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Abstract

The spreading process of diseases has been an important research topic for many years. It
has profound effects on the development of human social behaviors. The underlying so-
cial network structure may change when individuals change their connection with other
individuals in response to the epidemic. The classic susceptible-infected-susceptible (SIS)
model is used to model the spread of an epidemic on a network, where all individuals are
defined as nodes and the connections between the individuals are regarded as links. Be-
sides the typical static network, the structure of the network can be related to the state of
nodes (infected or susceptible) by link breaking and link creation processes. So the ex-
tended network, adaptive susceptible-infected-susceptible model (ASIS model) can be de-
rived.

To study the spreading process on static networks and adaptive networks, we use stochas-
tic simulations and mean field approximations. We assume that the spreading process over
the network is a continuous-time discrete-state Markov process. But most recent works
use the discrete-time simulator, which is actually an approximation of the process. In this
report, we extend a existing continuous-time simulator towards adaptive networks. This
existing simulator is based on the Gillespie algorithm. We perform the simulations using
both discrete-time Markov chain and continuous-time Markov process. And based on the
simulation results, we demonstrate that the continuous-time simulator has a better per-
formance than the discrete-time simulator on modeling both static SIS network and ASIS
network with high accuracy.

The second part of this work aims to study the characteristics of the ASIS network in
the metastable state. We observe three possible states of the ASIS network: the endemic
state, disease-free state and bistable state. The degree distribution of the graph follows a
binomial distribution in some cases. By plenty of simulations with different parameters,
we illustrate under what circumstances the degree distribution follows the binomial distri-
bution.
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1
Introduction

It is declared by the World Health Organization (WHO) that the Coronavirus disease 2019
(COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is a global pandemic since early 2020 [8]. Due to the huge impacts of COVID-19
on people’s daily life and the economy, various works attempt to find out the spreading
mechanism of COVID-19 and predict how long the pandemic will last and how many peo-
ple will be finally affected or deceased [23]. Various other diseases, e.g., the Plague, caused
millions of victims across many centuries. Consequently, it is vital to investigate how the
disease will interact with humanity.

Among all the tools, one typical and basic way to mathematically investigate the dynam-
ics of the spreading disease is first introduced by Kermack and McKendrick [15], where the
population is divided into several compartments, and hence the model is called a com-
partmental model. The compartmental models in epidemiology assume that the pop-
ulation is well-mixed and each individual follows the same connection pattern. One of
the most well-known compartmental models is the Susceptible-Infected-Removed (SIR)
model [4, 21, 22, 26]. In this model, there is a compartment (group) of healthy and sus-
ceptible people (S), a group of people who are infected with the disease and can spread it
to susceptible (I) and a group who have been removed (R), i.e., dead. The R compartment
may also include the recovered people, who are immune to the disease. It has been proved
that the SIR model can accurately model some diseases, such as measles [14].

Another related model is called the Susceptible-Infected-Susceptible (SIS) model. In
the SIS model [5], there are two compartments: the fraction of susceptible individuals (S)
and the active infectious individuals (I), where the susceptible people can be potentially
infected by the infected people. After people cure from the disease, they return to the sus-
ceptible state, meaning that they can be infected again. These two models are the founda-
tion of the epidemiological modelling, and plenty of variants are derived from them, e.g.,
the SIRS model [24].

However, the main drawback of the aforementioned model is that the connection status
between individuals is not taken into account. This could be a severe problem when the
local topology information takes effect when considering the disease spreading process. To
tackle this limitation, agent-based models have been put forward and investigated, where
every individual is considered as a node within a network. Furthermore, the connections
between the individuals can be modelled as the links or the edges of the network. In this
model, each individual is again labelled as susceptible or infected, indicating their health
statuses. The infection or the cure process can be modelled as the stochastic process with
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2 1. Introduction

probability [29]. Furthermore, the infection process requires the existence of the contact,
which utilizes the local topology information of the network in modelling the spreading
epidemics. This model through contact networks is called network epidemiology [7, 12, 13,
16].

Many models in network epidemiology consider static underlying contact networks, but
which are actually changing over time. For example, during the COVID-19 pandemic, usu-
ally the infected individuals are asked to stay at home (self-isolation) or are quarantined
[27], which basically reduces the number of contacts in the network. This situation is re-
flected as variation in the network structure. Furthermore, this also illustrates the interac-
tion between the disease and the network itself. Under these circumstances, Gross et al.
[11] put forward a new model, where the network is adaptive to the statuses of individuals.
This model is named adaptive network. In this model, the connection between infected in-
dividuals and susceptible individuals can be broken to prevent the spreading of the disease,
which has a profound impact on the emerging network [11].

In this thesis, we comprehensively investigate the properties of the adaptive SIS net-
work through many simulations, including the epidemic threshold, metastable prevalence,
number of components within the network, assortativity, degree distribution, and so on.
Furthermore, many previous simulation results are derived using the discrete-time simu-
lator [3] while the modelled process is actually a continuous stochastic process. It is un-
known whether the discrete-time approximation simulation methods is accurate or not.
Therefore, in this thesis work, we adapted a continuous time simulator for adaptive net-
work using the Gillespie algorithm. Based on this simulator, we discuss the deviations be-
tween the discrete-time and continuous-time simulation results.

This thesis work is organized as follows:

• Chapter 1-Introduction: In this chapter, we first introduce the background and then
motivate the research problem of this thesis work.

• Chapter 2-Background: In this chapter, we provide the preliminary knowledge for the
thesis work, e.g., the SIS model and the adaptive SIS network, the master equations
and its mean-field approximation.

• Chapter 3-Discrete time simulations: In this chapter, based on the simulation results
derived by the discrete-time simulator, we provide the definitions of a few important
concepts, e.g., metastable prevalence and epidemic threshold. Besides, we also moti-
vate the implementation of SIS network by introducing self infection process.

• Chapter 4-Continuous time simulations: In this chapter, we introduce our continuous
time simulator by first discussing the Gillespie algorithm. After that, the implemen-
tation of the devised continuous-time simulator is explained and finally, the compar-
ison between the discrete-time simulator and the continuous-time simulator is dis-
cussed.

• Chapter 5-Numerical results and discussions: In this chapter, we research on the bista-
bility of the ASIS network and try to find the transitions between three different states
of the ASIS network in the metastable state. Besides, we also research the characteris-
tics of metastable topology whereby we focus on the degree distribution

• Chapter 6-Conclusion: This chapter presents the conclusion of the research work and
scope of future work on adaptive networks.



2
Background

2.1. Graph Theory
In mathematics, the relationships among objects can be modelled as a non-Euclidean math-
ematical structure, i.e., graph. Let us consider a population of N individuals. Each individ-
ual may have connections to other individuals. All individuals can be denoted as nodes or
vertices and the connections in between are regarded as links or edges. Then a network can
be modelled as a graph G = (N ,L ), where N is the set of vertices and L is the set of links
[30]. Furthermore, we define L = |L | and N = |N |. The graph G can be characterized by
a symmetric adjacency matrix A. If the graph is simple and has no self-loops, the element
ai j = [A]i , j specifies whether node i and node j are connected or not. We consider the un-
weighted graph, which means the entry of the adjacency matrix A is binary. Then the entry
of the adjacency matrix obeys the following rules

ai j =
{

0, if node i and j are disconnected,

1, if node i and j are connected.

