
Architecture-Driven Integration of Modeling Languages

for the Design of Software-Intensive Systems

Architecture-Driven Integration of Modeling Languages

for the Design of Software-Intensive Systems

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universtiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College van Promoties,

in het openbaar te verdedigen op woensdag 10 maart 2010 om 12:30 uur

door

Michel dos Santos SOARES

Mestre em Ciência da Computação
Universidade Federal de Uberlândia, Uberlândia, Brazil

geboren te Rio de Janeiro, Brazil.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. A. Verbraeck

Copromotor: Dr. J.L.M. Vrancken

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. A. Verbraeck, Technische Universiteit Delft, promotor
Dr. J.L.M. Vrancken, Technische Universiteit Delft, copromotor
Prof.dr. Y-H. Tan, Technische Universiteit Delft,
Prof.dr. F.M.T. Brazier, Technische Universiteit Delft,
Prof.dr. G. Muller, Buskerud University College,
Prof.dr. P. Klint, University of Amsterdam,
Prof.dr. M. Boasson, University of Amsterdam,
Reservelid:
Prof.dr.ir. S.P. Hoogendoorn, Technische Universiteit Delft

Published and distributed by:
Next Generation Infrastructures Foundation
P.O. Box 5015 2600 GA Delft The Netherlands
T: + 31 15 2782564
F: + 31 15 2782563
E-mail: info@nginfra.nl

This research was funded by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. INFSO-ICT-223844,
and by the Next Generation Infrastructures Foundation.

keywords: Software-Intensive Systems, Distributed Real-Time Systems,
Software Architecture, Formal Methods, Road Traffic Management Systems,
Requirements Engineering, Object-Oriented Modeling

ISBN 978-90-79787-24-1

Copyright c©2010 by M.S. Soares
All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage
and retrieval system, without written permission from the author.

Printed in the Netherlands by Gildeprint Drukkerijen BV, Enschede.
E-mail: mics.soares@gmail.com

vi

Acknowledgements

The present thesis is an effort of almost 4 years of work. During this period I
benefited from the support, guidance and encouragement of many people.

First of all I thank God for all support, forgiveness, and for letting me perform
my own choices.

I am indebted to my co-promotor Jos Vrancken. During the period that this
thesis was developed, Jos was both my daily supervisor and roommate. As a
supervisor, I learned a lot, not only about Road Traffic Management Systems
and Software Engineering, but also about doing research. I still remember him
asking those “silly questions”, for which I had no good answers, but helped me
in finding solutions for my research problems. We also had the opportunity
to discuss themes other than our research, such as economy and politics. I am
very grateful for all the freedom in choosing my research topics that he provided
during my research.

I was lucky to have Alexander Verbraeck as my promotor. He accepted to be
my promotor despite I had already performed large parts of my research, and
still manage to help me in creating a coherent thesis. I admire his way to
supervise, not only pointing out problems but also always proposing solutions.
Alexander, thank you for teaching me that I should ask more “why” questions
when doing research.

I would like to thank the group of PhD students supervised by Jos. Yufei and
Dijkstra, keep doing the good work. Mohsen, thank you for our talks and for
always being in a good mood. Yubin, thank you for all the help during my
internship at Trinité, and for the road pictures of Chapter 2. Now the token is
with you guys.

I would like to thank all (former) members of the ICT Section at TBM, including
Harry, Jan, Tineke, Marijn, Jolien, Mark, Jeffrey, Marnix, Bram, Sietse, Anne
Fleur, Yiwei, Jaro, Sam, Luuk, Ralph, Andreas, Martijn, Potchara, Janneke,
Virginia, Jo-Ann and Eveline. Nitesh, thank you for reading my initial chapters
and for your feedback.

Many thanks to all members of my thesis committee for the good discussions

vii

viii Acknowledgements

and for “opening my eyes” to problems in previous versions of the thesis.

I would like to thank all members of the NGI Intelligent Infrastructures sub-
program, in special Zofia, Rudy, Koen, and Behzad.

The employees I met at Trinité provided an excellent environment during my
internship. I could learn a lot about how Road Traffic Management Systems are
designed and implemented in practice. I admire the way systems are developed
at Trinité. Thank you Frank, Marcel Mossink, Marcel Valé, and Ying. And
thanks to all employees who survived my course on Software Architecture and
Modeling Languages and provided all the feedback I needed.

Thanks to all my friends from Brazil and Europe, including Elizângela, who
was also my guide in my first steps in The Netherlands, Stéphane, my Master
supervisor and co-author of one article included in this thesis, and Antonio,
for the discussions about our projects. At TU Delft I had also the pleasure of
working with Joseph Barjis, from the SK Section at TBM, during and after the
supervision of Itamar Sharon.

To all my family a special gratitude. My parents, Ib and Elcia, for all support,
my brother Marcelo and my sister Michele, all my uncles, in special Naldinho,
aunts, and cousins, and my grandpa Arnaldo. I am also grateful for my parents-
in-law, José Antônio and Elza for coming to my thesis defense. A vocês todos
meus sinceros agradecimentos.

Finally, I can never thank enough my wife Táıs. She gave up on her career to
come with me to The Netherlands. Therefore, my dream became our dream.
Táıs, thank you for all the support, encouragement, and love.

Michel dos Santos Soares
Delft, February 2010.

Contents

Acknowledgements vii

1 Introduction 1

1.1 Software Development as an Engineering Discipline 1

1.2 Software-Intensive Systems . 2

1.2.1 Development and Evolving Difficulties 3

1.3 A Motivating Case . 4

1.4 The Importance of Modeling . 6

1.5 Research Objective and Questions 7

1.6 Research Approach . 8

1.6.1 Research Philosophy . 8

1.6.2 Research Strategy . 9

1.6.3 Research Instruments . 10

1.7 Thesis Outline . 12

1.8 Origins of the Chapters . 13

2 Theoretical Background on Software-Intensive Systems 15

2.1 Thesis Scope . 15

2.1.1 Software Requirements . 17

2.1.2 Software Design . 18

2.1.3 Software Engineering Tools and Methods 19

ix

x CONTENTS

2.2 Classification of Software and Systems Engineering languages
and methods . 20

2.2.1 Formal Methods . 20

2.2.2 Object-Oriented Methods 21

2.3 UML and its Profiles . 22

2.3.1 UML . 22

2.3.2 SysML . 23

2.4 The Need for Integration of Modeling Languages 24

2.4.1 Integrating Modeling Languages 25

2.4.2 Integration of UML with other Modeling Languages . . . 25

3 Road ITS: Intelligent Systems Applied to Road Traffic 27

3.1 The Importance and Problems of Road Traffic 27

3.2 Intelligent Transportation Systems 28

3.3 Road Traffic Management Systems 29

3.3.1 Traffic Signals . 30

3.3.2 Ramp Metering Systems 30

3.3.3 Variable Message Signs 32

3.3.4 Variable Speed Limits . 32

3.4 The need of a Systems Engineering Approach to ITS 33

4 User Requirements Modeling of Software-Intensive Systems 35

4.1 Activities of Requirements Engineering 35

4.2 List of Requirements for RTMS 36

4.3 Requirements Modeling Approaches 38

4.4 Desirable Requirements Specification Properties for Software-
Intensive Systems . 40

4.4.1 Must Have Requirements 40

4.4.2 Should Have Requirements 41

4.4.3 Resulting Table . 42

CONTENTS xi

4.5 Proposed Approach . 44

4.6 SysML Requirements Diagram 45

4.7 SysML Requirements Table . 47

4.8 SysML Use Case Diagram . 48

4.9 User Requirements Classification 49

4.10 Extensions to SysML Requirements Diagram and Tables 50

4.10.1 Types of Requirements . 50

4.10.2 Additional Properties . 51

4.10.3 Grouping Requirements 53

4.10.4 Extension to the SysML Table 53

4.11 Case Study: RTMS User Requirements Modeling with SysML . . 54

4.11.1 SysML Requirements diagrams 54

4.11.2 SysML Requirements Tables 54

4.11.3 SysML Use Case diagrams 55

4.11.4 Relationship between Use Cases and SysML Require-
ments Diagram . 56

4.12 Conclusions . 58

5 Architecture for Road Traffic Management Systems 63

5.1 Positioning Multiple Architectures 63

5.2 Architecture for Traffic Control 65

5.3 Requirements for the Distributed Traffic Control Architecture . . 68

5.3.1 DTCA Functional Requirements 68

5.3.2 DTCA Non-Functional Requirements 69

5.4 Distributed Traffic Control Architecture 71

5.5 Case Study: HARS . 72

5.6 Conclusion . 74

6 Software Product Line Architecture for Distributed Real-Time
Systems 77

xii CONTENTS

6.1 The Importance of Software Architecture 77

6.1.1 The 4+1 View Model of Software Architecture 79

6.2 Adding SysML in the 4+1 View Model 80

6.3 Software Product Line Architecture for RTMS 83

6.3.1 Domain Characteristics and Requirements 84

6.3.2 Logical View Architecture for RTMS 85

6.3.3 Implementation View Architecture for RTMS 86

Publish-subscribe middleware layer 88

6.3.4 Process View Architecture for RTMS 90

6.3.5 Deployment View Architecture for RTMS 90

6.4 Case Studies . 91

6.4.1 HARS revisited . 91

6.4.2 Visualization of Junction Measurements 92

Use Case view . 93

Process view . 93

Implementation view . 94

Logical view . 95

Deployment view . 95

6.5 Conclusion . 96

7 Formal Design and Verification of Traffic Signals Control 99

7.1 Modeling of Urban Traffic Signals Control as Discrete Event Sys-
tems . 99

7.1.1 Related Work . 101

7.2 Petri Nets and Extensions . 102

7.2.1 Properties of Petri Nets 104

7.2.2 P-time Petri Nets . 105

7.2.3 Petri Net Components . 107

7.2.4 Petri Net Metamodel . 108

CONTENTS xiii

7.3 Design Strategies using Petri Nets 109

7.3.1 Top-down . 109

7.3.2 Bottom-up . 110

7.4 Modeling Urban Traffic Signals with Petri nets 111

7.4.1 Modeling a Traffic Signal for One Junction 111

7.4.2 Responsive Traffic Signals 113

7.4.3 Modeling a Traffic Signal Control for a Subnetwork with
Two Junctions . 116

7.5 Invariant Analysis . 122

7.5.1 Analysis of a Single Junction 122

7.5.2 Analysis of a Network of Junctions 123

7.6 Scenario Analysis with Linear Logic 124

7.6.1 Linear Logic and Petri nets 124

7.6.2 Linear Logic Proof Tree 125

7.6.3 Analysis of Scenarios . 128

7.7 Conclusion . 132

8 Evaluation 135

8.1 Hypotheses . 135

8.2 Test Design . 136

8.3 Course on Model-Driven Software Engineering 137

8.4 Evaluation . 139

8.4.1 The Questionnaire . 140

8.4.2 Questionnaire Results . 141

8.4.3 Results from the Interviews 146

8.5 Analysis of Findings . 148

9 Epilogue 151

9.1 Research Questions Revisited . 151

9.1.1 Research Question 1 . 151

xiv CONTENTS

9.1.2 Research Question 2 . 152

9.1.3 Research Question 3 . 153

9.2 Final Conclusions and Recommendations 154

9.2.1 Industry as Laboratory 154

9.2.2 Introducing New Technologies 155

9.2.3 Legacy Systems . 155

9.2.4 Software Product Line Architecture 156

9.2.5 Formal Methods . 156

9.3 Future Research . 156

9.3.1 Reengineering Legacy Systems 157

9.3.2 Evaluation of UML and Profiles 157

9.3.3 Software Architecture . 158

9.3.4 Empirical Software Engineering 158

A Visualization of Junction Measurements 181

A.1 List of requirements . 181

A.2 Algorithm specifications . 182

B List of User Requirements for RTMS 185

C Exercises Proposed for the Course at Trinité 193

C.1 Exercise 1 - Use Case diagram 193

C.2 Exercise 2 - Sequence diagram . 194

C.3 Exercise 3 - SysML Requirements diagram 194

C.4 Exercise 4 - Petri nets . 195

C.5 Exercise 5 - Petri nets . 195

Glossary 197

Summary 199

CONTENTS xv

Samenvatting 205

Curriculum Vitae 211

NGInfra PhD Thesis Series on Infrastructures 213

xvi CONTENTS

List of Figures

1.1 Thesis outline . 13

2.1 SWEBOK Knowledge Areas - Part 1 16

2.2 SWEBOK Knowledge Areas - Part 2 17

2.3 UML Structural Diagrams . 23

2.4 UML Behavioral Diagrams . 23

2.5 SysML Diagrams and the relation to UML 24

3.1 Ramp metering schema . 31

3.2 Variable Message Sign . 32

3.3 Variable Speed Limit Signs . 33

4.1 Approach for Modeling User Requirements with SysML 44

4.2 Basic SysML Requirements diagram 45

4.3 Extension to SysML Requirements diagram using the proposed
user requirements classifications 51

4.4 Extension to the SysML Requirements Diagram 53

4.5 Grouping Requirements . 53

4.6 SysML Requirements diagram for Traffic Management Stake-
holders . 55

4.7 SysML Requirements diagram for Traffic Management Center
Stakeholders . 56

4.8 Use Case diagram for Traffic Manager 57

xvii

xviii LIST OF FIGURES

4.9 Use Case diagram for Traffic Management Center 58

4.10 Example of the Refine relationship 58

5.1 Relationship between ITS, Traffic Control, and Software Product
Line Architectures. 65

5.2 Architecture Framework for Traffic Control. 66

5.3 The RTC layer expanded. 67

5.4 SysML Requirements diagram for DTCA 69

5.5 The Belt road around Alkmaar. 73

6.1 The 4+1 View Model of Software Architecture 80

6.2 Junction style . 86

6.3 Logical view and the relationship between control elements . . . 86

6.4 Implementation View of the Software Product Line Architecture 87

6.5 Publish-subscribe middleware scheme 89

6.6 Deployment view . 90

6.7 Table of measurements . 92

6.8 Use Case diagram . 92

6.9 SysML Requirements diagram . 93

6.10 SysML Table . 93

6.11 Activity diagram: General Flow 94

6.12 Implementation view for the Case Study 94

6.13 SysML Block diagram for the Case Study 95

6.14 Class diagram for the Case Study 95

6.15 Sequence diagram for the Case Study 96

6.16 Deployment diagram of the case study 96

7.1 Execution of a Petri net . 104

7.2 P-Time Petri net example . 106

7.3 Petri net Component . 107

LIST OF FIGURES xix

7.4 Petri net metamodel . 108

7.5 Example of top-down design with Petri nets 110

7.6 Example of bottom-up design with Petri nets 110

7.7 Junction with three road sections 112

7.8 Petri net model for the traffic signal 112

7.9 Petri net with the order of transition firing 113

7.10 Junction with two road sections 114

7.11 Actuated controller green phase intervals 114

7.12 First level design for green time extension 115

7.13 Second level design for green time extension 115

7.14 Network of traffic signals . 117

7.15 Subnetwork example . 117

7.16 Context diagram for traffic signals controlling a network of junc-
tions . 118

7.17 System architecture . 119

7.18 Controller and traffic signal components 120

7.19 Controller model for road section I1 120

7.20 Combined Petri nets . 121

7.21 Petri net example for construction of the Linear Logic proof tree 127

7.22 Petri net for scenario analysis . 130

A.1 Activity diagram: Fill Junction Sheet 182

A.2 Activity diagram: Create Visualization 183

xx LIST OF FIGURES

List of Tables

4.1 List of requirements properties and representation techniques . . 43

4.2 A SysML Hierarchy Requirements table 48

4.3 A SysML Requirements Relationship Table 54

4.4 Hierarchy Requirements table - TM4 54

4.5 Hierarchy Requirements table - TM7 56

4.6 Hierarchy Requirements table - TM9 57

4.7 Hierarchy Requirements table - TMC14 57

4.8 Hierarchy Requirements table - TMC15, TMC16 57

4.9 SysML Requirements relationship table for TM 58

4.10 SysML Requirements relationship table for TMC 58

4.11 List of requirements properties and representation techniques . . 60

5.1 Hierarchy Requirements table - F1 DTCA 70

5.2 SysML Tables for DTCA Requirements Relationships 70

6.1 Elements of the Software Architecture 85

7.1 Linear Logic representation of transitions 130

8.1 Perceived usefulness of UML - statements 1 to 5 142

8.2 Perceived ease of use of UML - statements 6 to 11 142

8.3 Perceived usage of UML - statements 12 to 13 142

8.4 Perceived usefulness of SysML - statements 14 to 18 143

xxi

xxii LIST OF TABLES

8.5 Perceived ease of use of SysML - statements 19 to 22 143

8.6 Perceived usage of SysML - statements 23 to 25 144

8.7 Perceived usefulness of Petri nets - statements 26 to 30 144

8.8 Perceived ease of use of Petri nets - statements 31 to 32 145

8.9 Perceived usage of Petri nets - statements 33 to 35 145

8.10 Perceived usefulness of the 4+1 View Model of Architecture -
statements 36 to 39 . 145

8.11 Perceived ease of use of “integration into the 4+1 Architecture”
- statements 40 to 43 . 146

Chapter 1

Introduction

1.1 Software Development as an Engineering Disci-
pline

The importance of software in modern society is increasing because of the ubiq-
uitous use of computers in virtually every human activity. Software helps in
improving productivity and augmenting efficiency in manufacturing and agri-
culture. Banking and financial institutions rely heavily on software in their
daily activities. Software is frequently used to control infrastructures systems
such as electricity, gas, communication lines, road transportation and water
networks, making modern life easier and more comfortable.

The development of software is a difficult, time consuming and complex activity,
in which creativity and rigor have to be balanced. The complexity of develop-
ing, deploying and maintaining software is well-recognized and has been widely
studied (Dijkstra, 1972; Boehm, 1973; Dijkstra, 1979; Brooks, 1987, 1995; Glass,
1999; Berry, 2004; Pressman, 2005; Sommerville, 2007; van Vliet, 2008). Soft-
ware failures have been responsible for financial losses and disasters (Flowers,
1996; Bar-Yam, 2003; Charette, 2005). With the purpose of developing and
maintaining software, a specific engineering discipline was proposed.

The term Software Engineering was probably introduced during a NATO Con-
ference in 1968 (Buxton and Randell, 1970). The conference was a response
to what was recognized as a crisis in software development due to high costs,
late deliveries and poor product quality. The term was both a vision and a
provocation. A vision because it was widely recognized by that time that the
software crisis could only be solved with a disciplined engineering approach to
developing software. A provocation because at that time the average software
development practices were chaotic and could not be called an engineering disci-

1

2 Chapter 1. Introduction

pline. But why should software development be considered engineering (Parnas,
1997)? Engineering is about applying defined techniques, methods, processes,
scientific and mathematical knowledge to the design, construction and imple-
mentation of artifacts such as buildings, bridges, planes, ships and machines
(ABET, 1941). Measuring quality and other characteristics, such as usefulness
and reliability, is possible and desirable not only for the engineering process
but also for the final product. These notions are true for traditional engineer-
ing disciplines, such as Civil Engineering, and should also be true for Software
Engineering (Pressman, 2005; Sommerville, 2007).

A number of principles of Software Engineering were proposed in the literature
(Boehm, 1983; Parnas and Clements, 1986; Brooks, 1987; Bourque et al., 2002;
Wang, 2007). These principles are useful to address the complexity of soft-
ware development. Some of these principles relate directly to software design.
According to (Parnas and Clements, 1986), the complexity of software develop-
ment can be tackled by the divide and conquer strategy (Jackson, 2003), and
techniques such as information hiding, functional decomposition, and modular-
ization. The central idea of modularization is based on the basic assumption
that software can be decomposed into smaller functional pieces during design.
However, deciding how to divide a system into modules (subsystems, compo-
nents) is itself a hard task (Parnas, 1972). Another fundamental principle to
reduce complexity in software development is abstraction, which is concerned
with eliciting essential properties of a set of objects while omitting unnecessary
details of them (Booch et al., 2007). Models and diagrams are key elements to
represent abstract designs of software.

Software Engineering has grown to become a discipline that is concerned with
all aspects of software production, from the early stages of system specifica-
tion to maintaining the system after it has gone into use (see SWEBOK in
Chapter 2). After more than 40 years of creation of the term, there is no
doubt that Software Engineering has made tremendous progress in many as-
pects. Programming languages created since then are more abstract and less
machine-oriented, compilers are faster and more reliable, and methodologies
are more systematic, just to cite a few achievements. Nevertheless, designing,
implementing and deploying large, complex software-intensive systems remains
an unresolved challenge (Broy, 2006; Tiako, 2008; Wirsing et al., 2008).

1.2 Software-Intensive Systems

Software is the general term used to describe not only the programs that are
executed in hardware, but also configuration files and associated documentation
such as requirements and design models (Sommerville, 2007). The collection of

1.2. Software-Intensive Systems 3

software, configuration files, and the associated technical and user documenta-
tion is a software system.

Software-intensive systems (Wirsing and Holzl, 2006; Tiako, 2008; Hinchey
et al., 2008) are large, complex systems in which software is an essential compo-
nent, interacting with other software, systems, devices, actuators, sensors and
with people. Being an essential component, software influences the design, con-
struction, deployment, and evolution of the system as a whole (ANSI/IEEE,
2000). These systems are in widespread use and their impact on society is
still increasing. Developments in engineering software-intensive systems have a
large influence on the gains in productivity and prosperity that society has seen
in recent years (Dedrick et al., 2003). Examples of software-intensive systems
can be found in many sectors, such as manufacturing plants, transportation,
military, telecommunication and health care.

More specifically, the type of software-intensive systems that are investigated
in this thesis are the Distributed Real-Time Systems. The term Real-Time
System usually refers to systems with timing constraints (Gomaa, 2000). Di-
jkstra (1965) recognized that some applications were concurrent in nature, in
which several activities were logically occurring in parallel. In concurrent prob-
lems, there is no way of predicting which system component will provide the
next input, which increases design complexity. Moreover, system components,
such as sensors and actuators, are often geographically distributed in a network
and need to communicate according to specific timing constraints described in
requirements documents.

1.2.1 Development and Evolving Difficulties

The development of software has always been challenging (Wirth, 2008). Soci-
ety’s demands and improved hardware has vastly widened the area of computer
applications (Boehm, 2006). As the focus of software switches from simple
tasks and calculations automatization to modern control systems and systems-
of-systems, the number and type of problems has risen tremendously. It is ex-
pected that future generations of software-intensive systems will become even
more complex, highly distributed, and exhibiting adaptive behavior (Wirsing
and Holzl, 2006).

The increase of hardware capacity in terms of performance and storage came to-
gether with a decrease in prices. As a result, the main cost of a system switched
from hardware to software (Boehm, 1973). One clear example is related to the
difficulties of discovering the problems to be solved and the functionalities to be
implemented in the future system. Any errors introduced during these initial
phases, in which the requirements of the stakeholders are gathered, documented

4 Chapter 1. Introduction

and analyzed, will have a high impact on the final cost of the system (Boehm
and Papaccio, 1988). There is no doubt that measures were taken by researchers
and practitioners in order to understand and decrease development costs, such
as metrics for software (Boehm et al., 2000). However, software development is
still costly and risky (Sommerville, 2007).

A great challenge in modern society is to develop successful software-intensive
systems respecting constraints such as costs and deadlines, and being able to
maintain and evolve these systems (Broy, 2006). This challenge is associated
with another important one: developing practically useful and theoretically
well-founded principles, methods, algorithms and tools for programming and
engineering reliable, secure, cost-effective, and efficient software-intensive sys-
tems throughout their whole life-cycle (Wirsing and Holzl, 2006).

The proper environment in which software-intensive systems act poses great
challenges. Software-intensive systems are frequently used to control critical
infrastructures in which any error, non-conformance or even response delays
may cause enormous financial damage or even jeopardize human life (Vrancken
et al., 2008). These systems must provide high reliability. Depending on the
system, having a correct response but with a small delay can cause a disaster
(Johnson, 2003). As a matter of fact, in many cases the system must provide
correct responses respecting a strict interval.

An interesting fact that can not be overlooked is that systems have to evolve
in order to still be considered useful (Glass, 2006). In fact, software is hardly
developed from scratch. Green field projects, in which software systems are
developed without any constraints imposed by prior work, are rare (Boehm
and Turner, 2003). A combination of existing systems is common, as is the
adaptation in order to add new functionality or change the system to a new
hardware architecture. Thus, systems must be flexible in order to facilitate their
change. Estimates show that more than 75% of software development personnel
in the United States alone work most of the time with maintenance (fixing errors
and dealing with mass updates to aging legacy applications) (Jones, 2006).
Most of the time, legacy systems can not simply be turned-off. These legacy
systems are common in domains such as defense, transportation, air traffic and
banking, and may keep existing for decades (Sommerville, 2007). They are
maintained because it is too risky and too costly to replace them.

1.3 A Motivating Case

Road transportation is an important economic force that faces many problems.
Traffic congestion, environmental pollution and safety are becoming increas-
ingly unaccepted by society. The introduction of new infrastructure is impor-

1.3. A Motivating Case 5

tant but not sufficient (McQueen and McQueen, 1999; PIARC, 1999). Traffic
demand is increasing, while constructing new road infrastructure is limited due
to environmental, social and financial constraints (McDonald et al., 2006). In
order to cope with these challenges, a possible solution is to manage and to
control road traffic by developing Road Traffic Management Systems (RTMS)
(see Chapter 3). RTMS make use of real-time data acquired from the road
network in order to reduce traffic congestion and accidents, and to save energy
and preserve the environment (PIARC, 1999). RTMS are Distributed Real-
Time Systems, which means that all characteristics and difficulties previously
discussed are valid (Vrancken and Soares, 2010). For instance, the complexity
of the integration of information systems in transportation systems requires
a formal statement of the structure of the system, the subsystems, and their
interfaces.

The HARS project was the main motivating case for this thesis. HARS (Het
Alkmaar Regelsysteem, the Alkmaar Control System in Dutch) is a RTMS in-
stalled on the belt road of the Dutch city of Alkmaar. HARS operation is
challenging in the sense that it uses a large system to control complex behavior
(road traffic). The controlled surface includes dozens of actuators and sensors
which are distributed in the network. The development of HARS took 4400
man hours, and further maintenance developments took 3500 man hours, ac-
cording to the company that developed HARS. It is important to note that
actually many software components were reused. Therefore, developing such
system from scratch would take much more time.

From the Software Engineering point of view, the development and maintenance
of HARS was also a challenge due to many factors. The most important ones
are mentioned as follows. First, requirements were frequently changed. The
major reason is that the area of road network control is still largely uncharted
territory (Vrancken and Soares, 2010). Thus, algorithms, techniques and meth-
ods are frequently being developed by traffic engineers. In addition, policies
for transportation are often being changed as well (Eurostat, 2006). Second,
legacy systems such as traffic signals control systems had to be integrated into
the HARS system. These systems were not designed for network-level con-
trol and, due to their legacy properties, are hard to adapt to this new way
of using them (Vrancken and Soares, 2009a). Third, the physical network to
be controlled is constantly changing, with the addition of new sensors, actua-
tors and even extensions of the road network. Whenever the physical network
changes, or a physical component of the system (for instance, a sensor such as
an inductive loop) is damaged and need to be substituted, the system has to
be adapted and reconfigured, which means that flexibility is a concern. And
fourth, the sensors and actuators of the system need to communicate with the
control system by receiving and sending commands. The major difficulty is to
cope with real-time constraints, as these elements are physically distributed in

6 Chapter 1. Introduction

the network.

HARS was installed in 2006 and is currently in operation. A new version has
been developed and is planned to be deployed in the near future. The new
system will have to be maintained for many years to come, and will have to
cooperate with new systems, the same way the current system cooperates with
many legacy systems. This case will return in Chapters 4, 5 and 6.

1.4 The Importance of Modeling

Modeling is fundamental for Software Engineering (Ludewig, 2003; Bézivin,
2005; Booch et al., 2005, 2007). There is a gap between the needs and con-
straints of a software-intensive system, which usually are expressed in natural
language by the stakeholders, and the specifications needed to actually build
software. Modeling can fill this gap, improving communication between teams
and significantly diminishing natural language ambiguities.

Models are abstractions of physical systems that allow one to reason and under-
stand the system by ignoring irrelevant details while focusing on the relevant
ones (Booch et al., 2005; Brown et al., 2005). This simplification (or abstrac-
tion) is the essence of modeling (Booch et al., 2007). Models are used in many
activities, such as to predict system behavior, as technical specifications and to
communicate design decisions to various stakeholders. Although source code
can also be considered a model, as it abstracts lower-level machine instructions,
in practice source code and models are often considered to be different types of
artifacts. Typically, in Systems and Software Engineering, an artifact is consid-
ered to be a model if it has a graphical, formal or mathematical representation
instead of only a textual one as in the case of source code (Bézivin, 2006). This
comes as no surprise, as UML (see Section 2.3) and its profiles are the current
dominant graphical modeling languages.

Design for software-intensive systems requires adequate methodology in order
to support the development of these systems (Tiako, 2008). In addition, there
is a need to increase the level of abstraction, hiding whenever possible unnec-
essary complexity by the intense use of models (Booch et al., 2007). However,
the theory of modeling for software-intensive systems remains incomplete, and
methodologies for specifying and verifying software-intensive systems pose a
grand challenge that a broad stream of research must address (Broy, 2006).

1.5. Research Objective and Questions 7

1.5 Research Objective and Questions

In order to develop software-intensive systems, modeling tasks have to cover
different development phases such as requirements analysis, architectural de-
sign, and detailed design. Other phases, such as implementation, testing and
integration are direct consequences of the modeling phases (Wirsing and Holzl,
2006). From the case previously mentioned and literature review, the main
research objective was proposed as follows.

Improve Systems and Software Engineering methodology (what), by using,
adapting, extending and combining modeling languages (how), to be used by
systems and software developers (to whom), for designing software-intensive
systems (for which purpose) that are in line with requirements, flexible, and

reliable (with which quality factors).

In order to achieve this objective, three main research questions (RQ), each
one with its focus on one core phase of Software Engineering methodologies
(Requirements, Architecture and Design - see Chapter 2) were formulated:

RQ1 - How to improve requirements specification and analysis for Software-
Intensive Systems?

This question is mainly answered in Chapter 4, in which, through the early
introduction of graphical models, requirements are documented and analyzed.
The identification and graphical representation of requirements relationships fa-
cilitate that traces are made. This helps in uncovering the impact that changes
in requirements have in the system design. Requirements are important to de-
termine the architecture (high-level design). When designing the architecture,
at least part of the functional requirements should be known. In addition, the
non-functional requirements that the architecture has to conform with should
be made explicit.

RQ2 - How to specify a Software-Intensive System’s Architecture that enables
reusability?

This question is answered by the application of domain and software architec-
tures, respectively topics of Chapters 5 and 6 of this thesis. These architectures
have to conform with and be based on requirements and constraints. Another
important characteristic of the proposed software architecture is that it is the
basis for the design of a line of related software products. Thus, it must be able
to accommodate related software-intensive systems.

RQ3 - How to model and verify reliability of Software-Intensive Systems?

8 Chapter 1. Introduction

This question is mainly answered in Chapter 7 by using formal methods. The
basic approach is to create formal models that are further verified, checking
whether they exhibit a set of desirable properties. For instance, whether unsafe
states are reached due to an incorrect design can be detected.

1.6 Research Approach

In order to fulfill the research objective and answer the research questions, the
research approach used is described in this section.

1.6.1 Research Philosophy

Four dominant research philosophies can be characterized (Creswell, 2008):

Positivism states that all knowledge must be based on logical inference from
a set of basic observable facts. Positivists are reductionists, in that they
study things by breaking them into simpler components. This corresponds
to their belief that scientific knowledge is built up incrementally from
verifiable observations and inferences based on them. Positivists prefer
methods that start with precise theories from which verifiable hypotheses
can be extracted, and tested in isolation. Hence, positivism is most closely
associated with the controlled experiment; however, survey research and
case studies are also frequently conducted with a positivist paradigm.

Interpretivism rejects the idea that scientific knowledge can be separated
from its human context (Klein and Myers, 1999). Interpretivists concen-
trate less on verifying theories, and more on understanding how different
people make sense of the world, and how they assign meaning to actions.
Interpretivists prefer methods that collect rich qualitative data about
human activities, from which theories might emerge. Interpretivism is
most closely associated with ethnographies, although interpretivists often
use exploratory case studies and survey research too (Easterbrook et al.,
2007).

Critical Theory judges scientific knowledge by its ability to free people from
restrictive systems of thought (Calhoun, 1995). Critical theorists prefer
participatory approaches in which the groups they are trying to help are
engaged in the research, including helping to set its goals. In Software
Engineering, it includes research that actively seeks to challenge exist-
ing perceptions about software practice, most notably the open source
movement, the process improvement community and the agile commu-
nity (Easterbrook et al., 2007). Critical theorists often use case studies

1.6. Research Approach 9

to draw attention to things that need change. However, it is Action
Research (Baskerville, 1999) that most closely reflects the philosophy of
critical theorists.

Pragmatism acknowledges that all knowledge is approximate and incomplete,
and its value depends on the methods by which it was obtained (Menand,
1997). Pragmatism is less dogmatic than the other three paradigms de-
scribed above, as pragmatists tend to think the researcher should be free
to use whatever research methods will help with the research problem. In
essence, pragmatism adopts an engineering approach to research. It values
practical knowledge over abstract knowledge, and uses whatever methods
are appropriate to obtain it. Pragmatists use any available methods, and
strongly prefer mixed methods research where several methods are used.

This thesis is based on an engineering approach to research, in the sense that
it makes use of techniques and methods to create artifacts such as designs for
software-intensive systems. The motivating case is a large distributed real-time
system that can only be studied by reasoning on its parts. Thus, reducing
the system into smaller, more comprehensible components, is of fundamental
importance. Because of this, positivism, with its reductionism property, is a fea-
sible choice for research philosophy. Another important aspect of this research
is that it opens discussions for different people, who have different opinions,
about the added value of Software Engineering methods and languages. Part of
this research was performed in an environment in which the users could man-
ifest their opinions, which makes the social context important as well. As a
result, interpretivism also has a minor role in this research.

1.6.2 Research Strategy

Two paradigms characterize much of the research in Information Systems: be-
havioral science and design science (Hevner et al., 2004). In terms of objective,
the behavioral science paradigm seeks to find “what is true”, while the design
science paradigm seeks to create “what is effective”.

The behavioral science paradigm seeks to develop and verify theories that ex-
plain or predict human or organizational behavior. It has its roots in natural
science research methods. The main objectives are to develop and justify theo-
ries that explain or predict organizational and human phenomena surrounding
the analysis, design, implementation, management, and use of information sys-
tems.

The design science paradigm, which is followed in this thesis, has its roots
in engineering (Tsichritzis, 1997; Denning, 1997). As a matter of fact, it is

10 Chapter 1. Introduction

fundamentally a problem solving paradigm with emphasis on products and
solutions (Rossi and Sein, 2003).

There is lack of consensus as to the precise desired outputs of design research.
In many cases, a solution such as a Software Engineering model is evaluated
as “good enough”, or in terms of its acceptance, and not in terms of “the
best” solution. The resulting products, according to (Hevner et al., 2004),
include 1) constructs or concepts, i.e., abstractions and representations that
define the terms used when describing an artifact; 2) models, i.e., abstractions
and representations, that are used to describe and represent the relationship
among concepts; 3) methods, i.e., sets of steps and practices that are used to
represent algorithms, processes or approaches on how to perform a certain task;
and 4) instantiations, i.e., implemented or prototyped systems, that are used
to realize the artifact. A fifth product, better theory, is included by (Rossi and
Sein, 2003), as the practice may help in better understanding relationships,
concepts and processes.

1.6.3 Research Instruments

Research instruments are used to collect and later analyze data in order to
create models, methods or theories of a research strategy. Which research in-
strument to use depends on many factors such as the type of research questions,
the research objective, and the amount of existing theories available. A set of
research methods was applied during this research. Each one is briefly described
as follows.

Carrying out a literature review research phase is strongly recommended to
gain background knowledge of a subject as well as providing useful leads that
will help to get the maximum from a research (Sjoberg et al., 2007). Initially an
extensive literature review was performed, in which initial data was gathered
by evaluating publications. After extensive literature research on problems
and possible solutions for designing and analyzing software-intensive systems,
the next step was to gain a deeper understanding of the domains (Software
Engineering and Traffic Engineering) using case studies as research instrument.

A case study is defined as “an empirical inquiry that investigates a contempo-
rary phenomenon within its real-life context, especially when the boundaries
between phenomenon and context are not clearly evident” (Yin, 2003). Case
study research can be characterized as qualitative and observatory (Yin, 2003).
Rather than using samples, case study methods involve an in-depth examina-
tion of a single instance or event. When selected with care, even a single case
study may be successful in terms of theory formulation and testing (Yin, 2003).
This might be because it is a critical case for testing a well-formulated theory,

1.6. Research Approach 11

and if the theory holds for this case, it is likely to be true for many others.
Case study research is most appropriate for cases where the reductionism of
controlled experiments is inappropriate (Easterbrook et al., 2007). This in-
cludes situations where effects are expected to be wide ranging, or take a long
time (e.g. weeks, months, years) to appear, which is the case in this research.

Case studies are a preferred research method when “how” and “why’ questions
are being investigated. The “how to” type of question is better approached
with Action Research (AR) (Baskerville and Wood-Harper, 1996; Sjoberg et al.,
2007). In order to make academic research relevant, researches should try out
their theories with practitioners in real situations and real organizations (Avi-
son et al., 1999). From a social organization viewpoint, the study of a newly
invented technique/method is impossible without intervening in some way to
inject the new approach into the practitioner’s environment (Baskerville, 1999).
AR can be described as a technique characterized by intervention experiments
that operate on problems or questions perceived by practitioners within a par-
ticular context. The research is performed in the context of focused efforts to
improve the quality of an organization. AR encourages researchers to experi-
ment through intervention and to reflect on the effects of their intervention and
the implication of their theories.

The ideal domain for AR application is satisfied by three conditions: 1) the
researcher is actively involved, with expected benefit for both researcher and
organization; 2) the knowledge obtained can be immediately applied, there is
not the sense of the detached observer, but of an active participant, wishing to
utilize any new knowledge based on an explicit, clear, conceptual framework;
and 3) the research is a process linking theory and practice. These conditions
were fulfilled during the performed research.

AR is an important method used in the research that led to this thesis. One
important reason is related to the domain of the research. One clear area in
the ideal domain of AR is new or changed software development methodologies.
Studying new or changed methodologies implicitly involves the introduction of
such changes, and is necessarily interventionist. AR is one of the few valid
research approaches that we can legitimately employ to study the effects of
specific alterations in software development methodologies in organizations. As
part of the research was performed in a real organization, AR is a feasible
research instrument.

The actual intervention must be evaluated. The methods chosen in this re-
search for evaluation were surveys and interviews. Survey research is used to
identify the characteristics of a broad population of individuals (Easterbrook
et al., 2007). The defining characteristic of survey research is the selection of
a representative sample from a well-defined population, and the data analysis
techniques used to generalize from that sample to the population, usually to

12 Chapter 1. Introduction

answer base-rate questions. A hard challenge is to ensure that the questions of
the survey are designed in a way that yields useful and valid data. It can be
difficult to phrase the questions such that all participants understand them in
the same way. Also, it is possible that what people say they do in response to
survey questions bears no relationship to what they actually do (Easterbrook
et al., 2007).

The results of the survey and interviews are shown in Chapter 8.

1.7 Thesis Outline

This thesis contributes to Software Engineering research and practice by propos-
ing the extension and integration of formal and semi-formal modeling languages
in a multiple-view software architecture, combined with domain architecture,
which are used in practice to develop a family of systems in the Road Traffic
Management Systems domain.

The thesis outline is depicted in Fig. 1.1. Chapter 2 limits the scope in terms of
which areas of Software Engineering are investigated. Together with Chapter
3, which is about Intelligent Transportation Systems definition, approaches and
examples, these chapters give a theoretical background for the remainder of the
thesis. Chapter 4 covers Requirements Engineering, and Chapters 5 and 6 are
about Architecture. The first deals with Domain Architecture, and the later
with Software Architecture.

It is important to understand that Chapters 4, 5 and 6 are fully dependent
on each other. The reason has to do with how software development occurs
in practice. In reality, one needs to know about the requirements in order to
establish an architecture. However, to design an architecture, one needs to
have at least some ideas of the system to be built, i.e., at least part of the
requirements must be known in advance. Chapters 4, 5 and 6 are important
inputs for Chapter 7, about formal design and verification of system components
and software objects.

Although the thesis follows a structure inspired by the Waterfall model for
Software Engineering, this is just a formality. Modern software development
processes are iterative instead of linear, which is exactly the approach that
the reader of this thesis must have in mind. Chapter 8 is about evaluation in
practice, and Chapter 9 is about conclusions, lessons learned, limitations and
future research.

1.8. Origins of the Chapters 13

Figure 1.1: Thesis outline

1.8 Origins of the Chapters

The origin of the other chapters is as follows.

Chapters 2 and 3 are both about theoretical background, written after extensive
literature research on, respectively, Software-Intensive Systems and Intelligent
Transportation Systems. These chapters are also based on the following papers:

• (Soares and Vrancken, 2007b)

• (Soares and Vrancken, 2008a)

• (Vrancken et al., 2008)

Chapter 4

• (Soares and Vrancken, 2007c)

14 Chapter 1. Introduction

• (Soares and Vrancken, 2008b)

• (Soares and Vrancken, 2008c)

Chapter 5

• (Soares and Vrancken, 2007a)

• (Vrancken and Soares, 2009b)

• (Vrancken and Soares, 2010)

• (Soares et al., 2010)

Chapter 6

• (Soares et al., 2009b)

• (Soares and Vrancken, 2009b)

• (Soares et al., 2009a)

• (Soares et al., 2009c)

Chapter 7

• (Soares and Vrancken, 2007d)

• (Soares and Vrancken, 2007e)

• (Soares and Vrancken, 2008d)

• (Soares et al., 2008)

Chapter 8

• (Soares and Vrancken, 2009a)

Chapter 2

Theoretical Background on
Software-Intensive Systems

This chapter relates the scope of this thesis with the knowledge areas of the
SWEBOK (Section 2.1). Then, a classification of modeling languages and meth-
ods is given in Section 2.2. UML and SysML are briefly introduced in Section
2.3. The chapter ends with approaches in which modeling languages and meth-
ods are integrated (Section 2.4).

2.1 Thesis Scope

The main focus of this thesis is on the modeling phases, as already discussed
in Chapter 1 and further explained in this section. The SWEBOK (Software
Engineering Body of Knowledge) (Abran et al., 2004) is a document created by
software research experts and practitioners with the purpose of establishing a
baseline for the body of knowledge for the field of Software Engineering. The
document is considered as a guide that contributes to a consensually validated
characterization of the bounds of the Software Engineering discipline and pro-
vides a topical access to the body of knowledge supporting that discipline. The
SWEBOK is subdivided into ten Software Engineering Knowledge Areas (KA)
plus an additional chapter providing an overview of the KAs of strongly related
disciplines. Each KA is subdivided into subareas, topics and sub-topics. Figs.
2.1 and 2.2 depict the current version of the SWEBOK structure with the KAs
and the subareas.

The main KAs covered in this thesis are: Software Requirements, Software
Design, and Software Engineering Tools and Methods.

15

16 Chapter 2. Theoretical Background on Software-Intensive Systems

SWEBOK 2004

Software
Requirements

Software
Design

Software
Construction

Software
Testing

Software
Maintenance

Software
Requirements
Fundamentals

Requirements
Process

Requirements
Process

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

Requirements
Validation

Practical
Considerations

Software
Design

Fundamentals

Key issues in
Software Design

Software
Structure and
Architecture

Software Design
Quality Analysis
and Evaluation

Software Design
Notations

Software Design
Strategy and
Methods

Software
Construction

Fundamentals

Managing
Construction

Practical
Considerations

Software
Testing

Fundamentals

Test Levels

Test Techniques

Test Related
Measures

Test Process

Software
Maintenance
Fundamentals

Key issues in
Software

Maintenance

Maintenance
Process

Techniques for
Maintenance

Figure 2.1: SWEBOK Knowledge Areas - Part 1

In the KA Software Requirements, the covered subareas are:

• Software Requirements Fundamentals;

• Requirements Process;

• Requirements Analysis;

• Requirements Specification.

In the KA Software Design, the covered subareas are:

• Software Design Fundamentals;

• Software Structure and Architecture;

• Software Design Notations;

• Software Design Strategies and Methods.

In the KA Software Engineering Tools and Methods, the subarea is:

2.1. Thesis Scope 17

• Software Engineering Methods;

For each of the main KAs, a brief definition of the area according to the SWE-
BOK document and the main reasons why the area was selected are given in
the next subsections.

SWEBOK 2004

Software
Configuration
Management

Software
Quality

Management
of the SCM
Process

Software
Release
Management
and Delivery

Initiation
and Scope
Definition

Software
Project
Planning

Software
Project
Enactment

Review and
Evaluation

Closure

Software
Engineering
Measurement

Process
Implementation
and Change

Process
Definition

Software
Tools

Software
Engineering
Methods

Software
Quality
Fundamentals

Software
Quality
Management
Processes

Practical
Considerations

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering Tools
and Methods

Software
Configuration
Identification

Software
Configuration
Control

Software
Config. Status
Accounting

Software
Config. Status
Auditing

Process
Assessment

Process and
Product
Measurement

Heuristics

Formal

Prototyping

Related
Disciplines

Computer
Engineering

Computer
Science

Management

Mathematics

Project
Management

Quality
Management

Software
Ergonomics

Systems
Engineering

Figure 2.2: SWEBOK Knowledge Areas - Part 2

2.1.1 Software Requirements

The Software Requirements Knowledge Area (called Requirements Engineering
in this thesis) is concerned with the elicitation, analysis, specification, and
validation of software requirements. When any of these activities are poorly
performed, software projects are critically vulnerable and have more chances to
fail (Abran et al., 2004).

Requirements Engineering is a very influential phase in the life cycle. Accord-
ing to the SWEBOK, it concerns Software Design, Software Testing, Software
Maintenance, Software Configuration Management, Software Engineering Man-
agement, Software Engineering Process, and Software Quality KAs.

