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Abstract: High energy consumption in residential buildings poses significant challenges,
prompting governments to regulate this sector through comprehensive energy assessments
and classification strategies. This study introduces a multi-layer perceptron artificial neural
network (ANN) model to grade and predict energy consumption levels in residential build-
ings in Tabriz, Iran, based on their geometric and functional characteristics. This study uses
the K-Nearest Neighbors (KNN) algorithm to classify energy consumption grades based on
energy ratio (R-value). Six sample buildings were modeled using Rhinoceros 3D version
7 and Grasshopper version 1.0.0007 software to extract key energy-influencing factors. A
parametric geometric model was developed for rapid data generation and validated against
reference buildings to ensure reliability. Building classifications spanned areas of 40 to
300 square meters and heights of up to six stories, with energy evaluations conducted using
EnergyPlus. The collected data informed the ANN model, enabling accurate predictions
for existing and future constructions. The results demonstrate that the model achieves a
remarkable prediction error of just 0.001, facilitating efficient energy assessments without
requiring extensive modeling expertise. This research emphasizes the role of geometric
features and natural lighting in energy consumption prediction, highlighting the model’s
practicality for early design evaluations and architectural validations.

Keywords: energy consumption classification; artificial neural network; KNN; energy
grading; parametric modeling

1. Introduction
Currently, building energy use is higher in less developed countries compared to

developed ones [1–4]. Consequently, any effort to reduce energy consumption can sig-
nificantly diminish dependence on global energy [5]. Numerous studies focus on energy
consumption in residential buildings, including both actual and estimated consumption, as
well as CO2 emissions [1–4,6]. Global changes in residential energy consumption highlight
the critical role of the residential energy sector in CO2 emissions, emphasizing the sector’s
significant potential for energy savings. Enhancing residential energy efficiency may prove
more effective than interventions in other sectors [7].

Recently, global policies and carbon reduction goals have been adopted, coinciding
with municipalities taking significant actions to decrease energy consumption and carbon
emissions in urban areas. Climate change, financial considerations, and the economic bene-
fits of improving energy efficiency have motivated municipalities to implement long-term
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energy-sustainability policies [8]. Local governments in the United States have enacted
laws requiring owners to report their buildings’ energy consumption annually. This brings
transparency to the energy consumption issue in real estate markets and creates opportuni-
ties for energy savings [9–11]. These initiatives facilitate building owners’ understanding of
performance metrics while encouraging responsiveness to market competition, ultimately
driving improvements in energy efficiency [10,12–15]. Effective building energy manage-
ment requires a comprehensive understanding of a building’s performance, beginning
with identifying energy sources and, significantly, the final energy consumption [16]. Key
indicators, such as annual CO2 emissions and primary energy consumption, are utilized to
measure energy efficiency based on annual energy consumption [17]. Factors influencing
energy efficiency include the building’s compatibility with climatic conditions [18], its
architectural features [19], its external shading systems [20], and its heat transfer rates.

Machine learning models function as black boxes, meaning they can operate effectively
without requiring intricate information regarding building systems. By utilizing input data,
these models are capable of discovering the underlying relationships between various input
features and output objectives, such as energy performance [5,21–25]. A thorough review
of artificial intelligence-based methods for predicting building energy consumption was
conducted, detailing these prediction methods’ principles, applications, advantages, and
limitations. The analysis of artificial intelligence-based prediction methods was approached
from five distinct perspectives: the type of building, the prediction methods employed, the
types of energies being predicted, the prediction time scale, and the categories of input data
used for predictions. Within the realm of artificial intelligence-based prediction methods,
two primary categories can be identified: individual prediction methods and group pre-
diction methods [5]. Singaravel and colleagues evaluated deep learning architecture and
component-based modeling approaches to predict buildings’ heating and cooling energy
demands. They recognized that the component-based modeling approach represents a
form of deep learning engineering, while the deep learning architecture tends to exhibit
higher prediction accuracy [26]. In addition, Seyedzadeh and colleagues reviewed four
common machine-learning approaches frequently employed to predict and enhance build-
ing energy performance. Their review also addressed several preprocessing techniques
that are applied to models to improve prediction accuracy [21].

Chou and Tran reviewed machine learning methods for predicting time series energy
consumption, utilizing accurate data from residential building patterns. They collected real-
time data from an intelligent network implemented within an experimental building, using
statistical and machine-learning techniques to assess their performance and effectiveness.
This study also included an in-depth analysis of a hybrid model that integrates prediction
and optimization techniques [27]. Wei and colleagues explored the traditional artificial
intelligence-based models used for energy consumption predictions. They categorized
these models and discussed their prediction horizons, application areas, and prediction
accuracy levels [28]. In terms of the prediction horizon of these artificial intelligence-
based models, it is common for a significant percentage of the models to be employed
in predicting annual energy consumption. Overall, artificial intelligence-based models
demonstrate robust capabilities across all prediction horizons and application areas at a
comprehensive scale.

Ronge and Zmeureanu, specifically emphasizing the applications, data, prediction
models, and performance metrics utilized in evaluating models, reviewed studies pub-
lished since 2000 that incorporated artificial neural networks to predict energy consumption
and demand in buildings. Their research findings indicated that most artificial neural net-
work models function as black-box models that utilize a neural network as their predictive
mechanism [29]. In a separate study, Nie and colleagues developed an innovative pre-
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dictive model for simulating and forecasting a building’s electrical energy consumption.
This model employed the gradient-boosting regression algorithm, and the results demon-
strated that the proposed model outperformed other competing models [30]. Khalil and
colleagues systematically reviewed machine learning models, and advanced statistical
analyses for predicting building energy consumption [31]. Furthermore, Olu-Ajayi and
colleagues conducted a study that compared different machine learning models for predict-
ing building energy demand. The findings from this study indicated that Support Vector
Machines (SVMs), Artificial Neural Networks (ANNs), and Random Forest (RF) generally
outperformed traditional statistical tools like Linear Regression (LR) and ARIMA. The
traditional tools (classical statistical and deterministic methods) are less powerful than
modern data-driven methods (ANN, SVM, and RF) for building energy predictions due to
their inability to handle non-linearity, multivariate data, and dynamic conditions. While
they remain useful for interpretable or long-term forecasts, AI-based tools consistently
outperform them in terms of accuracy, especially for short-term predictions [32].

