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Summary

The unreinforced masonry construction of Dutch terraced houses in Groningen is prone to lateral
earthquake loading. To analyse the capacity of these houses, the faculty of Civil Engineering at the
TU Delft started a test campaign, whereby experiments are performed on complete structures, in-
plane loaded shear walls and out-of-plane loaded transversal walls. In this thesis, the experimental
results served as benchmarks to validate a relatively new numerical method: Sequentially Linear
Analysis (SLA). This method is developed to overcome numerical instability, which is a problem
for regular non-linear finite element analyses (NLFEA). The method performs linear analyses with
a scaled variable load, after which a damage increment is assigned to one integration point in the
computational model. The objective of this thesis is to investigate to what extent SLA is able to
predict the behaviour of the two main components of a Dutch house, namely the shear wall and the
out-of-plane loaded transversal wall, during a monotonic pushover test.

For both components, two modelling approaches were applied: the smeared crack approach, where
the wall is composed of one material only, and the discrete crack approach, where a distinction is
made between the mortar joints and brick units. Within each approach, two finite element types
were used. The new implementation of the SLA code for shell elements is validated by modelling
the shear wall with plane stress elements as well. However, the most important comparison, was the
one between NLFEA and SLA in order to see how SLA can improve numerical predictions of brittle
behaviour of masonry components. The recently developed SLA code for non-proportional loading
is used to be able to model pre-stressed walls. The algorithm for non-proportional loading is more
complex than the algorithm for proportional loading, as a distinction has to be made between the
initial pre-stress load and the variable load, where only the variable load has to be scaled in every
analysis step, according to the SLA procedure. A similar well-known NLFEA procedure (the phased
analysis) is used to verify the non-proportional loading algorithm.

Results showed that the non-proportional SLA algorithm still contains certain flaws and after
analysing the test models, it is found that in case of tensile failure the code might pick one integration
point as the critical one an infinite number of times. This hinders the failure process of the numer-
ical model as no damage increment can be applied to other integration points any more. Another
shortcoming occurred when the shear wall was modelled using shell elements: negative displacements
were observed even though the wall was loaded in positive direction. Stop criteria were defined to
temporarily deal with these problems.

The results also showed remaining shear stresses at the bottom of the shear wall in case of a
NLFEA when a β-factor of 1% was applied. These remaining shear stresses caused an over-prediction
of the force capacity. This "shear locking" problem didn’t occur in case of a SLA. The β-factor of
SLA drops at the last moment till approximately zero and for that reason, SLA is able to accurately
predict the peak load. Furthermore, we found a significant increase in calculation time in two cases,
while performing a SLA. First, as soon as the plane stress elements in the shear wall were replaced by
shell element. Shell elements have more integration points in thickness direction and therefore more
integration points will be damaged. The calculation time increased by a factor of maximum 19, even
though the number of integration points in thickness direction was only increased from 1 (for the plane
stress elements) to 3 (for the shell elements). Second, the calculation time significantly increased when
the out-of-plane loaded wall was modelled using a smeared crack approach. In contrary to the discrete
crack approach where the damage was lumped in the interface elements, the damage was scattered
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over the wall, meaning that more analysis steps were required to damage the wall. The calculation
time increased by a factor of 3.

The last main observation is that SLA is not able to simulate the rocking behaviour of both
components yet, due to the lack of geometrical non-linearity. The analytical calculations showed
that the decrease of base shear force capacity is most severe for the out-of-plane loaded transversal
wall. For that reason the limitation of not including geometrical non-linearity effected that masonry
component the most and the post-peak behaviour couldn’t be simulated.

From these results, it can be concluded that SLA is able to predict the behaviour of pre-stressed
masonry components using the non-proportional loading algorithm, except for the post-peak behaviour
of the out-of-plane loaded transversal wall. SLA outperforms NLFEA in the sense that it is inherently
stable and no over-stiff response is observed, while modelling the shear wall with a constant shear
retention factor. This way, SLA is able to give a more accurate prediction of the peak load of the shear
wall. Besides that, the type of element and the type of modelling approach have a significant influence
on the calculation time and therefore on the costs. Furthermore, as SLA is under development, the
method still has some difficulties to overcome. The stop criteria were helpful to deal with the identified
problems, but further research needs to be done to actually solve the problems.



Acronyms

CaSi Calcium Silicate
COMP Component
DIANA Displacement Analyser
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LU Load-Unload
NAM Nederlandse Aardolie Maatschappij
NLFEA Non-linear Finite Element Analysis
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1. Introduction

1.1 Background and motivation
In the past years, building damage due to the gas extraction in Groningen received a lot of attention.
The gas extraction has led to induced earthquakes and as the terraced houses, mostly made of unrein-
forced masonry, cannot resist (lateral) earthquake loading due to the low tensile strength of masonry,
the structures get damaged.

The faculty of Civil Engineering at the TU Delft started a test campaign to analyse the capacity of
the Dutch terraced houses. Experiments at different levels are conducted, namely at structural level,
component level and material level. The test set-up of one of these tests at structural level is illustrated
in figure 1.1. This is the construction of a detached Dutch terraced house and it’s an assembly of
concrete floors, slender walls and wide transversal walls. As the construction is asymmetric, it has a
strong and a weak direction. To study the load and deformation capacity, a quasi-static cyclic pushover
test is performed in the weak direction of the house, whereby the slender walls were loaded in-plane
and the transversal walls were loaded out-of-plane. Also experiments of these individual components
(highlighted in blue) are performed and these experiments are of main interest throughout this thesis.

The experiments serve, apart from analytical calculations, as a benchmark for numerical modelling.
The numerical prediction is a complex and challenging task. It comes for example with a lot of
modelling options. Also, the reliability and quality of the results depend to a great extent on the
skills and experience of the researcher. Besides that, it is difficult to obtain numerically stable results,
while performing non-linearinear analyses. One possible reason for these non-convergence issues is the
fact that cracking of masonry is a brittle failure mechanism. The crack initiation and propagation
happens suddenly and for numerical software this is difficult to simulate. Another reason that can
cause non-convergence issues is the initiation of multiple cracks simultaneously, whereby the software
has difficulties to "choose" the right equilibrium path.

Figure 1.1: Test set-up of the TUD-2 Building. The two main components are high-lighted in blue.
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2 1.2. RESEARCH QUESTION AND SCOPE

Therefore Rots (2001) proposed a relatively new numerical method to simulate non-linear struc-
tural behaviour, which is called Sequentially Linear Analysis (SLA). This method performs, instead
of an iterative non-linear analysis, sequentially linear analyses, which are inherently stable. However,
this method is still under development and a lot of limitations have to be overcome. One major
difficulty is to apply the load non-proportionally, meaning that there is a combination of an initial
load, such as self weight, and a lateral load. As SLA is currently getting implemented and tested in
the DIANA software, there is a need to validate the current SLA code and to get insight into how
SLA can improve numerical predictions of unreinforced masonry structures.

1.2 Research question and scope
The objective of this thesis is to investigate if the SLA method works sufficiently to model the two
main components of the structure, namely the in-plane loaded shear wall and the out-of-plane loaded
transversal wall, individually. This could support future research into modelling the complete struc-
ture using SLA. Regular non-linear finite element analyses (NLFEA) will be conducted and will serve,
besides the experimental results and analytical calculations, as a validation of the SLA method (see
figure 1.2). The research question will be as follows:

To what extent is the Sequentially Linear Analysis method able to predict the structural behaviour of
two unreinforced masonry components of the TUD-2 Building, namely the in-plane loaded shear wall
and the out-of-plane loaded transversal wall, during a monotonic pushover test?

To answer this question, first the following sub-questions will be answered by means of a literature
study:

1. What types of non-linearity do exist and what are the limitations of current numerical methods
for a non-linear finite element analysis (NLFEA)?

2. What is SLA and how does the procedure work?
3. What are the properties and failure mechanisms of masonry?
4. How can masonry be modelled?

Experimental research

Structure

Components

Materials

Analytical calculations

Structure

Components

Numerical modelling

Structure
Building TUD_BUILD-2

Components
In plane: pier TUD_COMP-24
Out-of-plane: wall TUD_COMP-28

THESIS
Numerical analysis:

NLFEA

Numerical analysis:
SLA

Materials

Materials

Figure 1.2: Scope of research.
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Other sub-questions will be answered in the research part of the thesis and are as follows:

5. How do the results of the numerical models differ from the experimental results and the analytical
calculations?

6. What are the differences using the smeared crack model and the discrete crack model, with
respect to the crack pattern and the capacity curve?

7. How do the results from the NLFEA differ from SLA, with respect to the crack pattern and the
capacity curve?

8. Is the outcome from the model with shell elements similar to the model with plane stress ele-
ments, with respect to the crack pattern and the capacity curve?

To answer the sub-questions and subsequently the main research question, it is necessary to have a
clear scope of the research at forehand. For that reason the following restrictions are defined:

• The thesis will elaborate on the components composed of large CASIEL-elements, as the TUD-2
Building is made of these elements as well.

• The in-plane loaded component with clamped-clamped boundary conditions is taken into ac-
count. The corresponding experiment code is: TUD_COMP − 24.

• The out-of-plane loaded component with clamped-clamped boundary conditions is taken into
account. The corresponding experiment code is: TUD_COMP − 28.

• The numerical models are exposed to non-proportional loading, meaning that there is an initial
load such as self weight and a variable load.

• The variable load is a static/monotonic pushover load, instead of a quasi-static cyclic pushover
load, for sake of simplification and because no crack-closure algorithm for SLA is available yet,
which could give problems in case of load reversal.

• The type of material model/crack model being used, is limited to the ’total strain based crack
model’, since SLA is currently only available for this type.

1.3 Methodology and outline
This report is mainly divided into two parts. One part elaborates on numerical modelling of the in-
plane load case and the other part is about modelling the out-of-plane load case. During the research,
three comparisons are made:

• Smeared crack approach versus discrete crack approach

• Plane stress elements versus shell elements

• NLFEA versus SLA

The main task is to compare regular non-linear finite element analysis (NLFEA) with Sequentially
Linear Analysis (SLA) in order to get a better understanding of the opportunities and challenges or
disadvantages of SLA as an alternative for non-linear analyses. To do so, two modelling approaches
are used: the smeared crack approach and the discrete crack approach. These approaches determine
how the numerical model is built: the discrete crack approach includes interface elements between the
continuum elements, whereas the smeared crack approach only includes continuum elements. Within
each approach, a type of finite element has to be chosen. A 3D structure would be modelled using shell
elements, which do allow for both in-plane and out-of-plane behaviour. The individual components are
therefore modelled with shell elements as well. However, in case of an in-plane loading configuration,
plane stress elements would be sufficient. For that reason, these elements are used to verify the (new)
implementation of SLA for shell elements. The comparison between plane stress elements and shell
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elements only holds for the in-plane loaded shear wall. The out-of-plane loaded transversal wall cannot
be modelled with plane stress elements, as these elements don’t allow out-of-plane deformations and
they assume zero stresses perpendicular to the plane. See figure 1.3 for an overview of the methodology.

Figure 1.3: Overview methodology.

The outline of this thesis is as follows. Chapter 2 provides the reader with background information
about finite elements modelling, masonry behaviour and the Sequentially Linear Analysis. Chapter 3
describes the experiments, performed in 2016 and 2017 at the faculty of Civil Engineering, where after
the analytical calculations of the components are presented in chapter 4. The numerical predictions
are discussed in chapter 5 till chapter 8. The first two elaborate on the in-plane shear wall and the
last two on the transversal wall. The report ends with conclusions and recommendations in chapter 9
and 10 respectively.



Part I

Literature study and analytical
calculations
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2. Background theory

In order to understand the behaviour of masonry and to get insight into numerical modelling strategies
to model masonry structures some background information is required. This chapter consists of
four sections. The first one elaborates on the behaviour of masonry, among other things its failure
mechanisms and material properties. The second section gives a short explanation of the finite element
method, which is a numerical tool to evaluate (parts of) a structure. Furthermore it explains some
modelling strategies and highlights the finite elements, used in this report. Besides modelling options
also a choice has to be made between different types of analyses. In section three the non-linear
analysis and its limitations are discussed. The chapter ends with a section about a relatively new type
of analysis as an alternative to the non-linear analysis: the Sequentially Linear Analysis.

2.1 Masonry behaviour

2.1.1 Traditional Dutch building method
Building with masonry has a long history in the Netherlands and nowadays this material is still often
being used. This is mainly due to its aesthetic appearance, low costs, durability and the simplicity
of its stacking technique (Rots and Civieltechnisch Centrum Uitvoering Research en Regelgeving
(Netherlands)., 1997).

The Dutch masonry houses are built between 1960 and 1980 and possess some important similar-
ities which are typical for these types of buildings. A row of terraced houses consists mainly of 5-10
units built side by side, where every unit is a two-story high masonry building, with an inter-story
height of 2.5 - 2.7 meter. The floor plan has typically a width of 5 meters and a depth of 7-9 meters.
Another important aspect of these terraced houses is the presence of large daylight openings. The
construction is therefore composed of two slender piers in the façades and two long transversal cavity
walls. The stiff floors are mainly made of concrete, which could be prefabricated or cast in-situ, and
are carried by the transversal walls (Esposito et al., 2017).

The cavity walls consist of an internal and an external leaf, both made out of masonry. Since
the 1970’s a new way of building load bearing walls came up, namely building with calcium-silicate

Figure 2.1: Typical Dutch terraced houses.
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8 2.1. MASONRY BEHAVIOUR

elements (also known as ’CASIELS’ or ’CaSi-elements’). Whereas the traditional baked clay bricks
are used in the external leaf due to their aesthetic appearance, the calcium silicate walls (internal leaf)
have a load bearing function. The need to speed up the construction phase, have led to an increase in
the elements size of these CaSi-elements. The elements are now roughly 900x650x100mm3 (Pari et al.,
2017). Unlike the traditional baked clay bricks, the calcium silicate elements have to be placed on top
of each other using a small crane and the units are connected by a tongue-groove joint. To ensure
adhesion and to deal with dimension tolerances a thin-layer mortar of 2-3 mm is applied between the
elements (Ng’andu, 2006).

2.1.2 Research into masonry

Even though building with masonry is very popular, the development of this material is way behind
compared to steel and concrete, due to the lack of insight into its complex behaviour. Masonry is a
stone-like material and the properties strongly depend on the mixture. Furthermore, the structural
behaviour depends on the stacking technique and the skills of the construction worker. Especially
knowledge about the typically Dutch building method, which differs from building practice in sur-
rounding countries by its slender cavity walls, was lacking. That’s why a research program ’Structural
Masonry I’ had started, initiated by the Netherlands unit and calcium-silicate industries. This has led
to a basis for practical design rules (Rots and Civieltechnisch Centrum Uitvoering Research en Regel-
geving (Netherlands)., 1997).

Figure 2.2: (a) Load bearing structure of Dutch terraced houses (Esposito et al., 2016) (b) Set-up experiment
BUILD_TUD-2 in Stevin lab 2 at TU Delft (Schippers, 2017).

Another reason to study the behaviour of masonry even more is related to the earthquakes in
Groningen. Unreinforced masonry buildings are very well able to resist gravity loads, but during an
earthquake they perform weak compared to concrete, wood and steel, because they are not able to
carry the loads in lateral direction due to the low tensile strength. During lateral loading the structure
has a weak and a strong direction. When the structure is loaded in the strong direction, the piers are
loaded out-of-plane and the transversal wall in-plane. For the weak direction is the other way around
where the transversal walls are loaded out-of-plane and the piers act as shear walls. The width of the
piers is smaller than the width of the walls, thus in case of lateral loading during an earthquake, there
is less material to transfer the horizontal forces to the ground and the latter case is therefore called
’the weak direction’ of the structure.

The TU Delft started a test campaign in 2016 carried out for the NAM to study the load bearing
capacity of this type of houses in the weak direction. In the test campaign also the individual com-
ponents, namely the wide piers, loaded in shear, and the out-of-plane walls are tested individually to
get a better understanding of the whole structure. A lot of research is still going on to be able to
assess the risk of building damage and to make reliable numerical predictions of the response of the
building under lateral loading.



CHAPTER 2. BACKGROUND THEORY 9

2.1.3 Material properties
As mentioned before, the bricks and mortar are stone-like materials. When loaded in tension, they
behave as brittle materials (like concrete) with an exponential softening curve (figure 2.3a). The
material follows a linear elastic path until the stress reaches the tensile strength ft, then the material
starts to crack. Loading the material even further, will result in softening behaviour, meaning a
gradual decrease of the mechanical strength under a continuous increase of deformation (Angelillo,
2014).

In case of compression the material shows hardening behaviour after some initial crushing. Loading
the material beyond the compressive strength leads to a parabolic softening relation.

(a) (b)

Figure 2.3: Mechanical behaviour of masonry: (a) Tensile curve (b) Compression curve (Angelillo, 2014).

2.1.4 Failure mechanisms
To understand the structural response of masonry buildings during earthquakes or to able to inter-
pret results from numerical simulations better, it is useful to get more insight into the possible failure
mechanisms. In this section a distinction is made between local and global failure modes. Local failure
mechanisms refer to failure at element level, whereas global failure implies failure of the total structure.
The type of global failure depends among other things on the loading pattern, geometry, materials
and how the structure is built. Bruneau (1994), ElGawady et al. (2007) and Lourenço (1996) elabo-
rate on different failure modes and a short summary of these mechanism is presented in this subsection.

Local failure mechanisms

Masonry has a orthotropic geometry, it namely consist of units (bricks) and joints (mortar), where the
horizontal joints are called the bed joints and the vertical joints the head joints. The brick-mortar-
interface is typically the weakest link (Van Dam, 2015).

Lourenço (1996) presents different failure mechanisms at element level (figure 2.4). The first two
mechanisms involve only the joint: in figure (a) the brick-mortar interface fails in tension, whereas

Figure 2.4: Local failure mechanisms (a) Joint tension crack (b) Joint slip (c) Unit direction tension crack (d) Unit
diagonal tension crack (e) Masonry crushing (Lourenço, 1996).



10 2.1. MASONRY BEHAVIOUR

in figure (b) the material fails due to sliding over the interface. The third mechanism occurs due to
failure (cracking) in the bricks only. The last two mechanisms are combined failure modes involving
both the joint and the unit.

Global failure mechanisms: in-plane

In figure 2.5 the failure modes for in-plane behaviour are illustrated. The first picture refers to shear
failure, where a diagonal crack develops in the wall. If the bricks have a high stiffness and the mortar
is rather weak, the crack pattern will follow the path of the head and bed joints. For relatively weak
bricks and strong mortar, the cracks may also go through the bricks.

Figure 2.5: In-plane failure mechanisms: (a) Shear failure (b) Sliding failure (c) Rocking failure (d) Premature toe
crushing (ElGawady et al., 2007).

The second picture illustrates sliding failure. The upper part of the wall slides over the bottom
part, which especially occurs when the vertical loads and/or the friction coefficient are low due to
poor quality mortar. Flexural failure (rocking failure) and toe-crushing are the last two in-plane fail-
ure modes. These modes especially appear when the shear resistance is relatively high. It leads to
excessive rotation (rocking) of the complete wall.