In this thesis work, we consider the simplified situation where if there is a link from i to
j , then there exists a link from j to i . This means the graph is undirected. Therefore, the
adjacency matrix A is symmetric. Furthermore, The degree d j of a node j in the graph G is
the number of neighbors. If the node j is disconnected to the graph, the degree d j = 0. The
degree of a graph is defined as the sum of degrees of all nodes within the graph. Since each
link belongs to two connected nodes, it can be counted twice when computing the degree
of nodes on their terminal. Then the degree of a graph can be formulated as

∑N
j=1 d j = 2L.

2.2. Stochastic Processes
In this thesis, we intend to simulate epidemics on networks in a probabilistic way which
urges us to introduce some concepts about stochastic processes. A stochastic process can
be defined as a set of random variables X (t ), where time t is within a time series T . If T is
a continuous set, then X (t ) is a continuous time stochastic process. If T is a discrete set,
then X [k] is a discrete time process where k is the discrete time instant in the set T .

2.2.1. Poisson Process
The Poisson process with rate λ ≥ 0 is a continuous time stochastic process, also called as
homogeneous Poisson process. It can be defined as a counting process, as this process rep-
resents the number of random events within the time intervals. The homogeneous Poisson

3



4 2. Background

process has independent increments following the Poisson distribution

Pr[X (t + s)−X (s) = k] = (λt )k e−λt

k !
, (2.1)

where t > 0, s ≥ 0, and k is a non-negative integer. The parameter λ is interpreted as the
rate of random events occurred in a unit of time. Particularly, the number of events in a
time interval with any length t is a Poisson random variable with rate λt .

2.2.2. Markov processes and Markov chains
Markov processes, for which discrete time and continuous time versions exist, are another
example of stochastic processes. For a Markov process, the future state of the random vari-
able only depends on its current state, and not on the previous states. If its state space is
discrete, it is called a Markov chain. A Markov chain moves states in discrete time steps,
called as discrete-time Markov chain (DTMC). If moves continuously through time, it is
named as continuous-time Markov chain (CTMC).

In a Markov process, when the system is stationary and will not change anymore, this
system is in the so-called steady state. If the process is in a specific state and cannot leave
the state, this state is absorbing state. For example, in SIS epidemics, the absorbing state is
all individuals in the system are healthy, which is also named the trivial steady state.

2.3. Epidemics on Networks
2.3.1. The SIS model
The susceptible-infected-susceptible model (SIS model) is widely used to simulate the spread-
ing of infectious diseases [5]. In the basic SIS model, the population of individuals is sep-
arated into two classes: susceptible individuals (denoted by S) and infected individuals
(denoted by I ). A susceptible individual is vulnerable and can potentially be infected by
contacting an infected individual, whereas an infected individual can possibly recover from
the disease. A schematic overview in shown in Figure 2.1.

Figure 2.1: Transition diagram for the two-state Markov chain of SIS model. S is the sus-
ceptible or healthy state, while I is the infectious state.

Here we utilize Bernoulli random variables to describe the state of the individuals. The
state of node i at time instant t , i.e., Xi (t ) = 1 when node i is infected at time t , whereas
Xi (t ) is zero when the node i is healthy. During the curing process, infected nodes can
recover from the disease. For the infection process, the susceptible nodes can be infected
by other infectious nodes. The curing process is a Poisson process with rate δ, while the
infection process is a Poisson process with rate β. We assume that during a small time step
∆t , only one transition occurs in the Markov chain. Conditionally, the infection process
can take place on Xi when Xi is healthy, its neighbor X j is infectious, and node i and j
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are connected, while the curing process can happen if Xi is infected. Both processes are
independent processes. These processes can be formulated as Markov chains,

Infection : Pr[Xi (t +∆t ) = 1|Xi (t ) = 0, X j (t ) = 1, ai j (t ) = 1] =β∆t ,
Curing : Pr[Xi (t +∆t ) = 0|Xi (t ) = 1] = δ∆t .

(2.2)

2.3.2. Master equation of SIS model
The master equation of a Markov process is utilized to describe the evolution of the process
in the probability of states. To derive the master equations, we first consider a network with
two connected nodes. Then the Markov process has two Bernoulli random variables X1,
and X2. There are thus 22 = 4 states in total. The possible states of both nodes Pr(X1, X2)
are:

• Pr(0,0): both X1 and X2 are healthy,

• Pr(0,1): X1 is healthy but X2 is infected,

• Pr(1,0): X1 is infected but X2 is healthy,

• Pr(1,1): both X1 and X 2 are infected.

For one transition from one state to another state in time step ∆t , it can be formed as

Pr[(X1, X2)(t +∆t )] = P ·Pr[(X1, X2)(t )], (2.3)

where P is the transition probability matrix. The probability of all transitions of the states
is described by the transition matrix P.

Then the following transition matrix for the 2 connected nodes in SIS model is derived
as

P =

(0,0) (0,1) (1,0) (1,1)
1−2β∆t
δ∆t
δ∆t

0

β∆t
1− (δ∆t +β∆t )

0
δ∆t

β∆t
0

1− (δ∆t +β∆t )
δ∆t

0
β∆t
β∆t

1−2δ∆t

 . (2.4)

Taking the time step ∆t to zero, we move from the discrete-time Markov chain to the
continuous-time Markov chain, and the transition matrix is denoted by P̃, rewritten as

P̃ =

(0,0) (0,1) (1,0) (1,1)
−2β
δ

δ

0

β

1− (δ+β)
0
δ

β

0
1− (δ+β)

δ

0
β

β

1−2δ

 . (2.5)

Based on the transition matrix, we can derive the differential equations of Pr(1,1) and
Pr(1,0) as follows

d Pr(1,1)

d t
=−2δPr(1,1)+βPr(1,0)+βPr(0,1), (2.6)

and
d Pr(1,0)

d t
=βPr(0,0)+δPr(1,1)− (δ+β)Pr(1,0). (2.7)

Combining equation (2.6) and (2.7), the differential equation of the probability that X1 =
1 and the state X2 is undetermined, Pr(1, x), is

d Pr(1, x)

d t
=βPr(0,0)+βPr(0,1)−δPr(1,1)−δPr(1,0). (2.8)
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Based on the Bernoulli property E [X ] = 1×Pr[X = 1]+0×Pr[X = 0] = Pr[X = 1], equation
(2.8) is rewritten as

d
d t E [X1] =βE [(1−X1)(1−X2)]+β[(1−X1)X2]−δE [X1(1−X2)]−δE [X1X2]

=−δE [X1]+βE [(1−X1)X2].
(2.9)

Similarly, we have
d

d t
E [X2] =−δE [X2]+βE [X1(1−X2)]. (2.10)

And the correlation between X1 and X2 can be derived as well by the following equation

d
d t E [X1X2] = d

d t Pr[X1X2 = 1]
=−2δPr(1,1)+βPr(1,0)+βPr(0,1)
=−2δE [X1X2]+βE [X1(1−X2)]+βE [(1−X1)X2]
=−2δE [X1X2]+βE [X1 +X2 −X1X2].

(2.11)

In general, for a network with N nodes, the differential equation of the viral state of node
i is obtained as

d

d t
E [Xi ] =−δE [Xi ]+β

N∑
j=1, j ̸=i

E [(1−Xi )X j ]E [ai j ]. (2.12)

Equation (2.12) shows that the infection process can take place on node i if node i is
susceptible Xi = 0, and at least one of its neighbours X j is infected X j = 1, whereas the
curing process can take place if and only if node i is infected Xi = 1.

