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Abstract—This thesis presents a novel neurofeedback system
for mu-rhythm modulation using an adversarial deep learning
approach. The goal was to train subjects to modulate the mu-
rhythm in their brain activity and to investigate the usability
of this system for reflex modulation experiments. Two EEG
classifiers were implemented: a Rest vs. Motor Imagery (RestMI)
model and a Motor Imagery vs. Motor Movement (MIMM)
discriminator. Five healthy subjects participated in five sessions
of BCI training followed by a reflex assessment. During the
reflex assessment the subjects had to hold a constant flexion
in their wrist in order to provoke mechanical reflexes, which
introduced an extra challenge for the classifiers. The RestMI
model achieved a mean classification accuracy of 0.73 in the
first two sessions, however performance decreased when trials
with wrist flexion were introduced. The MIMM model showed a
low online performance during early sessions, indicating subjects
could deceive the discriminator. The reflex assessment showed
mixed results, with indication of modulation of the long latency
response. These findings suggest adversarial DL models can
support specific mu-rhythm training in some subjects, although
further work is needed with a larger sample size and more task-
specific training sessions.

Index Terms—EEG; Neurofeedback; Reflex modulation; Mo-
tor Imagery; Deep learning

I. INTRODUCTION

A brain-computer interface allows a person to control a
computer with their brain signals. This can be achieved using
the electrical signals from the brain measured through an
electroencephalogram (EEG). The subject is trained to mod-
ulate their brain activity based on feedback of the computer
system. This is called neurofeedback training. Likewise, the
computer system needs to adapt to the subject’s unique brain
physiology in order to give the appropriate feedback to the
subject. [Forenzo et al.| (2024)

Through BCI training it is possible to train subjects to
modulate a variety of brain rhythms, the rhythm this paper
will be focusing on is called the mu rhythm, which ranges
from 7-13Hz. This rhythm is most prominent over the sensori-
motor cortex and is attenuated during motor activity or motor
imagery (MI), which is the imagination of motor activity
without any actual activation. The modulation of this rhythm
is interesting because there is evidence that its modulation has
an impact on the strength of reflexesThompson et al.| (2018), as
well as having possible applications in improving visuomotor
performance in sportsWang et al.| (2023)).

Thompson et al.| (2018)) studied the effects of SMR modula-
tion on the H-reflex of the flexor carpi radialis in 8 subjects (2
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with spinal cord injury). The H-reflex is an electrical analog
of the spinal stretch reflex. The subjects were trained over the
course of 10+ sessions using a classifier based on a surface-
Laplacian spatial filter, and autoregressive spectral estimation.
They found that the H-reflex is significantly larger during
trials in which neurologically healthy subjects up-regulated
their SMR (Rest) and smaller during trials in which subjects
down-regulated their SMR (with MI). This has implications
in research into motor function recovery in people with CNS
disorders such as traumatic spinal cord injuries or degenerative
diseases like Parkinson’s disease. However, training subjects
to adequately modulate this rhythm takes a lot of time and
requires many sessions.

Deep learning (DL) models can extract features and re-
lationships from large and complex datasets, which makes
them very suitable for decoding EEG signals and adapting to
subject-specific features. [Forenzo et al.| (2024)) [Forenzo et al.
(2024) tested a DL based classifier against a traditional de-
coder on 28 subjects in an MI-based BCI task. They retrained
their classifier on all data in-between sessions. They found
that the DL classifier outperformed a traditional classifier from
the 3rd session onward. The subjects in this study did have
at least 2 sessions of BCI training with a traditional decoder
before starting the trials. Using a DL model also simplifies
the data processing pipeline as artifact removal is considered
a redundant process for DL because accuracy improvement
is minimal and in some subjects it may remove relevant
information. As such, raw signal data is used extensively with
DL based MI BCI, with or without minimal preprocessing.
Altaher1 et al.| (2023))

BCI users have a ranged ability to produce distinctive brain
states. Some users (15-30%) are completely unable to control
a BCI, which is called BCI illiteracy,Tibrewal et al.| (2022)
Allison and Neuper (2010) Some studies focus on eliminating
these subjects early onJeunet et al.[(2015)), but this does not ad-
dress any possible problems on the computer side as effective
BCI control depends on synergy between subject and machine.
DL has shown improved performance in low-performing users
over traditional decoders. Tibrewal et al.| (2022)However, this
raises the question whether this improvement is due to a higher
accuracy in recognizing the desired control signal, or whether
the model learns to recognize spurious correlations due to
confounding factors caused by the subject’s (subconscious)
changing of mental or physical state between trials.

This question of classification quality should be addressed
when using a DL model as an EEG classifier. As the exact
inner workings and training process of both the DL model
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and the subject’s brain are unknown, they are two ’black
boxes’ connected to each other. DL models require a lot of
training data and are usually re-trained in between sessions
with the new data generated by the subject. |Forenzo et al.
(2024) Because the quality of the EEG data produced by the
subject that is used to train the DL model is difficult to control,
is impossible to determine that the DL model is being trained
to only recognize a change in the mu-rhythm. If the model
is trained incorrectly the subject is then subsequently trained
with false feedback, generating worse data. This can result
in the subject and classifier never adequately converging or
converging on a control signal other than (only) mu-rhythm
modulation. This could be an issue when trying to train a
subject over several sessions in order to investigate the mu-
rhythm’s influence on reflexes.

