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Multilevel Interval Coded Scoring to Assess the
Cardiovascular Status of Sleep Apnea Patients

Using Oxygen Saturation Markers
Margot Deviaene , Member, IEEE, Pascal Borzée, Merel van Gilst,

Johannes van Dijk, Senior Member, IEEE, Sebastiaan Overeem , Bertien Buyse,
Dries Testelmans , Sabine Van Huffel , Fellow, IEEE, and Carolina Varon , Member, IEEE

Abstract—Objective: Studies have shown an increased
cardiovascular risk in obstructive sleep apnea (OSA) pa-
tients. In order to prioritize treatment of high risk pa-
tients, there is a need for improved cardiovascular OSA
phenotyping. This study investigates the use of oxygen
saturation (SpO2) parameters for cardiovascular risk
assessment of OSA patients. To this end, a novel
multilevel interval coded scoring (mICS) algorithm is
proposed. Methods: The study includes SpO2 record-
ings from 1987 overnight polysomnographies, of which
974 are from patients suspected to have OSA, 931
from the general population based Sleep Heart Health
Study and 83 from healthy controls. The minimal
SpO2 value, SpO2 upslope and amplitude ratio of
desaturation over resaturation are extracted for all oxy-
gen desaturations and averaged per patient. These three
SpO2 parameters are used together with patient demo-
graphics to develop a mICS model to predict the proba-
bility that a patient had a cardiovascular condition, or had
already experienced a cardiovascular event, at the time of
the polysomnography. Results: Including the SpO2 param-
eters in the mICS together with age and BMI improves the
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model’s performance by 2.7% and leads to a test area under
the curve (AUC) of 69.5% for the detection of any cardio-
vascular comorbidity. Moreover, an increase in AUC of 5%
was obtained for the detection of cardiovascular events, re-
sulting in an AUC of 93.5%. Conclusions: This study shows
that parameters based on SpO2 and the mICS model are
useful to predict the cardiovascular comorbidity status of
OSA patients. Significance: The proposed model could be
used to assist in prioritizing OSA patients for treatment.

Index Terms—Cardiovascular diseases, clinical decision
support system, obstructive sleep apnea, oximetry, pheno-
typing.

OBSTRUCTIVE sleep apnea (OSA) is the most common
sleep related breathing disorder, characterized by repet-

itive partial or complete cessations of breathing, caused by a
narrowing of the upper airway. These respiratory events often
lead to an oxygen desaturation and/or end with an arousal [1]. Al-
though these arousals enable patients to breathe again, they will
also cause sleep fragmentation, leading to daytime sleepiness.
Moreover, studies have linked these desaturations and arousals,
together with intrathoracic pressure changes, to a long-term
deterioration of the cardiovascular system and the presence
of apnea-associated cardiovascular comorbidities [2]. Timely
diagnosis and treatment of OSA is therefore of great importance
in order to avoid the further development of these cardiovascular
problems. In the study of Marin et al. it was suggested that
continuous positive airway pressure (CPAP) treatment decreases
the risk of cardiovascular morbidity and mortality [3].

According to current guidelines, diagnosis of OSA is mostly
based on an overnight in-hospital polysomnography (PSG)
which is manually scored by a sleep technologist [1]. As such,
the hypnogram and respiratory event annotations are obtained,
and the apnea-hypopnea index (AHI) is computed as the number
of respiratory events divided by the hours of sleep. The diagnosis
of sleep apnea is made when a patient has an AHI of 5 or
higher in combination with symptoms, or an AHI larger than
15, regardless the presence of symptoms [4].

The AHI, however, only counts the number of events, and does
not take into account the type of event, nor the severity of the
event. The event severity could be defined in terms of duration,
degree of oxygen desaturation or presence of an arousal. Another
limitation of the AHI is the lack of discriminative ability, which
was pointed out by the Hypnolaus study [5]. This study observed
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that in the general population up to 50% of middle-aged men had
an AHI larger than 15. Screening this population would thus lead
to over-treatment, since many a-symptomatic subjects with an
AHI larger than 15 might not benefit from CPAP treatment.

Therefore, there is a need to phenotype OSA patients beyond
the AHI. Many different directions have been proposed to tackle
this problem [6]. Studies have for example investigated whether
clinical clusters could be defined based on clinical presentation,
risk factors and comorbidities [7], or whether a differentiation
could be made based on physiological traits causing OSA [8].

This study focused on the detection of OSA patients with an
increased cardiovascular risk, in order to prioritize treatment
for these patients and to avoid the further development of
cardiovascular problems. The use of oxygen saturation (SpO2)
parameters was investigated, since the pulse oximetry signal
can easily be acquired at home, and could thus be used for
pre-hospital screening. Moreover, several studies have shown
that oxygen desaturation severity parameters could be more
predictive than the AHI as cardiovascular risk markers in OSA
patients [9]–[12]. The study by Sommermeyer et al. [13], used
in addition to SpO2, pulse photoplethysmography (PPG) param-
eters, which also had a statistically significant association with
an increased cardiovascular risk. In our previous study [14],
the use of several SpO2 and PPG parameters, extracted around
oxygen desaturations, was investigated for the assessment of
cardiovascular comorbidities in OSA patients. The obtained
parameter set consisted of the most informative parameters,
including 3 SpO2 and 2 PPG parameters. The addition of PPG
parameters, however, did not improve the final cardiovascular
comorbidity model. Therefore, only the SpO2 parameters will
be further investigated in this study.