Global failure mechanisms: out-of-plane

LACK OF ANCHORAGE
This type of failure is related to the connection of a floor/roof to the unreinforced masonry walls. A
floor can be supported by the load bearing walls in different ways. One way is to clamp the floor be-
tween the walls, the other way is to fix the floor to the walls with anchors. When anchorage is lacking
or is even absent, gravitational forces cannot be transmitted from the floor to the walls any more and
this leads to slipping between those structural elements. In figure 2.6a this failure mechanism, where
the floor inside collapsed, can be observed.

ANCHORAGE FAILURE
There are several types of anchorage failure, depending on the type of anchors being used. One of
these failure modes is failure of the material (metal) of the anchor itself. Another way how the an-
chorage can fail is due to rupture at the connections points. This could happen at floor connection
where the anchor could shear loose from the floor frame, or at the wall connection where the anchor
could be pulled out of the masonry.
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DIAPHRAGM RELATED FAILURE
During an earthquake, failure of a diaphragm itself (e.g. concrete floors and walls) is rarely observed.
However failure of this type is mostly visible at the sides of a masonry wall where the diaphragm
pushes itself through the wall, due to the absence of a good shear transfer between the diaphragm
and the masonry wall.

COMBINED IN-PLANE AND OUT-OF-PLANE FAILURE
In real life an earthquake doesn’t occur in one direction only and the structural elements are excited
in both their in-plane and out-of-plane direction. (Bruneau, 1994) gives an example of a combined
failure mechanism:
"As in-plane shear cracking occurs, some triangular cantilever wedges are produced, whose out-of-
plane strength is significantly weaker than that of the original uncracked wall panel. While these
isolated portion of the wall are more susceptible to out-of-plane failure, the on-site identification of
such a failure mode is nearly impossible, and such failures will generally be attributed uniquely and
erroneously to the sole effect of out-of-plane forces."

(a) (b) (c)

Figure 2.6: Global failure mechanisms: (a) Lack of anchorage failure (b) Shear failure pier (c) Diaphragm related
failure (Bruneau, 1994)
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2.2 Finite element modelling

2.2.1 Concept finite element method
The main idea of this method is to transform the governing partial differential equations, that describe
the behaviour of a structure, to a system of linear equations which can be solved by a computer. This
transformation will be done by subdividing the construction by finite elements, which are connected
to each other by their nodes. Each element has its own element stiffness matrix, which depends on
the type of element being used and the material properties. Reassembling all these element stiffness
matrices results in the global stiffness matrix of the whole system. With this global stiffness matrix is
it possible to link external forces with nodal displacements. Thus, instead of linking the displacements
and the forces by kinematic relations, a material model and equilibrium equations, the displacement
field and the force vector are only linked through a global stiffness matrix (figure 2.7).

Figure 2.7: Structural analysis scheme

2.2.2 Computational modelling of masonry
Modelling aproaches

Masonry is a composite material and consist of bricks (units) and mortar (joints), where a distinction
is made between the head joints and the bed joints (see figure 2.8a). To model masonry different
approaches can be adopted. One of these approaches is to model the masonry very detailed and
this approach is denoted as micro-modelling (figure 2.8b). This way of modelling includes the units
and the mortar by continuum elements as well as the interface between the mortar and the brick by
discontinuous elements (interface elements), so this discrete approach models the cracks as discontinu-
ities in the geometry. It leads however to large time requirements and memory, therefore a simplified
approach is preferable (Lourenço et al., 1995).

The simplified strategy is called the meso-modelling approach. With this strategy the continuum
elements, which represent the brick units, are expanded whereas the mortar and the brick-mortar
interface are lumped in a zero-thickness discontinuous interface element (figure 2.8c). These interface
elements open up when the tensile strength is exceeded. Like micro-modelling, this approach is very
well able to trace crack-paths as this path is predefined by the interface elements. However, also this
approach requires quite some memory and there are no fixed guidelines to derive correct values for
the stiffness of the interface elements (kn and kt).

The last modelling strategy has a totally different approach and is denoted as the macro-modelling
approach or smeared crack approach (figure 2.8d). In this case the masonry is modelled as a composite
and no distinction is made between the mortar and the bricks. The smeared crack approach regards
the crack to be smeared over the whole element (figure 2.9). Even though the previous concepts
with the discontinuous elements fit our perception of fraction, in literature it has been stated that
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Figure 2.8: Modelling strategies for masonry structures: (a) masonry sample; (b) detailed micro-modelling; (c) meso-
modelling; (d) macro-modelling (Lourenço, 1996).

the smeared approach might be more realistic in case of a diffuse crack pattern. Since the crack is
smeared over the element it could be a good representation of a "band of micro-cracks" (Rots and
Blaauwendraad, 1989). In this thesis the meso-modelling approach and the macro-modelling approach
are used.

Figure 2.9: Smeared crack model: (a) The crack is smeared out over the tributary area of an integration point (b) Upon
primary crack initiation the crack axes system is fixed with the n-axis perpendicular to the primary crack. Optionally,
a secondary crack, perpendicular to the primary crack, may arise (Van de Graaf, 2017).

Cracking models

Within each modelling approach a material model/crack model has to be chosen. In this thesis the
number of possible crack models for the macro modelling approach is limited to the ’total strain
based crack models’. For this type of crack model both tension and compression are described by one
stress-strain relation, in contrary to the multi-directional crack model where the strain is divided into
an elastic strain and a crack strain. For the total strain based crack model one can choose between
the fixed and the rotating crack model. The first one could be a good representation of a real crack as
the stresses and strains are evaluated in a fixed coordinate system (figure 2.9b), where the coordinate
system is fixed upon cracking. The rotating crack model evaluates the stresses and strains in the
principal directions of the strain vector, which keep rotating depending on the stress state in the
element.
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For an approach with interface elements a crack model for the interface elements has to be chosen.
Two commonly used models are the discrete crack model and the Coulomb friction model. With
the discrete crack model, mode-I (opening in normal direction) and mode-II (sliding in tangential
direction) are uncoupled. The Coulomb friction model however couples these two failure modes (see
figure 2.10).

Figure 2.10: Coulomb friction model (Lourenço et al., 1995)

2.2.3 Finite elements
The types of finite element that are mainly used in this thesis are the 3D curved shell elements and
the line interfaces between shells. The reason to choose for curved shell elements over plate or flat
shell elements is that in case of curved shell elements the coordinates of the nodes don’t have to be
in a flat plane, which is important when one wants to account for out-of-plane behaviour. Besides
the shell elements also plane stress elements are used. In this thesis these elements will be applied in
order to verify the implementation of shell elements in the SLA code.

Plane stress elements

The plane stress elements are useful for situations with a Cauchy stress state, which means that the
stress vector normal to the plane is zero (σzz = 0). It has three degrees of freedom: two translations
in the X- and Y-direction and one rotation around the Z-axis. Furthermore the nodes are located in
one flat plane (XY-plane), therefore these elements will be used for 2D in-plane load cases.

Figure 2.11: CQ16M Plane stress element (DIANA FEA BV, 2010).

Curved shell elements

The curved shell elements in Diana also assume a Cauchy stress state, but each node has five degrees
of freedom: three translations in the global XYZ-directions and two rotations in the local x- and y-axis
(see figure 2.12). The element has a quadratic interpolation scheme as the default (and only) one is
2x2 Gauss integration over the ξη element area. The integration in ζ-direction (thickness direction)
may be Gauss or Simpson.
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Figure 2.12: CQ40S Curved shell element (DIANA FEA BV, 2010).

Interface elements in 2D configuration

The type of interface element that is compatible with 2D in-plane elements is element CL12I. The
two degrees of freedom are the displacements in the local x- and y-direction, which are evaluated in
the first node.

Figure 2.13: CL12I Interface element (DIANA FEA BV, 2010)

Interface elements in 3D configuration

The type of interface element which is used in combination with shell elements in 3D configurations
is CL24I. This type of finite element has four degrees of freedom per node: three translations in the
local xyz-directions and a rotation in the local x-direction. Also these local directions are evaluated
in the first node.

Figure 2.14: CL24I Interface element (DIANA FEA BV, 2010)
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2.3 Non-linear analysis
Non-linear behaviour of a structure makes it complex to get insight into the response of these struc-
tures. Cracking, which is an important phenomenon of masonry, is an example of non-linear behaviour
and will be of main interest throughout this thesis. Subsection 2 describes material non-linearities
such as cracking. In order to analyse non-linear behaviour, numerical methods are developed, which
are discussed in subsection 3. However current methods have limitations and often show divergence
problems. These limitations are discussed in subsection 2.3.4.

2.3.1 Introduction
A structural analysis is about evaluating the response of a structure under an applied load. In the
engineering field a linear analysis is often used to calculate this response and to investigate at which
location forces will be highest. The calculations can be performed analytically and the response of
different load systems can be obtained, because the principle of superposition holds (summation of
the load cases). To perform a linear analysis, two fundamental assumptions have to be made: the
structure is made of linear elastic material and the deformations are small. In case of linear static
equations the displacements (u) can easily be calculated by finite element software, once the stiffness
matrix (K) and the external force vector (f) are known:

Ku = f (2.1)

However a linear analysis has its limitations, since it cannot predict the structural response in the
failure range and it is not sufficient when non-linearities become dominant in the analysis, meaning
that forces and displacements are not linearly related any more. Then a non-linear analysis is required.

In case of a non-linear problem the stiffness matrix (and in case of geometrical non-linearity
the external force vector too) does depend on the unknown displacements, which makes this problem
difficult to solve. For that reason numerical methods are developed to trace the non-linear equilibrium
path.

2.3.2 Material non-linearity
There are three different types of non-linearity: material, geometric and contact non-linearity. In this
thesis the focus lays primarily on material non-linearity. This type is related to the material model,
which means that the stresses (internal forces) and strains are not linearly dependent any more. The
material properties can for example depend on the current stress or strain state, time or temperature
(Hendriks, 2015). Three well-known examples of material non-linearity are depicted in figure 2.15.

Figure 2.15a shows non-linear elasticity. During loading and unloading of a structure the stress-
strain relation follows the curved equilibrium path. Another type of non-linear material behaviour is
elasto-plastic or, as demonstrated in figure 2.15b, elastic-perfectly-plastic behaviour. The first linear
branch is the elastic equilibrium path, which means that during unloading the structure goes back to

(a) (b) (c)

Figure 2.15: Material non-linearity: (a) non-linear elasticity (b) elastic-perfectly-plastic (c) cracking
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its original state. Once the ultimate stress is reached, the structure deforms plastically. Unloading
will follow the elastic path and a permanent deformation state is reached.

Of main interest during this thesis is cracking (figure 2.15c), which is an important phenomenon
for brittle materials, such as concrete or masonry. After reaching the ultimate stress, the material
starts to crack. Before the crack is fully developed, the material is still able to carry some load, but the
more the cracks develop the less this load bearing capacity is. This phenomenon is called ’softening’.
After cracking the material is damaged, which leads to a decrease of the material stiffness.

2.3.3 Numerical methods
In order to trace the non-linear equilibrium path of a structure, numerical methods are used. This
section discusses these numerical methods.

The main idea is to apply the load is very small steps and to find the solution by linear approxi-
mations after each step. This could be realized with two different time stepping schemes (the implicit
and explicit solver), which will both be discussed. The time stepping algorithms will be explained,
based on the application of a force incremental procedure. Other load incremental procedures are
described shortly as well.

Implicit and explicit solvers

The time stepping schemes can be divided into two groups: the explicit and the implicit schemes.
An explicit scheme is used in numerical software’s such as UDEC, LS-Dyna and Abaqus (Rots

et al., 2016). In case of a explicit scheme, information of the current time step (t) is used to compute
the solution of the next time step (t + ∆t) see equation (2.2) (Wells, 2011). After applying a load
increment ∆f, the displacement increment is calculated, since ∆u is the only unknown.

K(tu) ∆u = ∆f (2.2)

The new displacement vector will be:

t+∆tu = tu + ∆u (2.3)

Explicit algorithms generally require small time steps to ensure stability. In figure (2.16a) an example
of instability is shown: the time steps are too big, therefore the obtained results drift away form the
true equilibrium path (Kraus, 2014).

The other time stepping algorithm is the implicit scheme. The main difference with the explicit
scheme is that this one ensures equilibrium through an iterative procedure, before applying the next
load increment. The Regular Newton-Raphson Method (or Full Newton-Raphson) in figure 2.16b
is a well-known example of such a iteration procedure. Other procedures are the Modified Newton-
Raphson, Quasi-Newton (also known as the Secant Method) and the Linear or Constant Stiffness
Method. The procedures work the same, but they use different stiffness matrices to calculate the
approximate displacement field. In order to get more insight in the way these procedures work and
to understand where these procedures fail, the Regular Newton-Raphson method will be explained,
based on DIANA FEA BV (2010).

The first steps of a implicit scheme are the same as for the explicit scheme: a load increment is
applied and with with the stiffness matrix of the current time step the displacement increment ∆u0
can be calculated (equation 2.2). With the displacement increment the approximated displacement
in time step (t+ ∆t) can be determined as well:

t+∆tu = tu + ∆u0 (2.4)
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(a) (b)

Figure 2.16: (a) Purely incremental scheme (Kraus, 2014) (b) Regular Newton-Raphson iteration scheme (DIANA
FEA BV, 2010)

.

As said, the difference with the explicit algorithm is that the implicit algorithm search for equilibrium
before moving on to the next load increment. First, the out-of-balance force has to be found:

g1 = t+∆tfext − fint,1 (2.5)

Subsequently the procedure checks whether the out-of-balance forces g1 is small enough. In other
words, the forces are assumed to be in equilibrium, if g1 meets the convergence criteria, which are
defined beforehand.
If there is no equilibrium, Newton-Raphson iterations are necessary. This will be done by applying
an iteration increment δu:

δu1 = K(t+∆tu)g1 (2.6)

where after the approximate displacement in time step (t+ ∆t) will be updated:

t+∆tu = tu + ∆u0 + δu1 (2.7)

The new out-of-balance force g2 has to be checked and new iterations are necessary until the conver-
gence criteria are met.

Load incremental procedures

With the implicit and explicit solvers, elaborated in the previous subsection, small force increments
are applied, meaning that these solvers were force-controlled. A problem with these force-controlled
methods occurs once the applied force is bigger than the peak load/failure load of the structure. In
that case, no solution can be found: the analysis diverge and this situation is called a ’snap-through’
(figure 2.17a). Often a displacement controlled method (if available) is preferred: instead of a force
increment, a displacement increment is applied. In that case it is possible to trace the post-peak

(a) (b) (c)

Figure 2.17: (a) Force control (b) Displacement control (c) Arc-length control.



CHAPTER 2. BACKGROUND THEORY 19

behaviour of a structure. However this procedure has problems in case of a snap-back (figure 2.17b).
In that situation the computer is not able to find one unique solution and another load incremental
procedure has to be used. This could be the arc-length-controlled procedure, but also this procedure
deals with non-convergence issues, e.g. in case of sharp snap-back’s, where it is hard to define the
optimal arc to keep the crack propagating in a stable way.

2.3.4 Limitations current numerical methods
In the previous section already some general problems are described concerning the force-controlled
methods, used in the non-linear analysis. More difficulties arise in case of brittle fracture, which is
an important characteristic of brittle material such as masonry or concrete. In that case a crack can
arise very suddenly and propagates quickly. Because the strong variation in the deformations, the
numerical software is not always able to find a converged solution.

Other non-convergence issues are often caused by the fact that the numerical software has to
determine where a new crack starts and, in case of multiple cracks, which crack will propagate. In
these cases of multiple equilibrium states (also called ’bifurcation’), non-convergence issues may arise.

Over the past decade, developers have proposed numerous improvements to increase the stability
of numerical procedures. However using a method which is unconditionally stable would overcome al
the non-convergence issues. Besides, the numerous options to run a non-linear analysis makes that
the NLFEA heavily depends on the experiences and skills of the structural engineer or analyst.
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2.4 Sequentially Linear Analysis

2.4.1 Concept
To address the divergence problems, during the simulation of non-linear behaviour, mentioned in
previous section, Rots (2001) proposed an alternative method, called Sequentially Linear Analysis
(SLA) which is able to deal with these problems. With this method, not a force, displacement or
time increment but a damage increment is applied. The method performs linear analyses with a
scaled reference load, after which a damage increment is assigned to one integration point in the
computational model. A selection procedure is developed to be able to find this (critical) point,
based on the current strength and stress distribution. With the damage increment, the stiffness
and strength of the critical point are reduced and a new linear analysis with a new scaled load is
performed. After unloading the structure and assigning the damage increment, forces will redistribute
and a new critical point will be found. This procedure will continue until global failure of the structure
is reached. The main advantage of this method is the fact that a linear analysis is inherently stable.
In other words: with SLA it is possible to describe highly non-linear behaviour by performing linear
analyses sequentially without the occurrence of convergence problems, since the linear analyses ensures
equilibrium after each analysis step. The robustness of SLA makes it an attractive alternative for
current NLFEA.

2.4.2 Stepwise secant material model
A fundamental assumption of Sequentially Linear Analysis is that the material degrades in a discretized
manner. The continuum constitutive relation is transformed into a stepwise secant material law, which
is also called a ’sawtooth law’. Figure 2.18a demonstrates a material model of a brittle material,
including tension softening. The area under the graph is proportional to the fracture energy Gf . To
implement this material law, it’s transformed into a sawtooth law, which is depicted in figure 2.18b.
Every branch shows a linear elastic relationship, with its own stiffness and strength. Assigning a
damage increment, means a jump from one branch to the next. Van de Graaf (2017) and Rots et al.
(2006) explain several concepts of how a sawtooth pattern can be described mathematically. They also
come up with an improved concept, which ensures invariance of the fracture energy with respect to
the number of sawteeth and ensures that the ultimate strain of the sawtooth law equals the ultimate
strain of the fundamental material law. It can be seen from figure 2.18b that, instead of a continuous
decrease of the stiffness and strength, the stiffness (Ek) and it’s corresponding strength (ft) reduce in
a stepwise manner. Van de Graaf (2017) describes the secant stiffness as follows:

Ek = (1 − dk)E0 (2.8)

The damage parameter dk runs from 0 to 1 with discretized steps, where 0 means that the material
is completely intact and 1 means that the material is fully damaged.

(a) (b)

Figure 2.18: (a) Base material law (b) Discretized material law.
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The sawtooth law is not only able to describe softening behaviour. Also snap-backs (at constitutive
level) are possible to trace. Figure 2.19 shows such a sawtooth law. Even for sharp snap-backs, where
current numerical methods fails, it is possible to describe that material behaviour.

(a) (b)

Figure 2.19: (a) Base material law (b) Discretized material law.

2.4.3 SLA procedure
After defining the sawtooth law the SLA procedure starts (see figure 2.20). To be able to run the first
linear elastic analysis, a load has to be applied. This will be a reference load. Since this reference load
will be scaled before running a linear analysis, the magnitude of the reference load doesn’t matter.
For now we assume that a unit load is applied, as Van de Graaf (2017) also did (step 1). With this
reference load a linear elastic analysis is performed. Since this is a linear analysis, the analysis will
be numerically stable and at each integration point the stresses and deformations are known for the
given load.

