
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Benchmarking Distributed Database
Performance and Dependability under

Partial System Failures

Author:
Ruben BES

Supervisor:
Assis. Prof. Asterios

KATSIFODIMOS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

March 25, 2021

https://www.tudelft.nl
http://asterios.katsifodimos.com/
http://asterios.katsifodimos.com/
https://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Declaration of Authorship
I, Ruben BES, declare that this thesis titled, “Benchmarking Distributed Database
Performance and Dependability under Partial System Failures” and the work pre-
sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Benchmarking Distributed Database Performance and Dependability under
Partial System Failures

by Ruben BES

Many types of database management systems exist, but finding the one that is right
for a specific use case is becoming increasingly more difficult. Benchmarks allow one
to compare various systems, but in a world where distributed DBMSs are increas-
ingly used for mission critical purposes, we find most existing benchmarks neglect
fault tolerance and dependability aspects.

In this Master’s Thesis, we design a modular and highly extensible framework
capable of introducing partial system failures in a distributed database deployment.
We also implement a proof-of-concept version of our framework which we use to
evaluate the performance of a CockroachDB cluster deployed through Kubernetes,
by running the TPC-C benchmark while we inject faults and measure changes in per-
formance. Using this proof-of-concept implementation we demonstrate the faults
our system can introduce and find that the impact of our high-level node failures
is strongly dependent on the time a node has to perform a graceful shutdown and
notify its peers or connected clients.

HTTPS://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

vii

Contents

Declaration of Authorship iii

Abstract v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Questions . 2
1.3 Project Goal and Scope . 2
1.4 Main Contributions . 2
1.5 Research Methodology . 3
1.6 Collaboration . 3
1.7 Thesis Structure . 3

2 Background Knowledge 5
2.1 Database Systems . 5

2.1.1 Database Types . 5
Relational . 5
NoSQL . 5
NewSQL . 6

2.1.2 Distributed Database Systems . 6
2.1.3 Database Anatomy . 6

2.2 Benchmarking . 7
2.2.1 Properties of a Benchmark . 7
2.2.2 Metrics . 8

2.3 System Dependability . 9
2.3.1 Types of Faults . 9

Hardware Faults . 9
Software Faults . 9
Operator Faults . 10
External Factors . 10

2.3.2 Testing Dependability . 10

3 Related Work 11
3.1 Database Benchmarking . 11

3.1.1 Industry Standards . 11
TPC-C . 11
YCSB . 12

3.1.2 Dependability Aspects . 12
DBench-OLTP . 12
DS-Bench . 12
MRBS . 13
StreamBench . 13

3.2 Fault Injection . 13

viii

3.2.1 Hardware Faults . 13
3.2.2 Software Faults . 14
3.2.3 Operator Faults . 14
3.2.4 Virtualisation Techniques . 14
3.2.5 Chaos Engineering . 15

4 Scope and Design 17
4.1 Scope . 17

4.1.1 Scenario Framework . 17
4.1.2 Faults and Scenarios . 17
4.1.3 System under Test . 18
4.1.4 Experiments . 18

4.2 Scenario Design . 18
4.2.1 Scenario Overview . 18
4.2.2 Phases . 19
4.2.3 Triggers . 19
4.2.4 Faults . 20
4.2.5 Instances . 20

4.3 Framework Design . 20
4.3.1 Scenario Module . 21
4.3.2 System Under Test Module . 21

Orchestration Client API . 22
Database Client API . 22

4.3.3 Benchmark Module . 23

5 Implementation 25
5.1 Proof-of-concept . 25

5.1.1 Scenarios and Faults . 25
5.1.2 Deployment . 26
5.1.3 Database Management System 26
5.1.4 Benchmarking Framework . 27

5.2 Framework Implementation . 27
5.2.1 Implementation Language . 27
5.2.2 Modules . 27
5.2.3 Configuration . 28

5.3 Scenario Module . 29
5.3.1 Scenario Builder . 29
5.3.2 Scenario Director . 29

5.4 System Under Test Module . 30
5.4.1 Fault Injection . 30
5.4.2 Orchestration Client API . 33

Kubernetes Client Implementation 33
5.4.3 Database Client API . 34

CockroachDB Client Implementation 34

6 Experiments 37
6.1 Experimental Setup . 37

6.1.1 Hardware . 37
6.1.2 Deployment . 37
6.1.3 Benchmark Framework Configuration 38
6.1.4 System Under Test Configuration 39

ix

6.2 Experiments . 39
6.2.1 Testing Procedure . 39
6.2.2 Analysing Results . 40
6.2.3 Node Process Failure . 40
6.2.4 Database Node Failure . 42
6.2.5 Client Node Failure . 42
6.2.6 Results Discussion . 44

7 Discussion 49
7.1 Discussion . 49
7.2 Future Work . 49

7.2.1 More Extensive Scenarios . 50
7.2.2 Unified Controls . 50
7.2.3 Analysis Experiment Results . 50

8 Conclusion 51
8.1 Research Questions . 51
8.2 Conclusion . 52

A Scenario Module Class Overview 55
A.1 Companion Objects . 55
A.2 Builder Pattern . 55
A.3 Inheritance . 56

B Scenario Configuration Examples 59

C Benchmark Configuration 63

D Experiments Results Table Full 65

Bibliography 67

xi

List of Figures

2.1 Schematic Overview DBMS Anatomy 7

4.1 Schematic Overview Scenario Components 19
4.2 Schematic Overview Scenario Framework 21
4.3 Schematic Overview Scenario Module 22
4.4 Schematic Overview SUT Module . 23

5.1 Schematic Overview Scenario Execution 33

6.1 Results Node Process Failure . 41
6.2 Results Database Node Failure . 43
6.3 Results Client Node Failure . 45
6.4 Fault Impact Comparison . 47

A.1 Scenario Module Builder Overview . 56
A.2 Scenario Module Component Overview 57

xiii

List of Tables

5.1 Overview Implemented Scenarios . 28

6.1 Fault Impact Comparison . 46

D.1 Fault Impact Comparison . 66

xv

List of Abbreviations

DBMS Database Management System
RDBMS Relational Database Management System
SDMS Streaming Data Management System
MR MapReduce
KV Key-Value
SQL Structured Query Language
NoSQL Not only SQL
ACID Atomicity Consistency Isolation Durability
BASE Basic Availability Soft state Eventually consistent
DBA Database Administrator
OLTP Online Transaction Processing

1

Chapter 1

Introduction

Database Management Systems (DBMSs) come in many flavours, and asking which
is the best will yield an answer commonly given in computer science: it depends.
There is no one-size-fits-all solution, as the best approach is highly dependent on the
problem at hand and which properties are deemed important. To aid the decision-
making process, benchmarks have been created for many types of systems, includ-
ing DBMSs. Benchmarks test a system by running a workload designed to either
match real-world scenarios or stress specific parts of the system in order to deter-
mine performance levels and other relevant properties.

Ultimately, one looks for the database that has the best performance for the in-
tended use case, so it is understandable that database benchmarking looks mostly
at performance aspects like throughput and latency. However, in a world where
distributed databases are increasingly used for mission critical purposes, it is im-
portant to look at fault tolerance as well. In these complex systems, there are many
components that can malfunction or operate sub-optimally; systems could experi-
ence hardware failures or network jitter. This is why many systems are designed
to withstand various faults without loss of data or availability, but it is often only
through experimentation that one learns how performance and other properties are
affected under these circumstances.

This thesis aims to evaluate dependability aspects in the benchmarking of dis-
tributed database systems, by introducing partial system failures in the system un-
der test and measuring how benchmark results are affected.

1.1 Problem Statement

The demand for systems that can scale beyond the capabilities of traditional rela-
tional DBMSs has led to a significant growth in the number of available systems,
each with their own benefits and drawbacks. Many of these are considered exper-
imental or not mature enough, yet some are already used in production environ-
ments because of the potential they offer. Meanwhile, the benchmarks that help in
choosing the right system still focus on the same properties, neglecting the depend-
ability aspects that are of great importance in any distributed system. This is some-
what justified as these systems use fault tolerance techniques that are theoretically
sound and practically proven to keep the system available without endangering the
data consistency. The problem, however, is that not much is known about how other
aspects are affected, most important of which are the effects on throughput and la-
tency.

2 Chapter 1. Introduction

1.2 Research Questions

Many systems can tolerate faults which enables them to continue serving users or
completing requests. While we know that a system can stay operational without loss
of data, we have little knowledge of how performance is affected by faults and the
system’s recovery mechanisms. This problem leads us to our main research ques-
tion:

RQ 1 How do faults affect the performance of distributed database systems?

This question is very broad on purpose, because we intend to find a general
answer to the problem. We realise however that evaluating all distributed database
systems is impossible, which is why we must find a generic solution and apply it to
a specific problem instance. Additionally, we must be able to cause faults ourselves
and measure their impact on performance in order to understand the severity of
failures in these types of systems. These points lead us to our subquestions:

RQ 1.1 How can we agnostically evaluate the impact of faults on various distributed database
systems?

RQ 1.2 How can we reliably introduce and reproduce various types of faults?

RQ 1.3 How can we non-intrusively measure the impact of faults?

RQ 1.4 What is the performance impact of a high-level failure in a distributed database deploy-
ment?

1.3 Project Goal and Scope

We wish to study the effects that faults can have on the performance of distributed
database management systems. In order to do so, we envision a framework that
is capable of causing or simulating various types of faults. Performance should be
evaluated with a benchmarking framework that applies a workload to the DBMS.
The framework should be highly extensible in order to support any database man-
agement system, deployment technique and benchmarking framework.

We realise that creating such a framework is an ambitious endeavour and have
decided to create a design for the full framework but implement a proof-of-concept
version instead. The goal of this limited implementation is to show that the envi-
sioned framework is a feasible approach for introducing faults and evaluating the
performance impact in DBMSs. The framework is designed with focus on reusabil-
ity, reproducibility and extensibility. The proof-of-concept implementation will pro-
vide a basis for the full framework and should be able to introduce high-level node
failures and use the OLTP-Bench benchmarking framework to evaluate a CockroachDB
cluster deployed through Kubernetes.

The scope of this research is covered in more detail in section 4.1, and details
regarding the proof-of-concept implementation are covered in section 5.1.

1.4 Main Contributions

The goal of this research is to learn how performance aspects of distributed database
systems are affected by various types of faults. We intend to do so by designing a

1.5. Research Methodology 3

framework that can inject faults in a system-agnostic way, implementing a proof-of-
concept framework that can serve as a foundation for future iterations of the frame-
work, and using this version to evaluate a test system. Our main contributions can
be summarised as follows:

• A design for a highly extensible framework capable of evaluating the impact
of faults in distributed database systems in a system-agnostic manner.

• A proof-of-concept implementation for introducing a number of high-level
faults in a distributed database deployment.

• Experiments detailing how the performance of a CockroachDB deployment is
impacted by high-level node failures.

1.5 Research Methodology

A number of topics were researched in order to write this thesis. The related works
were found through the ACM Digital Library,1 dblp computer science bibliography2

and Google Scholar.3

We first researched the topic of Database Benchmarking to learn about the var-
ious benchmarks and frameworks that exist. Next, we looked into Distributed
Databases and Database Fault Tolerance to study how these systems differ from
traditional DBMSs and how they manage to tolerate faults. This lead us to research
Database Dependability and Fault Injection in order to learn how the dependabil-
ity of database systems was tested and how we could introduce faults ourselves.
Lastly, we looked into Benchmarking Database Dependability and Database Fault
Injection to find works on benchmarking database systems and their dependability
by injecting faults.

1.6 Collaboration

This thesis was performed in collaboration with the company Adyen,4 a payment
provider based in Amsterdam. As the number of transactions performed worldwide
increases steadily, scalable and fault-tolerant solutions become ever more important.
Traditional database management systems do not scale indefinitely but many of the
distributed solutions have not reached the desired level of maturity yet. This re-
search would help Adyen evaluate various systems to find a distributed database
system and configuration that satisfies the level of performance and resilience they
require.

1.7 Thesis Structure

The rest of this thesis is organised as follows. We first cover some background
knowledge on database management systems, benchmarking and system depend-
ability in chapter 2. Next, academic work related to database benchmarking and
fault injection is discussed in chapter 3. The scope of this research and design of the

1ACM Digital Library website: https://dl.acm.org/
2dblp computer science bibliography website: https://dblp.org/
3Google Scholar website: https://scholar.google.com/
4Adyen homepage: https://www.adyen.com/

https://dl.acm.org/
https://dblp.org/
https://scholar.google.com/
https://www.adyen.com/

4 Chapter 1. Introduction

framework are covered in chapter 4, and decisions regarding the proof-of-concept
framework as well as a number of implementation details are explained in chapter 5.
The experiments are covered in chapter 6 and chapter 7 discusses the applications of
this framework and covers future work. Finally, we answer the research questions
and conclude this thesis with a summary in chapter 8.

5

Chapter 2

Background Knowledge

This chapter provides some background information on a number of concepts that
this thesis builds upon. We first discuss the various types of database systems in
section 2.1 and then cover database benchmarking in section 2.2. Lastly, section 2.3
provides a brief introduction to fault injection.

2.1 Database Systems

Databases exist in many different shapes and forms. Some are intended as general
purpose data storage while others are highly specialised with a single application in
mind. We first cover the different types of database systems, then discuss the aspects
in which distributed DBMSs differ from the traditional single-machine database sys-
tems and finally cover the general anatomy of a DBMS.

2.1.1 Database Types

Roughly speaking, three categories of database management systems exist: tradi-
tional relational DBMSs, NoSQL data stores and NewSQL DBMSs. Each came forth
out of needs left unfulfilled by its predecessor. Two closely related types of sys-
tems are streaming data management systems (SDMS) and MapReduce (MR) frame-
works, but these are not truly considered to be database systems because their focus
lies on event and batch data processing, respectively. While these systems will not
be covered here, we felt the need to mention them because we discuss a number of
benchmarking frameworks that target these systems in subsection 3.1.2.

Relational

The traditional relational database systems consist of tables where each entry is a
row and each column is a property of this entry. An entry can be related to an-
other, which is often done by including an identifier as a property or constructing
additional tables just for linking purposes. The main strength of these traditional
systems is the use of the Structured Query Language (SQL) to perform relational
algebra using the database schema, which predefines the properties and relations of
entries, but not their values. Combining this with ACID guarantees (Atomicity, Con-
sistency, Isolation and Durability) allowed for systems to be used for many business
critical applications.

NoSQL

NoSQL data stores were developed as a reaction to the limited scalability of RDBMSs,
which could only scale vertically (and with reduced returns), and are known for

6 Chapter 2. Background Knowledge

their ability to scale horizontally by adding additional machines instead of upgrad-
ing hardware. As always, there is no free lunch in computer science, so NoSQL
systems pay the price by relaxing ACID guarantees, instead adopting BASE (Basic
Availability, Soft state, Eventually Consistent), making them less suitable when a
high degree of consistency is required. However, by employing many machines and
distributing or replicating data over these, NoSQL stores are capable of providing
unparalleled availability.

Another important distinction is the data model used by NoSQL databases. In-
stead of the relational model, NoSQL systems use models based on key-value (KV)
pairs. The most basic is the actual KV-pair, which is a unique key that links to a
value. Slightly more complex are the document models, which still use KV-pairs,
but the value is a JSON document instead. A different approach is using column-
families, in which a key indicates a row and the value is a set of column families,
each of which also acts as a key for one or more columns it holds, where each column
consists of a name-value pair. Lastly, graph databases hold objects whose properties
and relations to other objects are in the form of key-value pairs.

NewSQL

NewSQL is the attempt to combine SQL and the ACID properties of RDBMSs with
the scalability of NoSQL systems, representing a best-of-both-worlds solution. At
the time of writing these systems are often immature, experimental or academic,
employing new system architectures or communication models, but they are slowly
gaining traction. While users mostly interact with NewSQL databases using SQL
and the relational model, different data models such as key-value pairs are often
used under the hood for replication purposes.

2.1.2 Distributed Database Systems

Traditional relational database systems typically run on a single machine, but NoSQL
and NewSQL systems consist of multiple instances that work together to provide
greater scalability. These systems are often deployed over virtual machines which
may reside on the same physical machine, so we refer to the instances as nodes in-
stead of machines. Nodes that are deployed together cooperate and form a cluster
that acts as a single unit.