Requirements Engineering is generally considered in the literature as the most

18 Chapter 2. Theoretical Background on Software-Intensive Systems

critical phase within the development of software (Juristo et al., 2002; Komi-
Sirviö and Tihinen, 2003; Damian et al., 2004; Minor and Armarego, 2005).
Dealing with ever-changing requirements is considered the real problem of Soft-
ware Engineering (Berry, 2004). Already in 1973, Boehm suggested that errors
in requirements could be up to 100 times more expensive to fix than errors in-
troduced during implementation (Boehm, 1973). According to Brooks (Brooks,
1987), knowing what to build, which includes requirements elicitation and tech-
nical specification, is the most difficult phase in the design of software. Lutz
(Lutz, 1993) showed that 60% of errors in critical systems were the results
of requirements errors. Studies conducted by the Standish Group (The Stan-
dish Group, 2003) and other researchers (van Genuchten, 1991; Hofmann and
Lehner, 2001) found that the main factors for problems with software projects
(cost overruns, delays, user dissatisfaction) are related to requirements issues,
such as lack of user input, incomplete requirements specifications, uncontrolled
requirements changing, and unclear objectives. In an empirical study with 12
companies (Hall et al., 2002), it was discovered that, out of a total of 268 de-
velopment problems cited, 48% (128) were requirements problems. In another
empirical study (Luisa et al., 2004), the activities of identify user requirements
and later model these requirements were considered as priorities by a large
percentage of respondents.

2.1.2 Software Design

Software design is the activity of the Software Engineering life cycle in which
requirements are analyzed in order to produce a description of the software’s
internal structure that will serve as the basis for its construction (Abran et al.,
2004). The result of this activity is the software architecture, the interfaces
between components, and also the components at a level of detail that enable
their construction.

Software design plays an important role in developing software: it allows soft-
ware engineers to produce various models that form a kind of blueprint of the
solution to be implemented. These models can be analyzed and evaluated to
determine whether or not they will fulfill the various requirements. The result
of this activity can be used to plan the subsequent development activities, in
addition to using them as input and the starting point of construction and
testing.

According to (IEEE/EIA, 1996), software design consists of two activities that
fit between requirements engineering and software construction:

1. Software architectural design (also known as high-level design): describing
software’s top-level structure and organization and identifying the various

2.1. Thesis Scope 19

components;

2. Software detailed design: describing each component sufficiently to make
its construction possible.

The main focus of Chapter 5 is on architectural design for the domain, i.e.,
architectures for Road Traffic Management Systems, and the focus of Chapter
6 is on a software product line architecture for implementing Road Traffic Man-
agement Systems. Detailed design using formal methods is the topic of Chapter
7.

Basically, architecture refers to the organization of the system, such as its com-
ponents, subsystems, interfaces, and how these elements collaborate and are
composed to form the system (Garlan and Shaw, 1993; ANSI/IEEE, 2000).
Only relevant decisions are important at this level, i.e., those that have a high
impact on cost, reliability, maintainability, performance and resilience of the
future system.

A proven concept to build software-intensive systems and to avoid problems and
failure causes, such as poor communication among stakeholders and sloppy and
immature development practices, is to have a well-defined software architecture
(Bass et al., 2003). Already in 1969 software architecture was recognized as
fundamental for large-scale software, positioned at a higher level than design
(Buxton and Randell, 1970). According to (Booch, 2007), having an archi-
tecture allows the development of systems that are better and more resilient
to change when compared to systems developed without a clear architectural
definition. Software architecture is also considered one of the most significant
technical factors in ensuring project success (Brown and McDermid, 2007).
The software architecture affects the performance, robustness, and maintain-
ability of a system (Bosch, 2000). The architecture style and structure may
both depend on and influence these requirements, which are fundamental for
software-intensive systems.

2.1.3 Software Engineering Tools and Methods

The Software Engineering Tools and Methods KA covers the complete life cycle
processes, and is therefore related to every KA in the SWEBOK. The focus
of Chapter 7 of this thesis is on the Software Engineering Methods subarea,
which goal is to make Software Engineering activities systematic and ultimately
more likely to be successful. Methods vary widely in scope, from a single life
cycle phase to the complete life cycle. The SWEBOK classifies the Software
Engineering Methods subarea in three topics: heuristic, formal, and prototyping
methods. Nevertheless, it is clear in the document that these three topics are

20 Chapter 2. Theoretical Background on Software-Intensive Systems

not disjoint, but represent distinct concerns. One example is Z++ (Lano, 1991),
which is both formal and object-oriented.

In this thesis, the covered topics of the Software Engineering Methods subarea
are heuristic methods, dealing with semi-formal approaches, such as object-
oriented methods, and formal methods, dealing with mathematics based ap-
proaches. These topics are applied in the activity of detailed design in this the-
sis (Chapter 7). Object-oriented methods (notation, specification, refinement)
are also used in Chapter 6. The following section describes the classification
for Software Engineering Methods used in this thesis.

2.2 Classification of Software and Systems Engineer-
ing languages and methods

In order to support the specification of software systems, modeling languages
and methods were created based on many paradigms. The classification pro-
posed is the one relevant for this thesis, in which modeling languages and meth-
ods are categorized as formal or object-oriented.

2.2.1 Formal Methods

The term formal method (Wing, 1990; Saiedian, 1996; Sommerville, 2007) is
used in literature to refer to any language or method that relies on a mathe-
matical theory, such as algebra, logic or set theory. A formal specification is
expressed in a language whose vocabulary, syntax and semantics are formally
defined. This essential characteristic allows specifications expressed in such a
language to be proven with mathematical rigor. Examples of well-known formal
specification languages are LOTOS, Z, CSP and Petri nets.

When designing software-intensive systems that are going to be used in a critical
environment, such as energy or transportation networks, emergent properties
including safety and reliability are fundamental. Discovering possible design
flaws in the specifications, such as a deadlock, is highly desirable.

The applicability and suitability of formal methods in practice is highly debated
in the Software and Systems Engineering community (Bowen and Hinchey,
1995; Larsen et al., 1996; Abrial, 2007; Woodcock et al., 2009). In economic
terms, the cost/benefit ratio is quickly becoming affordable (Davis, 2005). Some
research studies were published arguing that there are so many advantages in
using formal methods that it is worth trying (Larsen et al., 1996; Davis, 2005;
Bowen and Hinchey, 2005). Dependability (the property that reliance can jus-
tifiably be placed on the service it delivers) and reliability (the measure of the

2.2. Classification of Software and Systems Engineering languages and
methods 21

ability of system to continue operating over time) in software-intensive sys-
tems can be achieved only through the application of solid design principles
(Hinchey et al., 2008), which are more likely to happen when formal methods
are applied. It must be considered the fact that it costs too much in downtime
and maintenance not to formally prove the correctness of software-intensive sys-
tems (Davis, 2005). Formal methods contribute to demonstrably cost-effective
development of software with very low defect rates (Broadfoot and Hopcroft,
2005). Some successful cases in industry were published in (Clarke and Wing,
1996; Abrial, 2006; Vrancken et al., 2008).

Despite the many advantages, formal methods also present drawbacks and
by no means can be considered Software Engineering silver bullets’ (Brooks,
1987; Davis, 2005). Practitioners often consider formal methods inadequate,
restricted to critical systems, too expensive, insufficient, too difficult and “not
at all practical” (Broy, 2007). Real-world examples are still lacking or the ap-
plication scope is generally considered limited (Wassyng and Lawford, 2003).
Although formal methods can strongly reduce the errors that can occur in the
translation from requirements to executable source code, they cannot make
sure that the initial document does not contain errors, inconsistencies, serious
omissions or features that later on turn out to be undesirable (Vrancken et al.,
2008).

The difficulty of learning formal methods is also highly debated. Hall (Hall,
1990) considers that the mathematical theory for formal methods is affordable
for all engineers and the training is not difficult. For Abrial (Abrial, 2006),
experience has shown that engineers can easily learn the mathematical con-
cepts and notations used in formal methods. On the other hand, according
to (Luqi and Goguen, 1997), formal methods are difficult to most practicing
programmers, who have little training or skill in advanced mathematics.

2.2.2 Object-Oriented Methods

The object-oriented paradigm was first proposed for programming languages.
Simula is considered the first object-oriented programming language. Other
programming languages were created from scratch with object-oriented fea-
tures, such as Smalltalk and Eiffel, and in others these features were included
in an existing language to create another language, such as C++ and Objective
C, that are derived from the C programming language.

The proliferation and success of object-oriented programming languages bring
the idea to use these languages with specifications also created based on the
object-oriented paradigm (Booch et al., 2005). Thus, a variety of methodologies
and modeling languages were created. This led to many problems. Designers

22 Chapter 2. Theoretical Background on Software-Intensive Systems

had trouble finding a modeling language that could fulfill their needs completely
(Booch et al., 2005). The effort to learn and introduce a methodology, buy and
integrate tools and notations, could become useless if the methodology did not
succeed. This period was informally known in Software Engineering as the
“method wars” (Booch et al., 2005). Each methodology creator advocated that
his own methodology was better in terms of expressivity, ability to capture
all important aspects of the system design, or natural implementation in an
object-oriented programming environment. Three of the most successful cre-
ators decided to unify their methodologies (Booch, OMT and OOSE), together
with Statecharts (Harel, 1987), in order to create not another methodology, but
a modeling language. The effort officially started in October 1994 and the first
release of UML (Unified Modeling Language) was offered for standardization
to the OMG in January 1997 (more about the history of UML in (Booch et al.,
2005)).

2.3 UML and its Profiles

UML (OMG, 2007) is currently the de facto standard object-oriented modeling
language in the software industry. Its relative success led to the creation of
UML profiles for more specific domains.

2.3.1 UML

UML is a modeling language used to visualize, specify, construct and document
the artifacts of software. UML is conformant to MOF (Meta Object Facility), a
metamodeling architecture used for metadata-driven interchange and metadata
manipulation (OMG, 2006).

Although derived from other methods and languages, UML is a graphical
modeling language to be used in a software process. Despite many problems
(Henderson-Sellers, 2005), the language has proven to be useful in the develop-
ment of systems in many domains, such as automotive and telecommunication
systems (Lavagno et al., 2003), real-time systems (Douglass, 2004) and safety-
critical complex systems (Anda et al., 2006).

There are thirteen types of diagrams in UML 2.0 (simply UML in this text),
which can be classified as those that model the static aspects of the system
(structural diagrams, Fig. 2.3) and those that model the dynamic aspects of
the system (behavioral diagrams, Fig. 2.4) .

UML was created mainly for general software development. Customizations
for more specific purposes were created, such as MARTE (OMG, 2008b) for

2.3. UML and its Profiles 23

Structural

Class
Composite

Structure
Component Deployment Object Package

Figure 2.3: UML Structural Diagrams

Behavioral

Activity Interaction Use Case State Machine

Sequence Communication
Interaction
Overview

Timing

Figure 2.4: UML Behavioral Diagrams

distributed real-time systems, and SysML for Systems Engineering.

2.3.2 SysML

SysML is a systems modeling language that supports the specification, analysis,
design, verification and validation of a broad range of complex systems (OMG,
2008a). The language is derived from UML, taking into account systems as-
pects such as hardware, software, information, processes and personnel. This
may facilitate the communication between heterogeneous teams (for instance,
mechanical, electrical and software engineers) that work together to develop a
software-intensive system. The language is effective in specifying requirements,
structure, behavior, allocations of elements to models, and constraints on sys-
tem properties to support engineering analysis. SysML is supported by the
OMG Systems Engineering Domain Special Interest Group and by INCOSE
(International Council on Systems Engineering).

SysML is considered both a subset and an extension of UML (see Fig. 2.5). As a
subset, UML diagrams considered too specific for software (Objects and Deploy-
ment diagrams) or redundant with other diagrams (Communication and Time
Diagrams) were not included in SysML. Some diagrams are derived from UML
without significant changes (Sequence, State-Machine, Use Case, and Package
Diagrams), some are derived with changes (Activity, Block Definition, Internal

24 Chapter 2. Theoretical Background on Software-Intensive Systems

SysML

Diagrams

Behavior

Diagrams

Requirements

Diagrams

Structure

Diagrams

Activity

Diagram

Sequence

Diagram

State

Machine

Diagram

Use Case

Diagram

Block

Definition

Diagram

Internal

Block

Diagram

Package

Diagram

Parametric

Diagram

Modified from UML2

New diagram

Same as UML2

Figure 2.5: SysML Diagrams and the relation to UML

Block Diagrams) and there are two new diagrams (Requirements and Paramet-
ric Diagrams). As a matter of fact, SysML is compatible with UML, which can
facilitate the integration of the disciplines of Software and System Engineering.
Nevertheless, there is still a lack of research on using both languages together,
and the boundaries and relationships are not yet clear. For instance, the syntax
of UML and SysML Use Cases are the same, but the difference in semantics
was not well-defined in the SysML specification document. Another example
is the relationship between a SysML Block and a UML Class. According to
the SysML specification, SysML Blocks are based on UML Classes as extended
by UML composite structures. The main issues are what exactly this “based”
means, and how they can be related in practice.

2.4 The Need for Integration of Modeling Languages

Many methods and languages have been proposed for software and systems
development (Sommerville, 2007). These methods and languages do not cover
or are not considered “good enough” by experts to cover all the steps of the
software life cycle (Smith, 2008). Normally a set of views is necessary in order
to capture the essential aspects that need to be modeled during the develop-
ment of software-intensive systems. In most cases the modeling language can
not model all essential aspects of a software-intensive system and needs to be
complemented or adapted (Jackson, 1995). One clear example are the exten-
sions to structured methods proposed in (Hatley and Pirbhai, 1987) in order to
design real-time systems.

2.4. The Need for Integration of Modeling Languages 25

Paige (Paige, 1999) defines method integration as “the process of combining
two or more methods to form a new method which is more useful than any
of the separate methods”. It concerns the combined use of different languages
or methods which, when considered independently, are not sufficient to tackle
the multiple views (data, component, behavior, concurrency, etc) necessary to
design software-intensive systems. The basic purpose is to complement the
modeling languages during system design in order to get the best of each mod-
eling language, by combining strengths and reducing weaknesses.

2.4.1 Integrating Modeling Languages

The integration of a formal method in the system design process provides im-
proved semantics, some even provide model execution by simulation and formal
proofs, contributing to the early validation of requirements. Nevertheless, the
integration of methods and languages may have drawbacks in particular sit-
uations (Paige, 1997). For instance, it may be difficult to manage multiple
syntaxes in specifications. In addition, how to construct relationships between
several methods is an important issue. A discussion on when methods are
complementary is given in (Paige, 1999).

There are many examples of the integration of modeling languages. Method
integration has been studied in a number of contexts: combining formal and
heuristic methods (Jackson, 1983; Semmens et al., 1992; Kronlöf, 1993; Polack
et al., 1993), and combining multiple formal methods (George et al., 1995;
Bicarregui et al., 1996; Paige, 1998; Hoenicke and Olderog, 2002; Taguchi et al.,
2004; Karkinsky et al., 2007). As UML is currently the “de facto” modeling
language, a variety of researches have been proposed on integrating UML and
other modeling languages.

2.4.2 Integration of UML with other Modeling Languages

In order to try to improve UML semantics and to apply UML to critical sys-
tems, some approaches were proposed that combine UML diagrams with formal
methods. For instance, UML-B (Snook and Butler, 2006) is a precise and se-
mantically well-defined profile created by the combination of UML and the
B-method. The profile has been used in several real-time control systems in
industry projects.

The integration of UML and Petri nets is often studied. UML provides dia-
grams that are strong in representing structure, which is not well-represented
with Petri nets. On the other hand, dynamic behavior is better defined with
Petri nets than UML. A set of rules to transform UML Sequence Diagrams to

26 Chapter 2. Theoretical Background on Software-Intensive Systems

Colored Petri for animation purposes is shown in (Ribeiro and Fernandes, 2006).
In (Campos and Merseguer, 2006), UML dynamic diagrams are used for system
modeling while Stochastic Petri nets are used for performance and quantitative
evaluation. In (Eichner et al., 2005), UML Sequence Diagrams and some frag-
ments are transformed to Colored Petri nets and the semantics is enriched with
Algebra. In (Soares and Vrancken, 2008a), a metamodeling approach is pro-
posed to transform UML Sequence Diagrams to Time Petri nets with inhibitor
arcs, including not only synchronous and asynchronous messages, but also the
operators ALT (alternatives), LOOP (iterations), and PAR (parallelism).

Chapter 3

Road ITS: Intelligent Systems
Applied to Road Traffic

This chapter describes the importance of road transportation for society and
gives examples of problems related to safety and congestion (Section 3.1). A
proposed solution is given: deploying Intelligent Transportation Systems (ITS)
to make road traffic control responsive to actual traffic conditions in order to
improve traffic efficiency and safety (Section 3.2). ITS in this thesis is related to
systems applied to the transportation infrastructure. A list of relevant control
measures used in road ITS is presented in Section 3.3. Nevertheless, this is just
the traffic engineering part of the solution. ITS are software-intensive systems.
We still need the application of well-defined methods, processes and tools to
build ITS, i.e., we need a systems engineering approach, as recommended in
Section 3.4.

3.1 The Importance and Problems of Road Traffic

Transportation of goods and people is crucial for society. Goods need to be
transported after being produced, bought or sold. People have to move from
one place to another due to diverse purposes, such as going to work, to school,
traveling on vacation, or even for health reasons. In modern countries, trans-
portation itself is an important sector of the economy. The source for the
statistics in this section are (Eurostat, 2006) and (Eurostat, 2009). For in-
stance, the transportation industry accounts for about 7% of the European
GDP (Gross Domestic Product). The number of direct employment in the EU-

27

28 Chapter 3. Road ITS: Intelligent Systems Applied to Road Traffic

27 1 is currently about 1.7 million in passenger transportation (bus, coach, taxi
operations) and 2.6 million in freight transportation.

Road traffic is currently the most important and flexible means of transporta-
tion. Considering the EU-27 countries, road freight transportation represented
about 73% (in tonne-kilometers) of the inland freight transportation market.
Rail contributed for only 17%. In the Netherlands, inland freight transporta-
tion was responsible for 61% of the total, and more than 90% in countries
such as Portugal, Spain and Greece. The largest share of intra-EU passenger
transportation, around 85% (in passenger-car equivalents), is made by road.

On the other hand, road traffic is also a very problematic mean of transporta-
tion. Road traffic is dangerous, expensive and presents a high pollution rate.
Road congestion is costing the EU-27 about 1% of its GDP. Accidents injure
or kill thousands of people every year (around 43 thousand fatalities in 2007 in
EU-27 and 709 in the Netherlands). Traffic congestion in many big cities has
almost gotten out of control.

Environmental damage is another issue. CO2 emissions from transportation
in general and road transportation in particular have been rising faster than
emissions from all other major sectors of the economy. In 2006 the emissions
from the transportation sector accounted for 23% of the total CO2 emissions in
the European Union, with road transportation generating 71% of total trans-
portation emissions.

Basically two approaches can be applied in order to solve or at least minimize
these transportation problems. The most straightforward solution is to build
more infrastructure, such as bridges, roads and viaducts, in order to increase
road capacity. This solution is no doubt useful, especially for decreasing con-
gestion, but is not sufficient (McQueen and McQueen, 1999; PIARC, 1999).
Constructing new road infrastructure is limited due to environmental, social
and financial constraints (McDonald et al., 2006). The second approach, pre-
sented in the next section, is to control traffic, which contributes to efficiency
as well as safety and environmental improvements.

3.2 Intelligent Transportation Systems

With difficulties of building more infrastructure and the aforementioned trans-
portation problems, an approach in which already existing capacity is better

1The member states of the EU-27 are: Austria, Belgium, Bulgaria, Cyprus, the Czech Re-
public, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slove-
nia, Spain, Sweden, and the United Kingdom.

3.3. Road Traffic Management Systems 29

used is welcome. This is done by applying intelligence to the current infrastruc-
ture, switching from static to more dynamic road traffic control. This approach
has been used with varying degrees of success, and it is the one followed in this
thesis.

Intelligent Transportation Systems (ITS) (McQueen and McQueen, 1999;
Stough, 2001; Maccubbin et al., 2005) refers to the application of telecommu-
nications and information processing technology to the operation and control
of transportation systems. Examples of ITS include electronic toll-collection
systems, vehicle-tracking systems, in vehicle routing systems, and traffic con-
trol systems. The definition of road ITS, in short ITS, used in this thesis is as
follows:

Definition 3.2.1 Road ITS is the use of Information, Communication and
Control Technologies to transportation infrastructure and vehicles in activities
such as monitoring, prediction, control, and visualization of traffic, with the
purposes of better using existing capacity and improve road traffic safety.

The benefits of ITS have been recognized in many countries. In (USDOT, 1997),
measured and predicted benefits in travel times, fatalities’ rates, crashes, cus-
tomer satisfaction, emissions and fuel consumption are described. The report
was published in 1997, and by that time, the benefits were already remarkable.
A more recently published report (Maccubbin et al., 2005) shows, in full de-
tail, the benefits and costs of ITS implementations, together with a number of
lessons learned by those planning, deploying, and evaluating ITS.

The research area of ITS is multidisciplinary. Examples of disciplines that
are involved are Control Engineering, Traffic Engineering, Information and
Communication Technologies, Software Engineering, Systems Engineering, and
Psychology. Examples of ITS research areas include Emergency Management,
Electronic Payment and Pricing, Traveler Information, and Freeway and Urban
Management. The focus in this thesis is on dynamic road traffic management,
i.e., road traffic management systems using real-time traffic data.

3.3 Road Traffic Management Systems

Road Traffic Management Systems (RTMS) are distributed real-time systems
that influence traffic by using a variety of actuators, such as traffic signals and
Variable Message Signs (VMS), based on acquired data using various types of
sensors, such as video cameras and inductive loops. These systems’ environment
is inherently distributed, with vehicles and road-side equipment (sensors and
actuators) geographically spread in the network. The purpose of RTMS is to

30 Chapter 3. Road ITS: Intelligent Systems Applied to Road Traffic

monitor, predict, visualize and control traffic. RTMS use a variety of Road
Traffic Control measures to coordinate, guide and improve traffic flow. The list
to be presented in this section (traffic signals, ramp metering, variable message
signs, and variable speed limits) is not exhaustive, but a compilation of the
most common ones and the ones most important for this thesis.

3.3.1 Traffic Signals

Traffic signals are applied to reduce congestion and delays, making crossing
possible, regulate vehicle flow, warn and improve safety in a road junction for
vehicles and pedestrians (Roess et al., 2003). Among the main advantages of
traffic signals are the flexibility of the signaling scheme, the ability to provide
priority treatment and the feasibility of coordinated control along streets.

The first traffic signal using colored lights was installed in London in 1868 at
the intersection of George and Bridge Streets near the Houses of Parliament.
The main purpose of the signal was to give protection to pedestrians. The first
mechanical semaphore appeared in the United States about 1913 in Detroit. It
displayed the words “stop” and “go” on alternate faces. The first interconnected
traffic signal system was installed in Salt Lake City in 1917, with six connected
intersections controlled simultaneously from a manual switch. The yellow phase
in addition to the common red and green phases was first installed in a traffic
signal in Detroit, in 1920. The purpose of the yellow (amber) light was to signal
the drivers to “clear the intersection”. A more detailed history of traffic signals
can be found in (Mueller, 1970).

Modern traffic controllers implement signal timing and ensure that signal in-
dications operate consistently and continuously in accordance with the pre-
programmed phases and timing. The first computer-based traffic control system
was installed in Toronto (Casicato and Cass, 1962; Roess et al., 2003).

Advanced traffic signal control systems have demonstrated great benefits for
traffic, such as optimizing travel times and the number of vehicle stops, im-
proving average speeds, and minimizing delays. The result is a moderate fuel
consumption and lower environmental impact. A report provided by the U.S.
Department of Transportation (FHWA, 1998) shows a decrease in travel times
of 8% to 25%, and in delays of 17% to 44%.

3.3.2 Ramp Metering Systems

The purpose of ramp metering systems (Huddart, 1999) is to control the flow
rate of traffic merging onto a motorway. Ramp meters are claimed to reduce
congestion on motorways by reducing demand and by breaking up platoons

3.3. Road Traffic Management Systems 31

of cars (Huddart, 1999). When properly designed, ramp meterings can keep
vehicle density below saturation, improving traffic flow on the motorway. In
a study by the Minnesota Department of Transportation, ramp metering was
found to increase motorway throughput in 9% on average, with a 14% increase
during peak hours (Cambridge Systematics, 2001).

The control is performed by means of a traffic signal on the entrance ramp,
and the flow rate is determined by selecting appropriate phase timings. Sensors
on the motorway nearby the ramp provide traffic flow data to a ramp control
that determines the optimum flow of traffic from the entrance ramp, and then
adjusts the ramp traffic signal phases. Thus, vehicles enter the motorway from
the ramp at the most appropriate rate. When the traffic signal phase is green,
it allows a limited number of vehicles to proceed onto the motorway at a time.
This flow rate may be increased by extending the green time phase of the traffic
signal. When traffic on the motorway is already heavy, then the rate can be
adjusted by decreasing green time.

A ramp metering schema is shown in Fig. 3.1 (FHWA, 2006, Chapter 3). The
sensors on the main road serve a dual purpose: adjustment of the ramp metering
rate in response to real-time demand and collection of historical volume and
occupancy data. A demand sensor on the ramp indicates the arrival of a vehicle
at the stop line and the commensurate start of the metering cycle. Demand at
the stop line is typically required before the ramp signal is allowed to turn green.
A passage sensor detects when the vehicle passes the stop line and returns the
ramp signal to red for the next vehicle. The passage sensor can also be used to
monitor meter violations, such as drivers who ignore the red stop signal, and
provide historical data about the violation rate at each ramp.

stop line

passage sensor

queue sensor

demand sensor

motorway sensorsmotorway sensors

Figure 3.1: Ramp metering schema

32 Chapter 3. Road ITS: Intelligent Systems Applied to Road Traffic

3.3.3 Variable Message Signs

Variable Message Signs (VMS) are signs that display real-time generated mes-
sages. The basic purpose of VMS is to provide information to drivers (Fig.
3.2). Examples of information are instructions on what actions should be taken
in the event of unplanned traffic incidents, such as accidents, and informing
upcoming changes to traffic conditions as a result of planned traffic incidents,
such as road works. Thus, in the event of a traffic congestion caused by an
accident, VMS can display the expected delay. Knowing what to expect adds
to the driver’s comfort level. More importantly, VMS can advise drivers of
alternate routes.

Figure 3.2: Variable Message Sign

3.3.4 Variable Speed Limits

Motorways normally have a maximum speed that drivers must respect. The
main problem is that this speed is fixed no matter the conditions. With variable
speed limit (VSL) systems (Fig. 3.3), the limit may change dynamically de-
pending on traffic conditions such as congestion or adverse weather conditions.
As the speed limit can be adapted to specific circumstances, the homogeneity
of driving speed can be enhanced (van Nes et al., 2008).

In The Netherlands, the VSL signs are commonly posted on motorways. The
system keeps track of all traffic movements and lowers the speed limit if it
detects the start of traffic congestion. When activated, the speed limit can be
set at 90, 70, or 50 km/h according to the level of expected traffic congestion.

3.4. The need of a Systems Engineering Approach to ITS 33

Figure 3.3: Variable Speed Limit Signs

3.4 The need of a Systems Engineering Approach to
ITS

Studies (Hecht, 1999; Galin and Avrahami, 2006; Boehm et al., 2008), have
shown that using well-defined systems engineering approaches for software-
intensive systems development results in better cost and schedule performance,
and increases the likelihood that the implementation will meet the user’s needs.
Other benefits include the production of adaptable and resilient systems, im-
proved reuse and better documentation. On the other hand, uncontrolled ap-
proaches for software-intensive systems development lead to a variety of prob-
lems observed in many reports (van Genuchten, 1991; Johnson, 2002; The Stan-
dish Group, 2003; Charette, 2005), such as cost overruns and project delays.

All the difficulties of development and maintenance of software-intensive sys-
tems presented in Chapter 1 hold for ITS in general and specifically for RTMS.
For example, after deployment these systems are used for many years, which
means that they must be maintained in order to cope with hardware and pol-
icy changes. This makes it very unlikely that a new ITS project will start
from scratch. In most cases, legacy systems have been in operation for many
years and must be taken into account. For instance, major cities have deployed
urban traffic control systems with a varying degree of sophistication, control
algorithms and hardware. These systems can not simply be turned-off, as they
may have been offering sufficient results for many years.

The importance and potential benefits of a well-defined approach for develop-
ing ITS was recognized by the ITS community in the late 1990’s (CALTRANS,
2007). The United States Department of Transportation included requirements

34 Chapter 3. Road ITS: Intelligent Systems Applied to Road Traffic

for a systems engineering approach in the FHWA Rule/FTA Policy (Final Pol-
icy) and the FHWA Final Rule on Architecture Standards and Conformity
(Final Rule) 2. The Final Rule requires the development of regional ITS ar-
chitectures and that all ITS projects using Federal funds be developed using
a systems engineering approach. The goal is to help ITS agencies, researchers
and practitioners to use common, consistent and well-established systems engi-
neering methodologies.

In the research that led to this thesis a multi-disciplinary approach, combining
Traffic Engineering and Software Engineering, was used. Traffic engineers come
up with new control strategies and algorithms for improving traffic. Once new
solutions are defined from a Traffic Engineering point of view, there is the prob-
lem of obtaining operational systems that address all requirements. Knowing
what to build is just the first step that must be followed by the how to build.
Both are problematic and they depend on each other. This is an important gap
noted in practice (Vrancken and Soares, 2010).

2see http://ops.fhwa.dot.gov/its_arch_imp/index.htm

Chapter 4

User Requirements Modeling
of Software-Intensive Systems

Requirements Engineering is a broad area of Software Engineering research.
The Requirements Engineering activities that are covered in this chapter are
presented in Section 4.1. Then, an example of a subset of a list of user require-
ments for RTMS is presented to be further modeled and analyzed (Section 4.2).
Current techniques for requirements modeling are presented in Section 4.3. A
number of problems and limitations related to these techniques are discussed
in the same section. These shortcomings led to a list of requirements for re-
quirements modeling languages in Section 4.4 and the proposed approach in
Section 4.5 to fulfill the missing characteristics of the list. From the conclusion
of Section 4.4, the starting point for requirements modeling languages is to use
SysML diagrams and tables, which are presented in detail in Sections 4.6, 4.7,
and 4.8. A classification for user requirements based on the IEEE 830-1998
standard is given in Section 4.9. Then, SysML’s constructions are extended in
Section 4.10 and proposed to model the initial list of user requirements (Section
4.11). The chapter ends with conclusions (Section 4.12).

4.1 Activities of Requirements Engineering

Requirements for a system are a collection of needs expressed by stakeholders
respecting some constraints under which the system must operate (Pressman,
2005; Robertson and Robertson, 2006). Requirements can be classified in many
ways. The first classification used in this chapter is related to the level of
detail (the second classification is presented in Section 4.9). In this case, the
two classes of requirements are user requirements and system requirements

35

36 Chapter 4. User Requirements Modeling of Software-Intensive Systems

(Sommerville, 2007). User requirements are high-level abstract requirements
based on end users’ and other stakeholders’ viewpoint. They are usually written
using natural language, occasionally with the help of domain specific models
such as mathematical equations, or even informal models not related to any
method or language (Luisa et al., 2004). The fundamental purpose of user
requirements specification is to document the needs and constraints gathered
in order to later develop a system based on those requirements.

Systems requirements are derived from user requirements but with a detailed
description of what the system should do, and are usually modeled using formal
or semi-formal methods and languages. This proposed classification allows the
representation of different views for different stakeholders. This is good Soft-
ware Engineering practice, as requirements should be written from different
viewpoints because different stakeholders use them for various purposes.

Requirements Engineering can be divided into two main groups of activities
(Parviainen et al., 2004): i) requirements development, including activities such
as eliciting, documenting, analyzing, and validating requirements, and ii) re-
quirements management, including activities related to maintenance, such as
tracing and change management of requirements. This chapter is about user
requirements development, mainly the activities of documenting and analyzing
user requirements for software systems. These are modeling activities that are
useful for further Requirements Engineering activities. The assumption in this
chapter is that improving requirements modeling may have a strong impact on
the quality of later requirements activities, such as requirements tracing, and
in the design phase. The modeling is proposed for a list of user requirements
for RTMS.

4.2 List of Requirements for RTMS

The list of requirements given below is a subset from a document which con-
tains 79 atomic requirements for RTMS (AVV, 2006). The document is a
technical auditing work based on an extensive literature study and interviews,
in which the stakeholders were identified. The complete list of requirements is
presented in Appendix B. The requirements were gathered through interviews
with multiple stakeholders. These requirements have also been gathered from
the documents written by the involved stakeholders (AVV, 2006).

The stakeholders (and the related number of requirements) were classified as:
the Road Users (1), the Ministry of Transport, Public Works and Water Man-
agement (2), the Traffic Managers (10), the Traffic Management Center (8),
the Task, Scenario and Operator Manager (22), the Operators (4), the Design-
ers of the Operator’s Supporting Functions (15), and the Technical Quality

4.2. List of Requirements for RTMS 37

Managers (17). In this chapter the requirements of the Traffic Manager and
the Traffic Management Center were selected as example to be modeled using
SysML diagrams and constructions in Section 4.11. The requirements are given
as follows.

Traffic Manager

• TM4 - It is expected that software systems will be increasingly more
intelligent for managing the traffic-flow in a more effective and efficient
manner.

• TM5 - To optimize traffic flow, it is expected that gradually, region-wide
traffic management methods will be introduced.

• TM6 - The traffic management systems must have a convenient access to
region-wide, nation-wide, or even European-wide parameters so that the
traffic-flow can be managed optimally.

• TM7 - It must be possible for the traffic managers/experts to express
(strategic) “task and scenario management frames”, conveniently.

• TM8 - The system should effectively gather and interpret all kinds of
information for the purpose of conveniently assessing the performance of
the responsible companies/organizations that have carried out the con-
struction of the related traffic systems and/or infrastructure.

• TM9 - The system must support the traffic managers/experts so that they
can express various experimental simulations and analytical models.

• TM10 - The system must enable the traffic managers/experts to access
various kinds of statistical data.

• TM11 - The system must enable the traffic managers/experts to access
different kinds of data for transient cases such as incidents.

• TM12 - The system must provide means for expressing a wide range of
tasks and scenarios.

• TM13 - The traffic management will gradually evolve from object man-
agement towards task and scenario management.

Traffic Manager Center

• TMC14 - The operational costs of the traffic management centers and
shared resources must be minimized.

38 Chapter 4. User Requirements Modeling of Software-Intensive Systems

• TMC15 - The operators’ reaction speed must be improved, especially in
critical and unanticipated situations.

• TMC16 - The operators’ decision accuracy must be improved, especially
in critical and unanticipated situations.

• TMC17 - The system must provide means to manage various “traffic
management configuration information” conveniently.

• TMC18 - The system must provide tools so that the operators can perform
their work more efficiently.

• TMC19 - The system must provide tools so that the operators can perform
their work more effectively.

• TMC20 - The system must make it intuitively obvious in which function/-
context the operator is working in.

• TMC21 - The education material and process necessary to train the opera-
tors must be simplified, standardized and supported. This should improve
the effectiveness of tutoring.

4.3 Requirements Modeling Approaches

There are several approaches to modeling requirements. Basically, these ap-
proaches can be classified as graphics-based, purely textual, or a combination
of both. Some are generic while others are part of a specific methodology.

The most common approach is to write user requirements using natural lan-
guage. The advantage is that natural language is the main mean of commu-
nication between stakeholders. However, problems such as imprecision, misun-
derstandings, ambiguity and inconsistency are common when natural language
is used (Kamsties, 2005).

With the purpose of giving more structure to requirements documents, struc-
tured natural language is used (Cooper and Ito, 2002). Nevertheless, structured
natural language is neither formal nor graphical, and can be too much oriented
to algorithms and specific programming languages. Other collateral effects are
that structured specifications may limit too early the programmers’ freedom,
and are mostly tailored towards procedural languages, being less suitable for
some modern languages and paradigms.

User Stories have been used as part of the eXtreme Programming (XP) (Beck,
1999) agile methodology. They can be written by the customer using non-
technical terminology, in the format of sentences using natural language. Al-
though XP offers some advantages in the Requirements Engineering process in

4.3. Requirements Modeling Approaches 39

general, such as user involvement and defined formats for user requirements
and tasks, requirements are still loosely related, not graphically specified, and
oriented to a specific methodology.

A well-known diagram used for requirements modeling are the Use Cases. Even
before UML emerged as the main Software Engineering modeling language, Use
Cases were already a common practice for graphically representing functional
requirements in other methodologies, such as Object-Oriented Software Engi-
neering (OOSE) (Jacobson, 1992). Their popularity can be explained due to
their simplicity, making them act as a bridge between technical and business
stakeholders, the compact graphical nature to represent requirements that may
be expanded to several pages, and even as a basis for managers when doing
project estimation (Diev, 2006). Use Cases also have some disadvantages and
problems (Simons, 1999). They are applied mainly to model functional re-
quirements and are not very helpful for other types of requirements, such as
non-functional ones (Soares and Vrancken, 2007c). Use Case diagrams lack well-
defined semantics, which may lead to differences in interpretation by stakehold-
ers. For instance, the include and extend relationships are considered similar,
or even the inverse of each other (Jacobson, 2004). In addition, Use Cases may
be misused, when too much detail is added, which may incorrectly transform
the diagrams into flowcharts or making them difficult to comprehend. Finally,
although being an important part of an object-oriented language, the diagram
itself is not object-oriented (Booch et al., 2005).

Two SysML diagrams are distinguish as useful mainly for Requirements Engi-
neering activities: the SysML Requirements diagram and the SysML Use Case
diagram (OMG, 2008a). One interesting feature of the SysML Requirements
diagram is the possibility of modeling other type of requirements besides the
functional ones, such as non-functional requirements. The SysML Use Case
diagram is derived from the UML Use Case diagram without important modifi-
cations. In addition to these diagrams, SysML Tables can be used to represent
requirements in a tabular format. Tabular representations are often used in
SysML but are not considered part of the diagram taxonomy (OMG, 2008a).
Detailed explanation about SysML diagrams and tables for Requirements En-
gineering are given in Sections 4.6, 4.7, and 4.8.

A comparison of the aforementioned requirements modeling approaches is given
in the next section. The objective is to identify shortcomings of these ap-
proaches, which is used as the starting point of the proposed approach for a
solution, in Section 4.5.

40 Chapter 4. User Requirements Modeling of Software-Intensive Systems

4.4 Desirable Requirements Specification Properties
for Software-Intensive Systems

A list of desirable requirements for requirements modeling languages, together
with a mapping of common languages and techniques, is given in Table 4.1.
This non-exhaustive list of requirements for requirements modeling languages
is based on literature review presented in Subsection 2.1.1, on the modeling
languages briefly presented in Section 4.3, and on specific texts about require-
ments (IEEE, 1998; Beck, 1999; Luisa et al., 2004; Robertson and Robertson,
2006). This list uses “(M) Must have” and “(S) Should have” for each entry of
the table, according to the MoSCoW labels (Page et al., 2003) (Must, Should,
Could, Want/Won’t have).

The characteristics proposed in (IEEE, 1998, Section 4.3) (correct, unambigu-
ous, complete, consistent, ranked for importance, ranked for stability, verifiable,
modifiable, and traceable) are related to a good Software Requirements Spec-
ification (SRS) document. In this chapter, these characteristics were used in
the context of requirements modeling languages and techniques.

The reason for each entry of the list is given as follows.

4.4.1 Must Have Requirements

The modeling languages must provide graphical meanings to express require-
ments. Software-intensive systems are often designed from a multi-actor point
of view, with multiple designers from diverse fields working together. Common
graphical models may facilitate their communication. Models must be human
readable, as the multiple involved stakeholders have to understand the models.
In this case a balance is necessary, as the more machine readable requirements
are, the less human readable they become. In addition, as multiple stakeholders
and designers with different backgrounds are involved, the modeling languages
should be as methodology independent as possible.

It is well-known by Software Engineering researchers and practitioners that re-
quirements are related to each other (Robertson and Robertson, 2006). The
survey (Robinson et al., 2003) introduces the discipline of Requirements Inter-
action Management (RIM), which is concerned with the analysis and manage-
ment of dependencies among requirements. These interactions affect various
software development activities, such as release planning, change management
and reuse. A study has shown that the majority of requirements are related to
or influence other requirements (Carlshamre et al., 2001). Due to this fact, it
is almost impossible to plan systems releases only based on the highest priority
requirements, without considering which requirements are related to each other.

4.4. Desirable Requirements Specification Properties for Software-Intensive
Systems 41

From a project management point of view, one important characteristic of a
requirement is its priority. Prioritizing requirements is an important activity in
Requirements Engineering (Davis, 2003). The purpose is to give an indication
of the order in which requirements should be addressed. Another important
property of a requirement from the project management point of view is to
identify its risk. For instance, a manager may be interested in identify what is
the impact for a project if a specific requirement is not fulfilled. Risk manage-
ment is basically the activity concerned with trying to detect previously risks
in a project and preventing problems with specific plans.

Despite their importance, non-functional requirements are usually not properly
addressed in requirements modeling languages. For instance, UML Use Case
diagrams are strong in modeling functional requirements. The various types
of requirements must be identified in order to provide better knowledge of
requirements for the stakeholders.

From the software design point of view, grouping requirements in the early
phases of software development helps in identifying subsystems, components,
and relationships between them. As a matter of fact, grouping requirements
has a positive effect in designing the software architecture.

According to (IEEE, 1998), a SRS should be consistent and modifiable. In this
thesis, these two properties of a SRS are considered of great significance, and
are grouped with “must have” requirements. The reason is that inconsistency
between documents (Boehm, 1973; Pressman, 2005) and difficulty of changing
requirements (Berry, 2004) are major causes for future problems during software
development. A SRS is consistent if it agrees with other documents of the
project, such as project management plans and system design models. Thus,
the modeling language must be able to highlight conflicting requirements and
non-conformances between requirements and design. A SRS is modifiable if its
structure and style are such that any changes to the requirements can be made
easily, completely, and consistently while retaining the structure and style. For
instance, requirements must be expressed individually, rather than intermixed
with other requirements. Thus, the modeling language must be able to describe
requirements in a well-structured way.

Finally, as changing requirements is a source for problems, knowing how stable
a requirement is, i.e., how ready it is for further design phases, is essential.

4.4.2 Should Have Requirements

Ambiguity should be solved, as ambiguity in requirements is a major cause for
misunderstandings between stakeholders and designers. Thus, modeling lan-
guages should provide well-defined semantics, which increases machine read-

42 Chapter 4. User Requirements Modeling of Software-Intensive Systems

ability.

According to (IEEE, 1998), a SRS is correct if every requirement stated is one
that the software shall meet. The user can determine if the SRS correctly
reflects his/her actual needs. Thus, the modeling languages should facilitate
the user in this activity.

According to (IEEE, 1998), a SRS is complete if all significant requirements
of every type are included. Thus, the modeling languages should be able to
specify all types of requirements.

According to (IEEE, 1998), a SRS is verifiable if there is a cost-effective pro-
cess with which a person or machine can check that the software meets the
requirement. In general, any ambiguous requirement is not verifiable. Thus,
the modeling language should provide non-ambiguous constructions in order to
facilitate that the designer can create non-ambiguous requirements models.

According to (IEEE, 1998), a SRS is traceable if the origin of each of its require-
ments is clear, and if it facilitates the referencing of each requirement in future
development. Thus, the modeling language should provide means to trace the
requirement through design phases. In addition, the type of these relationships
should be explicit.

4.4.3 Resulting Table

Table 4.1 maps the list of requirements for modeling languages discussed in this
section with the modeling languages discussed in Section 4.3. In the table, NL
stands for Natural Language, SNL stands for Structured Natural Language,
XP stands for the XP User Stories, UC stands for both SysML and UML Use
Cases, RD stands for SysML Requirements diagram, and T stands for SysML
Tables.

From the table, it is clear that “Must have” requirements, such as “Priority be-
tween requirements”, “Requirements risks”, “Identify types of requirements”,
and “Ranking requirements by stability” are partially addressed or not ad-
dressed at all by most of the studied requirements modeling languages. The
next section presents the approach followed in order to try to fulfill all the given
requirements.

Another conclusion from the table is that some “Must have” requirements and
the majority of “Should have” requirements are fulfilled or at least partially
fulfilled by a combination of SysML Requirements diagram and SysML Tables.
Thus, a possible starting pointing to address all requirements is to extend these
SysML constructions.

4.4. Desirable Requirements Specification Properties for Software-Intensive
Systems 43

List of requirements NL SNL XP UC RD T
(M) Graphical modeling # # # G# #
(M) Human readable G# G# G# G#
(M) Independent towards methodology G# #
(M) Relationship between requirements # # # G#
(M) Relationship requirements/design # # # # G#
(M) Requirements risks # # G# # # #
(M) Identify types of requirements G# G# G# # # #
(M) Priority between requirements # G# # # #
(M) Non-functional requirements # G# G#
(M) Grouping related requirements # # # #
(M) Consistency # # # G#
(M) Modifiable G# G# G# G#
(M) Ranking requirements by stability # # G# # # #
(S) Solve ambiguity # G# # # G# G#
(S) Well-defined semantics # G# # G# G# G#
(S) Machine readable # # # G# G#
(S) Correctness G# G# G# G# G# G#
(S) Completeness G# G# G#
(S) Verifiable # G# # G# G# G#
(S) Traceable G# G# G# G# G#
(S) Type of relationship requirements # # # G#

Table 4.1: List of requirements properties and representation techniques

44 Chapter 4. User Requirements Modeling of Software-Intensive Systems

4.5 Proposed Approach

With the explicit choice to use SysML, the proposal starts with detailing SysML
capacities for Requirements Engineering (Sections 4.6, 4.7, and 4.8). In Sec-
tion 4.9, a classification for each atomic requirement is proposed, avoiding the
confusion of which type of requirement is written in the user requirements
document. The basic SysML Requirements diagram is extended with new re-
quirements properties such as priority. Individual requirements modeled by
the SysML Requirements diagram may be combined depending on their se-
mantics. This can be useful for the early discovery of subsystems, in project
management activities such as release planning, and to propose the system ar-
chitecture (Section 4.10). User requirements are also represented in a tabular
format, which may facilitate requirements tracing during the system life cycle.
This is important to know what happens when related requirements change or
are deleted, which improves traceability. Finally, Use Case diagrams are used
to represent the actors involved and the scenarios to be implemented (Section
4.11). Then, Use Cases are related to SysML Requirements using one of the
proposed relationships.

list of requirements
in natural language

+ explicit relationships between
requirements
requirements and use cases

+ improved structure

+ graphical representation

+ methodology freedom

structured
user requirements
(models and tables)

SysML Requirements
Diagram with extensions

SysML Use Case
Diagram

SysML Requirements
Tables

+ requirements risks

+ ranking requirements

+ identifying requirements types

Modeling User Requirements

Requirements
Elicitation
(outside thesis’
scope)

Requirements
Validation
(Chapter 8)

+ model non-functional requirements

+ grouping related requirements

Figure 4.1: Approach for Modeling User Requirements with SysML

Although the idea in this chapter is to use graphical models already in the early
phases of system development, natural language is still considered important.
Despite its problems, there are also advantages, as natural languages are the
primary communication medium between people.