In order to obtain an interpretable and automated clinical
decision support system, the interval coded scoring (ICS) [15]
model was applied to this problem. Extensions to the ICS model
were proposed in order to enable multilevel learning and to
constrain the final feature scores to be monotonic. Moreover,
statistical tests were used to analyse the differences between
patient groups and the correlations between features. A dataset
of healthy volunteers was added to have a reference of the SpO2

parameter values for subjects without any sleep disorder, nor any
cardiovascular comorbidity. Finally, the predictive capability of
the model was tested on the Sleep Heart Health Study (SHHS)
dataset [16], [17].

I. METHODS

This section is organized as follows. First, the datasets are in-
troduced, then the extraction of oxygen saturation parameters is
presented. After that, the development of the proposed multilevel
ICS model is presented. Next, its application to the assessment
of cardiovascular comorbidities is described together with the
statistical methods used to interpret the results. An overview of
all methods can be found in Fig. 1.

A. Datasets

This study was performed using clinical PSG recordings of
974 subjects suspected to be suffering from sleep apnea, a control

Fig. 1. Overview of the applied methods.

dataset of 83 healthy volunteers and a subset of 931 patients
from the publicly available SHHS dataset [16], [17]. The clinical
dataset (Leuven) was recorded at the sleep laboratory of the
University Hospitals Leuven. The healthy control dataset (H)
was recorded at the Kempenhaeghe Center for Sleep Medicine in
Heeze as part of the HEALTHBED study. These subjects did not
have any sleep disorders, nor any cardiovascular comorbidities.
The inclusion of the Leuven dataset to this study was approved
by the ethical committee of UZ Leuven (S53746, S60319) and
the inclusion of the H dataset was approved by the Kempen-
haeghe ethical committee and by the medical ethical committee
of the Maxima Medical Center Eindhoven (W17.128). Each
subject signed an informed consent. The SHHS dataset contains
PSG recordings of 5793 persons from the general population.
For 2651 of them, also a follow-up PSG is available on average
5 years later, and their cardiovascular disease outcomes were
monitored for up to 15 years. In this study, only the 931 subjects
which had a follow-up PSG, but had no cardiovascular condi-
tions at baseline were selected.

The SpO2 signals were extracted from the overnight PSGs.
These recordings had a length between 4.0 and 14.3 hours with
an average recording length of 8.9 hours. The manually scored
respiratory event annotations and hypnograms were available for
each PSG. Moreover, the cardiovascular status of each patient
was assessed at the time of the PSG. The presence of hyperten-
sion, hyperlipidemia, diabetes, atrial fibrillation and peripheral
arterial disease was determined. This was done based on either
the presence of the condition in the history of the patient, the
patient’s drug use, or the detection of the condition by means of
blood pressure and blood analysis tests. In this study, all these
conditions will be grouped in the cardiovascular “condition”
(cC) category. The patient history was also examined for the
occurrence of more severe cardiovascular “events” (cE), includ-
ing myocardial infarction, heart failure and stroke. Subjects
for whom none of the mentioned cardiovascular conditions
were observed will be considered as “controls” (Ct). For the
SHHS, the cardiovascular status at follow-up was taken as label,
while the SpO2 signals at baseline were investigated, in order to
assess the predictive power of the developed model.

From the Leuven dataset, 50 patients of each of the three
cardiovascular categories were selected as training set (Leuven
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TABLE I
PATIENT DEMOGRAPHICS PER DATASET FOR THE CARDIOVASCULAR

CONTROL (CT), CONDITION (CC) AND EVENT (CE) GROUPS

training) using k-medoids clustering on the age, BMI and gen-
der [18]. The training subjects were selected as the centroids of
the clusters. Using this approach, a training set is selected which
represents better the underlying structure of the dataset in terms
of age, BMI and gender and any bias is avoided. An overview
of the patient demographics for each dataset and cardiovascular
comorbidity category is given in Table I.

B. Oxygen Saturation Parameters

The sampling frequency of the available SpO2 signals ranged
from 1 Hz to 500 Hz, these were all down-sampled to 1 Hz.
Afterwards the signals were pre-processed as described in [19].
Artefacts due to sensor disconnections were detected when the
SpO2 signal dropped below 50%, and were removed. Next, a
moving average filter of 3 seconds was applied to the signal
to remove sharp changes and ripples due to oversampling. All
oxygen desaturations were then detected in this pre-filtered
signal using a derivative filter, as explained in [19].