These systems present themselves as a single logical application to the outside
world, but require a number of additional techniques or components to achieve this.
Most importantly, data has to be replicated and consensus must be reached on op-
erations, otherwise nodes could diverge and queries could return different results
depending on the node that processed it. Additionally, connections and operations
should be load balanced to prevent nodes from becoming overloaded while others
remain idle.

2.1.3 Database Anatomy

While the exact anatomy differs per database system, they share a number of compo-
nents. These parts of the system, often called engines or layers, provide the general
functionality required for a database. A schematic overview can be found in Fig-
ure 2.1.

2.2. Benchmarking 7

useruseruser client/
app

action/
request

connect
with query

load
balancer

connect
with query

distribution layer
1. look up data leaseholder(s)
2. achieve consensus
3. execute operations

storage layer

1. apply operations

distributed

1. parse query
2. generate query plan
3. create operations

query layer

local

result

database node

1. acquire locks

transaction layer

Database Anatomy

FIGURE 2.1: A high level schematic overview of the anatomy of a
(distributed) database management system

A client is used to connect users or applications to the system. Load balancers
are often used to spread users over the system in case it is distributed. Users send re-
quests through the clients, after which the system performs that request. The query
layer takes these requests, translates them into operations and passes them on to
the transaction layer. This layer handles locking and concurrency, and performs the
operations. In the distributed case, operations are often first passed to a layer re-
sponsible for achieving consensus on these operations instead. The storage layer
then persists data to disk and returns requested data. Distributed database systems
often include a specific layer for replication, or replicate data through their consen-
sus protocols automatically.

2.2 Benchmarking

In computing, benchmarks are used for assessing the performance of a component
or system. Vendors use benchmarking for marketing purposes and identifying (soft-
ware) bottlenecks, while customers use benchmarks and the results reported by ven-
dors to choose a product from a vendor. Academics often develop new solutions and
then use benchmarks to evaluate these.

A number of organisations exist to create proper benchmarks and ensure these
are performed correctly, and the most well known for database benchmarking is the
Transaction Processing Performance Council (TPC).1 Founded in 1988 by vendors of
various database systems, their aim was to create thorough benchmarks and enforce
vendors to produce extensive reports.

2.2.1 Properties of a Benchmark

A benchmark that is performed on a database system consists of three components:
a dataset, a workload and a set of metrics. By loading the dataset onto the system

1Transaction Processing Performance Council homepage: http://www.tpc.org

http://www.tpc.org

8 Chapter 2. Background Knowledge

and then applying the workload, one can learn relevant metrics which can then be
used to compare this system to others.

Some benchmarks are made to be generic, making it possible to apply them to
a wide range of systems and establish a baseline performance, which has the ad-
vantage that it allows the comparison of a broad spectrum of databases. Many
(database) systems are however designed with a more specific purpose in mind,
meaning generic benchmarks will not fully capture their capabilities. To properly
evaluate these more specialised database systems, domain-specific benchmarks are
needed.

Jim Gray, who defined the first TPC benchmark, names four key criteria for
domain-specific benchmarks to be useful (Gray, 1993). These criteria are:

• Relevance: The benchmark workload should be representative of the typical
operations performed in the problem domain

• Portability: It should be easy to implement the benchmark both on and for
different systems

• Scalability: The benchmark should be applicable to different system sizes and
it should be scalable

• Simplicity: The benchmark, workload and especially the results should be
understandable

Sometimes benchmarks are referred to as frameworks or suites. These are of-
ten a collection of multiple benchmarks wrapped into a single environment, making
it easier for users to perform multiple different benchmarks on a single system or
perform the same benchmark on multiple different systems. In addition to housing
multiple benchmarks, these frameworks often feature automated system deploy-
ment and/or configuration as well.

2.2.2 Metrics

When running a benchmark, we are interested in learning certain characteristics of
the systems we are testing. Measures and metrics are often used interchangeably, but
do not actually mean the same thing. Measures are numbers derived from measure-
ments such as a person’s height or weight, while metrics are calculations between
measures, like the Body Mass Index. Metrics can be useful because they combine
multi-dimensional information into a single dimension making it easier to compare
systems, but a metric can also be misleading when the information is not normalised
or weighted properly.

Performance is the main metric of interest in benchmarking, but what this consti-
tutes is dependent on the context. In the case of database systems, this is expressed
in terms of throughput and latency. Throughput is the number of requests the sys-
tem can handle per second and latency is the time it takes to process such a request.

Generally, one looks for the system that provides the greatest throughput with
an acceptable latency, but depending on the context one might be interested in more
granular metrics or entirely different aspects. Some systems excel in their write capa-
bilities so including read operations in the performance metrics would not paint the
right picture. Similarly, many distributed DBMSs rely heavily on achieving consen-
sus on data or operations, in which case the replication delay or network utilisation
is more important.

2.3. System Dependability 9

Besides the aforementioned performance related metrics, benchmarks often col-
lect basic hardware information as well. Examples are CPU and RAM utilisation,
although some properties may depend on the domain. For example, it makes little
sense to look at disk IO when testing an in-memory database. Other metrics that are
interesting in some cases are data consistency, system cost, system scalability and
elasticity, availability and data load time.

2.3 System Dependability

Dependability is often called robustness or resilience, and includes many different
aspects of which most are related to availability, reliability and integrity. The no-
tion of dependability and its terminology have been established in 1980 by the In-
ternational Federation for Information Processing (IFIP) Working Group 10.4,2 who
defined dependability as “the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers”. Besides the aforemen-
tioned aspects, dependability also includes safety, confidentiality and maintainabil-
ity, although the main focus is on providing an available and reliable service that can
tolerate faults and prevent catastrophic consequences.

2.3.1 Types of Faults

Faults are the cause of errors, which are incorrect or unintended states. When these
cause a service to perform incorrectly and this becomes apparent to users or other
systems, we refer to this as a failure.

There are multiple types of faults and they can occur on many different levels,
with varying severity and occurrence rates. Some faults can be prevented, while
others will just occur at some point in time, requiring fault-tolerating mechanisms
in order to mitigate them or reduce their impact.

Hardware Faults

Hardware faults can occur in many different components and are most often related
to the power supply, CPU, memory or storage. These faults can be evaluated on
the component level or lower. For example, we could consider the entire storage
medium to be faulty, or only deem a single block of storage to be corrupted.

Hardware faults are becoming increasingly rare as technology advances, and
their impact can be reduced depending on the level and component in which they
occur. For example, some faults can be corrected by using bit-flip error correcting
codes, or mitigated by using a redundant power supply, or reduced by avoiding
corrupted sectors.

Software Faults

Software faults, also known as bugs or defects, are one of the most frequent causes
of system failures. Generally, software faults are unintentionally introduced during
the development phase and not picked up through testing. They can be classified
using various methods, based on their origin and resulting effects.

Software faults can also manifest as hardware faults, for example a bad driver
could make a hardware component appear faulty. This means software faults could
also be used to effectively simulate hardware faults.

2IFIP Working Group 10.4 website: https://www.dependability.org/wg10.4

https://www.dependability.org/wg10.4

10 Chapter 2. Background Knowledge

Operator Faults

Sometimes the operator of a system will make a mistake that severely impacts var-
ious aspects of the system. We call these mistakes operator faults. An example
would be an operator shutting down a functioning node instead of the node that
was actually marked to be decommissioned, or wrongly modifying some configura-
tion parameters. These faults are very different from hardware and software faults
in that they do not occur spontaneously. Instead, they are human errors introduced
precisely the same way regular operator actions are performed.

External Factors

Similar to how software faults can manifest as hardware faults, external factors can
make it look like a system is faulty even though the system itself is healthy. For ex-
ample, the performance of a system can be severely reduced when the network is
experiencing a lot of jitter or a load balancer is functioning incorrectly. It is both dif-
ficult to classify and prevent or mitigate these scenarios, as one often has no control
over these factors.

2.3.2 Testing Dependability

Before testing the dependability of a system, one must first analyse field data of
related systems in order to identify representative faults. Whether a type of fault
is relevant depends on their location and severity, as well as the rate at which they
occur. Many systems employ techniques for tolerating faults, but evaluating these
can be difficult as faults are generally very rare. To be able to properly study their
effects it is often necessary to artificially introduce faults, which is why fault injection
techniques have been developed.

Evaluating the consequences of hardware faults is difficult and costly because it
requires physical access and specialised equipment in order to modify the hardware.
Instead, software is often used to simulate these hardware faults. Software fault
injection can introduce code changes at various levels, which then mimic bugs and
cause errors. Operator faults are not actually injected, they are simply introduced
through the same channels operators would normally use.

The effects of faults are then studied by monitoring systems or applications. This
can be done by checking their logs for signs of anomalies or by running some work-
load and analysing any performance variations by comparing the results to a base-
line level established beforehand.

11

Chapter 3

Related Work

In this chapter we discuss works related to database benchmarking and fault injec-
tion. These works originate from academia as well as the industry, as companies
often come up with their own solutions when current technologies do not suffice or
research is not available.

3.1 Database Benchmarking

Benchmarking is a widely researched topic, especially when applied to database
systems. We first cover the two most well known generic benchmarks, TPC-C and
YCSB, after which we discuss a number of works on benchmarking dependability
aspects.

3.1.1 Industry Standards

TPC-C and YCSB are two benchmarks that have become true industry standards for
evaluating database performance. We briefly cover them in the paragraphs below to
learn why they are considered standards and what they do right, in order to aid us
in choosing a benchmark framework for our proof-of-concept implementation.

TPC-C

Approved by the TPC in 1992 and still an industry standard today, TPC-C has truly
withstood the test of time.1 It is a generic OLTP (Online Transaction Processing)
benchmark that models a retailer processing orders and payments, while shipping
products and checking stock in its warehouses. TPC-C measures the performance
of a database system based on the number of times per second it can perform the
NewOrder transaction, while also running four other transactions. Scaling is done
by increasing the number of warehouses and the rate at which new requests are
submitted.

The TPC-C benchmark has become an industry standard for a number of reasons:

• There is no apparent or exploitable bias in its queries or metrics.

• Vendors must produce an extensive report when publishing results, providing
transparency and correctness.

• The TPC wrote a specification instead of an implementation, meaning it can
implemented both on and for any system.

• Multiple database vendors helped design the benchmark, implicitly support-
ing it from the start.

1TPC-C benchmark website: http://www.tpc.org/tpcc/

http://www.tpc.org/tpcc/

12 Chapter 3. Related Work

YCSB

In 2010, Yahoo! created the Yahoo! Cloud Serving Benchmark (Cooper et al., 2010).
The benchmark was intended for benchmarking cloud data serving systems using
Key-Value pairs. The YCSB benchmark supports just four operations (insert, update,
read and scan) and four access distributions (uniform, zipfian, latest and multino-
mial), measuring performance as the number of operations performed per second.
While relatively simple, the operations and distributions can be combined and run
with a specified ratio, and five standard benchmarks are included by default. This
simplicity is the main strength of YCSB, as this makes it straightforward to extend
the benchmark and adapt it for various purposes, with it being used as a basis by
dozens of benchmarks.

The YCSB benchmark has become an industry standard for a number of reasons:

• YCSB was one of the first benchmarks for Key-Value stores.

• It was created by a well known internet company.

• The benchmark is straightforward and highly configurable.

• Its simplicity and extensibility made it an excellent basis for more specific
benchmarks.

3.1.2 Dependability Aspects

The two benchmarks discussed so far focus only on performance aspects, but de-
pendability is of major importance for distributed database systems. Here we cover
a number of benchmarks and frameworks that evaluate dependability aspects in
addition to performance.

DBench-OLTP

DBench-OLTP is a dependability benchmark for OLTP systems that measures both
performance and dependability aspects (Vieira and H. Madeira, 2003a). DBench-
OLTP first runs a benchmark and then in a second phase injects the faults. It checks
the detection time and recovery duration, after which data integrity checks are per-
formed. While advanced for its time, it is only capable of injecting operator faults
and supports just the TPC-C benchmark and its metrics, meaning results are limited
to transactions per second and availability.

DS-Bench

DS-Bench is a software framework that is part of the DS-Bench Toolset (Fujita et al.,
2012). It is used for conducting dependability benchmarks, but is not a benchmark in
itself. Instead, it supports the execution of benchmarks supplied by the user through
a benchmark description. DS-Bench also supports the generation and injection of
faults (referred to by the authors as anomalies) that simulate hardware malfunctions.
This software framework is the most similar to our proof-of-concept in that it can be
used with any system and benchmark combination, but it is limited to hardware
fault injection. Furthermore, in order to use DS-Bench, one must use all parts of the
toolset making it less lightweight and more difficult to use.

3.2. Fault Injection 13

MRBS

MRBS is a benchmarking suite for MapReduce systems which was later extended to
evaluate dependability aspects as well (Sangroya, Serrano, and Bouchenak, 2012a,b,
2016). While running a benchmark, nodes can be crashed by prematurely terminat-
ing them through the cloud infrastructure API or killing all MapReduce daemons on
that node, and MapReduce tasks are crashed by killing the corresponding processes.
Injecting software faults and making tasks hang is possible as well, but this requires
creating a synthetic MapReduce library. Unfortunately, this suite’s portability is lim-
ited as it can only be used for MR systems and requires synthesising the MapReduce
API of the system under test.

StreamBench

StreamBench is a framework comprising seven benchmarks and four workload suites
targeting various aspects of Stream Data Management Systems (Lu et al., 2014).
While not very extensive, one of the workloads evaluates the fault tolerance of an
SDMS by intentionally failing one of the nodes and comparing the performance to a
previously established baseline. This approach is similar to ours, except it is limited
to SDMSs and single node failures.

3.2 Fault Injection

Faults generally have low occurrence rates, making it difficult to study their effects
on live systems. In this section we discuss a number of works related to artificially
introducing faults. We first cover the three types of faults mentioned in subsec-
tion 2.3.1 and then look into virtualisation techniques and chaos engineering.

3.2.1 Hardware Faults

Injecting true hardware faults often requires physical access to a system. One of
the first techniques was MESSALINE, a general pin-level fault injection tool consist-
ing of hardware modules for the injection, activation and collection of faults, and
a software module for test sequence management (Arlat, Aguera, et al., 1990). The
injection module is capable of injecting several kinds of hardware faults on up to
32 pins while the activation module ensures the proper initialisation of the target
system. In a later publication (Arlat, Costes, et al., 1993), the authors evaluate the
distributed fault tolerant architecture of the ESPRIT Delta-4 Project (Powell, 2012)
using MESSALINE. By modelling the system as a Markov chain, where state transi-
tions indicate failing or recovering nodes, they are able to evaluate the fault tolerance
algorithms and mechanisms’ ability to contain faults or safely extract faulty nodes.

Access to hardware is generally not possible, so hardware faults are often in-
jected through software. And example of this is introducing bit-flips in various
CPU registers using the XceptionNT tool (Costa and H. Madeira, 1999). This tech-
nique was used to assess the robustness of a common of-the-shelf (COTS) DBMS
and was later extended by injecting software faults at runtime, targeting a number
of assembly-level instructions (Costa, Rilho, and H. Madeira, 2000). In addition to
dependability, the performance degradation introduced by the overhead of the re-
covery mechanisms was studied, as well as the cost of the recovery process. This
research showed that software faults are more prone to cause hangs and aborts,
especially when occurring in the benchmark client. While valuable, the faults are

14 Chapter 3. Related Work

injected at a very low level making it more difficult to reason about the exact fail-
ure, like where a bug in the code originated for example. On the other hand, this
approach does not require access to the source code of the system under test.

3.2.2 Software Faults

Software faults can be emulated by introducing mutations in systems at the machine-
code level (Durães and H. Madeira, 2002). Using this technique, the authors defined
generic faultloads which were injected in various web servers and a number of dif-
ferent applications in order to assess their dependability (Durães and H. Madeira,
2004, 2006). While no DBMSs were tested, the fault injection technique was generic
and could in theory be applied to inject software faults in database systems as well.

A different approach is taken by the MapReduce Benchmarking Suite, which
we covered in section 3.1.2 (Sangroya, Serrano, and Bouchenak, 2012a, 2016). This
suite synthesises a new version of the MapReduce framework library, producing
a synthetic library that has the same API as the original, but also provides some
handles for activating or injecting faults. Using the synthesised library, MRBS is
able to simulate programmer mistakes by throwing runtime exceptions originating
from map and reduce tasks, and it can also provoke hanging tasks.

