr. 53, 69–82 (2015).

https://doi.org/10.1016/j.autcon.2015.03.003

10. Tang, S., Shelden, D.R., Eastman, C.M., Pishdad-Bozorgi, P., Gao, X.: BIM as-

sisted Building Automation System information exchange using BACnet and IFC.

Autom. Constr. 110, 103049 (2020).

https://doi.org/10.1016/j.autcon.2019.103049

11. Gu, N., London, K.: Understanding and facilitating BIM adoption in the AEC in-

dustry. Autom. Constr. 19, 988–999 (2010).

https://doi.org/10.1016/j.autcon.2010.09.002

12. Azhar, S.: Building Information Modeling (BIM): Trends, Benefits, Risks, and

Challenges for the AEC Industry. Leadersh. Manag. Eng. 11, 241–252 (2011).

https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127

13. Weise, M., Nisbet, N., Liebich, T., Benghi, C.: IFC model checking based on

mvdXML 1. 9 (2016)

14. Häußler, M., Borrmann, A.: Model-based quality assurance in railway infrastruc-

ture planning. Autom. Constr. 109, 102971 (2020).

https://doi.org/10.1016/j.autcon.2019.102971

15. Daum, S., Borrmann, A.: Checking spatio-semantic consistency of building infor-

mation models by means of a query language. Presented at the (2013)

16. Krijnen, T., Tamke, M.: Assessing Implicit Knowledge in BIM Models with Ma-

chine Learning. In: Thomsen, M.R., Tamke, M., Gengnagel, C., Faircloth, B., and

Scheurer, F. (eds.) Modelling Behaviour. pp. 397–406. Springer International Pub-

lishing, Cham (2015)

17. IfcOpenShell, http://ifcopenshell.org/

18. OPEN CASCADE, https://www.opencascade.com/

19. Open IFC Model Repository, http://openifcmodel.cs.auckland.ac.nz/