Since the nodal dynamics are given by differential equation (2.12), the rates of infection
process and curing process are linear additive. For instance, a susceptible node surrounded
by four infectious nodes, as shown in Figure 2.2, is possibly infected with rate 4β.

Figure 2.2: A five-node network which has a susceptible node (white) surrounded by four
infected nodes (gray). Since the rate of infection process is β in the SIS model, the center
node is infected with total rate 4β.

2.3.3. Adaptive SIS model
Links between susceptible and infected individuals are about to be broken to prevent the
spreading of epidemics, i.e., self-isolation or quarantine. Besides, susceptible nodes are
about to be connected to reduce the disease exposure. Therefore, the structure of the net-
work varies when a link between node i and j is created or broken. Based on this idea, the
classical adaptive susceptible-infected-susceptible network model, so-called ASIS model,
is established. The ASIS model is first introduced by Gross et al. [11] where a rewiring pro-
cess to the SIS model is implemented. In this thesis work, the state of a link between node
i and j at a certain time instant t is regarded as ai j (t ).
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Figure 2.3: Schematic overview of two connected nodes. Gray nodes are infected nodes,
white nodes are healthy. The link can be broken when Xi is not equal to X j , whereas it can
be rewired/created when Xi = X j = 0.

In an adaptive SIS network model, the link-breaking process is a Poisson process with
rate ζ. Figure 2.3 shows that it can take place when node i is healthy and the other one j is
infected at time t instant or versa. The link-creation process is also a Poisson process with
rate ξ, which requires both node i and j are healthy, ai j (t ) = 0 and ai j (0) = 1. Then the
Markov chains of link-breaking process and link-creation process can be formed as

Link-breaking : Pr(ai j (t +∆t ) = 0|Xi (t ) ̸= X j (t ), ai j (t ) = 1, ai j (0) = 1) = ζ∆t ,
Link-creation : Pr(ai j (t +∆t ) = 1|Xi (t ) = X j (t ) = 0, ai j (t ) = 0, ai j (0) = 1) = ξ∆t .

(2.13)

With Equation (2.2) and (2.13), this model can be called as adaptive-SIS model, or ASIS
model for short.

Going back to our example of the 2-node network, the adaptive SIS model introduces
one more random variable a12, which describes the existence of a link between node 1 and
2, in addition to the state of nodes, X1 and X2. Then there are 23 = 8 states in total. And the
discrete-time transition matrix P is formulated as

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

1−ξ∆t
0
δ∆t

0
δ∆t

0
0
0

ξ∆t
1
0
δ∆t

0
δ∆t

0
0

0
0

1−δ∆t
ζ∆t

0
0
δ∆t

0

0
0
0

1− (δ+β+ζ)∆t
0
0
0
δ∆t

0
0
0
0

1−δ∆t
ζ∆t
δ∆t

0

0
0
0
0
0

1− (δ+β+ζ)∆t
0
δ∆t

0
0
0
0
0
0

1−2δ∆t
0

0
0
0

β∆t
0

β∆t
0

1−2δ∆t


.

2.3.4. Master equation of adaptive SIS network
Generally for an adaptive SIS network with N nodes, the differential equation of the state
of node i can be derived by equation (2.12), as mentioned in section 2.3.2. The governing
equation of the link ai j equals

d

d t
E [ai j ] = E [−ξai j (Xi −X j )2 +ζ(1−ai j )(1−Xi )(1−X j )]. (2.14)

In Equation (2.14), we can see that the link-breaking process with rate ξ can take place
on a link between node i and node j if there exists a link ai j in between and node i is
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healthy and node j is infected or versa. For the link-creation process, it can happen if and
only if both nodes are healthy Xi = X j = 0 and there is no link ai j = 0.

To make these equations dimensionless, the parameters are also important in the fol-
lowing investigation

ξ∗ = ξ

δ
,ζ∗ = ζ

δ
,τ= β

δ
,ω= ζ

ξ
, (2.15)

where τ is the effective infection rate and ω is the effective link-breaking rate. Here we set
the curing rate δ = 1 in the simulations, which is the scale of time for the average curing
time is equal to the unit of time. In the remainder, we will drop the asterisk * for ζ and ξ.

2.3.5. Mean-field differential equations
This mean-field approximation is proposed by Van Mieghem [32], which is called N-interwined
mean-field approximation (NIMFA). The mean-field approximation is by taking the follow-
ing assumption

E [X Y ] = E [X ]E [Y ], (2.16)

for each random variable X and Y in the model. The reason for taking the mean-field
approximation is because for larger networks, the mean-field EDEs are the only way to
compute the properties of the network [2].

Taking the mean-field approximation into account, there is no correlation between the
random variables X and Y [32]. Then the differential equations (2.12) and (2.14) are refor-
mulated as

d

d t
E [Xi ] =−E [Xi ]+τ

N∑
j=1, j ̸=i

(1−E [Xi ])E [X j ]E [ai j ], (2.17)

d
d t E [ai j ] = ai j (0)(−ζE [ai j ](E [Xi ]+E [X j ]−2E [Xi ]E [X j ])

+ξ(1−E [ai j ])(1−E [Xi ])(1−E [X j ])).
(2.18)

Specially when ζ = ξ = 0, the ASIS model can be regarded as static SIS model since the
number of links in the network does not change, as shown in equation (2.12).



3
Discrete time simulations

In this thesis, all Markov processes are considered to be continuous time. Thus we have
CTMC for the epidemics models. However, in this section, all numerical results are derived
by discrete time simulations, which are basic Markov Chain Monte Carlo method. To be
specific, we consider that all results modelled by continuous-time simulations are exact,
whereas discrete-time simulations are the approximations. In this thesis work, all simula-
tions are performed on a complete network and the initial condition is that all nodes are
infected.

3.1. Static SIS network
The Monte Carlo simulation of the static SIS Markov process is shown in Figure 3.1. The
red curve shows that the fraction of infected nodes declines rapidly and then converges to
around 0.8 with oscillations for a period, which is called the endemic state or metastable
state [20].

For lower infection rates β, the fraction of infected nodes will be lower. If β is lower
than a certain value, the fraction of infected nodes will decrease exponentially to zero. The
largest infection rate β for which exponential convergence occurs, is called the epidemic
threshold.

3.1.1. Metastable states
As discussed in the section 2.2.2, the Markov process has a steady state. The SIS Markov
process exists a similar state but slightly different. The process might be in this state for a
period of time before converging to the steady state. This state is called metastable state, or
endemic state. A system can have the metastable state but it always collapses to the trivial
steady state when time tends to infinity.

In this thesis work, the average fraction of the infected individuals at a certain time is
named the prevalence y . It can be defined as [1]

y = 1

N

N∑
i=1

E(Xi ). (3.1)

The metastable state, also called endemic state, is a non-zero prevalence y for a large
period T . Mathematically, it can be derived by

y = 1

N T

∫ T

0

N∑
i=1

E(Xi (t ))d t . (3.2)

9
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Figure 3.1: Simulations derived from 100 runs of the Markov process in the complete static
SIS network with size N = 40,δ = 1,β = 0.125, and ∆t = 0.05. The red curve is the average
prevalence of the 100 runs of the Markov process. The underlying graph is the complete
graph and initially all nodes are infected.