Next, the three parameters selected in [14], which formed the
optimal parameter set to detect the presence of cardiovascular
comorbidities, were extracted for each of the desaturations.
These parameters are:

a) Minimum SpO2 value: The SpO2 nadir has been shown to
reach lower values for subjects at greater cardiovascular risk, as
can also be seen from the example in Fig. 2 on top.

b) PRSA upslope: Using phase rectified signal averaging
(PRSA) quasi-periodicities can be detected in the SpO2 signal. A
PRSA averaged resaturation (or desaturation) can be computed
and the slope can be extracted from this averaged curve [20].
The method was applied to 5-minute windows around each
oxygen desaturation. First all upward points (anchor points, AP)
were detected as can be seen in the middle plot of Fig. 2, next
segments of 10 seconds around each AP were extracted. These
were then aligned, and the PRSA average was computed from
these segments, as can be seen in the bottom plot of Fig. 2.
In [14], it was shown that OSA patients with a cardiovascular
comorbidity have an increased PRSA upward slope, which can
also be seen from the example in Fig. 2.

c) Amplitude desat/resat: The ratio between the amplitude
of desaturation and the amplitude of resaturation is the last pa-
rameter. This parameter is computed by dividing the percentage
of SpO2 drop by the percentage that the SpO2 increased again

Fig. 2. Comparison of SpO2 parameters between a cardiovascular
control and event patient with similar AHI. On top, the filtered SpO2

signal is plotted, in the middle a 5 minute segment is shown with the
PRSA anchor points indicated by ‘*’. Additionally, a thick gray line shows
the SpO2 baseline in the middle plots. At the bottom, the aligned PRSA
slices are shown for this segment, together with the PRSA averaged
curve in light gray.

after the nadir. An increase in this ratio is seen for patients
with a cardiovascular comorbidity, which points to incomplete
resaturations to baseline. This can be seen in the middle plot of
the example in Fig. 2, where the SpO2 baseline is plotted with
a thick gray line. While the control patient has a stable SpO2

baseline, the event patient has a decreasing SpO2 baseline.
In order to obtain one value per patient, the median parameter

value was taken over all desaturations with an SpO2 drop from
baseline larger than 2%. In [14], the use of oxygen desaturation
thresholds of 2, 3 and 4% were investigated, and the most
discriminative features were obtained with a threshold of 2%.
All desaturations in the recording were taken into account,
independently of the sleep stage. The extracted parameters
were then used to develop a classification model to assess the
cardiovascular status per patient.

C. INTERVAL CODED SCORING

The interval coded scoring model can be used to automatically
develop interpretable risk score models for clinical decision
support systems [15].

1) Standard ICS Model

The algorithm starts by dividing all parameter values in a
number of discrete intervals. An optimization is then applied
to assign a score to each interval of every parameter. Next,
the model is simplified by merging neighbouring intervals with
similar scores using an iterative process. During this process,
irrelevant parameters will be removed. In the end, the total risk
score is obtained by summing the scores of the corresponding
intervals for each relevant parameter. This risk score can then
be linked to the empirical risk of having the studied condition,
in this case an apnea-associated cardiovascular comorbidity.
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In this study, the linear programming ICS model of the ICS
toolbox [15] was used. This model can also use interactions be-
tween two parameters as input. A matrix with discrete intervals
for both parameters is then created. Additionally, an elastic net
parameter pre-selection method is available, which can remove
irrelevant parameters and interactions before computing the
ICS model to reduce computation time [15]. The ICS model
optimization is a balance between model simplification and
performance. The user can define relative area under the receiver
operator characteristics (AUC) cut-off values as hyperparame-
ters to guide the parameter pre-selection and interval merging
steps. Model simplifications which result in a relative decrease
in AUC smaller than these thresholds will be allowed.

2) Multilevel ICS (mICS) Model1

The standard ICS implementation is based on the soft-margin
Support Vector Machine (SVM) classifier optimization [21], but
the maximal margin objective of SVM was replaced by total
variation minimization [15]. This leads to the following linear
programming problem [22]:

min
w̃,b,f ,ε

fT1+ γεT1

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Dw̃ − f ≤ 0

−Dw̃ − f ≤ 0

Y(Z̃w̃ + b) ≥ 1− ε

ε ≥ 0

(1)

In this formulation, w̃ and b represent the coefficients and
the bias of the model, respectively. ε is the vector of slack
variables used for regularization controlled by the regularization
constant γ and 1 = [1; . . .; 1]. Y is a diagonal matrix, where
Yii = yi, with yi the class label of the ith sample. Z̃ contains
the binary transformed data.D is a binary matrix which encodes
the differences between coefficients of adjacent intervals of the
same parameter or parameter interactions, and the vector f will
be forced to be equal to |Dw̃|.

This standard implementation only supports 2-class classifi-
cation, with yi consisting of binary labels. In this study, however,
three cardiovascular severity categories were defined. Since
there is an ordering between the three severity categories, a 3-
class classification is possible by optimizing only two separating
hyperplanes, as can be seen from the toy example in Fig. 3. The
first hyperplane will, in this study, separate the Ct group from
both the cC and cE groups, whereas the second hyperplane will
separate the cE group from the Ct and cC groups. Additionally,
the proposed mICS approach aims to output one final model
which can capture the different levels of severity in the dataset
using the same mICS scores. Therefore, the coefficients w̃ will
be kept the same for both hyperplanes, whereas the bias b will
determine the difference between the two hyperplanes and two
regularization constants γ will be optimized.