After being structured and graphically represented (Fig. 4.1) using SysML
Tables, SysML Requirements and SysML Use Case diagrams, user requirements
are detailed into system requirements, being specified using other models, such

4.6. SysML Requirements Diagram 45

as other UML/SysML diagrams or using formal methods (Chapters 6 and 7).

The SysML constructions (diagrams and tables) for modeling user requirements
are explained in detail in the following section.

4.6 SysML Requirements Diagram

The SysML Requirements diagram helps in better organizing requirements,
and also shows explicitly the various kinds of relationships between different
requirements. Another advantage of using this diagram is to standardize the
way of specifying requirements through a defined semantics. As a direct con-
sequence, SysML allows the representation of requirements as model elements,
which means that requirements are part of the system architecture (Balmelli
et al., 2006).

The SysML requirements constructs are intended to provide a bridge between
traditional requirements management specifications and the other SysML mod-
els. When combined with UML for software design, the requirements constructs
provided by SysML can also fill the gap between user requirements specifica-
tion, normally written in natural language, and Use Case diagrams, used as
initial specification of system requirements.

A SysML Requirement can also appear on other diagrams to show its rela-
tionship to design. With the SysML Requirements diagram, visualization tech-
niques are applied from the early phases of system development. The SysML
Requirements diagram is a stereotype of the UML Class diagram, as shown in
Fig. 4.2.

<<metaclass>>

UML4SysML::Class

<<Stereotype>>

Requirement

- Text: String

- Id: String

Figure 4.2: Basic SysML Requirements diagram

Implementing all requirements in a single system release may be unattractive
because of the high cost involved, lack of sufficient staff and time, and even client

46 Chapter 4. User Requirements Modeling of Software-Intensive Systems

and market pressures. These difficulties make prioritization a fundamental ac-
tivity during the Requirements Engineering process. Prioritizing requirements
is giving an indication of the order in which requirements should be considered
for implementation. However, it is not always possible to plan a system release
based only on the set of more important requirements due to requirements re-
lationships. A better knowledge of requirements relationships may be useful
to make more feasible release plans, to reuse requirements and to drive system
design and implementation.

The SysML Requirements diagram allows several ways to represent require-
ments relationships. These include relationships for defining requirements hi-
erarchy, deriving requirements, satisfying requirements, verifying requirements
and refining requirements. The relationships can improve the specification of
systems, as they can be used to model requirements. The relationships: hierar-
chy, derive, master/slave, satisfy, verify, refine and trace are briefly explained
as follows.

In large, complex systems, it is common to have a hierarchy of requirements, and
their organization into various levels helps in dealing with system complexity.
For instance, high-level business requirements may be gradually decomposed
into more detailed software requirements, forming a hierarchy. Discovering the
hierarchy of requirements is an important design step in Requirements Engi-
neering. SysML allows splitting complex requirements into more simple ones,
as a hierarchy of requirements related to each other (represented by the symbol
⊕). The advantage is that the complexity of systems is treated from the early
beginning of development, by decomposing complex requirements.

The concept of hierarchy also permits the reuse of requirements. In this case,
a common requirement can be shared by other requirements. The hierarchy is
built based on master and slave requirements. The slave is a requirement whose
text property is a read-only copy of the text property of a master requirement.
The master/slave relationship is indicated by the use of the copy keyword.

The derive relationship relates a derived requirement to its source requirement.
During Requirements Engineering activities, new requirements are created from
previous ones. Normally, the derived requirement is under a source requirement
in the hierarchy. In a Requirements diagram, the derive relationship is repre-
sented by the keyword deriveReqt.

The satisfy requirement describes how a model satisfies one or more require-
ments. It represents a dependency relationship between a requirement and a
model element, such as other SysML diagrams, that represents that require-
ment. This relationship is represented by the keyword satisfy. One example is
to associate a requirement to a SysML Block diagram.

The verify relationship defines how a test case can verify a requirement. This

4.7. SysML Requirements Table 47

includes standard verification methods for inspection, analysis, demonstration
or test. For example, given a requirement, the steps necessary for its verification
can be summarized by a state-machine diagram. The keyword verify represents
this relationship.

The refine relationship provides a capability to reduce ambiguity in a require-
ment by relating a SysML Requirement to another model element. This rela-
tionship is typically used to refine a text-based requirement with a model. For
example, how a Use Case can represent a requirement in a SysML Require-
ments diagram. The relationship is represented in the diagram by the keyword
refine. The refinement is distinguished from a derive relationship in that a re-
fine relationship can exist between a requirement and any other model element,
whereas a derive relationship is only between requirements.

The trace relationship provides a general purpose relationship between a re-
quirement and any other model element. Its semantics has no real constraints
and is not as well-defined as the other relationships. For instance, a generic
trace dependency can be used to emphasize that a pair of requirements are
related in a different way not defined by other SysML relationships.

4.7 SysML Requirements Table

Requirements traceability is an important quality factor in a systems’s design.
A definition of requirements traceability is given in (Gotel and Finkelstein,
1994) as: “the ability to describe and follow the life of a requirement, in both a
forward and backward direction, i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through periods
of ongoing refinement and iteration in any of these phases”. Basically, require-
ments traceability helps in identifying the origin, destination, and links between
requirements and models created during system development.

Identifying and maintaining traces between requirements are considered impor-
tant activities during Requirements Engineering (Sahraoui, 2005). The activity
of requirements tracing is very useful, for example, to identify how requirements
are affected by changes. For instance, in later development phases a requirement
may be removed, and the related requirements may also be deleted or reallo-
cated. Another case is when a requirement has changed and the stakeholders
need to know how this change will affect other requirements. Traceability also
helps to ensure that all requirements are fulfilled by the system and subsystem
components. When requirements are not completely traced to the specific de-
sign elements, there is a tendency to lose focus as to the specific responsibility
of each design model. This can lead to costly changes late in the life cycle and
can also lead to incorrect or missing functionality in the delivered system. As

48 Chapter 4. User Requirements Modeling of Software-Intensive Systems

a matter of fact, important decisions on requirements and the correspondent
models are better justified when traceability is given proper attention (Ramesh
and Jarke, 2001). One way to manage the requirements traceability in SysML
is by using requirements tables.

Table 4.2: A SysML Hierarchy Requirements table
Id Name Type

SysML allows the representation of requirements, their properties and relation-
ships in a tabular format. One proposed table shows the hierarchical tree of
requirements from a master one. The fields proposed for Table 4.2 are the re-
quirement’s ID, name and type. There is a table for each requirement that has
child requirements related by the relationship hierarchy.

4.8 SysML Use Case Diagram

The SysML Use Case diagram is derived without important extensions from
the UML 2.0 Use Case diagram. The main difference is the wider focus, as the
idea is to model complex systems that involve not only software, but also other
systems, personnel, and hardware.

The Use Case diagram shows system functionalities that are performed through
the interaction of the system with its actors. The idea is to represent what the
system will perform, not how. The diagrams are composed of actors, use cases
and their relationships. Actors may correspond to users, other systems or any
external entity to the system.

There are four types of relationships in a Use Case diagram: communication,
generalization, include and extend. The communication relationship is used to
associate actors and use cases when they effectively participate in the use case
behavior. The generalization relationship occurs from actor to actor or from
use case to use case. The semantics is the same used in other diagrams, such as
the UML Class diagram: the child element inherits all behavior of its parent,
and can add some more specific behavior. The include relationship provides
a mechanism useful when a sequence of events is common to more than one
use case. These sequences of events can be encapsulated as one use case and
reused by other use cases. The execution of the base use case implies also in the
execution of the included use cases. The extend relationship provides optional
functionality, which extends the base use case at defined extension points under

4.9. User Requirements Classification 49

specified conditions. This relationship is useful when a use case is too complex,
with many alternatives and optional sequences of interactions. The solution is
to separate each alternative or option of the base use case into another use case,
and relate them using the extend keyword. The base use case is independent
of the extended ones, which may only be executed if the condition in the base
use case that causes it to execute is set to true.

The detailed sequence of events in a use case can be represented in different
manners. It is common to describe the sequence of events in structured lan-
guage based on a pre-defined pattern. Considering a model-driven approach, it
is also possible to specify use case behavior by Activity diagrams (Almendros-
Jiménez and Iribarne, 2005), Sequence diagrams (Almendros-Jiménez and Irib-
arne, 2007), or Petri nets (Soares and Vrancken, 2008d). Within SysML, a
use case may also be related to a SysML Requirements diagram. Which of
these techniques to use depends on the intended reader and the development
phase. A combination of techniques can also be used in order to present the
best manner to each stakeholder.

One important limitation of Use Cases diagrams is that their focus is on spec-
ifying only functional requirements. Non-functional requirements, such as per-
formance, and external requirements, such as interfaces, which are fundamental
in software-intensive systems, are not well-represented by Use Case diagrams.

4.9 User Requirements Classification

A common classification proposed for requirements in the literature is based on
the level of abstraction, in which requirements are classified as functional or non-
functional (Robertson and Robertson, 2006). Functional requirements describe
the services that the system should provide, including the behavior of the system
in particular situations. Non-functional requirements are related to emergent
system properties such as safety, reliability and response time. These properties
cannot be attributed to a single system component. Rather, they emerge as a
result of integrating system components. Non-functional requirements are also
considered quality requirements, and are fundamental to determine the success
of a system.

A table of contents of a Requirements Specification with the following require-
ments items: external interfaces, functions, performance, logical database, de-
sign constraints, and software system attributes, is suggested in (IEEE, 1998).
For sake of simplicity, and as some of the items can be considered non-functional
requirements (performance, design constraints and software system attributes),
or functional requirements (logical database), the second classification used in
this Chapter (after user vs. system requirements) is as follows:

50 Chapter 4. User Requirements Modeling of Software-Intensive Systems

• Functional: describes what the system should do, how the system should
react to particular inputs, and how the system should behave in particular
situations (the functionalities).

• Non-functional: are related to emergent system properties, such as reli-
ability and performance. These requirements do not have simple yes/no
satisfaction criteria. Instead, it must be determined whether a non-
functional requirement has been satisfied.

• External: a detailed description of all inputs into and outputs from the
software system, such as system, user, hardware, software and commu-
nication interfaces. It is an important classification to decompose the
system into subsystems, helping in the identification of system architec-
ture.

4.10 Extensions to SysML Requirements Diagram
and Tables

SysML is a highly customizable and extensible modeling language (OMG,
2008a). Organizations that develop systems for several different domains may
create a profile for each domain. Profiles may specialize language semantics,
provide new graphical icons and domain-specific model libraries. When creat-
ing profiles, it is not allowed to change language semantics; normally profiles
may only specialize and extend semantics and notations.

The basic SysML Requirements diagram is extended in this section. The pur-
pose is to try to address the identified shortcomings presented in Table 4.1.
The first extension is performed by creating stereotypes of stereotypes, in which
case they are named sub-stereotypes (Subsection 4.10.1). Sub-stereotypes are
similar to class inheritance in UML: they inherit any properties of their super-
stereotypes, and add their own. These stereotypes are used to express the
different types of user requirements proposed in Section 4.9. The second exten-
sion is to add properties besides the two default ones (Id and Text) (Subsection
4.10.2). The third extension is about grouping related requirements (Subsection
4.10.3). The last extension is to extend the SysML Table to provide require-
ments in a tabular format (section 4.10.4).

4.10.1 Types of Requirements

Stereotypes are the main mechanism used to create profiles and extensions to
the SysML metamodel. A stereotype extends a metaclass or another stereotype.
A well-known example of a stereotype for the UML metamodel are the classes

4.10. Extensions to SysML Requirements Diagram and Tables 51

control, entity and boundary, each one with its own graphical icon. When
used in a Class diagram, these stereotypes improve semantics for the diagram
readers.

<<Stereotype>>
Requirement

- Text: String
- Id: String

Non-functional
Requirement

- Type: String

Functional
Requirement

External
Interface

- Type: String

Figure 4.3: Extension to SysML Requirements diagram using the proposed user
requirements classifications

According to the classification proposed in Section 4.9, three requirements
stereotypes are proposed: Functional, Non-functional and External Interfaces
(Fig. 4.3). The Non-functional and External Interface requirements have the
property “type” that may have several tagged values. Examples of possible val-
ues are Performance, Security and Efficiency for Non-functional Requirements,
and User, Hardware, Software and Communication for External Interface re-
quirements.

4.10.2 Additional Properties

Properties add information to elements of the model, and are normally associ-
ated to tagged values encoded as strings. Tagged values add extra semantics
to a model element. Constraints may also be used as semantic restrictions ap-
plied to elements. One example of a constraint is the association of the “xor
constraint” specifying a restriction (exclusive or).

The Id and Text properties are default to the requirements diagram. As an
addition, the following properties are proposed: Risk, Source, Priority, Re-
sponsible, Version/Date, and Relationship. These additional properties are not
mandatory and may appear in any order. The requirements engineer may use
all of them, some or just the original properties. The following paragraphs
suggest a number of tagged values to be attached to each property, and also an
explanation of each new property.

A risk is an uncertain event or condition that, if it occurs, has a positive or
negative effect on a project’s objectives (PMI, 2008). The Risk property is
related to the requirement risks. There are at least two important values to

52 Chapter 4. User Requirements Modeling of Software-Intensive Systems

be added that concern risks: the probability of the risk becoming real and the
effects of its occurrence. The extensions proposed attaches a tuple R = {P,I}
to each requirement, in which P indicates the probability and I the impact of
the effects of occurring that risk. The suggested values for P are: very low, low,
moderate, high and very high. The suggested values for I are: insignificant,
tolerable, serious, very serious or catastrophic. Numeric values can also be
assigned, but may lead to confusion. The combination of both values can be
used as input to strategies to manage project risks.

If the requirement is derived from another requirement, it is useful to know
its source. The Source property describes where the derived requirement origi-
nated. This information is important to trace requirements during system life
cycle development.

According to the PMBOK (PMI, 2008), knowing which requirements have high
priority is useful for risk analysis and during system development. Prioritizing
requirements is giving an indication of the order in which requirements should
be addressed. A review of requirements prioritization techniques can be found
in (Greer, 2005). Some recommendations on how to prioritize requirements (or
triage) can be found in (Davis, 2003). A well-performed prioritization provides
better system release planning, based on balancing importance versus effort.
Ranking assignment is the simplest prioritization technique (Greer, 2005). Ba-
sically, it consists of dividing requirements into groups, giving to each require-
ment a label, such as (critical, standard, optional) or the MoSCoW labels. The
number of groups may vary, but within a group, all requirements have the same
priority.

At least the main stakeholder directly responsible for the requirement should
be known. In case there is more than one responsible stakeholder, the choices
are to write all of them, or just write the most important. This information is
represented in the Responsible property.

The requirements version is useful to show if the requirement was changed. This
property is fundamental, as uncontrolled changes are a source of problems in Re-
quirements Engineering. In addition to the version, the date of creation/change
is added.

In order to improve the activity of tracing requirements to design models, a
property that relates the specific requirement to models of the design is added.
Identifying and maintaining traces between requirements and design are con-
sidered important activities in Requirements Engineering (Sahraoui, 2005).

The resulting SysML Requirement with the proposed extensions is depicted in
Fig. 4.4.

4.10. Extensions to SysML Requirements Diagram and Tables 53

<<Stereotype>>

ExtRequirement

Risk = {P, I}

Source = String

Priority = String

Responsible = String

Id = String

Text = String

Version/Date = String

Relationship = String

<<Rationale>>

Risk = {P, I}, where

P = {very low | low | moderate | high | very high }
I = {insiginificant | tolerable | serious | very serious | catastrophic}

Priority = {Must | Should | Could | Won’t }
or

Priority = {critical | standard | optional}

<<Rationale>>

Figure 4.4: Extension to the SysML Requirements Diagram

4.10.3 Grouping Requirements

By modeling requirements with SysML, system complexity is addressed from
the early system design activities. Managing decomposition is a crucial task in
order to deal with complexity. Requirements may be decomposed into atomic
requirements, and may later even be related in the sense that together they are
capable of delivering a whole feature, i.e., they are responsible for a well-defined
subsystem.

Figure 4.5: Grouping Requirements

SysML requirements may be part of other SysML requirements, as a hierarchy.
Related SysML requirements can be grouped into a single SysML requirements
sub-package (similar to the UML Package diagram, which combines several class
diagrams), creating categories of requirements (Fig. 4.5).

4.10.4 Extension to the SysML Table

Table 4.3 shows an example of requirements data expressed in a tabular format.
The proposed table shows the requirement Id, the name of the requirement,
to which requirement it is related (if any), the type of relationship and the
requirement type. This allows an agile way to identify, prioritize and trace re-
quirements. As a matter of fact, whenever a requirement is changed or deleted,

54 Chapter 4. User Requirements Modeling of Software-Intensive Systems

the SysML Requirements Relationship Tables (SRRT) are useful to show that
this can affect other requirements.

Table 4.3: A SysML Requirements Relationship Table
Id Name RelatesTo RelatesHow Type

4.11 Case Study: RTMS User Requirements Mod-
eling with SysML

In this section, a modeling approach is applied to model the list of user require-
ments presented in Section 4.2.

4.11.1 SysML Requirements diagrams

The associated SysML Requirements diagrams for the list of user requirements
are depicted in Figs. 4.6 and 4.7, respectively concerning the Traffic Manager
and the Traffic Management Center requirements. For the sake of simplicity,
not all properties are included.

4.11.2 SysML Requirements Tables

Tables 4.4, 4.5, 4.6, 4.7, and 4.8 show SysML Requirements tables expressing
hierarchy for requirements TM4, TM7, TM9, TMC14, TMC15 and TMC16.

Table 4.4: Hierarchy Requirements table - TM4
Id Name Type

TM5 Region-wide traffic management Functional
TM6 Traffic flow managed optimally Functional

The other proposed type of table (SRRT), relating requirements and their rela-
tionships for each SysML Requirements diagram is presented in Tables 4.9 and
4.10.

4.11. Case Study: RTMS User Requirements Modeling with SysML 55

<<Non-functional Requirement>>
Intelligent management

of traffic-flow

Text = “It is expected that software
systems will be increasingly more ...”

Id = TM4
Type = Efficiency
Priority = Must

<<Functional Requirement>>
Region-wide traffic

management

Text = “To optimize traffic
flow, it is expected that ... “

Id = TM5
Priority = Must
Risk = {High, very serious}

Relationship = Use Case
“Manage region-wide
traffic flow”

<<Functional Requirement>>
Traffic flow managed

optimally

Text = “The traffic manage.
systems must have a conv...”

Id = TM6
Priority = Must
Risk = {Very High, serious}

Source = TM5, TM6

Source = TM4 Requirements sub-package

<<Functional Requirement>>
Task and scenario frames

Text = “It must be possible for
traffic managers/experts to...”
Id = TM7
Priority = Must

<<trace>>

<<External Interface>>
Gather and interpret information

Text = “The system should gather
and interpret all kinds of informa...”
Id = TM8
Priority = Should

Source = TM4

Type = System information

<<Functional Requirement>>
Simulation and Analytical Models

Text = “The system must support
the traffic managers/experts so ...”
Id = TM9
Priority = Must

Relationship = Block “Simulation”

<<Functional Requirement>>
Wide range of tasks and scenarios

Text = “The system must provide
means for expressing a wide ...”
Id = TM12
Priority = Must

Source = TM7

<<deriveReqt>>

Source = TM7

<<Functional Requirement>>
Access statistical data

Text = “The system must enable the
traffic managers/experts to access ...”
Id = TM10
Priority = Must

Source = TM9

<<Functional Requirement>>
Access transient data

Text = “The system must enable
the traffic managers/experts to ...”
Id = TM11
Priority = Must

Source = TM7

Requirements sub-package

<<Functional Requirement>>
Object towards task and scenario

Text = “The traffic management
will gradually evolve from object ...”
Id = TM13
Priority = Want

Source = TM12

<<
de

riv
eR

eq
t>

>

Figure 4.6: SysML Requirements diagram for Traffic Management Stakeholders

4.11.3 SysML Use Case diagrams

The associated Use Case diagrams are depicted in Figures 4.8 and 4.9, re-
spectively concerning the Traffic Manager and the Traffic Management Center
requirements.

56 Chapter 4. User Requirements Modeling of Software-Intensive Systems

<<Non-functional Requirement>>
Minimize operational costs

Text = “The operational costs of the
traffic management centers and
shared resources must be minimized ...”

Id = TMC14
Type = Efficiency
Priority = Must

<<Non-functional Requirement>>
Improve reaction speed

Text = “The operators’ reaction
speed must be improved, esp... “

Id = TMC15
Priority = Must
Risk = {Very high, very serious}

<<Non-functional Requirement>>
Improve decision accuracy

Text = “The operators’ decision
accuracy must be improved, ...”
Id = TMC16
Priority = Must
Risk = {Very High, serious}

Source = TMC15, TMC16

Source = TMC14

Requirements sub-package

<<Functional Requirement>>
Traffic manag. config. info.

Text = “The system must
provide means to manage ...”
Id = TMC17
Priority = Must

<<deriveReqt>>

<<External Interface>>
Tools perform work efficiently

Text = “The system must provide
tools so that the operators can ...”
Id = TMC18
Priority = Must

Source = TMC14

Type = Software

<<Functional Requirement>>
Make function/context obivous

Text = “The system must make it
intuitively obvious in which funct ...”
Id = TMC20
Priority = Must

<<Functional Requirement>>
Education material

Text = “The education material and
process necessary to train the oper ...”
Id = TMC21
Priority = Must

Source = TMC18, TMC19Source = TMC18, TMC19

Type = Performance Type = Performance

<<External Interface>>
Tools perform work effectively

Id = TMC19
Priority = Must

Type = Software

Text = “The system must provide
tools so that the operators can ...”

Requirements sub-package

<<deriveReqt>><<deriveReqt>>

Figure 4.7: SysML Requirements diagram for Traffic Management Center
Stakeholders

Table 4.5: Hierarchy Requirements table - TM7
Id Name Type

TM9 Simulation analytical models Functional
TM12 Wide range tasks scenarios Functional

4.11.4 Relationship between Use Cases and SysML Require-
ments Diagram

The SysML refine relationship can be used to relate requirements to other
SysML models. For example, the Requirements sub-package representing re-

4.11. Case Study: RTMS User Requirements Modeling with SysML 57

Table 4.6: Hierarchy Requirements table - TM9
Id Name Type

TM10 Access statistical data Functional
TM11 Access transient data Functional

Table 4.7: Hierarchy Requirements table - TMC14
Id Name Type

TM15 Improve reaction speed Non-functional
TM16 Improve decision accuracy Non-functional

Table 4.8: Hierarchy Requirements table - TMC15, TMC16
Id Name Type

TM18 Tools perform work efficiently Functional
TM19 Tools perform work effectively Functional

Figure 4.8: Use Case diagram for Traffic Manager

quirements TM5 and TM6 can be associated by the refine relationship to the
Use Case Manage region-wide traffic flow, which means that the requirements
are represented by the Use Case. Figure 4.10 shows this example. Later, this
Use Case can be detailed by including other Use Cases and relationships, or
even by using other SysML diagrams, such as the Sequence diagram. As a re-
sult, one knows which Sequence diagram models a specific SysML Requirement,
which narrows the gap between requirements modeling and software design.

58 Chapter 4. User Requirements Modeling of Software-Intensive Systems

Table 4.9: SysML Requirements relationship table for TM

Id Name RelatesTo RelatesHow Type
TM7 Task/scenario frames {TM5, TM6} trace Functional
TM8 Gather/interpret info. TM9 deriveReqt External
TM13 Object task/scenario TM12 deriveReqt Functional

Table 4.10: SysML Requirements relationship table for TMC

Id Name RelatesTo RelatesHow Type
TMC17 T.M. config. inf. {TMC15, TMC16} deriveReqt Funct.
TMC20 Make context obv. {TMC18, TMC19} deriveReqt Funct.
TMC21 Education material {TMC18, TMC19} deriveReqt Funct.

Figure 4.9: Use Case diagram for Traffic Management Center

<<Functional Requirement>>
Region-wide traffic

management

Text = “To optimize traffic
flow, it is expected that ... “

Id = TM5
Priority = Must
Risk = {High, very serious}

Relationship = Use Case
“Manage region-wide
traffic flow”

<<Functional Requirement>>
Traffic flow managed

optimally

Text = “The traffic manage.
systems must have a conv...”

Id = TM6
Priority = Must
Risk = {Very High, serious}

Source = TM4 Requirements sub-package

Source = TM4

Manage region-wide
traffic flow

<<Refine>>

Figure 4.10: Example of the Refine relationship

4.12 Conclusions

It is essential to have properly structured and controlled requirements specifica-
tions that are consistent and understandable by stakeholders. This is addressed

4.12. Conclusions 59

in this chapter by presenting an approach to model and analyze a list of user
requirements using the SysML Requirements diagram, the SysML Table, and
the SysML Use Case diagram.

As usual in system development, changes in requirements are likely to happen,
and using the SysML Requirements diagram is useful for developers to manage
these changes. For instance, when a stakeholder asks for a change in one spe-
cific requirement, using the many relationship types that describe traceability
between models helps to uncover possible impacts in other models. The rela-
tionships are also useful to aid in requirements prioritization in order to decide
which requirements should be included in a certain system release. Another ad-
vantage of using the SysML Requirements diagram is to standardize the way of
specifying requirements through a defined semantics. As a direct consequence,
SysML allows the representation of requirements as model elements.

In this chapter, a classification of user requirements is proposed. Then, the
SysML Requirements diagram is introduced and the requirements relationships
are detailed. SysML tables are useful to represent decomposition in a tabular
form and to improve traceability, which is an important quality factor when
designing software-intensive systems. The SysML Requirements diagram is ex-
tended with new stereotypes including the proposed classification, which distin-
guish requirements as Functional, Non-functional or External. Some properties
not presented in the original SysML Requirements diagram are added in or-
der to represent important requirements characteristics. These properties were
chosen based on an extensive literature review.

The list of desirable properties of requirements specification, shown in Table
4.1, is used again, this time to evaluate the approach proposed in this chapter
(see Table 4.11). In the list, SRDE stands for the extended version of the
SysML Requirement diagram, and SRRT for an extended version of SysML
Tables used for Requirements Engineering activities.

From the list, it is clear that the proposed user classification in Section 4.9 and
the extensions in Section 4.10 fulfill almost all the properties identified in Ta-
ble 4.1. The partially fulfilled properties, “Well-defined semantics” and “Solve
ambiguity”, are not fulfilled even when the extended SysML Requirements di-
agram and SysML Tables are used. These properties are solvable by increasing
formality for the modeling language, i.e., by using formal methods, which is
the topic of Chapter 7. However, when using formal methods, other properties,
such as “human readable” may be lost.

In (IEEE, 1998), a list of characteristics that are expected for a software re-
quirements document is given. To finalize the evaluation, how each of these
characteristics are addressed by the approach presented in this chapter is briefly
presented as follows:

60 Chapter 4. User Requirements Modeling of Software-Intensive Systems

List of requirements SRDE SRRT
(M) Graphical modeling G#
(M) Human readable G# G#
(M) Independent towards methodology
(M) Relationship between requirements
(M) Relationship requirements/design G#
(M) Requirements risks
(M) Identify types of requirements
(M) Priority between requirements #
(M) Non-functional requirements
(M) Grouping related requirements
(M) Consistency
(M) Modifiable
(M) Ranking requirements by stability #
(S) Solve ambiguity G# G#
(S) Well-defined semantics G# G#
(S) Machine readable G#
(S) Correctness G# G#
(S) Completeness
(S) Verifiable G# G#
(S) Traceable
(S) Type of relationship requirements
Table 4.11: List of requirements properties and representation techniques

4.12. Conclusions 61

Correctness: according to (IEEE, 1998), no technique can ensure correctness.
However, the SysML Requirements diagram provides the possibility of
relating requirements to other design models, facilitating that the user
can determine if the SRS correctly reflects the actual needs.

Unambiguity: ambiguity can be solved with the use of formal methods, which
is the topic of Chapter 7. The issue is that natural language is ambigu-
ous, but unavoidable in the early phases of Requirements Engineering.
For reasons already discussed in Section 2.2.1, human readability of re-
quirements is diminished when formal methods are used.

Completeness: the proposed types for requirements are well-described with
the extensions proposed for the SysML Requirements diagram and Tables.
Thus, all types of requirements can be modeled.

Consistency: conflicts between requirements can be discovered by explicitly
describing their relationships, and the type of each relationship. In ad-
dition, by grouping related user requirements, conflicts within a group of
requirements and between groups can be discovered.

Ranked by importance: Typically, not all requirements are equally impor-
tant. The approach presented in this chapter fulfill this characteristic by
adding two properties to the basic SysML Requirements diagram: Risk
and Priority.

Ranked by stability: Stability can be expressed in terms of the number of
expected/performed changes to any requirement. This is addressed in
this chapter by controlling version and date of a requirement, through
the additional property Version/Date.

Verifiable: as ambiguity is not solved with the application of SysML, this
characteristic is not fully present. However, the advantage of using SysML
is the possibility of relating SysML Requirements to formal design models
that can be formally verified.

Modifiable: The requirements document is modifiable if its structure and style
are such that any changes to requirements can be made completely, and
consistently, while retaining the structure and style. Expressing each re-
quirement separately is highly desirable. This characteristic is addressed
in this chapter by modeling requirements using a well-defined SysML Re-
quirements diagram, and by organizing the relationship between require-
ments.

Traceable: A requirement is traceable if its origin is clear and if it is possible to
refer to it in future development. The solution proposed in this chapter is

62 Chapter 4. User Requirements Modeling of Software-Intensive Systems

to create SysML tables expressing the relationships between requirements
and other design models.

The proposed approach presented in this chapter uses two SysML diagrams and
SysML tables. This is necessary because multiple aspects of user requirements
modeling are covered, which is useful as multiple stakeholders are involved.
Thus, the SysML Use Case provides systems’ view of functional requirements
and actors, delimiting the system scope. Requirements relationships and prop-
erties are graphically represented using the SysML Requirements diagram, and
SysML tables gives a tabular format for requirements.

Finally, requirements are important to determine the architecture. For instance,
external requirements help in delimiting the system context in relation with its
environment. When designing the architecture, at least part of the functional
requirements should be known. In addition, the non-functional requirements
that the architecture has to conform with, such as portability, performance,
and other quality attributes (security, modifiability), should be made explicit.
Domain architecture and software architecture are, respectively, the topics of
chapters 5 and 6.

Chapter 5

Architecture for Road Traffic
Management Systems

The focus of this chapter is on architectures for Road Taffic Management Sys-
tems (RTMS). Section 5.1 introduces the importance of defining a domain archi-
tecture and position the relationship between the proposed architectures in the
thesis. The Architecture for Traffic Control (ATC), used in The Netherlands,
is described in Section 5.2. This architecture is based on a top-down, central-
ized control, which has some drawbacks and limitations. These shortcomings
are used as input for a set of requirements (Section 5.3) for an extension to the
ATC architecture, the Distributed Traffic Control Architecture (DTCA), which
is explained in Section 5.4. The DTCA architecture extends ATC by adding
multi-agent control. Finally, a case study on a real-life implementation of a
RTMS is presented in Section 5.5. The chapter ends with conclusion and a link
to the next chapter (Section 5.6).

5.1 Positioning Multiple Architectures

ITS Architecture is defined in (McQueen and McQueen, 1999) as a framework
specifying the technical, organizational, and commercial features of the future
system in an outline and graphical format, showing how essential subsystems
and components will work together. Developing an ITS architecture provides
many benefits. The architecture shows, at an abstract level, the whole pic-
ture, and help stakeholders to understand the consequences of the decisions
that are taken prior to investment in the design and development of the ele-
ments of the system. The architecture shows how the many subsystems and
components are interconnected, how they cooperate, and the boundaries and

63

64 Chapter 5. Architecture for Road Traffic Management Systems

interfaces between each other. This is useful, for instance, for vendors creating
their products according to proposed standards. In addition, the architecture
enables the identification of major risks and how to mitigate them. Finally,
better understanding of the whole is useful to create project plans with realis-
tic budget and duration. Due to its importance, creating an ITS Architecture
to develop ITS is common in many countries. Some examples follow below.

The first version of The National ITS Architecture (Stough, 2001) was pro-
posed by the U.S. Department of Transportation in 1996. The architecture is
an interconnected presentation of user services, logical architecture, physical
architecture, implementation, and standards-oriented components. Currently
there are 33 User Services which describe the basic purpose of a system from
the user’s perspective and are starting points for developing a system. Exam-
ples of User Services are “Traffic Control” and “Incident Management”. Each
User Service is defined by a set of requirements, that are further specified by
a series of data flows, describing what is called the Logical Architecture. The
detailed specifications of the subsystems, major components and the data flow
interface are described in the Physical Architecture.

The Japan ITS Architecture (VERTIS, 1999) was proposed in order to deal
with the original User Services which respond to Japan’s own natural and so-
cial environment. It is comparable to the National Architecture in the sense
that it defines User Services that are later specified in a Logical and Physical
Architecture. The major difference is that within the Japan ITS Architecture
it was decided to use the object-oriented paradigm to describe the Logical and
the Physical Architectures. The chosen modeling language was UML.

According to the definition of architecture in Chapter 2, both the National
Architecture and the Japan Architecture are more related to software detailed
design and less to the domain architecture.

In Europe, the European ITS Framework Architecture (Jesty et al., 2000) was
created in order to provide guidelines and a common approach to the plan-
ning, development and implementation of ITS. It was created by the KAREN
Project (Keystone Architecture Required for European Networks) mainly with
focus on road-based applications. The European ITS Framework Architecture
is designed to provide a flexible high level framework that individual coun-
tries can tailor to their own requirements. As a matter of fact, national ITS
Architectures were created by European countries, such as ACTIF (France),
ARTIST (Italy), TTS-A (Austria) and TEAM (Czech Republic), based on a
common approach and methodology, but each with focus on the aspects of lo-
cal importance. There have been attempts to develop an ITS architecture for
the Netherlands, but only the traffic control part has reached maturity. The
architecture is described in the next section.

5.2. Architecture for Traffic Control 65

Fig. 5.1 positions this chapter and the next one, and the relationship between
the multiple architectures cited in this thesis. The proposal in this thesis is
that each ITS domain (e.g., Traffic Control (TC), Electronic Toll Collection
(ETC)) should have an architecture. This is important from the practical
point of view, as more specific domain architectures provide better separation
of concerns and more abstract levels, which are considered good principles of
Software Engineering (Bourque et al., 2002) (see Section 1.1) and scientific
knowledge in general (Dijkstra, 1982).

ITS Architectures

TC

ATC

DTCA

Software Product
Line Architecture

Chapter 6

Chapter 5

ETC

Figure 5.1: Relationship between ITS, Traffic Control, and Software Product
Line Architectures.

Architecture for Road Traffic Control (RTC), i.e., the domain architecture, is
the main topic of this chapter. First the ATC is presented, and due to its
drawbacks and limitations, the DTCA is proposed as an extension. The im-
plementation of a family of systems that conform to this architecture and its
requirements is the topic of Chapter 6, in which a software product line archi-
tecture is proposed. This approach to architecture, in which two architectures
are proposed, is used to cover the gap found in practice between traffic engineers
and software engineers (see Section 3.4).

5.2 Architecture for Traffic Control

The ATC (Architecture for Traffic Control) (Vrancken et al., 1998; Taale et al.,
2004; Stoelhorst and Middelham, 2006) can be used to develop and implement
a set of coherent traffic management measures and the necessary technical and
information infrastructure. The goal of ATC is to be a domain architecture to
build RTC systems. Therefore, the ATC should be combined with a software
architecture as basis to develop the software systems.

66 Chapter 5. Architecture for Road Traffic Management Systems

The ATC framework, showing the main parts of the architecture, is depicted
in Fig. 5.2. The three horizontal layers are most relevant here. Bottom layers
provide services for immediately top layers.

Technical Infrastructure

Applications

RTC

Information Organization

Figure 5.2: Architecture Framework for Traffic Control.

Within a country, the network is divided into a number of regions, under the
control of a TMC (Traffic Management Center). Within the region of a single
TMC, attention is not given to all roads and junctions homogeneously, but
attention is focussed on a number of areas where traffic is more problematic
than at others, such as the belt roads around cities (Vrancken and Soares,
2009a).

The Applications and Technical Infrastructure layers form the technical parts
of the architecture. The Applications layer describes the applications to im-
plement the RTC features mentioned in the RTC layer, such as the control
systems for each of the local measures, and the operator’s user interface and
support tools in the TMC. This layer includes roadside sensors and actuators
used in control systems. Applications in this layer can be developed based on
a common software architecture, which is discussed in Chapter 6.

The Technical Infrastructure is about the data communications network and
the processing platforms along the roads and in the TMCs. This layer also
comprises a vitally important middleware layer that facilitates high-level com-
munication between application components.

The RTC layer describes the ATC approach to RTC, in typical traffic engineer-
ing terms. This approach is typically single-agent, top-down control. RTC is
one of the main activities within road traffic management, with the purpose of
influencing traffic streams in order to improve traffic flow. All coordination of
local measures is done via the TMCs and ultimately via the desk and the tools
of human traffic operators.

The RTC layer can be expanded into the layered model depicted in Fig. 5.3.
The purpose of this model is to show how society goals in traffic management,
such as improved travel time reliability and less delay, can be translated, in five

5.2. Architecture for Traffic Control 67

steps, into the signals shown to drivers.

Control strategies are general principles and strategies for RTC. Examples are
the prioritization of certain types of roads, such as belt roads around cities, and
the restriction of slow traffic to the right-most lane (in countries with driving
on the right). Control strategies hold in principle for the whole network under
consideration and do not refer to any specific part of the network.

Control tactics are a set of general rules and principles to improve traffic con-
ditions. Examples are buffering of less important traffic streams and rerouting
of traffic streams to relieve more important roads. Control tactics focus on a
specific region of the network.

The Control Scenarios layer is the layer at which operators in TMCs work. In
this layer the control tactics for a specific part of the network is implemented.
Control Scenarios are integrated programs of control measures that cover the
area under control of the TMC. The focus of control scenarios are a specific
region on specific moments in time. Scenarios are developed off-line and their
execution is triggered by and responds to certain recurring patterns in traffic,
such as the morning rush hour. The Control Scenario that matches best with
the current traffic state is determined automatically on-line. In principle, each
recurring pattern found in traffic has its own Control Scenario.

Control Measures are the usual local measures, such as traffic signals, ramp
metering, speed instructions and warning signals. All coordination of local

Signals

Control Measures

Control Scenarios

Control Tactics

Control Strategies

Society Goals

Figure 5.3: The RTC layer expanded.

68 Chapter 5. Architecture for Road Traffic Management Systems

measures takes place at the Control Scenarios layer. In ATC, local measures
are not supposed to communicate with each other. Instead, they receive in-
structions top-down from the TMCs.

Finally, the Signals layer deals with the various visual signals present on the
road to be shown to drivers (e.g., VMSs, traffic signals).

The ATC is extended in the next Sections.

5.3 Requirements for the Distributed Traffic Control
Architecture

ATC has a number of limitations, as discussed in (Soares and Vrancken, 2007a),
primarily caused by its top-down, single-agent nature. First of all, single-agent
(also called centralized or top-down) control is known to have serious limitations
in handling complex situations, in addition to limited scalability (the controlled
area cannot easily be extended because that would soon overload the operator),
communication overhead and limited computational capacity. Second, the sce-
narios are optimized to a specific traffic pattern, which may differ from real
cases. In practice, the real traffic situation will always differ somewhat from
the situation the scenario was developed for, making the scenario less optimal.
Third, scenarios are activated by triggers which are difficult to implement in an
optimal, proactive way. For instance, a scenario to prevent rush hour congestion
may be less optimal if the congestion has already started caused by an accident.
A fourth problem with scenarios is that they are difficult to combine. Often
one is tempted to combine scenarios because of the many different situations
one has to cope with in the road network.

To overcome these problems a new architecture is proposed in Section 5.4 based
on additional functional and non-functional requirements presented as follows.

5.3.1 DTCA Functional Requirements

F1 DTCA - ATC should be extended to overcome its limitations.

F2 DTCA - It should be adaptive to the real traffic state thus making RTC
less dependent on scenarios.

F3 DTCA - It should be able to predict the traffic state within a certain time
frame enabling the proactive countering of congestion.

F4 DTCA - It should function automatically and at a lower level, thus being
able to more finely apply measures (like buffering) over multiple locations
in the network.

5.3. Requirements for the Distributed Traffic Control Architecture 69

F5 DTCA - It should decentralize the control.

F6 DTCA - It should work together with ATC and existing applications.

5.3.2 DTCA Non-Functional Requirements

A number of non-functional requirements can be derived that give guidance for
the additions and choices in the technical layers.

<<Functional Requirement>>
ATC extension

Text = �ATC should be extended
to overcome its limitations �

ID = �F1_DTCA�

<<Functional Requirement>>
F2_DTCA

Text = �It should be adaptive
to the real traffic state thus
making RTC less dependent
on scenarios�

ID = �F2_DTCA�

<<Functional Requirement>>
F3_DTCA

Text = �It should be able to
predict the traffic state within
a certain time frame enabling
the proactive countering of
congestion.�

ID = �F3_DTCA�

<<Functional Requirement>>
F4_DTCA

Text = �It should function
automatically and at a lower
level, thus being able to more
finely apply measures over
multiple locations in the
network�
ID = �F4_DTCA�

<<Functional Requirement>>
F5_DTCA

Text = �It should decentralize
the control�

ID = �F5_DTCA�

<<Functional Requirement>>
F6_DTCA

Text = �It should work
together with ATC and
existing applications�

ID = �F6_DTCA�

<< Non-Functional
Requirement >>

NF1_DTCA

ID = �NF1_ �DTCA

<< Non-Functional
Requirement >>

NF2_DTCA

ID = � �NF2_DTCA

<< Non-Functional
Requirement >>

ID = �NF3_DTCA�

<< Non-Functional
Requirement >>

ID = �NF4_ �DTCA

<< Non-Functional
Requirement >>

ID = �NF5_DTCA�
NF3_DTCA NF4_DTCA

NF5_DTCA

Type = �Responsiveness �
Type = �Flexibility� Type = �Scalability� Type = �Interoperability� Type = Interoperability

<
<

deriveR
eqt>

>

<
<

d
e

riv
e

R
e

q
t>

>

<<
deriveR

eqt>>

<<
trace>>

<< tr
ac

e>
>

<< d
er

iv
eR

eq
t>

>

Text = Interoperability
between legacy systems

Priority = �Should�
Priority = �Should�

Priority = �Should�

Priority = �Should�

Priority = �Should�

Priority = �Should� Priority = �Must�Priority = �Must�

Risk = {high, very serious}
Priority = �Must�

Priority = Must

Risk = {moderate, serious}

Risk = {high, very serious}
Risk = {high, very serious}

Risk = {high, serious}

Figure 5.4: SysML Requirements diagram for DTCA

NF1 DTCA - Flexibility The way to do network-level control is still largely
to be discovered, by simulation but also by real-life experiments. This
means that control systems should allow frequent adaptations, which
makes flexibility (more precisely adaptability) a prime requirement.

NF2 DTCA - Scalability The scalability of multi-agent control should not
be hampered by any technical aspects, thus the technical part of control
systems must also be scalable.

NF3 DTCA - Timely responsiveness One of the drawbacks of distributed
systems is related to a possible poor performance. The performance prob-
lem is compounded by the fact that communication, which is essential in a
distributed system, is typically quite slow. RTC is a form of process con-
trol. Therefore, as mentioned above, real-time properties of applications
are a major concern.

70 Chapter 5. Architecture for Road Traffic Management Systems

NF4 DTCA - Interoperability When experimenting with different forms of
multi-agent control, applications should be easy to connect to and oper-
ate with, which means that interoperability between RTC applications is
important.

NF5 DTCA - Interoperability with legacy systems The presence of
legacy systems along the roads, and the circumstance that it would be
too costly to ignore the existing systems, implies that interoperability
with legacy systems is an important requirement.

Table 5.1: Hierarchy Requirements table - F1 DTCA
Id Type

F2 DTCA Functional
F3 DTCA Functional
F4 DTCA Functional
F5 DTCA Functional
F6 DTCA Functional

A SysML Requirements diagram relating the functional and non-functional
requirements is given in Figure 5.4.

A SysML Table for requirements hierarchy related to requirement “F1 DTCA”
and a SysML Requirements Relationships Table are shown, respectively, in
tables 5.1 and 5.2.

In order to fulfill these requirements, the ATC architecture is extended towards
a distributed architecture (DTCA) in the next section.

Table 5.2: SysML Tables for DTCA Requirements Relationships
Id RelatesTo RelatesHow Type

NF3 DTCA F2 DTCA deriveReqt Responsiveness
NF1 DTCA F4 DTCA deriveReqt Flexibility
NF2 DTCA {F4 DTCA, F5 DTCA} deriveReqt Scalability
NF4 DTCA F6 DTCA trace Interoperability
NF5 DTCA F6 DTCA trace Flexibility

5.4. Distributed Traffic Control Architecture 71

5.4 Distributed Traffic Control Architecture

DTCA consists of a number of additions to ATC. In the RTC layer of ATC,
bottom-up control is added as an extra measure in the Control Measures sub-
layer (Figure 5.3). This measure entails that network software elements such
as junctions and road segments between junctions (links), but also routes and
origin-destination pairs, become active agents. Agents are autonomous software
entities capable of communication and cooperation (Wooldridge, 2009)

Network elements measure their own traffic state and communicate with other
network elements, mostly the adjacent ones (in the case of junctions and road
segments). The communication consists of requests for information about traf-
fic states in nearby elements and of requests to take certain measures, such as
reducing the inflow to the requesting element. The bottom-up control is in-
tended as an addition to and fine-tuning of the top-down control, certainly not
as its replacement.

On itself, it is not obvious why the addition of multi-agent control could be
useful, as multi-agent systems are usually not very predictable in their behavior.
However, there are reasons why, in this case, this addition looks promising.
Due to the many local measures spread in the road network, control of traffic
is already strongly distributed. The essential addition in DTCA is that it
makes local measures communicate with each other. More precisely, measures
are assigned to network elements and the network elements communicate with
each other about the measures. This means that no options are lost and a wide
realm of new control options is added. Moreover, such local, direct influencing
of network elements among themselves gives a much quicker, real-time response
to local changes in traffic and a much shorter control loop than via the TMC.
In addition, multi-agent control, by its local nature, can easily scale to any size
of network.

The inevitability of multi-agent control can be argued as follows (Vrancken and
Soares, 2010). No decision making entity has infinite capacity. Actually, the
capacity of both automated and of human decision making is rather limited.
This means that each control entity has a limited geographical extent; in prac-
tice this may be as small as a single junction. These control areas touch upon
each other at their borders, which means that all the ingredients for a typical
multi-agent control setting are present: many entities, each with its own control
area, and with mutual influence because the areas have common borders.