For example, in Figure 3.2, when time t is very large, the prevalence y tends to die out,
where the process is in the absorbing state. Before the absorbing state, the prevalence y
stays to a non-zero state for a long period, where the state is the endemic state.

3.1.2. Epidemic threshold τc of static SIS model
Theoretically, the epidemic threshold τc is defined as the largest effective infection rate τ
with a non-zero fraction of infected nodes in the endemic state [32]. In an SIS network,
the stochastic epidemic threshold τc is lower bounded by the epidemic threshold τ(1)

c from
mean-field approximation [32]

τc ≥ τ(1)
c = 1

λ1
, (3.3)

where λ1 is the largest eigenvalue of the adjacency matrix A.
Thus in the N -size complete static SIS network KN , the mean-field epidemic threshold

τ(1)
c = 1

d
= 1

N −1
, (3.4)

where d indicates the degree of the network.
For various effective infection rate τ, the Markov processes of the SIS network are shown

in Figure 3.3. For τ = 0 which is lower than τc , the Figure 3.3 shows that the epidemic
process exponentially dies out because the effective infection rate τ is smaller than the
epidemic threshold τc . When τ > τc , the prevalence y will converge to an non-zero value
for the prevalence y, which corresponds to the endemic state.
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Figure 3.2: A single run of a complete static SIS network with size N = 40, δ = 1, β = 0.05,
and ∆t = 0.05. The simulation period is 100,000 time units.

3.2. ϵ -SIS model
3.2.1. Metastable prevalence

Since the epidemic of a finite network finally disappears on a sufficiently large timescale,
the real steady state of SIS model with ϵ = 0 on any finite graph is the absorbing state. It
is difficult to determine the epidemic threshold accurately. To prevent this situation and
to investigate the metastable state of infected nodes, a self-infection rate ϵ is introduced
to simulate the so-called ϵ-SIS model [31]. When the self-infection rate ϵ< δ

N , any healthy
node can infect itself with a very small probability. Furthermore, the self-infection is also
called external infections, for example, by contaminated surfaces, bacteria, etc. Thus self
infection process is independent of infection process and curing process in ϵ-SIS model. In
Figure 3.4, since there are only self infection process and curing process in this case, and
both self-infection rate ϵ and curing rate δ are the same, the prevalence y in this SIS model
finally converges to 50 percent.

Therefore, introducing self-infection process is an approach to research the metastable
state [31]. The relation between the metastable prevalence y and various effective infection
rates τ on a complete SIS network is shown in Figure 3.5.

We take 10,000 time units for one simulation and 100 simulations for one event. Then
the relation between the metastable prevalence y and the effective infection rate τ is shown
in Figure 3.5. The metastable prevalence y start to increase with relatively larger value of τ.
The epidemic threshold τc can be estimated here at τc ≈ 0.023. For the values of effective
infection rate τ which are below the estimated epidemic threshold τc , the epidemics are
difficult to spread over the ϵ-SIS model.



12 3. Discrete time simulations

0 50 100 150 200 250 300 350 400 450 500

Time t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

v
a
le

n
c
e
 y

=0

=0.05

=0.1

=1

Figure 3.3: Simulations for the complete static SIS network with size N = 40, δ = 1, and
∆t = 0.05. The effective infection rate τ is set as 0, 0.05, 0.1, 1, respectively. For an SIS
network with N = 40 nodes, the mean-field epidemic threshold τ(1)

c = 1
39 ≈ 0.0256.

3.3. ϵ-ASIS model
Introducing the link-breaking process and link-creation process to extend the ϵ-SIS model,
this network model is named as adaptive ϵ-SIS model (or ϵ-ASIS model). A single run of
the ϵ-ASIS model is shown in Figure 3.6, in which the initial network is a complete graph.
It shows that the number of links decreases corresponding to the increasing number of
infected nodes.

Because of the network adaptation, the prevalence of adaptive SIS network has larger
oscillations than the prevalence of the static SIS model in the metastable state. As shown in
Figure 3.6(a), the average steady-state number of infected nodes is around the fluctuated
number of infected nodes.

3.3.1. Epidemic reemergence
Introducing the self infection rate ϵ to the ASIS network, we can observe the phenomenon
of epidemic reemergence that the prevalence y stays at a low level for a long time, then
suddenly surges to a high level before decreasing to a low level again [35]. This process may
repeat for several times. As shown in Figure 3.7 where the infection rate τ = 0.1 which is
lower than epidemic threshold τc , the prevalence y drops to zero for a period of time, and
suddenly increase rapidly, and then drops to zero again.

Once the disease invades a giant component within a network, the infection may quickly
spread over the whole component, leading to a large number of infected nodes in the giant
component. Furthermore, when nodes get infected, this component quickly breaks into
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Figure 3.4: Example: A single run of the Markov process of the static SIS network with τ= 0,
ϵ= δ= 1. The simulation period is 4,000 time units. Only self infection process and curing
process can take place in this model.

small pieces due to the link removals. This can be evidenced by the increasing number of
components and decreasing size of the giant component. This mechanism is how the adap-
tive system prevents the epidemic spreading. Figure 3.8 shows the topology structures of
the ASIS network in Figure 3.7 at time unit t = 99 and t = 100, respectively. It is observed
that one node in the largest component get self infection in Figure 3.8(a) . Then the infec-
tion spread over the whole component, while the links between these infected nodes and
the rest healthy nodes are quickly disconnected, as shown in Figure 3.8(b).

3.3.2. Epidemic threshold τc of ϵ-ASIS model

In an ASIS network, the stochastic epidemic threshold τc is lower bounded by the mean-
field epidemic threshold since the mean-field approximation seems to overestimate the
Markov process.

Based on the property of the link dynamics, the infected nodes tend to be isolated so as
to prevent the spreading of epidemics. Therefore, the infectious disease in the ϵ-ASIS model
has a higher possibility to die out, even when τ is small. After adding the link-dynamic pro-
cesses to the ϵ-SIS model, the epidemic threshold τc of the ϵ-ASIS model increases com-
pared to the ϵ-SIS model.

Furthermore, to investigate the characteristics of τc on ϵ-ASIS model, we choose the ef-
fective link-breaking rateω as 1 and 2 with various effective infection rate τ from 0 to 0.3. In
Figure 3.9, the epidemic threshold τc increases with the increasing effective link-breaking
rate ω. With larger effective link-breaking rate, more links in the model tend to be broken
when the state of nodes and links satisfy the link-breaking rule. Then more nodes are more
possible to be susceptible or healthy so that impacts on the spreading of epidemics. As in-
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Figure 3.5: The relation between the metastable prevalence y and the effective infection
rate τ in the complete static SIS network with size N = 40, δ = 1, ϵ = 0.001, and ∆t = 0.05.
The epidemic threshold τc can be estimated here at τc ≈ 0.023. The simulation period is
10,000 time units. The results are averaged over 100 simulations.

dicated by simulation results in Figure 3.9, the epidemic threshold τc of the ϵ-ASIS model
tends to be larger for which the effective link-breaking rate ω is larger.