The predictive process in artificial intelligence-based methods typically encompasses
four main stages: data collection, preprocessing, model training, and model testing. The
meticulous selection of input data significantly influences the accuracy of an artificial
intelligence-based predictive model. In general, input data that are impactful and well-
correlated are likely to yield better prediction results. During the preprocessing stage,
the collected data undergo organization and refinement before being utilized for training
artificial intelligence-based predictive models. The subsequent stage involves training the
predictive model. Engaging in a training phase that selects the most appropriate parameters
to optimize the algorithm’s predictive performance is essential throughout the model
development process. Finally, the trained model must be subjected to rigorous testing to
ensure its accuracy and reliability [27]. Through the three critical stages—preprocessing,
data selection, and data training—the predictive model’s performance can be effectively
enhanced through the meticulous preprocessing of data and the extraction of energy
consumption features [33].

Artificial intelligence-based predictive models can be categorized into three distinct
types based on their prediction components: single models, group models, and ensemble
models, with each encompassing various subtypes. Single prediction models use a single
learning technique. Ensemble models include multiple prediction models, and hybrid
models combine two or more learning techniques.

One of the most widely used machine learning techniques for predicting building
energy performance and classifying energy consumption is the ANN, which is classified
within the category of single models [5]. Remarkably, even a simple neural network can
deliver predictions that are comparable in accuracy to those produced by more complex
deep learning models [34]. Lu and colleagues undertook a comprehensive literature review
on predicting building energy utilization through artificial neural networks, summarizing
324 relevant studies. This article underscored the twelve distinct ANN architectures utilized
in these studies, with Long Short-Term Memory (LSTM) identified as the predominant
choice for Recurrent Neural Networks (RNNs). Furthermore, CNN-RNN emerged as an
effective established architecture, with both being recommended as benchmark models [35].
Afzal and colleagues sought to predict heating and cooling loads using a Multilayer
Perceptron (MLP) neural network with a hybrid approach that integrated MLP with eight
metaheuristic algorithms. Their newly developed model, MLP-PSOGWO, demonstrated
superior performance, achieving optimal accuracy, reliability, and efficiency [36].

Tsoka and colleagues proposed an innovative approach, employing artificial neural
networks to classify the Energy Performance Certificate (EPC) label of buildings with
greater efficiency and cost-effectiveness. Their model classified building EPC labels by
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analyzing input features about the technical and human-driven factors influencing build-
ing energy consumption. The findings showed that the EPC classification model could
achieve an impressive accuracy rate of 99% when sufficient input data were available. [37].
Al-Baltaqi and Wefki introduced an artificial neural network-based methodology to en-
hance building energy consumption predictions during the early design phases. Their
proposed model was developed utilizing a dataset generated from the energy consump-
tion simulations across various design options with random input variables. This model
was rigorously assessed and validated using C#, which was used to create a comprehen-
sive database comprising 12,000 scenarios characterized by diverse building dimensions
and features [38,39].

According to extensive research, Artificial Neural Networks (ANNs) are widely pre-
ferred for predicting building energy performance because they can model complex non-
linear relationships without detailed system knowledge. They consistently demonstrate a
high prediction accuracy, often outperforming other machine learning models, like SVM
and Random Forest. ANNs are versatile across various building types and time scales,
with hybrid models such as CNN-RNN and MLP-PSOGWO showing even greater effec-
tiveness. Therefore, the present study employs artificial neural networks to develop an
intelligent model.

The studies by Al-Baltaqi and Wefki [38,39] considered important input parameters
and indicators affecting energy consumption, such as building dimensions, window-to-wall
ratio (wwr), wall type, slab type, and building orientation. However, they acknowledged
that the most crucial factor, the building’s form, was treated as a constant, limiting the
model’s generalizability to diverse datasets. Due to the significant role that the form
parameter plays in energy consumption, and considering the extensive and diverse pro-
duction of databases, this will significantly impact the accuracy provided by an artificial
intelligence-based model. This research proposes using a parametric structure to generate
its database, emphasizing form. This produces 2400 diverse scenarios for each type of area
and floor, with different dimensions and features for the building structures, and a different
energy simulation for each. Furthermore, given the lack of precise information from Iranian
engineers regarding the annual energy consumption during the construction of buildings,
there is a need for expertise in the time-consuming processes of energy consumption assess-
ments, including the ability to conduct modelings and simulations with common software,
highlighting a crucial gap in the discussion of on assessment and efficiency. Therefore, this
research aims to present a model based on artificial neural networks that will be able to, at
the initial stage of the design and before the construction of the building, determine, with
acceptable approximation, the energy consumption level and category without the need
for modeling and simulation, without requiring user expertise, and in an online manner.
The research methodology is systematically structured into five distinct steps. First, a mod-
eling and simulation of the energy consumption of six existing buildings (one- to six-story
buildings) was conducted. Second, energy consumption was modeled and simulated for
the proposed parametric geometric model to generate a comprehensive database. Third,
a validation of the simulation results for the proposed parametric geometric model was
performed to ensure its accuracy and reliability. Fourth, automated database generation
through simulations was carried out to enhance efficiency and consistency. Finally, the de-
velopment and optimization of the artificial neural network model for energy consumption
and grading were undertaken based on the generated database.

2. Methodology
The current investigation is centered on low-rise and medium-rise residential buildings

situated in the city of Tabriz. Initially, a volumetric modeling was performed, followed



Buildings 2025, 15, 1731 5 of 27

by comprehensive energy simulation to analyze samples of existing residential structures.
A parametric model was established after extracting key energy consumption indicators,
considering the buildings’ area and floor typology conditions. The obtained results were
subjected to validation, creating a database comprising 2400 plans for each typology.
The database encompasses 14,400 distinct plans, varying in area, number of floors, and
inclusive design specifications, coupled with corresponding energy consumption levels.
After data collection, an artificial neural network was trained, and the energy consumption
classification model was determined and rigorously tested. The schematic representation
of the study process is depicted in Figure 1.

Figure 1. Flowchart of the proposed method.

2.1. Computational Framework

Rhinoceros 3D 7 and Grasshopper 1.0.0007 constitutes a robust software combina-
tion, offering advanced capabilities for computational design. Rhino 3D, a commercial
computer-aided design (CAD) and 3D modeling software, synergizes with Grasshopper,
a graphical computational tool functioning as a visual programming language based on
components. This integration enhances the functionality of the Rhino 3D modeling soft-
ware [40]. In the context of this research, the modeling phase within the Rhino software
environment was conducted through employing the Grasshopper plugin. Subsequently,
an energy simulation and assessment were executed within the Grasshopper environ-
ment, utilizing the Honeybee and Ladybug plugins. Ladybug 1.7.26, a tool within this
computational framework, facilitates the input and analysis of standard weather data,
enabling the visualization of various graphs, such as radiation and wind. It further sup-
ports analyses encompassing radiation analysis, view analysis, and shadow studies with
customizable options. Honeybee 1.7.26 establishes a connection between the Grasshop-
per/Rhino CAD environment and models, facilitating energy simulations. It employs
EnergyPlus/OpenStudio and Radiance for comprehensive modeling and simulations [41].
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After the workflow, raw data were assessed by importing standard meteorological files and
utilizing the OpenStudio library for energy evaluations. These assessments were conducted
using the EnergyPlus 9 finite element energy simulation software. Octopus 0.4, available as
a plugin for Grasshopper, allows users to apply evolutionary principles to optimize various
functions through a graphical user interface (Octopus plugin. Available: [42]). This plugin
simultaneously provides the ability to search for many objectives and generates a wide
range of optimized solutions [43].