Given the addition of multi-agent control in the RTC layer of ATC, and the
ensuing non-functional requirements, the following additions to ATC in the
technical layers are proposed.

In the Applications layer, components are added that represent the communi-

72 Chapter 5. Architecture for Road Traffic Management Systems

cating network elements, such as road segments, junctions and routes. This
is an immediate consequence of the choice to add multi-agent control to the
RTC layer. The multiple views used to implement the software applications
are discussed in Chapter 6.

In the Technical Infrastructure layer of ATC, an explicit choice is made for
asynchronous Publish-Subscribe middleware (see the implementation architec-
ture in Section 6.3). This is the most appropriate kind of middleware, given
the requirements of real-time properties and scalability (Eugster et al., 2003;
Fiege et al., 2006a; Lea et al., 2006). In addition, it is known for efficient use of
network bandwidth. This kind of middleware can accommodate both the top-
down and the bottom-up control mechanisms, in addition to the communication
needed for data collection.

Summarizing, the DTCA consists of the ATC architecture with a number of
additions to the horizontal layers of Figure 5.2 for multi-agent control. The
network elements, such as junctions and road segments, become control agents
that communicate with each other, distributing the control. The result is that
DTCA is responsive to the actual traffic state as opposed to the use of fixed
scenarios, which only cover a small number of possible traffic states.

5.5 Case Study: HARS

The DTCA has been applied in an experimental implementation: the HARS
system (HARS: Het Alkmaar Regelsysteem, the Alkmaar control system in
Dutch) (Eurlings, 2008). Alkmaar is a medium sized Dutch city with seri-
ous traffic problems on its belt road, which is part of a provincial north-south
corridor (Figure 5.5). It consists of motorways, as well as provincial and urban
roads.

The goal of HARS was therefore first of all to tackle the traffic problems in
Alkmaar. As an implementation of DTCA, the goal of the system was to
prove the concepts behind DTCA, especially the assumption that in RTC, a
dual control strategy is stronger than just top-down control. HARS can be
considered successful if it has a noticeable, positive effect on traffic in Alkmaar,
if the multi-agent control plays a substantial role in this and if the system turns
out to meet the non-functional requirements mentioned in Subsection 5.3.2.

Three types of sensors were used: velocity-intensity measure points, the induc-
tion loops at traffic signals sites, and a traffic simulation model called MaDAM
(OmniTRANS, 2006). The induction loops and measure points are sensors
that collect real-time traffic information from the environment, such as velocity
and density. MaDAM acquires the information from the inductive loops and

5.5. Case Study: HARS 73

Figure 5.5: The Belt road around Alkmaar.

velocity-intensity measure points and determines what the traffic state is on
links that have no sensors of their own. Traffic signals react based on infor-
mation sent by the links. They are used to reduce or increase the intensities
of traffic flows by adjusting the length of green time for each road section (see
Section 7.4).

HARS takes the existing local RTC measures and their systems, such as traffic
signals at junctions and VMS as starting point, and adds a software overlay layer
to these local measures. VMS are used for rerouting and informing drivers on
the current traffic state of routes downstream of the VMS. In case of congestion,
drivers will thus know the extent of the congestion that they can expect. More
importantly, route information enables drivers to make a different route choice.
Drivers are thus diverted away from the congested road with positive effects on
its congestion.

The top-down control part is in accordance with ATC. It consists of control
scenarios, defined on the basis of regularly occurring traffic patterns, such as
the morning rush hour or the weekend exodus, made proactive by MaDAM.
This simulation model generates traffic states half an hour ahead, in steps
of 5 minutes. MaDAM also has a role in supplying data at locations where
the system assumes a sensor for traffic data collection, but no physical sensor
happens to be present.

74 Chapter 5. Architecture for Road Traffic Management Systems

In HARS, bottom-up control is performed by so-called capacity services which
actually are actions configured in agents. Each network element E (links, junc-
tions) offers, to each adjacent network element F downstream of E, the ser-
vice of reducing inflow into F. More precisely, links compare the information
about their traffic state with a so-called “reference framework” (Rijkswater-
staat, 2003). The reference framework describes the criteria that the traffic
state on the links should ideally meet. If the traffic state differs from the cri-
teria, links will take appropriate action. They will communicate with other
links and ask them to perform appropriate services to induce a traffic state
that meets the criteria. The first capacity service to be implemented is called
“reduce outflow”, which is offered by all links. When called upon, a link will
reduce its outflow by setting different green times for the traffic signals. If the
link does not have a traffic signal (or any other way to implement the service)
it will forward the service-call to his upstream neighboring link(s). Also, when
the link calculates that the reduction in green time (and thus in outflow) will
make it miss its own reference framework, the link will send a corresponding
“reduce outflow” request to its predecessors. This reactivity is one character-
istic of an agent and makes the system intelligent. If there is more than one
upstream link, the link will divide the request among the links. In this divi-
sion, the traffic states on the upstream links as well as their priorities within
the network are taken into account. First, links with remaining buffer-capacity
will be allocated as much of the service request as their buffer capacity allows.
Second, links with higher priority only have to realize a smaller portion of the
outflow reduction.

5.6 Conclusion

RTMS are distributed real-time systems, and due to this, are systems that can
benefit if developed with a well-defined architecture. The focus in this chapter
was on the domain architecture.

The addition of multi-agent control to ATC leads to DTCA, the Distributed
Traffic Control Architecture. A real-life implementation of a DTCA-based con-
trol system has been realized on the belt road of the Dutch city of Alkmaar,
The Netherlands. This implementation can serve as a real-life test bed for
multi-agent RTC.

In this chapter, an hybrid approach combining both top-down (central) and
bottom-up (distributed) control strategies for RTC is proposed. The bottom-
up approach will not replace the top-down approach. In fact, the bottom-up
approach is intended as a supplement to the top-down approach. By applying
this approach to traffic control systems, it can have advantages from both the

5.6. Conclusion 75

top-down and bottom-up approaches. As a matter of fact, the use of real-
time data combined with historical statistics enables the system described in
the case study to be more predictive than using off-line control scenarios only,
which enhances the efficiency of traffic.

The layeredness of DTCA contributes to the flexibility non-functional require-
ment. The choice for publish-subscribe middleware contributes to flexibility,
scalability, real-time properties and the interoperability with legacy systems.
HARS illustrated that DTCA-based control systems can be deployed on the
existing technical infrastructure and existing sensors and actuators, thereby
contributing to the future-proofness of these parts. Only the interoperability
with other DTCA-based control systems has not been demonstrated, but this
is most probably easier than interoperability with legacy systems and is also
taken care of by the middleware.

The next chapter focus on a multi-view software architecture used as the basis
for a family of RTMS, in which HARS is included.

76 Chapter 5. Architecture for Road Traffic Management Systems

Chapter 6

Software Product Line
Architecture for Distributed
Real-Time Systems

This chapter starts by showing the importance of having a well-defined software
architecture for designing distributed real-time systems (Section 6.1). Due to
the system characteristics and considering the domain architecture presented
in the previous chapter, the 4+1 View Model of Architecture is chosen as the
architectural framework in this chapter. Section 6.2 presents the reasons why,
how and where SysML is included as modeling language in the 4+1 View Model
of Architecture, to be used together with UML. A Software Product Line Archi-
tecture for RTMS is presented in Section 6.3. The models for each view of the
architecture are designed using a combination of UML and SysML diagrams.
This architecture is the basis for the design of a family of RTMS presented as
case studies in Section 6.4.

6.1 The Importance of Software Architecture

The domain architecture proposed in Chapter 5 is useful to define road traffic
control systems from the traffic engineering point of view. It can be used as an
input for the software architecture, and for communicating and making explicit
decisions related to business. Typically the domain architecture proposes a
family of systems. This is necessary in order to avoid stovepipe systems, as
the target family of systems should share many assets. However, the domain
architecture is too high-level to be used as a basis for detailed design. The basis
for software design is better represented by a software architecture. The two

77

78
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

architectures should be compatible. For instance, as the domain architecture
uses a layered approach for representing diverse abstraction levels, the software
architecture should provide a layered approach as well.

Software architecture is the fundamental organization of a system, embodied in
its components, their relationships to each other and the environment, and the
principles governing its design and evolution (ANSI/IEEE, 2000). In simple
terms, the description of the architecture of a software system involves the ele-
ments that compose the system and how they interact, including the interaction
points.

Software architecture is part of design, but with focus on major elements, such
as major classes and their communications, patterns, frameworks, layers, sub-
systems, components and interfaces (Kruchten, 2003). The way these elements
are distributed, communicate with each other and with the system environment
is also described in the software architecture. A common misconception is that
software architecture is only about structure of elements and their relationships
(Kruchten, 2003). Software architecture is also about behavior and interfaces
between elements.

Decisions made when defining the software architecture have long-lasting im-
pact on the design and major quality attributes of the software, such as perfor-
mance, evolution and safety. These decisions will reflect on design models and
on software implementation. As a matter of fact, the architecture description
is an effective communication mean between different stakeholders.

A common accepted notion for developing software is that having a well-defined
software architecture description is essential (Kruchten et al., 2006). Knowing
the structure of the system and the relationship between components helps in
software development and to communicate decisions to stakeholders.

Software-intensive systems are rarely built from scratch (Boehm and Turner,
2003). The software architecture is useful for creating the necessary conditions
to improve reusability. Reusing parts of already existing, successful systems,
has high potential to deliver reliable systems.

Future systems’ maintenance and evolution are facilitated when the software
architecture is clear for all stakeholders (Lindgren et al., 2008). It is frequently
hard to fully replace legacy systems. Therefore, software-intensive systems must
be flexible to evolve, in order to improve longevity (protecting high investments)
and facilitate maintainability. Empirical results and practical experience show
that systems with defined software architecture are resilient to change (Booch,
2007).

Research on software architecture is rapidly growing as many researchers and
practitioners recognize the importance of having a well-defined software archi-

6.1. The Importance of Software Architecture 79

tecture to support activities such as project management, design and implemen-
tation. On the other hand, poor software architecture definition is recognized
as a major technical risk when designing a software-intensive system (Clements
et al., 2002). In summary, software architecture is a critical element for devel-
oping software-intensive systems.

6.1.1 The 4+1 View Model of Software Architecture

Many architecture models were proposed in past years, such as (Soni et al.,
1995; ANSI/IEEE, 2000; Leist and Zellner, 2006). Among the software ar-
chitectures proposed in the literature, the 4+1 View Model of Architecture
(Kruchten, 1995) is investigated in this chapter. The choice is based on prac-
tical and empirical evidence of its success, and on its own capabilities. This
architectural framework is considered sufficient for most software-intensive sys-
tems (Kruchten, 2003). The HARS system (see Chapter 5) was developed based
on the 4+1 Architecture.

The architecture consists of four views (Logical, Process, Deployment, and Im-
plementation) and the plus one (Use Case) crosscutting view that integrates the
other four. A view is an abstraction of a system from a particular perspective,
covering particular concerns and omitting elements that are not relevant to that
specific perspective. The 4+1 View Model (Fig. 6.1) proposes the organiza-
tion of the description of a software architecture using five different views, each
one addressing one specific set of concerns. The Use Case view can be well-
described using the approach proposed in Chapter 4. The layered architectural
style described in Chapter 5 for the ATC Architecture can be used again, this
time in the context of the Implementation view. The diverse physical elements
of the system can be described in the Deployment view. Finally, RTMS need a
well-defined representation of real-time process control, which is the subject of
the Process view.

Separating concerns in different views helps in diminishing the misunderstand-
ings and incorrect interpretations when a single view of the architecture is
described (Kruchten, 1995). For instance, common elements used to describe
the architecture, such as blocks and arrows, may represent different elements
depending on which view is described. If the semantics of the view is not clear,
its elements might be incorrectly interpreted. A brief description of each view
of the 4+1 View Model is given as follows.

The Logical view concerns the functional requirements of the software. For in-
stance, when using an object-oriented approach, the main elements are classes
and relationships, such as association, composition, aggregation and inheri-
tance. Only relevant elements, in terms of the architecture, are represented. In

80
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

Logical
view

Implementation
view

Process
view

Deployment
view

Use Case
view

Figure 6.1: The 4+1 View Model of Software Architecture

this view, how classes cooperate with each other and the internal behavior of
classes are also described.

The Implementation view suggests how the system is decomposed into subsys-
tems, that are organized in layers and packages, which contain components,
executables, files and source code. A layered implementation approach offers
separation of concerns, from domain-specific and hardware independent (top
layers) towards domain independent, hardware specific (bottom layers). This
view can also help in defining parts to be built by subcontractors or internal
development teams.

The Process view address the concurrent aspects of the software at runtime
- tasks, processes, threads, as well as their interactions. Examples of inter-
process communication mechanisms include synchronous communication, re-
mote procedure calls, publish-subscribe, and event broadcast. Many aspects
are addressed in this view, such as parallelism, fault tolerance and object dis-
tribution in real-time, dealing with issues such as deadlocks, response time and
scalability.

The Deployment view shows how the various executables and other runtime
components are mapped to the physical processing nodes and platforms.

The Use Case view contains the main scenarios that are represented as use
cases. These scenarios act to illustrate in the software architecture document
how the other four views (and elements) collaborate in order to realize the use
case.

6.2 Adding SysML in the 4+1 View Model

The 4+1 View Model of Architecture is generic, thus it is possible to use various
diagrams/languages for each view. In fact, the original paper published in 1995
used the Booch Method (Booch, 1994) to model the examples. Although not
advocating a specific method or language to design the models, normally the
most common modeling language associated with the 4+1 View Model is UML.

6.2. Adding SysML in the 4+1 View Model 81

Nevertheless, important characteristics for the purpose of designing software-
intensive systems are lacking in UML (OMG, 2008a). As a software-oriented
language, it lacks modeling power, for non-software parts or aspects to be filled
in by other languages, leading to additional integration efforts. The emphasis
of UML is on the graphical modeling of functional requirements, and little
attention (if any) is paid to other requirements types. For instance, there is no
specific diagram to model non-functional requirements, which are proved to be
fundamental for successful systems (Hofmann and Lehner, 2001; Damian et al.,
2005; Minor and Armarego, 2005). The UML Activity diagram models discrete
behavior, but does not have easy means to model continuous flow. In general,
UML is weak on modeling other elements that are not related to software, such
as hardware, machines and their parts, relationships, properties and constraints
(Glinz, 2000; Henderson-Sellers, 2005).

The proposal in this section is to describe where and how SysML can be in-
cluded in the 4+1 View Model of Architecture, and the possible advantages
of combining UML and SysML models. Theoretically the proposal seems to
be feasible due to two important facts: 1) UML and SysML are conformant
to the same metametamodel, the MOF (OMG, 2006); and 2) SysML reuses
and adapts diagrams and constructs from UML (see Section 2.3). In order to
validate this proposal, it is applied in practice in this section and in the follow-
ing. Finally, a case study is given in Section 6.4.2. This section explains which
SysML diagrams are added for each of the five views, and why this is done.

Logical view: Currently, common diagrams used for creating models for this
view are the UML Class and Object diagrams, for the structural aspects, and
the Sequence and Activity diagrams for dynamic aspects. Three SysML dia-
grams are proposed for this view.

With the SysML Block diagram, elements of the system such as hardware,
data, procedures, and persons can be modeled. The representation of system
architecture can be made by means of blocks, without focusing only on the
software structure of each system element, but also on the general structure,
including parts of each block, constraints and properties not necessarily related
to software. SysML Blocks are candidates to be refined into one or more UML
Classes during the software design and implementation phases.

The SysML Requirements diagram (see Chapter 4) allows crosscutting with
other diagrams, mapping a requirement to other design models. Relationships
between requirements, and their classifications, are also represented, being use-
ful for requirements management and to plan system releases. For instance,
when a requirement is modified, it is possible to trace which requirements and
models are affected, and how they are going to be affected. In addition, knowing
all requirements dependencies show the stakeholders which requirements may

82
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

have priority over others and need to be implemented first. Another difficulty
when using UML only is to map directly requirements into UML Use Cases
(Anda et al., 2006).

The SysML Sequence diagram offers the same syntax and elements of the UML
counterpart, but with different semantics. Within UML, Sequence diagrams are
used to model communication between software objects, which are instances of
software classes. In SysML there is no notion of instance or objects. Thus,
the communication is between the main structural elements, normally blocks
and subsystems. Another difference is that the messages exchanged are not
methods of an object. Thus, SysML Sequence diagrams can be used when
modeling general communicating elements of a system.

Process view: The Class diagram can also be used in this view, but the focus
is different from the logical view. The classes in this view are active classes that
represent threads and processes, such as the <<control>> stereotype for classes
used within UML.

The UML Activity diagram is used with emphasis in tasks, main processes and
flow of control. The SysML Activity diagram offers additional modeling pos-
sibilities when compared with the UML version. The notion of tokens flowing
along edges through the activities still exists, but there is support for modeling
continuous flow as well as discrete flow. A rate describing the frequency in
which elements traverse an activity edge can be added to inflow and outflow
edges. To each edge, <<continuous>> or <<discrete>> stereotypes can be
added depending on the flow type. The flow can also contain a specific proba-
bility of occurrence of an activity/task, which describes at each outgoing edge
how probable it is that the token will flow over it.

Deployment view: SysML does not provide a Deployment diagram. This
decision, as well as not including other UML diagrams such as Object and
Time, was taken in order to simplify the language and to avoid the notion that
designers should first learn the object-oriented notions in order to understand
SysML. As a SysML Block can describe general structural elements, varying
from very small to very large, they can be used to represent the physical de-
ployment nodes. As a matter of fact, SysML Blocks can be used to represent
the physical architecture of the system.

Use Case view: The Use Case view (formerly known as the scenario view) is
most frequently modeled with UML Use Case diagrams and natural language
for descriptions. The SysML Use Case diagram is derived without important
extensions from the UML Use Case diagram. The main difference is the wider

6.3. Software Product Line Architecture for RTMS 83

focus, as the purpose is to model complex systems that involve not only soft-
ware, but also other systems, personnel, and hardware.

The SysML Use Case diagram shows system functionalities that are performed
through the interaction of the system with its actors. The idea is to represent
what the system will perform, not how. The diagrams are composed of actors,
use cases and their relationships. Actors may correspond to users, other sys-
tems or any external entity to the system. As this view is directly related to
requirements, the SysML Requirements diagram and the SysML Tables can be
used to create models for this view (see Chapter 4).

Implementation view: The Package diagram is used to organize semanti-
cally coherent models by partitioning elements into packages and establishing
dependencies between packages and/or model elements within the package. The
same syntax and semantics are presented for both UML and SysML Package
diagrams. Specific subsystems can be represented using the SysML Block dia-
gram.

6.3 Software Product Line Architecture for RTMS

Having a software architecture is fundamental for creating the necessary con-
ditions to improve reusability. Reusing parts of already existing, successful
systems, has high potential to deliver reliable systems. Reusing source code is
a well-known approach used for many years in order to facilitate the develop-
ment of systems. Even more can be done regarding reuse. Better approaches
should be based on a shift from opportunistic to strategic, planned reuse.

When developing a collection of similar systems that share common character-
istics, principles and structure, a feasible solution is to reuse also other core
assets besides source code, such as requirements, components, architecture, de-
sign and documentation. The investigated asset in this section is the software
architecture for a domain specific series of applications, towards a Software
Product Line Architecture, which is a common architecture for a family of re-
lated applications. These assets can be configured and composed in different
ways to create all of the products in a line of related software. This is the core
idea of Software Product Line research (Clements and Northrop, 2001; Pohl
et al., 2005; van der Linden et al., 2007).

Although the idea of product lines was proposed long ago (Mcilroy, 1968; Dijk-
stra, 1970), it is an area of research that only recently is gaining more attention
in Software Engineering (van Ommering and Bosch, 2002). The initial focus
was on families of programs (Parnas, 1976), as for instance, software with dif-

84
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

ferent algorithm variants. Currently, researches are done in order to propose
families of architectures, facilitating architecture reuse, which is an important
asset for related systems. Well-architected systems make possible the creation
of families of related systems, optimizing development. Having a common ar-
chitecture serving as the basis for the design and implementation of a family of
related systems is a way to address common development problems.

Few researches were done in Software Product Line Architectures in practice,
and much has still to be discovered in this area. In this section, an architecture
for the design and implementation of a family of RTMS is presented. The most
important principles of the architecture are the layered implementation view,
publish-subscribe middleware for process communication, a domain-specific lan-
guage, component based development, and the object-oriented analysis and de-
sign paradigm. The architecture has been used in many projects in practice.
Two projects related to intelligent road traffic control, and the visualization of
road traffic data at junctions are presented as case studies in Section 6.4.

6.3.1 Domain Characteristics and Requirements

The characteristics and requirements of RTMS are important for the decisions
on the fundamentals of the software architecture used for development. In
addition, the decisions already described in the domain architecture in the
previous chapter have to be taken into account when the software architecture
is to be described.

Many non-functional requirements are important for RTMS. Scalability is of
great significance because there may occur changes in the road network, which
may include new sensors and actuators to be accommodated into the system.
Thus, new software objects may be inserted into the software architecture each
time the network grows. This is important to allow the system to evolve over
time.

Performance is also an issue, as there are many components to be controlled.
Real-time constraints must be observed as data should be updated regularly.
Example of available data are road traffic measurements information that are
geographically distributed within the network. Availability of data is of con-
siderable influence to system reliability and overall performance.

Finally, flexibility is essential due to the possible change of component types,
interfaces, and functionality, as the system evolves over time, and to cooperate
with legacy systems.

6.3. Software Product Line Architecture for RTMS 85

Layer Geographic element Monitoring Control
Network Network OD-matrix OD-Mgr.

Route Route travel time Route Mgr.
Link Link Capacity Link Mgr.

merge/choice point Avg. speed, turn fractions Junction Mgr.
Point sensor/actuator position Speed, flow, occupancy Actuator Mgr.

Table 6.1: Elements of the Software Architecture

6.3.2 Logical View Architecture for RTMS

Distributed architectures improve scalability. This is an important requirement
for RTMS. The logical view architecture shows which elements (see Table 6.1)
cooperate with each other in a high level manner, without concerns about how
this interaction is done. These network elements are:

• Origin-Destination Managers (ODMGR) represent the relation be-
tween an origin and a destination and comprise one or more routes.

• Route managers control the set of routes from one origin to one desti-
nation.

• Links come in two types, Main links and Accessor links. The Main link
is the link from the merge point to the choice point and the Accessor link
is the link from the choice point to the merge point (see Fig. 6.2).

• Junctions comprise the outgoing Main link and the incoming Accessor
links of a crossing or motorway junction (see Fig. 6.2). A junction is
a location where traffic can change its routes, directions and sometimes
even the mode of travel.

• Control Schemes are coherent set of measures triggered by recurring
patterns in the traffic state, such as the morning rush hours or the weekend
exodus.

The representation of the logical architecture view is shown in Fig. 6.3 using
a SysML Block diagram. Each road network element represented by a SysML
Block has a direct software object representation. The distributed components
have to communicate with each other, as they work in cooperation. For in-
stance, links have to communicate with other links in order to achieve a traffic
state. They continuously measure the traffic state and communicate about it
to other links in real-time.

86
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

Figure 6.2: Junction style

<<block>>

Control Scheme

Scenarios

Morning rush hour
Afternoon rush hour
Friday
Sunday
Quiet hour

<<block>>

ODMGR

Properties

Origin: String
Destination: String

relates1..1 1..n

<<block>>

Route

Properties

Origin: Set
Destination: Set

1..1

1..n

comprises

Route Manager
<<block>>

<<block>>

Link

Type

Main Link
Accessor Link

Link Manager

<<block>>

1..1

1..n

participates

Operations

Reduce capacity
Increase capacity

Part

Sensor: List

communicates

<<block>>

Junction

Part

Junction Manager

<<block>>

Sensor: List

Actuator: List

Properties
Image: svg

1..1 1..ncomprises

Figure 6.3: Logical view and the relationship between control elements

6.3.3 Implementation View Architecture for RTMS

The layered architecture model of implementation is depicted in Fig. 6.4 using
a UML/SysML Package diagram. Layered models are ideally suited to express

6.3. Software Product Line Architecture for RTMS 87

important parts of an architecture, describing a way to organize systems by
separating similar and related components in layers. Each layer accommodates
related semantic models, providing strong separation of concerns, which is a
well-known concept in Software Engineering and considered essential for soft-
ware development.

There are many advantages in using a layered architecture for developing soft-
ware (Garlan and Shaw, 1993; Bass et al., 2003; Vrancken, 2006). Layers show
diverse levels of abstraction, from specific, top levels, towards general, lower
levels, hiding details whenever convenient. Therefore, separation of concerns
is addressed. Each layer can be detailed into sub-layers, and sub-layers can
be combined into layers, providing flexibility for development. Finally, regular
changes may be easily implemented when they are related to a specific layer
instead of to a whole system.

Presentation

Functional
Components

Generic
Components

Publish-subscribe
Middleware

Hardware

Basic software

Figure 6.4: Implementation View of the Software Product Line Architecture

The Presentation layer is used mainly to present the applications results, and
can be made for diverse devices/platforms. Developers may use a list of existing
Generic Components and combine them as much as necessary to help in building
Functional Components, which implement user requirements. The models of
the Functional Components layer are designed following the object-oriented
paradigm and UML as modeling language.

A domain-specific (Mernik et al., 2005) object-oriented programming language

88
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

is used to implement the object-oriented design. Domain-specific languages
are restricted to a particular domain or problem. The advantages of using a
domain-specific language in this case are the higher levels of abstraction that
developers can work with and the possibility of adapting the language for spe-
cific purposes related to traffic domain. As a matter of fact, higher productivity
and reusability are achieved.

Publish-subscribe middleware layer

The environment characteristics (distributed elements in a network) imply a
need for a distributed software architecture, and the real-time constraints, which
calls to high performance, are important non-functional system requirements.
Not only having correct data is important, but also the availability of data. Re-
specting real-time constraints is difficult as sensors and actuators are physically
distributed, which increase the possibilities of missing data or receiving data
outside of the bounded time. This indicates the importance of using an asyn-
chronous middleware to coordinate communication and data exchange between
software objects.

Distributed software objects in a network must communicate with each other by
asking and providing services. There are many different means of implementing
process communications (Tanenbaum and van Steen, 2006). The simplest is
by using synchronous communications, based on point-to-point and blocking
communication between processes. This type of communication presents many
problems (Lea et al., 2006). As processes have to wait for a response in order to
continue further operation, performance is reduced. In addition, there is lack
of transparency and flexibility, as it is necessary to know which process to call
for a given service. These requirements can be refined into the following atomic
ones:

• The middleware shall offer a communication framework to make commu-
nication less primitive.

• The middleware shall hide implementation details of communicating pro-
cesses.

• The middleware shall decouple communicating processes in time and in
space.

• The middleware shall prevent blocking of processes during communica-
tion.

• The middleware shall offer mediation between communicating processes,
such that they do not need to know each other.

6.3. Software Product Line Architecture for RTMS 89

• The middleware shall make it possible to be redundant in producers of
information.

• The middleware shall make it possible the interoperation between legacy
systems.

The selected communication mechanism should provide asynchronous commu-
nication with decoupling of processes in time and space (Eugster et al., 2003),
hiding implementation details of communicating processes, preventing blocking
of processes during communication, and offering mediation between communi-
cating processes. Thus, the required middleware is of the Publish-Subscribe
type (Fiege et al., 2006b; Eisenhauer et al., 2006).

Publish-subscribe middleware provides a level of abstraction, by hiding the
complexity of a variety of platforms, networks and low-level process commu-
nication. Application developers may concentrate on the current requirements
of the software to be developed, and use lower-level services provided by the
middleware when necessary.

The basic functioning of a generic publish-subscribe middleware is given in Fig.
6.5. Components may subscribe for information, unsubscribe, publish and con-
sume information. Components may also notify that they are interested in some
kind of information. The Event Handler receives all these events through an
interface, and can also notify components when the information is of relevance
to them.

C1 C2 C3 C5C4 Cn...

subscribe publish unsubscribe notify notify

Interface

Event Handler

Interface

Event Handler

Interface

Event Handler

Interface

Event Handler
...

Figure 6.5: Publish-subscribe middleware scheme

The publish-subscribe communication mechanism naturally supports an asyn-
chronous (non-blocking), many-to-many communication between components
in a network. The notion of clients and servers exchanging messages is sub-
stituted by an event based communication between components that may act
as publishers of information and/or subscribers for information. Publishers
(acting as servers), publish information through an event, which will be deliv-
ered to all (and only) interested subscribers, which expressed their interest in

90
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

a certain type of information by subscribing to it. This allows improved sys-
tem performance. Publishers are not aware of which particular subscriber will
receive the published information. In a similar manner, subscribers are indif-
ferent to which specific publisher produces the information. They even do not
need to run on the same machine. This means that publishers and subscribers
are space-decoupled (Eugster et al., 2003). Another important characteristic
is that publishers and subscribers are fully decoupled in time (Eugster et al.,
2003): publishers and subscribers do not need to be connected at the same
time. All this manners of decoupling (synchronization, space and time decou-
pling) increases scalability and reduces the necessity of coordination, which
makes publish-subscribe middlewares most suited to distributed environments,
fulfilling the specified requirements of RTMS.

6.3.4 Process View Architecture for RTMS

The Process view is described with SysML Activity diagrams in the case study
in Section 6.4.2. In Chapter 7, Petri nets are applied in the design of models
for the process view.

6.3.5 Deployment View Architecture for RTMS

The Deployment view is described with SysML Block diagrams in Fig. 6.6.
Trinivision is the graphical user interface developed by Trinité 1. Traffic op-
erators working in Traffic Management Centers use Trinivision in their daily
activities, such as for traffic monitoring.

<<Block>>

Traffic Signal

<<Block>>

VMS

<<Block>>

VSL

<<Block>>

Inductive loop

<<Block>>

Video camera

<<Block>>

Traffic Signal

<<Block>>

VMS

<<Block>>

VSL

<<Block>>

Inductive loop

<<Block>>

Video camera

Bridge Bridge Bridge Bridge Bridge

environment

system<<Block>>

DSS Middleware

<<Block>>

Trinivision

Figure 6.6: Deployment view

DSS Datapool is the publish-subscribe middleware, also developed by Trinité.

1www.trinite.nl

6.4. Case Studies 91

Each real world, physical entity has a correspondent software component named
“bridge”. Bridges are used as communication links between the environment
and the system. The purpose of a bridge is to transfer updated data (e.g., status
change, error report) from the physical object to the software object, which will
deliver data to the DSS Datapool. In a similar manner, commands that are
generated from the DSS Datapool to the software object will be transmitted
via bridges to the physical objects.

6.4 Case Studies

Two systems of a RTMS product line are described as case studies as follows.

6.4.1 HARS revisited

In the HARS project, the functions of the ODMGR are enhanced and extended
to enable more effective rerouting using the Route Manager. Top-down control
is performed by Control Schemes, which are developed off-line and correspond
to recurring patterns in the traffic state, such as the Morning Rush Hours or the
weekend exodus (Friday). This is the top-down approach, in which the traffic
management center (the top) is the only entity allowed to take decisions.

The bottom-up control is implemented by means of communicating agents (links
and junctions). The control is performed by so-called capacity services, (Re-
duce capacity, Increase capacity) which actually are operations configured in
links. By using capacity service calls, links (Main links or Accessor links) are
able to offer and ask for capacity from downstream, upstream links respec-
tively. Services are implemented in various ways, according to the available
local measures in the network element: a link may implement it by reducing
the maximum speed or closing one or more of its lanes; a junction may imple-
ment it by reducing/extending green times of traffic signals.

The asynchronous publish-subscribe communication is used as the middleware
layer. The publish-subscribe style of communication reduces the dependency
among the components and make the information available where and when
needed. This should also reduce communication overhead between agents, since
it is not necessary for the components to continuously request data and wait
for response, which blocks the components. As a matter of fact, important
quality factors for the system such as performance, scalability and flexibility
are improved using this communication style.

92
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

6.4.2 Visualization of Junction Measurements

This case study is about a system to visualize measurements at junctions (Soares
et al., 2009b,c). Measurements obtained by sensors and the effects of the appli-
cation of actuators are important quantities to be visualized for decision makers.
Thus, having application systems that can visually show numerical values re-
sulting from measurements is fundamental. The system provides visualization
of road traffic measurements at junctions controlled by traffic signals. It can be
seen as a decision support tool for traffic operators, providing reliable, real-time
information of road traffic measurements, which can be useful to improve traffic
signals planning. This application will be used as a subsystem for a RTMS.

velocity

intensity

waiting time

density

Figure 6.7: Table of measurements

For each direction of the Accessor link (turn left, go ahead, or turn right),
information about velocity, waiting time, intensity and density is shown in the
system (Fig. 6.7). This information is a result of data gathered by sensors
distributed in the network. Availability and reliability of data is achieved due
to the publish-subscribe communication layer.

An automated image of the junction is created based on links information.
This image and a table with measured data are shown in a graphical user
interface (the presentation layer). Clicking in the junction image will result in
an overview from this image containing the information presented in the tables.
The full list of requirements is shown in Appendix A.

Create Junction
image

Get data from
JunctionUser Junction

Figure 6.8: Use Case diagram

The design and implementation were performed following the object-oriented

6.4. Case Studies 93

paradigm. TriBASIC, a domain-specific object-oriented programming language
is used to implement the design.

The models for each view of the 4+1 View Model of Architecture with UML
and SysML are described as follows.

Use Case view

For this view, the used diagrams are the UML/SysML Use Case (Fig. 6.8), the
SysML Requirements diagram (Fig. 6.9), and the SysML Table (Fig. 6.10).

<<Requirement>>

Id = Req1

<<Requirement>>

Id = Req2

<<Requirement>>

Id = Req3

Type = Nonfunctional

<<Requirement>>

Id = Req4

<<Requirement>>

Id = Req5

<<Requirement>>

Id = Req7

<<Requirement>>

Id = Req9

<<Requirement>>

Id = Req10

<<Requirement>>

Id = Req11

deriveReqt

<<Requirement>>

Id = Req8

<<Requirement>>

Id = Req6

Type = Nonfunctional Type = Nonfunctional

<<Requirement>>

Id = Req6

Type = Nonfunctional

deriveReqt
deriveReqt deriveReqt

Figure 6.9: SysML Requirements diagram

ID Relates to Relates how Type

Req 12

Req 6

Req 8

Req 11

Req 2, Req 3

Req 4, Req 5, Req 7

Req 4, Req 5, Req 7

Req 9, Req 10

deriveReqt

deriveReqt

deriveReqt

deriveReqt

Functional

Non Functional / Interface

Non Functional / Interface,
Quality

Functional

Figure 6.10: SysML Table

Process view

A SysML Activity diagram (Fig. 6.11) is used to describe the Process view.

94
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

TO_STATE_UPDATE

MySQL Junction Direction GUI

SIGNAL: SLOT:
HANDLE_TO_STATE_UPDATE

Create
visualization

Fill junction
sheet

DIRECTION_UPDATE
SIGNAL:

SIGNAL:

JUNCTION_UPDATE

SLOT:

HANDLE_JUNCTION_UPDATE

Activity diagram General flow

{rate = 30 seconds}

Figure 6.11: Activity diagram: General Flow

Trinivision

Junction
Measurements
Components

Link

Publish-subscribe
Middleware

PC

Basic software

Junction

Figure 6.12: Implementation view for the Case Study

Implementation view

For this view, UML/SysML Package diagram is used (Fig. 6.12).

6.4. Case Studies 95

Logical view

<<block>>

Link

Type

Main Link
Accessor Link

Link Manager

<<block>>

Operations

Reduce capacity
Increase capacity

Part

Sensor: List

communicates

<<block>>

Junction

Part

Junction Manager

<<block>>

Sensor: List

Actuator: List

Properties
Image: svg

1..1 1..ncomprises

Figure 6.13: SysML Block diagram for the Case Study

Figure 6.13 depicts the specific part of the SysML Block diagram necessary for
the case study.

Link

- origin: string

- destination: string

Accessor Link Main Link

Direction

- waiting time: float

- intensity: float

- velocity: float

- density: float

- object id: string

Junction

- links_show: sheet

- sheet_junction_info: sheet

- table_def: sheet

- image: svg

1 1

0..n

1

n

n

Figure 6.14: Class diagram for the Case Study

Part of the UML Class diagram is shown in Fig. 6.14. Junction, Link and Di-
rection are components of the Generic Components layer (see Fig. 6.4) that are
extended with new functionality to build the application. The SysML Sequence
diagram is depicted in Fig. 6.15.

Deployment view

A SysML Block diagram (Fig. 6.16) is used to describe the Deployment view
specific for the case study.

96
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

:Direction :MySQL Coordinates

signal: TO_STATE_UPDATE

:Junction

slot: HANDLE_TO_STATE_
UPDATE_JUNVIS

CREATE_VISUALIZATION()

signal: EMIT_DIRECTION_UPDATE(DIRECTION_UPDATE)

slot: HANDLE_DIRECTION_
UPDATE

FILL_JUNCTION_SHEET()

Trinivision

signal: EMIT_JUNCTION_UPDATE(JUNCTION_UPDATE)

Figure 6.15: Sequence diagram for the Case Study

<<Block>>

Traffic Signal

<<Block>>

Inductive loop

<<Block>>

Video camera

<<Block>>

Traffic Signal

<<Block>>

Inductive loop

<<Block>>

Video camera

Bridge Bridge Bridge

environment

system<<Block>>

DSS Datapool

<<Block>>

Trinivision

Figure 6.16: Deployment diagram of the case study

6.5 Conclusion

This chapter is about software architecture for distributed real-time systems.
It presents the result of how and where to introduce a new modeling language,
the SysML, into an existing model of architecture, the 4+1 View Model. The
proposal is to combine UML and SysML to create models of each one of the five
views of the architectural framework. A Software Product Line Architecture
for RTMS is presented. This architecture uses SysML and UML, which is useful
to create the design models of the case studies.

The SysML Block diagram is useful to model components of a system, such as
hardware and its parts. Each structure, component or part of the system is
represented by a SysML Block. Relationships between blocks are represented

6.5. Conclusion 97

as well using the SysML Block diagram. When combined with UML, a SysML
Block can be refined into one or more UML Classes.

The behavior of the elements of the software architecture are modeled using
SysML Activity and Sequence diagrams. The SysML Activity diagram offers
the possibility of adding probabilities and rates to flows. The SysML Sequence
diagram is more general than the UML Sequence diagram. It models commu-
nication between elements of a system (subsystems, components, parts) repre-
sented by SysML Block diagrams.

The combination of publish-subscribe middleware, layered implementation ar-
chitecture, object-oriented analysis and design, components framework, and
domain-specific language for applications development has been applied in many
RTMS, and has provided high abstraction levels, tackle their complexity, and
fulfill the domain requirements. Two systems were developed using the Soft-
ware Product Line Architecture presented in this chapter and were presented
as case studies.

The first case study was already presented in Chapter 5, but in this chapter the
focus is on the software architecture, not the domain architecture. Together
with the second case study, they are part of a product line of RTMS. The prod-
uct line has one single architecture as the basis for design and implementation.
As a result, it was recognized that having a unique architecture for a Software
Product Line presented advantages. Reusing artifacts is facilitated in general,
with source code and design the main cases. As a matter of fact, planned reuse
leads to higher productivity and faster development.

All models created during the design of the case studies presented in this thesis
so far were created based on semi-formal languages. The next chapter proposes
the application of a formal language for the design of software-intensive systems.
The main reasons are to increase formality, for instance, in the representation
of time constraints, and to allow better verification and validation activities.
However, the choice for a formal or semi-formal language does not exclude the
other. In fact, a combination of languages is possible.

98
Chapter 6. Software Product Line Architecture for Distributed Real-Time

Systems

Chapter 7

Formal Design and
Verification of Traffic Signals
Control

In this chapter, the formal modeling and the verification of urban traffic signals
control are described. The focus in this chapter is to model the dynamics
of traffic signals as a Discrete Event System (Section 7.1). The choice is to
use Petri nets with extensions to increase modularity and describe real-time
constraints (Section 7.2). Two design strategies using Petri nets are briefly
explained in Section 7.3: top-down and bottom-up. These strategies and the
component model are useful to improve modularity when creating models for
three examples of urban traffic signals control in Section 7.4. Model verification
is given, first using Invariant Analysis in Section 7.5, and then using a theorem-
prooving approach in Section 7.6, in which specific scenarios are studied. The
chapter ends with conclusion in Section 7.7.

7.1 Modeling of Urban Traffic Signals Control as
Discrete Event Systems

Traffic control in urban roads is a major area of ITS research. Traffic signals at
road intersections are the major control measures applied in urban networks.
The behavior of a traffic signal can be modeled as a Discrete Event System
(DES). These systems are often large, distributed systems in which events oc-
cur at specific instants of time (Cassandras and Lafortune, 1999). These events
are triggered by specific conditions, such as the starting of a process. Typ-
ically, DES involves relationship with the environment, conflict for resources

99

100 Chapter 7. Formal Design and Verification of Traffic Signals Control

and simultaneous occurrence of activities.

From a DES point of view, a road junction (intersection) can be seen as a
resource that is shared by vehicles at certain points of time. The design of
the control logic of a traffic signal must take care of efficiency and speed, but
also of safety and security. The main purpose of traffic signals is to provide
safe, efficient and fair crossing of the junction. When properly installed and
operated, traffic signals provide a number of benefits (Roess et al., 2003):

• the capacity of critical junction movements is increased;

• the frequency and severity of accidents is reduced;

• nearly continuous movement along a road section at a designated speed
and under favorable traffic conditions;

• safe crossing of pedestrians and vehicles by providing interruptions in
heavy streams.

However, when poorly designed, traffic signals can cause excessive delays when
cycle lengths are too long, increase the number of accidents (especially rear-end
collisions), violations of red light, and lead to sub-optimal rerouting by drivers
who want to avoid traffic signals. In addition, a set of eight minimal warranties
need to be fulfilled in order to determine whether or not the installation of a
traffic signal is justified (Roess et al., 2003). For instance, traffic engineers have
to study the physical and geometric features of the junction, which includes
channelization, grades, parking locations, driveways and bus stops.

One classification for traffic signals control is the distinction between traffic
controllers that operate in pre-timed (fixed-time) (e.g. TRANSYT (Robertson,
1969)) or in responsive (actuated) mode (e.g. SCOOT (Hunt et al., 1981)).
Within fixed-timed controllers, the phase duration for each road section is de-
termined off-line based on historical data. This simplifies the implementation of
the control strategy. The drawback of fixed-time traffic signals is the fact that
their settings are based on historical rather than real-time data. This may be a
crude simplification, because the demands are not constant, varying during the
day, and influenced by special events or weather conditions. Thus, pre-defined
scenarios often do not reflect the actual traffic state. In addition, the demand
changes in the long term, leading to “aging” of the optimized settings. This
is natural, as the number of vehicles and the need for mobility within a region
change continuously. In big cities, with thousands of traffic signals installed, it
is difficult to constantly update the scenarios in order to make it more realistic
according to current traffic flow.

7.1. Modeling of Urban Traffic Signals Control as Discrete Event Systems101

Traffic-responsive strategies are more efficient, as they use real-time measure-
ments gathered by detectors that provide real demand information to the con-
troller. They can change the length of the green phase (green time) for a road
section depending on demand. One example of a traffic-responsive application
is to verify if no vehicle passes the detectors during the minimum green time
specified. In this case, the traffic signal controller switches to the next phase.
Another example is the possibility of extending the green time by a minimum
value while vehicles are being detected. This is done until the maximum green
time is reached. Traffic-responsive approaches are more costly, as they require
the installation, operation and maintenance of a complex distributed real-time
control system consisting of software, communication lines and sensors. How-
ever, they are cost-effective over long time intervals (five to ten years), due to
their ability to adapt to changes in traffic-flow patterns (Klein, 2001).

7.1.1 Related Work

When designing distributed real-time systems for critical infrastructures, such
as transportation and energy networks, system complexity is increased due
to the large number of elements, strict real-time constraints, and reliability
factors, as these systems involve human life. Therefore, it is necessary to use
methods that are capable of addressing complexity and providing highly reliable
solutions.

A number of approaches have been used to model distributed real-time systems
in general, and traffic control systems in particular. Finite State Machines
(FSMs) have been used for modeling distributed real-time systems (Cassan-
dras and Lafortune, 1999), but have the shortcoming of state explosion (Brave,
1993). Statecharts (Harel, 1987) extends state-machines by endowing them
with orthogonality, depth, and synchronization. An approach to model urban
traffic signal control using Statecharts was proposed in (Huang, 2006). Artificial
Intelligence techniques such as Agents (Deng et al., 2005; Srinivasan and Choy,
2006) and Fuzzy Logic (Zeng et al., 2007) have also been applied to model
traffic signals control. Discrete Event System Specification (DEVS) (Zeigler
et al., 2000) was used to generate optimal signal times based on the temporal
sequence of traffic signal control variables and traffic information collected for
each intersection (Lee and Chi, 2005).

Petri nets are used in this chapter. The choice is based on their modeling expres-
sivity, their facilities for validation and verification activities, the availability of
computer tools, and the range of available extensions (Girault and Valk, 2002;
Hruz and Zhou, 2007). Petri nets are suitable to model distributed real-time sys-
tems because they offer representation of conflict situations, shared resources,
synchronous and asynchronous communications, and precedence constraints.

102 Chapter 7. Formal Design and Verification of Traffic Signals Control

As a formal language, Petri nets allow formal checks of desirable properties.
With computer tools, the verification and simulation can be easily performed.
The formal analysis of a Petri net model can reveal design flaws. For instance,
with reachability analysis it is possible to find out whether an unsafe state that
could cause an accident can be reached. The extensions proposed in this chap-
ter to the basic Petri net model are useful to address complexity and model
real-time constraints.

Petri nets are a well-known formalism applied in traffic control research. With
focus on only one intersection, (Lin et al., 2003) described the traffic signal
control using Petri nets, and then used an approach via programmable logic
controller (PLC) to implement the control logic. The evaluation and perfor-
mance analysis of a traffic signal control by means of Petri nets was described
in (Tolba et al., 2003). An approach based on the application of Petri nets
and theorem proving to formally prove the good properties of traffic signals
controlling one road intersection is proposed in (Soares and Vrancken, 2007d).

Considering networks of roads, one of the first applications of Petri nets for
traffic signals control in urban networks was shown in (DiCesare et al., 1994),
in which models of Petri nets were used to do performance analysis and source
code generation. (List and Cetin, 2004) used Petri nets to model the control
of signalized intersections, and evaluated the good properties of the system
by means of invariant analysis and simulation. (Febbraro and Giglio, 2006)
proposed a modular, deterministically-timed Petri nets in order to microscop-
ically model a signalized urban area. A modular framework based on colored
timed Petri nets to model the dynamics of signalized traffic network systems
was presented in (Dotolia and Fanti, 2006).