Figure 2.20: Work-flow SLA.
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Next, it is case to determine which integration point in the structure will fail first. For now only
cracking is considered as a failure mechanism. The selection procedure to find the critical integration
point starts with calculating the critical load multiplier for every point (step 3), based on the current
stresses and material strength. Van de Graaf (2017) defines the critical load multiplier as:

λj
crit,i = f j

i

σj
gov,i

(2.9)

Where i corresponds to the integration point and j to the current cycle. The smallest load multiplier
is for the integration point which stress is closest to the tensile strength and is therefore governing
(step 4) for all λj

crit,i > 0 (no negative stress components are taken into account yet). Step 5 scales
the reference load, resulting in a critical stress state. The assumption is made this only happens in
one integration point and that in other integration points the material strength is not exceeded. In
the next step a damage increment is applied (step 6). After the application of the damage increment,
the force will redistribute and a new integration point will become governing, where after a new
critical load multiplier and a new scaled force can be calculate before running the second linear elastic
analysis. This procedure will continue until global failure occurred or until another stop criterion
(defined beforehand) is reached.

2.4.4 Non-proportional loading
As explained in the previous section, all loads will be scaled by a load multiplier, where the magnitude
of the load multiplier is based on the stress state of the critical integration point. This means that all
loads will be multiplied with the same critical load multiplier (in literature referred to as ’proportional
loading’). However, when there is a combination of initial/constant loads and live/variable loads, the
identification of the critical load multiplier is more complex, since the initial load shouldn’t be scaled.
It should be present for 100% during the whole analysis and only the variable load has to be scaled
by the critical load multiplier.

Superposition of loads

DeJong et al. (2008) introduced a strategy to deal with non-proportional load cases. Their method is
based on superposition of the constant and the variable load assuming plane stress conditions (stress
components perpendicular to the element are zero) and tensile failure only. The load combination is
also denoted as:

Fcrit = Fconstant + λcritFvariable (2.10)
The steps are as follows:

1. Apply the constant load and determine the stresses (σxx,con, σyy,con, σxy,con) by a linear analysis.
2. Apply a reference load and determine the stresses (σxx,var, σyy,var, σxy,var) by a linear analysis.
3. To calculate the critical stress, the principle stress equation is used:

σ1,2 = 1
2(σxx + σyy) ±

√
1
4(σxx − σyy)2 + σ2

xy = ft (2.11)

Set the principle stress equal to the tensile strength (ft) and substitute;

σxx = σxx,con + λσxx,var

σyy = σyy,con + λσyy,var (2.12)
σxy = σxy,con + λσxy,var

into the principle stress equation. This will result in two critical load multipliers (λ1,2) one for
every principal direction, since the lambda’s are the only unknowns in the equation. Also the
principle directions (crack orientation) can be calculated using Mohr’s circle.
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4. Once, all load multipliers are calculated for every integration point, the critical load multiplier
should be determined.

5. Scale the variable load by the critical load multiplier and obtain the new stress state by running
a linear analysis with the critical load combination:

Fcrit = Fconstant + λcritFvariable (2.13)

6. Remove all loads en apply a damage increment, according to the sawtooth law, at the critical
integration point

7. Start a new cycle by repeating all steps with the updated material properties until global failure
occurs.

DeJong’s selection procedure of critical load multiplier

In case of non-proportional loading, the critical load multiplier is not always equal to the minimum
of all load multipliers, but a distinction should be made between tension and compression.

The variable load has a crack opening effect in case of tension. In figure 2.21a the stress is closest
to the tensile strength compared to the stress state in figure 2.21b and should be selected (λt

min),
because this integration point is about to exceed the tensile strength first.

Figure 2.21: Crack opening effect of the variable load. The left situation is the governing one.

The variable load has a crack closing effect in case of compression. Comparing all these λ′s, the
maximum one (figure 2.22b) should be chosen (λc

max), because if the lambda is smaller, the stress of
the corresponding integration point will exceed the tensile strength.

Figure 2.22: Crack closing effect of the variable load. The right situation is the governing one

The last step is to compare λc
max with λt

min. In case λc
max < λt

min no integration point will exceed
the tensile stress and λcrit is set to λt

min. But in case λc
max < λt

min at least one integration point
violates the material law. To be able to continue the DeJong’s procedure λcrit is set to λc

max
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Discussion of non-proportional loading

Lots of discussions are still going on about the procedure mentioned above. Where this procedure
is able to trace the failure process and to simulate the crack patterns of many loading situation
relatively well, discrepancies still remain. One of the problems is already mentioned shortly in the
previous section and is the problem that situations can occur where no value for λcrit can be found
without violation of the material law. Even λcrit = 0 is not possible.

This problem was the reasons to look for improvements of the non-proportional loading procedure.
Van de Graaf (2017) suggested two procedures, which can be activated as soon as no valid load
multiplier can be found. These procedures are based on double load multipliers. He writes the total
load as:

Fcrit = λiniFconstant + λrefFvariable (2.14)

Where λini equals 1.
His first strategy is to not account for the variable load and to scale down the initial load (λini = λcrit

and λref = 0), however ignoring the variable load and scaling down the initial load could give incorrect
results. The second strategy is to scale the previous (successful) step. The total load therefore becomes:

Fj
crit = λj

critF
j−1
crit (2.15)

The advantage is that there’s no violation of the material law and that the variable load is taken
into account as well. However, scaling the previous load, means also scaling the initial load, whereby
the initial load isn’t fully applied any more. This means that the initial stress field is different than it
should be and this could result in a different load distribution.

Eliáš et al. (2010) proposed a different approach for the non-proportional loading case. Whereas
all previous mentioned procedures are load-unload (L-U) methods, their procedure is a gradual force
release (F-R) method and is based on a well known phenomenon for brittle materials called ’avalanches
of rupture’ and can be defined as follows: "when a structural element breaks, the increased load (force)
L on the remaining elements may cause further ruptures, and thus induces a burst avalanche of a cer-
tain size ..." (Eliáš et al., 2010). Dealing with these avalanches is the main difference between their
procedure and the ones mentioned earlier. Each time an element cracks, the strength of that specific
element reduces and a redistribution of this released energy to the neighbour elements has to take
place immediately, which is a dynamic phenomenon. The current sequentially linear procedure is a
static method and cannot simulate this redistribution process properly. The quasi-static technique
introduced by Eliáš et al. (2010) tries to deal with these avalanches of rupture. Instead of completely
unloading, the load stays active on the structure as soon as the tensile strength is reached, gradually
distribution takes place and it is possible for other elements to fail as well during this stage of redis-
tribution of forces. Only when the equilibrium state is reached the analysis will continue and a load
increment will be applied. Similar to the previous procedures, the reference load is scaled, but with
this redistribution procedure the scaling factor is only applied to the stress increment of the variable
load. It follows automatically that the total applied load is forced to increase, and the initial load
will be fully applied in each analysis step. However the drawback of this procedure is the fact that
it cannot deal with snap-backs, which was an important reason to develop the Sequentially Linear
Analysis in the first place. Eliáš addressed this problem in his ’General method’ (Eliáš, 2015), in which
the F-R and the L-U methods are extreme cases, based on the time scales for the redistribution.

In the current development version of the numerical software Diana, the second strategy proposed
by Van de Graaf (2017) is implemented. His approach concerns continuum problems, which is of main
interest in this thesis.
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2.4.5 Current state of SLA in DIANA 10.2
Plane stress and shell elements

At first SLA was only available for plane stress elements. However DeJong et al. (2009) proposed
an extension of SLA to three-dimensional structures by the implementation of shell elements. This
makes it possible to also analyse out-of-plane behaviour. For the undamaged case the following
isotropic stiffness matrix for shell elements is used:
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 =
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 (2.16)

Where G0 = E0

2(1 + v0) . They propose a fixed direction orthotropic cracking model. This means

that as soon as in an integration point the tensile strength is exceeded, the crack direction will be
fixed for that specific integration point and a distinction is made between the Young’s modulus in
the normal and in the tangential direction, En and Es respectively. The values for En and Es will
decrease according to the predefined sawtooth law, to model the non-linear behaviour. From the
point of cracking, the isotropic material law will not be adopted any more but will be replaced by the
following stress-strain relationship:
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This stiffness matrix will be updated between each linear elastic analysis.
However, in the SLA code used in this thesis, a simplification is implemented for the damaged shear

stiffness. Instead of damaging the shear stiffness in a stepwise manner, like En and Es, a constant
shear stiffness is assumed which is: Gns = Gns = Gns = βG0. The initial shear stiffness is used, with
a percentage of reduction by assuming a reduction factor, which is called the shear retention factor
β. A similar strategy is assumed for the Poisson’s ratio: the Poisson’s ratio doesn’t decrease in a
step-wise manner but as soon as an integration point is critical for the first time, the Poisson’s ratio
drops to zero.

After crack initiation the stress-strain relationship used in this thesis will therefore be:


σnn

σss

σtt

σns

σst

σtn

 =



En

1 − v2
0

0 0 0 0 0

0 Es

1 − v2
0

0 0 0 0

0 0 0 0 0 0
0 0 0 βG0 0 0
0 0 0 0 βG0 0
0 0 0 0 0 βG0




εnn

εss

εtt

γns
γst
γtn

 (2.18)
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Interface elements

Also for interface elements a distinction is made between the material law before and after cracking.
Before cracking (the elastic stage), the tractions are coupled with the relative displacements by the
initial stiffness: [

tn
tt

]
=
[
kn,0 0

0 kt,0

] [
∆un

∆ut

]
(2.19)

After cracking the constitutive relation of these interface elements is replaced by a new one:[
tn
tt

]
=
[
kn 0
0 kt

] [
∆un

∆ut

]
(2.20)

Where the normal and shear stiffness reduce according to their sawtooth law.
It is important to mention that the Coulomb friction model is not available yet, even though Van de

Graaf (2017) proposed a way of implementing this material model. Besides, compressive failure in the
interface elements is also not part of the current SLA code yet. For now, adjacent continuum element
have to account for this type of failure in order to simulate compression failure.



3. Experimental results

This chapter gives a description of two experiments, conducted in 2016 and 2017 by the TU Delft at the
faculty of Civil Engineering and the numerical models later on will be based on these experiments. The
two experiments are chosen based on there boundary conditions and the fact that they are composed
of large CaSi-elements, which is within the scope of this thesis. Section 1 will describe experiment
TUD_COMP-24 (pier) and section 2 will elaborate on experiment TUD_COMP-28 (out-of-plane
wall).

3.1 Experiment TUD_COMP-24
3.1.1 Description
The shear wall is loaded in-plane and has a height of 2.743 m, a width of 0.977 m and a thickness of
0.100 m. It is composed of four rows of large CaSi-elements. Each single CaSi-element has a width of
0.897 m, a height of 0.643 m and a thickness of 0,100 m. The mortar bed joints have a thickness of 3
mm and the head joints are 2 mm thick. The pier was exposed to a quasi-static cyclic loading scheme
to allow studying the response of the pier in terms of hysteresis behaviour, peak load, ductility and
failure mechanism.

Figure 3.1: Test set-up of TUD_COMP-24 (Esposito and Ravenshorst, 2017).

3.1.2 Boundary conditions
The wall has fixed-fixed boundary conditions and this is taking care of by the test set-up in figure 3.1.
These boundary conditions were imposed by applying the following conditions:

Fr + Fl +Wt = P and vr = vl (3.1)
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Where Fr and Fl are the applied vertical forces, Wt is the self weight of the steel beam system and P
is the imposed pre-compression, which was kept constant during the whole experiment. The vertical
displacements vr and vl at the right and left side of the pier respectively were measured between the
bottom and the top steel beams. These vertical displacements had to be equal to account for the fixed
boundary conditions at the top.

3.1.3 Loading scheme
The structure was loaded in four steps. First the pre-compression was applied through the vertical
actuators (Fr and Fl) according to the condition mentioned above: Fr+Fl+Wt = P . The imposed pre-
compression P was constant (0.6 MPa) throughout the whole experiment. Second, a force controlled
cycle (C0F) was applied, this force (4 kN) was imposed to reach approximatively 20% of the expected
maximum force, which is around 20 kN. The corresponding displacement after the first cycle was +/-
0.6 mm. Third, another three cycles, C1D, C2D and C3D where applied in a displacement controlled
manner. The displacement was equal to 1, 2 and 3 times the measured displacement in previous load
step. Finally, a displacement controlled horizontal load was applied in 13 cycles (C1 till C13) to be
able to trace to post-peak stage of the wall.

3.1.4 Stop criteria
The experiment was stopped once one of the following stop criteria was met:

1. A reduction of 20 % or more of the maximum base shear force is measured.
2. One of the vertical actuators (normally loaded in tension to apply pre-compression) is loaded in

compression.
3. A displacement of 100 mm is reached in the horizontal actuator.
4. A safety risk is observed due to extensive damage.

3.1.5 Results
Esposito and Ravenshorst (2017) observed that the main damage occurred in cycle C13 in a rapid
sequence. This sequence is illustrated in figure 3.3. The corresponding force-displacement graphs
are plotted as well. The figure points out 6 moments during the experiment, namely one moment
during cycle C12 and five moments during cycle C13. Until cycle C12, the wall showed a pure rocking
behaviour (see figure 3.3a), then failure of the pier happened as follows: First, sliding over the mortar
in the bed joints at the top and bottom of the wall occurred (figure 3.3b). Subsequently, vertical cracks
in the brick elements were formed. Esposito and Ravenshorst (2017) state that the 50% reduction
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Figure 3.2: The backbone curve, obtained from the hysteresis loops.
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Figure 3.3: Crack formation during several loading cycles (a) C12 (b) C13-1 (c) C13-2 (d) C13-3 (e) C13-4 (f) C13-5.
Photo’s from Esposito et al. (2016)
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in base shear force was probably caused by cracking in these elements (see figure 3.3c and 3.3d).
Eventually, splitting. Eventually, splitting over the thickness of the small brick elements at the
bottom occurred (figure 3.3e and 3.3f).

In the corresponding force-displacement graphs the hysteresis loops become clear. Using these
hysteresis loops, a backbone curve (also known as an envelop curve) can be found (see black line
in figure 3.2). This backbone curve is useful, as the numerical models in this thesis are exposed
to a monotonic pushover load, instead of a quasi-static cyclic loading scheme. During a monotonic
pushover no hysteresis loops will be observed in the FU-graph, but the capacity curve consist of one
single curve only. The monotonic pushover on the pier will be performed by applying a displacement
in the positive direction (see grey area in the FU-graphs in figure 3.3).

3.2 Experiment TUD_COMP-28

3.2.1 Description

The out-of-plane loaded wall is composed of the same large CaSi-elements as experiment TUD_COMP−
24 and it has a height of 2.725 m, a width of 1.448 m and a thickness of 0.12 m. An overburden load of
0.25 MPa is applied, followed by a out-of-plane cyclic load, which is applied using air-inflated airbags
on both sides of the wall. The pressure in both airbags varies depending on the required external load.

3.2.2 Boundary conditions

Figure 3.4 shows the test set-up for the transversal wall subjected to out-of-plane loading. Only the
top and bottom of the wall are constrained to study one-way bending failure. The top and bottom
steel beams with rectangular hollow sections are rotationally stiff and are fixed to the bottom and top
of the wall to account for clamped-clamped boundary conditions. The top beam is connected to the
column via springs. These springs will be pre-tensioned in order to apply the overburden load. In this
way, a vertical displacement of the wall is still possible.

Figure 3.4: Test set-up of TUD_COMP-28 (Damiola et al., 2017).
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3.2.3 Loading scheme
The load is applied in a displacement controlled manner, by controlling the displacement at the mid-
height of the wall. This displacement is varied in every cycle, where every cycle is composed of three
identical runs. A run starts and ends with the wall at the initial position, then a displacement is
applied in positive direction, where after a negative displacement is applied, by inflating or deflating
the airbag at the south side (see figure 3.5). An initial pressure in the airbag at north side is enforced
to prevent a negative pressure in the airbag at the south side.

Figure 3.5: Example of airbag pressure during the test on the wall at cycle 10 (Damiola et al., 2017).

3.2.4 Stop criteria
No explicit stop criteria are defined at the start of the experiment. By following the loading procedure
explained in previous subsection, sudden deformations leading to an unstable wall are prevented and
no stop criteria are necessary to account for the safety during the experiment. However, the test
set-up can only reach a displacement of +/- 100 mm, since this is the maximum deformation of the
airbags. Therefore the experiment will stop as soon as that point is reached.

3.2.5 Results
Figure 3.6 shows the results with respect to the capacity curve. A difference is observed between
the positive and negative loading direction. Damiola et al. (2017) explain that this difference can
possibly be attributed to the difference in airbag pressure. With a positive displacement of +20 mm
the airbag on the tension side has a pressure of 70 mbar, whereas the pressure in the airbag on the
tension side is 16 mbar when a negative displacement is imposed. This causes a difference in friction,
which attributes to the difference in the capacity curve. Damiola et al. (2017) recommend to take the
capacity curve for negative displacements as representative for the walls behaviour in case a monotonic
pushover test is performed.

The figure also shows the moments at which cracks in the bed joints are registered. Three cracks
occur: in the top, middle and bottom of the wall. This crack pattern is illustrated in figure 3.7.
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Figure 3.6: Capacity curve (Damiola et al., 2017).

Figure 3.7: Crack pattern (Damiola et al., 2017).



4. Analytical calculations

In order to estimate the lateral shear force capacity and to verify the experimental results, analytical
calculations are performed. In this chapter the calculations give an estimation of the failure load
and deformation capacity. Section 1 starts with the calculations regarding the shear wall, using the
same material parameters as in the numerical model. In Esposito and Ravenshorst (2017), also an
estimation of the peak load is given. The section ends therefore with a comparison between the
analytical outcomes. In section 2, the calculations are presented regarding the out-of-plane wall,
considering the one-way bending situation. A reference is made to chapter 3 for the dimensions and
parameters of both the shear wall and the out-of-plane wall.

4.1 In-plane loaded shear wall

4.1.1 NPR9998 approach
In this section the base shear force capacity is calculated regarding four failure mechanisms, using
the formulas in NPR9998 2017 Ontw. (Nederlands Normalisatie Instituut, 2017). The smallest load
will be the governing failure load. Figure 4.1 shows these four different in-plane failure modes, which
are also discussed in chapter 2: diagonal tensile failure, bed joint sliding, rocking and premature toe
crushing.

Figure 4.1: In-plane failure mechanisms: (a) Shear failure (b) Sliding failure (c) Rocking failure (d) Premature toe
crushing (ElGawady et al., 2007).