A search algorithm is essential to generate input data for the artificial intelligence
model, encompassing the plans and various building configurations, in a parametric
and automated manner. Search algorithms, available as plugins for the Grasshopper
environment, persistently strive to optimize a function in a specific direction. In this study,
the Octopus plugin was employed for the parametric generation of plans, and a detailed
explanation of this task is provided. Data mining, a relatively recent discipline, finds wide
applications in data analysis, leading to the development of numerous tools and software
for its application. Python 3 is notable for its rich set of additional libraries, many related to
machine learning. Orange 3.38.1, an open-source tool, is crucial in developing and testing
machine learning models, conducting data analysis, and visualization. Operating through
visual programming or script-based programming in Python, Orange boasts extensions and
components tailored for machine learning, bioinformatics, text mining, and comprehensive
data analysis [44]. In this research, Orange is employed to train and create the artificial
neural network model. Figure 2 illustrates the overall flow of the current study using these
software tools.

Figure 2. Flowchart of software tools used in the study.
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2.2. Energy Modeling and Simulation of Existing Samples

The primary aim is to extract key indicators that significantly influence energy
consumption. Subsequently, the energy simulation results obtained from these refer-
ence samples serve as the foundation for validating the outcomes derived from the
generated database.

Given the research’s focus on existing residential buildings in Tabriz, six sample
buildings—each spanning one to six stories—were chosen as initial samples and reference
models. These buildings were meticulously modeled, incorporating details derived from
the maps provided by the Tabriz Engineering Organization and adhering to the specified
design parameters. The initial step involved solid modeling and transforming the models
into energy models. It is worth noting that the modeling and simulation process remained
consistent across all six sample buildings. For clarity, the procedural details for a one-story
building are elucidated. Figure 3 illustrates the one-story building’s floor plan and 3D
energy model, with the plans and models of the two- to six-story buildings also provided.

 
(a) Floor plan (b) 3D model 

Figure 3. Floor plan and 3D view of a one-story building; scale 1:100.

2.2.1. Weather Data

The EnergyPlus weather file format (.epw) is a text-based format utilizing comma-
separated values. This file encapsulates fundamental information, comprising geographical
coordinates such as longitude and latitude, elevation, time zone, annual design, average
ground temperature, typical and extreme periods, holiday/daylight-saving periods, dry
bulb and dew point temperatures, atmospheric pressure, relative humidity, radiation metrics
(horizontal extraterrestrial, normal direct extraterrestrial, horizontal infrared from the sky,
global horizontal, normal direct, and diffuse horizontal), global horizontal, diffuse horizontal,
zenith, direct normal, wind specifics, sky cover (total, opaque, visible, and ceiling height),
current weather conditions, precipitation, aerosol optical depth, and snow metrics (depth and
days since last snowfall) [45]. Standard weather files (weather files) pertinent to each city are
available for download through https://www.energyplus.net/weather [46].

https://www.energyplus.net/weather
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2.2.2. Simulation Input Parameters

In this research, the input parameters span a variety of factors. Geometry-related
parameters include area, perimeter, Volume-to-Surface Ratio (VSR)—indicating the total
volume of the building divided by the total area of external walls—and Area-to-Perimeter
Ratio (APR)—representing the area of one floor divided by its perimeter. These two indices,
coupled with the area and length of the external walls, collectively determine the com-
plexity or simplicity of the building plan shape. Additionally, window-related parameters
involve the window-to-wall ratio (WWR) and aspects related to window design, such as
window dimensions. Material-related parameters cover thickness, thermal conductivity,
specific heat capacity, and thermal resistance. Ventilation system-related parameters in-
clude the type of natural ventilation system, the type of mechanical ventilation system,
the characteristics of air handling units, pump specifications, setpoint temperatures, and
setback temperatures. Lighting-related parameters encompass artificial lighting, density,
and the type of artificial lighting control.

2.2.3. Energy Simulation Workflow

The initial phase involved defining an appropriate physical program for the residential
spaces in each zone and specifying the ventilation conditions for each. In the subsequent
stage, the windows on the east and west facades of the building were defined based on
their respective dimensions. The third stage entails the definition of pertinent materials.
Generally, the materials for each building can be specified through two approaches: the
first method involves utilizing the recommendations established according to climatic
considerations by standards such as ASHRAE, while the second method entails manually
modeling materials and adding them to the OpenStudio library for utilization within
the EnergyPlus engine in Grasshopper. The latter method models materials based on
extant building plans or commonplace materials suitable for the climate and the building’s
purpose. In certain instances, pre-existing materials within the OpenStudio library may be
employed. In this research, materials were meticulously developed for each component
based on the existing building plans and subsequently integrated into the EnergyPlus
library. In the fourth stage, natural and mechanical ventilation systems were defined to
account for ventilation conditions. The Honeybee plugin assigned internal heat loads,
occupancy schedules, and HVAC specifications in Grasshopper. The default ProgramTypes
defined internal gains and occupancy patterns without considering occupants’ behavioral
variability. An IDEAL HVAC system was applied via Honeybee templates to simplify
thermal control and ventilation modeling. The fifth stage involved using EnergyPlus
software calculations to compute the illuminance and the duration of sunlight received.
Typically, the illuminance for residential buildings is set at 300 lux. In the final stage,
an algorithm was linked to the EnergyPlus simulation engine to compute the building’s
energy consumption. The outputs encompass features associated with energy consumption,
including the total heating energy consumption (sum of the heating and cooling loads),
overall energy consumption (sum of the heating, cooling, and lighting loads), and heating
energy per square. Buildings with two to six floors were also modeled and simulated using
the abovementioned process. The plans and images of the modeled buildings are provided
in Table 1.
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Table 1. Reference buildings from two to six stories.