This chapter proposes to represent phases such as green time using an interval
of minima and maxima values. This is done by using the p-time Petri nets
extension, in which an interval is associated to each place. A comparable ap-
proach has been applied in a rail and road control system for safety crossing
a shared intersection (Dutilleul et al., 2006), but the paper does not use the
places to represent phases. Some works propose the control logic with perfor-
mance purpose (Tolba et al., 2003; Febbraro et al., 2004) which is not the focus
of this chapter. However, in many of the previously cited works, verification of
the control logic is poor or nonexistent.

7.2 Petri Nets and Extensions

Petri nets (Petri, 1962; Reisig, 1985; Murata, 1989) are a graphical, formal
method applicable to a large variety of systems in which concurrency, dynamic
behavior, synchronous and asynchronous communication, and resource sharing

7.2. Petri Nets and Extensions 103

have to be modeled. The basic Petri net is composed of four elements: places,
transitions, arcs and tokens. Due to their representational power, the elements
can express various roles. For instance, places normally represent conditions,
status, states or operations. Transitions are generally used to represent starting
or stopping of events, which occurs to change the status of places. Arcs are the
connections between places and transitions, and tokens can represent number
of elements or the current availability of resources.

The formal definition of a Petri net structure and of a Petri net (Murata, 1989)
are given as follows:

Definition 7.1 A Petri net structure is a 4-tuple N = (P, T, Pre, Post),
where:

P = {p1, p2, ..., pn} is a finite set of places;

T = {t1, t2, ..., tm} is a finite set of transitions;

Pre : (P × T) → N is an input function that defines directed arcs from places
to transitions, and N is the set of nonnegative integers;

Post : (P × T) → N is an output function that defines directed arcs from
transitions to places;

Definition 7.2 A Petri net is a 2-tuple PN = (N, M0), where:

N is a Petri net structure, and

M0 : P → N is the initial marking.

If Pre(p, t) = 0, then there are no directed arcs connecting p to t. In a similar
manner, if Post(p, t) = 0, there are no directed arcs connecting t to p. If
Pre(p, t) = k (the same holds for Post(p, t) = k), then there exist k parallel
arcs connecting place p to transition t (transition t to place p). Graphically,
parallel arcs are represented by a simple arc with a number k as label and
representing the presence of k multiple arcs (this is also called the weight k of
an arc).

The dynamic behavior (execution) is described by changing markings (from M
to M ′), which is represented by the firing of an enabled transition. A transition t
is enabled if each place P that has an input arc to t contains at least the number
of tokens equal to the weight of the arcs connecting P to t (M(p) ≥ Pre(p, t)
for any p ∈ P).

The flow of tokens represent state changing. The firing of an enabled transition
t removes from each input place pi the number of tokens equal to the weight
of the directed arc connecting pi to t, and deposits in each output place po

104 Chapter 7. Formal Design and Verification of Traffic Signals Control

the number of tokens equal to the weight of the directed arc connecting t to
po. Therefore, the firing of a transition yields a new marking M ′(p) = M(p)−
Pre(p, t) + Post(p, t) for any p ∈ P . The matrix C = Post− Pre is called the
incident matrix of the corresponding Petri net.

A graphical representation of a Petri net and its execution is shown in Fig.
7.1. Initially, places PA with two tokens and PB with one token are enabling
transition t1. After the firing of transition t1, the tokens in PA and PB are
removed, and one token is deposited in place PC, as the weight of the arc from
t1 to PC is one.

2

PA

PB

PCt1 2

PA

PB

PCt1

firing of t1

Figure 7.1: Execution of a Petri net

7.2.1 Properties of Petri Nets

The failure of software may have catastrophic consequences. For the correct-
ness of a system, it is important that its design models are correct. Different
concepts of correctness exist. For instance, a system is said to be correct when
the specification and the actual implementation are equivalent (Pomello et al.,
1992). Another definition for model correctness, the one considered in this
thesis, is that a model is correct when it exhibits a set of desirable properties
(Girault and Valk, 2002). These desirable properties allow the designers to
identify the presence or absence of functional properties of the system under
design.

A complete list of Petri net properties can be found in (Hruz and Zhou, 2007,
chapter 8) and (Reisig, 1985; Murata, 1989). This subsection only briefly de-
scribes some of the most common ones.

• Reachability: In a dynamic system, it is fundamental to verify whether
the system can reach a specific state as a result of a specific processing. In
a Petri net, transitions firing will result in a sequence of markings that are
reached with the change of token distribution. A marking Mf is said to
be reachable from a marking Mi if there exists a sequence of firings that
transforms Mi to Mf . The set of all possible markings reachable from Mi

in a Petri net N is denoted by R(N, Mi). The reachability problem for

7.2. Petri Nets and Extensions 105

Petri nets is the problem of finding if Mf ∈ R(N, Mi) for a given initial
marking Mi.

• Reversibility: A Petri net is reversible if for every reachable marking
M ∈ R(N,M), the initial marking M0 is reachable from M . Thus, in a
reversible Petri net, it is always possible to return to the initial marking
or state.

• Boundedness: Given k a nonnegative integer, a Petri net is k-bounded if
the number of tokens in each place does not exceed k for any marking
reachable from M0, i.e., M(p) 6 k for every place p and every marking
M ∈ R(N, M0).

• Safeness: A Petri net is safe if it is 1-bounded.

• Liveness: A Petri net is live if for every marking M that can be reached
from M0, it is possible to fire any transition of the net by progressing
through some further firing sequence. This means that a live Petri net
guarantees deadlock-free operation, no matter what firing sequence is cho-
sen. In a Petri net model of a system, a deadlock is a marking M for which
no transition is enabled. The fact that a Petri net is live ensures that for
any reachable marking, at least one transition can be fired.

An important feature of Petri nets is the possibility of verifying the correctness
of the designed model, i.e., to prove the presence or absence of properties. There
are many methods to verify Petri nets, and these can be classified in different
manners. A proposed classification of analysis methods given in (Girault and
Valk, 2002, Chapter 13) is as follows: i) Graph-theory, ii) Linear Algebra, iii)
State-based methods, iv) On-the-fly verification, v) Partial order methods and
vi) Logic. The ones used in this chapter are Linear Algebra, in which the
structure of the Petri net is analyzed (Section 7.5), and Logic, using theorem
proving based on Linear Logic (Section 7.6).

7.2.2 P-time Petri Nets

In order to improve Petri nets’ applicability to model systems, extensions to the
basic theory were proposed (Wang, 1998; Bause and Kritzinger, 2002; Jensen
and Kristensen, 2009). The extensions used in this chapter are explained in
this and the following subsection.

Events that occur in actual systems modeled by a Petri net will possess an event
time, which is a value from some discrete or continuous time domain (TD). It
may be assumed that TD is totally ordered and has a minimum element 0 and
addition operator +. A possible choice for TD is Q+.

106 Chapter 7. Formal Design and Verification of Traffic Signals Control

The p-time Petri net (Khansa et al., 1996) model used in this chapter adds a
time interval to each place, as expressed by the following definition.

Definition 7.3 A p-time Petri net is a pair (PN, Ip) where PN is a Petri net
and Ip is the application defined as Ip : P → (Q+ ∪ 0)× (Q+ ∪∞).

With each place pi ∈ P an interval Ipi = [αi, βi] is associated, with 0 ≤ αi ≤ βi.
The static interval Ipi express the time interval during which a token in pi is
available. Before αi, the token in pi is in the non-available state. After αi and
before βi, the token in pi is in the available state for transition firing. After
βi, the token in pi is again in the non-available state and cannot enable any
transition anymore. This token is named “dead token”, and can be seen as a
time constraint that was not respected. The dynamic evolution of a p-time Petri
net model depends on the marking M and on the availability of tokens (non-
available, available, or dead). The definitions of a visibility interval and enabling
interval of a transition for p-time Petri nets are given as follows (Khansa et al.,
1996).

Definition 7.4 A visibility interval [(δp)min, (δp)max] associated with a token
of a place p of a p-time Petri net defines:

• the earliest date (δp)min when the token in p becomes available for the
firing of an output transition of p;

• the latest date (δp)max after which the token becomes non-available
(dead) and cannot be used for the firing of any transition.

Definition 7.5 If a transition has n input places and if each of these places
have several tokens in it, then the enabling interval [(δp)min, (δp)max] of this
transition is obtained by choosing for each one of these n input places a token,
the visibility interval associated to this token, and making the intersection of
all the obtained visibility intervals.

PA PBt1

[4, 8]s

[6, 10]v

d = 2

Figure 7.2: P-Time Petri net example

The Petri net of Fig. 7.2 illustrates these concepts. The static (initial) interval
associated to the input place PA is [4,8]. It is supposed that the token in PA is

7.2. Petri Nets and Extensions 107

produced at date d = 2. Consequently, the corresponding visibility (dynamic)
interval is [4+2,8+2]=[6,10] for the token in PA, which is the enabling interval
for transition t1.

7.2.3 Petri Net Components

Large systems are composed of smaller parts, named components, that per-
form more specific functionalities. With the composition of several components
to form the complete system, the complexity is increased and new properties
emerge that do not belong to any specific component. For instance, performance
is often related to a group of components rather than to just one component.

.

.

.

.

.

.

.

.

Ip1

Ip2

Op1

Op2

Figure 7.3: Petri net Component

The component proposed in this chapter is composed of behavior and interface.
The behavior is specified by Petri nets. The component receives and sends
messages through the interface. The interface is composed of specific input and
output places of the Petri net. Components share only their interfaces. The
behavior is not known for other components (similar to encapsulation and in-
formation hiding in object-oriented design). This characteristic of a component
improves flexibility that allows changes without the need to alter the entire
system. The definitions of components and interfaces used in this chapter are
given as follows.

Definition 7.6 A Petri Net Component (PNC) is a tuple PNC = (N, IP,OP),
where PN is a Petri net, IP = {Ip1, Ip2, ..., Ipn} ⊂ P is the set of input places,
and OP = {Op1, Op2, ..., Opn} ⊂ P is the set of output places.

Definition 7.7 An Interface of a Petri net Component (IPNC) is the union
of the sets IP and OP : IPNC = OP ∪ IP .

108 Chapter 7. Formal Design and Verification of Traffic Signals Control

Graphically, a component is a box with internal behavior specified by a Petri
net and with communication places positioned on the border (Fig. 7.3). The
PNC receive data from input places (IP’s), perform the specified processing,
and then send processed data to output places (OP’s). Interface arcs are a type
of arc. They connect the outside world with input places of the PNC, and the
PNC with the outside world.

The interfaces between components should always be consistent in order to allow
modularity by substitution of Petri nets. The other advantage of modularity
is that components can be simulated and verified separately. Although this
does not guarantee that the global Petri net is going to work properly as the
single components at first, an approach in which components are assembled in
a controlled manner may help in discovering defects that may be caused by the
last component included.

7.2.4 Petri Net Metamodel

Petri net Component

Petri net

Marking

1

Token

Element

+ label: String

Arc

+ weight: int

Interface Arc
1..n 1..n

Node

Place Transition

+ type: {input, output}

Time

+minimum: float

+maximum: float

0..1

1

Interface Place

0..n 1

+type: {input, output}

Token1..n

1..n

1..n1

Initial

part of

1

has

Figure 7.4: Petri net metamodel

As a result of the extensions, the Petri net metamodel used in this chapter is
depicted in Fig. 7.4. The metamodel does not represent the execution of a
Petri net. It represents the basic elements of the Petri net model used in this
chapter at a specific situation, which involves tokens and markings.

7.3. Design Strategies using Petri Nets 109

7.3 Design Strategies using Petri Nets

In order to address software-intensive systems complexity, their design must be
performed in a modular way, in which parts of the system, the subsystems, and
even parts of the subsystems, can be specified and taken into account separately.
In Software Engineering in general, modularity is a well-known principle, being
successfully applied in different domains for many years (Parnas and Clements,
1986; Jackson, 2003; Sommerville, 2007). Modularity provides a mechanism for
realizing the principle of separation of concerns (Pressman, 2005).

Two strategies are most common in the design of Petri net models in a modular
way: composition, which is named bottom-up, and refinement, named top-down
(Vogler, 1992). Transitions as well as places can represent sub-nets, allowing
top-down modeling at several levels of detail (Suzuki and Murata, 1983; Chris-
tensen and Petrucci, 2000). In addition, it is feasible to construct large models
by composing Petri nets, using a bottom-up approach (Girault and Valk, 2002).
The modularity in this chapter is relative only to places, being it the refinement
or the composition.

7.3.1 Top-down

The top-down modeling strategy decompose large systems into subsystems. It
begins with an aggregate model of the system, which is then refined progres-
sively to introduce more details (Suzuki and Murata, 1983; Zhou et al., 1992).

There are several advantages to use refinement and hence to start with a more
abstract model (Choppy et al., 2008). It gives a better and structured view of
the system to be designed by identifying the components within the system.
The validation process also becomes easier: the system properties are checked
at each step. Thus, abstract models are validated before new details are added.
Refinement helps in coping with system complexity since it may preserve some
properties or analysis results obtained at an earlier step for a more abstract
model.

In a Petri net, one place may be refined into a subnet with many places and
transitions (Choppy et al., 2008). By refining one place, a set of places can be
created, resulting in an expanded Petri net. Fig. 7.5 depicts the refinement of
place PA into places PA1, PA2, and PA3. This refinement is useful for detailing
initial design, from a high-level Petri net to a complete model (Vogler, 1992,
Chapter 4).

110 Chapter 7. Formal Design and Verification of Traffic Signals Control

PA

PA1

PA2

PA3

Refinement

t1

t2

t1

t2

Figure 7.5: Example of top-down design with Petri nets

7.3.2 Bottom-up

A bottom-up modeling strategy usually starts by designing simple models rep-
resenting parts of the system, and later combining them into more complex
ones until the whole model is built. For instance, places of two diverse Petri
nets can be merged (place composition), which creates a single Petri net (Jeng
and DiCesare, 1995; Huang and Kirchner, 2009).

PA

PB

PC

R

R

PD

PE

PA

PB

PC

R

PD

PE
fusion of places R

Figure 7.6: Example of bottom-up design with Petri nets

A classical example is the fusion of common places representing the same re-
source in two different Petri nets (Jeng and DiCesare, 1995; Cheung et al.,
2006), which is a simple and effective way to model communication between
subnets (Girault and Valk, 2002). In Fig. 7.6, initially there are two places R,
each one representing the same resource that is used by two different processes
modeled by two Petri nets. By merging the places R, the two Petri nets are
merged into one, in which R is a shared resource.

7.4. Modeling Urban Traffic Signals with Petri nets 111

7.4 Modeling Urban Traffic Signals with Petri nets

The approach in this chapter is to use Petri net Components with time interval
associated to places for both top-down (refinement of places) and bottom-up
(combining nets) modeling and perform verification using theorem proving and
invariant analysis. The approach is applied to three studies:

• In subsection 7.4.1, to model one traffic signal controlling a single junction.

• In subsection 7.4.2, to model a responsive traffic signal that adapts the
amount of green time.

• In subsection 7.4.3, to model a subnetwork with two junctions, each one
controlled by one traffic signal, provided with an offset mechanism.

After the modeling, these models are verified in Section 7.5, using invariant
analysis, and in Section 7.6, by applying a theorem proving approach to verify
specific scenarios.

7.4.1 Modeling a Traffic Signal for One Junction

Fig. 7.7 shows a simple junction, with vehicles coming from three road sections:
A, B or C. The junction S is controlled by traffic signals. Some important
requirements (non-exhaustive) for the proper functioning of traffic signals are
(Gallego et al., 1996):

• The traffic signal must not allow the green state to two conflicting road
sections simultaneously.

• Each traffic signal must follow a defined color sequence, normally green,
yellow, red, and then back to green.

• The right to use an intersection has to be given to all sections.

The requirements above are used in all of the following examples of this chapter.

The situation related to the road junction of Fig. 7.7 is modeled as the Petri
net of Fig. 7.8. It is assumed that the three road sections have traffic flow
almost equally distributed, i.e., priority should not be given to a specific road
section. The junction can be seen as a resource that is shared among the three
road sections, and is represented in the Petri net model as the S place. The
states of the traffic signal are represented as places and the transitions separate

112 Chapter 7. Formal Design and Verification of Traffic Signals Control

B

A

C

Figure 7.7: Junction with three road sections

Figure 7.8: Petri net model for the traffic signal

one state from another. The firing of a transition in the model allows state
changing.

A feasible solution for the conflict for the traffic signal of junction S is the firing
of transition t1 first, leading to the green state GA, then the firing of transition
t2 leading the yellow state Y A, and finally the firing of transition t3, which
releases the shared resource to road section B and allows again the red state to
road section A (RA). Fig. 7.9 shows this situation. The place S corresponding
to the shared intersection in the Petri net model is decomposed into places S1,

7.4. Modeling Urban Traffic Signals with Petri nets 113

Figure 7.9: Petri net with the order of transition firing

S2 and S3, which means that green phases are allowed after red ones, passing
to the yellow phases and returning to the red phase for sections A, B and C in
sequence.

7.4.2 Responsive Traffic Signals

In order to be effective, advanced traffic signal control systems require an accu-
rate current picture of the traffic flow and the status of the roadway network.
Actuated control uses information about current demand obtained from sensors
within the intersection to alter one or more aspects of the signal timing (Roess
et al., 2003). An example of a sensor used in road traffic systems is an inductive
loop. Actuated controllers may be programmed to accommodate variable green
times or phase sequences. The approach of this example is to create different
green periods. The green period is terminated in one of two ways: the max-
imum green time has been achieved, or it is not possible to extend the green
due to high demand on the other road sections.

Fig. 7.10 shows a simple junction with two road sections. Road section B has
a great flow of vehicles and road section A is a non-priority road. Considering
the figure, there are sensors in the arterial road A to detect and count vehicles
waiting for a green phase. The idea is to control the number of vehicles that
are waiting for the green phase in such a way that big queues are not formed.
The scenario proposed in this example is the one in which it is necessary to
give priority to a main road (B in this case), which has greater traffic flow
than the arterial road A. This priority is given by extending the period of the
green phase as much as possible. Nevertheless, users in these arterial roads

114 Chapter 7. Formal Design and Verification of Traffic Signals Control

B

A

Figure 7.10: Junction with two road sections

should not think that the traffic signal is not working, which may increase
the possibility of accidents. Therefore, every time there is a queue with a
predetermined maximum number of vehicles, the controller will not allow any
green time extensions anymore. This is important to make crossing possible for
non-priority roads.

total green phase

minimum green

a
c
tu

a
ti
o

n
s

time

total extension

unit extension

detection

Figure 7.11: Actuated controller green phase intervals

An actuated phase normally has three timing parameters in addition to the
yellow and red intervals. These are the minimum green, the unit extension, and
the total green phase (maximum interval). Relationships among the intervals
are shown in Fig. 7.11. Before the end of the unit extension period, in case a
vehicle is detected, then the green phase is extended by one unit. The Traffic
Detector Handbook (FHWA, 2006) recommends a unit extension of 3.5 seconds
for roads where speeds are higher than 30 km/h. For the sake of simplicity, it is

7.4. Modeling Urban Traffic Signals with Petri nets 115

assumed 4 seconds for each extension in this chapter, and a fixed interval (the
same minimal and maximal duration) for each yellow state ([5, 5] for instance).

GA

YA

RA RB

GB

YB

t1

t2

t3

t4

t5

t6

Controller

I1

RCB

Sensor

[45,57]

Figure 7.12: First level design for green time extension

The Petri net model of Fig. 7.12 is the first level of detail for the green time
extension. It has an interval [45, 57] associated to place GB, which corresponds
to the minimum and maximum green time allowed.

YB

GA

YA

RB

GB_e1

t1

t2

t3

t4

t4_1

t7

Controller
I1

RCB1

Sensor

[45,45]

RCB2

t4_2

t4_3

t5

GB_e2

GB_e3

GB_min

[4,4]

[4,4]

[4,4]

ty3

ty2
ty1

RA

Figure 7.13: Second level design for green time extension

Sensors detect vehicles and send data to the controller, which will send the
decision about the green time extension through the communication place RCB.
The internal behavior of sensors and the controller are specified by Petri net

116 Chapter 7. Formal Design and Verification of Traffic Signals Control

Components. In this example both are abstracted as black boxes receiving data
and sending appropriate signals.

Before the end of the minimum green, considering a small amount of time that
can be properly defined, the control will evaluate the presence of vehicles on the
arterial road. If the queue is smaller than a pre-determined maximum number
of vehicles, then the green time can be extended. Otherwise, the green phase
ends and the state changes to yellow to allow safety time for vehicle crossing.
Green time can be extended by a number of unit extension periods until there is
a number of vehicles waiting in the non-priority section, or until the maximum
green time is achieved.

The model of Fig. 7.12 is refined, through top-down modeling (see Section 7.3),
into the model of Fig. 7.13 to allow a maximum of 3 extensions, each one of 4
seconds, for the green time of the main road. The communication places RCB1
and RCB2 (refined from place RCB), represented as shaded places in the model
of Fig. 7.13, send real-time signals to the traffic signal. Before an extension is
allowed, the sensor will send data to the controller, which will process and return
one of two responses, as communication places: RCB1, allowing the extension,
or RCB2, forcing the traffic signal to switch to the yellow phase. If the queue of
vehicles reaches its maximum during the extended interval, a response is sent
to the communication place RCB2, and the control switches immediately to the
yellow state after the end of the unit extension period. The advantage of this
approach is that instead of just identifying one vehicle and allowing the green
for the non-priority road, the idea is to wait for a real demand of vehicles.

The 3 possible extensions are shown in Fig. 7.13 (places GB e1, GB e2 and
GB e3). Other scenarios, in which more than 3 extensions are allowed, can be
modeled and used in a similar manner. This mechanism will allow a minimum
of 45 seconds and a maximum of 57 seconds for the green time on the main
road.

7.4.3 Modeling a Traffic Signal Control for a Subnetwork with
Two Junctions

In order to achieve better results in terms of traffic flow, the network level must
be evaluated, and problems such as traffic jams must be solved not only locally,
but in a wide area (Soares and Vrancken, 2007a). Otherwise, the problems may
just move to another place in the network. Fig. 7.14 shows a network of traffic
signals controlling a network of road segments. The network is composed of
main roads and arterial roads. Reasoning on a network level increases system
complexity. The approach used in this chapter is to model and analyze complex
systems by hierarchical decomposition into smaller components (divide and

7.4. Modeling Urban Traffic Signals with Petri nets 117

conquer) (Rouse, 2003). Thus, the network is divided into subnetworks. Fig.
7.15 shows an example of a subnetwork of roads with two junctions: I1 and I2.
The main road has a great flow from B to D, and A and C are non-priority
roads.

Figure 7.14: Network of traffic signals

B

A

D

C

I1

I2

Figure 7.15: Subnetwork example

When a network of intersections is considered, it is possible to improve traffic
flow by providing green-waves for main roads. The idea is to provide green
time to the maximum number of vehicles in a sequence of junctions, such that
they can cross without stopping. This is possible using adjusted offsets (Roess
et al., 2003) (difference between green starting times in a network, considering
intersections in sequence).

118 Chapter 7. Formal Design and Verification of Traffic Signals Control

When reasoning on networks of road junctions, three additional requirements
for traffic signals modeling are important (Soares and Vrancken, 2007e):

• Any user in the intersection should not wait for more than a maximum
service delay, otherwise the user may presume that the traffic signal is
not functioning, which can lead to non-secure decisions by the users (red
light violations), or the formation of big queues.

• The offset is ideally designed in such a way that as the first vehicle just
arrives at the next intersection in the network, the signal controlling this
intersection turns green.

• The length of green time for each road section shall be different, depending
on section priority, for instance. This length shall be extended to improve
traffic flow.

The Use Case of Fig. 7.16 shows a context diagram for traffic signals control-
ling a network of junctions and considering the requirements just mentioned.
The Use Case “Control Phases” depends on actors Vehicle and Sensor. Data
detected by sensors (presence and number of vehicles) are sent to the controller.
The actor Controller is responsible to selecting a feasible signaling schema to
be sent to actor Traffic Signal. In order to correctly control the network, safety
rules must be applied (Use Case include relationship). Whenever possible,
which means that safety rules will not be violated, performance rules are con-
sidered (Use Case extend relationship).

Each Use Case is a set of actions performed by the system, which yields an
observable result for the actors involved. The dynamic behavior of the Use
Cases is specified with Petri nets in the approach presented in this chapter.

Figure 7.16: Context diagram for traffic signals controlling a network of junc-
tions

7.4. Modeling Urban Traffic Signals with Petri nets 119

TS I1

Controller

Traffic

regulate regulate
datadata

Detector 1 Detector 2

TS I2

environment

system

Figure 7.17: System architecture

Fig. 7.17 shows the elements of the system architecture and its relationship
with the environment. All elements (controller, traffic signals, detectors) are
specified using Petri net Components. Detectors send information about the
traffic state to the controller. The Controller sends signals to the traffic sig-
nals respecting the requirements previously established. And the traffic signals
regulate traffic.

Fig. 7.18 shows the controller and the traffic signal component. They commu-
nicate with each other through the component interface. The Controller sends
control signals to the traffic signal, indicated by places such as “A startGreen”,
which request the traffic signal to start a green phase for the corresponding
road section. After the operation is finished by the traffic signal, a response
is sent back by the traffic signal to the Controller (“A RespG”, for instance).
After that, the controller can proceed with its processing.

Fig. 7.19 shows the controller model for controlling the traffic signal of inter-
section I1. In the initial state, both transitions tsc1 and tsc4 are enabled. The
firing of these transitions allow respectively the green phase for road section A
and then for road section B.

Supposing that tsc1 fires first, it will deposit a token in place “Go GA”, in-
dicating that the controller commands the traffic signal of road section A to
switch to green. The firing of tsc1 also deposits a token in the interface place
“A startGreen”, which indicates to the traffic signal of road section A to start
the green phase.

A composite Petri net is made by place fusion of smaller nets (see bottom-up

120 Chapter 7. Formal Design and Verification of Traffic Signals Control

Go_GA

Controller

tsc1

tsc2

tsc3

Go_YA

GA

ts1

ts2

ts3

ts4

EndGA

YA

A_startYellow

A_startGreen

A_RespG

Traffic Signal A

A_RespY

A_startRed

A_startYellow

A_startGreen

A_RespG

A_RespY

A_startRed

EndYA

RA

ts5

I1

Figure 7.18: Controller and traffic signal components

Go_GA

Controller

tsc1

tsc2

tsc3

Go_YA

A_startYellow

A_startGreen

A_RespG

A_RespY

A_startRed

Go_GB

tsc4

tsc5

tsc6

Go_YB

B_startYellow

B_startGreen

B_RespG

B_RespY

B_startRed

I1

Figure 7.19: Controller model for road section I1

modeling in section 7.3). Places with the same label, such as “A startGreen”
in both controller and traffic signal components are fused in order to make one

7.4. Modeling Urban Traffic Signals with Petri nets 121

single component.

Figure 7.20 represents the global Petri net specification concerning intersection
I2, after place fusion of the controller and the traffic signals. A similar de-
sign is used for the controller and the traffic signal concerning intersection I1.
The detector component is represented as a black box (its internal behavior
is abstracted as it is not relevant to the design). Its interface is composed of
place VD (vehicle detected), indicating that a vehicle was detected and this
information is sent to the controller, which may respond using the place RVD.

To each place of the traffic signals a minimum and a maximum value
([(δp)min, (δp)max]) is associated, which indicates the duration a token must
remain before being used to fire the transition. In practice, this is the duration
of each phase of the traffic signal.

Go_GD

Controller

tc1

tc2

tc3

Go_YD

D_startYellow

D_startGreen

D_RespG

D_RespY

D_startRed

Go_GC

tc4

tc5

tc6

Go_YC

C_startYellow

C_startGreen

C_RespG

C_RespY

C_startRed

I2

GD

tsd1

tsd2

tsd3

tsd4

YD

RD

Traffic Signal DTraffic Signal C

Detector

End_GD

End_YD

GC

YC

RC

End_GC

End_YC

tsd5

tsc1

tsc2

tsc3

tsc4

tsc5

VD RVD

Figure 7.20: Combined Petri nets

Offset Mechanism

Coordinated traffic signals (Cheng et al., 2006) are very useful in road networks
where traffic signals are located in close proximity. The progressing is given in
such a way that the number of stops at intersections are minimized. However,
coordination has some limitations. There are no guarantees that all vehicles
in a platoon will be given green in the network at the required time. For
long sections, the effect may not provide the expected result due to several
factors, such as different vehicles speeds, traffic being already congested and
difference in phases of the subsequent traffic signals. These factors may limit

122 Chapter 7. Formal Design and Verification of Traffic Signals Control

the improvement in traffic flow.

Another problem that is often neglected is that the success in coordinating
traffic signals in main roads may lead to traffic jams in arterial roads (where
vehicles have to wait too long for green), which may move to the main road in
the near future. This is avoided by limiting the green phase using p-time Petri
net intervals.

The design proposed in this subsection makes possible the occurrence of green
waves through the offset mechanism. Ideally, an offset is designed in such a
way that when the first vehicle arrives at the next intersection in the network,
the signal controlling this intersection turns green. This ideal offset is difficult
to achieve with pre-determined offsets. The aim of the offset mechanism con-
sidered in this chapter is to facilitate that a platoon of vehicles coming from
section B receives green time when reaching section D, improving traffic flow
from intersection I1 to I2.

7.5 Invariant Analysis

From an initial marking, the marking of a Petri net can evolve by the firing
of enabled transitions and, if there is no deadlock, the number of firings is
unlimited. It may happen that all the reachable markings have some properties
in common. A property which does not vary when the transitions are fired is
said to be invariant. For instance, for certain subsets of places of a Petri net,
the number of tokens in this subset remains constant.

Petri nets’ structural properties are based on matrix equations. By examining
the linear equations based on the execution rule of Petri nets and the matrices
Pre and Post it is possible to find subsets of places over which the sum of
tokens remains unchanged.

For a Petri net PN with n transitions and m places, the Incident Matrix C =
[Cij] is an n × m matrix of integers and its typical entry is given by C =
Post − Pre. Considering C̄ the transposed homogeneous incident matrix, an
integer solution y of the equation C̄y = 0 is called a P-invariant. The non-zero
entries in a P-invariant represent weights associated with the corresponding
places so that the weighted sum of tokens of these places is constant for all
markings reachable from the initial marking.

7.5.1 Analysis of a Single Junction

P-invariant analysis is useful to prove mutual exclusion mechanisms. For ex-
ample, considering the model of Fig. 7.8, there are three sets of p-invariants

7.5. Invariant Analysis 123

that are similar to each other:

M(GA) + M(RA) + M(Y A) = 1

M(GB) + M(RB) + M(Y B) = 1

M(GC) + M(RC) + M(Y C) = 1

The result of the first set is that there will be a token in place GA or RA or
YA, which means that a token will be present in only one of these places at a
determined period of time. This proves the mutual exclusion property and that
the traffic signal switches from red phase, to green phase and yellow phase for
the road section A. The same result is achieved for road sections B and C.

Another p-invariant is given by

M(GA)+M(GB)+M(GC)+M(S)+M(S2)+M(S3)+M(Y A)+M(Y B)+M(Y C)=1

This invariant states that no two green or two yellow phases can start simulta-
neously for each of the conflicting sections, proving again the mutual exclusion
property. As a matter of fact, the invariant analysis shows that no matter how
the transition firing is performed, there is no possibility for the traffic signal to
show unsafe states such as two greens for conflicting road sections.

7.5.2 Analysis of a Network of Junctions

The Petri net of Fig. 7.20 is p-invariant. There are 36 subsets of places over
which the sum of tokens remain unchanged, as for instance, the set { End GD,
End YD, GD, RD, YD }, which represents that there will be a token in End GD
or End YD or GD or RD or YD. The sum of tokens in this set is always 1. As a
matter of fact, it is not possible to achieve simultaneous green phase and yellow
phase for road section D. There is an equivalent set for road section C.

Another interesting set is {Go GC, Go GD, Go YC, Go YD, I2}. The interpre-
tation is that the controller will not allow simultaneous green phase or yellow
phase for conflicting road sections, which fulfills an important safety require-
ment.

124 Chapter 7. Formal Design and Verification of Traffic Signals Control

7.6 Scenario Analysis with Linear Logic

Linear Logic was proposed by Girard (Girard, 1987, 1995) as a refinement of
traditional logic in order to deal with resources. In traditional logic, a proposi-
tion can be used as many times as one wants. For instance, if a fact A is used
to conclude a fact B, the fact A is still available even after being used. Within
Linear Logic, propositions are resources that can be produced and consumed.
It is natural that resources can be counted, but traditional logic has no easy
means to do that, due to two structural rules: weakening and contraction.

The weakening rule states that if A → B is valid, so is A ∧ C → B. In a
system that manipulates resources, this rule means that resources can appear
and disappear at any time, and still the production is the same. In this case, the
fact that a new resource is added has no effect in the system. The contraction
rule states that if A∧A → B, then A → B. This means that even if a resource
is eliminated, the final production is the same. These rules do not apply for
systems that manipulate resources. In practice, resources can be counted and
cannot simply appear or disappear without having an influence in a system.
As Petri nets deal correctly with the notion of resource, some results appeared
on combining Petri nets and Linear Logic (Brown, 1989; Engberg and Winskel,
1990).

7.6.1 Linear Logic and Petri nets

Linear Logic introduces three sets of connectives:

1. Multiplicatives: ⊗ (“times”), O (“par”), and ((linear implication);

2. Additives: & (“with”), ⊕ (“plus”);

3. Exponentials: ! (“of course”) and ? (“why not”).

The negation in Linear Logic, denoted ⊥, does not express truth/falsehood
properties, but rather concepts such as consumption and production of re-
sources.

Only the multiplicative connectives ⊗ (times) and ((linear implication) are
used in this chapter. As shown previously (Gehlot and Gunter, 1989), they are
sufficient to represent, respectively, Petri nets markings and transition firings.
The connective ⊗ represents accumulation of resources. Considering that A and
B are resources, the presence of both is represented by the equation A⊗B. The
connective (represents causal dependency between resources. Considering

7.6. Scenario Analysis with Linear Logic 125

that A is a resource that is consumed to produce B, this is represented by the
equation A (B.

In this chapter, the translation from Petri nets to equations of Linear Logic
is based on (Girault et al., 1997) to explicitly deal with markings. A marking
M is represented by M = P1 ⊗ P2 ⊗ · · · ⊗ Pk where Pi are place names with
the presence of tokens. A transition is an expression of the form M1 (M2

where M1 and M2 are markings representing respectively the consumed and
produced resources. In fact, for the Petri net these are the equivalent Pre and
Post functions of the transition.

For example, considering the Petri net of Fig. 7.1, the initial marking is denoted
Mi = PA ⊗ PA ⊗ PB in Linear Logic, and transition t1 is represented as
t1 = PA⊗ PA⊗ PB (PC.

7.6.2 Linear Logic Proof Tree

In (Girard, 1987), all the rules for the sequent calculus proof are explained. In
this chapter, the fragment Multiplicative Linear Logic is used. This fragment
contains the multiplicative connective ⊗, representing accumulative resources,
and the linear implication (, representing causal dependency. There is no
negation and the meta connective “,” is commutative.

The deduction system used in Linear Logic is similar to the one used in classical
logic, proposed by Gentzen in 1934 (Girard, 1995).

A linear sequent is denoted as Γ ` ∆, where Γ and ∆ are sets of formulas, i.e.,
Γ = Γ1, Γ2, . . .Γn and ∆ = ∆1, ∆2, . . . ,∆n. The symbol Γ is the antecedent
and the symbol ∆ the consequent.

Linear Logic is commutative, which means that the order of the formulas in the
consequent and the antecedent is indifferent. For instance, an antecedent can
be represented as Γ = F, G or as Γ = G,F ; in a similar manner, a consequent
can be represented as ∆ = H, I or as ∆ = I,H.

A linear sequent proof consists of a set of hypothesis over an horizontal line and
a conclusion above this line. Proving a sequent is to prove that it is syntactically
correct.

hypothesis1 hypothesis2
conclusion

rule

The ` (turnstyle) and the comma are Linear Logic primitive symbols. The `
divides the sequent into the left part (premisses), and the right part (conclu-
sions). The sequent is proved by applying the rules of the sequent calculus. To

126 Chapter 7. Formal Design and Verification of Traffic Signals Control

prove a sequent is to show that it is syntactically correct. The proof tree is
constructed bottom up. If the proof tree stops when all the leaves of the tree
are identity sequents, such as P ` P , then in this case the sequent is proved.
Otherwise, if there are no further Linear Logic rules that can be applied to
transform the sequent into an identity one, then the sequent is not proved. The
Linear Logic rules are:

Identity

F ` F
id

Γ ` F, ∆ Γ′, F ` ∆′

Γ, Γ′ ` ∆, ∆′ cut

Structural
F,G ` ∆
G,F ` ∆

XL
Γ ` F, G

Γ ` G, F
XR

Linear negation

Γ ` F, ∆
Γ, F ` ∆

L
Γ, F ` ∆
Γ ` F, ∆

R

Multiplicatives

Γ, F, G ` ∆
Γ, F ⊗G ` ∆

⊗L
Γ ` F, ∆ Γ′ ` G,∆′

Γ, Γ′ ` F ⊗G,∆,∆′ ⊗R

Γ, F ` ∆
Γ, Γ′, FOG ` ∆, ∆′OL

Γ ` F, G,∆
Γ ` FOG,∆

OR

Γ ` F, ∆ ∆′, G ` ∆′

Γ,Γ′, F (G ` ∆, ∆′ (L
Γ, F ` G,∆

Γ ` F (G,∆
(R

Additives

Γ, F ` ∆
Γ, F&G ` ∆

&L 1
Γ, G ` ∆

∆, F&G ` ∆
&L 1

7.6. Scenario Analysis with Linear Logic 127

Γ ` F, ∆ Γ ` G,∆
Γ ` F&G, ∆

&R
Γ, F ` ∆ Γ, G ` ∆

Γ, F ⊕G ` ∆
⊕L

Γ ` ∆
Γ ` F ⊕G

⊕R 1
Γ ` G,∆

Γ ` F ⊕G,∆
⊕R 2

In this chapter, the logical rules id, ⊗L, ⊗R and (L are applied to build the
proof tree as follows (Girault et al., 1997):

• the rule ⊗L transforms a marking such as P1⊗P2 into a list of atoms (P1,
P2 for instance). This rule is applied repetitively to separate a marking
into atoms, which allows the application of the (L rule.

• the (L rule expresses a transition firing. It generates two sequents. The
left sequent represents the tokens that were consumed by the transition
firing. The right sequent represents the new tokens produced by the
transition firing. In case the new sequent is an identity one (e.g., P1 `
P1), a leaf was reached and this branch of the tree was proved. Otherwise,
the rule ⊗R is applied.

• the rule ⊗R transforms sequents of the form P1, P2 ` P1⊗ P2 into two
identity ones P1 ` P1 and P2 ` P2, which are proved leaves.

A scenario is a set of events that transform an initial marking into a final
one. A linear sequent Mi, ts ` Mf represents a scenario where Mi and Mf

are respectively the initial and final markings, and ts is a set of non-ordered
transitions.

PA

PB

PC

PDt2t1

Figure 7.21: Petri net example for construction of the Linear Logic proof tree

An example of a Petri net to be used for the construction of the Linear Logic
proof tree is shown in Figure 7.21. The sequent to be proved is: PA, t1, t2 `

128 Chapter 7. Formal Design and Verification of Traffic Signals Control

PD. This means that from place PA, after firing transitions t1 and t2, the
final marking PD is reached. The linear formula for transitions t1 and t2 are
respectively: PA (PB ⊗ PC and PB ⊗ PC (PD. The proof tree is given
as follows:

PB`PB PC`PC

PB,PC`PB⊗PC PD`PD ⊗R

PB,PC,(PB⊗PC(PD)`PD (L

PA`PA PB⊗PC,(PB⊗PC(PD)`PD (L

PA,(PA(PB⊗PC),t2`PD

PA,t1,t2`PD

From the proof tree generated, it is clear that the sequent is proved, as all leaves
are identity sequents.

7.6.3 Analysis of Scenarios

In dynamic systems, an important issue is whether a specific state is reachable.
Reasoning about reachable states allows one to verify, for instance, whether an
unsafe state may occur.

The coverability graph is a method for analyzing Petri nets which consists of the
enumeration of all reachable markings. When a model is bounded, the cover-
ability graph is called reachability graph, since it contains all possible reachable
markings. The algorithm to construct the coverability graph is shown in (Mu-
rata, 1989). Basically, the algorithm obtains, from the initial marking, a graph
of the reachable markings of a Petri net when firing the enabled transitions.

Reachability analysis was applied to the Petri net of figure 7.20, but without
considering the detector interface, which would characterize a specific scenario.
The analysis resulted in 32 states, from state S0 = {I2 RC RD} to state S31 =
{C startRed End YC I2 RD}. The result is that the Petri net is live and
bounded.

The reachability graph allows the verification of good properties, as reversibility,
and verification of deadlock absence. Also, it can demonstrate that unsafe
states are never reached. Nevertheless, the reachability analysis presents some
disadvantages. The most important is that its construction is a very hard
problem from a computational point of view. This is because the size of the
state-space may grow more than exponentially with respect to the size of the

7.6. Scenario Analysis with Linear Logic 129

Petri net model. Another problem is that it is not possible to extract the
causality links between the different firings, which is fundamental in scenario
deriving (Demmou et al., 2004). Finally, the reachability graph presents some
difficulties in analyzing properties in which concurrency plays a fundamental
role (Girault and Valk, 2002).

The equivalence between Petri nets reachability and the proof of sequents in
Linear Logic was proved in (Girault et al., 1997). When a sequent is proved by
applying the rules of the sequent calculus of Linear Logic, equivalently it can
be stated that the final marking is reached from the initial one by firing a set
of transitions. As a direct consequence, if a sequent is not provable, then the
marking is not reachable. The result is that Linear Logic can be seen as an
analysis tool for Petri nets and can be applied to give some important results
about the models.

Within Linear Logic, the reachability problem is in fact the problem of sequent
proving. It gives a formal and logical framework that assures the coherence of
causality between transitions firing. Also, it is possible to extract from the proof
tree some information about the order of transition firing and the evaluation
of the scenario (with or without time associated). The other advantage is
that it is possible to derive specific scenarios that one wants to study directly
from the Petri net without constructing the reachability graph (Demmou et al.,
2004). Finally, when changing the initial marking or the final marking, it is
not necessary to create the reachability graph again, provided that these states
belong to the set of states present in the Linear Logic proof tree. The main
purpose in this chapter is not to check all possibilities, which can be done using
the reachability graph, but to study specific scenarios using theorem proving.

The considered scenario (Fig. 7.22) is the one in which a green phase is given
first to road section C (token in I2C) and then to road section D (token in I2D)
after a vehicle is detected. These places were created by the refinement of place
I2 of Fig. 7.20. The same approach can be easily applied to other scenarios.

Scenario Analysis - Possible reachability of an unsafe state

Considering the proposed scenario, one needs to verify if there is a possibility of
reaching an unsafe state, such as the reachability of simultaneous green phases
for two conflicting road sections, as for instance, C and D, which is characterized
by a token present simultaneously in GC and GD. From the Linear Logic point
of view, this is equivalent to prove that the state GC ⊗ GD is not reachable
from another state. What is to be proved is that from one chosen initial state
the final state GC ⊗ GD is not reached. The equivalent sequent is

RC ⊗ RD ⊗ I2C ⊗ VD, tc4, tsc1, tc1, tsd1 (Go GC ⊗ GC ⊗ Go GD ⊗ GD.

This sequent states that from red states for both sections, it will be allowed

130 Chapter 7. Formal Design and Verification of Traffic Signals Control

Go_GD

Controller

tc1

tc2

tc3

Go_YD

D_startYellow

D_startGreen

D_RespG

D_RespY

D_startRed

Go_GC

tc4

tc5

tc6

Go_YC

C_startYellow

C_startGreen

C_RespG

C_RespY

C_startRed

I2C

GD

tsd1

tsd2

tsd3

tsd4

YD

RD

Traffic Signal DTraffic Signal C

End_GD

End_YD

GC

YC

RC

End_GC

End_YC

tsd5

tsc1

tsc2

tsc3

tsc4

tsc5

VD

I2D

RVD

Detector

Figure 7.22: Petri net for scenario analysis

Table 7.1: Linear Logic representation of transitions
tc4 = I2C (C startGreen⊗Go GC

tsc1 = C startGreen⊗RC (GC

tc1 = I2D ⊗ V D (D startGreen⊗RV D ⊗Go GD

tsd1 = D startGreen⊗RD (GD

green for sections C and D simultaneously.

Table 7.1 shows the Linear Logic representation of the transitions. The proof
tree is given as follows (places C startGreen and D startGreen were respectively
renamed to CsG and DsG due to lack of space in the proof tree).

7.6. Scenario Analysis with Linear Logic 131

V D,RD,Go GC(I2D⊗V D(Go GD⊗DsG⊗RV D),tsd1`Go GC⊗GC⊗Go GD⊗GD (L

RC`RC CsG`CsG V D,RD,Go GC(I2D⊗V D(Go GD⊗DsG⊗RV D),tsd1`Go GC⊗GC⊗Go GD⊗GD (L

I2C`I2C V D,RC,RD,(CsG⊗RC(GC),tc1,tsd1`Go GC⊗GC⊗Go GD⊗GD (L

V D,RC,RD,I2C,(I2C(Go GC⊗CsG),tsc1,tc1,tsd1`Go GC⊗GC⊗Go GD⊗GD (L

V D,RC,RD,I2C,tc4,tsc1,tc1,tsd1`Go GC⊗GC⊗Go GD⊗GD ⊗L

V D⊗RC,RD,I2C,tc4,tsc1,tc1,tsd1`Go GC⊗GC⊗Go GD⊗GD ⊗L

V D⊗RC⊗RD,I2C,tc4,tsc1,tc1,tsd1`Go GC⊗GC⊗Go GD⊗GD ⊗L

V D⊗RC⊗RD⊗I2C,tc4,tsc1,tc1,tsd1`Go GC⊗GC⊗Go GD⊗GD

From the proof tree, it is clear that the final state is not reached, as there
are no further Linear Logic rules that can be applied to transform the branch
V D,RD,Go GC(I2D⊗V D(Go GD⊗DsG⊗RV D),tsd1`Go GC⊗GC⊗Go GD⊗GD of the proof
tree into identity sequents. The same reasoning can be done if the green phase
is allowed first to road section D. In this case, a similar tree is generated with
the same final result.