Diagonal tensile capacity

The diagonal tensile failure mode (figure 4.1a) is an undesired failure mechanism as this a brittle
failure mode (Nederlands Normalisatie Instituut (2017)) and it mainly occurs in a squatter pier. Even
though the wall in experiment TUD_COMP-24 is a slender wall, it will still be checked for this failure
mode to get a complete overview of all failure loads. The maximum diagonal tensile strength of a
pier, without flanges can be calculated as:
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Vdt = fdtAnβ

√
1 + fa

fdt
(4.1)

β is a factor depending on the piers ratio. If hpier

l > 1.5 (in this case it’s 2.81), β is equal to 0.67.
An is the area of the horizontal cross section of the pier in mm2 and is equal to:

0.977 ∗ 0.1 = 0.0977m2 = 97700mm2 (4.2)

fa is the axial stress (in MPa) due to gravity loads, namely the overburden load and self-weight,
calculated at the mid-height of the pier. The density is 1824 kg/m3, the overburden load is 0.6 MPa
and half of the height is 1.372 m. This gives an axial stress of:

fa = 1824 ∗ 9.81 ∗ 1.372 ∗ 10−6 + 0.6 = 0.6245MPa (4.3)

fdt is the masonry diagonal tensile strength (in MPa) and a formula in NPR9998 is provided to find
the diagonal tensile strength if no material test is performed:

fdt = 0.5c+ faµf (4.4)

With c = 0.83 N/mm2 (bed-joint cohesion) and µf = 1.48 (friction coefficient). Both values are
according to Esposito and Ravenshorst (2017). This leads to a fdt of 1.34 N/mm2.

The final diagonal tensile failure load will then be:

Vdt = 1.34 ∗ 97700 ∗ 0.67
√

1 + 0.6245
1.34 = 106206N = 106, 2 kN (4.5)

Bed joint sliding

Bed joint failure (figure 4.1b) is a stable failure mode as it comes with sufficient deformation capacity:
the structure deforms as a warning before total collapse takes place. If bed joint sliding would be the
governing failure mode, the load capacity would be:

Vs = 0.7(t ∗ Lw ∗ c+ µf (P + Pw)) (4.6)

P is the overburden load in kN. With a prestress of 0.6 MPa, a thickness of 100 mm and a width of
977 mm, this load is:

P = 0.6 ∗ t ∗ Lw = 0.6 ∗ 100 ∗ 977 = 58620N = 58.62 kN (4.7)

Pw is the self-weight in kN and is equal to:

Pw = hpierLwtρ = 2.744 ∗ 0.977 ∗ 0.1 ∗ 1824 ∗ 9.81 = 4797N = 4.8 kN (4.8)

This results in a bed joint failure load of:

Vs = 0.7(100 ∗ 977 ∗ 0.83 ∗ 10−3 + 1.48(58.62 + 4.8)) = 122.47 kN (4.9)

Premature toe crushing

Premature toe crushing (figure 4.1d) is followed by rocking and depends amongst others on the
compression strength and pre-compression:

Vtc = (αP + 0.5Pw)( Lw

hpier
)(1 − fa

0.7fm
) (4.10)
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α depends on the boundary conditions. When the top is free then: α = 0.5; and when the wall has
fixed-fixed boundary conditions then: α = 1.0. The next subsection will illustrate the cause for this
difference between the α′s. In the considered shear wall, the boundary conditions are fixed-fixed,
resulting in a α of 1.0.
fm is the masonry compression strength which is 10 MPa, according to Nederlands Normalisatie
Instituut (2017). All parameters together give a base shear force capacity of:

Vtc = (1.0 ∗ 58.62 + 0.5 ∗ 4.8)(0.977
2.744)(1 − 0.6245

0.7 ∗ 10) = 19.79 kN (4.11)

Rocking

The rocking failure mechanism (figure 4.1c) is common for slender walls and is a stable failure mode
as is comes with sufficient deformation capacity after cracking (Nederlands Normalisatie Instituut,
2017). To calculate the base shear force, NPR9998 presents the following formula:

Vr = 0.9(αP + 0.5Pw)( Lw

hpier
) (4.12)

It is very similar to the formula for premature toe crushing as these failure mechanisms are related
to each other. However the last term in the equation for premature toe crushing (1 − fa

0.7fm
), which

depends on the compression strength and the gravity loads, is replaced by 0.9. Thus it depends on
the material compression strength and the gravity loads which of these two failure mechanisms is
governing.

Figure 4.2: Influence boundary conditions on rocking failure capacity.

Figure 4.2 illustrates the influence of the boundary conditions on the rocking failure mode. The
clamped-free boundary conditions only cause crushing and cracking at the bottom. The equilibrium
of moments with respect to the red dot is:

V hpier − Pw0.5Lw − P0.5Lw = 0 (4.13)

V = (0.5P + 0.5Pw)( Lw

hpier
) (4.14)

For the situation with fixed-fixed boundary conditions the equilibrium of moments with respect to the
red dot is:

V hpier − Pw0.5Lw − PLw = 0 (4.15)

V = (1.0P + 0.5Pw)( Lw

hpier
) (4.16)
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These formulas are almost identical to the formula in NPR9998 (see formula 4.12), where α is 0.5 for
fixed-free boundary conditions and 1.0 for fixed-fixed boundary conditions. To account for toe crushing
after pure rocking, NPR9998 adds a reduction factor of 0.9 (Esposito and Ravenshorst (2017)).
Using the parameters for the shear wall discussed in this thesis, the base shear force capacity will be:

Vr = 0.9(1.0 ∗ 58.62 + 0.5 ∗ 4.8)(0.977
2.744) = 19.55 kN (4.17)

19.55 kN is the lowest value of all failure modes and rocking is therefore the governing one. In the
experiment a peak load of 21.6 kN is found, thus the expected peak load is close to the experimental
peak load.

To find the deformation capacity related to this failure mode, NPR9998 uses the following formula
for the drift limit:

drocking = 0.01(1 − 2.2 fa

fm
) 3

√
hpier

Lw
(4.18)

drocking = 0.01(1 − 2.20.6245
10 ) 3

√
2.744
0.977 = 0.012 (4.19)

This means that the maximum horizontal displacement at the top of the wall is 1.2 % of the height,
thus the ultimate displacement is equal to:

u = d ∗ hpier = 0.012 ∗ 2.744 = 0.0334m = 33.4mm (4.20)

In the experiment a deformation of 66.8 mm is found, thus the formula in NPR9998 gives a conservative
estimation of the deformation capacity.

Difference with literature

Esposito and Ravenshorst (2017) presents analytical calculations as well to estimate the shear force
capacity regarding the four different failure modes. Table 4.1 lists the differences between their results
and the results demonstrated above.

Table 4.1: Comparison analytical results

Analytical (literature) Analytical (thesis) Experiment
Diagonal tensile failure (Vdt) 106.10 kN 106.21 kN -
Bed joint sliding (Vs) 117.49 kN 122.47 kN -
Premature toe crushing (Vtc) 18.83 kN 19.79 kN -
Rocking (Vr) 18.23 kN 19.55 kN 21.6 kN

Its becomes clear that the analytical results derived in this chapter are slightly higher than the results
from Esposito and Ravenshorst (2017). The main explanation is that Esposito and Ravenshorst (2017)
use the set-up and dimensions of the experiment in the analytical calculations, whereas in this thesis
the dimensions of the numerical model are used. In the numerical model some small simplifications
has been made, which leads to the following differences:

• Esposito and Ravenshorst (2017) use an effective height in the calculation for Vtc and Vr. The
kicker layers of the masonry wall are glued to the steel beam, thus rocking only occurs in between
these layers. In the calculations in this thesis the whole height is taken into account. If the wall
is modelled based on the smeared crack approach, no masonry courses and thus no kicker layers
are modelled and rocking occurs with respect to the total height.

• They use a correction factor to account for the fact that the horizontal force is applied at a
certain distance from the top of the wall during the experiment. In the calculations above, no
correction factor is used, because in the numerical model the horizontal force is applied exactly
at the top of the wall.
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• They use slightly different values for the walls height and width. The height is 2.743 m and the
width is 0.977 m, which are used in the analytical calculations and the numerical model in this
thesis. They however, use slightly different dimensions in the calculations, namely 2.715x0.979
m2.

• They use a masonry compressive strength of 12.69 MPa, based on destructive laboratory tests
as part of the test campaign, whereas 10.0 MPa is used in the calculations above based on
NPR9998.

4.1.2 Rigid block approach
Another way of finding the maximum external force is to consider the wall as a rigid block. When
the sum of moments is calculated, an envelope curve for the rigid block behaviour can be obtained.
Assuming small displacements, the equilibrium of moments with respect to the bottom corner is:

F ∗ h− P ∗ (w − u) −W ∗ 1
2 ∗ (w − u) = 0 (4.21)

Where
P = 0.6 ∗ t ∗ w = 58.62 kN (4.22)

W = h ∗ t ∗ w ∗ ρ ∗ 9.81 = 4.795 kN (4.23)

Solving this equation, a relation between the displacement (u) and the maximum force (F) that the
wall can take, is derived:

21.73 − 22.25u = F (4.24)

(a) (b)

Figure 4.3: (a) Equilibrium of moments of pier as a rigid block (b) Expected capacity curve obtained from the rigid
block approach.

This relation is also illustrated in figure 4.3b. It turns out that the rigid block approach gives an
accurate estimation of the experimental peak load (see table 4.2).

Table 4.2: Comparison analytical results

Analytical (NPR9998) Analytical (rigid block) Experiment
Rocking failure 19.55 kN 21.73 kN 21.6 kN
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4.2 Out-of-plane wall
The other component of the TUD-building is the out-of-plane wall. The one-way out-of-plane failure
mechanism is taken into account. Hereby it is assumed that once a mechanism is formed, due to
hinges at the bottom, top and middle of the wall, the wall can be treated as a composition of rigid
blocks.

4.2.1 Rigid block approach - virtual work
In Damiola et al. (2017) the method of virtual work is applied, based on figure 4.4, and it lead to the
following equation:

λ(1−β)W u

2 +λβW u

2 W
t

2
u

Heff
−(1−β)W t

2( 1
β

+ 1
2(1 − β) ) 2u

Heff
−P t2( 1

β
+ 1

1 − β
) 2u
Heff

= 0 (4.25)

Where,
W1 = W2 = 0.5W = 0.5 ∗Heff ∗ w and F = λ ∗ w (4.26)

As the hinges are most likely be formed due to cracks in the mortar bed joints and as the bed joint
are placed at equal distance between one another, the rigid blocks will have the same size, meaning
that β = 0.5. Substituting β = 0.5 and rewriting the equation gives:

F −W ∗ t ∗ 4
Heff

− P ∗ t ∗ 8
Heff

= 0 (4.27)

The total applied external force is a function of the total self weight (W), pre-compression (P), effective
height (Heff ) and thickness (t). Substituting these dimensions gives a total force of 17.7 kN.

Figure 4.4: Rigid blocks model (Damiola et al., 2017)

4.2.2 Rigid block approach - sum of moments
Another way finding the maximum external force is to only look at one block and find equilibrium
of moments. For now the bottom block is taken into account (see figure 4.5a) and the equilibrium of
moment with respect to the bottom hinge is:

(P + S) ∗ (t− u) +W ∗ 1
2 ∗ (t− u) − 1

2F
1
2Heff = 0 (4.28)
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Where
S = 1

2 ∗ h ∗ t ∗ w ∗ ρ ∗ 9.81 = 4.24 kN (4.29)

P = 0.25 ∗ 0.t ∗ w = 43.44 kN (4.30)

W = heff ∗ t ∗ w ∗ ρ ∗ 9.81 = 4.01 kN (4.31)

Solving this equation, a relation between the displacement (u) and the force (F) is derived:

18.49 − 154.05u = F (4.32)

Table 4.3: Comparison analytical results

Analytical (literature) Analytical (thesis) Experiment
One-way out-of-plane failure 17.7 kN 18.49 kN 18.0 kN

The total maximum force that can be applied is 18.49 (substitute u=0 in the equation above), which
is higher than the force capacity derived from the virtual work method. Both methods require equi-
librium of forces when the virtual work is zero and the sum of the moments is zero, therefore these
results should be equal. The reason for this difference is that only the bottom block is taken into
account. As the self weight is present, the precompression imposed by the self-weight is higher for
the bottom rigid block than the top rigid block. When the sum of moment is calculated for the top
block, a force of 17.0 kN is found. Taking the average of 17.00 kN and 18.49 kN leads to a force of
17,7 which is equal to the force, found using the virtual work equation. This leads to the capacity
curve plotted in figure 4.5b.

(a) (b)

Figure 4.5: (a) Equilibrium of moments of one rigid block (b) Expected capacity curve obtained from the rigid block
approach.





Part II

Numerical modelling
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5. Shear wall: smeared crack
approach

This chapter will elaborate on numerical modelling of the shear wall, using the smeared crack approach.
The structure of this chapter is as follows. Section 1 explains how the finite element model is built.
The second section gives an overview of all analyses being conducted. These analyses are part of a
variation study, which is performed in section 3, where plane stress elements are used. The use of
plane stress elements should be sufficient to model in-plane loading situations, as plane stress elements
don’t have degrees of freedom in out-of-plane direction. In section 4 shell elements are used to validate
the (new) SLA implementation for shell elements, by comparing the results using shell elements with
the results using plane stress elements. The chapter ends with a conclusion in section 5.

5.1 Finite element model
5.1.1 FEM model and material properties
A numerical model of the TUD_COMP-24 experiment is illustrated in figure 5.1. The wall has a
width of 0.977 m, a height of 2.744 m and a thickness of 0.1 m with an overburden load of 0.6 MPa.
As explained in section 2.4.1., the smeared crack approach makes no distinction between mortar and
bricks and the material properties used in the model are smeared over the whole wall. Table 5.1 lists
these material properties, which are based on NPR998 (Nederlands Normalisatie Instituut, 2017) and
Esposito and Ravenshorst (2017). In the table also the applied crack model is listed, which is the
total strain based fixed crack approach as SLA is currently based on this type of crack model.

Table 5.1: Properties masonry for smeared crack concept

Masonry (composite)
Elasticity ρ = 1824 kg/m3 E0 = 8800 MPa ν = 0.21
Tensile failure ft = 0.4 MPa Gft = 20 J/m2

Compressive failure fc = 10 MPa Gfc = 20000 J/m2

Sawtooth parameters β = 0.01 pfac = 0.1
Crack model Fixed crack model

The wall has clamped-clamped boundary conditions. The top is able to move in horizontal and
vertical direction but is not able to rotate in the xy-plane. In the numerical model this is incorporated
by the use of tyings. The red lines in figure 5.1c indicate the tyings. A tying can be used to "tie"
elements of the first type (elements with translational degrees of freedom) to elements of the second
type (elements with both translational and rotational degrees of freedom). However in this model a
tying is used to copy the degrees of freedom of a "master" node, to the "slave" nodes. In the bottom
of the wall, the "master" node (the middle node) is fixed in all three directions. The tyings make
sure that all other bottom nodes are fixed in the same way. At the top of the wall, the "master"
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Figure 5.1: (a) Pier made of large CaSi-elements. (b) Top: detail of the pier. Bottom: detail of the numerical model.
(c) Numerical model with smeared crack approach.

node is also located in the middle and is only fixed in z-direction, to prevent out-of-plane movement
of the wall. The tyings at the top make sure that all top nodes will have the same displacement in
x- and y-direction as the "master" node, therefore rotation of the top of the wall is constrained. An
advantage of using tyings is that the reaction forces are lumped in the master node. This makes it
easier to process the output later on. In the model eight-node quadratic elements with a mesh size of
approximately 0.1x0.08 m2 are applied. In case of plane stress elements the element type is CQ16M
and in case of shell elements the element type is CQ40S (see section 2.4.2 for the element descriptions).
In Diana the default (and only) integration scheme for CQ40S shell elements is a reduced 2x2 Gauss
integration scheme. In order to compare the results for different types of elements, the same reduced
integration scheme for plane stress elements is used. The integration scheme in thickness direction for
shell elements is the (default) 3-point Simpson integration. For plane stress elements there is only 1
integration point in the out-of-plane direction.

It is important to note that, in contrary to the experiment where a cyclic test is performed, the
numerical model is exposed to a monotonic pushover load as a simplification. The main argument
to do so, is the fact that in SLA there is no crack-closure algorithm yet, meaning that if there is a
load reversal, incorrect results could be obtained. Before a horizontal pushover load is applied, the
shear wall is exposed to an overburden load at the top of the wall. In the SLA method this is taken
into account by modelling the wall in a non-proportional way (see section 2.2.4). The initial load
is a combination of self-weight and an overburden load of 0.6 MPa at the top. This initial load has
to be present constantly during the whole analysis. The second load is a variable load to account
for the horizontal displacement at the top. A unit load of 1 Newton is used and this load will be
scaled in every analysis step. In case of a regular non-linear finite element analysis (NLFEA) the
loading scheme is incorporated by making use of a phased analysis. In the first phase the initial load
is applied, which is again a combination of self-weight and pre-compression and in the second phase
the lateral load (a horizontal displacement of 100 mm) is added. It is clear that in case of NLFEA
a displacement controlled way of applying the "load" is preferred to be able to trace the post-peak
behaviour of the structure.
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5.1.2 Properties SLA
Besides the material properties some extra input is required, in case of SLA. This input is related to
the sawtooth laws (material laws), which are depicted in figure 5.2. Figure 5.2a shows the sawtooth
law for compression failure and it indicates three ranges. These colours will be used in strain-plots
later on. The first one (light blue) goes up to the strain at which the maximum compressive strength
fc is reached. The second part is the crushing part, which is coloured in dark blue and the last one is
coloured in pink, which represents the state at which the integration point is completely softened. In
tension also three ranges are highlighted, namely the linear elastic state, cracking state and complete
cracked state coloured in green, yellow and red respectively. The p-factor is taken as 0.1, meaning
that compressive and tensile strength are exceeded by 10% in order to make the sawtooth law energy
invariant (Van de Graaf, 2017). With this p-factor and the material properties listed in table 5.1, the
sawtooth laws results in 22 sawteeth for compression and 18 for tension.

(a) (b)

Figure 5.2: Sawtooth laws with three ranges highlighted: linear elastic range, cracking/crushing range and ultimate
strain range for (a) compression (b) tension.

5.1.3 Properties NLFEA
The addition input with respect to NLFEA is related to the convergence criteria. With an imposed
horizontal displacement at the top of 100 mm, a step size of 0.001 is assumed, meaning that every step
size is 0.1 mm with 1000 steps in total. The convergence tolerance is set to 10−4 and if the analysis
step doesn’t meet the convergence tolerance, the analysis is terminated. The reason for this is to be
able to see how far the non-linear analysis is able to converge and this way the advantage of SLA, in
terms of obtaining numerically stable results, becomes clear.

During the analyses the Modified Newton-Raphson is used (see section 2.1.3 for non-linear numer-
ical methods) and the maximum number of iteration steps is set to 250.
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5.2 Overview numerical models
5.2.1 Analyses in section 3 - plane stress elements
In section 3 a variation study will be conducted to investigate the influence of the Poisson’s ratio,
shear retention factor (β) and crack model on the capacity of the wall. In the tables below, the second
model is the base model. By varying different input parameters (marked in blue), the influence of
these parameters is analysed. It’s important to note that the SLA algorithm is based on the fixed crack
approach. The influence of different crack models therefore only applies to the NLFEA. Furthermore
only a constant shear retention factor is adopted in the current SLA-code, whereas a damaged based
shear retention factor is possible for NLFEA.