Number of Floors Plans (Scale 1:100) 3D Models

2

Pilot 1 st Floor 2nd Floor

   

3

 

1st, 2nd, and 3rd Floors

 

4

 

1st, 2nd, 3rd, and 4th Floors

 

5

 

1st to 3rd Floors 4th and 5th Floors

  

6

 

1st to 5th Floors 6th Floor
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2.3. Proposed Parametric Model

Creating suitable, valid, and extensive training databases is essential to developing
the ANN model. This is because the credibility and adequacy of the data directly impact
the accuracy of the ANN model. Here, the training data will consist of diverse building
plans, varying in form, area, and number of floors. Two solutions exist for generating these
building data. The first involves modeling and simulating each building in environments
such as Rhino or Grasshopper. However, this approach is time-consuming and may not
yield sufficiently diverse building forms. The second solution involves using an algorithm
to automatically parametrically generate an extensive set of buildings. This method allows
for the rapid production of various building data types. Mutual Information (MI) analysis
was employed for sensitivity analyses to identify influential features, enabling the selection
of variables with the strongest statistical dependence on energy consumption. In this
method, features with higher MI scores are considered more informative and are kept for
the model training. As shown in Figure 4, the 15 primary indicators include orientation,
shader depth (North, South, East, and West), internal wall area, plan area, perimeter,
volume, VSR, APR, and WWR (North, South, East, and West). According to the sensitivity
analysis, shading depth and WWR exhibited lower levels of influence. Although their
individual MI scores were relatively low, these features may have indirectly contributed to
improving the overall predictive capacity of the model when combined with other variables.
Neural networks are well-suited to capturing complex, non-linear relationships between
features, and the interactions between variables can sometimes enhance performance even
when a feature appears weak by itself. The trade-off between model complexity and
predictive accuracy was carefully assessed through conducting initial experiments with
and without these two features. The results showed a modest but consistent improvement
in accuracy when including shadow depth and WWR. Given that the computational cost of
including the two additional features in our model framework and hardware settings was
minimal, we considered this trade-off acceptable. Therefore, given the model’s performance,
we prioritized predictive robustness and retained all 15 core features to capture the full
range of building design characteristics.

Figure 4. Sensitivity analysis of input features (MI scores).

Subsequently, a parametric geometric model capable of transforming into diverse
forms was proposed. Using the Grasshopper plugin in Grasshopper, an extensive collection
of building plans with diverse forms and automatically generated values for each of the
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mentioned indices was created. Following this, the energy consumption evaluation was
performed using the EnergyPlus simulation engine in Grasshopper, providing automated
assessments of the energy consumption for each building.

2.3.1. Simulation Variables

Building design options are determined by applying two types of variables: discrete
and continuous. A single variable directly controls some indices, while others are influenced
by a combination of geometric variables that define the plan. Additionally, certain variables
can assume values for either continuous or discrete types. For instance, the Window-to-Wall
Ratio (WWR) may range from 1% to 100% or take specific values from a hypothetical list,
such as 15%, 25%, or 45%. In this research, discrete variables include geometric plan points,
plan scale in terms of its length and width, the orientation, and the internal wall area.
Continuous variables encompass plan area, perimeter, volume, VSR, APR, shader depth,
and WWR. Refer to Table 2 for details.

Table 2. Simulation variables.

Variables

Continuous Discrete

Plan Area Geometric Plan Points

Plan Perimeter Plan Scale (Length and Width)

Volume Orientation

VSR Internal Wall Area

APR -

WWR -

Shader Depth -

2.3.2. Modeling and Energy Simulation Workflow

To initiate the modeling, a parametric base plan with geometric shapes capable of
transforming into diverse geometric plans was designed. This base plan is controlled
by geometric plan points, which are considered part of the geometric variables in the
parametric model, as shown in Figure 5.

(a) (b) 

Figure 5. Geometric plan, (a); model (b).

Energy simulation for this section was performed following the energy simulation
process for existing buildings detailed in Section 2.2.3. The properties of common materials
in residential buildings in the Tabriz climate were used for material definition. Similarly to
that simulation process, in the final stage, the EnergyPlus simulation engine was utilized to
calculate the building’s energy consumption.
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2.3.3. Validation of Results

Before entering the data generation phase, it is necessary to compare the energy
simulation results of the proposed parametric building with the energy simulation results
of the reference buildings (existing buildings) to ensure the accuracy and credibility of
the data. In this research, reference buildings with one to six floors were remodeled by
applying their specifications to the parametric model algorithm for precise validation. To
achieve this, the geometric points of the parametric model were adjusted to align with the
plan of each building on the parametric plan, and the values for area, perimeter, VSR, APR,
window-to-wall ratio, and internal wall area were used during modeling. Subsequently,
the modeled buildings underwent energy simulation.

A comparison between the simulation results from the reference buildings and those
generated by the parametric model showed less than 5% variance. These compared values
are provided in Table 3. This difference implies that the data generated through the
proposed parametric model are reliable, establishing a valid database for training an
artificial neural network model.

Table 3. Simulation results of existing buildings and parametric geometric models.

Sample Buildings Actual Energy
Consumption (kWh/year)

Annual Energy Consumption
Extracted from the Parametric

Model (kWh/year)
Difference (%)

One-story 368.3268 381.4126 3.4

Two-story 307.5252 320.6377 4

Three-story 405.24 390.0091 3.9

Four-story 451.2668 430.7079 4.5

Five-story 342.93 360.67 4.9

Six-story 286.5476 294.1308 2.6

2.4. AI Model Development

This study’s proposed model is designed for general predictive analysis rather than
time-series forecasting. It predicts the overall energy consumption of buildings based on
their static characteristics (e.g., orientation, area, and WWR) before construction.

2.4.1. Data Preprocessing

The initial phase of developing the AI model consisted of preprocessing the dataset
used for training. Various area types within six ranges (40 to 75, 75 to 120, 120 to 140, 140 to
200, 200 to 250, and 250 to 300 square meters) and different floor types, from 1 to 6 floors,
were considered based on the floor plan classification standards of the Iran Engineering
Organization. Data collection was performed for each area and floor type. A search
algorithm was used to generate parametric and automatic data (plans). Search algorithms
available as plugins for the Grasshopper environment always strive to optimize a function,
and consequently, they tend to converge toward a specific direction. When using these
algorithms to generate plans, the plan shapes may converge into a uniform form. However,
this research aims to produce diverse and divergent data. Therefore, properly coding
the search algorithm was necessary to prevent this convergence. The Octopus plugin in
Grasshopper was used for this purpose. A specific feature of Octopus is its ability to
optimize multiple objective functions simultaneously.