1Both the multilevel and monotonicity constraint extension were added to the
ICS toolbox [15] and will be made available upon publication.

Fig. 3. Example of finding the optimal hyperplanes for a multilevel
problem.

These adaptations will result in the following linear program-
ming problem:

min
w̃,b1,b2,f ,ε1,ε2

fT1+ γ1ε1
T1+ γ2ε2

T1

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dw̃ − f ≤ 0

−Dw̃ − f ≤ 0

Y1(Z̃w̃ + b1) ≥ 1− ε1

Y2(Z̃w̃ + b2) ≥ 1− ε2

ε1 ≥ 0

ε2 ≥ 0

(2)

3) mICS Model With Monotonicity Constraint1

In order to ensure monotonicity of the mICS interval scores
per parameter, the constraints of the mICS weight optimization
were adapted.

To impose monotonicity of the coefficients per parameter, the
first two constraints of this problem will be adapted to ensure
that the differences between coefficients always have the right
sign. These constraints then become:{

Dw̃S ≤ 0

−Dw̃S− f = 0
(3)

The new vector S contains −1’s for parameters that have
a positive correlation with an increasing risk, and +1’s if the
parameters are negatively correlated with the risk.

4) Application to Cardiovascular Screening in
OSA Patients

The multilevel ICS model was trained using the Leuven
training subset. The rest of the data was used as independent
test set. The training was performed with and without inclusion
of parameter interaction terms and parameter pre-selection, the
AUC cut-offs for model simplification were varied from 85%
to 97.5%. In order to obtain easy-to-interpret models, the con-
straints of the mICS optimization were adapted to ensure the
monotonicity of interval scores per parameter. mICS models
were trained with different parameter sets including the derived
SpO2 parameters and patient information, such as age, BMI,
gender and AHI. Moreover, an estimation of the AHI based
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Fig. 4. Overview of the extracted SpO2 parameters for the different cardiovascular comorbidity groups (cardiovascular controls (Ct), conditions
(cC) and events (cE)). Statistically significant differences between groups are marked with * p < 0.05.

on automatic processing of the SpO2 signal by the algorithm
provided in [19] was also considered as input parameter for the
mICS model.

The resulting mICS risk scores were then used to classify
the subjects in the cardiovascular comorbidity categories. For
this classification, the optimal mICS thresholds were defined as
the point were the multiplication of sensitivity and specificity
reached its maximum. This optimization was chosen in order to
balance the sensitivity and specificity performance measures, so
that subjects from the positive and negative class have a similar
chance to be correctly classified.

Since the Framingham risk score [23] was available for 843
subjects of the Leuven dataset, the results of the obtained mICS
model were also compared with a classification based on this
risk score.

D. STATISTICAL ANALYSIS

The obtained mICS risk scores and the extracted SpO2 param-
eters were further analysed using statistical tests on the Leuven
dataset. The correlations between the different parameters and
patient demographics were quantified using the Spearman’s rank
correlation coefficient. This analysis was performed in order to
study the influence that the patient demographics have on the
extracted SpO2 parameters.

Moreover, to have an idea about differences between groups of
patients having different cardiovascular conditions the Kruskal-
Wallis test with Bonferroni correction, with α = 0.05, was
performed between the different groups.

Many cC subjects were taking drugs for hypertension, di-
abetes or hyperlipidemia at the time of the PSG. In order to
estimate the influence of these drugs on the extracted SpO2 pa-
rameters, the differences between patients taking and not taking
drugs were analysed, per condition, using the Kruskal-Wallis
test with α = 0.05. For 100 patients of the Leuven dataset, no
information on drug usage was available, these patients were
thus excluded from this analysis.

II. RESULTS

A. Extracted SpO2 Parameters

Boxplots of the SpO2 parameters per dataset and per cardio-
vascular comorbidity group are shown in Fig. 4. For the Leuven
training and test set, the SpO2 parameters follow the expected

trends. Within the SHHS dataset, however, the differences be-
tween the cardiovascular groups are not visible, and most values
are within the range of the Leuven Ct groups. The healthy
population (H) is clearly separated from the clinical datasets and
for all parameters these differences are statistically significant.

The correlation between features was tested using the Spear-
man’s rank correlation coefficient. Only for the min SpO2

parameter a weak correlation with the age was found, with
a correlation coefficient of −0.28. This correlation, however,
dropped when it was computed within each cardiovascular cat-
egory, a value of −0.20 was, for example, found for the cC
group. The BMI, on the other hand, had a weak correlation with
the AHI (0.29) and the three SpO2 parameters; the strongest
correlation was found with the min SpO2 (−0.39). The AHI also
had moderate correlations with the SpO2 parameters, having the
strongest correlation with the PRSA upslope (0.60). Within the
different SpO2 parameters, the strongest correlation occurred
between min SpO2 and PRSA upslope (−0.64).