Table 5.2: Analyses conducted in section 3

SLA analyses
SLA-1 β = 0.01 ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2

SLA-2 β = 10−6 ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2

SLA-3 β = 10−6 ν = 0 fc = 10 MPa Gfc = 20000 J/m2

SLA-4 β = 10−6 ν = 0.21 fc = 3 MPa Gfc = 2000 J/m2

NLFEA analyses
NLFEA-1 β = 0.01 ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2

NLFEA-2 β = 10−6 ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2

NLFEA-3 β = 10−6 ν = 0 fc = 10 MPa Gfc = 20000 J/m2

NLFEA-4 Rotating crack model ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2

NLFEA-5 β = damage based ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2

5.2.2 Analyses in section 4 - shell elements
In section 4 the plane stress elements are replaced by shell elements in order to verify the implemen-
tation of SLA for shell elements. In the table below the parameters are listed.

Table 5.3: Analyses conducted in section 4

SLA analysis
SLA-5 β = 10−6 ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2

NLFEA analysis
NLFEA-6 β = 10−6 ν = 0.21 fc = 10 MPa Gfc = 20000 J/m2
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5.3 Plane stress elements

5.3.1 Stop criteria SLA
As SLA is still under development it is important to check the results carefully in order to improve
the SLA implementation in DIANA. As it turned out that a couple of test models showed spurious
results, the suspicion was raised that there might be some flaws in the implementation of the SLA
code. To prove this, the damage history of three models are analysed in detail below, before the
variation study is conducted. At the end of this section, three stop criteria are defined, which will
be used henceforth. It is important to note that for all three models in this section the number of
sawteeth for both compression and tension is equal for the sake of comparison: nt = 18 and nc = 22.

Stop criterion 1 | model SLA-1

A first problem that occurs, is that some analyses will continue indefinitely if they aren’t stopped
manually. Analysis SLA-1 is one of these analyses. To find the reason for this problem, the damage
history is analysed and the number of damage increments are counted, leading to an overview in figure
5.3.

Figure 5.3: Damage increments at the bottom of model SLA-1. The angles of the principal directions are not the
exact ones, as the output doesn’t provide this information, however the angels are an approximation of the reality.

A few observations can be made: first, the reason why the analysis didn’t stop is due to the outer
left integration point, which is damaged infinite times. Apparently the analysis didn’t stick to the
number of sawteeth in tension, which is 18 for each of the two principal directions. Second, except for
the two outer right integration points, the integration points where damaged up to 36 times, which
is exactly two times the number of sawtooth, meaning that the integration points were completely
damaged in both principal directions. The two outer right elements are only completely damaged in
one direction, so the analysis could still continue, because compression forces could still be transferred
in the other principal direction, see figure 5.4 for the compression force flow.

Table 5.4: Damage history of model SLA-1 at the bottom right and bottom left integration point

Bottom left: element 5, integration point 2
Failure n Step F[kN] u[mm] λ[-]
Tensile 35 1192 20.59 5.00 1.0
Tensile 36 1249 20.58 5.53 1.0
Tensile 37 2157 20.44 156.70 1.0
Tensile 38 2158 20.44 156.70 1.0
Tensile 39 2159 20.44 156.70 1.0
Tensile 40 2160 20.44 156.70 1.0
: : : : : :
Tensile inf. inf. 20.44 156.70 1.0

Bottom right: element 171, integration point 1
Failure n Step F[kN] u[mm] λ[-]
: : : : : :
Compr. 7 1315 20.51 10.59 1.0
Compr. 8 1321 20.50 12.33 1.0
Tensile 1 1339 20.40 13.46 1.0
Tensile 2 1340 20.39 1328 1.0
: : : : : :
Tensile 17 1359 20.40 17.16 1.0
Tensile 18 1361 20.40 17.61 1.0
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Figure 5.4: Compression diagonal

To give more exact information of the damage history, a table of the damage history of the outer
right and outer left integration point is provided in table 5.4. For the right integration point first 8
damage increments in compression are applied before the integration point gets completely damaged
in tension. As there is still some capacity left in the second principal direction, the analysis should
still continue. However the number of damage increments of the left integration point gets infinite.
Even though the results (force, displacement and λini) don’t change in this case, the analysis still
should stop automatically. This leads to the first stop criterion:

1. A step of an analysis is the last one as soon as the number of damage increments exceeds the
number of sawteeth in both principal directions for any integration point in the model. This
means either:

(a) 18 x tension + 18 x tension = 36 damage increments in tension, or
(b) 18 x tension + 22 x compression, or
(c) 22 x compression + 22 x compression = 44 damage increments in compression
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Figure 5.5: Results of model SLA-1: (a) Force-displacement graph (b) Zoom-in on force-displacement graph

The force-displacement graph is plotted in figure 5.5a. These force-displacement curves give infor-
mation about both ductility and peak load of the structure. The final step, according to stop criterion
1, is marked with a dot. The figure shows that the peak load corresponds with the peak load of
the experiment. The displacement is however about twice as much. In figure 5.5b a detail of the
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FU-graph is plotted. The scaling of the applied external variable force in the SLA algorithm becomes
clear in this picture as the FU-graph goes back and forth. Up to the peak load the snap-backs are
secant, however, in a later stage, the snap-backs are almost horizontal, leading to a flat line, where
the snap-backs are not visible any more. Applying the load in a non-proportional way comes with
these non-secant snap-backs.

Stop criterion 2 | model SLA-2 and SLA-4

Model SLA-2 is used to show another incorrect event that might happen in case of SLA, using the
current code and a second stop criterion is defined, based on this event. In figure 5.6 the damage
increments at the bottom integration points of the model are visualized. This time the outer left inte-
gration point doesn’t get damaged infinite times and the analysis stops automatically. Furthermore,
at the right side not only tensile failure is observed, but also toe crushing.

Number of damage increments:

Tension: 36 times - damage in two directions

Tension: 18 times - damage in one direction

Compression: 22 times - damage in one direction

Figure 5.6: Damage increments at the bottom of model SLA-2. The angles of the principal directions are not the
exact ones, as the output doesn’t provide this information, however the angels are close to reality.

The problem becomes clear in table 5.5. Whereas the damage history of the outer left integration
point doesn’t show odd results, the damage history of the outer right integration point does. At some
point of the analysis the initial load multiplier (λini) starts to decrease, which in this model leads to
a negative displacement. This is physically not possible if a positive horizontal force is applied. In
figure 5.7 the capacity curve and initial load multiplier are presented. If λini isn’t 1.0, it means that
the initial load (pre-compression plus self weight) isn’t fully present in the numerical model. It could
be possible that λini decreases, but that it will recover a few steps later. However if it decreases and
it won’t recover, it means that failure of the wall is initiated and the wall isn’t able to carry the total
load any more. Given this, and the fact that in this model a irreversible decrease of λini led to a
negative horizontal force, a second stop criterion is defined:

2. A step of an analysis is the last one as soon as λini is not able to return back to 1.0.

Table 5.5: Damage history of model SLA-2 at the bottom right and bottom left integration point

Bottom left: element 5, integration point 2
Failure n Step F[kN] u[mm] λ[-]
: : : : : :
Tensile 29 851 19.86 2.25 1.0
Tensile 30 917 19.96 2.54 1.0
Tensile 31 971 20.09 2.83 1.0
Tensile 32 1026 20.17 3.22 1.0
Tensile 33 1093 20.27 3.84 1.0
Tensile 34 1136 20.39 4.38 1.0
Tensile 35 1177 20.59 5.03 1.0
Tensile 36 1239 20.54 5.59 1.0

Bottom right: element 171, integration point 1
Failure n Step F[kN] u[mm] λ[-]
: : : : : :
Tensile 17 1339 20.42 13.62 1.0
Tensile 18 1340 20.42 14.16 1.0
Compr. 7 1549 20.48 71.32 1.0
Compr. 8 1550 20.48 72.23 1.0
: : : : : :
Compr. 20 1661 5.54 -261.30 0.27
Compr. 21 1662 1.60 -74.32 0.08
Compr. 22 1663 0.02 0.58 0.0
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Figure 5.7: Results of model SLA-2: (a) Force-displacement graph (b) Initial load multiplier graph (λini)

An extra analysis is conducted as a test case for the second stop criterion. In model SLA-4 the
compressive strength is reduced to 3.0 MPa and the fracture energy in compression is reduced to 2000
J/m2 in order to force toe crushing in the right bottom corner of the pier.

Number of damage increments:

Tension: 36 times - damage in two directions

Tension: 18 times - damage in one direction

Compression: 22 times - damage in one direction

Figure 5.8: Damage increments at the bottom of model SLA-4. The angles of the principal directions are not the
exact ones, as the output doesn’t provide this information, however the angels are close to reality.

As expected, reducing the compressive strength, indeed leads to more toe crushing compared to
the previous models (see figure 5.8). The damage history in table 5.6, shows complete tensile failure
in both principal directions in the outer left integration point and complete compression failure in
only one direction for the outer right integration point. When the FU-graph and λini are plotted,
the relation between them becomes clear again. In contrary to the previous model, a decrease of λini

doesn’t lead to a negative displacement, but to a severe decrease of the force capacity in the FU-graph.
The wall is not able to carry the total load and failure is initiated. This again shows the necessity for
the application of the second stop criterion.

Table 5.6: Damage history of model SLA-4 at the bottom right and bottom left integration point

Bottom left: element 5, integration point 2
Failure n Step F[kN] u[mm] λ[-]
Tensile 1 3 12.23 0.42 1.0
Tensile 2 5 12.49 0.43 1.0
: : : : : :
Tensile 35 1337 8.51 10.68 0.49
Tensile 36 1399 8.42 11.98 0.48

Bottom right: element 171, integration point 1
Failure n Step F[kN] u[mm] λ[-]
Compr. 1 67 15.74 0.57 1.0
Compr. 2 68 15.71 0.57 1.0
: : : : : :
Compr. 21 1237 11.05 9.14 0.64
Compr. 22 1272 9.35 9.52 0.54
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Figure 5.9: Results of model SLA-4: (a) Force-displacement graph (b) Initial load multiplier graph (λini)

Stop criterion 3

The third stop criterion regards the maximum displacement of the wall and it is based on the analyt-
ical calculations in chapter 4. According to the rigid block approach the wall will tumble if it reaches
a displacement equal to the width of the pier (977 mm). This is theoretically the absolute maximum
displacement the wall can reach, in case of purely rocking and therefore the third stop criteria is defined:

3. A step of an analysis is the last one as soon as the displacement at the top of the wall gets larger
than 977 mm

Summarizing stop criteria

In this section the stop criteria below are defined. They will be used henceforth.

A step of an analysis is the last one as soon as:

1. The number of damage increments exceeds the number of sawteeth for any integration point in
the model. This means either:

(a) 18 x tension + 18 x tension = 36 damage increments in tension, or
(b) 18 x tension + 22 x compression, or
(c) 22 x compression + 22 x compression = 44 damage increments in compression

2. A step of an analysis is the last one as soon as λini is not able to return back to 1.0.

3. The displacement at the top of the wall gets larger than 977 mm.
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5.3.2 Shear locking
The smeared crack approach is still under discussion. There are different opinions especially about
how to cope with shear stresses after cracking and how to implement this in numerical models. To
assume zero normal stresses and shear stresses after cracking is a crude approximation of reality as
cracks are often still capable of transmitting normal and shear stresses due to tortuous debonding and
interlocking (Rots and Blaauwendraad, 1989). Therefore an option is to re-apply the initial isotropic
material stiffness, after cracking, with some percentage of reduction by assuming a reduction factor
which is called the shear retention factor β.
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Figure 5.10: Results for β = 0.01 (a) Force-displacement graph (b) Initial load multiplier λini

In analyses SLA-1 and NLFEA-1, the shear retention factor is assumed to be 0.01 and the capacity
curves, obtained from these analyses are plotted in figure 5.10a, with the displacement on the x-axis
and the force on the y-axis. For the SLA-1 analysis the first stop criterion is governing, as discussed
in section 5.3.1. The outer left integration point at the bottom was about to exceed the number of
sawteeth in step 2157 and therefore step 2156 is assumed to be the last step. Stop criterion 2 isn’t
governing, as the initial load multiplier doesn’t degrade (see figure 5.10b) and criterion 3 isn’t governing
as well, as the analysis goes up to a displacement of 156.7 mm, where a maximum displacement of
977 mm is allowed.

When the SLA analysis is compared with the analytical rigid block approach and the experimental
capacity curve, a difference becomes clear with respect to the shape of the curve. Where the experi-

(a) (b)

Figure 5.11: Eyy at the last step of (a) Model SLA-1 (b) Model NLFEA-1.
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mental curve and analytical rigid block calculation show a reduction of the base shear force, the peak
load of SLA-1 stays constant. The rocking motion of the pier causes this decrease of the load, as
showed in chapter 4, but to model this numerically, geometrical non-linearity should be activated.
This is not possible in combination with SLA yet, therefore no declined curve is observed. Further-
more the way the wall in the experiment fails is different than the way the numerical models fail. In
the experiment a sudden drop of the base shear force occurs due to vertical cracking in the joints and
in the continuum elements. In the numerical models using SLA, the analyses are forced to stop as
soon as one of the stop criteria is met and no vertical crack is observed. In the models using NLFEA,
the analyses terminate due to non-convergence issues and also here no vertical cracks occur.

Also NLFEA-1 stopped due to non-convergence issues before the wall collapsed. The statement
that the wall hasn’t failed yet is based on figure 5.11b, where the strains in y-direction are displayed.
The colours correspond with the colours in the material laws (figure 5.2), where red indicates a
completely cracked state of the material. The bottom right element and the top left elements still
have capacity left, as they didn’t reached the fully cracked or completely crushed state and therefore
the wall is not collapsed yet.

Figure 5.12: Consequence of displacement compatibility in smeared cracking concept. Strain of inclined crack at
element 2 induces locked-in stress at element 1 (Rots and Blaauwendraad, 1989)

A clear difference can be observed in the FU-curves between NLFEA and SLA: analysis NLFEA-1
shows over-stiff results, whereas SLA-1 corresponds with the experimental and analytical results with
respect to the peak load. The over-stiff response is caused by a well-known problem that comes with
NLFEA: shear locking. This plays an important role especially when the shear retention factor β is
too high. Rots and Blaauwendraad (1989) explain how shear locking does arise and it is illustrated
in figure 5.12. Element 2 is subjected to tensile straining and due to displacement continuity, element
1 is strained as well, which leads to additional shear stresses. To overcome this problem, a value of
β = 10−6 is used and the capacity curves are plotted in figure 5.13. In the left figure the complete
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Figure 5.13: Force-displacement diagrams for different values of β (a) Complete curve (b) Zoom-in close to the peak
load
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capacity curve is shown, whereas on the right, a zoom-in is plotted to get a better look at the differences
between the analyses. Indeed a β close to zero solves the shear locking problem, as the NLFEA-2
analysis doesn’t give over-stiff results. To illustrate why shear locking causes an over-stiff response,
the shear stresses at the bottom of the wall are plotted in the figure below at two different moments of
the analyses. The first moment is when the top of the wall is displaced 0.6 mm. At that moment most
elements of the wall are still in their linear elastic state, only the first two elements at the bottom
left are damaged in tension, meaning that a crack is initiated. In figure 5.14c the shear stress at the
bottom of the wall are plotted, corresponding to damaged state in figure 5.14a. No shear stresses are
visible for the cracked elements, whereas there are shear stresses visible for the uncracked elements.
At this deformed state of the wall (u=0.6 mm), the shear stresses are equal for every analysis. In
figure 5.14b the damaged state is drawn for the situation where the top of the wall has a horizontal
displacement of 4.5 mm. At that moment, the crack is fully developed up to the last bottom right
element (which is marked by a dashed line in figure 5.14d). Here the issue of shear locking becomes
clear. For the complete damaged elements, a zero shear force is expected as a material is not able
to transfer shear forces as soon as the material is fully cracked. However, in case of NLFEA-1 still
some shear forces for the fully cracked elements remain, because the shear stiffness is kept constant
throughout the whole analyses (Gns = βG). As the horizontal force is equal to the integral of the
shear stresses, these extra shear stresses causes an over-stiff response.

The explanation for the fact that shear locking doesn’t happen for the completely cracked elements
with Sequentially Linear Analysis, can be found in the code. Applying the last damage increment
differs from the regular damage algorithm as the last branch from the sawtooth law has a very small
normal stiffness, 10−6E0 and shear stiffness, 10−6G0 (not equal to zero as SLA cannot deal with zero
stiffness and strength (Van de Graaf, 2017)), to simulate a complete damaged material. Thus, for
the fully cracked situation in figure 5.14b and figure 5.14d the shear stiffness is reduced to 10−6G0,
resulting in almost zero additional shear stresses at the bottom.
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5.3.3 Poisson’s ratio
The second parameter subjected to the variation study is the Poisson’s ratio. The analytical calcula-
tions in chapter 4, the experimental results and the numerical models in previous subsection showed
that failure mainly occurs at the top and bottom of the wall. As the Poisson’s ratio influences the
direction of the principal stresses, especially at the bottom, it is important to look at the effect of the
Poisson’s ratio on the failure mode. Figure 5.15 illustrates how the Poisson’s ratio effects the direction
of the principal stresses.

Figure 5.15: Influence of Poisson’s ratio on principal stresses.

In case of a non-zero Poisson’s ratio the wall tends to expand sideways due to the overburden load and
self-weight. However, in the numerical model the bottom nodes are fully constrained. This leads to
additional shear stresses at the bottom, that cause rotation of the principal directions. These principal
directions are important as they determine the direction at which the integration point will fail in the
numerical analyses. The Poisson’s ratio of the masonry is assumed to be 0.21. Furthermore β = 10−6

is applied to avoid the shear locking problems in case of NLFEA.
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Figure 5.16: Force-displacement diagrams for ν = 0.12 (a) Complete FU-curve (b) Zoom-in close to peak load.

A clear difference can be observed in figure 5.16a between NLFEA and SLA: analysis SLA-2 is
way more ductile and simulates the experimental results better compared to NLFEA-2. However,
special attention should be given to the way both types of analyses deal with damaged integration
points. The material law of undamaged integration points is equal for both NLFEA and SLA and is
as follows:
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Where G0 = E0

2(1 + v0) .

This material law changes as soon as the integration point exceeds the tensile or compressive strength
and differences arise between NLFEA and SLA: for NLFEA the Poisson’s ratio is damaged based, in
other words, the Poisson’s ratio decreases at the same rate as the Young’s modulus. The material law
becomes: 
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Where E_ _ and v_ _ refer to the damaged Young’s modulus and Poisson’s ratio respectively.
However, in the current SLA code the Poisson’s ratio abruptly drops to 0 as soon as the integration
point is damaged for the first time:
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Due to this difference in the implementation of the Poisson’s ratio, the comparison between NLFEA
and SLA is not valid. At the time of writing this thesis the SLA implementation in DIANA is still
under development and the use of the damaged-based Poisson’s ratio is currently getting tested.