In this research, the multi-objective capability of Octopus was utilized so that, during
the search for plans, the shapes of the plans did not converge towards a uniform shape.
For this purpose, symmetric and identical objective functions were used. In this state,
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Octopus generates a range of solutions between these symmetric functions, covering a
broader range of variable lengths. To understand the functionality of this method, consider
the following example. In this scenario, the problem involves a vector with a domain from
10− to 10+. Using a numerical slider, any value within this domain can be obtained. The
objective is to generate a set of numbers within this domain, specifically between 10− and
10+. The numerical slider, allowing for the selection of any value, is our only variable. By
defining a two-sided domain vector objective function, Octopus can be configured to cover
the entire range of this domain. The objective functions are defined as follows: the first
function maximizes the value shown by the slider, and the second function minimizes the
value displayed by the numerical slider. These functions are completely symmetrical and
identical. As a result, the algorithm simultaneously attempts to generate solutions for both
functions, creating a Pareto front range between these two functions. After optimizing the
Pareto front, the resulting boundary covers the entire range of this domain. The generated
solutions (the numerical values found by the numerical slider) form a linear range between
two symmetrical objective functions. These solutions are from the sixth generation, with
10 solutions each generation, and the slider increment is 0.1. The markers on the axis
represent the values of the solutions created within this range. As is evident, the generated
solutions cover the entire vector range. Since the two functions are entirely identical and
symmetrical, the linear boundary that is created, known as the Pareto boundary, includes
all the generated solutions. Therefore, by defining identical and symmetrical objective
functions, it is possible to suitably obtain the existing range of variable values. This method
was also applied to define the objective functions in the problem of generating plans that
will cover the entire length of the variables. For the plan generation problem, the considered
functions consisted of two symmetric maximization and minimization energy consumption
functions, along with two symmetric sums of the numerical values of variable functions.
This approach ensures an appropriate range of plans is obtained.

After applying the specified settings, upon running the Octopus extension, the exten-
sion automatically generates 2400 plans (buildings) for each defined spatial and floor type.
These plans encompass the values of the defined variables, such as the orientation, volume,
area, floor area, APR, VSR, window-to-wall ratio (WWR), shadow depth, and internal wall
area of each building, as well as the cooling energy, heating energy, total thermal energy,
illumination, and sunlight exposure. All these values are saved as simulation outputs in
Excel files.

2.4.2. Model Selection

ANN is a non-linear statistical learning method and a computational system modeled
after the interconnections of biological neurons in biological systems, which exhibit activa-
tion functions. Typically, artificial neural networks comprise three primary layer types: the
input, hidden, and output layers. ANNs may consist of several stacked input and hidden
layers. The input layer comprises the independent variables employed to predict the target
outcome [5]. The output layer generates the outcomes, which may include predictions,
classifications, or other specified outputs [47,48]. Most artificial neural network models are
considered black-box models and often use a feedforward neural network architecture [29].
The signal flow is considered unidirectional from the input variables x1, . . ., xn, as indicated
by the arrows, to the output signal flow of neuron (o). The following relationship provides
the output signal flow of neuron o:

o = f (net) = f (
n

∑
j=1

wixi) (1)
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where (wi) is the weight vector and f (net) is referred to as an activation (transfer) function.
The variable (net) is the scalar product of the weight and input vectors.

net = wTx = w1x1 + · · ·+ wnxn (2)

Here, T represents a transfer matrix, and in the simplest case, the output value (o) is
calculated as follows:

o = f (net) = { 1 i f wT ≥ θ

0 otherwise
(3)

where θ is the threshold level. This kind of node is referred to as a linear threshold unit
(LTU) [47].

The application of artificial neural networks for modeling structures is intriguing
because they do not require detailed data about structural characteristics and can be
learned from historical and existing data. The selection of the number and types of input
parameters is based on the prediction objective and the desired accuracy. Various structural
characteristics exist, with each pursuing specific goals and having their own strengths and
weaknesses. However, no uniform structure is systematically provided (not specific to
neural network construction, i.e., the number of layers, the neurons, and the activation
function). While suitable methods and standard rules exist, they do not exempt the
user from the need for an empirical process to select the parameters for determining the
desired structure.

A significant number of inputs representing intrinsic characteristics are preferred for
the accurate prediction of energy from a single structure [34]. Artificial neural networks
have various types, such as multi-layer perceptron, radial basis function neural networks,
self-regression neural networks, and general regression neural networks [29,49]. Construct-
ing an artificial neural network involves adjusting these parameters and dividing them
into two categories: those determining the artificial neural network’s structure and those
specifying how the artificial neural network is trained [50].

2.4.3. ANN Model Architecture

Input layer: The input layer consists of 15 neurons, each representing one of the
15 measured features of the building, based on Table 4. The dataset, consisting of
14,400 samples with annual energy consumption data for each building, was used for
model training. The dataset was divided into two subsets with an 80:20 ratio for the data
sampling process. Specifically, 80% of the data were allocated as the training set, which
was used for model learning and parameter tuning. The remaining 20% comprised the test
set, which was used to assess the model’s performance on new, unseen data. This standard
partitioning approach ensures an appropriate balance between training and evaluation
while mitigating the risk of overfitting. To ensure the reliability and robustness of the
results, the random splitting process was repeated 10 times. Across these repetitions, the
model consistently achieved similar performance metrics, indicating stability concerning
the different data partitions (See Appendix A). Based on this consistency, we proceeded
to report representative results, as they reflect the general behavior of the model across
various random splits.

Hidden layer: The number of hidden layers in an ANN depends on the problem
complexity, with shallow networks having one layer and deep networks having two or
more [51]. Networks with one, two, and three layers were tested using ReLU activation,
Adam optimizer, and normalized inputs ([0, 1]). Different neuron counts (50–250) were
tested to determine the optimal balance between accuracy and computational cost, as an
excessive amount of neurons leads to the risk overfitting, despite the low training error
rate [51]. Activation functions (ReLU, Identity, Hyperbolic Tangent, and Logistic Sigmoid)
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and optimizers (Adam, LB, SGD) were compared in terms of performance. Neurons
calculate the weighted sum of inputs, which are transformed into output signals using
activation functions. These functions include linear and non-linear types, such as sigmoid,
hyperbolic tangent, ReLU, identity, and logistic, each suited to specific tasks [51]. Five
activation functions (ReLU, Identity, Hyperbolic Tangent, and Logistic Sigmoid) and three
optimizers (Adam, LB, and SGD) were tested and compared.

Table 4. Model inputs and output.

Model Inputs U Model Output U

Orientation ◦

Annual energy
consumption kWh/year

Volume m3

AREA m2

Perimeter m

APR m

VSR m

Int_Wall_Area m2

N_WWR %

w_WWR %

s_WWR %

E_WWR %

N_shader’s Depth m

W_shader’s Depth m

S_shader’s Depth m

E_shader’s Depth m

Output layer: Since the target value is continuous and numerical, the output layer con-
sists of a single neuron representing the annual energy consumption without an activation
function. Table 4. Subsequently, for the performance evaluation criteria, we used the Mean
Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2) as three evaluation
metrics to assess the accuracy of the developed model.

As shown in Table 4, the 15 input features of the model included orientation, volume,
area, perimeter, APR, VSR, internal wall area, WWRs, and shade depth. The model’s
output was the building’s annual energy consumption. Ultimately, the model can predict a
building’s annual energy consumption solely based on these 15 features. The model output
was subsequently used for grading purposes.