B. mICS Model

mICS models trained using different subsets of the extracted
parameters and patient demographics were compared. When
interaction terms were included in the model, they were removed
during the model simplification step as they came out irrelevant.
Therefore, further model optimization was performed without
the inclusion of interaction terms. Since only 8 parameters
were considered, the use of parameter pre-selection did not
significantly reduce the computation time, nor increased the
performance, therefore parameter pre-selection was not used.
Different AUC cut-off values for model simplification were
tested, setting this parameter to 97.5% resulted in the best test
set performances.

An overview of the training and test set performances to
classify cC and cE subjects from Ct, on the different datasets
for different subsets of features can be seen in Table II.

When only age is considered, cC and cE subjects can be
detected with an Leuven test AUC of 56.0 % and a sensitivity of
only 17.9 %. If only cE and Ct subjects are considered, an AUCcE

of 74.0 % can be achieved. This model is very simple, since only
two age intervals remained after the optimization procedure.
As a result, patients older than 63 years were classified in the
cardiovascular event group. However, due to the simplicity of the
model, a poor generalization was achieved and no differentiation

Authorized licensed use limited to: TU Delft Library. Downloaded on September 22,2020 at 13:25:03 UTC from IEEE Xplore.  Restrictions apply. 



2844 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 10, OCTOBER 2020

TABLE II
CLASSIFICATION PERFORMANCE OF THE DIFFERENT MICS MODELS AND FRAMINGHAM SCORE FOR THE DETECTION OF CARDIOVASCULAR

COMORBIDITIES (CT VS CC + CE). AUCcC AND AUCcE DEPICT, RESPECTIVELY, THE AUC OF THE SEPARATION BETWEEN
THE CT AND CC CLASSES, AND THE CT AND CE CLASSES

of mICS risk threshold could be observed between the cC and cE
groups. The performance improved when the BMI was added to
the model, an overall Leuven test AUC of 66.8 % was obtained
and the sensitivity increased to 40.7 %.

The model trained only on the SpO2 parameters has some pre-
dictive value with an overall test AUC of 61.1 % and an AUCcE

of 81.7 %. But adding the age to this model gave increases in
performance of, respectively, 4 % and 9.5 %. Adding only the
BMI to the SpO2 parameters did not improve the performance.
The best model performance was obtained when combining the
SpO2 parameters with the age and BMI. In this case, the overall
Leuven test AUC increased to 69.5 % and cE subjects could be
detected with an AUCcE of 93.5 %. Next to AUCcE, Table II
also provides the AUCcC for the classification between cC and
Ct subjects, these are about 20 % lower than AUCcE for the
Leuven test set.

Classifying subjects based on the AHI or the SpO2 based
estimate of the AHI gave poor results, AUCs of, respectively,
51.4 and 52.2 % were obtained. Adding the AHI to the models
mentioned above also did not improve performances. In the last
rows of Table II, the classification results based on the Framing-
ham risk score are presented for the Leuven datasets. An optimal
risk score cut-off value of 12.2 was obtained based on the training
data. With a test AUC of 80.9 %, classification based on the
Framingham score outperforms our proposed model, especially
when focusing on the cC subjects. But the computation of the
Framingham score already includes some of the cardiovascular
conditions; the presence of diabetes is included as well as the
cholesterol and blood pressure levels. Moreover, if the necessary
parameters would be available to compute the Framingham
score, it can be combined with the proposed mICS risk model.
Classification based on the multiplication of the mICS risk score
and the Framingham score resulted in an increase in overall test
AUC to 81.1 % and a AUCcE of 96.9 %.

Table II also includes the performance scores on the SHHS
dataset, a clear drop in sensitivity and AUC can be seen for
the SpO2 based model. This could be expected, since the SpO2

features did not show any differences in Fig. 4.
The final model including SpO2 parameters, age and BMI is

shown in Fig. 5. All three SpO2 parameters came out the mICS

Fig. 5. Resulting mICS model including SpO2 parameters, age and
BMI.

Fig. 6. mICS model risks for the different datasets and cardiovascular
groups; control (Ct), condition (cC) and event (cE).

model optimization as relevant and were included in the final
model.

The resulting mICS risk scores for the different cardiovascular
groups and datasets are shown in Fig. 6. A clear separation can
be seen between the three groups for the Leuven training and
test sets. The Ct, cC and cE groups have, respectively, median
values of 0.29, 0.43–0.57 and 0.70–0.81. For the SHHS dataset
the Ct and cC values lie within similar ranges as the Leuven data,
but the cE group does not have an increased risk with respect to
cC. This lack of increased risk could also be extracted from the
similar AUCcC and AUCcE in Table II. The H group has very
small risk scores, with a median value of 0.07.
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Fig. 7. Confusion matrix of classifying Leuven test subjects using the
mICS model including SpO2 parameters, age and BMI.

The correlation between the mICS risk score and the Framing-
ham risk score was tested. A correlation of 0.66 was obtained,
which was mainly due to the fact that both risk scores highly
depend on the age.

The resulting confusion matrix for 3 class classification on
the Leuven test set is plotted in Fig. 7. Again a clear separation
between the Ct and cE groups is seen, but the cC overlaps with
both groups.