To still be able to compare these different types of analyses the initial Poisson’s ratio (ν0) is set to
0 for both numerical methods to elude the effect of different damage strategies between the methods.
Figure 5.17a illustrates the capacity curves of analysis SLA-3 and NLFEA-3 where v = 0 and β = 10−6

and a few observations can be made. First, it turns out that the Poisson’s ratio has a big influence
on the ductility of the wall. This becomes clear when the capacity curves, using a non-zero Poisson’s
ratio, are compared with the capacity curves where a zero Poisson’s ratio is used. SLA-3 reaches a
displacement which is twice as much compared to the displacement of SLA-2. Second, whereas in
model SLA-2 the second stop criterion is governing (decrease of λini), in model SLA-3 the first one
is governing (exceedance of number of sawteeth (in tension)). Third, the difference between NLFEA
and SLA with respect to the horizontal displacement at the top of the wall is most severe in case of
a zero Poisson’s ratio: model NLFEA-3 runs into non-convergence problems relatively soon whereas
model SLA-3 is able to reach a displacement of 153 mm.
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Figure 5.17: Force-displacement diagrams for ν = 0 (a) Complete FU-curve (b) Zoom-in close to peak load.
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Besides the base shear stresses and thus the base shear force, also normal stresses are analysed
at the bottom of the wall, which gives information about the tensile and compressive stress. Figure
5.18a demonstrates the normal stresses at the bottom of the wall when u = 4.5 mm. Again, the fully
cracked elements (up to the dashed line) can be identified as the normal stresses are close to zero. The
uncracked elements (at the right of the dashed line) are loaded in compression. The input compressive
strength was 10 MPa and indeed this strength isn’t exceeding, according to figure 5.18a. Figure 5.18b
shows the strain in normal direction and no remarkable differences are observed, meaning that the
crack widths for all analyses are almost equal.
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Figure 5.18: (a) σyy for u=4.5 mm (b) εyy for u=4.5 mm

5.3.4 Crack model
Up to now the ’fixed smeared crack model’ is applied for the Sequentially Linear Analysis and the
Non-linear Finite Element Analysis. With this approach, the crack direction in the integration point
is fixed as soon as the stress in the integration point exceeds the tensile or compressive strength. This
approach fits nature as in real life a crack also has a fixed crack plane. However, there is a constant
shear retention β that, after cracking, is responsible for rotation of the principal stresses, which means
a misalignment between the principal stresses and the principal strains (Rots and Blaauwendraad,
1989). Another approach is the ’rotating smeared crack concept’. This approach has a unique shear
term that enforces co-axiality between the principal strains and principal stresses. Another difference
with the fixed smeared crack model is that it doesn’t need to keep permanent track of the damage
orientation. This implies that inactive defects from previous stage of loading cannot be re-activated,
which could have consequences in case non-proportional loading (Rots and Blaauwendraad, 1989).

To investigate the effect of the type of crack model on the capacity of the shear wall, two variations
are imposed, the first one (model NLFEA-4) involves the rotating smeared crack concept. The second
one (model NLFEA-5) is based on the fixed smeared crack approach but has a damaged based shear
retention factor (β) instead of a constant based shear retention factor. In other words, β decreases
with the same rate as the Young’s modulus. As SLA is based on the fixed crack approach and the
damage based shear retention factor is not available in SLA yet, the variation study in the subsection
only applies to NLFEA.

In figure 5.19 it becomes clear that the analysis NLFEA-5 (β = damage based) already terminates
when a displacement of u=2.8mm is reached. It is assumed that non-convergence plays a role in this
model. The rotating crack model, NLFEA-4, however does lead to sufficient deformation capacity as
a displacement of 40.30 mm is reached. In figure 5.20 the shear stress at the bottom of the wall are
analysed. At that moment the top of the wall is displaced only u=2.8 mm, because analysis NLFEA-5
doesn’t go any further. Again, it can be observed that the crack is not fully developed yet as the crack
goes up to x=0.8 mm (see dashed line). The cracked element can again be identified as the shear
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Figure 5.19: Force-displacement diagrams for different crack models (a) Complete FU-curve (b) Zoom-in close to peak
load.

stresses are (close to) zero. As a reference, results from model SLA-1 with a constant shear retention
factor (β = 0.01) are plotted as well. Whereas NLFEA-1 shows shear locking, models NLFEA-4 and
NLFEA-5 with a rotating crack model and a fixed crack model with a damaged based shear retention
factor respectively, don’t suffer from these shear locking problems. Model SLA-1, which does have the
same (constant) retention factor as NLFEA-1, corresponds very well with NLFEA-4 and NLFEA-5
with respect to the shear stresses. The reason why SLA doesn’t come with shear locking is explained
in the previous subsection: the last sawtooth law has a stiffness close to zero, which prevents having
remaining shear stresses.
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5.4 Shell elements
In this subsection, the plane stress elements are replaced by shell elements. The difference with
plane stress elements is the fact that shell elements do allow out-of-plane deformations. There are 40
degrees of freedom instead of 16, because the nodes also have out-of-plane rotational and translational
degrees of freedom. Furthermore, there are at least 3 integration points over the thickness instead of
1. The thickness integration scheme used, is the (default) 3-point Simpson integration scheme. As
the variation studies in previous subsection showed shear locking for NLFEA if the shear retention
factor is equal to 0.01, in this section a shear retention factor β = 10−6 is applied for both SLA and
NLFEA.
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Figure 5.21: (a) Force-displacement graph (b) Initial load multiplier graph (λini).

Table 5.7: Events per load step.

Load step Event
3439 Maximum displacement is reached
3482 Displacement is about to become negative
3918 λini is not able to return back to 1
4721 Number of damage increments exceeds number of sawteeth in tension

The capacity curve of the Sequentially Linear Analysis is plotted in figure 5.21a. To decide on the
last step of the analysis, the results are analysed based on the stop criteria defined in section 5.3.1. The
first stop criterion states that a step is assumed to be the last one as soon as the number of damage
increments exceeds the number of sawteeth. This happens at step 4721. However, the displacement of
the pier becomes negative before that step already. Applying a positive force and obtaining a negative
displacement is physically not possible and therefore this stop criterion is disregarded. The second
stop criterion states that a step is assumed to be the last one as soon as the initial load multiplier
(λini) corresponding to this step is not able to return back to 1. In this model, this happens at step
3918, however, also this step comes with a negative displacement. Therefore, also this stop criterion
is disregarded. The third one is governing as soon as the displacement is more than 977, which is not
the case, thus also the last stop criterion is not governing.

Apparently, the predefined stop criteria are not sufficient for this model and for now step 3482 (red
dot) is assumed to be the last step, because that step is the last one before negative displacements
occur. The possible reason why none of these stop criteria are sufficient, becomes clear in figure 5.22.
Here the strains in y-direction are plotted for every thickness layer. In figure 5.22c no damage at the
bottom is observed, whereas the bottom in the other two layers is damaged. This means, the wall
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(a) Eyy layer 1 (b) Eyy layer 2 (c) Eyy layer 3

Figure 5.22: εyy at step 3400: (a) Layer 1 (b) Layer 2 (c) Layer 3

behaves in a asymmetric manner with respect to the thickness, which leads to out-of-plane behaviour
of the pier. To apply a damage increment, the algorithm has to pick one integration point, even
though the 3 integration point over the thickness should fail at the same time in case of in-plane
loading. At some point, one of the outer integration points is the critical one and the stiffness of that
integration point is reduced, resulting in a asymmetric wall. In other words, one layer has a different
stiffness and strength than the other layers. Even though the maximum displacement in z-direction
is only 4.9 mm at step 3331, this is still 14.4 % of the total horizontal displacement at the top of the
pier, which is 34.0 mm.

In figure 5.24 the comparison between plane stress elements and shell elements is made, where in
figure 5.24a the comparison is related to SLA and in 5.24b related to NLFEA. For SLA the difference
between the capacity curve for plane stress elements and shell elements is significant. The model
with plane stress elements simulates the experimental curve well with respect to peak load and total
displacement, but the model with shell elements only reaches half of that displacement. This can
be attributed to the out-of-plane behaviour of the wall. To verify this statement again a model is
built with shell elements, however all nodes are fixed in out-of-plane direction (see appendix). These

(a)
(b)

Figure 5.23: Out-of-plane displacement (a) SLA at step 3331 (b) NLFEA at every step
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results showed no out-of-plane behaviour and the capacity curve corresponds with the capacity curve
of the model with plane stress elements. Besides, the stop criteria were sufficient and the second stop
criterion was governing.

Another difference between the use of plane stress elements and shell elements is related to the
calculation time. In case of shell elements the calculation time was about 14 times longer compared
to the model with plane stress elements. Using shell elements means extra integration points over
the thickness. Each step within the analysis takes more time, because the λini has to be calculated
for more integration points and the total required steps is more, since more integration points gets
damaged.

With respect to NLFEA the results of the model with plane stress elements and shell elements
are identical as the capacity curves overlap. This observation can also be supported by figure 5.23b:
there’s no out-of-plane displacement, meaning that the shell elements behaved similar as plane stress
elements, where no out-of-plane behaviour is possible.
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5.5 Conclusions
In this chapter the shear wall was modelled using the smeared crack approach. First, stop criteria were
defined, where after the influence of different parameters was investigated. The following conclusions
can be drawn from this chapter:

General

• When the current SLA implementation in Diana 10.2 is used, adequate stop criteria are required,
until the errors in the code are found and corrected. Without the stop criteria, analyses could
pick an integration point as the critical one infinite times, whereby the analyses runs indefinitely.
The stop criteria also prevented negative displacements in case of a positive applied force on top
of the shear wall, which is physically impossible.

• The initial value for the Poisson’s ratio influenced the ductility of the pier, but a damage-
based Poisson’s ratio should be implemented in the SLA code in order to correctly compare the
influence of the Poisson’s ratio on the capacity of the wall, between SLA and NLFEA as the
damage strategies for the Poisson’s ratio differ.

Numerical models versus experiment

• The numerical models are able to reproduce the crack pattern in the experiment until total
collapse. In the experiment a vertical crack did arise suddenly, which resulted in a drop of the
base shear force capacity. In the numerical models this phenomenon is not observed and the
analyses don’t stop due to a sudden drop of the base shear force, but due to non-convergence
issues in case of NLFEA and due to the defined stop criteria in case of SLA.

NLFEA versus SLA

• Shear locking occurred for NLFEA when β is too high (β = 0.01). A solution would be to use
a β close to zero (β = 10−6) or to use the rotating crack approach instead of the fixed crack
approach.

• SLA doesn’t encounter shear locking issues (even though the code is currently based on the fixed
crack approach), due to last branch in the sawtooth law, which has a β of 10−6. It is a good
alternative for NLFEA when it comes to obtaining numerically stable results. Whereas NLFEA
mainly found converged solutions using the rotating crack approach or using the fixed crack
approach with a β close to zero, SLA found stable solutions regardless of the β-factor being
used.

Plane stress elements versus shell elements

• The stop criteria are not sufficient for the model with shell elements. This can most likely
be attributed to the out-of-plane behaviour, which occurred even though the wall was loaded
in-plane.

• The use of shell elements significantly increases the calculation time. Shell elements have multiple
integration points with respect to the thickness and as only one integration point per analysis
step gets damaged, the total analysis takes more time.

• The use of shell elements reduces the deformation capacity as the maximum displacement de-
creased by 50% when the plane stress elements were replaced by shell elements.



6. Shear wall: discrete crack
approach

This chapter will elaborate on the discrete crack approach, also known as the meso-modelling approach
and the chapter is divided into three sections. The first section explains how the numerical model
is built. The model differs from the model with the macro-modelling approach, because interface
elements are used to account for the mortar between the CaSi-elements. Plane stress elements in
combination with interface elements are applied in section 2. As explained in previous chapters, plane
stress elements are sufficient to model in-plane behaviour. However, if this in-plane component is part
of a 3D configuration, mostly shell elements are used. Section 3 focusses on the application of shell
elements in combination with interface elements. The chapter ends with a conclusion in section 4.

6.1 Finite element model
6.1.1 FEM model and material properties
The numerical model of the TUD_COMP − 24 experiment using the meso-modelling approach is
illustrated in figure 6.1a. The dimensions are equal to the model in previous section: the width is
0.977 m, the height is 2.744 m, the thickness is 0.1 m and the overburden load is 0.6 MPa. With the
meso-modelling approach a distinction is made between mortar and bricks. The parameters used for
these materials are listed in table 6.1 and table 6.2. These values are based on Nederlands Normalisatie
Instituut (2017), Esposito and Ravenshorst (2017) and Ng’andu (2006).

Table 6.1: Properties CaSi-bricks for meso-modelling approach

CaSi-bricks (unit)
Elasticity ρ = 1824 kg/m3 E0 = 8800 MPa ν = 0.21
Tensile failure ft = 4.0 MPa Gft = 4000 J/m2

Compressive failure fc = 10 MPa Gfc = 20000 J/m2

Sawtooth parameters β = 0.01 pfac = 0.1

Table 6.2: Properties interface elements for meso-modelling approach

Mortar (interface element)
Elasticity kn = 867 N/mm3 kt = 361 N/mm3

Tensile failure ft = 0.4 MPa εult = 0.00010692
Compressive failure Linear elastic
Sawtooth parameters β = 0.01 pfac = 0.1
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(a) (b)

Figure 6.1: (a) Model with meso-modelling approach (b) Top: detail of pier. Bottom: detail of the numerical model.

An important remark about the material properties has to be made: the current SLA code for
interface elements doesn’t contain a Coulomb Friction model yet. Furthermore, the discrete crack
model for the interfaces only contains tensile failure. Compressive failure in the interface elements
would require a corresponding constitutive model which is not a feature in SLA yet. Compressive
non-linearity is therefore only provided in the continuum elements. Thus, this model contains both
discrete cracking (in the interface elements) and smeared cracking and crushing (in the continuum
elements).

In the model again eight-node quadratic elements with a mesh size of approximately 0.1x0.08 m2

are applied. In case of the plane stress elements the elements type is again CQ16M and in case of
shell elements the element type is CQ40S (see section 2.4.2 for the element descriptions). Similar

Figure 6.2: Left: compatible elements in a 2D configuration. Right: compatible elements in a 3D configuration
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to the macro-modelling approach, the integration scheme is the 2x2 Gauss integration scheme for
both plane stress elements and shell elements. The type of interface elements being used depends on
the adjacent continuum elements. The interface element which is combined with quadrilateral plane
stress elements is the CL12I element (see figure 6.2). All 6 nodes of this element have a translational
degree of freedom in x- and y-direction. The interface elements which is connected to a curved shell
element, is the CL24I interface elements. Each node has three translational degrees of freedom and
1 rotational degree of freedom. Similar to the curved shell element, this interface element also has
integration points over the thickness and a 3-point Simpson integration scheme is used as well.

6.1.2 Properties and stop criteria SLA
With the distinction between mortar and bricks, new sawtooth laws have to be defined, based on
the material properties. With a p-factor of 0.1, the fracture energy, compressive strength and tensile
strength given in table 6.1 and table 6.2, the sawtooth laws for the continuum elements contain 20
sawteeth in compression and in tension. The sawtooth law for the interface element contains 28 saw-
teeth in tension and has linear elastic properties in case of compression. The new stop criteria are
similar to the ones defined in chapter 5.

A step of an analysis is the last one as soon as:

1. The number of damage increments exceeds the number of sawteeth for any integration point
in the model. For the interface elements this means an exceedance of 28 damage increments in
tension. For the continuum elements this means either:

(a) 20 x tension + 20 x tension = 40 damage increments in tension, or
(b) 20 x tension + 22 x compression, or
(c) 22 x compression + 22 x compression = 44 damage increments in compression

2. A step of an analysis is the last one as soon as λini is not able to return back to 1.0.
3. The displacement gets bigger than 977 mm.

6.1.3 Properties NLFEA
The additional input with respect to the NLFEA is again related to the convergence criteria and the
iteration scheme. This input is similar to the one in chapter 5: the convergence tolerance is set to
10−4, the Modified NR iteration scheme is used (see section 2.1.3 for non-linear numerical methods)
and the maximum number of iteration steps is set to 250.
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6.2 Plane stress elements
As the numerical model is asymmetric, the results are expected to be different as soon as the horizontal
load is applied in the opposite direction. Therefore in the first subsection the model will be loaded
with the original load and in the second subsection the model is loaded with a horizontal load in
opposite direction.

6.2.1 Original load
With the material properties and sawtooth laws defined in previous subsection, the analysis is com-
pleted and the results of the entire SLA analysis is depicted in figure 6.3a. Again the results are
analysed to find the last step according to the defined stop criteria. In figure 6.4 the damaged integra-
tion points in the upper left corner and in the bottom right corner are shown for three analysis steps.
At step 1440 the damage is located in the interface elements only. We can see the crack developing
as the red dots indicate a fully cracked integration point and the pink dots indicate partially cracked
integration points. At step 1650 some integration points in the continuum elements are damaged as
well. As stated before, the current SLA code is not provided with compressive failure in the interface
elements, therefore the compressive non-linearity is assigned to the continuum elements. At this step
toe crushing is initiated, but the integration points still have some capacity left. However, in this step
the initial load multiplier (λini) starts decreasing and thus stop criterion 2 is met. The results are
analysed even further to observe the damage state if the analysis would continue. In step 1670 at the
top left corner almost all integration points in the interface element are damaged in tension except for
two. As the interface element cannot fail in compression, the continuum elements account this type
of failure, which can be observed from the picture as one continuum element is completely damaged
in compression. Even though this damaged state looks correct, at this step the initial load multiplier
is almost zero, meaning that no pre-compression and self-weight is present in the model, which could
lead to an incorrect stress redistribution. Therefore, step 1650 is assumed to be the last step in the
analysis and it’s marked with a dot in figure 6.3a and 6.3b.

The deformed shape and the interface tractions are depicted in figure 6.5a. The interface element
opens up after the tensile strength is exceeded, which simulate a real crack as a discontinuity in the
model. In figure 6.5b the capacity curve of the SLA analysis is shown together with the capacity curve
of the NLFEA and the one from the experiment and a few observations can be made. First, the results
of both numerical analyses are very similar to the experimental results, contrary to the smeared crack
model in section 5.3. Second, even though a shear retention factor (β) of 0.01 is used, no shear locking
occurred for the NLFEA as we observe no over-stiff response in the force-displacement graph. This
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Figure 6.3: (a) Capacity curve of the complete SLA. The final step is marked with a dot (b) λini The final step is
marked with a dot.
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Figure 6.4: Damage increments at bottom right and top left corner of the wall at step 1440, 1650 and 1670.
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Figure 6.5: (a) Deformed shape (b) Capacity curve of SLA, NLFEA and experiment

can be explained by the fact that the interface elements cause a discontinuity in the model. Figure
5.12 in chapter 5 showed that one element got extra shear stresses, due to displacement continuity
when the adjacent element was subjected to tensile straining. The use of interface elements makes it
possible to separate continuum elements The shear stresses at both sides of the interface/crack are
therefore reduced to zero, which prevents the adjacent elements from stress locking.