For the initial complete ϵ-ASIS network with all infected nodes, when the infection rate
τ is smaller than or close to the effective infection rate τc , the number of links decreases
rapidly from the beginning, and then goes up again and finally converges to the metastable
state, whereas the number of infected nodes drops down to the metastable state. A example
is shown in Figure 3.10. Since all nodes are infected at the beginning, these infected nodes
could be cured. During the curing process, the link-breaking process could take place with
the increasing number of healthy nodes. After a period, the link creation process could take
place because of many existing pairs of unconnected and healthy nodes.
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(a) Prevalence of number of infected nodes
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(b) Prevalence of number of links

Figure 3.6: A single run of Markov process for the adaptive ϵ-SIS network which is initially
the complete graph, with N = 40, ϵ= 10−3, β= 0.25, ζ= ξ= δ= 1. The red dashed line is the
average of the steady state.
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Figure 3.7: A single run of the Markov process of the ASIS network with size N = 40, τ= 0.1,
ω= 2, ϵ= 0.001.
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(a) Graph of ASIS network with one infected node

(b) Graph of ASIS network after disease spreading

Figure 3.8: Snapshots of topology structures of ASIS network in Figure 3.7. (a) Graph of the
ASIS network at t = 99; (b) Graph of the ASIS network at t = 100. Blue nodes are healthy
nodes, while red nodes are infected. Yellow links shows S-I links in the topology.
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Figure 3.9: Comparison the relations between metastable prevalence y and the effective
infection rate τ on both ϵ-SIS model and ϵ-ASIS model. Here we set δ= ξ= 1, and ϵ= 0.001.
Both two models are initially complete graph. The epidemic threshold of ϵ-SIS model can
be estimated as around 0.03. The epidemic threshold of ϵ-ASIS model withω= 1 is approx-
imately 0.05, and ϵ-ASIS model with ω= 2 is around 0.07.
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(a) Prevalence of number of links
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Figure 3.10: A single run of Markov process for the adaptive ϵ-SIS network which is initially
complete, with N = 40,ϵ= 10−3,ω= 1,τ= 0.1. The simulation period is 400,000 time units.





4
Continuous time simulations

In this chapter, we will discuss the continuous-time simulation method, i.e., Gillespie al-
gorithm, to simulate the epidemics spreading process. Since the discrete-time simulations
were approximations of continuous-time processes, just using the discrete-time simulator
might introduce (large) errors in the results. As the core of the devised simulation method,
the implementation of Gillespie algorithm will be introduced in the following section first.
Then the continuous simulator is described in the form of pseudo code.

4.1. Gillespie Algorithm
The Gillespie algorithm was introduced by Daniel Gillespie to first simulate the chemical or
biochemical system of reactions with high efficiency. It can produce a statistically correct
solution of a stochastic equation where the reaction rate is known [9, 10]. Furthermore, this
algorithm is introduced to simulate processes on networks as well [18, 33]. In this thesis,
the Poisson process is attached to each node and link and the rate of the Poisson process
changes according to the status of the network. The most direct and simplest way to sim-
ulate the process over such networks is to discretize time, which has been described and
implemented in the previous sections. However, this method is suboptimal [18] and the
length of the time interval ∆t has to be sufficiently small to obtain results with high accu-
racy. As a comparison with the discrete-time implementation, we will utilize the Gillespie
algorithm to simulate the stochastic processes over the networks.

4.1.1. Pseudo code
In this section, we will first explain the main idea of the Gillespie algorithm and then pro-
vide the implementation in pseudo code.

The original Gillespie algorithm considers N independent Poisson processes with rate
λi (1 ≤ i ≤ N ). The main idea of the Gillespie algorithm consists of two steps. In the first
step, a time increment ∆t to the next event is determined by the superposition of all N
Poisson processes. The waiting time between two consecutive transitions is exponentially
distributed. Since these processes are independent, the process describing the event oc-
curring is also Poisson distributed, and the corresponding rate is the sum over all the rates.
In the second step, we have to determine one process from all the N possible events that
produce this event according to the probability defined as follows

Πi = λi∑N
j=1λ j

. (4.1)

19
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Miller and Ting have developed a Python tool for simulating Markovian SIS and SIR epi-
demic processes on the static network, which is available here [19]. We extend the current
tool for adaptive networks. The main idea of the Gillespie algorithm for the adaptive ϵ-SIS
(ϵ-ASIS) network has four iterations steps as follow.

1. Find the rate of all possible events including nodal dynamics and link dynamics, and
compute the total rate, which is determined by the superposition of all the Poisson
processes; the events are the changes of node or link statuses; it could be infected node
get recovered, at-risk susceptible node get infected, and a link is broken or created;

2. Based on this rate of change, select the waiting time until the next event from an ex-
ponential distribution whose rate is the total rate of change;

3. Select which event takes place, with its probability proportional to the rate of each
event;

4. Apply the changes for the event to the current system and repeat from step 1.

We provide a more detailed pseudocode of the Gillespie algorithm in Algorithm 1.

4.2. Continuous-time method vs. discrete-time method
4.2.1. Case study 1: comparison of prevalence on the static and adaptive SIS network
To investigate the difference between the continuous-time simulations and discrete-time
simulations, we implement both methods on a static SIS network and an adaptive SIS net-
work with specific parameters. We perform 10,000 simulations for each model and com-
pare their average prevalence. The comparison results are shown in Figure 4.1.

In Figure 4.1a, we compare the difference between discrete-time simulations and continuous-
time simulations. It shows that the prevalence y of the discrete-time simulation has a lower
convergence in the metastable state than that of the continuous-time simulation. In Fig-
ure 4.1b, we can see that the discrete-time simulations on adaptive SIS network also have
deviation with the results from continuous-time method.

4.2.2. Case study 2: comparison on static SIS network with various τ
In this section, we compare the continuous-time method and discrete-time method by
simulating the static SIS model with different τ values. The results are shown in Figure
4.2, where the static SIS network is a complete graph with size N = 40. For the relation be-
tween the metastable prevalence and the effective infection rate τ, the simulation results
from discrete-time method with ∆t = 0.01 is close to the result of continuous-time simu-
lations, whereas the results from discrete-time method with ∆t = 0.05 has more deviation,
which means that with smaller ∆t the simulation results would be more accurate.

In terms of the computation time, the Figure 4.2b shows that the discrete-time method
with ∆t = 0.01 runs much longer than the continuous-time method. It also shows that one
discrete-time simulation with a larger time step requires longer time to operate. Besides,
we can observe that when the effective infection rate τ is below the epidemic threshold τc in
the static SIS model, the run time is small. For τ > τc , the run time and metastable preva-
lence of simulations increase when τ increases. But for τ > 0.05, we can see that the run
time of discrete-time simulations starts to decrease but the continuous-time simulations
show opposite behaviour.

Since it is difficult to spread epidemic over the static SIS network when τ< τc , it is merely
to operate both infection process and curing process, which are described by Equation
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Algorithm 1 Gillespie Algorithm for ϵ-ASIS network

Data: Graph G , transmission rate per edge τ, recovery rate δ, self infection rate ϵ, link breaking rate ζ, link
creation rate ξ, set of index nodes initial_infecteds, maximum time period T

Result: Lists of times t , number of susceptible nodes at each time S, number of infected nodes at each time
I , number of links at each time L.