C. Differences Between Cardiovascular Disorders

The obtained mICS risk scores were compared between
the different cardiovascular disorders in order to investigate
whether differences between disorders could be seen. Firstly, the
cardiovascular conditions were compared, 6 groups of patients
were formed: 156 subjects which only had hypertension
were compared with 120 with only hyperlipidemia, 307
which had both hypertension and hyperlipidemia, 95 subjects
which had diabetes amongst other conditions, 17 subjects
with arterial disease and 19 with atrial fibrillation (AF).
Statistically significant differences in mICS risk scores were
found between these groups of patients. The diabetic and AF
patients, on the one hand, had an increased risk correlating to
a statistically significant decrease in min SpO2. The other two
SpO2 parameters also display a tendency towards higher values
for these patients, but these differences were not statistically
significant. Diabetic patients also had a significant increase in
BMI with respect to the other groups, whereas the AF population
had an increased age. The patients with hyperlipidemia, on the
other hand, had a decreased mICS risk, which was caused by
a statistically significant decrease in age. The SpO2 parameters
did not differ between the hyperlipidemia, hypertension and
hyperlipidemia plus hypertension groups. Finally, a tendency
towards an increased risk for the arterial disease group could
be observed, which was caused by an increase in age.

Within the cardiovascular events, 4 groups could be com-
pared: 36 subjects had a myocardial infarction, 19 a heart failure,
15 a stroke and 6 subjects had more than one type of event. No
statistical significant differences could, however, be observed
between these four groups.

D. Influence of Drug Use

The influence of drug use on the mICS risk score model was
assessed by comparing those who did not take cardiovascular

drugs to those with the same disorder, who were taking drugs.
A statistically significant increase in age was found for both
hypertension and hyperlipidemia patients taking drugs. This
increase was also observed for patients suffering from both
disorders which were taking drugs for either disorder. These
age increases resulted in an increased mICS risk. For the hyper-
lipidemia group, no statistically significant differences in SpO2

parameters could be observed between both groups. Subjects
taking anti-hypertensive drugs, however, had a statistically sig-
nificant decrease in minimum SpO2 values, independently of
the fact whether they were taking drugs for hyperlipidemia. This
analysis could not be performed for anti-diabetic drugs, since in
this group many patients were taking multiple types of drugs.

III. DISCUSSION

This study developed an interpretable risk score model to
assess the cardiovascular status of OSA patients based on SpO2

parameters and patient demographics. An extension to the ICS
model was proposed, in which multilevel classification is possi-
ble and monotonicity of the mICS interval scores per parameter
is imposed. These extensions can be used in other applications
including different levels of severity.

The novel SpO2 parameters, proposed by [14] for the assess-
ment of cardiovascular comorbidities in OSA patients, and the
obtained results, were further analysed using statistical tests. A
set of healthy recordings, was added to the analysis in order
to get a reference on how the values of these SpO2 parameters
behave in the general population. The model was also applied to
a subset of the SHHS in order to have an idea on the predictive
capabilities of the mICS model. This section will further discuss
all of the obtained results.

A. SpO2 Parameters and Cardiovascular Comorbidities

The correlation analysis of the SpO2 parameters and the
patient demographics revealed that the minimum SpO2 value
was mainly correlated with the BMI. This relationship also
became clear in the analysis of the different conditions, in
which patients having diabetes had both an increased BMI and
decreased minimum SpO2 values. This relationship between the
BMI and the severity of oxygen desaturation was previously
shown by Peppard et al. [24]. The PRSA upslopes, on the other
hand, were more correlated with the AHI. This relationship can
be expected since the PRSA searches for quasi-periodicities in
the SpO2 signal, and the PRSA averaged curve will be more
pronounced if multiple oxygen desaturations occur within the 5
minute segment under investigation.

The analysis on the influence of drug use showed a statistically
significant decrease in minimum SpO2 for patients taking anti-
hypertensive drugs. This group of patients, however, also had
a non-significant increase in BMI, which could have affected
the minimum SpO2 instead of the drug use, since the BMI is
correlated with the minimum SpO2. Therefore, no conclusive
effects of drug use on the SpO2 parameters, independently
of changes in patient demographics were found in this study.
Another conclusion that came out of this analysis, is that pa-
tients treated for cardiovascular conditions tended to be older.
This is in accordance to the Hypertension and Diabetes Risk
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Screening and Awareness study [25], which observed that older
hypertensive patients tended to be more often diagnosed and
treated than younger hypertensive patients. The severity of the
disorder, measured by blood pressure and blood analysis, could
not be linked to this difference, since these measurements were
only available at the time of the PSG, when patients were already
taking drugs. Therefore, patients on drugs had a lower observed
cardiovascular disease severity.

Studies have shown that OSA patients have more severe oxy-
gen desaturations during rapid eye movement (REM) sleep [26].
The presented results were, however, obtained by averaging the
SpO2 parameters over all desaturations, independent of the sleep
stage. An additional analysis of the influence of sleep stages,
nevertheless, had shown no increase in performance when REM
and non-REM sleep were separated. It is thus not necessary
to differentiate between REM and non-REM desaturations and
no sleep staging is required for the algorithm. Additionally, the
ratio of the number of REM over non-REM events was also not
significantly different between the cardiovascular comorbidity
categories.