This thesis proposes to investigate and remedy this issue
by approaching the subject-computer “system” as a semi-
unsupervised machine learning paradigm, and mimicking a
Generative Adversarial Network (GAN) |Goodfellow et al.
(2014) by inserting a discriminator model. The discriminator
model will be trained to distinguish between EEG signals
produced during MI and actual motor movement (MM). This
model will be used to control the quality of the data being
used to train the classification model and its output will be
used, together with the classifier, for feedback to the subject.
In order for the discriminator model to be usable as a quality
control, its performance should be negatively correlated with
the performance of the classifier.

The research objective therefor is to create a pair of Deep
Learning models that is usable for training subjects to modu-
late the mu-rhythm in their brain activity as measured in EEG.
This approach will introduce a method of quality control for
Deep Learning based neurofeedback training and this paper
will investigate the usability of this system for experiments
where the specific mu-rhythm modulation is required, in this
case reflex modulation experiments. Lastly the results of the
reflex experiments will be evaluated for effects of mu-rhythm
modulation on the reflex strength.

II. METHODOLOGY
A. Participants

5 healthy participants were included in the experiment (aged
23-25, 4 right handed, 1 ambidextrous, 2 male), all were
students at the TU Delft. At the start of the experiment subjects
were read an introduction describing the purpose of the study
and a description of the experiment structure and proceduregA]
after which they were given time to read the full information
letter and sign the consent form. This study was approved by
the HREC committee of TUDelft, with approval number 5115.

B. Experimental Setup

Preliminary testing was performed on the PhysioNet EEG
Motor Movement/Imagery Dataset [Physionet| (2009) to deter-
mine the best model and channel configuration to be used in
the online experiments. Fewer EEG channels are preferred in
the interest of reducing computational time, memory required
and system complexity as well as preparation time during
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Fig. 1. The complete equipment setup during the reflex assessment. All signals
(EEG, EMG and Wrist Perturbator (WP) data) are collected through the SAGA
EEG amplifier for synchronization. The operator laptop receives and stores
the data and timing annotations and runs the classifiers to supply the subject
with feedback on their EEG signals as well as determining and sending the
perturbation trigger to the RM computer. The RM computer also processes
the torque acting on the handle to provide feedback to the subject on a second
screen. The torque and velocity data are sent to the SAGA EEG amplifier and
then combined with the EEG, EMG to be sent to the operator laptop.

electrode placement for participant comfort. It can also reduce
the chance of overfitting which may be caused by including
irrelevant channels. [Altaher1 et al.| (2023) The detailed results
of the preliminary testing can be found in appendix [B-A]
Following the preliminary testing, EEGNet was chosen as the
model architecture best suited for the online experiments.

During the experiment sessions subjects were seated and
had their right arm in a wrist perturbator (WP) Schouten et al.
(2006) on a table. Standard EEG equipment was used (CE
approved devices; TMSi SAGA Amplifier, type CF-510 K
Clearance) with TMSi Infinity gel EEG caps. The ground
electrode was placed on the right mastoid process, and the
reference electrode was placed on the left mastoid process.
EEG data was recorded from the left half + midline of a 32
electrode configuration (channel set 3), which consists of 18
electrodes total, as shown in figure |Z[

Subjects received visual feedback from a classifier based on
their EEG signals. The classifier of the first session is based
on signal processing which does not require training data. The
classifiers of subsequent sessions will be two deep learning
models trained on the data of the subject’s previous sessions.

During some trials, including the reflex assessment, partic-
ipants were tasked to apply a small torque (maximum 5% of
maximum voluntary contraction (MVC)) against the handle of
the wrist perturbator. During the reflex assessment in the last
session the manipulator would give perturbations to the wrist
in order to provoke reflexes in the wrist flexor muscle. The
perturbation consisted of a 40 ms ramp at an angular velocity
of 2 rad/s resulting in a maximal amplitude of 0.08 rad. The
perturbation was given in the direction of wrist extension. |Giri
(2022) In order to measure the reflex strength, Electromyog-
raphy(EMG) was recorded with differential electrodes (Delsys
Bagnoli system, 10x10mm in size), placed on the belly of the
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Channel set 3: (18 channels)

Fig. 2. Visualization of the channel montage used in the online trials.

respective muscles, the ground electrode was placed on the
mastoid process.

The EEG data, torque on the handle, angular velocity of the
handle and the EMG of the wrist extensor and flexor muscles
were recorded at a sample rate of S00Hz. The full equipment
setup used during the reflex assessment is visualized in figure
[T} The online application which controlled experiment timing,
classification, feedback and perturbation triggering was written
specifically for this thesis project and is described in appendix
The online application was run on a laptop with an AMD
Ryzen 5 5600U (2.30 GHz) CPU with 16.0 GB of RAM.
The online classification was run entirely on CPU due to
the sequential nature of the operations (instead of batch-
wise during model training). A single classification of a 1
second segment took 0.9 ms on this system. The classifiers
were trained on the DelftBlue supercomputer [Delft High
Performance Computing Centre | (DHPC) at TU Delft on a
NVIDIA A100 GPU with 10GB of VRAM. Classifier training
took between 1-4.5 hours, depending on the experiment stage.