In figure 6.6 crushing and crack opening of the elements are compared with those in the experiment.
On the left, the crack opening at the bottom is plotted on the y-axis and the horizontal displacement
at the top of the wall on the x-axis. It becomes clear that the crack opening of the numerical model
corresponds well with the experimental results: the crack opens up as the horizontal top displacement
increases. Crushing of the numerical model, however, differs from the experiment. Whereas the
numerical model shows the expected result, namely more crushing (negative displacement) as the top
displacement increases, the experiment shows a positive displacement at the final two measured points.
This could possibly be explained by the fact that out-of-plane rotation occurred in the experiment,
which caused a misalignment between the wall and the kicker course.
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Figure 6.6: (a) Crack opening at the bottom (b) Crushing at the bottom.
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6.2.2 Reversed load
As a variation of the previous model, the same model is used but a reversed horizontal load is applied.
As the numerical model is asymmetric, differences in the results are expected.

Again the second stop criterion is governing and the FU-curve is plotted in figure 6.7a together
with the results of the previous model. The main difference is the fact that the model with a reversed
load fails at an earlier stage compared to the original model. The probable cause becomes clear in
figure 6.8 where again the damage is illustrated at three different steps of the analysis.
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Figure 6.7: (a) Comparison of capacity curves of the model with a reversed load and the original load (b) Comparison
of capacity curves of the model with a reversed load using SLA and NLFEA.

The first step is again step 1440. Where the original model only showed damage increments in the
horizontal interfaces, this model is slightly damaged in the vertical interface elements in both top
right and bottom left corner. The second step is step 1636 where stop criterion 2 is met: λini starts
degrading and toe crushing of some integration points in the continuum elements has started (marked
in light blue). The third step which is highlighted in figure 6.8 is step 1679: the bottom is completely
damaged as one integration point in the continuum is fully crushed in compression and the adjacent
integration points in the interface elements are fully damaged in tension. However, as stop criterion
2 is met already, steps after 1636 will be disregarded.

Also a non-linear analysis is performed (see figure 6.7b). This analysis doesn’t converge at an
early stage already. As the model doesn’t show physical instability yet, the non-convergence occurs
due to numerical problems. At the last converged step, a displacement of 2.8 mm is reached and
at that stage the first damage increments in the vertical interface element are applied. This could
be a possible explanation for the non-convergence of the non-linear analysis: cracking in the vertical
interface elements gives extra potential crack locations which makes it for the numerical software more
difficult to determine the right equilibrium path.
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Bottom

Step 1636

Bottom

Step  1440

Bottom

Step 1679 

Bottom left corner

Top right corner

Bottom left corner

Top right corner

Bottom left corner

Top right corner

Completely crushed Partly crushed Completely cracked Partly cracked

Figure 6.8: Damage increments at bottom left and top right corner of the wall at step 1440, 1636 and 1679.
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6.3 Shell elements
In order to verify the SLA code for shell elements and to study the influence of the type of element
used, the plane stress elements are replaced by shell elements. Figure 6.9a shows the complete capacity
curve using SLA and figure 6.9b shows the initial load multiplier graph. The second stop criterion is
the governing one, because at step 4844, λini drops from 1 to 0.1.
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Figure 6.9: (a) Capacity curve of the complete SLA analysis. The final step is marked with a dot (b) λini with te
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When the capacity curve of SLA is compared with the curve of NLFEA and a difference can be
observed with respect to the ductility of the shear wall (figure 6.10a). In all previous cases, the models
with a SLA analysis were always able to displace further than the models with a NLFEA analysis.
However in this model the displacement in case of SLA is only 30% of the displacement performing a
NLFEA analysis.

When the results above, using shell elements, are compared with the results from previous chapter,
using plane stress elements, also a difference can be observed with respect to the ductility. In the
previous chapter a reduction of the ductility of 50% was observed when shell elements were used. This
also happens here, but the reduction is approximately 70% (see figure 6.10b). In previous chapter the
cause was found in the fact that SLA has to pick 1 critical integration point at the time, which causes
an asymmetric wall with respect to the thickness. In figure 6.11a the same is observed, however the
maximum out-of-plane behaviour is only 0.06 mm, which is significantly less compared to the maximum
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Figure 6.10: Comparison capacity curve between (a) Type of analysis (b) Type of elements.
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(a) (b)

Figure 6.11: Out-of-plane displacement of SLA at the last step (step 4844) (b) NLFEA at the last step

out-of-plane displacement found in previous chapter for the smeared crack model, which was 5.0 mm.
The out-of-plane displacement for the discrete crack model is zero as soon as all 3 integration points
in thickness direction in the interface elements are damaged. The main out-of-plane behaviour occurs
when damage increments are applied in the continuum element in upper left and bottom right corner.
In contrary to the smeared crack model in previous chapter, the damage of the individual thickness
layers in this model doesn’t vary a lot. The damage in the shell elements in the bottom right corner
only differ slightly (see figure 6.12). For the NLFEA the out-of-plane deformation is again zero for all
analysis steps (see figure 6.11b).

(a) (b) (c)

Figure 6.12: Damage at step 4844: (a) Layer 1 (b) Layer 2 (c) Layer 3
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6.4 Conclusions
In this chapter the wall was modelled using the discrete crack approach. First, the model was exposed
to the original load (applied in positive direction). The capacity curve of both NLFEA and SLA corre-
sponded with the experimental curve. Second, the model was exposed to a load in opposite direction.
Again SLA was able to obtain a capacity curve similar to the experimental one. However NLFEA
didn’t converge in an early state of the analysis. The application of shell elements in this model, re-
sulted again in a reduction of deformation capacity, similar to the smeared crack model. However, the
out-of-plane deformations where only little. The following conclusions can be drawn from this chapter:

Numerical models versus experiment

• The parameters used, give accurate results with the respect the the peak load and ductility of
the wall.

• Similar to the model in chapter 5, this model is able to simulate the crack pattern obtained in
the experiment, until global failure of the wall occurred. Even though the vertical interfaces at
the top and bottom of the wall are partly damaged, no full vertical crack is observed.

NLFEA versus SLA

• SLA can cope with bifurcation problems (the occurrence of multiple crack simultaneously).
Whereas NLFEA didn’t convergence when horizontal as well as vertical cracks occurred, SLA
was able to proceed with the analyses.

Plane stress elements versus shell elements

• The use of shell elements reduces the deformation capacity as the maximum displacement de-
creased by 70% when the plane stress elements were replaced by shell elements.

Discrete crack approach versus smeared crack approach

• Modelling the wall using the discrete crack approach is an effective way to prevent shear locking
problems in a shear wall, due to the use of interface elements that separate the continuum
elements.

• With the parameters used, the numerical model with plane stress elements predicted the de-
formation capacity more precisely compared to the smeared crack approach with plane stress
elements from previous chapter.

• The out-of-plane deformations are reduced from a maximum of 5.0 mm for the smeared crack ap-
proach with shell elements till a maximum of 0.06 mm for the discrete crack approach. However,
even though the out-of-plane deformations are significantly reduced, the maximum horizontal
displacement is still not close to the horizontal displacement, obtained using plane stress ele-
ments. It can be concluded that the reduction of horizontal displacement at the top of the wall
is not proportional to the out-of-plane deformations.





7. Out-of-plane wall: smeared
crack approach

In chapter 3, the experimental results of the out-of-plane component are presented. This chapter will
elaborate on numerical modelling of the wall, using the smeared crack approach, whereas in chapter
8 the discrete crack approach will be applied. The structure of this chapter is as follows. Section 1
addresses the numerical model briefly, because it has similarities with the in-plane shear wall in chapter
5. As the component described in this chapter is loaded out-of-plane, using plane stress elements is
not possible, because plane stress elements assume a Cauchy stress state and they don’t allow out-
of-plane deformations. Therefore, section 2 will present results of the model with shell elements only.
The chapter ends with a short conclusion.

7.1 Finite element model
7.1.1 FEM model and material properties
The numerical model of the TUD_COMP − 28 experiment is illustrated in figure 7.2. The wall has
a width of 1.448 m, a height of 2.725 m, a thickness of 0.12 m and it is pre-loaded with an overburden
load of 0.25 MPa. The material properties used in this model are listed in table 7.1. The table
shows that a shear retention factor of 0.01 is applied. In previous chapters shear locking problems
occurred for models with a smeared crack approach in case of NLFEA. To overcome this problem a
shear retention factor of 10−6 was applied. However, as this is an out-of-plane load case, the in-plane
principal direction will not rotate due to the out-of-plane load. Hence, shear locking is not expected
during the NLFEA analysis. Besides that, a 5-point Simpson integration scheme is used in thickness
direction.

The material properties lead to the sawtooth laws in figure 7.1, where again three stages are
highlighted for both compression and tension. The linear elastic stages are coloured in light blue and
green for compression and tension respectively, the crushing and cracking state are coloured in dark
blue and yellow respectively and the fully crushed and fully cracked state are coloured in pink and
red respectively. These colours will be used later on in the strain-plots of the wall as well, to see how
the material at certain locations of the wall is damaged.

Table 7.1: Properties masonry for smeared crack concept

Masonry (composite)
Elasticity ρ = 1824 kg/m3 E0 = 8800 MPa ν = 0.21
Tensile failure ft = 0.4 MPa Gft = 50 J/m2

Compressive failure fc = 10 MPa Gfc = 20000 J/m2

Sawtooth parameters β = 0.01 pfac = 0.1
Crack model Fixed crack model
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(a) (b)

Figure 7.1: Sawtooth laws (a) Compressive curve (b) Tensile curve.

During the experiment, the intention was to apply clamped-clamped boundary conditions, but the
test set-up wasn’t sufficient to actually realise these boundary conditions as the top was able to rotate
in the out-of-plane direction. For that reason, a hinged boundary condition is applied at the top in the
numerical model. Figure 7.3 shows that the boundary conditions at least have influence on the initial
stiffness of the wall. Using the basic structural mechanics formulas, the Young’s modulus, moment of
inertia and the height of the wall, the initial stiffness can be calculated. It becomes clear that using
a hinged boundary condition results in a stiffness which is twice as less compared to the clamped-
clamped configuration. In the experiment an initial stiffness of 12.3 kN/mm was found, which gives
confidence to apply hinged-clamped boundary conditions.

x

y

(a) (b)

Figure 7.2: (a) Numerical model with the smeared crack approach (b) Top: detail of the actual wall. Bottom: detail
of the numerical model.
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Figure 7.3: Influence of the boundary conditions on the initial stiffness of the wall.

7.1.2 Loading of the wall
In the experiment the load is applied in a displacement-controlled manner, by controlling the out-of-
plane displacement at mid-height of the wall. In the numerical models, the load will be applied in a
force-controlled manner, because of the following reasons:

• SLA has no concept of a "displacement-controlled" way loading. The external load will be
applied in the form of a force, which will be scaled in every step of the analysis. It depends on
the damage status of the whole wall, what the magnitude of the force will be.

• Running a displacement-controlled NLFEA, means that a prescribed deformation has to be
applied. Applying a prescribed deformation distributed over the whole height will be an incorrect
way of modelling the out-of-plane wall, because in that way the wall is forced in a certain shape
already, instead of letting the boundary conditions determine how the final shape of the wall will
be. Another option would be to run a NLFEA with a displacement-controlled load at mid-height
of the wall. However, this will be incorrect too, because it will result in a completely different
initial stiffness of the wall (see figure 7.4). Thus, even though with a displacement-controlled
load it is easier to trace the post-peak behaviour of the wall, a force-controlled load will be
applied using arc-length control.

Figure 7.4: Influence of the type of force on the initial stiffness of the wall.
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7.1.3 Stop criteria SLA
The stop criteria assumed for this model are as follows:

A step of an analysis is the last one as soon as:

1. The number of damage increments exceeds the number of sawteeth for any integration point in
the model. This means either:

(a) 21 x tension + 21 x tension = 42 damage increments in tension, or
(b) 21 x tension + 22 x compression, or
(c) 22 x compression + 22 x compression = 44 damage increments in compression

2. A step of an analysis is the last one as soon as λini is not able to return back to 1.0.
3. The displacement gets bigger than 120 mm (based on the analytical calculations in section 4.2 )

7.2 Shell elements
As plane stress elements don’t allow out-of-plane behaviour, this wall can only be modelled with
shell elements. The force-displacement graph is plotted in figure 7.5a, together with the analytical
expectation and the experimental results. It’s important to note that, in contrary to the previous
chapters, the NLFEA analyses for the out-of-plane wall are allowed to continue, even though the
tolerance criteria weren’t met, because this model had many difficulties converging. It’s also important
to mention that the out-of-plane model is very sensitive with respect to the material characteristics. It
is not the aim of this thesis to reproduce the experimental graph as perfect as possible, because there
are numerous modelling options that influence the results, think of the type of the iteration scheme,
mesh size, material properties, tolerance, load control, integration scheme and number of integration
points in thickness direction.

The numerical curve doesn’t correspond with both the experimental and analytical results and
therefore we took a closer look to be able to understand the reasons for this. Figure 7.5b zooms-in
on the left part of the FU-graph. Besides, the moments of cracking are highlighted in this figure as
well. The aim in the experiment was to have clamped-clamped boundary conditions (see figure 7.6b).
The bending moments at the top and bottom are the highest, therefore cracks are expected to occur
at these locations first. However, as the test set-up was not able to fully constrain the out-of-plane
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Figure 7.5: (a) Complete force displacement graph (b) Zoom-in close to the peak load
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(a) (b)

Figure 7.6: Bending moment diagrams (a) Numerical model, with clamped-hinged boundary conditions (b) Experi-
ment, with the intended clamped-clamped boundary conditions.

rotation at the top, the bending moment at the top is less. Therefore, cracks are formed in the bottom
first, followed by cracks in de middle of the wall and finally cracks in the top occur. It can be observed
that, even though the initial stiffness of both the numerical model and the experiment are equal,
cracks occur at an earlier stage in the experiment and the slope of the curve becomes less steep after
cracking. A possible explanation is that in the experiment, mortar got crushed, which resulted in this
reduction in stiffness.

Also the moments when the first cracks appeared and when hinges were formed in the model are
indicated and numbered from 1 till 4. The top of the wall is modelled as a hinge and therefore the
bending-moment-diagram will look like the one in figure 7.6a. The bending moment in the bottom is
the highest, thus the first crack appeared in the bottom and this indicated with number 1. Number 2
indicates the moment that four out of five layers in the bottom are fully cracked and a hinge is formed.
This moment is also illustrated in figure 7.7a, where the principal strains are plotted. The colours
correspond with figure 7.1 where red indicates the fully cracked elements. A crack in the bottom
can be observed. At moment 3 also elements in the middle of the wall start to crack, where after a
sudden drop in the FU-graph is observed (moment 4). A hinge in the middle is formed, which results
in a release of crack energy. During this drop the wall turns into a mechanism (see figure 7.7b), the
bottom and top half of the wall relax and the out-of-plane rotation is fully localized in the hinges.
After this moment, the rocking-mechanism is "activated" and the FU-curve should follow the dashed
line. However, as geometrical non-linearity is not possible in combination with SLA yet, the curve
will not follow the dashed line, but will stay horizontal. The analysis is only able to simulate the
experimental curve up to the moment where the wall turns into a mechanism.

(a) (b)

Figure 7.7: First principal strain (ε1) (a) at moment 2, where a hinge in the bottom is formed (b) at moment 4, where
a hinge in the middle is formed.
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Figure 7.8a shows again the force-displacement graph, but this time all the steps are marked where
the analysis wasn’t able to converge within the predefined number of iterations. Figure 7.8 shows the
relative out-of-balance forces of these steps and two peaks are highlighted. The two peaks correspond
with moment 1 and moment 4. Apparently the numerical model has difficulties to find equilibrium
between the internal and external forces when the first cracks are formed (moment 1) and when the
wall has turned into a mechanism (moment 4).
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Figure 7.8: (a) Force displacement graph, where moment 1 and moment 4 are highlighted (b) Relative out-of-balance
forces, where moment 1 and moment 4 are highlighted.

The results of SLA are plotted together with the results of NLFEA in the pictures below. One
difference is the calculation time. In case of SLA, the maximum calculation time is proportional to the
number of elements times the number of integration points per element times the number of sawteeth.
In case of NLFEA, the maximum calculation time is proportional to the number of load steps times
the number of iterations per load step. With respect to this model, the SLA analysis took about three
times longer, however with SLA, we saved time in the preparation stage as we didn’t need to search
for the correct iteration scheme, load-control, convergence criteria and number of load steps.

Another difference between NLFEA and SLA is related to the moment at which a mechanism is
formed. The SLA-curve follows the NLFEA very well until the wall turns into a mechanism. Whereas
a sudden drop is observed in case of NLFEA, a snap-back is visible for SLA. Both analyses end with
a horizontal plateau as for both analyses geometrical non-linearity is not activated. For SLA this
horizontal part of the curve continues up to a displacement of 579 mm. However, at that point, two
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Figure 7.9: (a) Force displacement graph (b) Initial load multiplier (λini).
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stop criteria are met already. The first stop criterion (exceedance of number of sawteeth) is met at
step 38207 and the third one (displacement bigger than 120 mm) is met between step 37101 and step
37201. As criterion 3 is met first, this one is governing and the analysis is stopped when a displacement
of 120 mm is reached.

7.3 Conclusions
The following conclusions can be drawn from this chapter:

Numerical models versus experiment

• Geometrical non-linearity is not a possible feature in SLA yet and the slowly decreasing base
shear force, caused by the rocking motion as soon as a mechanism is formed, is therefore not
possible to reproduce. If one is interested in the post-peak behaviour, this should be included
and the lack of this feature is a disadvantage of SLA for now. For the shear wall, the rocking
motion couldn’t be simulated as well, however as the decrease of base shear force capacity is
more severe for the transversal wall, the limitation of not including geometrical non-linearity is
most pronounced for the transversal wall.

• The numerical models are able to simulate the crack pattern in the experiment. Even though
the use of the smeared crack approach leads to a diffuse crack pattern, the locations of the hinges
are correct. Also the order of the hinge formation is correct, however, the moments when these
hinges occur, differ from the experiment.

NLFEA versus SLA

• The advantage of using an inherently stable numerical analysis becomes clear while modelling
the out-of-plane wall as NLFEA had many difficulties converging, whereas SLA overcomes this
problem.

• In case of NLFEA, a well considered decision has to be made between the force-controlled or
displacement-controlled way of loading, in order to find a stable solution. In case of SLA this
decision is not required, which makes that method easier in use.





8. Out-of-plane wall: discrete
crack approach

Whereas previous chapter discussed the out-of-plane wall using a smeared crack approach, this chapter
will elaborate on the discrete crack approach. In the first section the model is briefly explained. In
section 2 shell elements are used in combination with interface elements. Also in this chapter the use
of plane stress elements is not possible. Even though interface elements are used, which could allow
for out-of-plane rotation, still plane stress elements are not possible as they assume a Cauchy stress
state, meaning that the out-of-plane stress should be zero.

8.1 Finite element model
8.1.1 FEM model and material properties
The numerical model is depicted in figure 8.1. A distinction is made between the mortar and the
bricks and the material properties are listed in table 8.2 and 8.1.