B. mICS Model for Cardiovascular
Comorbidity Assessment

The final mICS model obtained an overall Leuven test AUC
of 69.5 % for the differentiation between patients without any
cardiovascular disease Ct and those with a cardiovascular co-
morbidity. Adding the SpO2 parameters gave an improvement
of 2.7 % compared with the model using only age and BMI. For
the detection of cE patients, an improvement in performance
of 5 % was obtained, whereas for the detection of cC patients,
the increase in performance was only 2.6 % in AUCcC. This
improvement in performance might seem limited, but the SpO2

parameters showed a clear correlation with the cardiovascular
comorbity classes for the Leuven dataset in Fig. 4, while only
weak correlations between these parameters and age or BMI
were found. These results indicate that the SpO2 parameters
have an added value compared to the age and BMI. Since the
cardiovascular comorbidity classes are not matched for age and
BMI, the obtained model is highly dependent on those parame-
ters. If these mICS models would be tested on a more balanced
population in terms of age and BMI, the SpO2 parameters might
provide larger increases in performance. From a cardiovascular
prevention view, the focus would ideally go to the youngest
OSA subjects. In this sub-population it is, however, hard to find
subjects with detectable cardiovascular comorbidities.

The age dependency of the model also leads to the fact that,
in general, misclassified Leuven Ct patients were significantly
older than correctly classified Leuven controls. Especially, it
should be noted that subjects older than 69 years and with a BMI
higher than 32.1 have a minimum mICS score of 5, resulting
in a predicted risk of 57%. Therefore, all these subjects were
classified in the cE group. In order to have a better differentiation
within this demographic group, more Ct patients should be
included in this range. On the other hand, the model will always
classify subjects younger than 48 years and with a BMI smaller
than 24.4 in the Ct group. For this age and BMI range, no cE

subjects were available. The performance to classify cE from Ct
subjects was recomputed for all subjects lying outside these two
demographic ranges, an overall Leuven test AUC of 67.2 % was
obtained, with an AUCcE and AUCcC of, respectively, 92.3 and
66.2 %. Also an increase in AHI can be seen for misclassified
controls and they tended to reach lower SpO2 values.

Moreover, when analysing the signals of 7 Ct patients in
the Leuven dataset, a large number of ectopic beats could be
observed in the electrocardiogram signals of these patients.
Although these patients were labeled as cardiovascular controls,
they could already have been far in the development of a cardio-
vascular comorbidity, which was still unknown at the moment
the PSG was recorded. These subjects had mICS risk scores
ranging from 0.12 to 0.70, with a median value of 0.57, while
the Ct group had for this dataset only a median risk of 0.29. An
increased cardiovascular risk could thus already be detected.

In total there were 6 cardiovascular event patients misclassi-
fied, one myocardial infarction patient was classified in the Ct
group. The other five patients were classified in the cC group, two
had a myocardial infarction, two heart failure and one subject
had a stroke.

C. Predictive Power of the Obtained mICS Model

A drawback of the Leuven datasets, is the fact that the patients
only had an assessment of cardiovascular comorbidities at the
time of the PSG. No follow-up information was available, this
means that cardiovascular control patients could have developed
a cardiovascular comorbidity shortly after their PSG, as could
have been the case for the 7 controls with ectopic beats as
discussed above. Therefore, the publicly available Sleep Heart
Health Study (SHHS) was included in this study. This test had an
overall AUC of 67.1 % to predict whether cardiovascular control
subjects were going to develop a cardiovascular comorbidity
or not.

This performance is, however, lower than the one on the
Leuven set. Moreover, when the SpO2 parameters were inves-
tigated, no clear separation for the SHHS groups could be ob-
served. Especially, when looking to the minimum SpO2 parame-
ter, for which the three cardiovascular groups, Ct, cC and cE had
median values of 93 %. This parameter gave the clearest separa-
tion for the Leuven dataset, but for the SHHS it does not provide
any separation. These values are all in the range of the Leuven
Ct groups. This points to the fact that the subjects included in the
SHHS have less severe apnea related oxygen desaturations, and
thus have no increased cardiovascular risk reflected on the SpO2

parameters. This could be due to the fact that the cardiovascular
comorbidity was not present at baseline yet, and that the SpO2

parameters might therefore still be similar between the different
groups. The first cardiovascular event could have occurred up
to 15 years after the PSG which was used to extract the SpO2

parameters. It was tested whether limiting the time between the
PSG and the occurrence of cardiovascular events improved the
results. No significant differences were, however, observed when
only the 24 cE subjects were included which had a cardiovascular
event within 5 years of their baseline PSG.
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It should also be taken into account that the SHHS dataset
contains subjects from the general population, which often did
not have any sleep related complaints. Even when the population
with an AHI larger than 15 is considered, the minimum SpO2

values do not decrease. Moreover, the mean Epworth sleepiness
scale (ESS) [27] is only 7.7 for this subgroup, while only a
score above 10 is considered abnormal. For comparison, the
average ESS for the Leuven dataset is 10.4. Therefore, the
developed cardiovascular comorbidities might be less related
to the sleep apnea events in the SHHS than in the Leuven
population, thus resulting in no abnormal SpO2 parameters.
Additionally, the SHHS subjects are significantly older than
the Leuven population. The average age at baseline was 54.4
years for the controls of the SHHS, which is 10 years older
than in the Leuven dataset. This will further complicate the
differentiation between the cardiovascular groups since studies
suggest that although the overall cardiovascular risk increases
with age, the cardiovascular risk associated with OSA decreases
with age [28]. This decreased association might be explained
by a healthy survivor effect, in which OSA subjects with a
high cardiovascular risk are unlikely to be alive or without any
cardiovascular condition from certain ages on.