C. Experimental Protocol

Subjects were trained over 5 1-1.5 hour sessions, taking
place over the course of 3.5-6 weeks. There was a mean
of 5 days (with no sessions) in-between sessions with a 1-
day minimum. Due to scheduling issues and because the
experiment period crossed with the university exam period,
subjects 4 and 5 had a very long period in-between sessions 2-
3 and 1-2 respectively, of 4 weeks for subject 4 and 3.5 weeks
for subject 5. Other subjects had a maximum of two weeks
in between sessions. Subject 2 did session 2 twice due to a
technical error. At the beginning of each segment of session
1 subjects were read a standard description of what would

be expected of them (A) and they were asked to minimize
blinking and other movement, especially of the face. In the
last session, or when subjects struggled with the red MIMM
bar, they were told to preferably pay attention to the blue
RestMI bar.

The DL classifier was used from the second session onward.
To minimize the any negative influence from the subject
learning to use the BCI system for the first time, the first
session was structured in a way to introduce new elements
one-by-one in order to get data that is as free as possible from
new learning experiences. The session structures are shown
in figure E[ Furthermore, each session started with a 3 trial(1
Rest, 2 Active) unrecorded practice run to allow the subject
to get used to the updated classifier. This practice run was
also done before the new situation of MI and wrist flexion
combined. The last session was started with 2 short segments
of 2 runs each in order to conduct the reflex assessment when
the subject has become familiar with the new classifier and
the added wrist flexion task but before the subject is possibly
influenced by fatigue.

Every trial had the same timing. Trials would start with
2 seconds of preparation time where the symbol of the task
would be shown. Then the feedback started, lasting for a
duration of 20 seconds. Finally, there was a 3 second break.
(fig. B) 6 consecutive trials made up a Run, which adds up to a
total of 150 seconds. Each session consisted of 3 segments (fig.
@) which in turn consisted of 5 runs and lasted 13.3 minutes.
There were 10 second breaks between each Run and each
segment was started manually by the operator so the subject
could have a longer break to ask questions or drink some water.
All runs consisted of an equal number of randomly distributed
Active and Rest trials, the rest of the text will only mention the
type of Active trial. Session 1-3 consisted of MI and MM to
train the subject to control the BCI system. Session 4 consisted
of two MI segments after which the MVC measurement was
performed, the subject was then given a short practice run
before the full segment with both MI and wrist flexion. This
was done to both train the subject in this combined task and to
allow the model to train on this type of data before the reflex
assessment.

The feedback of the models was presented in the form of
two equally-sized bars, one blue and one red. The height of
the blue bar was directly determined by the RestMI model,
which distinguishes between Rest(negative) and MI(positive),
so this bar would become taller when the RestMI model
more confidently classified the EEG signal as MI. During
MI trials the height of the red bar was determined by the
MIMM model, which distinguished between MI(negative) and
MM(positive), so this bar would become taller when the EEG
signal more closely resembled MM. Thus the subject would
have the dual task of maximizing the difference between their
Rest and MI state while minimizing the difference between
their MI and MM state. The output of the MIMM model was
first transformed by the function ((x — 1)® + 1) to make it
seem easier for the subjects to *deceive’ this model during the
trials. During Rest trials both bars would be the same height,
determined by the RestMI model alone.

During the reflex assessment the subject was given MI and
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Session 4 Session 5

Ml (2 runs)

MI + Wrist flexion (2 runs)
Reflex Assessment

MVC measurement
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Fig. 3. Structure of the experiment sessions, indicating the Active trial type per segment (see fig EI) All MI segments from the second session onward use
feedback from the DL model, and all MM segments use sham feedback only. Practice was unrecorded and consisted of 1 Rest trial and 2 Active trials, this
was done before each session to allow the subject to get used to the updated classifier and before the first segment to include wrist flexion to get used to the
new situation. The reflex assessment was the same as the MI + wrist flexion segments but with the wrist perturbator activated.

6 Active/Rest trials 150s

Break 10s

6 Active/Rest trials 150s
ive/Rest trials 150s

sQ9lL uny

Break 10s

6 Active/Rest trials 150s

Break 10s

6 Active/Rest trials 150s

v Break

‘ulw £'gl Juswdes

Fig. 4. Structure of each segment. The active trials could be MI or MM.
There were an equal number of randomly distributed Active and Rest trials in
each run. The long breaks are signified to the subject by the word " BREAK’
on screen. In between segments subjects could have as long a break as they
wanted to.

Trial 25s
L
r )

(Sham) Feedback 20s
>

Fig. 5. Structure of an individual trial. On the top is the timing of the different
parts, on the bottom is what the subject sees on the screen. The total length
of a trial is 25 seconds. During the preparation the screen will show the sign
of the coming task through either an upwards arrow (Active) or a downwards
arrow (Rest) for 2 seconds, after which the (sham)feedback will show for
20 seconds, this period is recorded and used for model training. Finally, the
subject has a 3 second break signified by a circle on the screen for them to
blink or adjust position if they need to.

Rest tasks, the same as all the other MI segments. At the same
time they had to apply a torque, which was 5% of their MVC
as measured in session 4. While they were holding the torque,
and the Rest/MI classifier determines they are in the right
brain state (classifier output < 0.25 or > 0.75, respectively),
the operator laptop triggers the wrist perturbator to apply a
perturbation on the handle against the direction of torque that
the subject is applying.