3.2.3 Operator Faults

As mentioned in section 2.3.1, one does not inject operator faults through any spe-
cial means. Instead one introduces them precisely as they would normally be in-
troduced, by accidentally performing the wrong operations. DBench-OLTP (Vieira
and H. Madeira, 2003a) and MRBS (Sangroya, Serrano, and Bouchenak, 2012a), in-
troduced in subsection 3.1.2, both support the injection of operator faults and show
these can be used to simulate other types of faults as well. The precise operations a
database administrator (DBA) must perform are quite dependent on the DBMS that
is used, so it is important to be able to generalise operations and their consequences.
Research shows that operations and faults can be classified and that this can be used
to establish an equivalence between various DBMSs (Vieira and H. Madeira, 2002).

3.2.4 Virtualisation Techniques

Running containerised applications in virtualised systems is a practice that is becom-
ing increasingly popular, but it is important to know whether there is a one-to-one
correspondence between the virtualised and traditional bare metal systems when
performing fault injection. Research comparing the effects of Software-Implemented
Fault Injection (SWIFI) in bare and virtual machines details the types of failures that
occur in both environments, as well as their distribution and causes (Le and Tamir,
2014). The authors also studied the effects of fault injection on system performance
to see if both behaved similar and whether injection was not too intrusive. This
research showed that the fault injection process is somewhat slower in virtualised
systems, but that this is overshadowed by the significantly more rapid boot process,
resulting in roughly five times faster injection runs in a VM.

3.2. Fault Injection 15

3.2.5 Chaos Engineering

Chaos Engineering is the discipline of experimenting on a system in order to build
confidence in the system’s capability to withstand turbulent conditions in produc-
tion.2 Netflix developed a tool suite called the Simian Army to cause breakdowns in
their production environment.3 Their first tool, the Chaos Monkey, acts like a wild
monkey in a datacenter randomly destroying machines, chewing through cables and
causing other unexpected problems. While seemingly counter-intuitive – a produc-
tion environment should be stable and testing should be done in a test environment
– it pushed developers to write code that assumed faults would occur at some point
in time, thus improving the resilience of their systems.

2Principles of Chaos Engineering website: https://principlesofchaos.org/
3Netflix’s Simian Army blog post: http://techblog.netflix.com/2011/07/

netflix-simian-army.html

https://principlesofchaos.org/
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html

17

Chapter 4

Scope and Design

This chapter covers the scope of this research in section 4.1, followed by the scenario
design in section 4.2. We conclude this chapter by detailing the framework’s design
and its various components in section 4.3.

4.1 Scope

The goal of this research is to study how the performance of distributed database
systems is affected by faults. This goal is quite broad, which is why it is important
to define the scope of this project. We first discuss the framework and then cover
the types of faults we wish to study. We then cover the system under test and lastly
discuss the experiments.

4.1.1 Scenario Framework

To answer our main research question – how faults affect the performance of dis-
tributed database systems – we need to build a system capable of introducing faults
and measuring their influence on performance. Many types of faults, database sys-
tems, deployment techniques and benchmarks exist, but it is impossible to support
all of them. Instead of a complete system, we will design a framework with focus on
reusability, reproducibility and extensibility.

The framework should provide a foundation to evaluate database systems by
interacting with orchestration clients, database clients and accessing the machines
themselves. The framework should be able to introduce basic faults this way while
a benchmarking framework evaluates the performance of the system under test. In-
troducing complex faults that require specialised fault-injection software is not sup-
ported directly. Instead, one should include this software when deploying the sys-
tem under test and extend the scenario framework to execute it.

4.1.2 Faults and Scenarios

The framework should be able to introduce faults in the system under test. As men-
tioned in subsection 2.3.1 and section 3.2, faults can occur on various levels and can
be introduced through a number of techniques. The framework causes adminis-
trator faults by performing database and orchestration operations. Hardware and
software faults are not caused by the framework, but can be simulated through the
clients or by executing scripts or commands on the machines. Additionally, spe-
cial software could be deployed on the machines after which the framework could
invoke it.

In order to simulate more complex real-world scenarios, the framework should
be able to target multiple parts of the system and introduce faults over time. A

18 Chapter 4. Scope and Design

scenario is the set of faults introduced in a single test. Scenarios should be highly
configurable and be capable of introducing different types of faults. Additionally,
scenarios should be reproducible, meaning a scenario that is executed multiple times
should introduce the exact same faults each and every time.

4.1.3 System under Test

The system under test is comprised of various (virtual) machines on which the
DBMS is deployed. The scenario framework should communicate with the sys-
tem under test using the database and orchestration clients. The DBMS should be
deployed using an orchestration technique, and it should be evaluated through a
benchmarking framework. The scenario framework should be able to handle any
combination of databases, orchestration techniques and benchmarking frameworks,
which is done through generic interfaces, and each variation requires its own imple-
mentation.

4.1.4 Experiments

An experiment should consist of a benchmark that evaluates the performance of the
system under test while the scenario framework runs a scenario. The benchmarking
framework should establish a baseline performance before the scenario occurs, and
continue its benchmark while the fault is introduced to measure how performance
is affected by both the fault and the DBMS’ recovery process. Benchmarking frame-
works often produce thorough reports which should then be compared to the fault
injection timestamps to learn how the performance of the system under test was
influenced.

The experiments should provide information to help find the system that is best
suited for the task at hand. This means that it should be possible to run the same
scenario on different DBMSs, run multiple scenarios on the same system or even
run a single scenario multiple times on the same system but change the system’s
configuration every time.

4.2 Scenario Design

A scenario consists of phases or triggers which describe when and where faults are
introduced in the system under test. This section first covers the general design of
a scenario and then explains its various components as well as their relation to each
other.

4.2.1 Scenario Overview

A scenario is a single experiment in which a set of faults are introduced in the system
under test at a specified time and place. Faults determine which failures occur and
where they should be injected, and triggers determine the conditions for a fault to be
introduced. A scenario can be as simple as introducing a singular fault that affects
only one node, but it can also be defined as a complex combination of multiple types
of faults, introduced throughout various parts of the system over a period of time
once specific conditions have been met.

Scenarios can be defined in two ways, by specifying either phases or triggers.
Both will introduce the exact same faults in the system under test, but the former
is a high-level description while the latter is much more granular. The rationale

4.2. Scenario Design 19

Scenario Overview - Components

defined with phases

defined with triggers

phase
fault_type = …
instance_type = …
num_instances = …
spread = …
trigger = {…}1

1

0…*

0…*

trigger

1

1

trigger
id = …
type = …
conf = {…}
faults = […]

1

1

1…*

1…*

fault

fault_type = …
instance_type = …
instance_id = …

scenario
name = …
phases = […]

OR
triggers = […]

generated by phase

defined in trigger

FIGURE 4.1: A schematic overview of a scenario and its components.
A scenario is defined with either phases (in red) or triggers (in green).
Phases generate faults on creation while triggers define them before-

hand.

behind providing two options is that defining a phase-based scenario requires less
effort, which makes it easier to quickly try out a scenario, but has the drawback that
it is not guaranteed to target the exact same instances when reused. Trigger-based
scenarios do provide this guarantee, but require more extensive configuration. In
order to reduce the effort of configuring these granular scenarios, it is possible to
generate trigger-based configurations from phase-based scenarios.

Details on phases, triggers, faults and instances are discussed below. A schematic
overview of a scenario and its components can be found in Figure 4.1, and examples
of configuration files are present in Appendix B.

4.2.2 Phases

A phase describes a part of a scenario at a high level. The configuration of a phase
specifies the type of fault to introduce, the type of instance to affect and the trig-
ger that determines when injection should occur. A phase does not target instances
explicitly but is instead configured to select a number of instances spread over a
number of clusters, which the framework does automatically when the scenario is
initialised.

The automatic target selection makes it more straightforward to configure, but
does not guarantee that the same instances are affected when executing a phase-
based scenario multiple times. Furthermore, a single phase is limited to inject the
specified fault in all selected instances at the same time, meaning multiple phases
are required when properties should vary per injection. Lastly, one should be cau-
tious when using multiple phases, as there is no control over the specific targeted
instances so they are not guaranteed to be running if a different phase previously
injected a fault there.

4.2.3 Triggers

A trigger describes when a collection of faults should be injected into the system
under test. Triggers that are part of a phase specify a type and any required type-
specific conditions which, once they are met, cause the phase’s fault to be injected

20 Chapter 4. Scope and Design

into the targeted instances. When using a trigger-based scenario instead, each de-
fined trigger additionally specifies the collection of faults to be injected into the sys-
tem.

When a fault is to be introduced in the system under test depends on the type
of trigger and its configuration. The simplest trigger is time-based, injecting a fault
after the specified time has elapsed. Triggers can also be configured to be dependent
on another trigger, executing only once that trigger has succeeded, which is useful
in the case a scenario should simulate a cascading disaster where the failure of one
instance would cause another to fail as well. Triggers can also be used to flexibly
schedule the injection of faults over time depending on certain conditions. For ex-
ample, a scenario could be configured to only inject a new fault once the system has
sufficiently stabilised or when an external service signals it to do so.

To make triggers more flexible and enable constructing more complex scenarios,
the elements of various kinds of triggers can be combined to form a new type of
trigger. For example, a trigger could be configured to introduce a fault five minutes
after the system has stabilised from the injection of a previous fault.

4.2.4 Faults

A fault describes what kind of failure to introduce in the system under test. Faults
are either generated from phases or defined as part of a trigger, depending on how
the scenario was configured. The specified fault type is a high-level description,
as the precise fault that is injected depends on a number of factors. For example,
a node failure can be introduced in an instance through the database software, by
accessing that (virtual) machine or by using the orchestration client. How each of
these methods introduce their faults depends greatly on the system under test and
how it is deployed, but they all cause a node failure in the end.

A single fault will always affect a single instance of the specified type. This
means that targeting a node instance with a node failure will affect only the tar-
geted node, however if a cluster instance is targeted by this fault then all nodes in
this cluster will be affected.

4.2.5 Instances

Instances are the components that make up the system under test, most of which can
be the target of a fault. Phases refer to a type of instance to affect while faults tar-
get specific instances. Commonly targeted instances are the (database) clusters and
(database) nodes, but hardware components like disks and CPUs or more abstract
concepts like the network can also be affected by a scenario.

As mentioned in the previous section, sometimes a type of fault can be intro-
duced in multiple types of instances, in which case the effects depend on the hierar-
chy of the instances. A fault that corrupts a storage medium will affect all available
storage when the target instance is a node, but when the specified instance is a hard
disk then the fault will only be introduced there. The option to affect a single specific
instance or target multiple instances further down the hierarchy enables the creation
of both broad and granular scenarios.

4.3 Framework Design

The Scenario Framework consists of a main module responsible for creating and ex-
ecuting the scenario, and two modules related to communicating with the system

4.3. Framework Design 21

benchmark
framework

scenario framework

SUT
module

benchmark
module

scenario
moduleinituser

Framework Overview - General

system
under test

FIGURE 4.2: A schematic overview of the scenario framework, de-
tailing how the modules are connected to each other and the external

systems. Dashed lines indicate a connection is optional.

under test and benchmark framework. This section covers the design of the sce-
nario framework and its modules, of which a schematic overview can be found in
Figure 4.2.

4.3.1 Scenario Module

The Scenario Module is responsible for creating, scheduling and executing scenarios.
It does this through its two main components, the scenario director and scenario
builder. A schematic overview of this module can be found in Figure 4.3.

The scenario director instructs the scenario builder to construct the scenario and
its components (as discussed in the previous section), based on the configuration
supplied by the user and the system composition retrieved from the System Under
Test Module. The scenario builder will check whether the scenario is defined as a
phase-based or trigger-based scenario, and then instruct the components’ respective
builders to further assemble the scenario.

After creating a scenario, the scenario director will schedule its triggers. These
will execute and introduce their faults once their conditions are met, e.g. a specific
time has elapsed. To inject a fault, the scenario director passes it and any information
on the intended target to the System Under Test Module, which will then perform
the actual fault injection.

4.3.2 System Under Test Module

This module is responsible for communicating with the system under test, inform-
ing the scenario director of the system composition and introducing faults provided

22 Chapter 4. Scope and Design

Framework Overview - Scenario Module

scenario module

benchmark
module

SUT
module

scenario
director

scenario
builder

phase
builder

trigger
builder

fault
builder

FIGURE 4.3: A schematic overview of the Scenario Module. The sce-
nario director instructs the scenario builder and communicates with

the other modules.

by the scenario director. Because many database systems and orchestration tech-
niques exist, this module uses two APIs to provide generic methods for interacting
with the system under test. Each distinct database system and orchestration tech-
nique requires an implementation of this API, enabling the scenario director to in-
troduce faults the same way regardless of the actual system under test. A schematic
overview of this module can be found in Figure 4.4.

Not all parts of this module are mandatory, only the functions related to dis-
covering system composition and injecting faults at the deployment-, machine- and
database-level are required. Handling the system’s deployment, initialisation and
shutdown, and monitoring the system at various levels is entirely optional. This is
because while these functions allow coordinating and automating tests, setting them
up for a test that will be run only once will take more time and effort than doing so
manually.

Orchestration Client API

The Orchestration Client API provides interaction with the specific orchestration
technique that is used to deploy the system under test. This enables the framework
to introduce faults at the deployment-level by adding, removing or modifying re-
sources. It also simplifies connecting to the individual machines in order to execute
commands and simulate various faults at the machine-level.

This design requires an implementation of the API for each orchestration library.
This API specifies the minimum required functions to be implemented, which gen-
erally are the logic for looking up instances and injecting faults. Naturally, the im-
plementations may include additional features or helper functions.

Database Client API

The Database Client API enables the scenario framework to interact with the database
software of the system under test in order to retrieve information and introduce
faults. Similar to the Orchestration Client API, each DBMS requires its own imple-
mentation that provides the minimum required functionality.

4.3. Framework Design 23

SUT module

Framework Overview - SUT Module

SUT module
main

database
client API

orchestration
client API

scenario
module

system
under test

orchestration client
implementation

Kubernetes …

database client
implementation

CockroachDB …

FIGURE 4.4: A schematic overview of the System Under Test module.
Communication with the system under test is done through the client
APIs, the specific implementations of which depend on the DBMS

and orchestration technique.

Interacting with the database can be done in three ways. The database driver is
the most straightforward, but it is also the most restrictive as administrative oper-
ations are often not permitted this way. The second option is to use the database’s
library, if available. Lastly, one can use the database client software, which supports
(administrative) commands in addition to queries. Doing so locally might be diffi-
cult, as it requires that the machine running the scenario benchmark has this client
installed. Additionally, if the system under test is deployed securely then it may
be required to provide a number of certificates as well. It is generally easier to use
the Orchestration Client API to connect to a node and execute the client commands
there, as each node should already have access to the database client and required
certificates.

4.3.3 Benchmark Module

The module responsible for communicating with the benchmark framework is op-
tional, but can be used to reduce the effort required to run experiments. The purpose
of this module is to enable the scenario framework to control the benchmark frame-
work in order to automate and coordinate various processes, reducing the manual
labour users would need to perform. The Benchmark Module allows the user to do
any of the following: set up the benchmark framework, prepare a benchmark by
creating the tables and generating or loading the data, and coordinate the execution
of the benchmark and scenario.

Much like the other module, it is optional because the effort required for setting
up this module would most likely be greater than the effort required for manually
performing a single test. It is therefore intended to be used when a series of identical
(or very similar) tests are to be performed. When included however, the Bench-
mark Module should provide an API and require an implementation for the specific

24 Chapter 4. Scope and Design

benchmarking framework used for testing, similar to the System Under Test Mod-
ule.

25

Chapter 5

Implementation

In this chapter we cover the implementation details, starting with the decisions re-
garding the proof-of-concept framework in section 5.1. We then discuss the scenario
framework in general in section 5.2 and cover the Scenario Module and System Un-
der Test Module in section 5.3 and section 5.4, respectively. We do not cover the
Benchmark Module, described in subsection 4.3.3, as this optional module was omit-
ted in the PoC implementation.

5.1 Proof-of-concept

The design of the framework supports any combination of faults, database systems,
deployment techniques and benchmarking frameworks as long as an implementa-
tion is provided for each. The goal of this proof-of-concept version is to provide a
basis for the framework and show that this approach is feasible, which is why it is
limited to introducing high-level node failures in a CockroachDB cluster deployed
through Kubernetes while running the TPC-C benchmark with OLTP-Bench. The
key factors in each decision were the general reusability of the system, extensibility
of framework features and reproducibility of experiments. We discuss each choice
in detail below.