1 Initialization: times t, S, I, L ← [0],[|G|-#initial_infecteds], [#(initial_infecteds)], [#(G.edges)]
2 infected_nodes ← initial_infecteds
3 susceptible_nodes ←[|G|- initial_infecteds
4 for infected_node in infected_nodes do
5 for node in G.nodes do
6 if status[node] is susceptible then
7 add (infected_node, node) to IS_links /* IS_links are the list of the possible pairs

of infected node and susceptible node */
8 end
9 end

10 end
11 for susceptible_node in susceptible_nodes do
12 for node in G.nodes do
13 if status[node] is susceptible then
14 add (susceptible_node, node) and (node,susceptible_node) to SS_links /* SS_links are the

list of the possible pairs of susceptible node and susceptible node */
15 end
16 end
17 end
18 IS_edge ← list of the actual I-S edges configured in G
19 SS_edge ← list of the S-S edges not existed in G
20 total_transmission_rate ← τ × IS_edge
21 total_recovery_rate ← δ × infected_nodes
22 self_infection_rate ← ϵ×S
23 total_nodal_rate ← total_transmission_rate + total_recovery_rate + self_infection_rate
24 total_link_breaking_rate ← ζ × IS_edge
25 total_link_creation_rate ← ξ × SS_edge ×0.5
26 total_adaptive_rate ← total_link_breaking_rate + total_link_creation_rate
27 total_rate = total_nodal_rate+total_adaptive_rate
28 time ← exponential_variate(total_rate)
29 while time < T do
30 Execute Iteration Algorithm 2
31 end
32 return times, S, I , L
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Algorithm 2 Iteration

r = uniform_random(0, total_rate)
if r < total_nodal_rate then

r_nodal = uniform_random(0,total_nodal_rate)
if r_nodal < total_recovery_rate then

/* Curing process */
u = random.choice(infected_nodes)
remove u from infected_nodes
add u to susceptible_nodes
for node in G.nodes do

if status[node] is susceptible then
remove (u,node) from IS_links
add (u,node) and (node,u) to SS_links

else
add (node,u) to IS_links

end
end
update times, S, I , L

end
r_infect = uniform_random(0,total_transmission_rate+self_infection_rate)
if r_infect < total_transmission_rate then

/* Infection process */
random choose (transmitter, recipient) from IS_edge
remove recipient from susceptible_nodes
add recipient to infected_nodes
for node in G.nodes do

if status[node] is susceptible then
add (recipient,node) from IS_links
remove (recipient,node) and (node,recipient) to SS_links

else
remove (node,recipient) to IS_links

end
end
update times, S, I , L

end
/* Self infection process */
for node in G.nodes do

random remove u from susceptible_nodes
add u to infected_nodes
if status[node] is susceptible then

add (u,node) to IS_links
remove (u,node) and (node,u) from SS_links

else
remove (node,u) to IS_links

end
end
update times, S, I , L

end
/* Link breaking process */
r_link = uniform_random(0,total_adaptive_rate)
if r_link<total_link_breaking_rate then

random choose edge from IS_edge
remove edge from G
update times, S, I , L

else
/* Link creation process */
random choose edge from SS_edge
add edge to G
update times, S, I , L

end
update IS_edge, SS_edge
update total_recovery_rate,total_transmission_rate,self_infection_rat
update total_link_breaking_rate, total_link_creation_rate
update total_nodal_rate, total_adaptive_rate, and total_rate
time ← time + exponential_variate(total_rate)
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(a) Simulations on static SIS network with size N = 40, τ= 0.3, ϵ= 10−3, and ∆t = 0.05.
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(b) Simulations on ASIS network with size N = 40, τ= 1,ω= 2, ϵ= 10−3, and ∆t = 0.05.

Figure 4.1: Prevalence of static SIS network and adaptive SIS network. The blue curve
is simulated by discrete-time method, while the red one is derived by continuous-time
method. The simulation period is 105 time units.
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(2.2). For the larger τ above τc , there are more infected nodes in the metastable state of
the static SIS network because of more operations of Markov processes. But when τ is very
large, the epidemic will spread fast over the network and then less operations of infection
processes are required in the discrete-time method. In the continuous-time simulations,
the waiting time of each event is based on the total rate of change, which includes trans-
mission rate τ, self infection rate ϵ and curing rate δ of the static SIS model. Thus with the
increasing τ, the run time of continuous-time simulator increases.

4.2.3. Case study 3: comparison on adaptive SIS network with various τ
In this section, we compare both continuous-time simulator and discrete-time method by
simulating the adaptive SIS network with various τ. In Figure 4.3a, the discrete-time sim-
ulation with ∆t = 0.05 is very different compared to the continuous-time simulations and
the discrete-time simulation with ∆t = 0.01, leading to the same conclusion in the previ-
ous case, which is when ∆t becomes smaller, then the deviation between two models are
smaller as well. Figure 4.3b shows that in the case of discrete-time simulation, with smaller
∆t , more time is required by the simulation. In terms of the continuous time simulation,
at first, it requires a little time but when the τ becomes larger, the required amount of time
increases as well.

For τ below τc , there is no practically spreading process on the adaptive SIS network.
That is the reason why the continuous-time simulator runs so fast for the small τ. When
τ becomes larger and larger, since the length of the time interval between two consecutive
transitions is generated using the exponential distribution, if the rate is larger, then the time
interval is shorter on average. More operations are required if the total length of the time
period remains constant. This is the reason why the run time increases with the increase
of τ. In contrast, the required run time for discrete-time simulation only changes slightly.
This might be due to the adaptiveness of the network topology.

4.3. Summary
In this chapter, we first demonstrate the continuous-time simulator based on the Gille-
spie algorithm and then compare the simulation results derived from the discrete-time
and continuous-time simulators. By observing the simulations, we can conclude that, first,
when the ∆t becomes smaller and smaller, then the deviation between the discrete-time
simulator and continuous-time simulator becomes smaller as well. Then the continuous-
time simulator would consume more time when the value of the parameters is large. It is
because this simulator is implemented by an event-driven algorithm. The increasing value
of the parameters would increase the number of events take place. Thus there is a trade-off
between accuracy and time consumption.
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(a) Relations between metastable prevalence and effective infection rate τ on continuous-
time simulations and discrete-time simulations of static SIS network.
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(b) Relations between averaged computation time and effective infection rate τ on
continuous-time simulations and discrete-time simulations of static SIS network.

Figure 4.2: Continuous-time simulations and discrete-time simulations on static SIS net-
work with size N = 40, ϵ = 0.001. Effective infection rate τ is in range of (0,0.1), and time
period T = 500. The blue curve and red curve are simulated by discrete-time method
with ∆t = 0.05 and ∆t = 0.01, respectively. The yellow one is derived by continuous-time
method. The results are averaged over 100 simulations.
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(a) Relations between metastable prevalence and effective infection rate τ on continuous-
time simulations and discrete-time simulations of adaptive SIS network.
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(b) Relations between averaged computation time and effective infection rate τ on
continuous-time simulations and discrete-time simulations of adaptive SIS network.

Figure 4.3: Continuous-time simulations and discrete-time simulations on adaptive SIS
network with size N = 40,ω= 2, ϵ= 0.001. Effective infection rate τ is in range of (0,0.3), and
time period T = 500. The blue curve and red curve are simulated by discrete-time method
with ∆t = 0.05 and ∆t = 0.01, respectively. The yellow one is derived by continuous-time
method. The results are averaged over 100 simulations.



5
Analysis of the time-varying topology

In this chapter, we are going to discuss the impact of the parameters on the metastable-
state topology based on a series of numerical simulations using the devised continuous-
time simulator.