D. Data processing

The data was evaluated in 1s segments. For the traditional
classifier a small LaPlacian spatial filter was implemented by
subtracting the mean of the surrounding 4 electrodes from
the signal from the C3, then the power spectral density was
estimated using the welch function from the python package
scipy, using a Hann window with 1 segment. After this the
area under the PSD was calculated from 7-13Hz. This signal
was normalized by subtracting the mean and dividing by the
variance of a 30 second calibration signal collected in rest at
the start of the segment.

1) DL classification: EEGNet is a compact convolutional
neural network for EEG-based BCI systems. It has demon-
strated exceptional classification performance across multiple
datasets and is considered a benchmark model across many
studies/Ke et al] (2024)

The model for each session apart from the last, was trained
from scratch on data from all preceding sessions, the last
session’s model was trained on all of the MM data from
session 1-3 and the MI data from session 2-4, the first session
MI data was excluded in order to optimize the classifier for
the final session, because this data could be affected by early
learning effects of the subject.

A detailed description of the training conditions and training
data for every session’s classifier can be found in the appendix
in [B-Bl

Before training the dataset was augmented using Gaussian
noise with a 0 mean and a standard deviation of 0.01uV.
The augmented multiple is 2 so the dataset will be doubled.
The data is band-pass filtered between 0.1 and 40 Hz to
prevent aliasing and remove line noise and low-frequency drift.
The first second of every trial was cut off to account for
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the participant reaction speed. The data or incoming signal
was classified in 1 second segments. Single trials that were
disrupted by outside disturbances or small technical issues
were noted during the session and discarded.

The models were trained using the AdamW optimizer from
Pytorch using Cross-Entropy Loss, with a learning rate of 2e-4,
a batch size of 24 and a maximum of 300 epochs. Early stop-
ping was implemented with a patience of 30 epochs. The data
was split into a train/test/validation split of size 64/20/16%
respectively. During training the model was validated after
each epoch. After training on the training set the optimum
epoch was selected, the validation and training set added
together, and the optimal epochs model was trained further
until the training loss was equal or lower than the training
loss of the first optimal epoch. After training the model was
tested on the (training)test set.

2) Reflex assessment: The reflex data analysis was done
according to the methods used in [Schuurmans et al.| (2009).
The EMG data was band-pass filtered between 20-80 Hz using
a 3rd order Butterworth filter. Segments were identified from
the original data by calculating the jerk (first derivative of
acceleration) from the recorded velocity data from the RM
and identifying the peaks which indicate the start of the
perturbation using the function find_peaks from the python
package scipy.

The data was segmented from 200ms before the perturbation
to 150ms after the perturbation. If the mean torque prior to
perturbation deviated more than 5% from the goal torque the
segment would be rejected. The segments were rectified and
averaged over all segments from one subject per condition
(MI/Rest).

The dimensionless magnitude of the short latency A,;; and
the long latency Ao responses were calculated from the data
by calculating the mean amplitude in the time windows 20-50
ms and 55-100 ms after perturbation onset respectively. The
time delay until onset of the M1 response T’y; was determined
as the first point in time earlier than the time of maximum
EMG, where the normalized EMG exceeded the value 1.0 by
more than 3 times standard deviation before perturbation onset.

E. Performance Analysis

The performance of the models was evaluated during train-
ing, on an unseen test set randomly selected from the data of
the previous sessions (see above), this is called the training per-
formance from now on. The performance was also evaluated
on the full dataset from the following session, during which the
model was used for the online feedback, henceforth called the
session performance. In the ideal situation the MIMM model’s
performance is lower during sessions than during training, as
the goal is to have the subject ’deceive’ this model.

The training performance consisted of the accuracy (using a
threshold of 0.5) and the Cross-Entropy loss. Additionally, for
the session performance the Area Under the Receiver-Operator
Curve (AUROC) was calculated as well as the specificity to
investigate bias of the model classification.

As there was no MM data in session 4 and 5, the accuracy
and the AUROC of the MIMM model was only calculated for

RestMI Training Performance
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Fig. 6. Accuracy and loss after training of the RestMI model per subject by
session. The mean accuracy is 0.74 after session 1, 0.76 after session 3 and
0.73 after session 4. The mean loss is 0.62 after session 1 and is the same
after session 4.

session 2-3. The session performance of the RestMI model
during sessions 4 and 5 was evaluated separated by trials with
and without flexion to determine the influence of wrist flexion
on the quality of the EEG data.

F. Statistical Analysis

In order to determine if there is a correlation between
the performances of the RestMI and MIMM models, the
Pearson correlation between the losses of the classifiers of all
subjects and sessions was calculated. Furthermore, the Pearson
correlation was calculated between the training and session
performance loss of the RestMI model to see how well it
generalizes to new data.

Due to the low sample size, no further statistical analysis
was performed.

The code written for this thesis can be found on GitHub:
https://github.com/Em-R2019/online-classification.git
https://github.com/Em-R2019/EEG-model-training.git

III. RESULTS

All five participants completed the five training sessions.
Subject 2 did session 2 twice due to technical issues. Overall
subjects reporting feeling that they had control over the
feedback from the DL model, but that the level to how much
control varied within a session from segment to segment as
well as between sessions.