Other results can be inferred from the proof tree. The unsafe state is not
reached because it is not possible to fire transition tc1, which is not enabled.
In the proof tree, this is represented by not having the token I2D, as the VD is
present. Supposing that this unsafe state is reached due to some error, then it
is clear that transition tc1 was fired because it was enabled by a token in I2D,
and there is a design problem. In addition, it is clear that the green phase is
only reached in this scenario for road section D when there is a token in place
VD, which means that a vehicle was detected. Supposing that it is not possible
to fire the transition to allow the green phase, one possible reason is that the
detector failed or is damaged.

Scenario Analysis - Reversibility

It is fundamental to prove that the controller and the traffic signals are capable
of switching from red to green and yellow and returning to red, without possibil-
ities of giving both red and green phases to the same road section. Considering
Mi = Mf = RC ⊗ RD ⊗ I2C as both the initial and final marking and ts =
{tc4, tsc1, tsc2, tc5, tsc3, tsc4, tc6, tsc5, tc1, tsd1, tsd2, tc2, tsd3, tsd4, tc3,
tsd5} the set of transitions to be fired in the scenario, a Linear Logic sequent
representing the reversible scenario is given as follows:

RC ⊗RD ⊗ I2C, ts ` RC ⊗RD ⊗ I2C

An important remark is that the ts set of transitions is not ordered. For in-
stance, tsc5 and tc1 can be fired simultaneously, or tsc5 first or tc1 first. This

132 Chapter 7. Formal Design and Verification of Traffic Signals Control

is an advantage of using Linear Logic sequent calculus instead of a reachability
graph, in which all the possibilities are evaluated. The same remark holds for
transitions tsd5 and tc4.

Only part of the proof tree is given as follows (place C startGreen was renamed
to CsG due to lack of space in the proof tree, and only the current enabled
transition appears on the proof tree).

RC`RC RD`RD I2C`I2C ⊗R

RC,RD,I2C`RC⊗RD⊗I2C ⊗L

...
...

...
...

...
...

RC,RD,I2C,(I2C(Go GC⊗CsG)`RC⊗RD⊗I2C (L

RC,RD,I2C,ts`RC⊗RD⊗I2C ⊗L

RC⊗RD,I2C,ts`RC⊗RD⊗I2C ⊗L

RC⊗RD⊗I2C,ts`RC⊗RD⊗I2C

All leaves of the tree are identity ones. This means that the final state is reached
from the initial one after firing the set of transitions. As a matter of fact, the
Petri net is reversible. The practical implication is that the designed net is
capable of going back to its initial state after each cycle and then repeat the
cycle, which is according to the requirements and exactly the expected behavior
of a traffic signal.

7.7 Conclusion

Urban traffic signals control systems are critical software-intensive systems, in
the sense that several elements are involved, and they are applied to a critical
infrastructure. The design must address performance and safety, as human
life is directly involved and transportation infrastructure is fundamental to the
economy of a country.

In this chapter, the application of Petri nets and extensions for the design and
analysis of urban traffic control systems is proposed. A divide and conquer
approach is followed in order to address system complexity. Thus, from a
network of roads, a subnetwork of two road sections are considered each time,
but due to modularity aspects used in this chapter, this is scalable to greater
networks. The modularity is based on components whose internal behavior is

7.7. Conclusion 133

specified by Petri nets. Another Petri net extension used is the association
of a time interval to each place, allowing traffic signals phase durations to be
specified from a minimum to a maximum value.

The verification of Petri net models is initially performed based on structural
analysis. This is done by applying the invariant theory to a Petri net model.
Reachability analysis is applied to the generated net in order to give results
about some good properties. Finally, scenario analysis is based on theorem
proving using Linear Logic proof trees. The advantage of using Linear Logic
for scenario evaluation is that it is possible to derive specific scenarios that one
wants to study, without constructing complete reachability graphs.

An advantage of Petri nets is that the same model can be used as input for
diverse Systems Engineering activities. As a graphical model, Petri nets can
be simulated through the common token player algorithm in a computer based
tool. The same model can be formally verified using one of the many methods
provided by the Petri net theory. Once the model is shown reliable, it can be
used to evaluate the systems’ performance. Finally, when all these activities
are successful according to defined requirements and criteria, the models can
be used for automatic code generation. The activities of modeling and verifi-
cation have been considered in this chapter. Performance evaluation and code
generation are activities to be considered in future research.

134 Chapter 7. Formal Design and Verification of Traffic Signals Control

Chapter 8

Evaluation

This chapter is about the evaluation of the suitability of including and combin-
ing semi-formal modeling languages (UML and SysML) and a formal modeling
language (Petri nets) in the 4+1 View Model of Architecture, as well as the
applicability of this approach to design software-intensive systems. In order
to test the hypotheses of Section 8.1, our choice was to use the “industry as
laboratory” approach (Section 8.2). Thus, the first step was to lecture on
Model-Driven Software Engineering (Section 8.3) to the employees of Trinité
that would be the subjects for the evaluation. The evaluation itself was a pro-
cess in which a survey was proposed followed by individual interviews (Section
8.4). With these data, an analysis of findings (Section 8.5) was performed.

8.1 Hypotheses

The general hypothesis to be tested is given as follows:

“The use of multiple views, modeling languages and well-defined domain and
software architecture has a positive impact on the design of Software-Intensive
Systems.”

The general hypothesis can be refined as the following four derived ones.

1. SysML adds value in the design of Software-Intensive Systems compared
to using only UML.

SysML is a modeling language created from UML, considered both a
subset of and an extension to UML (OMG, 2008a). We want to evaluate
the advantages of using SysML, i.e., what modeling capabilities SysML
offers that are not offered by UML.

135

136 Chapter 8. Evaluation

2. Including SysML in the 4+1 View Model of Architecture adds value in
the design of Software-Intensive Systems.

We want to evaluate what added value SysML can bring when designing
models for each view of the 4+1 View Model of Architecture. Thus, we
would like to know which SysML diagrams can be used for each view,
and what advantages this will bring in the design of software-intensive
systems.

3. Including Petri nets in the 4+1 View Model of Architecture adds value in
the design of the dynamic behavior of Software-Intensive Systems.

The 4+1 View Model of Architecture is mostly associated with object-
oriented modeling languages/methods for designing models for each view,
such as the Booch method and the UML language. We would like to in-
clude a formal method for designing dynamic models for the architecture
views and evaluate the added advantages, for instance, in terms of ex-
pressivity for modeling software-intensive systems. We also would like to
know what shortcomings the use of formal methods can bring, and how
to overcome identified issues.

4. Using the 4+1 View Model of Architecture facilitates the maintainability
of Software-Intensive Systems.

Dealing with legacy systems is a certainty in software-intensive systems
development. Thus, the software architecture should provide means to
facilitate the maintenance of software-intensive systems. We would like
to know to what extent the 4+1 View Model of Architecture facilitates
the maintainability of Software-Intensive Systems.

8.2 Test Design

The research presented in this thesis is about Software Engineering, which is
a discipline that is most necessary to develop large, complex software. This is
most likely to happen in practice, with real world problems. Thus, the choice
was to test the hypotheses in an industrial environment.

The industry as laboratory approach uses the actual industrial setting as test
environment (Potts, 1993). Within this approach, the research team builds
an intimate relationship with an industrial product creation team, which is
mutually beneficial (Muller and van de Laar, 2009). The research team gets
inspiration from real industrial challenges, and at the same time it gets a means
to verify research results in industrial settings. The industrial partner gets
inspiration from results, and is continuously challenged by unbiased and critical
people.

8.3. Course on Model-Driven Software Engineering 137

The testing was performed at Trinité, a company specializing in developing
RTMS. A number of reasons support this choice and makes clear why Trinité
is suitable for the testing.

Trinité is the company that developed HARS, and where part of the PhD
research was performed. Besides, Trinité is a company that deals with complex
problems, and is always eager to learn better and improved ways to solve these
problems. As a company, Trinité is enthusiastic in improving the software
development methods in use. Finally, Trinité employees’ and managers’ find
the relationship with academia very positive.

In practice, the introduction of a new technology in industry is often done by
a course. A common format for a course is that an expert from outside the
company lecture to the employees. This saves time, as the best practices are
already introduced through an experienced person.

8.3 Course on Model-Driven Software Engineering

The proposed course had a total duration of 12 hours, divided into 2 days (6
hours each day) and was followed by ten employees of Trinité, varying from
developers to managers. The content of the course was divided into four parts
as follows:

Part 1 - The 4+1 Views of Software Architecture Definition of soft-
ware architecture. The five views. Examples with UML.

The purpose of Part 1 was to present the importance of having a defined
software architecture to develop software-intensive systems. The 4+1
View Model of Architecture was presented, and for each view examples
were given using UML diagrams and notations used by the company. It
is important to note that Trinité already uses the 4+1 View Model of
Architecture. Thus, the purpose with Part 1 was to identify possible
problems with the architecture, and to discuss how the company uses the
architecture in practice.

Part 2 - UML 2.0 - Dynamic diagrams Use Cases. Sequence diagrams.
Activity diagrams. State-Machine diagrams. Relationships between dia-
grams.

The company has been using UML 1.x for many years, but had not yet
switched to the UML 2 version, which was the version explained during
the course. The emphasis of Part 2 was on UML dynamic diagrams. The
main reasons for that are: (i) dynamic diagrams are more important than
static diagrams for the type of systems being developed at Trinité, (ii)

138 Chapter 8. Evaluation

knowing the relationship between dynamic diagrams is not trivial (Dobing
and Parsons, 2006), and (iii) dynamic diagrams are often incorrectly used
(Agarwal and Sinha, 2003; Anda et al., 2006). After the explanation
about each of the most used dynamic diagrams, the relationship between
them was explored. For instance, how Sequence diagrams and Use Cases
are related to each other. In addition, best practices of when to use each
diagram were presented, as due to the number of diagrams, knowing which
one should be used in a specific situation is difficult (Anda et al., 2006).

Part 3 - SysML 1.0 Use Cases. Requirements diagram. Tables. Block dia-
grams.

Part 3 had two main objectives. The first one was to present the SysML
diagrams relevant for the thesis (the ones actually used in this thesis and
that needed to be evaluated). The emphasis was on the SysML diagrams
used for Requirements Engineering, including the extensions to the basic
SysML Requirements diagram (see Chapter 4) and the SysML Block dia-
gram used for Software Architecture design (see Chapter 6). The second
objective was to show where and how SysML could be included into the
4+1 View Model of Architecture, including discussion on the advantages
of combining UML and SysML diagrams for describing software architec-
ture views.

Part 4 - Petri nets Definition. Modeling capabilities. Tool support.

The purpose of Part 4 was to briefly present Petri nets. The emphasis
was on the modeling capabilities and the advantages over UML dynamic
diagrams (particularly the Sequence diagram). For instance, the possi-
bility of modeling in a top-down or bottom-up way (see Chapter 7) was
explained. In addition, the representation of time interval was presented.
To finalize, tool support was shown, including the token game simulation
and verification using reachability and invariant analysis.

During the course the participants had the opportunity to learn the theory
combined with examples in a variety of domains. A number of exercises were
proposed during the course. The purpose of these exercises was twofold: (i)
employees could practice what they have just learnt, and (ii) as an evaluation
of the difficulties they had with the modeling languages. The exercises were
tailored as entry-level ones, with low level of complexity and considered feasible
to be done individually. The list of exercises is given in Appendix C. In addi-
tion to the examples, a simple project was proposed by the company to each
participant, in which they had to use the knowledge gained during the course
to create a design for the project.

An important discussion during the course was about software development
activities at Trinité that were performed in the past and were not performed

8.4. Evaluation 139

anymore, or that were not uniformly performed. For instance, the UML Activ-
ity diagram was used in the past at the company, and for no apparent reason
was no longer being used. In addition, it was recognized that an effort on stan-
dardization was necessary such that all employees would use the same patterns
for documents and design. An example is the use of the UML State Machine
diagram, which was considered useful, but was not used by all employees.

There were many discussions on software architecture and its importance for
software development and evolution. All employees agreed that having a well-
defined architecture is fundamental. They discovered during the discussions
about architecture that implementation layers were being mixed at the com-
pany. They realized the need for improved separation of concerns.

8.4 Evaluation

Unvalidated methods and techniques have been routinely used in practice
throughout the entire spectrum of design, implementation and evaluation activ-
ities of software development (Davis, 1989; Venkatesh et al., 2003). Identifying
interventions that could influence adoption and use of new information technolo-
gies (IT) can aid managerial decision making on successful IT implementation
strategies (Jasperson et al., 2005).

Many models have been proposed to explain and predict the use of a system
(Venkatesh and Bala, 2008). The most widely employed model of IT adoption
and use is the Technology Acceptance Model (TAM) (Davis, 1989; Adams et al.,
1992). The model suggests that when users are presented with a new technology,
a number of factors influence their decision about how and when they will use it.
It posits that individuals’ behavioral intention to use an IT is determined by two
beliefs: perceived usefulness, defined as the degree to which a person believes
that using an IT will enhance his or her job performance, and perceived ease
of use, defined as the degree to which a person believes that using a particular
system will be free of effort. A third variable is considered in this research:
perceived usage (Adams et al., 1992), defined as the degree to which the user
will actually use the technology.

It should be emphasized that perceived usefulness and ease of use are peo-
ple’s subjective appraisal of performance and effort, respectively, and do not
necessarily reflect objective reality (Davis, 1989). Though different individuals
may attribute slightly different meaning to particular statements, the goal of
the multi-item approach is to reduce any extraneous effects of individual items
(Davis, 1989).

Another model created after the introduction of TAM is the Technology Transi-

140 Chapter 8. Evaluation

tion Model (TTM) (Briggs et al., 1998). TTM was created by extending TAM.
The purpose of TTM is to be a broader model of technology acceptance than
TAM that may be useful for reducing the duration and risk of technology transi-
tion projects. However, TTM does not replace TAM. As a matter of fact, TTM
can be considered in further steps, when researchers want to know what causes
a group of technology users to become self-sustaining, i.e., the effectiveness of
technology transference in a community.

In this research we are interested in the individuals acceptance process, which
is a good starting point to view how a new technology might be accepted in a
community. Therefore, extensions to TAM in which the social context is taken
into account (Venkatesh and Davis, 2000), although useful, are not investigated
here. In addition, the purpose is to evaluate initial acceptance of technology,
which makes TAM a suitable model.

TAM was initially proposed to evaluate information systems tools (Davis, 1989;
Adams et al., 1992), but it has also been used in other contexts, such as to
evaluate the adoption of the BPMN notation to teach business process at the
university level (Rozman et al., 2008), the intention to continue using a pro-
cess modeling technique (Recker, 2007), and data modeling techniques (Moody,
2002). In our case, we want to evaluate software and systems engineering mod-
eling languages (UML, SysML and Petri nets) in general, and more specifically
their adaptation and their integration into a well-known architecture model,
the 4+1 View Model of Architecture.

The evaluation was performed using two techniques: surveys, based on the
TAM theory, and interviews.

8.4.1 The Questionnaire

All the participants that returned the questionnaire had followed the Model-
Driven Software Engineering course and had had some practice after making a
design for a simple project. Thus, the questionnaire was not proposed as soon
as the course ended.

The participants answered a questionnaire composed of 43 statements in which
they made their opinions explicit. A 5-point Likert scale (Likert, 1932) was
proposed to measure perceived attitudes of the employees by providing a range
of responses to each statement. The scale ranged from (1) strongly disagree,
(2) disagree, (3) neutral, (4) agree, and (5) strongly agree. For the negative
statements, it was inferred from low scores that the participants are positive
about a statement in the questionnaire, while for the positive statements, a high
score was inferred that the participants were positive about the statement.

8.4. Evaluation 141

The response categories in Likert scales have rank order, but the intervals be-
tween values cannot be presumed equal (Jamieson, 2004). As a result, Likert
scales fall within the ordinal level of measurement. When treated as ordinal
data, Likert responses can be analyzed using non-parametric tests, such as the
Mann-Whitney test, the Wilcoxon signed rank test, and the Kruskal-Wallis test
(Corder and Foreman, 2009). Non-parametric statistical methods were used to
analyze the findings because the subjects involved in the study were few and
not chosen randomly from a large population (they are all developers and man-
agers in a company). The objective was to find the representative power of
the results, and not necessarily the statistical significance (Yin, 2003). It is
worthwhile to note that non-parametric techniques do not solve the problem of
potential dependency between the answers of the participants. As a matter of
fact, the results are interpreted carefully.

8.4.2 Questionnaire Results

The questionnaire was responded by ten employees. The answers regarding
each question are shown in tables 8.1 to 8.11, in which “m” represents the
mean, “s” represents the standard deviation, and “pos” indicates the number
of positive answers, given in modulus because of negative statements. We arbi-
trarily considered as positive the answers “Agree” or “Strongly Agree” (values
4 or 5). For negative sentences we considered 1 and 2 for a positive response.

One table was created for each group of sentences (UML, SysML, Petri nets,
Architecture). Perceived usage was also considered during interviews. The
outcomes were evaluated in order to confirm or to refute the hypotheses. Con-
clusions were derived from the questionnaire and interviews. The purpose was
to understand the perceived benefits of integrating UML, SysML and Petri nets
into the 4+1 View Model of Architecture.

In statement 1, the fragments mentioned are “Optional”, “Alternatives”,
“Loop”, and “Parallelism”. In statement 2, the mentioned relationships are
“include” and “extend”. In statement 3, the mentioned stereotypes are “bound-
ary”, “entity” and “control”. In item 4, the Activity diagram is considered not
only for process but also for detailed algorithm specification.

The answers relative to statements 1 to 5 indicate that constructions considered
advanced and rarely applied in software design with UML, such as Use Case
relationships and fragments of Sequence diagrams were considered useful. On
the other hand, the response about class stereotypes was not conclusive. The
Activity diagram was considered useful for representing the overall dynamics
of a system. In addition, UML was considered useful for software design at the
company by 9 out of 10 respondents.

142 Chapter 8. Evaluation

Table 8.1: Perceived usefulness of UML - statements 1 to 5
Statement 1 2 3 4 5 m s pos
1 - The UML 2 Sequence Diagram fragments will
make my models more expressive.

3 6 1 3.8 0.63 7

2 - The Use Case Diagram relationships will make
my models more expressive.

4 6 3.6 0.51 6

3 - The Class Diagram stereotypes will facilitate
separation of concerns.

6 4 3.4 0.51 4

4 - The Activity Diagram helps me to better un-
derstand the system.

1 7 2 4.1 0.56 9

5 - Overall using UML is useful in my job. 1 2 7 4.6 0.56 9

Table 8.2: Perceived ease of use of UML - statements 6 to 11
Statement 1 2 3 4 5 m s pos
6 - I think UML diagrams are difficult to under-
stand.

1 7 1 1 2.2 0.78 8

7 - I know when to use each UML diagram. 5 1 3 1 3 1.15 4
8 - I know how to relate Use Cases and Sequence
Diagrams.

1 1 8 3.7 0.67 8

9 - I know how to relate Use Cases and Class Di-
agrams.

1 1 8 3.7 0.67 8

10 - I know how to relate Class Diagrams and Se-
quence Diagrams.

1 1 7 1 3.6 1.17 8

11 - It is easy for me to understand a UML design
made by others.

2 3 5 3.3 0.82 5

With the answers to statements 6 to 11, it is clear that UML is not considered,
by most respondents, a difficult modeling language. Even the relationship be-
tween diagrams, which is normally not well-documented in articles and books,
was considered easy for most of the respondents. Two main concerns can be
recognized. The first one is that the actual process of when to use each UML
diagram is not clear. The second concern in terms of usability was related to
UML design made by others. However, that would probably be true as well for
other artifacts generated during software development, such as source code and
even documentation.

Table 8.3: Perceived usage of UML - statements 12 to 13
Statement 1 2 3 4 5 m s pos
12 - I am interested in knowing more about UML
2.x.

3 3 4 3.1 0.87 4

13 - I worry about the amount of time needed to
learn UML extensions from version 1.x to 2.x.

3 4 2 1 3.1 0.99 3

Concluding the questionnaire about UML, statements 12 and 13 are about the

8.4. Evaluation 143

usage of UML. Specifically, the statements were about the transition from ver-
sions 1.x to 2.x. Updating versions of tools and modeling languages is normally
a concern, because companies have developed many legacy systems, and updat-
ing all documents after every change is a time consuming task with little actual
gain. The result was not conclusive, with almost equal answers supporting
updating to the new version, or keeping using the current version.

Table 8.4: Perceived usefulness of SysML - statements 14 to 18
Statement 1 2 3 4 5 m s pos
14 - Using the SysML Requirements Diagram will
make my models more expressive.

2 8 3.8 0.42 8

15 - Using the SysML Requirements Diagram rela-
tionships will make it easier to trace requirements.

2 7 1 3.9 0.56 8

16 - Using the SysML Requirements Diagram ex-
tensions will improve the requirements engineering
phase.

4 6 3.6 0.51 6

17 - Using the SysML Requirements Diagram to
model all types of requirement will improve the
requirements engineering phase.

7 3 3.3 0.48 3

18 - I think it is useful to introduce SysML in the
4+1 view model of architecture.

3 7 3.7 0.48 7

The answers relative to statements 14 to 18 indicate that the SysML Require-
ments diagram has potential of usefulness in general and within the 4+1 Model
of Architecture in particular. Most respondents considered that the diagram
is useful to make the models more expressive and that it improves traceability
between requirements and other design models, which is fundamental for de-
signing software-intensive systems. SysML was considered to be useful to be
used within the 4+1 View Model of Architecture by 7 respondents. However,
a remarkable result was that 7 respondents were neutral with one important
capability of SysML Requirements diagram, which is to model other types of
requirements besides the functional ones.

Table 8.5: Perceived ease of use of SysML - statements 19 to 22
Statement 1 2 3 4 5 m s pos
19 - It is easy for me to know the difference be-
tween UML and SysML Use Cases.

3 5 2 2.9 0.73 2

20 - It is easy for me to know the difference be-
tween each SysML Requirements diagram relation-
ship.

2 6 1 1 3.1 0.87 2

21 - I find it easy to relate SysML Use Cases and
SysML Requirements Diagrams.

1 8 1 3 0.47 1

22 - It is easy for me to model requirements using
the SysML Requirements diagram.

3 3 4 3.1 0.87 4

144 Chapter 8. Evaluation

Even being a UML profile and sharing UML concepts, constructs and diagrams,
details related specifically to SysML were not considered easy to understand and
use. Moreover, the relationship and the differences between UML and SysML
diagrams for Requirements Engineering are not clear. The results of statements
19 to 22 indicate that even for developers that are knowledgeable about UML,
a specific training in SysML is highly recommendable. This is reflected in
statements 23 to 25, about the usage of SysML. Although there was an interest
in knowing more, there was also concern about the acceptance in real projects
and the amount of time needed to learn the language.

Table 8.6: Perceived usage of SysML - statements 23 to 25
Statement 1 2 3 4 5 m s pos
23 - I worry about the acceptance of SysML in a
real project.

4 4 2 2.8 0.78 4

24 - I worry about the amount of time needed to
learn SysML.

7 2 1 2.4 0.7 7

25 - I am interested in knowing more about SysML. 4 6 3.6 0.51 6

The answers relative to statements 26 to 30 indicate that Petri nets are con-
sidered by most respondents a useful modeling language. Before the proposed
course, only one respondent had had previous contact with Petri nets. Nev-
ertheless, even after a short introduction, the advantages of Petri nets com-
pared to UML were recognized. The capacity of modeling important features
of software-intensive systems, such as shared resources and time constraints,
and the tool support used to verify, simulate and validate models were appre-
ciated. The introduction of Petri nets in the 4+1 View Model of Architecture
was considered positive by 7 respondents. However, from the results it is not
clear that the combination of modeling languages is useful.

Table 8.7: Perceived usefulness of Petri nets - statements 26 to 30
Statement 1 2 3 4 5 m s pos
26 - Petri nets provide modeling capabilities that
are not within UML/SysML.

2 7 1 3.9 0.56 8

27 - Using Petri nets will make my dynamic models
more expressive.

2 7 1 3.9 0.56 8

28 - Simulating Petri nets will help me to validate
my dynamic models.

2 5 3 4.1 0.73 8

29 - I think it is useful to introduce Petri nets in
the 4+1 view model of architecture.

3 6 1 3.8 0.63 7

30 - I think it is useful to combine UML/SysML
with Petri nets.

6 4 3.4 0.51 4

Statements 31 and 32 were about the perceived easy of use of Petri nets. Accord-
ing to the answers, it is difficult to draw a clear conclusion, as most employees

8.4. Evaluation 145

responded “neutral” to these questions. Yet, three of them acknowledge that
using Petri nets was easy, and that modeling time constraints with Petri nets
was easy as well.

Table 8.8: Perceived ease of use of Petri nets - statements 31 to 32
Statement 1 2 3 4 5 m s pos
31 - It is easy for me to use Petri nets. 1 6 3 3.2 0.63 3
32 - It is easy for me to model time aspects using
Petri nets.

1 6 3 3.2 0.63 3

According to statements 33 to 35, the use of Petri nets generated interest. How-
ever, they are worried about the amount of time needed to become competent
users of Petri nets, and how well-accepted it would be to have Petri nets in a
real project.

Table 8.9: Perceived usage of Petri nets - statements 33 to 35
Statement 1 2 3 4 5 m s pos
33 - I worry about the acceptance of Petri nets in
a real project.

3 3 4 3.1 0.87 4

34 - I am interested in knowing more about Petri
nets.

4 4 2 3.8 0.78 6

35 - I worry about the amount of time needed to
learn Petri nets.

1 1 3 4 1 3.3 1.15 2

Statements 36 to 39 are about the usefulness of the 4+1 View Model of Ar-
chitecture. The model is considered by most of the respondents sufficient,
as architecture, to develop software-intensive systems. According to their ex-
perience, using this model of architecture improves future maintainability of
software-intensive systems.

Table 8.10: Perceived usefulness of the 4+1 View Model of Architecture - state-
ments 36 to 39
Statement 1 2 3 4 5 m s pos
36 - The 4+1 view model of architecture is suf-
ficient, as architecture, for developing software-
intensive systems.

2 7 1 3.7 0.94 8

37 - All views are necessary for developing
software-intensive systems.

1 3 6 3.5 0.7 6

38 - Systems developed using the 4+1 architecture
have improved maintainability.

2 7 1 3.9 0.56 8

39 - Overall using the 4+1 view model of architec-
ture is useful in my job.

3 5 2 3.9 0.73 7

According to the responses given to statements 40 and 41, it is relatively easy
to understand each view and to know which diagram to use for each view.

146 Chapter 8. Evaluation

Nevertheless, the conclusion with the results of statements 42 and 43 is that the
introduction of SysML and Petri nets into the 4+1 View Model of Architecture
was not clear by most respondents. This issue should be clarified with intense
training.

Table 8.11: Perceived ease of use of “integration into the 4+1 Architecture” -
statements 40 to 43
Statement 1 2 3 4 5 m s pos
40 - It is easy for me to understand each view. 2 3 5 3.3 0.82 5
41 - It is easy for me to know which diagrams to
use for each view.

3 1 6 3.3 0.94 6

42 - It is easy for me to know where to use SysML
in the 4+1 views.

6 2 2 2.6 0.84 2

43 - It is easy for me to know where to use Petri
nets in the 4+1 views.

1 4 4 1 2.5 0.84 1

8.4.3 Results from the Interviews

Individual interviews were conducted with some of the participants. The pur-
pose was to better understand the responses and ask for more details of the
process of software development at the company. Not all participants could be
interviewed due to vacation periods or because they were no longer working at
the company. In addition, the focus was on interviewing, when possible, those
employees whose answers deviate from the group. For instance, in statement
36, the two respondents that do not considered the 4+1 View Model of Ar-
chitecture sufficient, as architecture, for developing software-intensive systems.
These two employees actually believe that additional information specific to the
customer viewpoint, without technical details, should be taken into account.

A major concern mentioned during the interviews was related to the customer
and the requirements. That confirms the many publications cited in this thesis
that consider Requirements Engineering a critical phase in software develop-
ment. For instance, according to one developer, the customer comes with very
specific requirements, making it difficult to change or to adapt. This can be
an issue because functional requirements may be possible to implement from a
theoretical point of view, but hard to implement in practice. In order to facil-
itate the implementation, developers may interpret the requirements, which is
considered “dangerous” by one manager. Incorrect interpretations may lead to
different implementation of certain functionalities and displease the customer.

From the project management point of view, it is difficult to make estimations
based only on initial requirements. A solution followed at the company is to
make at least part of the design before returning to the customer any informa-

8.4. Evaluation 147

tion about duration and costs. The main issue with this approach is that it is
not always feasible with the allocated time.

A major problem faced mainly by managers is that design is normally not done
according to the company’s standards. Although the importance of having a
good design before starting to implement the software is widely recognized both
in literature and in practice, developers are eager to start coding too early. This
was confirmed by developers during the interview.

The company as a whole makes intense use of UML as modeling language. The
language is considered by most of the employees easy to learn and use. Not
all diagrams are used, but just the most common ones (Use Case, Sequence,
Class), which actually is often seen in practice in other companies. Activity
diagrams are occasionally used for process modeling. The company has made
modifications to the Sequence diagram. For example, a specific symbol is in-
serted in the diagram to represent initiation time, and a graphical user interface
is added in order to show to the customer the results of each processing step.

According to managers and developers, one major problem faced with UML
is the lack of really useful tools. Although many tools are available, normally
commercial tools are too expensive, and open source tools are only good for
toy examples, but not for real design of large projects, which is common at the
company. In addition, the company uses Linux as the platform of development,
limiting the number of UML tools.

The applicability of formal methods for system design is a debated theme at the
company. Formal methods are not considered useful for some activities such as
designing the user interface, but are suitable for communicating systems and
processes specification in which the design must be free of errors. More specifi-
cally, Petri nets are considered useful, but it is still unclear how they fit into the
4+1 View Model of Architecture and the current company’s documentation. As
a result, most developers are reluctant to use Petri nets in practice, and think
that training is fundamental before they can become competent users.

On the other hand, SysML was considered easy to use and almost directly
applicable, as it is an extension of UML. Another advantage of SysML is the
flexibility provided by the language and the possibility of creating specific pro-
files with important company-specific additions. Specifically about the SysML
Requirements diagram and Tables, the developers and managers see potential
in SysML compared to their old requirements specification method, mainly
because it clearly shows relations between requirements, and between require-
ments and design.

SysML Requirements diagrams and Tables were already applied to two projects
at Trinité. A third project, considered large (around 200 user requirements) by
the company, is currently being developed using SysML and UML. Trinité is

148 Chapter 8. Evaluation

currently trying to find the best way to incorporate SysML in the company’s
development process.

8.5 Analysis of Findings

The gap between new academic methods, techniques and processes and their
application in industry is common in Systems and Software Engineering (Par-
nas, 1997; Reifer, 2003; Eckstein and Baumeister, 2004; Connor et al., 2009).
The challenge is not only to develop better theories, but also to effectively in-
troduce and use these theories in practice. One way to address this gap is
to use industry as a testing environment. Thus, researchers learn what real
world problems exist, and if the proposed solutions really contribute to solve
problems.

The SysML Requirements diagram may become the language of choice for re-
quirements specification. There is a lack of languages for requirements specifi-
cation and documentation, which is one reason why natural language is often
used almost exclusively to document requirements. There are advantages in
using natural language, for instance, for being the primary means of communi-
cation among humans. The problem occurs when natural language is the only
means of description of requirements, due to its well-known problems, such as
ambiguity and lack of standards.

As SysML is a language, not a methodology, it can be added without many
problems into the current development process in an organization. There is
no need to perform a radical change in the current methodology, which would
involve too many risks. The language can be adapted and integrated into the
existing methodology and processes. In addition, SysML is based on UML,
which is widely known and used, both in academia and industry. As a matter
of fact, SysML is considered easily introduced to teams that are already using
UML. The major concern is to find the correct relationship between UML and
SysML diagrams. During the course, it became clear that the employees could
understand the proposed SysML diagrams of the examples. In addition, they
could create the proposed models themselves with little help.

SysML is highly customizable and can be extended into families of languages,
specific for various domains. Business organizations that develop systems for
several different domains may create a family of languages based on a specific
standard, and apply them to each domain. Profiles may specialize language
semantics, provide new graphical icons and domain-specific model libraries.

Petri nets are useful to design models of software-intensive systems, providing
the capacity of modeling important features such as shared resources and time

8.5. Analysis of Findings 149

constraints. Another important characteristic is the availability of tool support
that may be used for model verification and validation. Thus, non-functional
requirements and constraints can be assessed during the early stages of software
development.

The major issue with the applicability of Petri nets is common to other for-
mal methods, as was already discussed in Chapter 2. Despite having few basic
elements, mastering the modeling and interpreting results of verification algo-
rithms, even when using tool support, is challenging. This became clear during
the course, as the participants in general had difficulties in creating their own
models.

Developers normally worry about the amount of time needed to become com-
petent users of Petri nets. In order to master Petri nets as a modeling language
and verification tool, intensive training and practical application are both fun-
damental.

The 4+1 View Model of Architecture is considered easy to understand and to
use, and useful to improve the maintainability of systems. However, integrating
other modeling languages besides UML and its profiles is an issue. Introducing
SysML to create models for each view was considered positive by most employ-
ees. On the other hand, it was difficult to understand how Petri nets would
fit in the set of models for each view. As a matter of fact, not only it was
difficult for the participants to create their own Petri net models, but also the
introduction of Petri nets in the architecture was a challenge.

Finally, although training was mentioned as highly recommended, one has to
keep in mind that developers are always very busy and have little time to stop
their work and learn new technologies. Formal training, in which groups of
employees attend classes, is often not what they prefer. In practice, the learning
process is frequently done “on the job”, by interacting with more experienced
employees. As a result, informal training, in which one or more employees
explain not at once, but daily during the effective execution of real tasks, has
more potential to be successful.

150 Chapter 8. Evaluation

Chapter 9

Epilogue

This chapter closes this thesis. It contains the responses to the research ques-
tions (Section 9.1), the final conclusions and recommendations (Section 9.2)
and topics for future work (Section 9.3).

9.1 Research Questions Revisited

The main research questions proposed in Chapter 1 are discussed in this section.

9.1.1 Research Question 1

How to improve requirements specification and analysis for Software-Intensive
Systems?

Stakeholders frequently change requirements due to various factors. For exam-
ple, stakeholders may be unsure about their own needs in the beginning of a
project, and laws and business processes may change. The main issue is not re-
lated to changes in requirements, but to uncontrolled changes. Through correct
requirements management, whenever stakeholders ask for changes in require-
ments, developers have the possibility to uncover where and how this change
will impact the system design.

The early introduction of graphical models in Requirements Engineering
through a common modeling language (SysML) is proposed in this thesis. Al-
though the UML Use Case diagram has been used to model functional require-
ments, the SysML Requirements diagram closes a gap by modeling other types
of requirements, such as non-functional ones. This is fundamental in the design
of software-intensive systems, as non-functional requirements are crucial quality

151

152 Chapter 9. Epilogue

factors for their success.

Two subareas of the Requirements Engineering process are investigated in this
thesis: the Specification and the Analysis.

Specification is improved by identifying, classifying, and relating requirements
to each other. The graphical modeling of each requirement helps in improving
the requirements documentation. This is performed using the SysML Require-
ments diagram and the SysML Tables. SysML was introduced at Trinité in the
Requirements Engineering phase of their software development process. Ac-
cording to their developers, it clearly adds value when compared to their old
method for requirements specification, mainly because the SysML Requirements
diagram shows relations between requirements, and between requirements and
design. As a result, the introduction of SysML as a language for Requirements
Engineering provides a bridge between the text-based requirements and the
models of the system. For instance, SysML Requirements can be related to a
Use Case or to a SysML Block.

The basic SysML Requirements diagram was extended with new properties.
These properties are optional, but may be useful in activities related to re-
quirements analysis and project management, such as release planning and risk
evaluation and mitigation. Requirements analysis is improved by identifying re-
lationships between requirements, the type of each relationship, and by tracing
requirements through development.

An important phase of the system life cycle is maintenance. Tracing back design
models to requirements is desirable in order to facilitate the maintenance phase.
The possibility of tracing a requirement during the system development phases
is fundamental. The modeling approach presented in this thesis shows that
this is possible using the SysML Requirements diagram, including the many
relationships provided by SysML, and by using SysML Tables. According to
(IEEE, 1998), an important quality of a requirements specification document is
that its requirements are traceable. In addition, traceable requirements conform
to another important quality factor of a requirements document, which is that
the requirements document is modifiable (IEEE, 1998).

9.1.2 Research Question 2

How to specify a Software-Intensive System’s Architecture that enables reusabil-
ity?

The importance of having a well-defined architecture for developing software-
intensive systems has been recognized by several authors, as discussed in this
thesis. The architecture of the system is an essential component to help in

9.1. Research Questions Revisited 153

maintaining the system. Getting it right is a pre-requisite for success. Wrong
architecture decisions will lengthen the development process or even derail the
final software products.

Architecture can be seen as a high level design of a system. It is useful to
express the overall structure at a high level of abstraction. The architecture of
a software-intensive system makes the structure of these systems more trans-
parent and systematic.

In this thesis, two types of architectures were proposed: domain architectures
and software architectures. Both types are relevant to software-intensive sys-
tems. Due to the complexity of software-intensive systems, both types are
necessary and complementary.

The domain architecture expresses the organizational procedures, information
and business structure of the system for customers. It can be used as an input
for the software architecture, and for communicating and making explicit deci-
sions related to business. Typically the domain architecture proposes a family
of systems. This is necessary in order to avoid stovepipe systems, as the target
family of systems should share many assets. However, the domain architecture
is too high-level to be used as a basis for detailed design. The basis for software
design is better represented by a software architecture.

The software architecture is useful to identify subsystems, components and their
interfaces. In large, software-intensive systems, with multi-disciplinary teams
involved in the development phases, important decisions must be documented
to be referred in the future. Hence, the design of the software architecture
is an important activity in order to facilitate future maintenance of software-
intensive systems. In this thesis, a multiple-view architecture is used for the
design of systems.

Another important characteristic of the proposed software architecture is that it
is the basis for the design of a family of products belonging to the same domain,
as a software product line. Therefore, the same architecture is the basis for a
family of products, which increases the reusing of artifacts that can vary from
source code to complete components and subsystems. Thus, commonalities are
easily identified and reuse increased, leading to economic and quality benefits.
Additionally, maintainability is enabled by facilitating the creation of multiple
systems versions.

9.1.3 Research Question 3

How to model and verify reliability of Software-Intensive Systems?

In order to answer this question, in this thesis a formal method was applied.

154 Chapter 9. Epilogue

Formal methods are key to the activities of verification and validation, which
are related to the quality of the final products.

Petri nets present important characteristics that are useful to model distributed
real-time systems. Models created with Petri nets can be simulated in a
computer-based tool, providing validations of specific scenarios. Although these
simulations do not guarantee that models are error-free, they can already de-
tect many design flaws. Thus, when the behavior of the chosen scenarios is as
expected, the same models can be formally verified using one or more of the
variety of verification tools provided by the Petri net theory. The advantage is
that the same models can be used in diverse activities during system design.
In this thesis, analysis of Petri nets models is done by using invariant analysis,
the reachability graph, and theorem proving with Linear Logic.

An approach in which there is integration of formal and semi-formal languages
and methods has been proven to be successful by many authors, in many do-
mains, as already discussed in this thesis. This was the approach used in this
thesis. The advantages are clear. Using semi-formal methods in the early stages
of the design of software-intensive systems allows one to not spend too much
time on formalization, as there are good chances that the initial models are
going to be changed. This approach avoids that resources (time, money, per-
sonnel) are unnecessarily invested in the early stages of design. Formal methods
have, compared to semi-formal methods, a steeper learning curve, and are less
suitable to be shown to non-technical stakeholders. Finally, not all models of
the design can be or need to be formally specified. Formal methods can be
used in phases of the design in which they add value, such as the specification
of real-time constraints, resource sharing, and concurrency.

9.2 Final Conclusions and Recommendations

In this section, a number of topics regarding limitations and recommendations
based on the thesis are discussed.

9.2.1 Industry as Laboratory

The approach followed in this thesis is to have a close relationship with in-
dustry, in what is often called “Industry as Laboratory”. This approach offers
advantages for both academia and industry. Working in cooperation with part-
ners from industry bring real problems and cases to researchers, and show them
what Software Engineering looks like in practice. The effect is that researchers
have real challenges to confirm/refute their theories. In addition, their results
are stronger when tested in a real industry environment, not only with toy

9.2. Final Conclusions and Recommendations 155

projects. The advantage for industry is that researchers are most likely capable
to think “outside the box”, proposing non-conventional solutions that may have
a high impact on problem solving. The industrial partners gets inspiration from
results, and are continuously challenged by unbiased and critical people.

Naturally the approach also involve risks. From the industry side, having re-
searchers working with them cannot be seen as cheap consultancy. It must be
clear for researchers that industry will only be interested in changes if they see
added value for their business. And researchers have to be prepared to learn
about industry particularities. As a matter of fact, involved parts must be
honest and state clearly what is expected from each other.

9.2.2 Introducing New Technologies

The introduction of new techniques, methods, tools or procedures is challenging
in Software Engineering. Not only people are taken out of their comfort zone,
but it also takes an effort to adapt legacy systems to the new approaches. As
a result, risks may increase, as well as developers dissatisfaction and financial
losses. In order to avoid these problems, intensive training is necessary. The
common approach for training in many companies is to have a formal course
to be held at a specific date and time, followed by everyone at the same time,
lectured by an expert. The main issue in this case is the assumption that every
person has the same ability to follow the course, which is not true in most cases.

Training should be considered in a more broad aspect than normally proposed,
and performed in a gradual, interactive way. New concepts should be introduced
not at once, during a whole day course, but smoothly. Training on the job,
guided by one or more experts, respecting the level and ability of each person,
is most likely to succeed.

9.2.3 Legacy Systems

Maintaining legacy systems involves not only updating them to new hardware
and software platforms. Actually these systems were designed to conform to
business processes and organizational policies that may have changed or even
no longer exist. Thus, new requirements may come up, which have to be imple-
mented respecting requirements already deployed in the current system. There
is always the possibility that new requirements are in conflict with the already
implemented ones. These factors must be considered when evolving legacy
systems.

156 Chapter 9. Epilogue

9.2.4 Software Product Line Architecture

An interesting problem in software architecture is that many software products
were developed without a clear architecture definition. The architecture does
exists, but only in the designers’ minds. Thus, it has to be recovered when
the architecture has to be the basis of a family of software products. In this
case, architects can not start from scratch anymore. Therefore, defining the
architecture of a family of software products is a challenge.

9.2.5 Formal Methods

The applicability of formal methods has been widely discussed. It seems that
the application of formal methods to critical systems is already well-recognized
by researchers. As discussed in this thesis, some research studies were published
arguing that there are so many advantages in using formal methods that it is
worth trying. However, practitioners still have doubts about formal methods,
considering that they are of limited scope and scalability, and are too difficult
and too costly to be used.

The advantages of using formal methods should be made explicit by researchers.
Thus, practitioners can understand the gain in terms of software quality. In
addition, it should be made clear that it costs too much in downtime and
maintenance not to formally prove the correctness of software-intensive systems.

There is a wide range of formal methods and their types. For instance, they can
be classified as algebraic or state-based. Choosing the right formal method is
currently an issue. A clear example is choosing which type of Petri net to use.
The variety is so great that the choice is not obvious. For instance, time can be
associated to places, arcs, or transitions, and can vary in terms of semantics. As
a result, the choice is often non-optimum, being made by previous experience
or the current availability of tools. A more straightforward method for choosing
a formal method based on characteristics of the problem is necessary. Thus,
the probability of success in applying formal methods in practice may become
higher.

9.3 Future Research

In this section, future research is proposed. The topics were chosen based on
discussed issues presented previously in the thesis.

9.3. Future Research 157

9.3.1 Reengineering Legacy Systems

The importance of legacy systems is well-recognized in practice. Because of
their importance, Software Engineering researchers should pay more attention
to the reengineering of legacy systems. These systems are still very common in
many domains such as finance, transportation, health care, and manufacturing.
Frequently, legacy systems have to be maintained or ported to different hard-
ware in order to keep being useful. The reason is that in many cases it is too
costly and too risky to turn-off an application that has been used with variety
degree of success for many years. Another common issue is that these systems
need to inter-operate with new applications.

A number of research directions can be followed when reengineering legacy
systems. Many systems were developed in the past without a clear architecture
definition, or the architecture was implicit. The software architecture has to
be retrieved in order to better understand these systems. This is an important
step before looking deeply into design models and source code. Documentation
of legacy systems (if existing) is frequently ill-structured. Legacy systems were
often developed by personnel that may no longer be available to work on them.
During maintenance, new requirements may emerge, leading to new design
efforts. Currently the most used modeling language is UML, but many legacy
systems were designed using other modeling languages. Thus, some integration
of modeling languages should be expected. However, without a clear definition
of the software architecture, the whole effort has a high probability of failure.

9.3.2 Evaluation of UML and Profiles

UML is recognized by many authors as insufficient to model real-time systems.
In order to address this concern, the UML profile MARTE was proposed. Ac-
cording to the OMG, MARTE consists of defining foundations for model-based
description of real-time and embedded systems. MARTE is currently an OMG
Adopted Beta Specification. The advantages of MARTE will become clear when
the profile is tested in real projects.

Another UML profile that is gaining attention in the software and systems
development community is SysML. The language has been investigated by many
researchers. The first results are promising, but there is still a long way to go to
make SysML acceptable and used as widely for Systems Engineering as UML is
for Software Engineering. The challenge is even greater than was the acceptance
of UML. With SysML, not only the Software Engineering community has to
approve, but also many other engineering communities.

158 Chapter 9. Epilogue

9.3.3 Software Architecture

The importance of software architecture in the software life-cycle is widely rec-
ognized in theory and practice by many authors, as discussed previously in
this thesis. The discipline of Software Architecture has emerged, and plenty
of textbooks, journal and conference articles are available, as well as associa-
tions and working groups (Kruchten et al., 2006). Specific courses on software
architecture are being taught at universities.

Many directions can be followed in software architecture research. Architecture
Description Languages (ADLs) are not as well-standardized and used in practice
as modeling languages for software design. The reasons behind it are not clear,
and should be discovered in order to address this problem. UML, although
used as an ADL (Garland and Anthony, 2002), is actually a modeling language
whose main target is software design, not architecture.

Pure agilists refuse to recognize the importance of architecture. They have
named architecture BDUF (Big Design Up-Front). Agile methods have shown
benefits widely described in conferences such as the Agile Conference and Con-
ference on Agile Software Development. A reconciliation of the two communi-
ties, each one acknowledging the accomplishments and collaborating with each
other can be of benefit for Software Engineering.