5.1.1 Scenarios and Faults

The proof-of-concept implementation lays the foundation for the scenario frame-
work and allows us to demonstrate that our approach works. This means that in-
troducing simple faults and providing the functionality for creating low-complexity
scenarios suffices, as long as this basic implementation is easily extended to accom-
modate for more complex faults and scenarios in the future.

The PoC framework is capable of injecting a fault that simulates the high-level
failure of a node, by introducing it at the orchestration-, database- or machine-level.
In reality these failures can stem from hardware, software and operator faults, but
our focus is not on the origin of these failures but their consequences. This scenario
is relatively common but can nonetheless have serious repercussions. Node failure
is also one of the aspects that is tested for often, and something distributed database
systems should be able tolerate, making this a highly relevant scenario as well.

The proof-of-concept features only a single type of fault, but the framework is
designed with the intention to include many more. Network issues and hardware
component failures are a real-life occurrence as well, but these are both more difficult
to implement and occur less frequently than generic node failures, making them less
suited for the proof-of-concept implementation. Other scenarios, like modifying sys-
tem composition to measure scalability and elasticity, or performing DDL changes

26 Chapter 5. Implementation

and database maintenance, are highly realistic yet more niche, which is why they
did not make the cut in the proof-of-concept framework.

5.1.2 Deployment

Setting up, running, breaking and subsequently restoring the system under test can
be quite a cumbersome endeavour. To ease this process, we wish to make use of
a system that, to some extent, can automate this. To make the framework more
reusable, it is important to choose a technique that is both versatile and popular.

For our proof-of-concept implementation we have chosen to use Kubernetes, an
open-source system for automating deployment, scaling, and management of con-
tainerized applications.1 This orchestration technique makes it easy to deploy the
system under test, communicate with it and introduce various faults. By running
the system under test as a containerised application, we do not need to worry about
any specific hardware or operating system, making our framework more reusable.
Additionally, acquiring the instances on which to deploy the system under test can
be automated as well, for example through the Google Kubernetes Engine2 or the
Amazon Elastic Kubernetes Service.3

An added benefit of using virtualised systems, and Kubernetes especially, is the
ability to control many aspects of the deployed applications and their systems, mak-
ing it easier to introduce faults and reproduce experiments. Furthermore, many
database vendors offer detailed instructions or even fully automated solutions for
deploying their systems through orchestration techniques.

While Kubernetes is not the only container orchestration technique, some alter-
natives being Docker Swarm4 and Apache Mesos,5 it is the most popular and widely
supported technique. For these reasons, using Kubernetes strongly improves the
reusability of our system, making it the prime candidate to integrate in our proof-
of-concept implementation.

5.1.3 Database Management System

For the proof-of-concept implementation, we want to evaluate a representative dis-
tributed DBMS intended for OLTP. It is important that the system is compatible with
a common version of SQL in order to provide wide support.

We have chosen to evaluate CockroachDB, a globally distributed NewSQL database
that is wire compatible with PostgreSQL 9.5 and employs the Raft consensus proto-
col for both reaching consensus on operations as well as data replication (Taft et al.,
2020). Additionally, CockroachDB is open source, is considered to be relatively ma-
ture and has great support for containerised deployment.

YugabyteDB,6 FaunaDB (Freels, 2018), FoundationDB (Chrysafis et al., 2019),
TiDB (Huang et al., 2020) and VoltDB (Stonebraker and Weisberg, 2013) were consid-
ered as well, but were not chosen for a number of reasons. These systems are either
not sufficiently compatible with MySQL or PostgreSQL, lack certain relational capa-
bilities, or are not available as an open source system, making them more difficult to
evaluate.

1Kubernetes homepage: https://kubernetes.io/
2Google Kubernetes Engine website: https://cloud.google.com/kubernetes-engine
3Amazon Elastic Kubernetes Service website: https://aws.amazon.com/eks/
4Docker Swarm documentation: https://docs.docker.com/engine/swarm/
5Apache Mesos website: http://mesos.apache.org/
6YugabyteDB homepage: https://www.yugabyte.com/

https://kubernetes.io/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
https://www.yugabyte.com/

5.2. Framework Implementation 27

5.1.4 Benchmarking Framework

In order to properly evaluate the system under test and conduct reproducible experi-
ments, a reliable benchmarking framework must be used. Because most frameworks
are standalone applications and our proof-of-concept implementation does not in-
clude the Benchmark Module, interoperability with the benchmarking framework
has a low priority.

We have chosen to evaluate our CockroachDB deployment using the OLTP-Bench
benchmarking framework (Difallah et al., 2013). It can execute the two industry stan-
dard benchmarks, TPC-C and YCSB (see subsection 3.1.1), but also includes 15 oth-
ers for testing and stressing various aspects of the system. This framework allows
the user to configure workloads that change over time, and can collect extensive
statistics which aids in evaluating the impact of the injected faults. Furthermore,
OLTP-Bench can be used for any JDBC-enabled database and is highly extensible.

We also considered two other frameworks, BigBench (Ghazal, Ivanov, et al., 2017;
Ghazal, Rabl, et al., 2013) and BigDataBench (Wang et al., 2014), but these are in-
tended for evaluating data analytics capabilities instead of transaction processing.
These benchmarking frameworks are less suitable to use for our proof-of-concept
implementation because the DBMS we chose to evaluate, CockroachDB, is intended
for OLTP.

5.2 Framework Implementation

In this section we cover a number of aspects of our framework implementation in
general. We first justify the programming language used to implement our proof-
of-concept framework, then cover some details regarding the modular approach of
our system and finally explain how we use configuration files throughout the frame-
work. Additionally, an overview of the faults currently implemented by the frame-
work as well as those that could be supported in the future can be found in Table 5.1.

5.2.1 Implementation Language

The proof-of-concept framework was implemented in Scala for a number of rea-
sons.7 Being a high-level language that runs on the JVM, Scala makes it easy to
prototype new designs while it can still use libraries that were written in Java. Ad-
ditionally, Scala supports multiple inheritance through traits and provides exhaus-
tive matching, which is beneficial for creating new scenario components and basing
the system’s behaviour on them. Another reason to use Scala, besides the author’s
familiarity with the language and its concepts, is the distinction between values and
variables, or mutable and immutable collections, which enables a clear separation
between the components that should and those that should not be modified. Simi-
larly, the ability to mark a class as sealed, so that it cannot be extended outside the
file it was defined in, helps to provide more structure which is useful when creating
a framework that is highly extensible and consists of multiple distinct modules.

5.2.2 Modules

As discussed in section 4.3, the Scenario Framework consists of three modules: the
Scenario Module, System Under Test Module and Benchmark Module. Each of these
has a singleton main class that is instantiated through a companion object. These

7Scala programming language homepage: https://www.scala-lang.org/

https://www.scala-lang.org/

28 Chapter 5. Implementation

TABLE 5.1: An overview of the implemented faults and those that the
framework could support in the future. Please note that the latter is
not exhaustive and serves mostly to indicate possibilities for future

applications.

Fault Level Requires Implemented

High-Level Failure Node CLI & command 5.4.2
Database Database CLI & command 5.4.3

Database Library –
Orchestration Orchestration Library 5.4.2

Hardware Failure CPU Injection Software –
Memory Injection Software –
Storage Injection Software –

Software Failure Node or Database Injection Software –
Modified Software –

Administrator Failure Database Database CLI & command –
Database Library –

Orchestration Orchestration Library –

Network Failure Node Network Proxy –
Orchestration Orchestration Library –

classes are singletons because only a single scenario should be created, and only
one system under test and benchmark framework should be used in an experiment.
Similarly, the System Under Test Module provides an API for interacting with the
database and orchestration clients, and only one implementation should be instan-
tiated for each. To ensure this, each companion object may instantiate its class only
once, after which subsequent calls will return the existing instance instead. Nor-
mally one could use static objects for this, but we haven chosen this approach be-
cause we must dynamically instantiate and configure different classes based on the
provided configuration.

5.2.3 Configuration

We use a number of configuration files in order to dynamically create different sce-
narios, configure modules and instantiate the correct client APIs. The scenario frame-
work uses the Typesafe Config library to supply and validate files in the HOCON
(Human-Optimized Config Object Notation) format because they are easy to under-
stand, in contrast to the machine-optimised JSON format.8 Additionally, the HO-
CON format supports substitutions to refer to other parts of the configuration file
which lets us avoid copy-pasting properties. The library is also capable of merging
and validating multiple configuration files at runtime, which allows us to store the
configuration for different modules and components separately, thereby reducing
the chance of accidentally modifying the wrong properties. Validating configuration
files beforehand also gives the framework the option of failing early while provid-
ing an explanation as to which configuration fields are missing. An example of the
database client configuration can be found in Listing 5.1 and examples for scenario
configuration files can be found in Appendix B.

8Lightbend Config library GitHub page: https://github.com/lightbend/config

https://github.com/lightbend/config

5.3. Scenario Module 29

5.3 Scenario Module

The Scenario Module provides all functionality related to creating, scheduling and
executing scenarios. The scenario director instructs the scenario builder to create the
scenario and its components based on the provided configuration, after which the
scenario is scheduled and executed. An overview of the classes in this module and
the relations between them can be found in Appendix A. We first cover how the
scenario builder constructs scenarios, and then explain how the scenario director
schedules and executes them.

5.3.1 Scenario Builder

The scenario builder is responsible for creating a scenario based on the configura-
tion provided by the scenario director. As discussed in subsection 4.1.2, the sce-
nario’s components are defined through either phases or triggers, which are created
by their respective builders. The challenge is in dynamically instantiating the com-
ponents and their various subtypes, while providing an extensible basis for future
components.

Each component’s builder object implements the builder pattern to separate the
construction of its instances from their representation. This allows us to construct the
components step by step, and only build them once all the parts that are required
for these particular instances have been added. Additionally, we can validate the
components before building them to assure that the scenario’s configuration meets
certain requirements or force an early failure if it does not.

All components except phases have subtypes, each of which inherits properties
from their respective abstract component. For example, an Instance type can be
either a Node or Cluster. This inheritance allows us to easily define new types and
match them to ensure faults are introduced in the right place, or even fail at compile
time if the match was not exhaustive. Scala also supports multiple inheritance by
mixing in multiple traits, which we use to flexibly define more complex types. For
example, a new Trigger type could inherit both the Timed and Dependent trait in
order to produce triggers that introduce faults a specific amount of time after the
trigger on which it depends has executed. An example of a more complex scenario
can be found in Listing B.3.

5.3.2 Scenario Director

The scenario director is responsible for scheduling the scenario created by the sce-
nario builder. A scenario’s triggers determine when faults should be injected in the
system under test: once another trigger has succeeded, after some time has elapsed
or both. To make scheduling triggers easier, the scenario director uses the Monix
library.9 This library provides the Task data type, which allows us to lazily define
operations and execute them asynchronously, after which we chain them together to
form a single task that represents the entire scenario.

To execute the scenario, we must schedule all of its triggers. Each trigger holds
one or more faults, which should be introduced in the system under test once their
trigger’s requirements are met. To schedule a trigger, we need to create a task that
contains all the operations to inject its faults. A trigger’s faults can be injected in
parallel, so we create a task for each and combine them into a single task that is

9Monix library website: https://monix.io/

https://monix.io/

30 Chapter 5. Implementation

considered to be successful if each individual task was a success. If the trigger im-
plements the Timed trait, we also apply the appropriate delay. Pseudocode for these
operations can be found in algorithm 1. Note that each task is defined lazily and
execution only happens once explicitly instructed.

Algorithm 1: Create a Trigger Task
Input: trigger, the trigger for which we want to make a task
Result: A task representing the input trigger, injecting its faults in parallel

faultTasks← ∅
for fault ∈ trigger do

faultTask← Task { inject fault }
faultTasks← faultTasks ∪ { faultTask }

end
parallelTask← Task { run faultTasks }
triggerTask← Task { check result of parallelTask } with delay
return triggerTask

Now that each trigger is represented as a task, we can chain them together to
create a single task that represents the scenario. Because a task can’t be modified
once created and any function applied to it returns a new task, we must use a recur-
sive depth-first approach. At the deepest level, we combine the tasks of the triggers
with the same dependencies and repeat this for each level until we reach the trig-
gers that can execute independently. We now have a single task per independent
trigger, which we combine into a single parallel task that represents the scenario.
Pseudocode for these operations can be found in algorithm 2.

In order to execute the scenario, we run the scenario task and await its result.
Meanwhile, the individual triggers execute and instruct the System Under Test Mod-
ule to inject their faults. The result of the scenario will then become available once
the last trigger has executed, and is considered to be successful if all triggers suc-
cessfully introduced their faults in the system under test.

5.4 System Under Test Module

The System Under Test Module is responsible for communicating with the system
under test and introducing the faults it receives from the scenario director. It does
so through two APIs that provide interaction with the database and orchestration
clients.

In addition to fault injection, this module also creates an abstract representation
of the system under test based on the information received from both clients. The
proof-of-concept implementation supports Cluster and Node instances, but makes
a distinction between Client Nodes and Application Nodes. The difference is that
the former are special nodes that are not part of the database clusters but only fa-
cilitate access to the database client software, effectively acting as a gateway. They
can therefore not be targeted by faults, but can instead be used to inject them in the
Application Nodes, as discussed in section 4.3.2.

5.4.1 Fault Injection

Faults can be injected at the orchestration-, database- or machine level, which is
handled by either the orchestration or database client. If the fault type indicates it

5.4. System Under Test Module 31

Algorithm 2: Create the Scenario Task
Data:

independentTriggers, a list of triggers that can execute independently
dependencyMap, a map from a trigger to those that depend on it
taskMap, a map from a trigger to its task

Result: A task representing a Scenario, scheduling and executing its triggers

chainedTasks← ∅
for trigger ∈ independentTriggers do

chainedTask← chain(trigger, dependencyMap, taskMap)
chainedTasks← chainedTasks ∪ { chainedTask }

end
parallelTask← Task { run chainedTasks }
scenarioTask← Task { check result of parallelTask }
return scenarioTask

Function chain(trigger, dependencyMap, taskMap)
triggerTask← taskMap[trigger]
if trigger ∈ dependencyMap then

dependencyTasks← ∅
dependencies← dependencyMap[trigger]
for dependency ∈ dependencies do

dependencyTask← chain(dependency, dependencyMap, taskMap)
dependencyTasks← dependencyTasks ∪ { dependencyTask }

end
parallelTask← Task { run dependencyTasks }
chainedTask← Task { check result of parallelTask }
return chainedTask

else
return triggerTask

end
end

32 Chapter 5. Implementation

LISTING 5.1: An example of a configuration file used for the database
client API implementation for CockroachDB

1 type = "CockroachDB"
2

3 client_config = {
4 certs_dir_node = "/cockroach/cockroach-certs/"
5 certs_dir_client = "/cockroach-certs/"
6 host_public = "cockroachdb-public"
7 }
8

9 command_config = {
10 database_command = "cockroach"
11

12 general_flags = {
13 certificate_dir = "--certs-dir"
14 host = "--host"
15 }
16

17 commands = {
18 decommission_node = {
19 command = ${command_config.database_command} "node decommission"
20 flags.wait.flag = "--wait"
21 flags.wait.value = "none"
22 }
23 quit_node = {
24 command = ${command_config.database_command} "quit"
25 flags.drain_wait.flag = "--drain-wait"
26 flags.drain_wait.value = "0s"
27 }
28 node_status = {
29 command = ${command_config.database_command} "node status"
30 flags.format.flag = "--format"
31 flags.format.value = "tsv"
32 }
33 }
34 }

is an orchestration- or machine-level fault, then the orchestration client handles it,
otherwise the database client takes over.

There are two ways to inject faults, by using either the client library or executing
commands directly on the machine. Client libraries provide an interface which al-
lows one to programmatically perform operations on the underlying system, how-
ever, such a library is not available for all systems. For example, many database
vendors only provide a command-line interface for their systems. Commands can
be used if this is the case, or when the library does not support the required opera-
tions. A schematic overview of the fault injection process can be found in Figure 5.1.