A. Training performance

The training results of both the RestMI and MIMM models
can be seen in figures [6] and [7] The mean performance for
the RestMI model increases from session 1-3 and then drops


https://github.com/Em-R2019/online-classification.git
https://github.com/Em-R2019/EEG-model-training.git

MIMM Training Performance

subject 1
subject 2
subject 3
subject 4
subject 5

Accuracy

Mean
0.0
2 3 4
11
1.0
5 09
@
S
08
. ____\__:_:__———
06
1 2 3 4

Session

Fig. 7. Accuracy and loss after training of the MIMM model per subject by
session. The mean accuracy is 0.92 after session 1, and 0.88 after session 4.
The mean loss is 0.73 after session 1 and 0.75 after session 4.
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Fig. 8. Performance of the RestMI model during the sessions per subject.
The mean accuracy is 0.73 for session 2 and 0.65 for session 5. The mean
AUROC is 0.77 for session 2 and 0.75 for session 5. The mean loss is 0.67 for
session 2 and is 0.66 for session 5. The mean specificity is 0.81 for session
2 and 0.75 for session 5.

for session 4, notably the performance per subject seems to
diverge for session 4. The RestMI models for subject 4 are the
lowest performers with some distance to the others, while the
subject 7 and 8 RestMI models are the highest performers. The
MIMM models for every subject perform better than the the
RestMI model in training, with a decrease in performance over
time until session 4, when the mean performance increases
again.
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Fig. 9. Performance of the MIMM model in-session per subject. Sessions 4
and 5 did not contain any MM data, therefore the AUROC and accuracy is
only calculated for sessions 2 and 3. The mean accuracy is 0.50 for session
2 and 0.64 for session 3. The mean AUROC is 0.60 for session 2 and 0.65
for session 3. The mean specificity is 0.60 for session 2 and 0.78 for session
5. The mean loss is 1.00 for session 2 and 0.83 for session 5.

B. Session performance

The in-session results of the RestMI model are summarized
in figure [8} The session performance of the model is more
variable over time than the training performance. The accuracy,
specificity and AUROC decrease between the second and last
session and the mean loss stays around the same value between
the second and last session. The mean specificity is higher than
the accuracy for every session meaning that the model is better
at identifying (negative) Rest trials than (positive) MI trials.

The in-session results of the MIMM model are visualized
in figure [9] The AUROC and accuracy are only visualized
for sessions 2 and 3 as sessions 4 and 5 do not contain any
MM data. Notably, the session performance is low in session
2 and 3, both in general and in comparison to the training
performance. Some of the values of subjects 2 and 5 are
below random classification. The mean specificity is higher
than the accuracy for sessions 2 and 3, meaning the model is
better at recognizing (negative) MI than (positive) MM. The
in-session performance increases over time to approach the
training performance in session 5.

The mean session performance of the RestMI model sepa-
rated by trials with or without flexion is visualized in figure
In session 4 there are 6 runs worth of flexion trials to
12 no-flexion runs. In session 5 there are 8 flexion runs to
2 no-flexion runs. The performance during flexion trials is
significantly lower than during no-flexion trials (0.64-0.75 and
0.63-0.71 accuracy for session 4 and 5 respectively). Perfor-
mance for flexion trials increases for session 5, after the model
has been retrained with flexion data, while the no-flexion
performance decreases. However, no-flexion performance is
still higher than flexion performance. The relations between
the specificity and accuracy suggest that the model has more
difficulty identifying Rest(negative) than MI(positive) trials
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Mean RestMI Session Performance with/without Flexion
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Fig. 10. Mean performance of the RestMI model during the sessions,
separated by trials with or without flexion. The ratio of flexion:no-flexion
trials is different between session 4 and 5: it is 1:2 for session 4 and 4:1 for
session 5.
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Fig. 11. Training loss of the RestMI model vs Loss of the MIMM model after
session 1, 2 and 3 with a linear regression model fit. The Pearson correlation
between the losses is -0.29 with a p-value of 0.29.

during session 4’s flexion trials while this is the opposite
for the no-flexion trials of all sessions. When the model is
retrained with flexion data for session 5 that relation is restored
for flexion trials.

The Pearson correlation between training and session perfor-
mance of the RestMI model is 0.74 with a p-value of 0.0002.
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Fig. 12. In-session loss of the RestMI model vs Loss of the MIMM model
of sessions 2 and 3 with a linear regression model fit with and without the
potential outlier. The Pearson correlation of the losses is -0.01 with a p-value
of 0.99. Without the outlier the Pearson correlation is -0.56 with a p-value of
0.12.

C. Relation RestMI and MIMM models

The relations between the RestMI and MIMM model losses
are visualized in figures [T1] and [T2] The Pearson correlation
between the training losses is -0.29 with a p-value of 0.29.
This indicates a negative correlation between the RestMI and
MIMM loss, but this is not significant. The Pearson correlation
of the in-session losses is -0.01 with a p-value of 0.99.
Indicating no correlation. When the lower left outlier (subject
5, session 3) is removed, the Pearson correlation is -0.56 with
a p-value of 0.12, which again indicates a negative correlation
but not statistically significant.