5.1. States of the metastable-state topology
5.1.1. The possible states of the epidemic process
Due to the introduction of link dynamics processes, the epidemic dynamics of the adaptive
SIS network is altered comparing to the static network. For the static case, we have basically
two possible states, i.e., endemic state and disease-free state.Introducing link dynamics, we
have an additional behaviour, which is bistability to the steady state, where both endemic
state and the disease-free state exist. Therefore, there are in total three states of the adaptive
SIS network in the steady state, which are disease-free state, endemic state, and bistable
state, which are illustrated in Figure 5.1a, 5.1b and 5.1c, respectively. In the Figure 5.1c, the
fraction of infected nodes y is plotted which shows both the endemic state and disease-free
state, and hence is called bistable.

5.1.2. Explanation view: Energy landscape
To map out all possible states of a system, energy landscape is an approach which describes
the relation between the states and their corresponding energy level [6, 34]. In our report,
we use this method to illustrate the bistability of the metastable topology of an adaptive SIS
network. An energy landscape of the adaptive SIS network represents all possible states,
including endemic state, disease-free state and bistable state, in the steady state and their
potential energy. In our case, the potential energy is as a function of the number of infected
nodes in the metastable state in the space. Hills and valleys represent the local maxima
and minima in the energy landscape, respectively. The height of the hill depends on the
parameters of the adaptive SIS network.

Figure 5.2 shows the energy landscapes for the three different metastable states corre-
sponding various potential energy. When the metastable state is stable in the disease-free
state S1 or endemic state S2, it is hard to move the state to climb the hill. Since the energy
difference ∆E is large, the state is stable in the global minimum. When ∆E1 and ∆E2 are
large in Figure 5.2c, where the height of the hill decreases, the state in a valley is possible to
reach the unstable equilibrium point (maximum), and potential to move to the other side
of valley, as shown in Figure 5.2c.
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(a) Disease-free state: A single run of the Markov process of the adaptive SIS network with
size N = 40, τ= 0.05, ω= 1, ϵ= 0.001.
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(b) Endemic state: A single run of the Markov process of the adaptive SIS network with size
N = 40, τ= 0.25, ω= 1, ϵ= 0.001.
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(c) Bistable state: A single run of the Markov process of the adaptive SIS network with size
N = 40, τ= 0.18, ω= 1, ϵ= 0.001.

Figure 5.1: Markov processes of the adaptive SIS network with size N = 40, ω= 1, ϵ= 0.001
and various τ. The simulation period is 50,000 time units. The prevalence in the metastable
state might be in three states: (a) disease-free state, (b) endemic state or (c) bistable state.
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(a) System is constrained in the disease-free state due to large energy difference ∆E

(b) System is constrained in the endemic state due to the large energy difference ∆E

(c) System can transfer from the endemic state to the disease-free state or the other way
around, leading to the bistable state.

Figure 5.2: Energy landscape of possible states in the system. S1: Disease-free state; S2:
Endemic state. Hill indicates unstable equilibrium point (maxima) and valleys are the
metastable equilibrium points (local minima). ∆E is the energy difference between the
hill and the valley.
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5.1.3. Classification
In this section, we are going to discuss the relationship between the network parameters,
i.e., the effective infection rate τ and the effective link breaking rate ω, and different types
of metastable state. The numerical results allow us to analyze the bistability of the adaptive
SIS network, and we would like to show how the SIS process behaves under all circum-
stances. Therefore, in the simulation, we take a series of τ and ω which can affect the en-
demic equilibrium, and compute the fraction of time period spanned in the disease-free
state of the total simulation time. If this fraction is small, it means that during the whole
simulation period, most of the time is endemic state, otherwise, it means the disease-free
state dominates.

The simulation results are provided in Figure 5.3, which can be regarded as the classifi-
cation of the aforementioned states. As shown in Figure 5.3, the metastable state stabilizes
in the disease-free state on the dark red region for the low τ which is below the epidemic
threshold τc of the adaptive SIS network. For the larger ω, we can observe that the dark red
region get wider as τc increases. The endemic state is considered in the dark blue region.

Besides, in the region between orange and light blue, both the disease-free state and
endemic state are stable. As either parameter increases, the number of infected nodes in
the metastable state increases and the link removal occurs at a high rate. It leads to a lower
energy difference ∆E , which mentioned in section 5.1.2, for the bistability. As shown in
Figure 5.3, as the value of ω is high, the region of the bistable state get wider.
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Figure 5.3: Fraction of the time period spanned by disease-free state of the total simulating
time period for various effective infection rates τ and effective link-breaking rates ω. We
have used N = 40, ζ= 1, ϵ= 0.001. A low fraction (red region) means the disease-free state
dominates, while a high fraction (blue region) means the endemic state dominates.

5.2. Degree distribution
To improve our understanding of the interplay between network topology and dynamics, a
good way is to investigate the degree distribution of the adaptive SIS network [25]. Since it
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is hard to illustrate the degree distribution over time, we only show some snapshots of the
evolution in Figure 5.4. The degree distribution of the initial network is a complete graph
with N = 40 nodes, and is illustrated as one peaked bar at degree D = 39, where all nodes
have the same degree D = N −1. In the beginning, all nodes are considered to be infected.
When starting evolving, its degree distribution quickly moves to a peaked distribution over
time. Obviously, when the number of infected nodes decreases, the distribution shifts to
the left and more nodes have lower degrees. As there exist small oscillations in the preva-
lence, the shape of degree distribution might change slightly in the metastable state. But
the metastable-state degree distribution stabilizes to a peak distribution.

When τ decreases and keeping all other parameters constant, as shown in Figure 5.4a
and 5.4b, the meta-stable state degree distribution shifts to right as more nodes in the
metastable-state are possibly healthy and more links are reestablished, increasing the aver-
age degree. When ω is large, the endemic steady state acts like the bistable state, including
endemic state and disease-free state. Then the metastable degree distribution in Figure
5.4d is not a centralized peaked distribution but a peaked distribution with another peaked
bar at D = 39.

5.2.1. Classification of binomial-like distribution and non-binomial distribution
We observe that the degree distribution of adaptive SIS network in the metastable state is
seemingly similar to a binomial distribution under some circumstances, see for example
Figure 5.4a yellow histogram. Therefore, it would be interesting to investigate whether the
shape of the degree distribution is binomial-like. In order to do so, we first need to generate
a binomial distribution. The binomial distribution B(n, p) of the degree D is formulated as
follows

Pr[D = k] =
(

n

k

)
·pk (1−p)n−k , (5.1)

where n denotes the number of independent experiments and p is the success probability.
In our case, n has the value of the largest degree and p is the probability of establishing a
link.

For variable following the binomial distribution, the mean value m can be derived by
np. Using the degree distribution of the adaptive SIS network, we can estimate a bino-
mial distribution B(n, p), where n and m are maximum value and average value of the
metastable degrees, respectively. Then the p parameter of the binomial distribution can
be estimated as

p = m

n
.

To compare the difference between the degree distribution and the estimated binomial
distribution, here we use the Euclidean distance to describe the difference between two
distributions. First, we represent each of the distribution using a vector d, where the entry
is filled with the corresponding probability density, i.e., [d]i = Pr[D = i ]. Second, we can
compute the l2−norm of the difference between two vectors, i.e.,

E = ∥ds −de∥2, (5.2)

where E is error, subscripts s and e represent simulation and estimation, respectively.
For example, in Figure 5.5a, the binomial distribution (red curve) could fit the degree

distribution well as the distance error in between is 0.016, which is small. Thus this degree
distribution seems to follow a binomial distribution. However, Figure 5.5b shows that the
degree distribution is not a binomial distribution due to a large error 0.36.
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(a) Snapshot of degree distribution of
adaptive SIS network with N = 40, τ= 0.5,
ω= 1, ζ= 0.1, ϵ= 0.001.