The fault commands are created based on the provided configuration and are ex-
ecuted on a specific node. Commands are defined as a command key-value pair and
a flags sub-object which specifies the flags and values that can be set for this com-
mand. Additionally, the configuration can contain a number of general flags. This
is useful when a flag is present in multiple commands but a different value is used
each time, which could be the case for a set of commands that must specify the host-
name of the target node. An example of a part of the configuration for CockroachDB
can be found in Listing 5.1.

Our proof-of-concept implementation evaluates CockroachDB, which does not
feature a client library. Instead, we must use the command-line interface to perform
any administrative database operations. This means that our database client API
implementation only creates the commands required to introduce faults, and that
the Orchestration Client is responsible for actually executing them.

5.4. System Under Test Module 33

scenario module SUT module

Framework Overview - Scenario Execution

SUT module
main

database
client API

orchestration
client API

system
under test

scenario
director

schedule
triggers

trigger faults

client action

client action
or command

database fault

fault or command

command

FIGURE 5.1: A schematic overview of the execution of a scenario. The
scenario director schedules the scenario’s triggers and the System Un-
der Test Module introduces them through the appropriate API once

triggered.

5.4.2 Orchestration Client API

The Orchestration Client API specifies the minimum functionality that is required
for communicating with the system under test. Each orchestration technique re-
quires an implementation of this API which must be able to retrieve the various
components of the system under test, inject faults and execute commands. Our
proof-of-concept framework provides an implementation for the official Kubernetes
Java Client and can simulate the high-level failure of a node at the orchestration- and
machine-level.10

Kubernetes Client Implementation

Our implementation for the official Kubernetes Java Client library focuses on three
aspects: retrieving resources and representing them as the instances we use through-
out our framework so they can be included in the abstract representation of the sys-
tem under test, executing commands on machines in our system under test, and
lastly, injecting the Client Node Failure and Node Process Failure faults.

Retrieving Resources Our framework represents the system under test in terms of
clusters, client nodes and application nodes, but Kubernetes does this differently. An
important task for our client implementation is retrieving the Kubernetes resources
and representing them as the instances we use, effectively providing a mapping be-
tween the two.

Kubernetes uses namespaces to refer to clusters. These can be virtual, meaning
multiple namespaces may be available on a single physical cluster. A namespace
may contain any number of nodes, which are the (virtual) machines that run pods.
A pod is a group of tightly coupled containers that share resources, modelling an
application instance. Kubernetes resources can be labelled to provide relevant meta-
data or identify them more easily.

The framework’s clusters are created by retrieving the namespaces by name,
which are defined in the configuration file beforehand. We create the framework’s
nodes by retrieving all pods in a namespace and use their labels to tell apart the
client and application nodes.

10Official Kubernetes Java Client library GitHub page: https://github.com/kubernetes-client/
java

https://github.com/kubernetes-client/java
https://github.com/kubernetes-client/java

34 Chapter 5. Implementation

Executing Commands We use Kubernetes’ Exec API to execute commands on the
pods represented by our framework’s nodes. This opens a websocket to the target
pod through which we can execute any command and read its response. The precise
nature of the commands is not relevant here; we simply return the raw response to
the calling function which is then responsible for interpreting whether this response
indicates the command was executed successfully.

Introducing Client Node Failures We can use the Kubernetes client library to sim-
ulate the high level failure of an application node. We do so by instructing it to
delete the Kubernetes pod represented by the targeted application node. This fault
can also target an entire cluster, in which case we introduce it in each of its applica-
tion nodes. Each pod will then attempt to perform a graceful shutdown within its
configured grace-period, but we can override this in order to make the shutdown
more abrupt. The result of this fault injection depends on the HTTP statuscode of
the request made by the library, which we consider to be successful if it does not
indicate that a client or server error occurred.

Introducing Node Process Failures We can simulate a fatal failure in the main
process of an application node by executing a command that kills that process. This
command uses the kill system call to send a signal to a process with a specific PID,
but it can be made as complex as necessary for the specific system under test by mod-
ifying the configuration file. Our current implementation targets the correct process
by reading the PID from a file that is created automatically when the container starts,
and then kills it by sending the KILL signal which will instantly terminate the tar-
geted process. This signal cannot be caught or ignored, but it is important to know
that this does not affect the init process with PID 1 meaning one should use the TERM
signal instead. We consider this fault to be injected successfully when the command
executes correctly.

5.4.3 Database Client API

The Database Client API specifies the minimum functionality that is required for
communicating with the deployed database management system. Each DBMS re-
quires an implementation of this API which must be able to retrieve information on
the system and inject faults, or provide the commands that the Orchestration Client
API can execute to achieve this. Our proof-of-concept framework provides an im-
plementation for CockroachDB and can simulate the high-level failure of its nodes.

CockroachDB Client Implementation

Our implementation for CockroachDB focuses on two aspects: retrieving informa-
tion about the state of the system and its nodes, and injecting the Database Node
Failure fault. As mentioned in subsection 5.4.1, CockroachDB does not feature a
client library so we create commands for the command-line interface instead of per-
forming these operations directly.

Retrieving System Status We use the node status command to retrieve the sta-
tus, ids and full host names of all application nodes in the system. We need this
information because most of the commands use the client node as a gateway and
require the ids or host names to indicate which application nodes should actually be
targeted by a command.

5.4. System Under Test Module 35

Introducing Database Node Failure We use the cockroach quit command to sim-
ulate the high level failure of an application node. According to the CockroachDB
documentation,11 nodes will try to finish in-flight requests and gossip their draining
state to the rest of its cluster. This is best effort, meaning these operations will time
out after the maximum time specified in the cluster settings. We can override this by
setting the drain_wait flag, which allows us to shut down nodes more abruptly. We
consider this fault to be injected successfully when the command executes correctly.

11CockroachDB documentation for node quit command: https://www.cockroachlabs.com/docs/
v20.2/cockroach-quit.html

https://www.cockroachlabs.com/docs/v20.2/cockroach-quit.html
https://www.cockroachlabs.com/docs/v20.2/cockroach-quit.html

37

Chapter 6

Experiments

The goal of this thesis is to show that we can use the scenario framework to inject
faults and measure their influence on performance. To test this, we use our frame-
work implementation to inject faults into the system under test while we use the
benchmarking framework to evaluate its performance. In this chapter, we first cover
the experimental setup and then discuss our experiments and their results.

6.1 Experimental Setup

Each experiment uses the same hardware, deployment strategy and benchmark con-
figuration. The only difference is the level at which the fault is injected. While a
number of aspects in the experimental setup are not realistic for evaluating a state-
of-the-art NewSQL database system – these are often deployed on incredibly pow-
erful machines with finely tuned configurations – it is important to remember that
the goal of this thesis is to provide a basis for an extensible framework and show
that this is a feasible approach for introducing faults and measuring their impact.

We first detail the hardware and deployment strategy used in our experiments,
and then cover the setup and configuration of the benchmark framework and database
management system.

6.1.1 Hardware

We run our CockroachDB nodes in the Google Kubernetes Environment (GKE) using
Google’s n1-highmem-4 machines, which have 4 vCPUs, 26GB RAM and a 50GB
hard disk. Each machine runs a single CockroachDB Pod that is provisioned with 3
vCPUs, 20GB RAM and its own persistent SSD storage with a capacity of 100GB. One
machine also runs the Pods required for the Kubernetes system, as well as a special
client Pod for interacting with the database system. The machines together form a
single cluster on which we deploy CockroachDB. The scenario and benchmarking
framework are not containerised but have a low resource footprint, so we run these
locally on a 2017 MacBook Pro.

6.1.2 Deployment

We deploy CockroachDB version 20.2.0 as a StatefulSet by following Cockroach’s
guide.1 A StatefulSet is similar to a regular Kubernetes Deployment, managing Pods
with identical container specs, but differs in that it creates Pods that can be identified
by name. This identifier remains the same, no matter how many times a specific Pod

1Guide for setting up a CockroachDB cluster as a Kubernetes Statefulset: https://www.
cockroachlabs.com/docs/v20.2/orchestrate-a-local-cluster-with-kubernetes.html#manual

https://www.cockroachlabs.com/docs/v20.2/orchestrate-a-local-cluster-with-kubernetes.html#manual
https://www.cockroachlabs.com/docs/v20.2/orchestrate-a-local-cluster-with-kubernetes.html#manual

38 Chapter 6. Experiments

is rescheduled. This makes it possible to provide storage for each Pod separately
which ensures that a replacement Pod will always be matched with the correct stor-
age volume.

In the context of running experiments, deploying the System Under Test as a
StatefulSet has both advantages and disadvantages. The greatest advantage is that
the System’s n nodes are always represented as Pods with names ending in a num-
ber from 0 to n− 1, so targeting Pod 0 will always affect the same instance. Some-
thing that is both a benefit and a drawback is provisioned storage. It ensures that
Pods can be restarted or rescheduled much faster, but also means that redistributing
data during recovery is hardly necessary which reduces the impact during an exper-
iment. A significant downside is the StatefulSet’s Pod restart policy, which can’t be
modified and is set to always restart or reschedule Pods. This means that deleting
a Pod, killing the Cockroach process or otherwise shutting down a Pod will cause
little downtime.

A number of minor modifications were made to the configuration before de-
ploying the system under test. The container’s hardware requests were modified to
match the n1-highmem-4 machines. Additionally, Pods were modified to share their
process namespace and each Container was instructed to write its Cockroach PID to
a file. Lastly, the Service meant to be used by clients of the database to load balance
connections was changed to expose itself outside the cluster as well, allowing us to
connect the benchmark framework more easily.

6.1.3 Benchmark Framework Configuration

The benchmark framework used in the experiments is a modified version of the
OLTP-Bench project.2 Multiple modifications were made by a Cockroach employee
in order to clean-up and modernise the codebase, as well as support CockroachDB
out of the box.3

Benchmarks test the performance of a system and should naturally abort when
errors occur because the results would not reflect the optimal conditions regardless.
However, the scenarios we execute purposely cause such failures so the benchmark
should continue. To ensure this, minor modifications were made to the benchmark
framework to tolerate these situations. Any SQLException thrown by OLTP-Bench’s
workers could be the result of a fault we introduced, so we check the exception’s
SQLState to determine whether the benchmark should continue. Return codes start-
ing with 0800 indicate a connection exception and those starting with 57P0 indicate
operator intervention, both of which should be tolerated when evaluating Cock-
roachDB. If neither match then we still throw a RunTimeException.

The benchmark that is performed in the experiments is the TPC-C benchmark,
which was covered in section 3.1.1. All transactions are run at the strictest serialisa-
tion level, being TRANSACTION_SERIALIZABLE. TPC-C scales the database by increas-
ing the number of warehouses, which we set to 10, producing a dataset of about
2 GiB. We run each benchmark with 10 concurrent terminals that submit a total of 10
transactions per second. These values were determined experimentally by setting
the number of warehouses and varying the number of terminals and transactions
until a sustainable level was reached. The 10 transactions per second result in 200–
250 queries per second, with about 55 % selects, 33 % updates, 10 % inserts and 2 %

2OLTPBench project GitHub page: https://github.com/oltpbenchmark/oltpbench
3OLTPBench project CockroachDB fork GitHub page: https://github.com/timveil-cockroach/

oltpbench

https://github.com/oltpbenchmark/oltpbench
https://github.com/timveil-cockroach/oltpbench
https://github.com/timveil-cockroach/oltpbench

6.2. Experiments 39

deletes. Because of the low number of requests per second, we also reduced the
batch size to 16.

The sustainable throughput of our system under test is relatively low, especially
considering its hardware. While we do not know the exact causes or the extend of
their impact, we can discuss a number of factors that could have had a negative in-
fluence. First and foremost, we deployed our system through Kubernetes, which is
known to introduce some overhead, and did not make any specific modifications
for performance benchmarking. Secondly, running the benchmarking framework
locally is very likely to have had a negative impact on the latency. Lastly, TPC-C re-
stricts the maximum throughput based on the number of warehouses used in order
to force more powerful systems to also handle an increase in data. Increasing the
number warehouses would also increase the duration of each experiment because
we must restore the system to its original state. This process becomes increasingly
more lengthy as the amount of data increases, which is why we chose to use only 10
warehouses.

The TPC-C benchmark configuration and benchmark parameters can be found
in Appendix C, in Listing C.1 and Listing C.2, respectively.

6.1.4 System Under Test Configuration

We run a CockroachDB cluster of 3 nodes, which, due to the Raft consensus protocol,
is the minimum required number of nodes. In addition to this, we deploy a client
node which functions as a gateway for executing a number of client commands. Data
is replicated threefold, so each node holds a complete copy of the database. This
system allows us to introduce our three faults: we can kill the Cockroach process,
quit the database node and delete nodes through the Kubernetes client.

We also modified two cluster settings to handle some issues we ran into during
testing. kv.snapshot_rebalance.max_rate and kv.snapshot_recovery.max_rate
set the rate limit to use for a few types of snapshots, which can have an impact on
the variance of the latency. We reduce both from 8.0 MiB s−1 to 1.0 MiB s−1 in order
to smooth out the snapshot propagation and increase the latency stability during our
experiments.

6.2 Experiments

The proof-of-concept implementation of the scenario framework supports three ba-
sic faults, each simulating the high level failure of a node. We perform three different
experiments, one for each type of fault we can introduce. We first cover the testing
procedure and then discuss the experiments and their results.

6.2.1 Testing Procedure

To ensure each experiment runs under the same conditions, we generate the data
once and then create a backup. At the start of each run, we restore the database from
the backup and then wait 5 minutes before starting the benchmark and scenario
framework. We include this wait time to allow the system to come to rest again, be-
cause the restore operation requires a lot of resources and introduces a high latency
for its entire duration.

40 Chapter 6. Experiments

During each run we perform a 5 minute warm-up and a 10 minute benchmark,
and we inject a fault after 5 minutes of benchmarking. We use the first half a bench-
mark to establish a baseline performance and the remainder to study the impact of
the injected fault and the system’s recovery process.

While faults can affect the consistency of the data, we do not validate the correct-
ness for three reasons. First, we run our benchmarks at the SERIALIZABLE isolation
level, meaning the database system will detect these violations itself and ask the
client to retry. Secondly, CockroachDB performs internal consistency checks and
uses the Raft protocol for achieving consensus and replicating data, further prevent-
ing these violations. Lastly, validation is benchmark-dependent and should be per-
formed by the benchmarking framework, which OLTPBench does not support for
TPC-C.

6.2.2 Analysing Results

We perform each experiment 6 times, cycling the nodes targeted by the fault. We do
this to prevent killing the same node over and over again, as this had some negative
effects during testing. We bin the raw results of each individual benchmark run into
non-overlapping 5-second windows and plot the 95th percentile latency for each.
We then combine the results of each run and plot the median value for the 50th, 95th

and 99th percentile latency over all runs. We do this to filter out any anomalies and
provide more accurate results.

The main metric for performance in TPC-C is the number of NewOrder transac-
tions that can be performed per minute. Additionally, it is required that the latency
remains below a given threshold. As we have experimentally established a sustain-
able workload, which we keep constant throughout the entire benchmark, we only
investigate the latency of the NewOrder transactions.

6.2.3 Node Process Failure

In this experiment we simulate the failure of a node by killing its main database
process. This fault can be classified as a software fault, but could also be seen as a
hardware or operator fault. We use the Kubernetes client to connect to a node and
execute a command that kills the main process.

The benchmark results of this experiment can be found in Figure 6.1. We can see
a latency peak at around 300 seconds in every run, which can only be the result of
the fault we introduce. Additionally, the 6th run shows a second peak 20 seconds
later and the 5th run has numerous smaller peaks as well.

The benchmark logs confirm that a number of connections were broken after
300 seconds, which is when we introduced the fault. The logs indicate I/O errors
occurred as the result of a broken pipe, and that the connection pool is unable to
add a new connection until the load balancer has realised the affected node is not
available, causing the client to abort a number of transactions. Additionally, the
database aborts a number of transactions due to invalid leases and write conflicts.
Lastly, the crashing of the node causes some ambiguous results, meaning the system
is unable to tell if a transaction was successfully committed or not.

No other errors or irregularities could be found in either the benchmark or database
logs, so no explanation can be given for the second peak in the 6th run or the smaller
peaks in the 5th run. We expect that the former is caused by the delay in acquiring
new connections and the latter by random network jitter.