D. EEG Bandpower

The EEG bandpower of the Mu band in subject 4 during
session 5 is visualized topographically in figure [T3] separated
into MI/Rest trials and with and without wrist flexion. There
are high levels of power around P3, PO3 and Pz for all
conditions. Power around Fz increases in the Rest conditions.
During the normal Rest trials without wrist flexion there is
a peak of power around C3 and CPI, but this effect is not
visible in the Rest with wrist flexion condition. The topomaps
of the rest of the subjects can be found in the appendix

E. Reflex Assessment

The results of the reflex assessment are summarized in
figure [14] The mean number of segments per subject for MI
was 30 (range 21-39) and 32 for Rest (range 29-39). The
average Ajs; response was the same during MI and Rest
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Fig. 13. Topographical map plot of the averaged Mu bandpower of subject 4
during session 5 in MI and Rest trials with and without wrist flexion. During
the normal Rest trials there is a higher bandpower visible over the motor
cortex, however this is not visible during the trials with wrist flexion.
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Fig. 14. Graphs: Averaged normalized EMG activation of the wrist flexor
during perturbation per subject. Bar plot: Aprq and Apso values per subject
in MI and Rest. Mean Ajsq during MI: 141 £ 36 uV, Rest: 141 + 38 uV,
mean Ajpso during MI: 40 + 10 pV, Rest: 45 + 11 pV.
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(MI: 141 + 36 uV, Rest: 141 + 38 V) and the average Ay o
response was higher during Rest trials (MI: 40 + 10 'V, Rest:
45 £ 11 pV).

IV. DISCUSSION

The design of this study incorporated a novel adversarial
approach using a pair of DL models to improve the specificity
of mu-rhythm-based neurofeedback training. The results do
not demonstrate a statistically significant correlation between
the model performances, but this should be tested further with
a higher sample size.

The consistently higher specificity compared to accuracy
across sessions suggests that the RestMI classifiers are more
effective at recognizing Rest examples than MI examples. This
bias may be the result of a relatively lower variability in the
Rest state compared to the variability involved in generating
MI, particularly in novice BCI users.

The observation that the MIMM model performance is sig-
nificantly lower during sessions 2-3 compared to training and
in some subjects performed worse than random classification,
suggests that participants were indeed able to ‘deceive’ the
discriminator to some degree, which indicates that the intended
GAN-like nature of the system could have merit. Especially
noting that the RestMI model did not suffer such a large drop
in performance between training and session, so it is less
likely that it is caused by large inter-trial discrepancies due
to EEG non-stationarity or changes in MI strategy. However,
over time the session performance improves, even though the
training performance slightly decreases, indicating that as the
generalization ability of the model rises due to having a larger
training dataset, it becomes harder for the subjects to deceive
it. This is in line with observations during the online trials, as
several subjects indicated that it became increasingly difficult
to make both bars rise at the same time.

Presenting the output of both models as equal might have
led to confusion or frustration in participants. A different
way of combining the two types of feedback may work
better, where the RestMI model output is clearly the most
important. Especially as the ultimate goal was to create a large
difference between the Rest and MI brain states. Possibly the
discriminator could be mainly used as a way to assess and tag
data quality offline before training the RestMI model rather
than use it as feedback for the subject directly. A traditional
classifier or a human expert might be used for this purpose as
well, especially to identify correct up-regulation during Rest
trials, which the paradigm in this thesis does not have a method
for controlling. Alternatively, separate training periods could
be incorporated to teach the subject each task separately: first
the ability to accurately down-regulate their mu rhythm using
the MIMM model, and only then incorporate the Rest task
into the training paradigm.

Some subjects mentioned having difficulty not thinking
about their hand during the rest trials. Furthermore, some
subjects found it difficult to focus on the majority white screen
for long periods of time, suffering from dry or teary eyes.

Ideally, subjects would learn to control a BCI system with
the traditional decoder as much as possible before starting data
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collection for classifier training to minimize the influence of
the initial subject learning process negatively influencing the
performance of the model like in [Forenzo et al.| (2024). Due to
the short experiment period and because DL models require a
lot of data to train it was decided to use the first session’s data
for the classifier training and start utilizing the DL classifier
from the second session onward. Even though the first session
was structured in such a way as to minimize the impact of
early learning effects, this could have negatively impacted the
model’s ability to focus on mu-rhythm specific patterns rather
than more general cognitive engagement signals.

The introduction of wrist flexion trials during session 4
had a clear deteriorating effect on the session and training
performance of the RestMI model. Retraining the model after
session 4 with wrist flexion data clearly improved the flexion
performance while decreasing the no-flexion performance.
This underscores the difficulty in generalizing EEG-based
classifiers across even minor changes in task execution. It
emphasizes the necessity of task-specific training data for
creating a DL classifier for BCIL.

This study aimed to train subjects to accurately down-
regulate their mu rhythm by integrating the MIMM discrim-
inator model into the BCI system. During standard Rest and
MI tasks, performed without physical movement or muscle
contraction, the MI condition may require more cognitive
effort, as it is a deviation from the resting baseline. However,
during the reflex assessment, where subjects maintained con-
tinuous wrist flexion, this paradigm was effectively inverted
as MI became more akin to the new baseline, while the Rest
condition, requiring the suppression of motor intent during
ongoing muscle activation, might be more difficult.