72,5

645

2725

551 897

(a) (b)

Figure 8.1: (a) Model with meso-modelling approach (b) Top: detail of wall. Bottom: detail of the numerical model.
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As stated before, the Coulomb Friction model is not available for SLA yet. Shear failure is
incorporated by a constant shear retention factor of 1% (β = 0.01) and like the numerical model in
chapter 6, this model is also a combination of the discrete crack and smeared crack approach. As
the current SLA code only contains tensile failure for the interface elements, the continuum elements
should account for compressive failure. Furthermore, a 5-point Simpson integration scheme is used
for both interface elements and continuum elements.

Table 8.1: Properties CaSi-bricks for meso-modelling approach

CaSi-bricks (unit)
Elasticity ρ = 1824 kg/m3 E0 = 8800 MPa ν = 0.21
Tensile failure ft = 4.0 MPa Gft = 4000 J/m2

Compressive failure fc = 10 MPa Gfc = 20000 J/m2

Sawtooth parameters β = 0.01 pfac = 0.1

Table 8.2: Properties interface elements for meso-modelling approach

Mortar (interface element)
Elasticity kn = 867 N/mm3 kt = 361 N/mm3

Tensile failure ft = 0.2 MPa εult = 0.00010692
Compressive failure Linear elastic
Sawtooth parameters β = 0.01 pfac = 0.1

8.1.2 Stop criteria SLA
Using the material properties listed on the previous page, the number of sawtooth for compression
and tension are defined, leading to the stop criteria below.

A step of an analysis is the last one as soon as:

1. The number of damage increments exceeds the number of sawteeth for any integration point
in the model. For the interface elements this means an exceedance of 35 damage increments in
tension. For the continuum elements this means either:

(a) 20 x tension + 20 x tension = 40 damage increments in tension, or
(b) 20 x tension + 22 x compression, or
(c) 22 x compression + 22 x compression = 44 damage increments in compression

2. A step of an analysis is the last one as soon as λini is not able to return back to 1.0.
3. The displacement gets bigger than 120 mm.
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8.2 Shell elements
Comparing the numerical results with the analytical and experimental results, it can be observed that,
similar to the model in chapter 7, also this model is not as ductile as the experiment and that the
geometrical non-linearity, caused by the rocking motion, is not taken into account.
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Figure 8.2: (a) Complete force displacement graph (b) Zoom-in close to the peak load.

When we take a closer look at the curve (figure 8.2b), the different moments of cracking can be
distinguished. In the previous chapter, where the wall was modelled with a smeared crack approach,
the order in which the hinges were formed was as expected: first a bottom hinge is formed as the
bending moment is highest at that location, followed by a hinge in the middle. In the model here,
the order is the other way around. First a hinge in the middle is formed, where after a hinge in the
bottom is observed. The reason can be found in figure 8.3a. In the model using the smeared crack
approach the strains due to bending were spread over the whole height of the wall. However, in this
model, the strains are lumped in the interface elements as that are the weakest points in the model.
The figure shows that the strains in the middle are the highest, therefore a crack is formed at that
location first.

A second difference with the smeared crack model is that the capacity curve has a clear peak. In
this model the damage in lumped in the interface elements and the crack energy is released from these

(a) (b) (c)

Figure 8.3: (a) Crack openings (b) Interface traction, when a hinge in the middle is formed (c) Interface tractions
when a hinge at the bottom is formed.
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elements only. In the smeared crack model the damage was spread over the whole height of the wall.
All these small cracks contribute to the total crack energy release and the area under the capacity
curve is therefore bigger than the area under the capacity curve in figure 8.2b.

The last main difference between the discrete crack model and the smeared crack model regarding
NLFEA, is the fact that the discrete crack model had no difficulties converging. The model was able
to find equilibrium between the external and internal forces within the predefined maximum number
of iterations. Only when the wall turned into a mechanism, the model couldn’t converge and highly
unrealistic displacements were found.
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Figure 8.4: (a) Force displacement graph of SLA, with the stop criterion marked (b) Force displacement graph of both
NLFEA and SLA

Figure 8.4 shows the results of the model using SLA. To decide on the last step, again the results
are analysed based on the three stop criteria. Stop criterion 1 (exceedance of number of sawteeth)
is met in step 12918. The analysis wants to run infinitely, because one integration point in one of
the interface elements is taken as the critical one and gets a damage increment infinite times. Step
12918 is the step before nt is exceeded. Stop criterion 2 is not met, since lambda equals 1 throughout
the whole analysis. It turns out that stop criterion 3 is the governing one, because in step 12914 the
displacement jumps from 4.97 mm to 174.50 mm and thus the maximum displacement of 120 mm is
exceeded.

The steps at which hinges are formed are marked in figure 8.4b. Also here the middle hinge is
developed first and the bottom hinge second. Even though the shape of the curve is quite similar
compared to the NLFEA, there are some differences. The peak load using SLA is 20.0 kN, compared
to the peak load of 21.6 kN when a NLFEA is performed. Also the post peak behaviour is slightly
different. The exact explanation will be difficult to find, but it is probably a result of the fundamental
difference between SLA and NLFEA: applying damage increments versus load increments.

Also regarding SLA a difference is observed between the smeared crack approach and the discrete
crack approach. The calculation time reduces by a factor of 3 when the wall is modelled with the
discrete crack approach instead of the smeared crack approach. In case of the smeared crack model,
the damage was scattered across the wall, but with the discrete crack model the damage is lumped in
the interface elements, which means that less integration points will be damaged and this reduces the
calculation time and therefore the costs.
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8.3 Conclusions
The following conclusions can be drawn from this chapter:

Numerical models versus experiment

• Similar to the model in chapter 7, this model is not able to exactly reproduce the capacity curve
of the experiment due to the lack of geometrical non-linearity in the SLA code.

• This model is also able to simulate the crack pattern, even though the order in which the hinges
are formed, differ. The reason for this is the use of interface elements, which are the weakest
points in the model and the stress distribution will therefore become different, compared the the
stress distribution in the smeared crack model.

Discrete crack approach versus smeared crack approach

• In case of NLFEA, the discrete crack model is preferred, as this model didn’t have convergence
issues, whereas the smeared crack model did.

• Also in case of SLA the discrete crack model is preferred, because it reduces the calculation
time. The damage is lumped in the interface elements, resulting in less damage increments.





9. Discussion and conclusions

The SLA method is still under development and in this report possibilities and limitations of the
current SLA code were investigated, using two experimental benchmarks: one shear wall and one out-
of-plane loaded wall, both pre-stressed. For these masonry components, two modelling approaches
were applied: the smeared crack model, where the wall exist of one material only, and the discrete
crack model, where a distinction is made between mortar and bricks. Within each approach two finite
element types were used. The new implementation of the SLA code for shell elements is validated by
modelling the shear wall with plane stress elements. The most important comparison, was the one
between NLFEA and SLA in order to see how SLA can improve numerical predictions of the brittle
behaviour of masonry components.

Material law in tension

The test models in section 5.3.1. showed that the SLA code still contains certain flaws and the results
were analysed in detail to isolate the problems. One of these shortcomings was the fact that a few
analyses ran indefinitely. After analysing the damage history of these models, it is found that in case
of tension, the SLA algorithm takes one integration point as the critical one for an infinite number of
times. Even though no damage increment was applied any more, due to the exceedance of the number
of sawteeth in tension, still this integration point was indicated as the critical one. This way no other
integration points were allowed to get damaged and the whole failure process of the numerical models
was hindered. In this thesis stop criteria are defined to temporarily deal with the shortcomings, until
the errors will be found and solved in future work. The first stop criterion stated that the analysis
should stop as soon as the number of damage increments exceeds the number of sawteeth.

It can be concluded that this stop criterion was effective as this was the governing criterion in
several models, meaning that if the stop criterion wasn’t used, these analyses would run indefinitely,
without continuation of the failure process. Now the number of analysis steps could be reduced to the
number of "effective" damage increments and unnecessary calculation time is prevented.

Shear retention factor and shear locking

In this thesis a constant shear retention factor is applied. The results showed an over-stiff response in
case of a NLFEA and the analysis terminated quickly. After evaluating the results of the NLFEA, it
is found that the constant shear retention factor caused extra shear stresses at the bottom of the wall.
The summation of all these shear stresses is equal to the reaction force, which should be equal to the
applied external force to ensure equilibrium of forces. SLA, however, was able to trace the equilibrium
path of the wall without this ’shear locking’ problem. The reason for this is that the last branch in
the sawtooth law has a shear retention factor of approximately zero, whereby no shear stresses remain
after completely cracking of the material. In case of NLFEA, using a rotating crack approach did
solve the problem. This resulted in a capacity curve similar to the one of SLA.

It can be concluded that the prevention of shear locking in a shear wall is an important advantage
of SLA. This way, the capacity of the shear wall will not be overestimated. The numerical model can
predict the peak load accurately, which is important when, in future research, no experimental results
are available to validate numerical models.
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Non-proportional loading

The algorithm for non-proportional loading is more complex than the algorithm for proportional
loading, as a distinction has to be made between the loads, where the variable load has to be scaled
according to the SLA procedure. In this thesis the non-proportional loading case is used as well as
a similar well known NLFEA procedure (the phases analysis) to verify the non-proportional loading
algorithm. The results showed that the SLA algorithm works in a sense that the peak load corresponds
with the peak load of the non-linear phased analyses. However, in a few shear wall models, a negative
displacements is observed, even though the load was applied in positive direction and this is physically
not possible. The moment this happened, the initial load multiplier dropped from 1 to approximately
zero and therefore a second stop criterion is defined to deal with this problem. This criterion stated
that the analysis should stop as soon as the initial load multiplier wouldn’t be able to return back to
1.

Regarding these results, we can conclude that modelling a structure, which is pre-stressed, is pos-
sible with the non-proportional algorithm. Nonetheless, an imperfection is found: the algorithm could
cause spurious results for the shear wall with respect to the capacity curve, because displacements
in the wrong direction are found. The use of the second stop criteria was effective to temporarily
overcome this problem as no negative displacements were observed after applying the stop criterion.

Damage strategy and bifurcation

The fundamental difference between NLFEA and SLA became clear when the shear wall was modelled
with shell elements. The SLA algorithm can only pick one critical integration point per analysis step
and reduces the stiffness of one integration point at the time. The outcome was an asymmetric wall
with respect to the thickness and out-of-plane deformations were observed even though the wall was
loaded in-plane. This led to a reduction of the ductility of at least 50 %. For the discrete crack model
with shell element the reduction of the deformation capacity was similar, however the out-of-plane
deformation was less severe.

Furthermore the calculation time drastically increased (and therefore also the calculation costs),
when shell elements were used for the in-plane loaded shear wall, as shell elements have more integra-
tion points in thickness direction than plane stress elements. Each analysis step takes more time, since
the algorithm has to calculate the load multiplier for more integration points, and the total required
analysis steps increased, since more integration points get damaged. In total the calculation time
increased up to 19 times for both the discrete crack model and the smeared crack model, when the
number of integration points in thickness direction was increased from 1 (for plane stress elements) to
3 (for shell elements). For the NLFEA no difference was observed between the use of shell elements
or plane stress elements.

Also between different crack approaches the difference in calculation time was observed using SLA,
especially for the out-of-plane loaded transversal wall. When this wall was modelled with the smeared
crack approach, the damage was scattered across the whole wall, but with the discrete crack approach,
the damage was lumped in the interface elements. This reduced the calculation time (and therefore
the calculation costs) by a factor of three.

The influence of initial value of Poisson’s ratio on the shear wall was investigated in this research
as well, because it was expected that it would influence the directions of the principal stresses at the
bottom of the wall. As cracks occurred at this location, it would influence the capacity of the wall.
The results showed that the initial value of Poisson’s ratio only influences the ductility of the wall, not
the peak load. However, in the SLA code it is found that SLA and NLFEA apply a different damage
strategy for Poisson’s ratio. For a NLFEA one can choose between a damage-based Poisson’s ratio or
a constant Poisson’s ratio. In the current code for SLA, Poisson’s ratio drops to zero as soon as the
integration point is critical for the first time. As these damage strategies differ, a comparison between
NLFEA and SLA is invalid. Therefore also analyses were conducted with a zero Poisson’s ratio to
elude this difference in damage strategy. The capacity curve showed the fundamental advantage of
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SLA, namely that this analysis is numerically stable, whereas NLFEA didn’t converge in an early
stage of the analysis. The peak loads of both analyses were equal.

From all these results we can conclude that Poisson’s ratio doesn’t influence the peak load, only
the deformation capacity. However, a damage-based Poisson’s ratio should be implemented in the
SLA code in order to compare the influence of a non-zero Poisson’s ratio on the capacity of the wall
correctly. Moreover, the research showed that the type of finite element being used doesn’t make
a difference, when a regular non-linear analysis is conducted. For SLA the use of shell elements in
the shear wall model did influence the results. The deformation capacity of the shear wall cannot
be predicted with shell elements accurately yet and the actual wall in the experiment was able to
deform at least twice as much compared to the numerical model. Besides, unexpected out-of-plane
deformations of the shear wall can occur in the shear wall, modelled according to the smeared crack
approach with 3 integration points in thickness direction. This latter observation could make future
analyses of a complete building more complex, because the algorithm causes unexpected out-of-plane
deformations, which could be misleading in the interpretation phase. Nonetheless, performing a SLA
is a solution to overcome bifurcations (which is a problem for regular non-linear analyses), as the
method is always able to pick a critical integration point.

Lack of geometrical non-linearity

For both masonry components a rocking curve is derived analytically. It showed that the wall can
bear less load as soon as the deformation increases. However, it is not possible to simulate this
with SLA, as geometrical non-linearity is not included in the code yet. For the transversal wall, the
decrease of base shear force is more severe, therefore the limitation (lack of geometrical non-linearity)
is most pronounced for the out-of-plane loaded transversal wall and the post-peak behaviour cannot
be simulated correctly. Then, the numerical model will give an overestimation of the force capacity,
as the base shear force actually decreases as soon as the peak load is reached.

The rocking curve also provided a maximum displacement that the walls can reach. This is used
in the third stop criterion, which stated that the analyses should stop as soon as that displacement is
reached. For the shear wall however, this stop criterion was never governing. Besides, the maximum
displacement was related to shear force equal to 0 kN. As it is not possible to simulate this degrada-
tion, it can be concluded that the third stop criterion was redundant.

Answering the research question

With these conclusions the main research question can be answered. The question was:

To what extent is the Sequentially Linear Analysis method able to predict the behaviour of the two
unreinforced masonry components of the TUD-2 Building, namely the shear wall and the out-of-plane
wall, during a monotonic pushover test?

This question can be answered as follows:

SLA is able to predict the behaviour of the masonry components non-proportionally except for the post-
peak behaviour of the transversal wall and it outperforms NLFEA in the sense that it is inherently
stable and no over-stiff response is observed, while modelling the shear wall with a constant shear
retention factor. In addition, there are less modelling options, which, we think, makes SLA easier in
use and ’bifurcation’ is never a problem, as the algorithm is always able to pick a critical integration
point. However, it also has limitations: the use of shell elements leads to a decrease in deformation
capacity and unintended out-of-plane deformations are observed for the shear wall even though the wall
is only loaded in-plane. Furthermore, a flaw in the current code could result in an analysis that runs
indefinitely. Stop criterion, defined in this thesis, can be used to temporarily deal with these problems.
Lastly, geometrical non-linearity cannot be included in the models yet. This latter limitation is most
pronounced while modelling the out-of-plane wall.





10. Recommendations

In this chapter we will reflect upon the findings and recommendations are provided for future research.

• In this thesis current problems of the SLA code are identified and stop criteria were defined to
deal with the problems temporarily. Nonetheless, the exact cause of the problems should still
be found and solved

• The results in chapter 5 showed that shear locking doesn’t occur in case of SLA, due to the
last branch of the sawtooth law, which has a zero stiffness. It is recommended to implement
a similar drop of the stiffness in regular NLFEA as soon as an integration point is completely
damaged. It is expected that this will help the NLFEA to overcome the shear locking problem.

• Also some recommendations are provided which are related to a future extension of SLA. First,
a damaged based Poisson’s ratio should be implemented. While modelling the out-of-plane
wall, the influence of difference damage strategies between NLFEA and SLA is ignored, as it
is assumed that it will only slightly influence the results. However, to confirm this statement
an extra validation is recommended as soon as the damaged-based Poisson’s ratio is available
in the SLA code. Second, it is recommended to investigate the possibility of allowing multiple
integration points to be critical at the same time. This will speed up the analysis, which is
desired especially when the number of elements and integration points increase.

• This report provided an overview of opportunities and limitations of the SLA method, while
modelling the two main components of the TUD-2 building. The next step would be to model
the complete structure. It is advised to use the discrete crack approach in case of SLA. The main
damage will be lumped in the interface elements, which reduces the calculation time. Besides,
no severe out-of-plane deformation are expected for the components loaded in-plane.
If the decrease in base shear force capacity of the complete building is quite severe, the post-
peak behaviour cannot be predicted. As soon as geometrical non-linearity is included in the
SLA algorithm, only then the complete behaviour can be simulated.
Also attention should be paid when shell elements are applied in combination with SLA. It
causes a decrease in deformation capacity and out-of-plane deformation can occur which might
be misleading in the interpretation stage, as it will not be clear whether the deformations are
part of the structures behaviour or if the deformations are a result of the SLA damage procedure.

• The behaviour of the transversal wall is very sensitive with respect to the material properties. In
this thesis no parameter study is conducted for the out-of-plane wall, as it was not the objective
to find the exact parameters. Still it is recommended to perform such a variation study to
improve the results.
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Appendices

A Shell elements fixed in out-of-plane direction
To check whether the out-of-plane behaviour of shell elements really does influence the results, a
new model is built. This model is also composed of shell elements, but all elements are fixed in
z-direction, meaning that no out-of-plane behaviour can take place (see figure 1). Whereas the plane
stress elements only have 1 integration point, the shell elements have 3 integration points in thickness
direction.

Figure 1: Smeared crack model, fixed in the z-direction

As the capacity curve in figure 2a shows, the difference between the analysis with plane stress
elements and shell elements is almost negligible. For both analyses, the second stop criterion is
governing: the last step is the one where λini isn’t able to return back to 1. The peak load is identical
and also the maximum displacement is very similar, but the model with plane stress elements is
still able to displace a little bit further. The small difference in the capacity curve is expected.
After assigning a damage increment to an integration point, the algorithm has to pick a next critical
integration point. It might be the case that an integration point some where else in the model is
critical instead of an integration point at the same place but in another thickness layer. This could
cause the small difference with respect to the ductility. A possible solution to this, and to the out-of-
plane behaviour of shell elements in case of in-plane loading, might be to allow multiple integration
points to be critical at the same time. In that case, all integration points in thickness direction will be
critical at the same time and no out-of-plane behaviour is expected. To see whether this is a correct
solution, further research needs to be done and the SLA algorithms needs to be modified.

This model proves that the SLA implementation for shell elements works adequately and that the
out-of-plane behaviour of the model with shell elements from section 5.4 causes the low ductility of
the wall.
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Figure 2: Results for shear wall with shell elements, fixed in out-of-plane direction (a) Force-displacement graph (b)
Initial load multiplier λini



 