6.2. Experiments 41

time (s)

la
te

nc
y

(m
s)

0

2500

5000

7500

10000

0 100 200 300 400 500

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

NewOrder 95th percentile latency

Node Process Failure

(A) 95th percentile latencies for NewOrder transactions for all runs

time (s)

la
te

nc
y

(m
s)

0

2000

4000

6000

8000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

p=0.5 p=0.95 p=0.99

NewOrder median values over all runs

Node Process Failure

(B) Median values for 50th, 95th and 99th latencies for NewOrder
transactions over all runs

FIGURE 6.1: Results of Node Process fault injection

42 Chapter 6. Experiments

6.2.4 Database Node Failure

In this experiment we simulate the failure of a node by shutting it down through the
database client. This fault is best classified as an operator fault, as we use the client
software in the exact same way as an operator would normally do when terminating
a node. We set the drain_wait flag to 1 second to quit the node as abruptly as
possible and thus disrupt the system as much as possible.

The benchmark results of this experiment can be found in Figure 6.2. We can
see a latency peak at around 300 seconds in every run except run number 6, and a
number of minor peaks between 7 and 8 minutes in run 1 and 3 for all transaction
types.

The peak at 5 minutes can only be caused by the fault we introduced, which is
confirmed by the benchmark logs. We find multiple connection errors and ’Opera-
tor Intervention’ notices at around 300 seconds, as well as a number of leaseholder
and transaction retry errors. Because the period for performing a graceful shutdown
is only 1 second, the node will initiate the transfer of its leases but is unable to fin-
ish in time, causing these errors. Transactions that were in process are then either
aborted or delayed until the node is back and consensus can be reached again. The
retry errors are then caused because a number of write intents did not propagate,
preventing the asynchronous writes that were issued before.

The exact reason why the peak is absent in run 6 is difficult to determine because
there are many factors that can influence this. It is possible that the node had no
active connections or was not involved in any distributed operations, in which case
the impact is reduced. Similarly, the impact could vary based on the type of trans-
actions that were being executed on this node. A transaction performing a large
number of distributed writes is more heavily impacted than one that involves local
reads. Additionally, if this node was not performing Raft operations and was not
the leaseholder of the ranges required by the other nodes then the system could be
more capable of operating without it.

The logs indicate that connection errors did in fact occur, but we believe that all
transactions involving this node were aborted by the benchmark client and retried
on a different node instead of being rejected by the database because the server was
able to notify the benchmark client in time. To test this theory, we perform 9 addi-
tional runs where we increase the drain_wait flag to 1 minute to give the system
more time to perform a graceful shutdown. We now expect that the nodes are al-
ways able to notify both each other and the benchmark client, so leases should be
transferred and traffic rerouted to avoid the affected node. While the node is not
able to transfer all its leases in time and latencies seem to fluctuate, we find no peaks
that appear to be caused by nodes shutting down, supporting our theory.

To further confirm the theory that nodes must communicate a shutdown to pre-
vent a latency peak, we want to repeat the first experiment where a node is shut
down instantly by killing its main process. We now expect to see a peak again be-
cause the nodes cannot communicate that they are performing a shutdown. We re-
peat the Node Process Fault experiment 9 additional times and observe a peak when
the fault is injected in each and every run. Including the previous experiment, we
see a peak in all of the 15 runs, providing strong support for this theory.

6.2.5 Client Node Failure

In this experiment we simulate the failure of a node by deleting its pod through
the orchestration client. This fault is best classified as an operator fault, as we use

6.2. Experiments 43

time (s)

la
te

nc
y

(m
s)

0

2500

5000

7500

10000

0 100 200 300 400 500

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

NewOrder 95th percentile latency

Database Node Failure

(A) 95th percentile latencies for NewOrder transactions for all runs

time (s)

la
te

nc
y

(m
s)

0

2000

4000

6000

8000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

p=0.5 p=0.95 p=0.99

NewOrder median values over all runs

Database Node Failure

(B) Median values for 50th, 95th and 99th latencies for NewOrder
transactions over all runs

FIGURE 6.2: Results of Database Node fault injection

44 Chapter 6. Experiments

the client software in the exact same way as an operator would normally do when
deleting a pod. It could however also be seen as the result of some other error,
forcing the deletion and rescheduling of the pod by Kubernetes. When performing
this operation, we set the grace period for the deletion of this pod to 1 second to
delete it as abruptly as possible and thus disrupt the system as much as possible.

The benchmark results of this experiment can be found in Figure 6.3. We can see
a latency peak at 300 seconds in runs 2 and 5 while all the others remain relatively
stable. Additionally, we see some irregularities around 400 seconds during run 3
and 5.

Even though fault injection only leads to latency peaks in run 2 and 5, bench-
mark logs indicate that all runs featured multiple broken connections and aborted
transactions. Upon inspection of the database logs, we find that the nodes initiate a
graceful shutdown upon receiving the termination signal from Kubernetes and try
to transfer their leases away. In the 2nd and 5th run this transfer was not started in
time causing unresponsive heartbeats and lease issues.

Similar to the previous experiment, we believe that the nodes being able to com-
municate their shutdown prevents the peaks. To confirm that this was due to the
1-second grace period, we can instruct the Kubernetes client to forcefully terminate
a Pod. The reason we first tried non-forceful termination is because the Kubernetes
documentation states that this may lead to severe problems and data inconsistency
due to how StatefulSets operate. This method might reschedule a pod before the
previous one has truly been removed and could cause two nodes to access the same
provisioned storage which could have unpredictable consequences for both the sys-
tem and its data.

We now expect that the nodes are unable to communicate that they are shutting
down which should lead to a latency peak in every run, similar to the first exper-
iment. We perform the experiment 3 times and inspect the benchmark results and
the logs from the benchmark framework and CockroachDB. To our surprise we find
no peaks even though the benchmark logs show connections were broken and trans-
actions were aborted due to new leases. Upon inspection of the database logs, we
again find that the nodes initiate a graceful shutdown. Interestingly, the nodes are
not shut down instantly as was expected but instead receive the TERM signal twice.
The database logs show the nodes acknowledge this and continue their graceful
shutdown, with their last entry being roughly 1.5 seconds after receiving the signal,
meaning that the nodes were actually active for longer than in the initial experiment.

To rule out that this is not due to our implementation or the Kubernetes Java
client, we repeat the experiment 3 more times using kubectl, the Kubernetes command-
line tool. The first 2 runs again do not produce a latency peak, although the time
between receiving the two TERM signals and the last log entry has now been reduced
to roughly 0.8 seconds. The third run however does produce a latency peak and the
logs do not show any entry after receiving the second signal, again supporting our
theory.

6.2.6 Results Discussion

To discuss the results of our experiments, we compare the baseline latency to the
measurements obtained once each fault was introduced. The baseline values are ob-
tained from the first 300 seconds of each individual run, the remaining 300 seconds
provide the values for each fault injection experiment. In addition to the latencies,
we also check the recovery duration. Others have defined this as the time it takes to
run a specific recovery procedure or how long the system is unavailable (Sangroya,

6.2. Experiments 45

time (s)

la
te

nc
y

(m
s)

0

5000

10000

15000

20000

0 100 200 300 400 500

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

NewOrder 95th percentile latency

Client Node Failure

(A) 95th percentile latencies for NewOrder transactions for all runs

time (s)

la
te

nc
y

(m
s)

0

500

1000

1500

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

p=0.5 p=0.95 p=0.99

NewOrder median values over all runs

Client Node Failure

(B) Median values for 50th, 95th and 99th latencies for NewOrder
transactions over all runs

FIGURE 6.3: Results of Client Node fault injection

46 Chapter 6. Experiments

TABLE 6.1: Latency values for the baseline scenario and all fault sce-
narios. The Client Node scenario is included twice, the second row
uses only the data from the runs where the fault actually manifested.

Scenario µ (ms) σ (ms)
Percentiles (ms)

Recovery (s)
q0.5 q0.95 q0.99

Baseline 728 189 717 1000 1303 –
Database Node 848 761 727 1238 5108 11.40
Node Process 906 866 742 1591 5939 12.87
Client Node 1001 1697 721 1193 12094 –
Client Node – Manifested 1571 2871 744 9486 14802 30.35

Serrano, and Bouchenak, 2012a; Vieira and H. Madeira, 2003b). In our case Cock-
roachDB remains available but we see very high latencies instead, so it makes sense
to look at the recovery duration as the period during which we see these latencies.
Because high latencies can also occur naturally, we define the starting time as the
moment where 5 subsequent transactions have a latency of two standard deviations
above the baseline mean. Similarly, we consider the system to have recovered when
all transactions are within two standard deviations from the baseline mean for 5 sec-
onds. The recovery duration then is the time between the first and last transaction
that fall outside the interval. These definitions are based on what we have seen in our
experiments, but would most likely be different when running other experiments.

For this analysis we only use the NewOrder transaction latencies because they
are the most important for the TPC-C benchmark and because there is a significant
difference in latencies between the various types of transactions. In contrast to the
individual experiments, we do not bin the data but use the raw measurements to
provide a more thorough evaluation. The TPC-C benchmark executes a NewOrder
transaction in 45% of the cases, leading to about 2700 NewOrder transactions per
run, half before and half after the fault injection. We used roughly 24000 data points
to establish the baseline latencies and 8000 for each type of fault. We split the data
obtained from the Client Node experiment into two groups, one containing all data
points and one that only includes the data points from the runs where a fault was
introduced successfully. The values can be found in Table 6.1 and a box plot compar-
ison is shown in Figure 6.4. A larger table overview including percentage increases
can be found in Table D.1 in Appendix D.

We find that our mean baseline latency is 728ms with a standard deviation of
189ms and a median latency of 717ms. The latencies are not quite normally dis-
tributed and a heavy right-side tail is present, which is expected for database sys-
tems and also illustrates why the 95th and 99th percentile latencies are important
metrics. This is also visible in Figure 6.4b, where the baseline scenario shows a rela-
tively large number of values above the top whisker, compared to values below the
bottom whisker.

As can be seen in Table 6.1 and Figure 6.4, the Client Node fault impacts the
system most severely, followed by the Node Process and Database Node faults. We
see an increase in average latency and a large change in the standard deviations,
even when compensating for the smaller sample sizes. We see a small shift in the
median transaction latency, which is expected because the median is less affected by
the outliers we introduced. The recovery duration is similar for the Database Node
and Node Process faults, but twice as long for the Client Node fault. This causes
the 95th percentile latency to increase significantly for the latter while it increases

6.2. Experiments 47

baseline database
node

node
process

client
node

200

400

600

800

1000

1200

La
te

nc
y

(m
s)

Comparison between scenarios

(A) Box plot comparison excluding outliers to
provide a view of the interquartile range

baseline database
node

node
process

client
node

0

2500

5000

7500

10000

12500

15000

17500

20000

La
te

nc
y

(m
s)

Comparison between scenarios (including outliers)

(B) Box plot comparison including outliers to
show their severity

FIGURE 6.4: Box plot comparison of the NewOrder transaction latency
for the baseline and all experiments

much less for the other two. The 99th percentile latency then shows that not only the
duration was greater for the Client Node fault, the latency impact was much greater
as well.

The impact of the Database Node and Node Process faults are quite similar, in-
creasing the 99th percentile latencies by 292 % and 356 % with a recovery time of 11.4
and 12.9 seconds, respectively. The Client Node fault can have a much larger impact,
increasing the 99th percentile latency by 1036 % with a recovery time of 30.3 seconds,
if it manifests. The impact difference is due to the StatefulSet deployment and how
Kubernetes reacts to these failures. In the first two cases Kubernetes detects that the
container process is no longer running and restarts the affected pod, while in the case
of the Client Node fault Kubernetes completely deletes the pod and reschedules it,
which is a more intensive operation. Whether a fault actually causes an increase in
latency depends on whether or not the affected instance can inform the other nodes
and any connected clients before it terminates, meaning more abrupt shutdowns
have a greater chance of destabilising the system.

49

Chapter 7

Discussion

In this chapter we reflect on the research performed in this master’s thesis, how
it can be applied and what can be done to improve it. We first discuss how the
scenario framework can help to better understand various aspects of distributed
database systems and then conclude this chapter by covering various avenues for
future work.

7.1 Discussion

Traditional database management systems have been around for a long time. We
have since grown accustomed to using these systems for numerous purposes and
learned about their strengths and weaknesses through prolonged usage and thor-
ough testing. In contrast, distributed database management systems are a recent
appearance so it makes sense that we do not have the same mastery over this field.
When we also take into account that these systems are more complex and operate
at a much larger scale, then it is only logical that much remains to be learned about
this technology.

Despite its relatively recent emergence, many advancements have been made
to better understand performance-related aspects of distributed database systems
through benchmarking. Yet dependability aspects are often overlooked and are, as a
result of this, much less understood. Only a small number of benchmarks evaluate
this, as discussed in subsection 3.1.2, even though researchers have been advocating
the inclusion of dependability aspects (Almeida et al., 2010; Vieira and H. Madeira,
2009).

The framework designed in this thesis can play an important role in becoming
more familiar with the intricacies of distributed database systems. We can study how
a system behaves during various failures by introducing fault scenarios, and use
this knowledge to better mitigate the impact of a failure or even prevent it entirely.
The experiments performed in section 6.2 introduce a simple fault and focus on the
impact on transaction latency, but it is very much possible to inspect other aspects
as well. In addition to measuring the impact of faults, the framework could also
be used to evaluate different system compositions or test specific settings before
applying them to a production environment. This would require some modifications
to the system, but thanks to its extensible design this should take relatively little
effort.

7.2 Future Work

As mentioned a this thesis, our goal was to design an extensible framework and
implement a proof-of-concept version. Some of the features discussed in chapter 4

50 Chapter 7. Discussion

are therefore not included in the PoC and remain as future work. In the following
subsections we discuss those features and other possibilites.

7.2.1 More Extensive Scenarios

The proof-of-concept framework is limited to introducing relatively simple faults,
which can be used for scenarios that simulate high-level node failures. A future
improvement would be supporting more types of faults, triggers and instances.

Faults come in many forms and can be introduced in various levels of a system.
It would be useful to include the injection of hardware and network faults in fu-
ture versions of the scenario framework. This would allow us to test more types of
components and provide a better understanding of the impact of these real-world
situations. This would also require support for additional types of instances such as
the CPU or network layers.

Including more types of triggers would also greatly improve the flexibility of
scenarios. Conditional triggers could be used to introduce faults only when some
condition is true, for example introducing a specific failure if a node’s CPU usage
reaches a certain threshold. Additionally, triggers could be recurring, introducing
the same fault every 2 minutes to simulate some intermittent failure.

In addition to scenarios that introduce faults, we could also include options to
test the scalability and elasticity of a system by increasing or decreasing the num-
ber of nodes. Another option would be running some special workload next to
the database benchmark, for example making DDL changes or performing database
maintenance to evaluate their impact.

7.2.2 Unified Controls

The scenario framework was designed to be able to communicate with both the sys-
tem under test and benchmarking framework, but our proof-of-concept is only ca-
pable of limited interaction with the system under test through the database and
orchestration clients. Including more features and support for the benchmarking
framework would make it easier to control the various systems. Integrating con-
trols for both the system under test and benchmarking framework would then also
reduce the effort it takes to set up both systems and run tests.

7.2.3 Analysis Experiment Results

Currently, experiments must be performed by hand and data analysis is a manual
effort as well, unless the benchmark framework supports this to some degree. One
additional feature that would greatly improve the usability of the scenario frame-
work is automatically aggregating the results from experiments. This would include
collecting the results from the benchmarking framework and producing plots which
indicate when specific faults were injected. Additionally, this module could be used
to automatically calculate how the performance was influenced by each of the faults,
further streamlining the testing process.

51

Chapter 8

Conclusion

In this chapter we look back at the research questions posed in the introduction and
discuss how the research performed in this thesis has provided answers to these
questions. Finally, we provide a short summary, thereby concluding this thesis.

8.1 Research Questions

In section 1.2 we introduced our main research question and the four subquestions
that followed from it:

RQ 1 How do faults affect the performance of distributed database systems?

RQ 1.1 How can we agnostically evaluate the impact of faults on various distributed
database systems?

RQ 1.2 How can we reliably introduce and reproduce various types of faults?

RQ 1.3 How can we non-intrusively measure the impact of faults?

RQ 1.4 What is the performance impact of a high-level failure in a distributed database
deployment?