The EEG bandpower data of the final session indicates that
subject 4 was able to up-regulate their Mu rhythm during the
rest trials, but was not able to do this while simultaneously
holding wrist flexion. Possibly due to distraction from having
to concentrate on two tasks and/or not having enough training
in the new task. The data of the rest of the subjects are less
clear and most show strong eye artifacts. This may be due to
less well-fitting EEG-caps, and eye irritation from the mostly
white screen. This is most likely for subject 3, who was in-
between cap sizes and used the larger cap size for comfort,
they also struggled the most with dry eyes from looking at the
screen. 2 subjects (2 and 3) have stronger eye artifacts during
the flexion trials and 2 (1 and 5) show less eye artifacts during
flexion trials, meaning there is no clear effect of having to look
between the two feedback screens on eye artifacts.

Gir1 (2022) tried to replicate the results of [Thompson
et al| (2018) in the spinal stretch reflex using mechanical
perturbation with 5 healthy subjects. The subjects were trained
over 5 to 8 sessions. This study found significant effects in
the mechanical reflex in only 1 subject. The results of the
reflex assessment of this thesis show that there is no difference
in the magnitude of the M1 response. The M2 response,
however, shows a smaller magnitude during MI in all subjects.
This indicates that mu modulation affects the M1 and M2
responses differently. The M2 response has in fact previously
been shown to be modulated by the cerebral cortex and can be
affected by intention and habituation. It is also possible for the

voluntary response to overlap with the second half of M2 (75
ms after perturbation) |[Lemmers| (2022) |Goodin et al.| (1990),
however this overlap is not apparent in any of the subjects’
EMG data. Both the M1 response and the H-reflex are elicited
through Ia-afferents |Cruccu and Deuschl (2000), so following
the results of [Thompson et al| (2018), one would expect the
M1 response to be affected by mu modulation as well. It is
possible that this response would show an effect after a longer
training period because this would yield both cleaner data as
the classifier becomes better at recognizing mu modulation as
well as subjects which can modulate their mu rhythm more
strongly.

A key limitation of this study is the small sample size (n=5)
which limits the generalizability of the findings. The large
inter-subject variability in model performance, especially of
the RestMI model could be caused by differences in mental
state, cognitive strategies, fit of the EEG cap and respon-
siveness to neurofeedback. The reported performances are a
combination of the model performance and subject perfor-
mance, making it difficult to distinguish whether performance
improvement is the result of model adaptation to a larger
dataset or of subject learning. A channel ablation study could
be performed to investigate which channels affect classifier
performance the most, this would say something about which
spatial features the models are learning to recognize. This
information could help discern between subject learning or
model adaptation effects.

Despite these challenges, this thesis demonstrates that in-
corporating adversarial dynamics into a neurofeedback system
can be a viable strategy. However, the resulting internal model
dynamics should be explored more thoroughly, for example
through a channel-ablation study. A larger sample size is also
needed to generate more significant results and more training
sessions, specifically more task-specific training sessions, are
required to improve performance. Furthermore the feedback
design should be refined in order to more clearly communicate
the intended goal. For the future of DL BCI, more work
should be done to extricate and separate subject and model
performance in order to effectively evaluate and improve the
next generation of BCI systems.

V. CONCLUSION

This study introduced an adversarial deep learning approach
to enhance the specificity of mu-rhythm neurofeedback in an
MlI-based BCI system. By pairing a Rest vs MI classifier
with a MI vs MM discriminator, the system was designed
to ensure higher data quality during training. Results showed
that the MIMM model could be successfully deceived during
the earlier sessions, supporting the feasibility of adversarial
dynamics in neurofeedback.

The drop in classifier performance during wrist flexion
trials highlights the importance of task-specific training data.
Although the small sample size limits generalizability, this
work demonstrates the potential of adversarial DL models to
improve neurofeedback systems. Future work should refine
feedback design, increase session numbers, and could poten-
tially further separate task learning and implement data quality



assessment using the discriminator model to improve training
effectiveness.

The results of the reflex assessment indicate an effect of mu-
rhythm modulation on the long-latency M2 reflex response.
However, a study with larger sample sizes with an improved
BCI system should be performed to increase the generalizabil-
ity of the findings.
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APPENDIX A
PARTICIPANT INSTRUCTIONS

A. Introduction

The purpose of this research study is to investigate whether deep learning can be used to promote training humans to
voluntarily modulate their brain activity. We also want to understand how practicing this might influence reflexes, which are
automatic responses of your muscles that are often affected following brain injury. We are interested in how reflexes can
temporarily become stronger or weaker during voluntary brain activity modulation, this will be tested at the end of the research
study. Participating in this research will take you 5 sessions of 1-1.5 hours to complete within 5 weeks. The brain activity that
we are interested in is called the Sensori-Motor Rhythm, or SMR. This rhythm is most prominent in the central areas of the brain
and is related to active movement or processing of information from your senses. The rhythm is stronger when you are at rest
and becomes weaker when you are active. It also becomes weaker when you only imagine movement or sensory experiences.
During this study you will train your ability to modulate the SMR without actual movement. During the experiments you will
be seated. Your arm will be resting on a table while you are holding the handle of a robotic manipulator. In order to measure
your brain activity you will wear an electroencephalogram (EEG) cap, this looks like a swimming cap with sensors attached
to it. In the last two sessions of the study you will be asked to apply a small torque (max 10% of your maximum) on the
handle of the robotic manipulator. While holding the small torque, the manipulator will provoke reflexes by short and small
displacements of the position of your hand when it is active. During this, the reflex activity of your wrist muscles will be
measured using adhesive electrodes on your arm. The manipulator will not be active until the very last session, and you will
be made aware when it will be used. Today’s session will consist of three segments, each lasting about 12 minutes. during
the first segment you will be asked to actually move your wrist. During the second segment you will be asked to imagine
moving your wrist and for the last segment you will be asked to imagine moving your wrist while you receive feedback from
the computer on your SMR. Later sessions will be structured similarly. Your participation in this study is entirely voluntary
and you can withdraw at any time. If you decide not to participate, no further action is required. You can ask the researcher
questions about any aspect of the research study.