9.3.4 Empirical Software Engineering

“If you can not measure it, you can not improve it.” - “To measure is to know.”
(Lord Byron).

Empirical evidence is still lacking in Software Engineering research. Measuring
aspects such as quality, usefulness, and utility of Software Engineering artifacts,
which include modeling languages, architecture, methods, and techniques, is
essential to recognize software development as a real engineering discipline. In
addition, knowing what is worth paying attention to can help researchers in
improving the body of knowledge of Software Engineering.

Bibliography

ABET, 1941. The Engineers’ Council for Professional Development. Science,
94, 456.

Abran, A., Bourque, P., Dupuis, R., Moore, J. W., Tripp, L. L. (Eds.), 2004.
Guide to the Software Engineering Body of Knowledge - SWEBOK, 2004th
Edition. IEEE Press, Piscataway, NJ, USA.

Abrial, J.-R., 2006. Formal Methods in Industry: Achievements, Problems,
Future. In: ICSE ’06: Proceedings of the 28th International Conference on
Software Engineering.

Abrial, J.-R., 2007. Formal Methods: Theory Becoming Practice. Journal of
Universal Computer Science, 13 (5), 619–628.

Adams, D. A., Nelson, R. R., Todd, P. A., 1992. Perceived Usefulness, Ease
of Use, and Usage of Information Technology: a Replication. MIS Quarterly,
16 (2), 227–247.

Agarwal, R., Sinha, A. P., 2003. Object-oriented Modeling with UML: a Study
of Developers’ Perceptions. Communications of the ACM, 46 (9), 248–256.

Almendros-Jiménez, J. M., Iribarne, L., 2005. Describing Use Cases with Ac-
tivity Diagrams. In: Proceedings of the Metainformatics Symposium.

Almendros-Jiménez, J. M., Iribarne, L., 2007. Describing Use-Case Relation-
ships with Sequence Diagrams. Computer Journal, 50 (1), 116–128.

Anda, B., Hansen, K., Gullesen, I., Thorsen, H. K., 2006. Experiences from In-
troducing UML-based Development in a Large Safety-Critical Project. Em-
pirical Software Engineering, 11 (4), 555–581.

ANSI/IEEE, 2000. ANSI/IEEE Std 1471 Recommended Practice for Architec-
tural Description of Software-Intensive Systems.

Avison, D. E., Lau, F., Myers, M. D., Nielsen, P. A., 1999. Action Research.
Communications of the ACM, 42 (1), 94–97.

159

160 Bibliography

AVV, 2006. Auditing on RTMS, private document made by Adviesdienst Ver-
keer en Vervoer.

Balmelli, L., Brown, D., Cantor, M., Mott, M., 2006. Model-driven Systems
Development. IBM Systems Journal, 45 (3), 569–586.

Bar-Yam, Y., 2003. When Systems Engineering Fails - Toward Complex Sys-
tems Engineering. In: Proceedings of the International Conference on Sys-
tems, Man & Cybernetics. Vol. 2.

Baskerville, R., 1999. Investigating Information Systems with Action Research.
Communications of the AIS, 2 (4), 1–32.

Baskerville, R., Wood-Harper, A., 1996. A Critical Perspective on Action Re-
search as a Method for Information Systems Research. Journal of Information
Technology, 11 (3), 235–246.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice.
Addison-Wesley Professional, Reading, MA, USA.

Bause, F., Kritzinger, P. S., 2002. Stochastic Petri Nets - An Introduction to
the Theory. Vieweg Verlag, Berlin, Germany.

Beck, K., 1999. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, Boston, MA, USA.

Berry, D. M., 2004. The Inevitable Pain of Software Development: Why There
Is No Silver Bullet. In: Radical Innovations of Software and Systems Engi-
neering in the Future. Lecture Notes in Computer Science.

Bézivin, J., 2005. On the Unification Power of Models. Software and System
Modeling, 4 (2), 171–188.

Bézivin, J., 2006. Model Driven Engineering: An Emerging Technical Space.
Vol. 4143 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany.

Bicarregui, J., Dick, J., Woods, E., 1996. Quantitative Analysis of an Applica-
tion of Formal Methods. In: FME ’96: Proceedings of the Third International
Symposium of Formal Methods Europe on Industrial Benefit and Advances
in Formal Methods.

Boehm, B. W., 1973. Software and Its Impact: A Quantitative Assessment.
Datamation, 19 (5), 48–59.

Boehm, B. W., 1983. Seven Basic Principles of Software Engineering. Journal
of Systems and Software, 3 (1), 3–24.

Bibliography 161

Boehm, B. W., 2006. A View of 20th and 21st Century Software Engineering.
In: ICSE ’06: Proceedings of the 28th International Conference on Software
Engineering.

Boehm, B. W., Abts, C., Chulani, S., 2000. Software Development Cost Esti-
mation Approaches - A Survey. Annals of Software Engineering, 10, 177–205.

Boehm, B. W., Papaccio, P., 1988. Understanding and Controlling Software
Costs. IEEE Transactions on Software Engineering, 14 (10), 1462–1477.

Boehm, B. W., Turner, R., 2003. Balancing Agility and Discipline: A Guide
for the Perplexed. Addison-Wesley Professional, Boston, MA, USA.

Boehm, B. W., Valerdi, R., Honour, E., 2008. The ROI of Systems Engineer-
ing: Some Quantitative Results for Software-Intensive Systems. Systems En-
gineering, 11 (3), 221–234.

Booch, G., 1994. Object-Oriented Analysis and Design with Applications (2nd
ed.). Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA.

Booch, G., 2007. The Economics of Architecture-First. IEEE Software, 24 (5),
18–20.

Booch, G., Maksimchuk, R. A., Engel, M. W., Young, B. J., Conallen, J.,
Houston, K. A., 2007. Object-Oriented Analysis and Design with Applica-
tions (3rd Edition). Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA.

Booch, G., Rumbaugh, J., Jacobson, I., 2005. The Unified Modeling Language
User Guide, 2nd Edition. Addison-Wesley Professional, Boston, MA, USA.

Bosch, J., 2000. Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-Line Approach. ACM Press/Addison-Wesley Professional, New
York, NY, USA.

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., Tripp, L., Wolff, S., 2002.
Fundamental Principles of Software Engineering - A Journey. Journal of Sys-
tems and Software, 62 (1), 59 – 70.

Bowen, J. P., Hinchey, M. G., 1995. Seven More Myths of Formal Methods.
IEEE Software, 12 (4), 34–41.

Bowen, J. P., Hinchey, M. G., 2005. Ten Commandments Revisited: A Ten-Year
Perspective on the Industrial Application of Formal Methods. In: FMICS
’05: Proceedings of the 10th International Workshop on Formal Methods for
Industrial Critical Systems.

162 Bibliography

Brave, Y., 1993. Control of Discrete Event Systems Modeled as Hierarchical
State Machines. IEEE Transactions on Automatic Control, 38 (12), 1803–
1819.

Briggs, R. O., Adkins, M., Mittleman, D., Kruse, J., Miller, S., Nunamaker,
Jr., J. F., 1998. A Technology Transition Model Derived from Field Investi-
gation of GSS Use Aboard the U.S.S. CORONADO. Journal of Management
Information Systems, 15 (3), 151–195.

Broadfoot, G. H., Hopcroft, P. J., 2005. Introducing Formal Methods into In-
dustry using Cleanroom and CSP. Last accessed on the 19th of November,
2009.

Brooks, F. P., 1987. No Silver Bullet: Essence and Accidents of Software Engi-
neering. Computer, 20 (4), 10–19.

Brooks, F. P., 1995. The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley Professional, Boston, USA.

Brown, A. W., Conallen, J., Tropeano, D., 2005. Model-Driven Software Devel-
opment. Springer-Verlag, Berlin, Germany, Ch. Introduction: Models, Mod-
eling, and Model-Driven Architecture (MDA).

Brown, A. W., McDermid, J. A., 2007. The Art and Science of Software Archi-
tecture. International Journal of Cooperative Information Systems, 16 (3/4),
439–466.

Brown, C., 1989. Relating Petri Nets to Formulas of Linear Logic. Tech. Rep.
ECS-LFCS-89-87, University of Edinburgh.

Broy, M., 2006. The ’Grand Challenge’ in Informatics: Engineering Software-
Intensive Systems. Computer, 39 (10), 72–80.

Broy, M., 2007. From Formal Methods to System Modeling. Lecture Notes in
Computer Science. Springer, Berlin, Germany.

Buxton, J. N., Randell, B. (Eds.), 1970. Software Engineering Techniques: Re-
port of a Conference Sponsored by the NATO Science Committee. NATO
Science Committee, Brussels, Belgium.

Calhoun, C., 1995. Critical Social Theory: Culture, History, and the Challenge
of Difference. Wiley Blackwell, Oxford, UK.

CALTRANS, 2007. Systems Engineering Guidebook for ITS. Tech. rep., Cali-
fornia Department of Transportation - Division of Research and Innovation.

Cambridge Systematics, 2001. Twin Cities Ramp Meter Evaluation. Tech. rep.,
Highway Research Board.

Bibliography 163

Campos, J., Merseguer, J., 2006. Petri Nets and Other Models of Concurrency.
Vol. 4024 of Lecture Notes in Computer Science. Springer, Berlin, Germany,
Ch. On the Integration of UML and Petri nets in Software Development.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J., 2001.
An Industrial Survey of Requirements Interdependencies in Software Product
Release Planning.

Casicato, L., Cass, S., 1962. Pilot Study of the Automatic Control of Traffic
Signals by a General Purpose Electric Computer. Tech. Rep. 338, Highway
Research Board.

Cassandras, C. G., Lafortune, S., 1999. Introduction to Discrete Event Sys-
tems. The International Series on Discrete Event Dynamic Systems. Kluwer
Academic Publishers, Norwell, MA, USA.

Charette, R. N., 2005. Why Software Fails. IEEE Spectrum, 42 (9), 42–49.

Cheng, S.-F., Epelman, M., Smith, R., 2006. CoSIGN: A Parallel Algorithm for
Coordinated Traffic Signal Control. IEEE Transactions on Intelligent Trans-
portation Systems, 7 (4), 551–564.

Cheung, K., Cheung, T., Chow, K., 2006. A Petri-Net-Based Synthesis Method-
ology for Use-Case-Driven System Design. Journal of Systems and Software,
79 (6), 772 – 790.

Choppy, C., Mayero, M., Petrucci, L., 2008. Experimenting Formal Proofs of
Petri Nets Refinements. Electronic Notes Theoretical Computer Science, 214,
231–254.

Christensen, S., Petrucci, L., 2000. Modular Analysis of Petri Nets. The Com-
puter Journal, 43 (3), 224–242.

Clarke, E. M., Wing, J. M., 1996. Formal Methods: State of the Art and Future
Directions. ACM Computing Surveys, 28 (4), 626–643.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J., 2002. Documenting Software Architectures: Views and Beyond.
Addison-Wesley Professional, Boston, MA, USA.

Clements, P., Northrop, L., 2001. Software Product Lines: Practices and Pat-
terns, 3rd Edition. Addison-Wesley Professional, Boston, MA, USA.

Connor, A. M., Buchan, J., Petrova, K., 2009. Bridging the Research-Practice
Gap in Requirements Engineering through Effective Teaching and Peer
Learning. In: ITNG ’09: Proceedings of the 2009 Sixth International Confer-
ence on Information Technology: New Generations. IEEE Computer Society.

164 Bibliography

Cooper, K., Ito, M., 2002. Formalizing a Structured Natural Language Require-
ments Specification Notation. In: Proceedings of the International Council
on Systems Engineering Symposium. Vol. CDROM index 1.6.2.

Corder, G. W., Foreman, D. I., 2009. Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach. John Wiley & Sons, Hoboken, NJ,
USA.

Creswell, J., 2008. Research Design: Qualitative, Quantitative and Mixed Meth-
ods Approaches. Sage Publications, Thousand Oaks, CA, USA.

Damian, D., Chisan, J., Vaidyanathasamy, L., Pal, Y., 2005. Requirements
Engineering and Downstream Software Development: Findings from a Case
Study. Empirical Software Engineering, 10 (3), 255–283.

Damian, D., Zowghi, D., Vaidyanathasamy, L., Pal, Y., 2004. An Industrial
Case Study of Immediate Benefits of Requirements Engineering Process Im-
provement at the Australian Center for Unisys Software. Empirical Software
Engineering, 9 (1-2), 45–75.

Davis, A. M., 2003. The Art of Requirements Triage. Computer, 36 (3), 42–49.

Davis, F. D., 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly, 13 (3), 319–339.

Davis, J. F., 2005. The Affordable Application of Formal Methods to Software
Engineering. ACM SIGAda Ada Letters, XXV (4), 57–62.

Dedrick, J., Gurbaxani, V., Kraemer, K. L., 2003. Information Technology and
Economic Performance: A Critical Review of the Empirical Evidence. ACM
Computing Surveys, 35 (1), 1–28.

Demmou, D., Khalfaoui, S., Guilhem, E., Valette, R., 2004. Critical Scenarios
Derivation Methodology for Mechatronic Systems. Reliability Engineering &
System Safety, 84 (1), 33–44.

Deng, L. Y., Liang, H. C., Wang, C.-T., Wang, C.-S., Hung, L.-P., 2005. The
Development of the Adaptive Traffic Signal Control System. In: ICPADS ’05:
Proceedings of the 11th International Conference on Parallel and Distributed
Systems.

Denning, P. J., 1997. A New Social Contract for Research. Communications of
the ACM, 40 (2), 132–134.

DiCesare, F., Kulp, P. T., Gile, M., List, G., 1994. The Application of Petri Nets
to the Modeling, Analysis and Control of Intelligent Urban Traffic Networks.
In: Proceedings of the 15th International Conference on Application and
Theory of Petri Nets.

Bibliography 165

Diev, S., 2006. Use Cases Modeling and Software Estimation: Applying Use
Case Points. ACM Software Engineering Notes, 31 (6), 1–4.

Dijkstra, E. W., 1965. Cooperating Sequential Processes. Tech. Rep. EWD-123,
Technical University of Eindhoven.

Dijkstra, E. W., 1970. Structured Programming. In: Buxton, J., Randell, B.
(Eds.), Software Engineering Techniques. NATO Science Committee.

Dijkstra, E. W., 1972. The Humble Programmer. Communications of the ACM,
15 (10), 859–866.

Dijkstra, E. W., 1979. Programming Considered as a Human Activity. Yourdon
Press, Upper Saddle River, NJ, USA.

Dijkstra, E. W., 1982. Selected Writings on Computing: A Personal Perspec-
tive. Springer-Verlag, New York, NY, USA.

Dobing, B., Parsons, J., 2006. How UML Is Used. Communications of the ACM,
49 (5), 109–113.

Dotolia, M., Fanti, M. P., 2006. An Urban Traffic Network Model Via Coloured
Timed Petri Nets. Control Engineering Practice, 14 (10), 1213–1229.

Douglass, B. P., 2004. Real Time UML: Advances in the UML for Real-Time
Systems (3rd Edition). Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA.

Dutilleul, S., Defossez, F., Bon, P., 2006. Safety Requirements and P-Time
Petri Nets: A Level Crossing Case Study. IMACS Multiconference on Com-
putational Engineering in Systems Applications,.

Easterbrook, S., Singer, J., Storey, M., Damian, D., 2007. Selecting Empirical
Methods for Software Engineering Research. Springer Verlag, London, UK.

Eckstein, J., Baumeister, H. (Eds.), 2004. Extreme Programming and Agile
Processes in Software Engineering. Vol. 3092 of Lecture Notes in Computer
Science.

Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C., 2005. SDL
Forum. Ch. Compositional Semantics for UML 2.0 Sequence Diagrams Using
Petri Nets.

Eisenhauer, G., Schwan, K., Bustamante, F., 2006. Publish-Subscribe for High-
Performance Computing. IEEE Internet Computing, 10 (1), 40–47.

Engberg, U., Winskel, G., 1990. Petri Nets as Models of Linear Logic. In:
Proceedings of Colloquium on Trees in Algebra and Programming.

166 Bibliography

Eugster, P. T., Felber, P. A., Guerraoui, R., Kermarrec, A.-M., 2003. The Many
Faces of Publish/Subscribe. ACM Computing Surveys, 35 (2), 114–131.

Eurlings, C., 2008. Tweede Kamer der Staten-Generaal - Mobiliteitsbeleid. Last
accessed on the 8th of September, 2009.

Eurostat, 2006. Keep Europe Moving - Sustainable Mobility for our Conti-
nent Mid-term Review of the European Commissions 2001 Transport White
Paper. Tech. rep., European Commission - Directorate General Energy and
Transport, last accessed on the 22th of August, 2009.

Eurostat, 2009. Road Freight Transport Vademecum. Tech. rep., European
Commission - Directorate General Energy and Transport., last accessed on
the 22th of August, 2009.

Febbraro, A. D., Giglio, D., 2006. Urban Traffic Control in Modular/Switch-
ing Deterministic-Timed Petri Nets. In: Proceedings of the Eleventh IFAC
Symposium on Control in Transportation Systems.

Febbraro, A. D., Giglio, D., Sacco, N., December 2004. Urban Traffic Con-
trol Structure Based on Hybrid Petri Nets. IEEE Transactions on Intelligent
Transportation Systems, 5 (4), 224–237.

FHWA, 1998. Developing Traffic Signal Control Systems Using the National
ITS Architecture. Tech. rep., U. S. Department of Transportation - Federal
Highway Administration, Washington, DC.

FHWA, 2006. Traffic Detector Handbook: Third Edition Volume I. Tech. Rep.
FHWA-HRT-06-108, U.S. Department of Transportation - Federal Highway
Administration.

Fiege, L., Cilia, M., Muhl, G., Buchmann, A., 2006a. Publish-Subscribe Grows
Up: Support for Management, Visibility Control, and Heterogeneity. IEEE
Internet Computing, 10 (1), 48–55.

Fiege, L., Muhl, G., Pietzuch, P. R., 2006b. Distributed Event-based Systems.
Springer-Verlag, Berlin, Germany.

Flowers, S., 1996. Software Failure: Management Failure - Amazing Stories and
Cautionary Tales. John Wiley & Sons, New York, NY, USA.

Galin, D., Avrahami, M., 2006. Are CMM Program Investments Beneficial?
Analyzing Past Studies. IEEE Software, 23 (6), 81–87.

Gallego, J.-L., Farges, J.-L., Henry, J.-J., 1996. Design by Petri Nets of an
Intersection Signal Controller. Transportation Research Part C: Emerging
Technologies, 4 (4), 231–248.

Bibliography 167

Garlan, D., Shaw, M., 1993. An Introduction to Software Architecture. World
Scientific Publishing, New Jersey, NJ, USA.

Garland, J., Anthony, R., 2002. Large-Scale Software Architecture: A Practical
Guide using UML. John Wiley & Sons, Inc., New York, NY, USA.

Gehlot, V., Gunter, C. A., 1989. Nets as Tensor Theories. In: Michelis, G. D.
(Ed.), Proceedings of the 10th International Conference on Application and
Theory of Petri Nets. Bonn, Germany.

George, C., Haxthausen, A. E., Hughes, S., Milne, R., Prehn, S., Pedersen,
J. S., 1995. The RAISE Development Method. The BCS Practitioners Series.
Prentice Hall International, New York, NY, USA.

Girard, J.-Y., 1987. Linear Logic. Theoretical Computer Science, 50 (1), 1–102.

Girard, J.-Y., 1995. Linear Logic: Its Syntax and Semantics. In: Girard, J.-Y.,
Lafont, Y., Regnier, L. (Eds.), Advances in Linear Logic (Proc. of the Work-
shop on Linear Logic, Cornell University). No. 222. Cambridge University
Press.

Girault, C., Valk, R., 2002. Petri Nets for System Engineering: A Guide to
Modeling, Verification, and Applications. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Girault, F., Pradier-Chezalviel, B., Valette, R., 1997. A Logic for Petri nets.
Journal Européen des Systèmes Automatisés, 31 (3), 525–542.

Glass, R. L., 1999. The Realities of Software Technology Payoffs. Communica-
tions of the ACM, 42 (2), 74–79.

Glass, R. L., 2006. Software Conflict 2.0: The Art And Science of Software
Engineering. Developer.* Books.

Glinz, M., 2000. Problems and Deficiencies of UML as a Requirements Spec-
ification Language. In: IWSSD ’00: Proceedings of the 10th International
Workshop on Software Specification and Design.

Gomaa, H., 2000. Designing Concurrent, Distributed, and Real-Time Appli-
cations with UML. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

Gotel, O. C. Z., Finkelstein, C. W., 1994. An Analysis of the Requirements
Traceability Problem. In: International Conference on Requirements Engi-
neering.

168 Bibliography

Greer, D., 2005. Requirements Engineering for Sociotechnical Systems. Idea-
Group, London, UK, Ch. Requirements Prioritisation for Incremental and
Iterative Development.

Hall, A., 1990. Seven Myths of Formal Methods. IEEE Software, 7 (5), 11–19.

Hall, T., Beecham, S., Rainer, A., 2002. Requirements Problems in Twelve
Companies: An Empirical Analysis. IEE Proceedings for Software, 149 (5),
153–160.

Harel, D., 1987. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8 (3), 231–274.

Hatley, D. J., Pirbhai, I. A., 1987. Strategies for Real-Time System Specifica-
tion. John Wiley & Sons, New York, NY, USA.

Hecht, H., 1999. Systems Engineering for Software-Intensive Projects. In: AS-
SET ’99: Proceedings of the 1999 IEEE Symposium on Application - Specific
Systems and Software Engineering and Technology.

Henderson-Sellers, B., 2005. UML - the Good, the Bad or the Ugly? Perspec-
tives from a Panel of Experts. Software and System Modeling, 4 (1), 4–13.

Hevner, A. R., March, S. T., Park, J., Ram, S., 2004. Design Science in Infor-
mation Systems Research. MIS Quarterly, 28 (1), 75–105.

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J. P., Margaria, T.,
2008. Software Engineering and Formal Methods. Communications of the
ACM, 51 (9), 54–59.

Hoenicke, J., Olderog, E.-R., 2002. CSP-OZ-DC: A Combination of Specifica-
tion Techniques for Processes, Data and Time. Nordic Journal of Computing,
9 (4), 301–334.

Hofmann, H. F., Lehner, F., 2001. Requirements Engineering as a Success Fac-
tor in Software Projects. IEEE Software, 18 (4), 58–66.

Hruz, B., Zhou, M. C., 2007. Modeling and Control of Discrete-Event Dynamic
Systems: with Petri Nets and Other Tools. Springer Verlag, London, UK.

Huang, H., Kirchner, H., 2009. Policy Composition Based on Petri Nets. In:
Proceedings of the Computer Software and Applications Conference. Vol. 2.

Huang, Y.-S., 2006. Design of Traffic Light Control Systems Using Statecharts.
Computer Journal, 49 (6), 634–649.

Huddart, K., 1999. Advances in Mobile Information Systems. Artech House,
London, UK, Ch. Traffic Control.

Bibliography 169

Hunt, P., Robertson, D., Bretherton, R., Winton, R., 1981. SCOOT - A Traffic
Responsive Method of Coordinating Signals. Tech. Rep. TRRL Laboratory
Report 1014, Transport and Road Research Laboratory, Crowthrone, Berk-
shire, UK.

IEEE, 1998. IEEE Recommended Practice for Software Requirements Specifi-
cations. Tech. rep.

IEEE/EIA, 1996. IEEE/EIA 12207.0-1996//ISO/ IEC12207:1995, Industry
Implementation of Int. Std. ISO/IEC 12207:95 Standard for Information
Technology- Software Life Cycle Processes. Tech. rep.

Jackson, M., 1995. Software Requirements and Specifications: A Lexicon of
Practice, Principles and Prejudices. Addison-Wesley Professional, New York,
NY, USA.

Jackson, M., 2003. Why Software Writing is Difficult and Will Remain So.
Information Processing Letters, 88 (1-2), 13 – 25.

Jackson, M. A., 1983. System Development. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

Jacobson, I., 1992. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley Professional, Reading, MA, USA.

Jacobson, I., 2004. Use Cases - Yesterday, Today, and Tomorrow. Software and
System Modeling, 3 (3), 210–220.

Jamieson, S., 2004. Likert Scales: How to (ab)use them. Med Educ, 38 (12),
1217–1218.

Jasperson, J. S., Carter, P. E., Zmud, R. W., 2005. A Comprehensive Concep-
tualization of the Post-Adoptive Behaviors Associated with IT-enabled Work
Systems. MIS Quarterly, 29 (3), 525–557.

Jeng, M., DiCesare, F., 1995. Synthesis Using Resource Control Nets for Model-
ing Shared-Resource Systems. IEEE Transactions on Robotics and Automa-
tion, 11 (3), 317–327.

Jensen, K., Kristensen, L., 2009. Coloured Petri Nets. Springer-Verlag, Berlin,
Germany.

Jesty, P. H., Gaillet, J.-F., Burkert, A., Avontuur, V., Schulz, H. J., Franco,
G., 2000. European ITS Framework Architecture. Tech. rep., KAREN.

Johnson, C., 2002. Forensic Software Engineering: Are Software Failures Symp-
tomatic of Systemic Problems? Safety Science, 40 (9), 835–847.

170 Bibliography

Johnson, C., 2003. Failure in Safety-Critical Systems: A Handbook of Accident
and Incident Reporting. University of Glasgow Press, Glasgow, Scotland.

Jones, C., February 2006. The Economics of Software Maintenance in the
Twenty First Century, Version 3. Last accessed on the 20th of August, 2009.

Juristo, N., Moreno, A. M., Silva, A., 2002. Is the European Industry Moving
Toward Solving Requirements Engineering Problems? IEEE Software, 19 (6),
70–77.

Kamsties, E., 2005. Understanding Ambiguity in Requirements Engineering.
In: Aurum, A., Wohlin, C. (Eds.), Engineering and Managing Software Re-
quirements. Springer-Verlag.

Karkinsky, D., Schneider, S. A., Treharne, H., 2007. Combining Mobility with
State. In: Integrated Formal Methods.

Khansa, W., Aygaline, P., Denat, J., 1996. Structural Analysis of P-Time Petri
Nets. In: Symposium on Discrete Events and Manufacturing Systems: Pro-
ceedings of the CESA’96 IMACS Multiconference.

Klein, H. K., Myers, M. D., 1999. A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly,
23 (1), 67–93.

Klein, L., 2001. Sensor Technologies and Data Requirements for ITS. Artech
House, Boston, USA.

Komi-Sirviö, S., Tihinen, M., 2003. Great Challenges and Opportunities of
Distributed Software Development - An Industrial Survey. In: Proceedings of
the Fifteenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2003).

Kronlöf, K. (Ed.), 1993. Method Integration: Concepts and Case Studies. John
Wiley & Sons, New York, NY, USA.

Kruchten, P., 1995. The 4+1 View Model of Architecture. IEEE Software,
12 (6), 42–50.

Kruchten, P., 2003. The Rational Unified Process: An Introduction. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Kruchten, P., Obbink, H., Stafford, J., 2006. The Past, Present, and Future for
Software Architecture. IEEE Software, 23 (2), 22–30.

Lano, K., 1991. Z++, An Object-orientated Extension to Z. In: Proceedings of
the Fifth Annual Z User Meeting on Z User Workshop.

Bibliography 171

Larsen, P. G., Fitzgerald, J., Brookes, T., 1996. Applying Formal Specification
in Industry. IEEE Software, 13 (3), 48–56.

Lavagno, L., Martin, G., Selic, B. (Eds.), 2003. UML for Real: Design of Embed-
ded Real-Time Systems. Kluwer Academic Publishers, Norwell, MA, USA.

Lea, D., Vinoski, S., Vogels, W., 2006. Guest Editors’ Introduction: Asyn-
chronous Middleware and Services. IEEE Internet Computing, 10 (1), 14–17.

Lee, J., Chi, S., 2005. Using Symbolic DEVS Simulation to Generate Optimal
Traffic Signal Timings. Simulation, 81 (2), 153–170.

Leist, S., Zellner, G., 2006. Evaluation of Current Architecture Frameworks. In:
SAC ’06: Proceedings of the 2006 ACM Symposium on Applied Computing.

Likert, R., 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology, 22 (140), 1–55.

Lin, L., Nan, T., Xiangyang, M., Fubing, S., 2003. Implementation of Traf-
fic Lights Control Based on Petri Nets. In: Proceedings of the 6th IEEE
International Conference on Intelligent Transportation Systems. Vol. 2.

Lindgren, M., Norstrom, C., Wall, A., Land, R., 2008. Importance of Soft-
ware Architecture during Release Planning. In: Proceedings of the Seventh
Working IEEE/IFIP Conference on Software Architecture (WICSA 2008).

List, G. F., Cetin, M., 2004. Modeling Traffic Signal Control Using Petri Nets.
IEEE Transactions on Intelligent Transportation Systems, 5 (3), 177–187.

Ludewig, J., 2003. Models in Software Engineering. Software and System Mod-
eling, 2 (1), 5–14.

Luisa, M., Mariangela, F., Pierluigi, I., 2004. Market Research for Requirements
Analysis Using Linguistic Tools. Requirements Engineering, 9 (1), 40–56.

Luqi, Goguen, J. A., 1997. Formal Methods: Promises and Problems. IEEE
Software, 14 (1), 73–85.

Lutz, R. R., 1993. Analyzing Software Requirements Errors in Safety-Critical,
Embedded Systems. In: Proceedings of the IEEE International Symposium
on Requirements Engineering.

Maccubbin, R., Staples, B., Mercer, M., Kabir, F., Abedon, D., Bunch, J., 2005.
Intelligent Transportation Systems - Benefits, Costs and Lessons Learned.
Tech. Rep. FHWA-OP-05-002, Mitretek Systems and Federal Highway Ad-
ministration.

172 Bibliography

McDonald, M., Hall, R., Keller, H., Hecht, C., Fakler, O., Klijnhout, J., Mauro,
V., Spence, A., 2006. Intelligent Transport Systems in Europe: Opportunities
for Future Research. World Scientific Publishing, Singapore.

Mcilroy, D., 1968. Mass-Produced Software Components. In: Naur, P., Ran-
dell, B. (Eds.), Proceedings of the 1st International Conference on Software
Engineering. Garmisch, Germany.

McQueen, B., McQueen, J., 1999. Intelligent Transportation Systems Architec-
tures. Artech House Publishers, Norwood, MA, USA.

Menand, L., 1997. Pragmatism: A Reader. Vintage Press, New York, NY, USA.

Mernik, M., Heering, J., Sloane, A. M., 2005. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys, 37 (4), 316–344.

Minor, O., Armarego, J., 2005. Requirements Engineering: a Close Look at
Industry Needs and Model Curricula. Australian Journal of Information Sys-
tems, 13 (1), 192–208.

Moody, D. L., 2002. Comparative Evaluation of Large Data Model Represen-
tation Methods: The Analyst’s Perspective. In: Proceedings of the Interna-
tional Conference on Conceptual Modeling.

Mueller, E. A., 1970. Aspects of the History of Traffic Signals. IEEE Transac-
tions on Vehicular Technology, 19 (1), 6–17.

Muller, G., van de Laar, P., 2009. Researching Reference Architectures and
their Relationship with Frameworks, Methods, Techniques, and Tools. In:
Proceedings of the 7th Annual Conference on Systems Engineering Research
(CSER 2009).

Murata, T., 1989. Petri nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE, 77 (4), 541–580.

OMG, 2006. Meta-Object Facility (MOF) Core Specification - Version 2.0.

OMG, 2007. Unified Modeling Language (UML): Superstructure - version 2.1.2.

OMG, 2008a. Systems Modeling Language (SysML) - Version 1.1.

OMG, 2008b. UML Profile for MARTE, Beta 2.

OmniTRANS, 2006. OmniTRANS - Offering the Best of Both Worlds. Traffic
Engineering & Control, 47 (9), 1–3.

Page, V., Dixon, M., Bielkowicz, P., 2003. Object-Oriented Graceful Evolution
Monitors. Vol. 2817 of Lecture Notes in Computer Science. Springer.

Bibliography 173

Paige, R. F., 1997. Formal Method Integration Via Heterogeneous Notations.
Ph.D. thesis, University of Toronto, Canada.

Paige, R. F., 1998. Comparing Extended Z with a Heterogeneous Notation for
Reasoning about Time and Space. In: ZUM’98: Proceedings of the 11th
International Conference of Z Users on The Z Formal Specification Notation.

Paige, R. F., 1999. When are Methods Complementary? Information & Soft-
ware Technology, 41 (3), 157–162.

Parnas, D. L., 1972. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of the ACM, 15 (12), 1053–1058.

Parnas, D. L., 1976. On the Design and Development of Program Families.
IEEE Transactions on Software Engineering, 2 (1), 1–9.

Parnas, D. L., 1997. Software Engineering: an Unconsummated Marriage. Com-
munications of the ACM, 40 (9), 128.

Parnas, D. L., Clements, P., 1986. A Rational Design Process: How and Why
to Fake It. IEEE Transactions on Software Engineering, 12 (2), 251–257.

Parviainen, P., Tihinen, M., Lormans, M., van Solingen, R., 2004. Require-
ments Engineering: Dealing with the Complexity of Sociotechnical Systems
Development. IdeaGroup Inc, Ch. 1.

Petri, C. A., 1962. Kommunikation mit Automaten. Ph.D. thesis, Institut für
instrumentelle Mathematik, Bonn, Germany.

PIARC, 1999. ITS Handbook 2000 - Recommendations from the World Road
Association (PIARC). Artech House, London, UK.

PMI, 2008. A Guide to the Project Management Body of Knowledge, 4th Edi-
tion. PMI, Pennsylvania, USA.

Pohl, K., Böckle, G., van der Linden, F. J., 2005. Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, Berlin, Germany.

Polack, F., Whiston, M., Mander, K., 1993. The SAZ Project: Integrating
SSADM and Z. In: FME ’93: Proceedings of the First International Sympo-
sium of Formal Methods Europe on Industrial-Strength Formal Methods.

Pomello, L., Rozenberg, G., Simone, C., 1992. A Survey of Equivalence No-
tions for Net Based Systems. In: Advances in Petri Nets 1992, The DEMON
Project.

Potts, C., 1993. Software-Engineering Research Revisited. IEEE Software,
10 (5), 19–28.

174 Bibliography

Pressman, R. S., 2005. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, Inc., New York, NY, USA.

Ramesh, B., Jarke, M., 2001. Toward Reference Models for Requirements Trace-
ability. IEEE Transactions on Software Engineering, 27 (1), 58–93.

Recker, J. C., 2007. Why Do We Keep Using A Process Modelling Technique?
In: Proceddings of the 18th Australasian Conference on Information Systems.

Reifer, D. J., 2003. Is the Software Engineering State of the Practice Getting
Closer to the State of the Art? IEEE Software, 20 (6), 78–83.

Reisig, W., 1985. Petri nets: An Introduction. Springer-Verlag New York, Inc.,
New York, NY, USA.

Ribeiro, O., Fernandes, J. M., 2006. Some Rules to Transform Sequence Di-
agrams into Coloured Petri Nets. In: K., J. (Ed.), Proceedings of the 7th
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools (CPN 2006).

Rijkswaterstaat, 2003. Handbook for Sustainable Traffic Management - A Guide
for Users. Tech. rep., Rijkswaterstaat, Rotterdam.

Robertson, D., 1969. TRANSYT: A Traffic Network Study Tool. Tech. Rep.
LR 253, Transport and Road Research Laboratory, Crowthrone, Berkshire,
UK.

Robertson, S., Robertson, J., 2006. Mastering the Requirements Process (2nd
Edition). Addison-Wesley Professional, ACM Press/Addison-Wesley Publish-
ing Co. New York, NY, USA.

Robinson, W. N., Pawlowski, S. D., Volkov, V., 2003. Requirements Interaction
Management. ACM Computing Surveys, 35 (2), 132–190.

Roess, R. P., Prassas, E. S., McShane, W. R., 2003. Traffic Engineering, 3rd
Edition. Prentice Hall, New Jersey, NJ, USA.

Rossi, M., Sein, M., 2003. Design Research Workshop: A Proactive Research
Approach. In: Proceedings of the 26th Information Systems Research Semi-
nar in Scandinavia (IRIS 2003).

Rouse, W., 2003. Engineering Complex Systems: Implications for Research in
Systems Engineering. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 33 (2), 154–156.

Rozman, T., Horvat, R. V., Rozman, I., 2008. Modeling the Standard Com-
pliant Software Processes in the University Environment. Business Process
Management Journal, 14 (1), 53 – 64.

Bibliography 175

Sahraoui, A.-E.-K., 2005. Requirements Traceability Issues: Generic Model,
Methodology And Formal Basis. International Journal of Information Tech-
nology and Decision Making, 4 (1), 59–80.

Saiedian, H., 1996. An Invitation to Formal Methods. Computer, 29 (4), 16–17.

Semmens, L., France, R. B., Docker, T. W. G., 1992. Integrated Structured
Analysis and Formal Specification Techniques. Computer Journal, 35 (6),
600–610.

Simons, A. J. H., 1999. Use Cases Considered Harmful. In: TOOLS ’99: Pro-
ceedings of the Technology of Object-Oriented Languages and Systems.

Sjoberg, D., Dyba, T., Jorgensen, M., 2007. The Future of Empirical Meth-
ods in Software Engineering Research. In: FOSE ’07: Future of Software
Engineering.

Smith, G., 2008. Extending Formal Methods for Software-Intensive Systems.
Springer-Verlag, Berlin, Germany.

Snook, C., Butler, M., 2006. UML-B: Formal Modeling and Design Aided by
UML. ACM Transactions on Software Engineering Methodologies, 15 (1),
92–122.

Soares, M. S., Julia, S., Vrancken, J., 2008. Real-time Scheduling of Batch
Systems using Petri Nets and Linear Logic. Journal of Systems and Software,
81 (11), 1983–1996.

Soares, M. S., Vrancken, J., 2007a. A Multi-Agent Distributed Architecture
for Road Traffic Control. In: Proceedings of the 6th European Congress and
Exhibition on Intelligent Transport Systems and Services (ITS 2007).

Soares, M. S., Vrancken, J., 2007b. An Integrated Method based on Multi-
Models and Levels of Modeling for Design and Analysis of Complex Engineer-
ing Systems. In: Dig, D. (Ed.), Proceedings of the 17th ECOOP Doctoral
Symposium and PhD Workshop.

Soares, M. S., Vrancken, J., 2007c. Requirements Specification and Modeling
Through SysML. In: Proceedings of the 2007 IEEE International Conference
on Systems, Man and Cybernetics.

Soares, M. S., Vrancken, J., 2007d. Road Traffic Signals Modeling and Analysis
with Petri nets and Linear Logic. In: Proceedings of the 2007 IEEE Interna-
tional Conference on Networking, Sensing and Control (ICNSC 2007).

Soares, M. S., Vrancken, J., 2007e. Urban Transport XIII. Urban Transport and
the Environment in the 21st Century. Wessex Institute of Technology, UK,

176 Bibliography

Ch. Scenario Analysis of a Network of Traffic Signals Designed with Petri
nets.

Soares, M. S., Vrancken, J., 2008a. A Metamodeling Approach to Transform
UML 2.0 Sequence Diagrams to Time Petri nets. In: Pahl, C. (Ed.), Pro-
ceedings of the IASTED International Conference on Software Engineering
2008.

Soares, M. S., Vrancken, J., 2008b. A Proposed Extension to the SysML Re-
quirements Diagram. In: Pahl, C. (Ed.), Proceedings of the IASTED Inter-
national Conference on Software Engineering 2008.

Soares, M. S., Vrancken, J., 2008c. Model-Driven User Requirements Specifica-
tion using SysML. Journal of Software, 3 (6), 57–68.

Soares, M. S., Vrancken, J., 2008d. Responsive Traffic Signals Designed with
Time Petri nets. In: Hing, G.-S. (Ed.), Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC).

Soares, M. S., Vrancken, J., 2009a. Evaluation of UML in Practice - Experiences
in a Traffic Management Systems Company. In: Cordeiro, J., Filipe, J. (Eds.),
Proceedings of the 11th International Conference on Enterprise Information
Systems (ICEIS 2009).

Soares, M. S., Vrancken, J., 2009b. Including SysML in the 4+1 View Model of
Architecture for Software-Intensive Systems. In: Kalawsky, R., O’Brien, J.,
Goonetilleke, T., Grocott, C. (Eds.), Proceedings of the 7th Annual Confer-
ence on Systems Engineering Research (CSER 2009).

Soares, M. S., Vrancken, J., Wang, Y., 2009a. A Common Architecture to
Develop Road Traffic Management Systems. In: Proceedings of the 16th ITS
World Congress.

Soares, M. S., Vrancken, J., Wang, Y., 2009b. Application of Publish-Subscribe
Middleware for Road Traffic Measures Visualization. In: Chen, X., Kanda,
T. (Eds.), Proceedings of the 2009 IEEE International Conference on Net-
working, Sensing and Control.

Soares, M. S., Vrancken, J., Wang, Y., 2009c. Software Product Line Architec-
ture to Distributed Real-Time Systems. In: Sadiq, M. K., Sophatsathit, P.,
Xu, H. (Eds.), Proceedings of the 2009 International Conference on Software
Engineering Theory and Practice (SETP 2009).

Soares, M. S., Vrancken, J., Wang, Y., 2010. Architecture-Based Development
of Road Traffic Management Systems. In: Proceedings of the 2010 IEEE
International Conference on Networking, Sensing and Control.

Bibliography 177

Sommerville, I., 2007. Software Engineering, 8th Edition. Addison Wesley, Es-
sex, UK.

Soni, D., Nord, R. L., Hofmeister, C., 1995. Software Architecture in Industrial
Applications. In: ICSE ’95: Proceedings of the 17th International Conference
on Software Engineering.

Srinivasan, D., Choy, M., 2006. Cooperative Multi-Agent System for Coordi-
nated Traffic Signal Control. IEE Proceedings - Intelligent Transport Sys-
tems, 153 (1), 41–50.

Stoelhorst, H., Middelham, F., 2006. State of the Art in Regional Traffic Man-
agement Planning in the Netherlands. In: Proceedings of the Eleventh IFAC
Symposium on Control in Transportation Systems.

Stough, R., 2001. Intelligent Transport Systems: Cases and Policies. Edward
Elgar Publishing, Northampton, Massachusetts, USA.

Suzuki, I., Murata, T., 1983. A Method for Stepwise Refinement and Abstrac-
tion of Petri Nets. Journal of Computer and System Sciences, 27 (1), 51–76.

Taale, H., Westerman, M., Stoelhorst, H., van Amelsfort, D., 2004. Regional
and Sustainable Traffic Management in The Netherlands: Methodology and
Applications. In: Proceedings of the European Transport Conference.

Taguchi, K., Dong, J. S., Ciobanu, G., 2004. Relating pi-calculus to Object-Z.
In: Proceedings of the 9th IEEE International Conference on Engineering
Complex Computer Systems.

Tanenbaum, A. S., van Steen, M., 2006. Distributed Systems: Principles and
Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

The Standish Group, 2003. CHAOS Chronicles v3.0. Tech. rep., The Standish
Group, last accessed on the 20th of August, 2009.

Tiako, P. F., 2008. Designing Software-Intensive Systems: Methods and Prin-
ciples, 1st Edition. IGI Global, Hershey, New York, USA.

Tolba, C., Thomas, P., ElMoudni, A., Lefebvre, D., 2003. Performances Evalua-
tion of the Traffic Control in a Single Crossroad by Petri Nets. In: Proceedings
of the ETFA - Emerging Technologies and Factory Automation. Vol. 2.

Tsichritzis, D., 1997. The Dynamics of Innovation. Copernicus, New York, NY,
US.

USDOT, October 1997. ITS Benefits: Continuing Successes and Operational
Test Results. Tech. rep., U.S. Department of Transportation - Federal High-
way Administration, Washington, DC.

178 Bibliography

van der Linden, F. J., Schmid, K., Rommes, E., 2007. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer-
Verlag, Secaucus, NJ, USA.

van Genuchten, M., 1991. Why is Software Late? An Empirical Study of Rea-
sons For Delay in Software Development. IEEE Transactions on Software
Engineering, 17 (6), 582–590.

van Nes, N., Brandenburg, S., Twisk, D., 2008. Dynamic Speed Limits; Effects
on Homogeneity of Driving Speed. In: Proceedings of the IEEE Intelligent
Vehicles Symposium.

van Ommering, R. C., Bosch, J., 2002. Widening the Scope of Software Product
Lines - From Variation to Composition. In: SPLC 2: Proceedings of the
Second International Conference on Software Product Lines.

van Vliet, H., 2008. Software Engineering: Principles and Practice. John Wiley
& Sons, New York, NY, USA.

Venkatesh, V., Bala, H., 2008. Technology Acceptance Model 3 and a Research
Agenda on Interventions. Decision Sciences, 39 (2), 273–315.

Venkatesh, V., Davis, F. D., 2000. A Theoretical Extension of the Technology
Acceptance Model: Four Longitudinal Field Studies. Management Science,
46 (2), 186–204.

Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D., 2003. User Acceptance
of Information Technology: Toward a Unified View. MIS Quarterly, 27 (3),
425–478.

VERTIS, 1999. System Architecture for ITS in Japan. Tech. rep., last accessed
on the 21th of August, 2009.

Vogler, W., 1992. Modular Construction and Partial Order Semantics of Petri
Nets. Springer-Verlag, Secaucus, NJ, USA.

Vrancken, J., 2006. Layered Models in IT Standardization. In: IEEE Interna-
tional Conference on Systems, Man and Cybernetics. Vol. 5.

Vrancken, J., Avontuur, V., Westerman, M., Blonk, J., 1998. Architecture De-
velopment for Traffic Control on the Dutch Motorways. In: Proceedings of
the ITS World Congress.

Vrancken, J., Soares, M. S., 2009a. A Hierarchical Network Model for Road
Traffic Control. In: Chen, X., Kanda, T. (Eds.), Proceedings of the 2009
IEEE International Conference on Networking, Sensing and Control.

Bibliography 179

Vrancken, J., Soares, M. S., 2009b. A Real-life Test Bed for Multi-agent Mon-
itoring of Road Network Performance. International Journal of Critical In-
frastructures, 4 (5), 357–367.

Vrancken, J., Soares, M. S., 2010. Intelligent Infrastructures. Springer, The
Netherlands, Ch. Intelligent Road Network Control.

Vrancken, J., van den Berg, J., Soares, M. S., 2008. Human factors in System
Reliability: Lessons Learnt from the Maeslant Storm Surge Barrier in The
Netherlands. International Journal of Critical Infrastructures, 4 (4), 418–429.

Wang, J., 1998. Timed Petri Nets, Theory and Application. Kluwer Academic
Publishers, Norwell, MA, USA.

Wang, Y., 2007. Software Engineering Foundations: A Software Science Per-
spective, 1st Edition. AUERBACH / CRC Press, New York, NY, USA.