2.4.4. Energy Consumption Grading Using KNN

Grading was performed using the K-Nearest Neighbors (KNN) algorithm based on
the r value. The KNN is a non-parametric, instance-based supervised learning algorithm
commonly applied in classification and regression tasks. It assumes that similar data points
exist nearby in the feature space. The algorithm assigns a value (for regression) or a class
label (for classification) to a new data point based on the majority class or average of the
k-nearest neighbors in the training dataset. The algorithm depends on a user-specified
parameter, k, which defines the number of nearest neighbors to be considered during the
prediction [52].

According to the Iranian residential building energy label standard ISIRI 14253 [53],
after predicting the energy consumption of the building, the energy ratio (R) for that
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building is calculated based on Tables 5 and 6. According to Table 5, the energy ratio
for small residential buildings is obtained for the Tabriz climate by dividing the energy
consumption by 111. For large residential buildings, it is obtained by dividing the energy
consumption by 102. The obtained ratio is then input into the energy grading model,
determining the energy consumption category of the building.

Table 5. Classification of the country’s climatic zones and ideal energy consumption indices [53].

Row Climate Type City

Ideal Building Energy Consumption Index
(kWh/m2/Year)

Small Residential Large Residential

1 Very cold Sarab
111 102

2 Cold Tabriz

3 Moderate and rainy Rasht
156 106

4 Semi-arid Moghan

5 Warm and dry Tehran 83 87

6 Very hot and dry Zahedan 86 75

7 Very hot and dry Ahvaz 150 138

8 Very hot and humid Bandar Abbas 130 118

Table 6. The energy consumption category of the building is based on the energy ratio (R) [53].

Energy
Use

Small Residential Large Residential

A R < 1 R < 1

B 1.0 < R < 2.0 1.0 < R < 1.9

C 2.0 < R < 2.9 1.9 < R < 2.7

D 2.9 < R < 3.7 2.7 < R < 3.4

E 3.7 < R < 4.0 3.4 < R < 4.0

F 4.4 < R < 5.0 4.0 < R < 4.5

G 5.0 < R < 5.4 4.5 < R < 5.0

The label is not awarded 5.4 ≤ R 5.0 ≤ R

3. Results
3.1. ANN Model Implementation and Evaluation

The analysis of the selection of the number of hidden layers with the default activation
functions and solvers, as shown in Table 7, after examining the error values, showed that a
two-layer network is the most suitable choice for the error coefficients, including MSE, MAE,
and the R2 of the model correlation for the tested cases, which are presented in this paper.
The lowest values for MSE and MAE and the value of R2 closest to 1 were considered.

The two-layer network was determined to have 50 to 250 hidden neurons while
keeping the activation functions the same. After analyzing the selection of the hidden
neurons, as shown in Table 8, the final configuration presented the lowest error with
250 neurons in the first layer and 160 neurons in the second layer.
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Table 7. Error values and R2 for the neural networks with one and two hidden layers. (Part of
the process.)

Number of
Hidden Layers

Number of
Neurons

Activation
Functions Optimizer MSE MAE R2

One 30 Re Lu Adam 0.006 0.059 0.835

One 40 Re Lu Adam 0.007 0.071 0.781

One 50 Re Lu Adam 0.005 0.056 0.851

One 60 Re Lu Adam 0.005 0.057 0.853

One 70 Re Lu Adam 0.003 0.043 0.893

One 80 Re Lu Adam 0.004 0.041 0.894

One 90 Re Lu Adam 0.004 0.050 0.876

Two 70, 70 Re Lu Adam 0.002 0.037 0.920

Two 80, 80 Re Lu Adam 0.002 0.037 0.944

Two 90, 90 Re Lu Adam 0.002 0.031 0.932

Two 100, 100 Re Lu Adam 0.002 0.031 0.950

Two 150, 150 Re Lu Adam 0.002 0.030 0.941

Two 200, 200 Re Lu Adam 0.001 0.021 0.951

Three 30, 30, 30 Re Lu Adam 0.004 0.040 0.880

Three 40, 40, 40 Re Lu Adam 0.002 0.030 0.922

Three 50, 50, 50 Re Lu Adam 0.003 0.031 0.922

Table 8. Error values and R2 for the neural networks with variations in the number of hidden neurons
(part of the process).

Number of
Hidden Layers

Number of
Neurons

Activation
Functions Optimizer MSE MAE R2

Two 100, 50 Re Lu Adam 0.002 0.030 0.912

Two 100, 60 Re Lu Adam 0.001 0.021 0.940

Two 100, 70 Re Lu Adam 0.002 0.031 0.931

Two 100, 80 Re Lu Adam 0.002 0.030 0.934

Two 100, 90 Re Lu Adam 0.001 0.021 0.951

Two 90, 80 Re Lu Adam 0.001 0.022 0.939

Two 100, 70 Re Lu Adam 0.001 0.021 0.952

Two 250, 160 Re Lu Adam 0.001 0.022 0.965

Two 120, 200 Re Lu Adam 0.001 0.023 0.954

Two 80, 110 Re Lu Adam 0.002 0.031 0.922

Two 80, 240 Re Lu Adam 0.002 0.030 0.924

According to the analysis of the activation functions, in addition to the previous
conditions, as shown in Table 9, the final configuration for selecting activation functions
presented the lowest error when using the rectified linear unit (ReLU) function combined
with Adam’s solver.
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Table 9. Activation functions (Part of the process).

Number of
Hidden Layers

Number of
Neurons

Activation
Functions Optimizer MSE MAE R2

Two 100, 90 Identify Adam 0.001 0.031 0.931

Two 100, 90 Hyperbolic Adam 0.001 0.019 0.948

Two 100, 90 Re Lu LB 0.002 0.022 0.958

Two 100, 90 Hyperbolic SGD 0.080 0.034 0.718

Two 100, 90 Identify SGD 0.030 0.014 0.722

Two 250, 160 Re Lu Adam 0.001 0.022 0.965

Two 250, 160 Hyperbolic SGD 0.009 0.011 −0.011

Two 250, 160 Hyperbolic Adam 0.030 0.041 0.891

Two 120, 200 Logistic LB 0.000 0.497 0.989

Two 120, 200 Re Lu LB 0.000 0.504 0.981

Two 120, 200 Identify SGD 0.030 0.071 −0.012

The distribution diagrams in Figure 6 compare the outputs and observed target values
for the ANN model in the training phase when applied to buildings of varying story
heights, ranging from one-story to six-story structures. These diagrams evaluate the
model’s performance using the correlation coefficient R, quantifying the strength of the
linear relationship between the outputs and the targets. The diagonal lines in each graph
represent the ideal fit, where the predicted values perfectly match the observed ones. The
scatter points in all cases lie very close to these lines, demonstrating the ANN’s accuracy
in predicting outputs. The R-value for the one-story case is 0.99, indicating a slightly
lower accuracy than the other cases. While most data points are clustered around the
diagonal line, a few deviations can be observed, suggesting a minor discrepancy due to the
variability in the training data for smaller structures; however, an R = 0.99 still signifies
excellent performance. In contrast, the R values equal 1 for the two-story to six-story cases,
confirming a perfect correlation between the observed and predicted values. The data
points in these graphs align almost perfectly with the diagonal line, indicating that the
ANN has successfully learned the underlying relationships in the training data for these
structures, with minimal error.