To answer our main research question, we designed a framework that is capa-
ble of introducing faults in a distributed database management system while it is
running a benchmark in order to measure the impact that faults have on the perfor-
mance of the system under test. The subquestions were vital to properly design and
build such a framework. Answering RQ 1.1 helps us to find a solution that can be
applied to any system, RQ 1.2 ensures experiments are consistent and repeatable and
RQ 1.3 aids us to produce valid and trustworthy results. Finally, RQ 1.4 rephrases
the purposely broad main research question to find an answer for a specific use case.

To find a solution to research question 1.1, we looked at various existing frame-
works. We found that those we discussed in subsection 3.1.2 are generally limited to
specific types of faults, databases and benchmarks. This makes it difficult to intro-
duce the same fault in a wide array of systems, even tough sometimes equivalence
between faults can be established. We identified the functionality we required and
designed a modular framework that can be used in combination with any database,
orchestration service and benchmarking framework. APIs are used for communica-
tion, and supporting a new system requires only an implementation of the respective
API.

For research question 1.2, we turned to the available literature. We have cov-
ered a number of benchmarking frameworks that include dependability aspects in
subsection 3.1.2, and further looked into fault injection in section 3.2. We found that
there are multiple types of faults and some can be used to simulate another. To intro-
duce these faults reliably, it is important to always be able target a specific instance at

52 Chapter 8. Conclusion

a specific time. We have done this by defining the faults and their targets beforehand
through reusable configuration files and providing an abstraction of the system un-
der test to target its instances. The Orchestration Client API implementation is then
responsible for providing the correct mapping, which Kubernetes, the technique our
proof-of-concept framework uses, has multiple methods for.

Research question 1.3 was also answered through literature. The frameworks
discussed in subsection 3.1.2 essentially cover this question already. Most of these
benchmarking suites evaluate the dependability aspects of the system under test
by first establishing a baseline performance and then introducing a fault while the
benchmark continues. In order for a benchmarking framework to be relevant and
reliable, it must be able to measure the performance of a system without influenc-
ing it noticeably. To measure the impact of a fault, it is only necessary to compare
the various metrics before and after the fault was introduced. This means that any
benchmarking suite that is deemed reliable can be used for our purposes, as long as
it can (be modified to) handle systems experiencing faults.

The main research question was stated broadly because the goal was to find an
answer to the problem in general. The framework we designed is the answer to this
question, although evaluating this solution for all possible systems is impossible.
Research question 1.4 was formulated in order to learn how a specific deployment
was affected instead. As covered in chapter 6, we used our proof-of-concept im-
plementation to cause high-level node failures on three different levels and study
the impact on the transaction latency of a CockroachDB cluster deployed through
Kubernetes. We found that the increase in latency and recovery duration depends
heavily on the type of fault and how abruptly it would shut down the targeted node.

8.2 Conclusion

In this Master’s Thesis we have worked towards answering the following question:
How do faults affect the performance of distributed database systems? Directly re-
lated to this were our subquestions, which concern system-agnostic evaluation, reli-
able fault injection and non-intrusive impact measurement. By researching literature
and studying existing systems we were able to find answers to the subquestions,
which in turn enabled us to propose a solution for our main research question.

As a solution we have designed a framework for injecting faults into a test sys-
tem and implemented a proof-of-concept version. The goal of this design was to
create a framework that was highly reusable so it could be applied to many different
test systems, extensible so it would take little effort to support new types of faults
or different systems, and capable of reliably reproducing experiments. To facilitate
this, the framework is modular and interacts with database management systems,
orchestration clients and benchmarking frameworks through APIs. Each of these
requires their own API implementation while configuration files instruct the system
which components to use and what faults to introduce in the system under test.

The framework can introduce faults through the database client and orchestra-
tion client, or it can access the system under test directly and execute commands
there. Configuration files specify the faults and their conditions for injection, and
the system processes these to produce a scenario. These can be simple, e.g. injecting
a single fault after 5 minutes, or very complex, combining multiple faults and condi-
tions to more closely simulate real-world scenarios. All components of a scenario are
designed to be straightforward to extend, making it easy to create new components
and define different scenarios.

8.2. Conclusion 53

The scenarios that our proof-of-concept implementation is capable of running
are limited to three types of faults, each representing the high-level failure of a node.
The basic implementation supports the DBMS CockroachDB and orchestration tech-
nique Kubernetes, and is capable of killing a database node through either the Cock-
roachDB client, Kubernetes client or directly terminating its main process.

We tested our proof-of-concept framework by introducing faults in a 3-node
CockroachDB cluster deployed on the Google Kubernetes Engine. We ran the TPC-C
benchmark using the OLTPBench benchmarking framework to measure the perfor-
mance of the system before, during and after introducing the faults. The impact of
the faults was determined by comparing the results before and after injection. We
learned that high level failures introduced through the database client and killing
the main database process have a similar impact, but a high level failure introduced
through the Kubernetes client can have a much larger impact if it manifests. The
first two increase the 99th percentile latencies by roughly 300–350 % and take a little
over 10 seconds to recover. The latter increases the 99th percentile latency by a little
over 1000 % and recovers in roughly 30 seconds. This difference is explained by Ku-
bernetes’ recovery process, restarting the pod in the first two cases and completely
rescheduling it in the third case. We also conclude that whether a fault has any im-
pact at all on the CockroachDB cluster performance is highly dependent on whether
or not the nodes and connected clients can be informed before terminating, meaning
more abrupt shutdowns have a greater chance of destabilising the system.

For future work, we see three areas for improvement. The scenarios our proof-
of-concept framework can run are limited, so expanding the types of faults and tar-
getable instances would make the system more useful. Secondly, our implemen-
tation is only capable of limited interaction with the other systems, so integrating
more controls would reduce the manual effort required for testing by coordinating
and automating various processes. Finally, including a module for analysing the re-
sults of an experiment would greatly reduce the manual effort and make it easier to
compare multiple experiments.

55

Appendix A

Scenario Module Class Overview

This appendix provides an overview of the various objects, classes and patterns used
in the Scenario Module, as well as the relations between them. A graphical repre-
sentation can be found in Figure A.1 and A.2.

A.1 Companion Objects

A companion object is an object that shares the name of a class and is defined in
the same file. A number of classes in this module have companion objects, depicted
with dashed borders in Figure A.1 and A.2. We use these objects for two reasons: to
provide a number of static methods and to instantiate the classes for which they are
companions.

The scenario director’s companion object ensures only one scenario director in-
stance exists. A companion object and its class can access each other’s private prop-
erties and functions, so we can make the constructor private to force instantiation
through the companion object. This way we can instantiate the scenario director
once and return the existing instance when it has already been created.

The companion objects of the Trigger, InstanceType and FaultType classes use
the Enumeratum library to retrieve their subtypes by name.1 This library provides a
number of features that are missing in Scala’s default implementation, which allows
us to dynamically find the types as defined in the configuration files. This is then
used by the builders to correctly construct the specified types.

A.2 Builder Pattern

The builder pattern allows us to separate the construction of a complex class from
its representation. Builders feature a number of methods for adding properties to
an instance, and a build method for instantiating the class once the required proper-
ties have been supplied. We use builders to instantiate the scenario and its phases,
triggers and faults.

To create a scenario and all of its components, the scenario director calls the
fromConfig method in the scenario companion object and supplies the scenario con-
figuration. The scenario companion object then extracts the relevant properties and
calls the fromConfig function of the companion objects of the phase or trigger com-
ponents, depending on how the scenario is defined. Both again extract the relevant
configuration and then call the fromConfig function of the other components, and
so forth. Finally, the faults are included in the triggers, and the triggers are included
in the scenario. As can be seen in Figure A.1, phases are not part of the scenario

1Enumeratum library GitHub page: https://github.com/lloydmeta/enumeratum

https://github.com/lloydmeta/enumeratum

56 Appendix A. Scenario Module Class Overview

ScenarioDirectorScenario

TriggerFault

TriggerBuilder ScenarioBuilder

PhaseBuilder

FaultBuilder

builds builds builds

fromConfig

withProps

singleton class

companion object

case class

abstract class

Scenario

TriggerFault

PhasePhase

fromConfig

fromConfig

fromConfig

withPropswithProps

withPropsbuilds

fromPhase fromConfig

11..* 11..*

1

1

FIGURE A.1: An overview of the component builders and how they
are linked to create a scenario

instance but are instead used to generate the faults and create the triggers from the
configuration.

A.3 Inheritance

Multiple types of triggers and faults exist, each with their own behaviour thanks to
(multiple) inheritance and type-matching. In the current implementation, a trigger
is either a TimedTrigger or a DependentTimedTrigger. The former uses the Timed
trait to specify a duration after which it should execute. The latter uses both the
Timed and Dependent trait and will execute a specific time after the trigger on which
it depends has executed. Defining new traits and combining them with existing ones
is a straightforward and low-effort method for creating new types of triggers in the
future.

Faults use an InstanceType and a FaultType to specify the type of instance to tar-
get and what kind of fault to introduce. The former is either a Node or Cluster, but
the latter is more complex. At the highest level, three types of fault exist: NodeFault,
DatabaseFault and ClientFault. These indicate the level at which the fault should
be injected. The actual instances that are used are the NodeProcessFailure, DatabaseNodeFailure
and ClientNodeFailure, each of which uses NodeFailure trait to indicate that they
will cause a high-level failure in a node.

A.3. Inheritance 57

InstanceType

Node

Cluster

ClientFaultDatabaseFault

FaultType

NodeFault

ClientNodeFailureDatabaseNodeFailureNodeProcessFailure

NodeFailure

ScenarioDirector

Scenario

Trigger

Fault

1

1

1

1..*

1

1..*

1 1

1

1

TimedTrigger

DependentTimedTrigger

Timed

Dependent

singleton

has companion object

class

trait

abstract

object

FIGURE A.2: An overview of the scenario component classes and
their relations

59

Appendix B

Scenario Configuration Examples

In this appendix we show a number of examples of configuration files that define
a scenario. Listing B.1 contains the configuration of a scenario defined with phases
and Listing B.2 contains the configuration of a scenario defined with triggers. Both
introduce the same fault, but the former is simpler to configure and does not always
target the same instance, in contrast to the second scenario configuration.

LISTING B.1: A scenario defined with phases
1 name = "Single Node Failure - Node Process" # The name of this scenario
2

3 # The phases of this scenario
4 phases = [${phase_1}] # Reference to the phase below
5

6 phase_1 = {
7 fault_type = "NodeProcessFailure" # The kind of failure to introduce
8 instance_type = "Node" # The kind of instance to introduce faults in
9 num_instances = 1 # The number of instances to affect

10 spread = 1 # The number of clusters to spread faults over
11 trigger = ${trigger_1} # Reference to the trigger below
12 }
13

14 trigger_1 = {
15 type = "TimedTrigger" # The kind of requirement to execute
16 # The additional configuration for this trigger, depends on type
17 conf = {
18 time = "10 minutes" # Time until trigger executes
19 }
20 }

A more complex scenario can be found in Listing B.3. Here we simulate a sce-
nario where the failure of a single node increases the pressure on the rest of the
system, which then causes the other nodes to fail as well, effectively cascading the
failure throughout the system. The DependentTimedTrigger used in this scenario
injects a fault some time after another trigger has injected its faults. In this scenario
we first affect a single node, followed by a second node two minutes after the first
trigger executes, and two more a minute after the second trigger has executed.

60 Appendix B. Scenario Configuration Examples

LISTING B.2: A scenario defined with triggers
1 name = "Single Node Failure - Node Process" # The name of this scenario
2

3 # The triggers of this scenario
4 triggers = [${trigger_1}] # Reference to the trigger below
5

6 trigger_1 = {
7 id = "6e5a88ad-9acf-476f-87de-bdea756c1000" # UUID of this trigger
8 type = "TimedTrigger" # The kind of requirement to execute
9 # The additional configuration for this trigger, depends on type

10 conf {
11 time = "10 minutes" # Time until trigger executes
12 }
13 # The faults that are introduced when this trigger executes
14 faults = [${fault_1}] # Reference to the fault below
15 }
16

17 fault_1 = {
18 fault_type = "ClientNodeFailure" # The kind of failure to introduce
19 instance_type = "Node" # The kind of instance to introduce faults in
20 instance_id = "default_cockroachdb-0" # Unique identifier of the instance
21 }

Appendix B. Scenario Configuration Examples 61

LISTING B.3: A complex scenario that simulates a failure with a cas-
cading effect

1 name = "Cascading Node Failure" # The name of this scenario
2

3 # The triggers of this scenario
4 triggers = [
5 ${trigger_1}
6 ${trigger_2}
7 ${trigger_3}
8]
9

10 # The individual triggers of this scenario
11 trigger_1 = {
12 id = "6e5a88ad-9acf-476f-87de-bdea756c1000"
13 type = "TimedTrigger"
14 conf.time = "10 minutes"
15 faults = [${fault_1}]
16 }
17 trigger_2 = {
18 id = "6e5a88ad-9acf-476f-87de-bdea756c1001"
19 type = "DependentTimedTrigger"
20 conf {
21 time = "2 minutes"
22 # UUID of the trigger that needs to be executed before this can execute
23 depends_on = "6e5a88ad-9acf-476f-87de-bdea756c1000"
24 }
25 faults = [${fault_2}]
26 }
27 trigger_3 = {
28 id = "6e5a88ad-9acf-476f-87de-bdea756c1002"
29 type = "DependentTimedTrigger"
30 conf {
31 time = "1 minute"
32 # UUID of the trigger that needs to be executed before this can execute
33 depends_on = "6e5a88ad-9acf-476f-87de-bdea756c1001"
34 }
35 faults = [
36 ${fault_3}
37 ${fault_4}
38]
39 }
40

41 # A base fault to reference and reduce copy-pasting
42 fault_base = {
43 fault_type = "ClientNodeFailure"
44 instance_type = "Node"
45 }
46

47 # The individual faults of this scenario
48 fault_1 = ${fault_base}
49 fault_1.instance_id = "default_cockroachdb-0"
50 fault_2 = ${fault_base}
51 fault_2.instance_id = "default_cockroachdb-1"
52 fault_3 = ${fault_base}
53 fault_3.instance_id = "default_cockroachdb-2"
54 fault_4 = ${fault_base}
55 fault_4.instance_id = "default_cockroachdb-3"

63

Appendix C

Benchmark Configuration

Here we include a number of configuration files related to executing the TPC-C
benchmark on our CockroachDB deployment. Listing C.1 shows the configuration
used to define the TPC-C workload and Listing C.2 contains all the parameters that
were (automatically) set when executing the TPC-C benchmark.