Wassyng, A., Lawford, M., 2003. Lessons Learned from a Successful Imple-
mentation of Formal Methods in an Industrial Project. In: Araki, K., Gnesi,
S., Mandrioli, D. (Eds.), FME 2003: International Symposium of Formal
Methods Europe Proceedings.

Wing, J. M., 1990. A Specifier’s Introduction to Formal Methods. Computer,
23 (9), 8–23.

Wirsing, M., Banâtre, J.-P., Hölzl, M. M., Rauschmayer, A. (Eds.), 2008.
Software-Intensive Systems and New Computing Paradigms - Challenges and
Visions. Vol. 5380 of Lecture Notes in Computer Science. Springer.

Wirsing, M., Holzl, M., 2006. Software Intensive Systems. Tech. rep., ERCIM
EEIG.

Wirth, N., 2008. A Brief History of Software Engineering. IEEE Annals of the
History of Computing, 30 (3), 32–39.

Woodcock, J., Larsen, P. G., Bicarregui, J., Fitzgerald, J., 2009. Formal Meth-
ods: Practice and Experience . ACM Computing Surveys, 41 (4), 1–36.

Wooldridge, M., 2009. Introduction to Multiagent Systems. John Wiley & Sons,
Inc., New York, NY, USA.

Yin, R. K., 2003. Case Study Research. Design and Methods, 3rd Edition.
Vol. 5 of Applied Social Research Method Series. Sage Publications, Califor-
nia, USA.

Zeigler, B. P., Praehofer, H., Kim, T. G., 2000. Theory of Modeling and Simu-
lation, 2nd Edition. Academic Press, San Diego, California, USA.

180 Bibliography

Zeng, R., Li, G., Lin, L., 2007. Adaptive Traffic Signals Control by Using Fuzzy
Logic. In: ICICIC ’07: Proceedings of the Second International Conference
on Innovative Computing, Information and Control.

Zhou, M. C., Dicesare, F., Rudolph, D., 1992. Design and Implementation of a
Petri Net Supervisory for a Flexible Manufacturing System. IEEE Transac-
tions on Robotics Automation, 28 (6), 1199–1208.

Appendix A

Visualization of Junction
Measurements

A.1 List of requirements

1. For each direction, the user wants to visualize information about splitfac-
tor and waiting time.

2. The number of directions depends on the number of Accessor links.

3. The symbol ”-” should be used in the place of numerical values when
there is no direction.

4. Junction must have an automatic created image based on Links informa-
tion

5. Junction image must be by default on the geographical map (Trinivision).

6. Junction image on the geographical map (Trinivision) must be shown in
a small form

7. Clicking in the junction image will result in an overview from this image
containing the junction information

8. The junction image must have an understandable and representable layout

9. The information shown shall be from all Accessor links into the junction

10. The information shall be shown for each traffic stream into the junction

11. Accessor link information should contain the splitfactor

12. Information about intensity and waiting time must be shown when there
is a Direction with an actuator or sensor from the Accessor link.

181

182 Chapter A. Visualization of Junction Measurements

A.2 Algorithm specifications

Read

Links_Splitfactor_DBTable

Read Link name

Activity diagram Fill junction sheet

Read type

type =
Accessor link

[no]

[yes]

Get sensors from
database using Link name

Fill Sensors_DBtable

with info. of sensors

Next Row

Read Link name

Read Sensors_DBtable

Read Sensor type

type =
Direction?

[no]

[yes]

Fill Sheet_Junction_info
with info of
Junction and Direction

Figure A.1: Activity diagram: Fill Junction Sheet

A.2. Algorithm specifications 183

Read

Links_Splitfactor_DBTable

Fill table links_show
with Origin and Destination

Activity diagram Create visualization

Read type

type =
Main link

[no]

[yes]

Select from Database
the first point: Incoming

Fill table links_table_def
with coordinates of

Incoming point

Select from Database
the second point: Outcoming

Fill table links_table_def
with coordinates of

Outcoming point

Create image using
“links_table_def” and
function “create_svg”

Next Row

Figure A.2: Activity diagram: Create Visualization

184 Chapter A. Visualization of Junction Measurements

Appendix B

List of User Requirements for
RTMS

Road User

1. RU1 - The losses due to inefficient usage of the road network in the
Netherlands must be minimized. In addition, the traveling time must
be predictable.

Ministry

1. M2 - The utilization of the road network in the Netherlands must be
maximized (optimally utilized).

2. M3 - The initial and yearly investment costs of the management of the
traffic-flow in the Netherlands must be minimized.

Traffic Manager

1. TM4 - It is expected that software systems will be increasingly more
intelligent for managing the traffic-flow in a more effective and efficient
manner.

2. TM5 - To optimize traffic flow, it is expected that gradually, region-wide
traffic management methods will be introduced.

3. TM6 - The traffic management systems must have a convenient access to
region-wide, nation-wide, or even European-wide parameters so that the
traffic-flow can be managed optimally.

185

186 Chapter B. List of User Requirements for RTMS

4. TM7 - It must be possible for the traffic managers/experts to express
(strategic) “task and scenario management frames”, conveniently.

5. TM8 - The system should effectively gather and interpret all kinds of
information for the purpose of conveniently assessing the performance of
the responsible companies/organizations that have carried out the con-
struction of the related traffic systems and/or infrastructure.

6. TM9 - The system must support the traffic managers/experts so that they
can express various experimental simulations and analytical models.

7. TM10 - The system must enable the traffic managers/experts to access
various kinds of statistical data.

8. TM11 - The system must enable the traffic managers/experts to access
different kinds of data for transient cases such as incidents.

9. TM12 - The system must provide means for expressing a wide range of
tasks and scenarios.

10. TM13 - The traffic management will gradually evolve from object man-
agement towards task and scenario management.

Traffic Manager Center

1. TMC14 - The operational costs of the traffic management centers and
shared resources must be minimized.

2. TMC15 - The operators’ reaction speed must be improved, especially in
critical and unanticipated situations.

3. TMC16 - The operators’ decision accuracy must be improved, especially
in critical and unanticipated situations.

4. TMC17 - The system must provide means to manage various “traffic
management configuration information” conveniently.

5. TMC18 - The system must provide tools so that the operators can perform
their work more efficiently.

6. TMC19 - The system must provide tools so that the operators can perform
their work more effectively.

7. TMC20 - The system must make it intuitively obvious in which function/-
context the operator is working in.

187

8. TMC21 - The education material and process necessary to train the opera-
tors must be simplified, standardized and supported. This should improve
the effectiveness of tutoring.

The task, scenario and operator manager

1. OM22 - The system must provide convenient means to manage the task
and scenario allocation processes.

2. OM23 - The system must provide means to optimally allocate tasks and
scenarios to the operators.

3. OM24 - The task and scenario definition and allocation strategies must be
conveniently expressible to deal with the density, urgency and the range
of the management activities.

4. OM25 - The system must provide convenient means to distribute the tasks
and scenarios according to the dynamic context of the traffic management,
for example, to effectively cope with the incidents.

5. OM26 The system must be able to express various task and scenario
allocation strategies, for example based on hierarchical and/or team-based
organizational structures.

6. OM27 - The system must provide means to conveniently transfer an op-
erators task and scenario to another.

7. OM28 - The system must provide means to conveniently separate opera-
tors tasks and scenarios from each other.

8. OM29 - The system must provide means to flexibly allocate tasks and
scenarios to the operators.

9. OM30 - The system must provide expressive and convenient means to
authorize operators.

10. OM31 - The system must conveniently enable exchanging personnel
among different traffic management centers.

11. OM32 - The system must conveniently enable migrating an operator to a
different traffic management center.

12. OM33 - The system must provide expressive and convenient means for
introducing different kinds of operators.

13. OM34 - The system must provide expressible and flexible means to au-
thorize tasks and scenarios.

188 Chapter B. List of User Requirements for RTMS

14. OM35 - The system must provide expressible and convenient means for
defining various different kinds of concurrent task and scenario execution
and synchronization.

15. OM36 - The system must not allow introducing unsafe and/or incorrect
task and scenario definitions. In fact, the operator’s actions must never
cause unsafe actions at the roadside.

16. OM37 - The system must support graceful degradation of tasks and sce-
narios, where applicable.

17. OM38 - The system must be able to express different dynamic tasks and
scenario prioritization schemes.

18. OM39 - The system must provide expressive and flexible means to steer
tasks and scenarios in different modalities, such as management by aware-
ness, management by exception and management by anticipation.

19. OM40 - The tasks and scenarios that are defined at a higher-level of
management must be consistent with the tasks and scenarios that are
supported/allowed by the roadside systems.

20. OM41 - The system must provide expressive and convenient means for in-
troducing tasks and scenarios that utilize multiple and different (roadside)
systems.

21. OM42 - The system must provide expressive and convenient means to
define various kinds of tasks and scenarios such as observing, tracing,
preparing, enabling time critical and non time critical activities, and var-
ious supporting activities such as report generation.

22. OM43 - The system must be able to support unanticipated tasks and
scenarios (evolvability).

Operator

1. O44 - The operators working environment must be flexible enough so that
he/she can conveniently adapt to changing tasks and scenarios.

2. O45 - The system must be more usable than the current systems deployed
at the traffic centers.

3. O46 - The operators must be able to comprehend the situation effectively
despite the use of different kinds of data.

4. O47 - The system must provide a uniform and consistent user-interface.

189

The Designer of Operators’ Supporting Functions

1. DOSF48 - The system must be expressive and flexible enough to present
all the necessary operations (including control parameters) to the opera-
tor.

2. DOSF49 - The system must be expressive and flexible enough to present
all the necessary information to the operator.

3. DOSF50 - The system must provide expressive and comprehensible high-
level constructs for abstracting the frequently used operations, where ap-
plicable.

4. DOSF51 - The system must provide consistent, convenient and expressive
means for combining various information sources and types obtained from
various different systems.

5. DOSF52 - The system must provide expressive and convenient means to
filter out the unnecessary data according to the context of the task and
scenario, and the operators interest and capability. Depending on the
needs, filtering must be realized statically and dynamically.

6. DOSF53 - To ease the operators task and scenario, the system must pro-
vide expressive and convenient means for eliminating the unnecessary
control functions, where applicable.

7. DOSF54 - The system must conveniently support applications that pro-
vide means for directing and managing the traffic flow.

8. DOSF55 - The system must conveniently support applications that pro-
vide means for controlling and protecting objects (tunnels, bridges, etc.).

9. DOSF56 - The system must conveniently support applications that pro-
vide means for controlling and protecting objects (tunnels, bridges, etc.)
as a subtask of overall traffic management.

10. DOSF57 - The system must conveniently support applications that pro-
vide means for coordinating the necessary actions in case of incidents so
that the traffic flow gets normalized in the fastest possible way.

11. DOSF58 - The system must conveniently support applications that pro-
vide means for coordinating road construction and/or repair activities at
planning and/or operational phases.

12. DOSF59 - The system must conveniently support applications that pro-
vide means for displaying the relevant information to any user (drivers,
traffic centers, police, etc.) of the road network.

190 Chapter B. List of User Requirements for RTMS

13. DOSF60 - The system must be flexible and expressible enough to cope
with different kinds of information provided by various sources such as
the roadside systems, external geographic databases, meteo, teletext and
radio dispatching.

14. DOSF61 - The system must support introducing unanticipated functions
and data types (evolvability).

15. DOSF62 - The system must effectively and conveniently monitor and
protect the availability of all the dynamic traffic management systems.

The Technical Quality Manager

1. TQM63 - Reduced costs: The effort that is necessary for designing and
implementing, configuring and instantiating the system at different traffic
management centers must be minimized.

2. TQM64 - Manageability: There must be an effective and convenient sup-
port for managing the technical applications in an integrated way, so that
it must be conveniently possible to incorporate, migrate and validate dif-
ferent versions and configurations.

3. TQM65 - Configurability (or composability): There must be an effective
and convenient means for system configuration.

4. TQM66 - Effective data management: There must be an effective and
convenient support for the management of technical data for system con-
figuration.

5. TQM67 - Reduced (managed) complexity: The current systems are very
complex. This is because many system components have complex data
and control dependencies with each other. The complexity of the systems
must be reduced effectively without loosing their desired capabilities.

6. TQM68 - Improved relevance and correctness: The system must provide
all the technical means to support the required functions and/or quality
factors defined in this section

7. TQM69 - Information relevance: The information gathered by the (road-
side) systems must be relevant for the traffic management centers and
high-level traffic management needs.

8. TQM70 - Information availability: The information gathered by the
(roadside) systems must be made available at the right place.

191

9. TQM71 - Information timing: The information gathered by the (roadside)
systems must be made available at the right time.

10. TQM72 - Reduced redundancy: The data and functions in the system
must not be unnecessarily replicated.

11. TQM73 - Heterogeneity: The system must be able to cope with diverse
IT (software, hardware and/or communication) systems.

12. TQM74 - Well-defined architecture: To manage the costs, to organize
and direct the activities, and to increase their effectiveness, a system
architecture concept must be defined.

13. TQM75 - Improved separation and composition of concerns: The concerns
that are necessary to implement the system must be effectively separated
and composed with each other.

14. TQM76 - Relevance: To define a correct architecture, it is necessary to
identify and specify the fundamental concerns (or modules) that are nec-
essary to implement the system.

15. TQM77 - Availability: The system must provide a high degree of avail-
ability especially in the implementation of the basic requirements.

16. TQM78 - Continuous operation: The services, components and subsys-
tems that implement the basic requirements must be continuously oper-
ational. All kinds of required changes must be carried out at run time
without disrupting the operation of the system.

17. TQM79 - Acceptable time performance: The system must perform within
the required timing constraints.

192 Chapter B. List of User Requirements for RTMS

Appendix C

Exercises Proposed for the
Course at Trinité

C.1 Exercise 1 - Use Case diagram

Given the following list of requirements, design a Use Case diagram.

1. The system shall manage all information about employees and guests.

2. Before hiring an employee, information about his/her criminal record
must be searched at the Police Office.

3. Employees shall be classified as operational and managers.

4. Only managers shall operate the system.

5. A guest shall make a reservation with minimum of 4 hours and a maximum
of 45 days in advance.

6. A guest shall choose to pay using a credit card or in cash to the manager.

7. Guests that stay in the hotel for more than 12 nights during the period
of one year are classified as special and must have 3% of discount during
the next year.

8. Guests that stay in the hotel for more than 24 nights during the period
of one year are classified as very special and must have 7% of discounts
during the next year.

9. For payments with credit card, the client profile and card must be checked
with the Credit Card Company.

193

194 Chapter C. Exercises Proposed for the Course at Trinité

10. Payment by credit card must be secure.

11. All guests shall be registered with a minimum information about nation-
ality, name, address and contact details.

12. The system shall accept check-ins starting only from 11am.

13. The system shall accept check-outs continuously.

14. The guests can optionally fill an electronic form about the hotel and
services evaluation when checking-out.

C.2 Exercise 2 - Sequence diagram

Design a Sequence Diagram for the use case scenario borrow a book, according
to the following steps:

Client Librarian System
1. Gives library card

2. Enters library card
3. Check client
4. Client is OK

5. Gives book to librarian
6. Enters book code

7. Check if book is available
8. Book is available
9. Borrow book

C.3 Exercise 3 - SysML Requirements diagram

Design a SysML Requirements diagram for the following user requirements.

Traffic Manager Center

1. TMC14 - The operational costs of the traffic management centers and
shared resources must be minimized.

2. TMC15 - The operators’ reaction speed must be improved, especially in
critical and unanticipated situations.

3. TMC16 - The operators’ decision accuracy must be improved, especially
in critical and unanticipated situations.

C.4. Exercise 4 - Petri nets 195

4. TMC17 - The system must provide means to manage various “traffic
management configuration information” conveniently.

5. TMC18 - The system must provide tools so that the operators can perform
their work more efficiently.

6. TMC19 - The system must provide tools so that the operators can perform
their work more effectively.

7. TMC20 - The system must make it intuitively obvious in which function/-
context the operator is working in.

8. TMC21 - The education material and process necessary to train the opera-
tors must be simplified, standardized and supported. This should improve
the effectiveness of tutoring.

C.4 Exercise 4 - Petri nets

Model the states and the states transition of a traffic signal using Petri nets
according to the following requirements:

1. Green time: minimum 30, maximum 40 seconds.

2. Yellow: minimum and maximum: 5 seconds.

3. From red to green to yellow to red.

C.5 Exercise 5 - Petri nets

Model the system using Petri nets according to the following requirements:

1. Pieces of raw material stored in a tank T1 are processed at machine M1
when the machine is available.

2. At M1, the process consists of splitting raw pieces into two parts.

3. One part goes to machine M2, where it is processed during a period of 4
to 6 minutes.

4. Another part of the pieces are processed at a Machine M3, during a period
of 6 to 8 minutes.

5. After the processing, each part of the original piece is stored in a separate
tank T2 or T3.

196 Chapter C. Exercises Proposed for the Course at Trinité

6. A robot R1 transports the pieces from M1 to M2 or to M3.

7. The robot can only transport one piece each time.

8. Machines M1, M2 and M3 can be used for other purposes when they are
available.

9. Processing at machines M2 and M3 are independent of each other.

Glossary

List of abbreviations

The following abbreviations are used in this thesis:

ADL Architecture Description Languages
AR Action Research
ATC Architecture for Traffic Control
BPMN Business Process Modeling Notation
DES Discrete Event Systems
DTCA Distributed Traffic Control Architecture
ETC Electronic Toll Collection
EU European Union
FSM Finite State Machine
GDP Gross Domestic Product
HARS Het Alkmaar Regelsysteem
INCOSE International Council on Systems Engineering
IT Information Technologies
ITS Intelligent Transportation Systems
KA Knowledge Area
KAREN Keystone Architecture Required for European Networks
MARTE Modeling and Analysis of Real-time and Embedded Systems
MOF Meta Object Facility
NATO North Atlantic Treaty Organization
NL Natural language
ODMGR Origin-Destination Managers
OMT Object Modeling Technique
OMG Object Management Group
OOSE Object-Oriented Software Engineering
PMBOK Project Management Body of Knowledge
PLC Programmable Logic Controller
PN Petri Net
PNC Petri Net Component
RTC Road Traffic Control

197

198 Glossary

RTMS Road Traffic Management Systems
RUP Rational Unified Process
SRS Software Requirements Specification
SNL Structured Natural language
SysML Systems Modeling Language
SWEBOK Software Engineering Body of Knowledge
TAM Technology Acceptance Model
TD Time Domain
TMC Traffic Management Center
TTM Technology Transition Model
UML Unified Modeling Language
VMS Variable Message Signs
VSL Variable Speed Limits
XP eXtreme Programming
. . .

Summary

Architecture-Driven Integration of Modeling Languages for the
Design of Software-Intensive Systems

Software-intensive systems are large, complex systems in which software
is an essential component, that interacts with other software, systems, de-
vices, actuators, sensors and with people. Being an essential component,
software influences the design, construction, deployment, and evolution of
the system as a whole. These systems are in widespread use and their im-
pact on society is still increasing. Examples of software-intensive systems
can be found in many sectors, such as manufacturing plants, transporta-
tion, military, telecommunication and health care.

A great challenge in modern society is to develop successful software-
intensive systems respecting constraints such as costs and deadlines, and
to be able to maintain and evolve these systems. This challenge is as-
sociated with another important one: developing practically useful and
theoretically well-founded principles, methods, algorithms and tools for
programming and engineering reliable, secure, cost-effective, and efficient
software-intensive systems throughout their whole life-cycle. The proper
environment in which software-intensive systems act poses great chal-
lenges. Software-intensive systems are frequently used to control criti-
cal infrastructures in which any error, non-conformance or even response
delays may cause enormous financial damage and jeopardize human life.

An interesting fact that can not be overlooked is that software has to
evolve in order to remain useful. In fact, software is hardly developed from
scratch. Green field projects, in which software systems are developed
without any constraints imposed by prior work, are rare. Thus, software
must be flexible in order to facilitate its change.

More specifically, the type of software-intensive systems that are inves-
tigated in this thesis are the Distributed Real-Time Systems. The term
Real-Time System usually refers to systems with timing constraints. In

199

200 Summary

concurrent problems, there is no way of predicting which system com-
ponent will provide the next input, which increases design complexity.
Moreover, system components, such as sensors and actuators, are often
geographically distributed in a network and need to communicate accord-
ing to specific timing constraints described in system requirements docu-
ments.

The case studies provided in the thesis are related to Road Traffic Manage-
ment Systems (RTMS). RTMS are Distributed Real-Time Systems that
influence traffic by using a variety of actuators, such as traffic signals and
Variable Message Signs, based on acquired data using various types of
sensors, such as video cameras and inductive loops. All the difficulties
of development and maintenance of software-intensive systems hold for
RTMS. For example, after deployment these systems are used for many
years, which means that they must be maintained in order to cope with
hardware and policy changes. This makes it very unlikely that a new
RTMS project will start from scratch. In most cases, legacy systems have
been in operation for many years and must be taken into account. For in-
stance, all cities have deployed urban traffic control systems with a varying
degree of sophistication, control algorithms and hardware.

Design for software-intensive systems requires adequate methodology in
order to support the development of these systems. However, the the-
ory of modeling for software-intensive systems remains incomplete, and
methodologies for specifying and verifying software-intensive systems pose
a grand challenge that a broad stream of research must address. In or-
der to develop software-intensive systems, modeling tasks have to cover
different development phases such as requirements analysis, architectural
design, and detailed design. Other phases, such as implementation, test-
ing and integration are direct consequences of the modeling phases. The
focus of this thesis is on the modeling phases of software development.

This thesis contributes to Software Engineering research and practice by
proposing the extension and integration of formal and semi-formal mod-
eling languages in a multiple-view software architecture, combined with
domain architecture, which are used in practice to develop a family of
distributed real-time systems in the road traffic domain.

Research Objective

In the research that led to this thesis a multi-disciplinary approach, com-
bining Traffic Engineering and Software Engineering, was used. Traffic
engineers come up with new control strategies and algorithms for improv-
ing traffic. Once new solutions are defined from a Traffic Engineering

Summary 201

point of view, there is the problem of obtaining operational systems that
address all requirements. Knowing what to build is just the first step that
must be followed by the how to build. Both are problematic and they
depend on each other.

The research objective can be stated as follows:

Improve Systems and Software Engineering methodology (what), by using,
adapting, extending and combining modeling languages (how), to be used
by systems and software developers (to whom), for designing Distributed
Real-Time Systems (for which purpose) that are in line with requirements,
flexible, and reliable (with which quality factors).

Summary of Chapters

Chapter 1 introduces the problem. The importance of software for mod-
ern society and the difficulties of software development and maintenance
are discussed in this chapter. HARS (Het Alkmaar Regelsysteem) is intro-
duced to illustrate the type of software systems that are the target of this
thesis.

Chapters 2 and 3 are both about theoretical background, written after
extensive literature research on, respectively, Software-Intensive Systems
and Intelligent Transportation Systems. In these Chapters the scope of
the thesis is delimited.

The early introduction of graphical models in Requirements Engineering
through a common modeling language (SysML) is proposed in Chapter 4.
Although the UML Use Case diagram has been used to model functional
requirements, the SysML Requirements diagram closes a gap by modeling
other types of requirements, such as non-functional ones. A good knowl-
edge of requirements is essential for designing the system architecture.
Two sub-areas of the Requirements Engineering process are investigated in
this chapter: the Specification and the Analysis. Specification is improved
by identifying, classifying, and relating requirements to each other. The
graphical modeling of each requirement helps in improving the require-
ments documentation. This is performed using the SysML Requirements
diagram and the SysML Tables. As a result, the introduction of SysML as
a language for Requirements Engineering provides a bridge between the
text-based requirements and the design models of the system. The basic
SysML Requirements diagram was extended with new properties. These
properties are optional, but are useful in activities related to requirements
analysis and project management, such as release planning and risk eval-
uation and mitigation. Requirements analysis is improved by identifying

202 Summary

relationships between requirements, the type of each relationship, and by
tracing requirements through development. Requirements are related to
each other and also directly related to design.

Two types of system architecture were proposed in this thesis: the do-
main architecture and the software architecture. Both types are relevant
to software-intensive systems. Due to the complexity of software-intensive
systems, both types are necessary and complementary. The domain archi-
tecture was introduced in Chapter 5. It expresses the organizational pro-
cedures, information and business structure of the system for customers.
It can be used as an input for the software architecture, and for commu-
nicating and making explicit decisions related to business. Typically the
domain architecture proposes a family of systems. This is necessary in
order to avoid stovepipe systems, as the target family of systems should
share many assets. However, the domain architecture is too high-level to
be used as a basis for software design.

The software architecture (Chapter 6) is useful to identify subsystems,
components and their interfaces. In large systems, with multi-disciplinary
teams involved in the development phases, important decisions must be
documented to be referred to in the future. Hence, the design of the soft-
ware architecture is an important activity in order to facilitate software
maintenance. Another important characteristic of the proposed software
architecture is that it is the basis for the design of a family of products
belonging to the same domain. The advantages are well-known. The same
architecture can be the basis for a family of products, which increases the
possibility of reusing artifacts that can vary from source code to complete
components and subsystems. Thus, commonalities can be easily identified
and reuse increased, leading to economic and quality benefits. Addition-
ally, maintainability is enabled by facilitating the creation of multiple
systems versions.

Chapter 7 is about detailed design and verification of system components
and software objects using formal methods. In this chapter, models of
urban traffic control signals were created with Petri nets and simulated in a
computer-based tool, providing validations of specific scenarios. Although
these simulations do not guarantee that models are error-free, they can
already detect many design flaws. Thus, when the behavior of the chosen
scenarios is as intended, the same models can be formally verified using one
or more of the variety of verification tools provided by the Petri net theory.
The advantage is that the same models can be used in various activities
during system design. In this thesis, analysis of Petri net models is done
by using invariant analysis, the reachability graph, and theorem proving

Summary 203

with Linear Logic.

Chapter 8 is about the evaluation of the suitability of including and com-
bining semi-formal modeling languages (UML and SysML) and a formal
modeling language (Petri nets) in the 4+1 View Model of Architecture,
as well as the applicability of this approach to design Distributed Real-
Time Systems. The approach for the evaluation includes the application
in a real environment, in what is known as “industry as laboratory”. The
results of this evaluation are presented at the end of this chapter. These
results are used in Chapter 9 in which conclusions are presented together
with limitations, recommendations and proposals for future work.

204 Summary

Samenvatting

Architectuur-gedreven integratie van modelleertalen voor het
ontwerp van programmatuur-intensieve systemen

Programmatuur-intensieve systemen zijn grote, complexe systemen waar-
van programmatuur een essentieel onderdeel vormt dat interageert met an-
dere programmatuur, systemen, apparaten, actuatoren, sensoren en met
mensen. Als essentieel onderdeel bëınvloedt programmatuur het ontwerp,
de constructie, de uitrol en de evolutie van het systeem waar het onderdeel
van uitmaakt. Dergelijke systemen worden op grote schaal toegepast en
hun invloed op de maatschappij is nog steeds groeiende. Voorbeelden van
programmatuur-intensieve systemen zijn te vinden in vele sectoren zoals
de industrie, het transport, het leger, de telecommunicatie en de gezond-
heidszorg.

Het is een grote uitdaging in de huidige maatschappij om succesvolle,
programmatuur-intensieve systemen te ontwikkelen, binnen gestelde gren-
zen van, onder meer, tijd en budget, en die onderhouden en verder
ontwikkeld kunnen worden. Deze uitdaging hangt samen met een an-
dere belangrijke uitdaging: het ontwikkelen van praktisch bruikbare,
en theoretisch goed gefundeerde principes, methoden, algoritmen en
gereedschap voor het ontwikkelen en bouwen van betrouwbare, veilige,
kosten-effectieve en efficiënte programmatuur-intensieve systemen, en dit
gedurende hun gehele levenscyclus. De omgeving waarin programmatuur-
intensieve systemen toegepast worden, stelt grote uitdagingen. Deze sys-
temen worden regelmatig toegepast voor de besturing van kritische infras-
tructuren waarin elke fout of afwijking of zelfs vertraging in reactietijd,
grote financiële schade kan veroorzaken en mensenlevens in gevaar kan
brengen.

Een belangrijk feit, dat niet over het hoofd gezien kan worden, is dat pro-
grammatuur moet evolueren om nuttig te blijven. Het is zelfs zo dat pro-

205

206 Samenvatting

grammatuur nauwelijks nog van de grond af ontwikkeld wordt. Projecten
waarin programmatuur ontwikkeld wordt zonder enige beperking vanuit
eerder ontwikkelwerk zijn zeldzaam. Derhalve moet programmatuur fle-
xibel zijn ten einde dergelijke aanpassingen mogelijk te maken.

De programmatuur-intensieve systemen die hier onderzocht zijn, zijn met
name de gedistribueerde, tijd-kritische systemen. De term tijd-kritisch
verwijst meestal naar systemen die aan tijdigheidseisen moeten voldoen.
In situaties met verschillende gelijktijdig werkende systeemonderdelen is
er geen manier om te voorspellen welke onderdeel de volgende input gaat
leveren, waardoor de ontwerpcomplexiteit toeneemt. Bovendien zijn sys-
teemonderdelen, zoals sensoren en actuatoren, vaak geografisch gespreid
in een netwerk en moeten deze communiceren binnen strikte tijdseisen,
beschreven in het programma van eisen.

De praktijkvoorbeelden die worden beschreven in dit proefschrift hebben
betrekking op systemen voor dynamisch verkeersmanagement (DVM-
systemen). DVM-systemen zijn gedistribueerde, tijd-kritische systemen
die het verkeer bëınvloeden door een keur aan actuatoren, zoals verkeer-
slichten en matrix-signaalgevers, op basis van data, ingewonnen met be-
hulp van diverse typen sensoren, zoals video-camera’s en inductielussen in
de weg.

Alle bekende problemen van ontwikkeling en onderhoud van
programmatuur-intsieve systemen zijn van toepassing op DVM-systemen.
Bijvoorbeeld, na ontwikkeling worden deze systemen vele jaren gebruikt,
wat betekent dat ze onderhouden moeten worden teneinde het hoofd te
bieden aan allerlei omgevingsveranderingen zoals andere hardware en
beleidswijzigingen. Dit maakt het heel onwaarschijnlijk dat een nieuw
DVM-systeem van de grond af kan beginnen. In de meeste gevallen is
er sprake van een erfenis aan systemen die al jaren in gebruik zijn en
waar rekening mee gehouden moet worden. Bijvoorbeeld, alle steden
hebben verkeerslichten gëınstalleerd, maar met grote verschillen in
geavanceerdheid, besturingsalgoritmen en hardware.

Het ontwerp van programmatuur-intensieve systemen vereist adequate
methoden om de ontwikkeling van deze systemen te ondersteunen. Maar,
de theorie van het modelleren van programmatuur-intensieve systemen
is nog steeds incompleet en praktisch bruikbare methoden voor specifi-
catie en verificatie van programmatuur-intensieve systemen vormen een
grote uitdaging waarvoor onderzoek wordt vereist met een brede aanpak.
Voor de ontwikkeling van programmatuur-intensieve systemen dienen de
modelleertaken zich over verschillende ontwikkelingsfasen uit te strekken,

Samenvatting 207

zoals analyse van eisen, architecturaal ontwerp en detailontwerp. Andere
fasen, zoals implementatie, testen en integratie, zijn directe afgeleiden van
deze modelleerfasen. Dit proefschrift gaat vooral over de modelleerfasen.

Dit proefschrift draagt bij aan het onderzoek in en de praktische toepassing
van Programmatuurkunde door het uitbreiden en integreren van formele
en semi-formele modelleertalen, ingebed in een software-architectuur met
verschillende gezichtspunten. In combinatie met een domein-architectuur,
wordt deze in de praktijk gebruikt voor de ontwikkeling van families van
gedistribueerde, tijd-kritische systemen voor wegverkeersmanagement.

Het onderzoeksdoel

In het onderzoek voor dit proefschrift is een multi-disciplinaire aan-
pak gehanteerd door het combineren van Verkeerskunde en Programma-
tuurkunde. Verkeerskundigen bedenken nieuwe besturingsconcepten en
algoritmen ter verbetering van het verkeer. Zodra nieuwe oplossingen zijn
bedacht in verkeerskundige zin, volgt het probleem om praktisch inzetbare
systemen te verkrijgen die aan alle eisen voldoen. Weten wat je wilt
bouwen is alleen de eerste stap, die onvermijdelijk gevolgd wordt door
de vraag hoe te bouwen. Beide vragen zijn lastig en ze zijn onderling
afhankelijk.

Het onderzoeksdoel kan als volgt geformuleerd worden:

Verbeter systemen en programmatuurkundige methoden, door aanpassing,
uitbreiding en combinatie van modelleertalen (het hoe), voor gebruik door
systeem- en programmatuurontwikkelaars (door wie), voor het ontwer-
pen van gedistribueerde, tijd-kritische systemen (voor welk doel) die vol-
doen aan de eisen en die flexibel en betrouwbaar zijn (met welke kwali-
teitsaspecten).

Samenvatting van de hoofdstukken

Hoofdstuk 1 geeft een inleiding tot het probleem, het belang van program-
matuur voor de moderne maatschappij en de moeilijkheden van program-
matuurontwikkeling en -onderhoud. HARS (Het Alkmaar Regelsysteem)
wordt gëıntroduceerd teneinde het type programmatuur te illustreren dat
onderwerp vormt van dit proefschrift.

Hoofdstukken 2 en 3 geven beide de theoretische achtergrond, op basis
van uitgebreid literatuuronderzoek, van respectievelijk programmatuur-
intensieve systemen en intelligente transportsystemen. In deze
hoofdstukken wordt ook de reikwijdte van dit proefschrift nader
afgebakend.

208 Samenvatting

Hoofdstuk 4 pleit voor het vroegtijdig introduceren van grafische modellen
bij het opstellen van het programma van eisen, uitgedrukt in een
gemeenschappelijke modelleertaal (SysML). Alhoewel het UML Use Case-
diagram gebruikt wordt voor het beschrijven van functionele eisen,
voorziet het SysML Requirements diagram in een leemte doordat daarmee
andersoortige eisen beschreven kunnen worden, zoals niet-functionele. Een
goede kennis van de eisen is noodzakelijk om de systeemarchitectuur te
ontwerpen. Twee deelaktiviteiten binnen het opstellen van eisen worden
onderzocht in dit hoofdstuk: specificatie en analyse. Specificatie wordt
verbeterd door het identificeren, classificeren en het aan elkaar relateren
van eisen. Het grafisch modelleren van elke eis helpt bij het verbeteren van
het documenteren van eisen. Dit gebeurt aan de hand van het SysML Re-
quirements diagram en de SysML Tabellen. Hierdoor vormt de invoering
van SysML, als taal voor het opstellen van eisen, een brug tussen tekstuele
eisen en de ontwerpmodellen van een systeem. Het basis Requirements
Diagram van SysML is uitgebreid met nieuwe eigenschappen. Deze eigen-
schappen zijn optioneel, maar zijn nuttig bij activiteiten die gerelateerd
zijn aan analyse van eisen en projectmanagement, zoals uitrolplanning en
risico-evaluatie en -vermindering. De analyse van eisen wordt verbeterd
door het identificeren van relaties tussen eisen, het typeren van deze re-
laties, en door het volgen van eisen door het hele ontwikkelproces. Er
worden relaties gelegd tussen eisen, en tussen eisen en het ontwerp.

Er worden twee vormen van systeemarchitectuur behandeld in dit
proefschrift: de domeinarchitectuur en de software-architectuur. Beide
typen zijn van belang voor programmatuur-intensieve systemen. Door de
complexiteit van deze systemen zijn ze zelfs noodzakelijk en ze zijn com-
plementair. De domeinarchitectuur is behandeld in hoofdstuk 5. Deze
beschrijft de organisatorische procedures en de informatie- en business-
structuur voor de afnemers van het systeem. Deze architectuur kan
input leveren voor de software-architectuur, en voor het communiceren
over en het expliciet maken van beslissingen binnen het business-domein.
Meestal gaat de domeinarchitectuur over een familie van systemen. Dit is
noodzakelijk om monolithische, kachel-pijpsystemen te voorkomen, want
de beoogde familie van systemen hoort een groot aantal componen-
ten gemeenschappelijk te gebruiken. Maar de domeinarchitectuur is te
abstract om direct te gebruiken als basis voor programmatuurontwerp.

De software-architectuur (hoofdstuk 6) is nuttig om subsystemen en com-
ponenten en hun interfaces te bepalen. Bij grote systemen, met multi-
disciplinaire ontwikkelteams, moeten belangrijke beslissingen gedocumen-
teerd worden teneinde er later naar te kunnen verwijzen. Vandaar dat

Samenvatting 209

het ontwerp van de software-architectuur een belangrijke activiteit is om
onderhoud van het systeem mogelijk te maken. Een tweede belangrijke
eigenschap van de voorgestelde software-architectuur is dat het de basis
vormt voor het ontwerp van een familie van producten binnen één domein.
De voordelen zijn bekend. Dezelfde architectuur kan gebruikt worden voor
de hele lijn van producten, wat de kans vergroot op herbruikbaarheid van
artefacten, variërend van broncode tot complete componenten en subsys-
temen. Aldus kunnen overeenkomsten gemakkelijk onderkend worden en
neemt hergebruik toe, wat weer leidt tot lagere kosten en betere kwaliteit.
Bovendien onstaat er onderhoudbaarheid doordat het creëren van verschil-
lende systeemversies ondersteund wordt.

Hoofdstuk 7 gaat over detailontwerp en verificatie van systeemcom-
ponenten en programma-objecten, met gebruik van formele methoden.
In dit hoofdstuk worden modellen van stedelijke verkeerslichtregelingen
gecreëerd met behulp van Petri-netten en gesimuleerd in een geautoma-
tiseerde tool, waarmee specifieke scenario’s gevalideerd kunnen worden.
Deze simulaties kunnen niet garanderen dat een model geheel foutvrij
is, maar ze kunnen wel al veel ontwerpfouten opsporen. Dus als de
modellen zich gedragen zoals bedoeld, dan kunnen deze modellen ver-
volgens formeel geverifieerd worden met een of meer van de vele verifi-
catiegereedschappen die door de theorie van Petri-netten geboden worden.
Het voordeel is dan dat dezelfde modellen gehanteerd kunnen worden bin-
nen verschillende activiteiten binnen systeemontwerp. In dit proefschrift
worden Petri-netten geanalyseerd door middel van invariantenanalyse, de
bereikbaarheidsgraaf en bewijsvoering met Lineaire Logica.

Hoofdstuk 8 gaat over de evaluatie van de geschiktheid van het com-
bineren van semi-formele modelleertalen (UML en SysML) met een
formele modelleertaal (Petri-netten) binnen het 4+1 View Model of Archi-
tecture, evenals de toepasbaarheid van deze benadering voor het ontwerp
van gedistribueerde, tijd-kritische systemen. De aanpak voor de evalu-
atie omvatte de toepassing ervan in een echte ontwikkelomgeving. Dit
staat bekend als “de industrie als laboratorium”. De resultaten van deze
evaluatie worden beschreven aan het einde van dit hoofdstuk. Deze re-
sultaten worden gebruikt in hoofdstuk 9, waar conclusies worden gefor-
muleerd, samen met de beperkingen van dit onderzoek, aanbevelingen, en
voorstellen voor toekomstig onderzoek.

210 Samenvatting

Curriculum Vitae

Michel dos Santos Soares was born on the 13th of April, 1978, in Rio de
Janeiro, Brazil. After completing his pre-universitary education in 1995,
he studied Computer Science at the Federal University of São Carlos (UF-
SCar), receiving the Bachelor degree in 2000. Then he worked as a System
Analyst and Consultant in financial companies, before starting his Master
degree in Computer Science at the Federal University of Uberlândia. He
graduated in 2004 with the MSc thesis entitled “An approach based on a
p-time Petri net Token Player and on the sequent calculus of Linear Logic
for scenario verification of Real Time Systems specified by UML dynamic
diagrams”. Then he worked as an Assistant Professor and Consultant.

In 2006 he moved to The Netherlands to work on his PhD research at the
faculty of Technology, Policy and Management, at the Delft University of
Technology (TU Delft). As a member of the Information and Communica-
tion Section and participant of the Intelligent Infrastructures subprogram
of the Next Generation Infrastructures Foundation, he worked on three
projects (IHRTC, IHRTC-E, and C4C), all related to the application of
Software Engineering methods, modeling languages and architectures in
the design and analysis of Distributed Real-Time Systems, with Road
Traffic Management Systems as case studies. He supervised one master
student and was teaching assistant for three years for the course SPM2410.
He published more than 40 articles in international conferences, books, and
journals. He is co-author of the book “Qualidade de Software” (Software
Quality), published in 2006.

211

212 Curriculum Vitae

NGInfra PhD Thesis Series on
Infrastructures

1. Strategic behavior and regulatory styles in the Netherlands energy
industry
Martijn Kuit, 2002, Delft University of Technology, the Netherlands.

2. Securing the public interest in electricity generation markets, The
myths of the invisible hand and the copper plate
Laurens de Vries, 2004, Delft University of Technology, the Nether-
lands.

3. Quality of service routing in the internet: theory, complexity and
algorithms
Fernando Kuipers, 2004, Delft University of Technology, the Nether-
lands.

4. The role of power exchanges for the creation of a single European
electricity market: market design and market regulation
Franć cois Boisseleau, 2004, Delft University of Technology, the
Netherlands, and University of Paris IX Dauphine, France.

5. The ecology of metals
Ewoud Verhoef, 2004, Delft University of Technology, the Nether-
lands.

6. MEDUSA, Survivable information security in critical infrastructures
Semir Daskapan, 2005,Delft University of Technology, the Nether-
lands.

7. Transport infrastructure slot allocation
Kaspar Koolstra, 2005, Delft University of Technology, the Nether-
lands.

8. Understanding open source communities: an organizational perspec-
tive

213

214 NGInfra PhD Thesis Series on Infrastructures

Ruben van Wendel de Joode, 2005, Delft University of Technology,
the Netherlands.

9. Regulating beyond price, integrated price-quality regulation for elec-
tricity distribution networks
Viren Ajodhia, 2006, Delft University of Technology, the Nether-
lands.

10. Networked Reliability, Institutional fragmentation and the reliability
of service provision in critical infrastructures
Mark de Bruijne, 2006, Delft University of Technology, the Nether-
lands.

11. Regional regulation as a new form of telecom sector governance: the
interactions with technological socio-economic systems and market
performance
Andrew Barendse, 2006, Delft University of Technology, the Nether-
lands.

12. The Internet bubble - the impact on the development path of the
telecommunications sector
Wolter Lemstra, 2006, Delft University of Technology, the Nether-
lands.

13. Multi-agent model predictive control with applications to power net-
works
Rudy Negenborn, 2007, Delft University of Technology, the Nether-
lands.

14. Dynamic bi-level optimal toll design approach for dynamic traffic
networks
Dusica Joksimovic, 2007, Delft University of Technology, the Nether-
lands.

15. Intertwining uncertainty analysis and decision-making about drink-
ing water infrastructure
Machtelt Meijer, 2007, Delft University of Technology, the Nether-
lands.

16. The new EU approach to sector regulation in the network infrastruc-
ture industries
Richard Cawley, 2007, Delft University of Technology, the Nether-
lands.

NGInfra PhD Thesis Series on Infrastructures 215

17. A functional legal design for reliable electricity supply, How technol-
ogy affects law
Hamilcar Knops, 2008, Delft University of Technology, the Nether-
lands and Leiden University, the Netherlands.

18. Improving real-rime train dispatching: models, algorithms and ap-
plications
Andrea DAriano, 2008, Delft University of Technology, the Nether-
lands.

19. Exploratory modeling and analysis: A promising method to deal
with deep uncertainty
Datu Buyung Agusdinata, 2008, Delft University of Technology, the
Netherlands.

20. Characterization of complex networks: application to robustness
analysis
Almerima Jamakovic, 2008, Delft University of Technology, Delft,
the Netherlands.

21. Shedding light on the black hole, The roll-out of broadband access
networks by private operators
Marieke Fijnvandraat, 2008, Delft University of Technology, Delft,
the Netherlands.

22. On stackelberg and inverse stackelberg games & their applications
in the optimal toll design problem, the energy markets liberalization
problem, and in the theory of incentives
Katerina Stankova, 2009, Delft University of Technology, Delft, the
Netherlands.

23. On the conceptual design of large-scale process & energy in-
frastructure systems: integrating flexibility,reliability, availabil-
ity,maintainability and economics (FRAME) performance metrics
Austine Ajah, 2009, Delft University of Technology, Delft, the
Netherlands.

24. Comprehensive models for security analysis of critical infrastructure
as complex systems
Fei Xue, 2009, Politecnico di Torino, Torino, Italy.

25. Towards a single European electricity market, A structured approach
for regulatory mode decision-making
Hanneke de Jong, 2009, Delft University of Technology, the Nether-
lands.

216 NGInfra PhD Thesis Series on Infrastructures

26. Co-evolutionary process for modeling large scale socio-technical sys-
tems evolution
Igor Nikolic, 2009, Delft University of Technology, the Netherlands.

27. Regulation in splendid isolation: A framework to promote effective
and efficient performance of the electricity industry in small isolated
monopoly systems
Steven Martina, 2009, Delft University of Technology, the Nether-
lands.

28. Reliability-based dynamic network design with stochastic networks
Hao Li, 2009, Delft University of Technology, the Netherlands.

29. Competing public values
Bauke Steenhuisen, 2009, Delft University of Technology, the Nether-
lands.

30. Innovative contracting practices in the road sector: cross-national
lessons in dealing with opportunistic behaviour
Monica Altamirano, 2009, Delft University of Technology, the
Netherlands.

31. Reliability in urban public transport network assessment and design
Shahram Tahmasseby, 2009, Delft University of Technology, the
Netherlands.

32. Capturing socio-technical systems with agent-based modelling
Koen van Dam, 2009, Delft University of Technology, the Nether-
lands.

33. Road incidents and network dynamics, Effects on driving behaviour
and traffic congestion
Victor Knoop, 2009, Delft University of Technology, the Netherlands.

34. Governing mobile service innovation in co-evolving value networks
Mark de Reuver, 2009, Delft University of Technology, the Nether-
lands.

35. Modelling Risk Control Measures in Railways
Jaap van den Top, 2009, Delft University of Technology, the Nether-
lands.

36. Smart heat and power: Utilizing the flexibility of micro cogeneration
Michiel Houwing, 2010, Delft University of Technology, the Nether-
lands.

NGInfra PhD Thesis Series on Infrastructures 217

37. Architecture-Driven Integration of Modeling Languages for the De-
sign of Software-Intensive Systems
Michel dos Santos Soares, 2010, Delft University of Technology, the
Netherlands.

Order information: info@nginfra.nl