In the training phase, the ANN demonstrates excellent predictive capabilities across
all building heights, with correlation coefficients nearing or reaching unity. However, to
confirm the model’s robustness and reliability, further validation of unseen data is essential
to rule out overfitting and ensure the model’s general applicability. The distribution
diagrams in Figure 7 illustrate the comparative analysis of the outputs and the observed
target values for the ANN model in the training phase for the same buildings.

R2 values range from 0.96 to 0.99, reflecting a high degree of accuracy but a slightly
lower performance compared to the training phase. The scatter points correspond to the
test data and are closely aligned with these diagonal lines, indicating substantial agreement
between the observed and predicted values. The R = 0.96 value indicates slightly lower
accuracy for the one-story case than the others, with a noticeable spread of data points
around the diagonal line. This suggests that the model’s predictions for one-story buildings
are less precise during testing, potentially due to more significant variability in the data or
limitations in how the model handles smaller structures.
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(a): One-story (b): Two-story 

(c): Three-story (d): Four-story 

Train: R=0.99 

Target Target 

Train: R=1 

Train: R=1 

Target 

Train: R=1 

Target 

(e): Five-story (f): Six-story 

Train: R=1 

Target 

Train: R=1 

Figure 6. Distribution diagrams for train observation and prediction values using the ANN.
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(a): One-story (b): Two-story 

(c): Three-story (d): Four-story 

(e): Five-story (f): Six-story 

Target 

Test: R=0.96 

Target 

Test: R=0.99 

Target 

Test: R=0.99 

Target 

Test: R=0.99 

Target 

Test: R=0.99 

Target 

Test: R=0.99 

Figure 7. Distribution diagrams for test observation and prediction values using the ANN.

For the two-story to six-story cases, the R2 = 0.99 indicates excellent predictive per-
formance, with the data points clustered closely around the diagonal lines. These results
suggest that the ANN generalizes well for multi-story structures, achieving minimal devi-
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ation between the observed and predicted values. The ANN shows excellent predictive
capabilities during the testing phase, with consistently high R2 values for multi-story build-
ings and slightly reduced accuracy for one-story buildings. The results suggest that the
model generalizes well to new data, although further investigation into the performance of
smaller structures could enhance its overall reliability. While the testing results (R2 values
up to 0.99) demonstrate the ANN’s ability to generalize well, they are slightly lower than
the perfect R2 values observed in the training phase. This difference suggests the model
avoids overfitting and maintains substantial predictive accuracy on unseen data.

3.2. ANN Model Test

Six building samples (one to six stories) were simulated to validate the model’s
accuracy in estimating total energy consumption and listing key input variables. These
specifications were then entered into an ANN model via an Excel file to predict energy
consumption and determine energy grades. The predicted results were compared with the
simulation values used to assess model performance. The results of the model performance
test are presented in Table 10. This table displays an example of model prediction results,
including the actual energy consumption values and the predicted values for six building
samples, ranging from one to six stories. The established ANN model predicted the energy
consumption of each sample with high accuracy and minimal deviation (below 5%) and
determined their energy consumption grades. The characteristics of the training and testing
cases for all six models in this table are similar, indicating acceptable results for the network.
The current study successfully achieved its intended objective.

Table 10. Values and testing results 1.

Parameters U
Simulation Data Sample

1 F-Bldng 2 F-Bldng 3 F-Bldng 4 F-Bldng 5 F-Bldng 6 F-Bldng

Orientation ◦ 255
153.1253 120 105 345 15 0

Volume m3 153.1253 1756.14 2526.075
263.1328

3203.862
250.3017 4709.286 5441.415

AREA m2 42.5348 274.3969 263.1328 250.3017 294.3304
131.8798 283.407

Perimeter m 42.424 102.8258 114.2494 115.6026 131.8798
131.8798 109.5606

APR m 1.002612 2.668561 2.303144
3.860198 2.165191 2.231808 2.58676

VSR m
2.886528

120
120

5.739397 3.860198 5.05233 7.043378 3.68263

Int_Wall_Area m2 120
323
0.66
0.66

237 43 47 177

N_WWR %
0.94
0.92
0.92

0.66 0.85 0.19
0.89 0.37 0

W_WWR % 0.92 0.45 0.11 0.89 0.91 0.81

S_WWR % 0.7 0.26 0.1 0.86 0.79 0.08

E_WWR % 0.09 0.74 0.59 0.35 0.89 0.61

N_shader’s Depth m 0.7 1.2 0.4 0.2 0.2 1.1

W_shader’s Depth m 1.3 1.1 0.4 0.5 1.1 1.4

S_shader’s Depth m 0 0.9 0.2 0.8 0.1 0.8

E_shader’s Depth m 0.4 0.2 1.1 1.5 0.6 0

Total Energy kWh/year 500.5713 175.5731 200.3133 208.0642 201.7758 166.5841

Predicted Energy consumption kWh/year 506.175 172.505 199.343 207.739 205.817 165.05

Energy consumption Grade G B B C C B

1 Note: U = unit; N = north; W = west; S = south; E = east.
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4. Discussion
This research introduces an ANN model for predicting and classifying building energy

consumption based on geometric and functional characteristics. It demonstrates that fun-
damental attributes—area, volume, perimeter, window specifications, shading, orientation,
and wall types—can accurately predict energy consumption, achieving a maximum devia-
tion of only 5% compared to EnergyPlus simulations. A systematic sensitivity analysis was
conducted to pinpoint the most influential parameters, balancing a comprehensive analysis
with user-friendliness for rapid assessments during early design stages.

Fifteen key indicators were identified, including geometric parameters (orientation,
volume, area, perimeter, Volume-to-Surface Ratio (VSR), Area-to-Perimeter Ratio (APR))
and envelope features (Window-to-Wall Ratio (WWR)) for each facade, shading depth, and
internal wall area). Unlike earlier studies by Al-Baltaqi and Wefki [38,39], this study treats
building form as constant; it introduces plan shape complexity (VSR, APR) as dynamic
variables. It also aligns with the findings by Tsoka et al. [37] regarding the importance
of orientation and envelope properties. Furthermore, this work innovates by treating
facade-specific WWR and shading depth as independent variables, allowing for more
detailed analysis.