LISTING C.1: Configuration for the TPC-C benchmark
1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <configuration>
3 <isolation>TRANSACTION_SERIALIZABLE</isolation>
4 <batchsize>16</batchsize>
5 <poolsize>10</poolsize>
6 <scalefactor>10</scalefactor>
7 <terminals>10</terminals>
8 <works>
9 <work>

10 <warmup>300</warmup>
11 <time>600</time>
12 <rate>10</rate>
13 <weights>45</weights>
14 <weights>43</weights>
15 <weights>4</weights>
16 <weights>4</weights>
17 <weights>4</weights>
18 </work>
19 </works>
20 <transactiontypes>
21 <transactiontype><name>NewOrder</name></transactiontype>
22 <transactiontype><name>Payment</name></transactiontype>
23 <transactiontype><name>OrderStatus</name></transactiontype>
24 <transactiontype><name>Delivery</name></transactiontype>
25 <transactiontype><name>StockLevel</name></transactiontype>
26 </transactiontypes>
27 </configuration>

64 Appendix C. Benchmark Configuration

LISTING C.2: Parameters set when executing the TPC-C benchmark
on CockroachDB

1 {
2 "disable_partially_distributed_plans": "off",
3 "search_path": "$user,public",
4 "datestyle": "ISO, MDY",
5 "experimental_enable_temp_tables": "off",
6 "intervalstyle": "postgres",
7 "default_transaction_read_only": "off",
8 "require_explicit_primary_keys": "off",
9 "server_version": "9.5.0",

10 "enable_implicit_select_for_update": "on",
11 "application_name": "tpcc",
12 "bytea_output": "hex",
13 "optimizer_use_multicol_stats": "on",
14 "lock_timeout": "0",
15 "transaction_isolation": "serializable",
16 "max_identifier_length": "128",
17 "force_savepoint_restart": "off",
18 "default_tablespace": "",
19 "enable_zigzag_join": "on",
20 "default_int_size": "8",
21 "vectorize": "on",
22 "idle_in_transaction_session_timeout": "0",
23 "server_version_num": "90500",
24 "tracing": "off",
25 "enable_interleaved_joins": "off",
26 "locality": "",
27 "serial_normalization": "rowid",
28 "transaction_priority": "normal",
29 "synchronize_seqscans": "on",
30 "experimental_enable_hash_sharded_indexes": "off",
31 "sql_safe_updates": "off",
32 "crdb_version": "CockroachDB CCL v20.2.0 (x86_64-unknown-linux-gnu, built 2020/11/09

16:01:45, go1.13.14)",
33 "disallow_full_table_scans": "off",
34 "extra_float_digits": "3",
35 "vectorize_row_count_threshold": "1000",
36 "experimental_distsql_planning": "off",
37 "max_index_keys": "32",
38 "idle_in_session_timeout": "0",
39 "transaction_status": "NoTxn",
40 "timezone": "Europe/Amsterdam",
41 "enable_seqscan": "on",
42 "default_transaction_isolation": "serializable",
43 "session_user": "roach",
44 "distsql": "auto",
45 "reorder_joins_limit": "8",
46 "server_encoding": "UTF8",
47 "database": "oltpbench_tpcc",
48 "optimizer": "on",
49 "optimizer_use_histograms": "on",
50 "prefer_lookup_joins_for_fks": "off",
51 "synchronous_commit": "on",
52 "transaction_read_only": "off",
53 "enable_insert_fast_path": "on",
54 "row_security": "off",
55 "client_encoding": "UTF8",
56 "session_id": "165f9d44fd06749c0000000000000002",
57 "client_min_messages": "notice",
58 "default_transaction_priority": "normal",
59 "foreign_key_cascades_limit": "10000",
60 "integer_datetimes": "on",
61 "results_buffer_size": "16384",
62 "standard_conforming_strings": "on",
63 "enable_experimental_alter_column_type_general": "off",
64 "statement_timeout": "0"
65 }

65

Appendix D

Experiments Results Table Full

Due to limited space, the percentage wise latency changes were omitted when dis-
playing the results of the experiments in Table 6.1. To still provide this data, we have
included it here in the appendix in Table D.1.

66 Appendix D. Experiments Results Table Full

T
A

B
L

E
D

.1:
Latency

values
and

percentage
increases

for
the

baseline
scenario

and
all

fault
scenarios.

The
C

lient
N

ode
scenario

is
included

tw
ice,the

second
row

uses
only

the
data

from
the

runs
w

here
the

faultactually
m

anifested.

Scenario
µ

(m
s)

σ
(m

s)
Percentiles

(m
s)

R
ecovery

(s)
q

0.5
q

0.95
q

0.99

Baseline
728

189
717

1000
1303

–
D

atabase
N

ode
848

(16.5%
)

761
(302.2%

)
727

(1.4%
)

1238
(23.8%

)
5108

(292.1%
)

11.40
N

ode
Process

906
(24.5%

)
866

(357.5%
)

742
(3.5%

)
1591

(59.1%
)

5939
(355.9%

)
12.87

C
lientN

ode
1001

(37.5%
)

1697
(797.2%

)
721

(0.5%
)

1193
(19.3%

)
12094

(828.4%
)

–
C

lientN
ode

-M
anifested

1571
(115.8%

)
2871

(1417.7%
)

744
(3.8%

)
9486

(848.4%
)

14802
(1036.3%

)
30.35

67

Bibliography

Almeida, Raquel et al. (2010). “How to Advance TPC Benchmarks with Dependabil-
ity Aspects”. In: Performance Evaluation, Measurement and Characterization of Com-
plex Systems - Second TPC Technology Conference, TPCTC 2010, Singapore, Septem-
ber 13-17, 2010. Revised Selected Papers. Ed. by Raghunath Othayoth Nambiar and
Meikel Poess. Vol. 6417. Lecture Notes in Computer Science. Springer, pp. 57–72.

Arlat, Jean, Martine Aguera, et al. (1990). “Fault injection for dependability valida-
tion: A methodology and some applications”. In: IEEE Transactions on software
engineering 16.2, pp. 166–182. DOI: 10.1109/32.44380.

Arlat, Jean, Alain Costes, et al. (1993). “Fault injection and dependability evaluation
of fault-tolerant systems”. In: IEEE Transactions on computers 42.8, pp. 913–923.
DOI: 10.1109/12.238482.

Chrysafis, Christos et al. (2019). “FoundationDB Record Layer: A Multi-Tenant Struc-
tured Datastore”. In: Proceedings of the 2019 International Conference on Manage-
ment of Data, pp. 1787–1802. DOI: 10.1145/3299869.3314039.

Cooper, Brian Frank et al. (2010). “Benchmarking Cloud Serving Systems with YCSB”.
In: Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC ’10. New
York, NY, USA: Association for Computing Machinery, pp. 143–154. ISBN: 9781450300360.
DOI: 10.1145/1807128.1807152.

Costa, Diamantino and Henrique Madeira (1999). “Experimental assessment of COTS
DBMS robustness under transient faults”. In: Proceedings 1999 Pacific Rim Inter-
national Symposium on Dependable Computing. IEEE, pp. 201–208. DOI: 10.1109/
PRDC.1999.816230.

Costa, Diamantino, Tiago Rilho, and Henrique Madeira (2000). “Joint evaluation of
performance and robustness of a COTS DBMS through fault-injection”. In: Pro-
ceeding International Conference on Dependable Systems and Networks. DSN 2000,
pp. 251–260. DOI: 10.1109/ICDSN.2000.857547.

Difallah, Djellel Eddine et al. (2013). “OLTP-Bench: An Extensible Testbed for Bench-
marking Relational Databases”. In: Proceedings of the VLDB Endowment 7.4, pp. 277–
288. DOI: 10.14778/2732240.2732246.

Durães, João and Henrique Madeira (2002). “Emulation of Software Faults by Ed-
ucated Mutations at Machine-Code Level”. In: 13th International Symposium on
Software Reliability Engineering (ISSRE 2002), 12-15 November 2002, Annapolis, MD,
USA. IEEE Computer Society, pp. 329–340. DOI: 10.1109/ISSRE.2002.1173283.

— (2004). “Generic faultloads based on software faults for dependability bench-
marking”. In: International Conference on Dependable Systems and Networks, 2004,
pp. 285–294. DOI: 10.1109/DSN.2004.1311898.

— (2006). “Emulation of Software Faults: A Field Data Study and a Practical Ap-
proach”. In: IEEE Transactions on Software Engineering 32.11, pp. 849–867. DOI:
10.1109/TSE.2006.113.

Freels, Matt (2018). FaunaDB: An architectural overview. Tech. rep. Fauna. URL: https:
//fauna-assets.s3.amazonaws.com/public/FaunaDB-Technical-Whitepaper.
pdf.

https://doi.org/10.1109/32.44380
https://doi.org/10.1109/12.238482
https://doi.org/10.1145/3299869.3314039
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1109/PRDC.1999.816230
https://doi.org/10.1109/PRDC.1999.816230
https://doi.org/10.1109/ICDSN.2000.857547
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1109/ISSRE.2002.1173283
https://doi.org/10.1109/DSN.2004.1311898
https://doi.org/10.1109/TSE.2006.113
https://fauna-assets.s3.amazonaws.com/public/FaunaDB-Technical-Whitepaper.pdf
https://fauna-assets.s3.amazonaws.com/public/FaunaDB-Technical-Whitepaper.pdf
https://fauna-assets.s3.amazonaws.com/public/FaunaDB-Technical-Whitepaper.pdf

68 Bibliography

Fujita, Hajime et al. (2012). “DS-Bench Toolset: Tools for dependability benchmark-
ing with simulation and assurance”. In: IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN 2012, Boston, MA, USA, June 25-28, 2012. Ed.
by Robert S. Swarz, Philip Koopman, and Michel Cukier. IEEE Computer Society,
pp. 1–8. DOI: 10.1109/DSN.2012.6263915.

Ghazal, Ahmad, Todor Ivanov, et al. (2017). “BigBench V2: The New and Improved
BigBench”. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017,
San Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, pp. 1225–1236.
DOI: https://doi.org/10.1109/ICDE.2017.167.

Ghazal, Ahmad, Tilmann Rabl, et al. (2013). “BigBench: Towards an Industry Stan-
dard Benchmark for Big Data Analytics”. In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’13. New York,
New York, USA: Association for Computing Machinery, pp. 1197–1208. ISBN:
9781450320375. DOI: 10.1145/2463676.2463712.

Gray, Jim (1993). The Benchmark Handbook for Database and Transaction Systems (2nd
Edition). 2nd. Morgan Kaufmann. ISBN: 1-55860-292-5.

Huang, Dongxu et al. (2020). “TiDB: a Raft-based HTAP database”. In: Proceedings of
the VLDB Endowment 13.12, pp. 3072–3084. DOI: 10.14778/3415478.3415535.

Le, Michael and Yuval Tamir (2014). “Fault injection in virtualized systems—challenges
and applications”. In: IEEE Transactions on Dependable and Secure Computing 12.3,
pp. 284–297. DOI: 10.1109/TDSC.2014.2334300.

Lu, Ruirui et al. (2014). “Stream Bench: Towards Benchmarking Modern Distributed
Stream Computing Frameworks”. In: 2014 IEEE/ACM 7th International Conference
on Utility and Cloud Computing, pp. 69–78. DOI: 10.1109/UCC.2014.15.

Natella, Roberto, Domenico Cotroneo, and Henrique S. Madeira (2016). “Assessing
Dependability with Software Fault Injection: A Survey”. In: ACM Comput. Surv.
48.3. ISSN: 0360-0300.

Powell, David (2012). Delta-4: a generic architecture for dependable distributed computing.
Vol. 1. Springer Science & Business Media. DOI: 10.1007/978-3-642-84696-0.

Sangroya, Amit, Damián Serrano, and Sara Bouchenak (2012a). “Benchmarking de-
pendability of MapReduce systems”. In: 2012 IEEE 31st Symposium on Reliable
Distributed Systems. IEEE, pp. 21–30. DOI: 10.1109/SRDS.2012.12.

— (2012b). “MRBS: A comprehensive mapreduce benchmark suite”. In: LIG, Greno-
ble, France, Research Report RR-LIG 24.

— (2016). “Experience with benchmarking dependability and performance of MapRe-
duce systems”. In: Performance Evaluation 101, pp. 1–19. DOI: 10.1016/j.peva.
2016.04.001.

Stonebraker, Michael and Ariel Weisberg (2013). “The VoltDB Main Memory DBMS”.
In: IEEE Data Engineering Bulletin 36.2, pp. 21–27.

Sullivan, Mark and Ram Chillarege (1992). “A Comparison of Software Defects in
Database Management Systems and Operating Systems”. In: Digest of Papers:
FTCS-22, The Twenty-Second Annual International Symposium on Fault-Tolerant Com-
puting, Boston, Massachusetts, USA, July 8-10, 1992. IEEE Computer Society, pp. 475–
484.

Taft, Rebecca et al. (2020). “CockroachDB: The Resilient Geo-Distributed SQL Database”.
In: Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’20. New York, NY, USA: Association for Computing Machin-
ery, pp. 1493–1509. ISBN: 9781450367356. DOI: 10.1145/3318464.3386134.

Ventura, Luís and Nuno Antunes (2016). “Experimental Assessment of NoSQL Databases
Dependability”. In: 2016 12th European Dependable Computing Conference (EDCC),
pp. 161–168. DOI: 10.1109/EDCC.2016.30.

https://doi.org/10.1109/DSN.2012.6263915
https://doi.org/https://doi.org/10.1109/ICDE.2017.167
https://doi.org/10.1145/2463676.2463712
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1109/TDSC.2014.2334300
https://doi.org/10.1109/UCC.2014.15
https://doi.org/10.1007/978-3-642-84696-0
https://doi.org/10.1109/SRDS.2012.12
https://doi.org/10.1016/j.peva.2016.04.001
https://doi.org/10.1016/j.peva.2016.04.001
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1109/EDCC.2016.30

Bibliography 69

Vieira, Marco and Henrique Madeira (2002). “Definition of Faultloads Based on Op-
erator Faults for DMBS Recovery Benchmarking”. In: 9th Pacific Rim International
Symposium on Dependable Computing (PRDC 2002), 16-18 December 2002, Tsukuba-
City, Ibarski, Japan. IEEE Computer Society, pp. 265–274. DOI: 10.1109/PRDC.
2002.1185646.

— (2003a). “A Dependability Benchmark for OLTP Application Environments”. In:
Proceedings of 29th International Conference on Very Large Data Bases, VLDB 2003,
Berlin, Germany, September 9-12, 2003. Ed. by Johann Christoph Freytag et al. Mor-
gan Kaufmann, pp. 742–753. DOI: 10.1016/B978-012722442-8/50071-9.

— (2003b). “Benchmarking the dependability of different OLTP systems”. In: 2003
International Conference on Dependable Systems and Networks, 2003. Proceedings. Pp. 305–
310.

— (2009). “From Performance to Dependability Benchmarking: A Mandatory Path”.
In: Performance Evaluation and Benchmarking, First TPC Technology Conference, TPCTC
2009, Lyon, France, August 24-28, 2009, Revised Selected Papers. Ed. by Raghunath
Othayoth Nambiar and Meikel Poess. Vol. 5895. Lecture Notes in Computer Sci-
ence. Springer, pp. 67–83. DOI: 10.1007/978-3-642-10424-4_6.

Wang, Lei et al. (2014). “BigDataBench: A big data benchmark suite from internet
services”. In: 20th IEEE International Symposium on High Performance Computer
Architecture, HPCA 2014, Orlando, FL, USA, February 15-19, 2014. IEEE Computer
Society, pp. 488–499. DOI: 10.1109/HPCA.2014.6835958.

https://doi.org/10.1109/PRDC.2002.1185646
https://doi.org/10.1109/PRDC.2002.1185646
https://doi.org/10.1016/B978-012722442-8/50071-9
https://doi.org/10.1007/978-3-642-10424-4_6
https://doi.org/10.1109/HPCA.2014.6835958

	Declaration of Authorship
	Abstract
	Introduction
	Problem Statement
	Research Questions
	Project Goal and Scope
	Main Contributions
	Research Methodology
	Collaboration
	Thesis Structure

	Background Knowledge
	Database Systems
	Database Types
	Relational
	NoSQL
	NewSQL

	Distributed Database Systems
	Database Anatomy

	Benchmarking
	Properties of a Benchmark
	Metrics

	System Dependability
	Types of Faults
	Hardware Faults
	Software Faults
	Operator Faults
	External Factors

	Testing Dependability

	Related Work
	Database Benchmarking
	Industry Standards
	TPC-C
	YCSB

	Dependability Aspects
	DBench-OLTP
	DS-Bench
	MRBS
	StreamBench

	Fault Injection
	Hardware Faults
	Software Faults
	Operator Faults
	Virtualisation Techniques
	Chaos Engineering

	Scope and Design
	Scope
	Scenario Framework
	Faults and Scenarios
	System under Test
	Experiments

	Scenario Design
	Scenario Overview
	Phases
	Triggers
	Faults
	Instances

	Framework Design
	Scenario Module
	System Under Test Module
	Orchestration Client API
	Database Client API

	Benchmark Module

	Implementation
	Proof-of-concept
	Scenarios and Faults
	Deployment
	Database Management System
	Benchmarking Framework

	Framework Implementation
	Implementation Language
	Modules
	Configuration

	Scenario Module
	Scenario Builder
	Scenario Director

	System Under Test Module
	Fault Injection
	Orchestration Client API
	Kubernetes Client Implementation

	Database Client API
	CockroachDB Client Implementation

	Experiments
	Experimental Setup
	Hardware
	Deployment
	Benchmark Framework Configuration
	System Under Test Configuration

	Experiments
	Testing Procedure
	Analysing Results
	Node Process Failure
	Database Node Failure
	Client Node Failure
	Results Discussion

	Discussion
	Discussion
	Future Work
	More Extensive Scenarios
	Unified Controls
	Analysis Experiment Results

	Conclusion
	Research Questions
	Conclusion

	Scenario Module Class Overview
	Companion Objects
	Builder Pattern
	Inheritance

	Scenario Configuration Examples
	Benchmark Configuration
	Experiments Results Table Full
	Bibliography