B. Start experiment (MM)

This segment will last about 12 minutes. During this segment you will receive instructions on the computer screen in front
of you to move your hand () or to relax (v). We start with actual hand movement to get a baseline of your brain activity during
actual movement. The tasks will last 20 seconds, in-between these tasks you will receive short breaks (o) of a couple seconds
and longer breaks, signified by the word ‘break’ on screen, of about 15 seconds. During the ‘relax’ task you should really
focus on relaxing, look at the screen and try not to think about anything. During a break you may do anything you want, look
around, move, think about anything or scratch your face. Please try to minimize blinking or facial movements during the tasks
and use the breaks for blinking or stretching your face. Try to loosely grip the handle and move it at a calm speed. During
the tasks you will see two coloured bars on the screen, these are to simulate visual feedback and have no meaning during this
segment. You should look at the screen during the tasks. The segment consists of 5 runs with 6 tasks each, the tasks will be
ordered randomly. The segment will start with two practice trials after which you will have the ability to ask questions.

C. Start MI

This segment will again last about 12 minutes. It is structured the same as the last, except when the upwards arrow is shown
you should keep you hand still and only imagine moving your wrist and the sensations associated with this movement. If you
struggle to imagine just moving your wrist, you can imagine moving the handle or performing some other movement that
mainly involves using your wrist, such as drawing. There will be no practice runs, the trials will start right away.

D. Start feedback (traditional decoder)

This segment will again last about 12 minutes. It will start with a 30 second calibration for the computer to adapt to your
EEG signals. During this time you should simply look at the screen without blinking and not performing any task. After this
it is structured the same as the others, and when the upwards arrow is shown your task will again be only imagining the
movement of your wrist or hand without actually moving it. However, this time you will receive feedback on your SMR from
the computer through the two coloured bars on the screen. When you are performing correctly, the bars should move in the
direction of the arrow. So, when the upwards arrow is shown you should imagine movement and the bars should be as tall
as possible. When the downwards arrow is shown you should relax and the bars should be as short as possible. Again, if
you struggle to imagine just moving your wrist, you can imagine moving the handle or performing some other movement
that mainly involves using your wrist, such as drawing. During this first session the computer is using a simple algorithm to
generate the feedback which may limit its accuracy. Try to not be discouraged and focus on the imagination of moving your
wrist.
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APPENDIX B
METHODS

A. Preliminary testing

Several models were selected from literature to test whether they could differentiate between MI and MM. The models

selected were FACT-NetKe et al| (2024), EEGNef{Lawhern et al. (2018), ConformerSong et al| (2022), LMDA-ne{Miao et al
(2023) and FBCNe{Mane et al| (2020). Only the first two were found to be effectively able to recognize the difference after
training. These two were tested under different circumstances to see which one worked best. Only the first two were found to

be able to recognize the difference after training.

The two selected models were tested with different electrode configurations on an offline dataset in order
to reduce the number of electrodes needed in the online trials in the interest of participant comfort and time required. The
electrode configurations tested are shown in figure T3] The results of the tests are shown in figure [T6] EEGNet was selected for
the online trials, using the left half + midline of a 32 electrode configuration (channel set 3), which consists of 18 electrodes

total.

Channel set 1: (64 channels) Channel set 2: (35 channels) Channel set 3: (18 channels)
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Fig. 15. Visualization of the channel sets tested offline.
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Fig. 16. Testing loss and accuracy of FACTNet and EEGNet on different channel sets for MM vs MI classification.

B. Data
The tables in this section describe the trial conditions and training data for the classifiers.
TABLE 1
TRIAL CONDITIONS
Condition Main task Feedback Perturbations
MM Moving the right hand back and forth (flexion-extension) | sham no
while holding the handle of the WP
Rest Mental rest while holding the handle of the WP DL classifier (unless | no
specified otherwise)
MI Imagining moving the wrist while holding the handle of the | DL classifier (unless | no

WP

specified otherwise)

MI with wrist
flexion

Imagining moving the wrist while holding a constant torque
(5% of mvc) against the handle of the WP (= wrist flexion)

DL classifier

Only during re-
flex assessment

Rest with
wrist flexion

Mental rest while holding a constant torque (5% of mvc)
against the handle of the WP (= wrist flexion)

DL classifier

Only during re-
flex assessment
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TABLE II
DATA USED FOR TRAINING & TESTING CLASSIFIERS. GRAY CELLS: SESSION DATA, WHITE CELLS: TRAINING DATA
Classifiers . . . . .
Data Session 1 Session 2 Session 3 Session 4 Session 5
Session 1 all all all MM only
Session 2 all all all
Session 3 all all
Session 4 all

Session 5
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TOPOGRAPHIC PLOTS
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Fig. 17. Topographical map plots of the averaged Mu bandpower of subjects during session 5 in MI and Rest trials with and without wrist flexion. (d): One

bad channel (FC1) was removed from the data of subject 5.
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