While previous studies, like those of Chou and Tran [27] and Wei et al. [28], empha-
sized materials and HVAC systems, this study standardizes material properties regionally,
isolating the impact of geometric factors, as Afzal et al. [34] suggested. This is in contrast
to Nie et al.’s ANN-based studies [30], as well as those of Khalil et al. [31] and Olu-Ajayi
et al. [32], which focused on HVAC, occupancy, and non-geometric factors. This research
proves that static geometric features alone can achieve high predictive accuracy, reinforcing
the findings by Al-Baltaqi and Wefki [38].

A sensitivity analysis using Mutual Information (MI) identified plan shape met-
rics and orientation as the most influential factors, while shading depth and WWR had
moderate impacts.

A significant innovation of this study is the integration of genetic algorithms with
ANN. Using parametric modeling, energy simulation, evolutionary optimization, and data
processing, the ANN was trained with 260 neurons in the first layer and 160 neurons in the
second, utilizing the ReLU activation function and Adam optimizer. The model achieved
high precision across multiple metrics and emphasized the critical role of geometric features,
an area that is often overlooked. It also incorporates considerations for natural lighting,
enhancing its practical relevance.

The final output includes numerical predictions and a classification of energy con-
sumption levels. It also sets the groundwork for generating visual plans and optimizing
forms based on the initial designs in future research.

Despite this study’s promising and innovative results in applying artificial intelligence
techniques to building modeling, several limitations should be acknowledged. First,
the model’s training and validation phases were conducted solely using simulated data.
Despite being based on actual buildings, this reliance on simulated datasets may limit the
model’s generalizability and accuracy when applied to real-world scenarios. Therefore,
future research should incorporate real-world data to enhance the model’s reliability and
practical applicability.

Moreover, occupant behavior—an important factor in energy consumption—was not
modeled due to computational limitations and the complexity of accurately representing
human dynamics. While this simplification helped manage model complexity, future
studies should consider incorporating behavioral aspects to enhance realism and accuracy.
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5. Conclusions
In this research, we explained how the powerful Energy Consumption Grading model

could be used for residential buildings. We developed an Artificial Neural Network model
based on a strong database using Octopus, which was employed to create a comprehensive
database comprising 14,400 scenarios focusing on different dimensions and factors affecting
a building’s energy consumption. The results of the ANN model predict the amount of
energy that is consumed before the construction phase of the building. Finally, using the
known algorithm, the model determines the degree of energy consumption according
to the energy ratio (R-value) classification and provides a strong and efficient predictive
model. The model’s test results show that the model has high accuracy. According to
the general results, this model eliminates the need for the conventional energy modeling
and simulations that are usually performed, removing this time-consuming process. To
predict and estimate energy consumption and declare the grade of energy consumption,
it is sufficient to use only the leading indicators of the building, which were determined
in this research as the input parameters of the ANN model. This model is a potential
candidate for implementation in technical and engineering offices, engineering system
organizations, and even municipalities. Engineers and designers could use this model
as an energy consumption controller and energy consumption grade-determiner before
constructing a building.
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Appendix A
The following tables (Tables A1–A6) summarize the detailed performance metrics of

the MLP model—configured with two hidden layers of 200 neurons each, ReLU activation,
and the Adam optimizer—across ten independent random train/test splits (20% test size)
for each of the six datasets of parametric building models used in this study.

Table A1. MLP performance over ten random 80/20 splits on the level 1 dataset.

Split MSE MAE R2

1 939.0496 21.83702 0.89035

2 749.8182 20.5306 0.988976

3 780.7594 20.31307 0.966402

4 1446.016 31.32112 0.845466

5 805.7235 19.8444 0.958779

6 822.5077 20.58016 0.911912

7 713.2101 22.20475 0.922691

8 1116.828 25.47749 0.875345

9 1314.102 27.45257 0.846268

10 1287.837 28.80976 0.868285
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Table A2. MLP performance over ten random 80/20 splits on the level 2 dataset.

Split MSE MAE R2

1 464.0963 16.97236 0.956078

2 319.1598 14.42472 0.972284

3 236.7575 11.54886 0.953113

4 301.3321 14.23381 0.98236

5 608.8213 19.05794 0.894096

6 504.7459 16.83704 0.895332

7 473.9696 16.35537 0.91134

8 373.1442 15.27167 0.922211

9 156.7906 8.756949 0.972593

10 2987.873 39.91669 0.354073

Table A3. MLP performance over ten random 80/20 splits on the level 3 dataset.

Split MSE MAE R2

1 646.2045 19.35852 0.896962

2 436.3593 15.67782 0.959128

3 531.051 17.39965 0.914568

4 566.1927 18.10551 0.909988

5 307.6571 12.73632 0.948646

6 666.7583 19.57476 0.956311

7 545.1042 16.77145 0.967526

8 854.5338 22.51095 0.868376

9 702.5794 20.27778 0.88566

10 7533.805 62.61027 −0.31858

Table A4. MLP performance over ten random 80/20 splits on the level 4 dataset.

Split MSE MAE R2

1 514.1374 17.71264 0.934243

2 628.5542 20.27511 0.914637

3 635.4107 19.24143 0.914544

4 821.0995 22.36189 0.92523

5 343.3422 13.97604 0.944394

6 934.4415 22.9563 0.898685

7 955.4811 26.99375 0.882358

8 932.7975 23.17373 0.873017

9 507.6461 17.30549 0.95854

10 1257.501 26.80686 0.823442
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Table A5. MLP performance over ten random 80/20 splits on the level 5 dataset.

Split MSE MAE R2

1 774.728 22.9731 0.85631

2 605.2751 19.20743 0.8887

3 1012.153 26.10465 0.812985

4 768.4396 21.19448 0.854475

5 779.7878 22.04807 0.863658

6 747.039 21.14102 0.854186

7 1533.62 32.39531 0.810655

8 861.8436 23.67999 0.840125

9 915.7927 23.8359 0.843062

10 833.6425 21.51158 0.835395

Table A6. MLP performance over ten random 80/20 splits on the level 6 dataset.

Split MSE MAE R2

1 2465.79 40.18608 0.617101

2 842.8247 21.4921 0.889756

3 1051.855 24.80063 0.878674

4 758.6346 19.97696 0.899484

5 811.8736 21.84069 0.958785

6 674.8115 18.66438 0.861743

7 553.5335 18.42321 0.966595

8 747.5098 19.84545 0.873888

9 1031.597 23.45245 0.957008

10 642.9714 18.37619 0.866949
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