These results show that one should be careful with diagnosing
OSA based on AHI alone, in order to avoid over-diagnosis
and over-treatment of patients without complaints that might
not have an increased long-term risk. The proposed parameters
could therefore assist to prioritize treatment for those patients
which have more severe SpO2 features, linked to a higher
cardiovascular risk.

D. Influence of Training Set Selection on
the Performance

The training set was selected based on the age, BMI and
gender of the subjects, it was tested which performances could be
obtained when the selection of training subjects was performed
at random. 10 iterations were run, and the detection AUC on the
Leuven test set ranged from 59.5 to 70.4 %, with an average of
68.8 %. Moreover, for the AUCcE a maximum of 90.1 % was
obtained, while our classifier obtains an AUCcE of 93.5 %. This
shows that the intelligent selection of training samples using
k-medoids clustering increases the performance of the model.
Including subjects from the SHHS in the training set resulted in
a decrease in performance, so this was not considered further.

Moreover, 10-fold cross validation was tested on the Leuven
dataset. Within each fold, an equal amount of Ct, cC and cE
subjects were selected for training using the k-medoids algo-
rithm, in order to ensure class balance. An averaged AUC and
AUCcE of, respectively, 67.0 and 85.8 % were obtained when
using the age, BMI and all SpO2 features. When only taking
into account the age and BMI these performances dropped to
65.1 and 81.5 %. These results have a drop in performance, but
show similar trends when compared to the results presented in
Table II using a fixed test set. Additionally, when using cross
validation slight changes in the model were observed between
different folds. Therefore, the manuscript was focused on the

final ICS model obtained with a fixed training set. If more data
would be available, the cross validation models would become
more stable.

E. Limitations of the Study

One of the drawbacks of the used Leuven dataset is the lack of
patient follow-up, as discussed above. Nevertheless, this dataset
represents the patients that are referred to the sleep lab, which
have OSA-like complaints. This is the most interesting popula-
tion to develop a cardiovascular phenotyping of OSA patients.
Since studies have shown that symptomatic OSA patients have
a higher risk to develop cardiovascular events, when compared
to a general population dataset, as the SHHS, in which subjects
can have a-symptomatic OSA with an AHI larger than 15 and
a cardiovascular problem, but these two problems might be
unrelated [10], [29]. Moreover, future follow-up studies could
also take into account cardiovascular conditions and treatments
that are present at baseline and track if the cardiovascular comor-
bidites worsen. When doing so, the comorbidities and treatments
present at baseline could be added as input to the classification
model.

Despite the large number of recordings that were available
for this study, there was a large gap in patient demographics,
such as age and BMI, between cardiovascular control and event
patients. Patient matching would have greatly impacted the size
of our dataset, and this dataset represents the patient population
that is recorded at the sleep lab in clinical practice. Therefore, it
was decided not to correct for patient demographics, but to take
them into account in the definition of the risk score, in order to
obtain a model that is useful in daily clinical practice. The H
subjects used as reference also differed substantially in age and
BMI from the Leuven datasets.

As future work, the addition of novel PPG features could be
investigated as well as new measurement and artefact detection
techniques to improve the reliability of PPG features. The mICS
model could be compared with other interpretable classification
models as well. Moreover, if more data would be available,
an indepth analysis towards the influences of cardiovascular
diseases and drug use on the risk score could be performed.

The obtained cardiovascular risk model for OSA patients
showed good performances, but should be tested further on
clinical datasets with cardiovascular follow-up, before it can be
used in clinical practice for OSA phenotyping. Since the used
parameters are extracted from the SpO2 signal, which can be
easily acquired at home, multiple night testing could also be
investigated in the future.

IV. CONCLUSION

This study showed that parameters based on SpO2 are of
added value to predict the cardiovascular comorbidity status of
OSA patients. A multilevel interval coded scoring model was
constructed based on age, BMI and these SpO2 parameters.
This model was able to predict whether a subject had any
cardiovascular comorbidity with a test AUC of 69.5 %, and if
(s)he suffered from a cardiovascular event or not with an AUC
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of 93.5 %. The resulting mICS risk scores of cardiovascular
condition patients showed an increased risk, but lower than those
of subjects who experienced a cardiovascular event. This model
could be useful in clinical practice to estimate the cardiovascular
risk of sleep apnea patients, and to do a screening to prioritize
patients for treatment.
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