(b) Snapshot of degree distribution of
adaptive SIS network with N = 40, τ= 0.1,
ω= 1, ζ= 0.1, ϵ= 0.001.

(c) Snapshot of degree distribution of
adaptive SIS network with N = 40, τ= 0.2,
ω= ζ= 1, ϵ= 0.001.

(d) Snapshot of degree distribution of
adaptive SIS network with N = 40, τ= 0.5,
ω= 2, ζ= 1, ϵ= 0.001.

Figure 5.4: Snapshots of the degree distribution for adaptive SIS network with size N =
40. The blue bar is the initial degree distribution at t = 0, the orange histogram shows
the network for small times, and the yellow histogram shows the degree distribution in the
metastable state.
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(a) Comparison between a binomial distribution and the metastable-state degree distribu-
tion for adaptive SIS network with parameters N = 40, τ= 0.2, ω= 1, ζ= 0.1, ϵ= 0.001.

(b) Comparison between a binomial distribution and the metastable-state degree distribu-
tion for adaptive SIS network with parameters N = 40, τ= 0.1, ω= 1, ζ= 0.3, ϵ= 0.001.

Figure 5.5: Comparison between a binomial distribution and the metastable-state degree
distribution for adaptive SIS network. The red curve is a binomial distribution and the blue
bar is the metastable-state degree distribution.



34 5. Analysis of the time-varying topology

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Link breaking rate 

0.5

0.4

0.3

0.2

0.1

E
ff
e
c
ti
v
e
 i
n
fe

c
ti
o
n
 r

a
te

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.6: Binomial fitting error of the degree distribution. The fitting error is plotted as
a function of the effective infection rate τ and link breaking rate ζ from continuous-time
simulations of the adaptive SIS network with N = 40, ω= 1, and various τ and ζ.

We would like to see whether the degree distribution follows the binomial distribution
for any value of the parameters τ and ζ. In order to quantify the relation between the pa-
rameters and degree distribution, we compute the binomial fitting error of the degree dis-
tribution using Equation (5.2) and then plot the error as a function of the effective infection
rate τ and link breaking rate ζ, in Figure 5.6. As τ decreases and ζ increases, the disease
prevalence y decreases. As a result the degree distribution becomes flatter. Thus we can
observe that the distance error between the degree distribution and the binomial distri-
bution increases with higher effective infection rate τ. Moreover, in Figure 5.6, the degree
distribution is classified as the binomial-like distribution in the dark blue part for the low
fitting error which is below 0.2.



6
Conclusion and Future work

6.1. Conclusion
This thesis work can be divided into two parts. In the first part, we developed the continuous-
time simulator for the adaptive SIS network. This is because the spreading process over the
adaptive network is a continuous stochastic process and in the previous works, only the
discrete-time simulator serving as an approximation was implemented. In this part, we
first introduced the Gillespie algorithm, the core of the continuous-time simulator. Based
on this algorithm, we developed the new simulator. Furthermore, using the devised sim-
ulator, we illustrated the accuracy of the discrete-time simulations compared to the real
continuous-time simulations. From our numerical simulation results, we can demonstrate
that if the discrete time step ∆t becomes infinitesimal, then there would be no difference
between the two simulators. But with various parameters of ASIS network, the discrete-
time simulator requires different time step to simulate accurately. Regarding the computa-
tion time, since the Gillespie algorithm is an event-driven algorithm, the continuous-time
simulator requires less time for small value of parameters. But when the parameters be-
comes larger, then the required time increases.

In the second part, we performed various of simulations using the proposed simulator,
and based on these simulations, we discussed the impact of the parameters, e.g., effective
infection rate τ, effective link breaking rate ω, and link breaking rate ζ, on the state of the
network and the degree distribution of the network. Under this circumstance, there exist
three states in the network, which are disease-free state, endemic state and bistable state.
In the numerical results, we illustrated that whenω is large and τ is small, the system tends
to be disease-free state, and whenω is small and τ is large, the system tends to be in the en-
demic state. As either parameter increases, the number of infected nodes in the metastable
state increases and the link removal occurs at a high rate. Changes of these parameters can
destabilize the metastable state so that the system tends to be in the bistable state.

We also investigated the degree distribution in the metastable state. We observed that in
some cases, it followed the binomial distribution while in other cases it did not. In order to
investigate the relationship between parameters and distribution behaviour, we measured
the difference between the degree distribution and the binomial distribution. Our results
show that when τ is large and ζ is small, the distribution tends to be binomial-like, and
when τ is small and ζ is large, the distribution does not follow the binomial distribution.

35



36 6. Conclusion and Future work

6.2. Future work
• In this thesis, we initialise the simulations using the complete graph. However, it is

interesting but still unknown how the system would behave when taking other net-
work models, such as Erdős-Rényi graph model, scale-free graph model or small world
graph model, as the initial condition.

• This thesis work is mostly based on the numerical method. Although the simulation
results have already shown some properties of the adaptive SIS network, it would be
interesting if this problem is viewed from the perspective of the theoretical analysis.

• In the continuous simulator, we only consider the adaptive SIS process over the net-
work. However, there exist various of models regarding the link dynamic process
other than the adaptive SIS process, e.g., adaptive information diffusion (AID) model
[17, 28]. It would be interesting to investigate the continuous simulator for these mod-
els.
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Figure A.1: Binomial fitting error of the degree distribution with various effective link
breaking rate ω and link breaking rate ζ. Simulations are on the adaptive SIS network with
N = 40, τ= 0.2, and various ω and ζ.

Figure A.2: Binomial fitting error of the degree distribution with various effective infection
rate τ and effective link breaking rate ω. Simulations are on the adaptive SIS network with
N = 40, ζ= 1, and various ω and τ.
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Figure A.3: Degree distribution of the adaptive SIS network with N = 40, τ = 0.3, ω = 0.5,
ζ= 1, and ϵ= 0.001.

Figure A.4: Degree distribution of the adaptive SIS network with N = 40, τ = 0.5, ω = 0.5,
ζ= 1, and ϵ= 0.001.
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Figure A.5: Degree distribution of the adaptive SIS network with N = 40, τ = 0.5, ω = 0.1,
ζ= 1, and ϵ= 0.001.

Figure A.6: Degree distribution of the adaptive SIS network with N = 40, τ= ζ= 0.5, ω= 1,
and ϵ= 0.001.
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Figure A.7: Degree distribution of the adaptive SIS network with N = 40, τ= 0.5, ω= ζ= 1,
and ϵ= 0.001.
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Figure A.8: Relations between metastable prevalence and link breaking rate ζ of the adap-
tive SIS network with N = 40, τ= 0.2,ω= 1. The blue curve is the fraction of infected nodes
with various ζ and the red curve is the fraction of links with various ζ.
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Figure A.9: Relations between metastable prevalence and effective infection rate τ of the
adaptive SIS network with N = 40,ω= ζ= 1. The blue curve is the fraction of infected nodes
with various τ and the red curve is the fraction of links with various τ.
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