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Abstract

Due to the need for more renewable energy, interest in floating wind turbines has greatly increased over the
last years. These turbines have to withstand harsh environmental conditions, such as extreme waves called
rogue waves. These rogue waves (or freak waves) are exceptionally large waves compared to the surrounding
sea state and are defined by two different size criteria, one relating to the crest height and the other to the
wave height. Research has shown that these rogue waves occur more frequently than expected, from which
the question arose whether these rogue waves could be dangerous for floating wind turbines.
This thesis aims to answer that question by evaluating the probability of such a wave interacting with a float-
ing offshore wind turbine and the subsequent induced motion response. A location off shore California is
evaluated for a spar-type floating wind turbine (SFWT). In this research, different time-extreme (TE) and
space-time-extreme (STE) statistical wave crest and crest-to-trough models are used with historical wave
data to estimate rogue wave occurrence probabilities. The STE models approximate the probability of a wave
occurring within an area in time, as opposed to a point in time (TE), and are considered state-of-the-art.
Wave data from 1998-2020 is used, which is a significant amount compared to the life of a typical offshore
structure. A frequently chosen model for research into a SFWT is the OC3-Hywind concept, which consists of
the National Renewable Energy Laboratory (NREL) 5MW reference turbine and a substructure based on the
Hywind spar.

The area size which leads to the STE models estimating a higher rogue wave occurrence probability than the
TE models is investigated for the first time. This is done by comparing the TE and STE probability models to
each other on the basis of their maximum estimated exceedance probability of the rogue threshold, for differ-
ent area sizes. Only on rare occasions, with a very small area, did the most conservative TE wave crest model
estimate a higher probability than the STE2 (wave crest STE) model. Therefore, the STE2 model appears most
conservative when evaluating rogue crests for a SFWT.
The Rayleigh model was the most conservative among TE crest-to-trough models that were considered, and
estimated higher probabilities than the STE1QD (wave crest-to-trough STE) model in several sea states up
until an area size of 12×12m2.
The influence of the shape of the wave spectrum was investigated by two spectral bandwidth parameters. All
four wave crest models showed an increase in rogue crest probability as the wave spectrum became narrower.
Regarding the crest-to-trough models, no clear preference was observed.
Long-term rogue wave probabilities were calculated for four sizes of rogue crests and waves, where the squared
area of the STE models was based on the waterline diameter of the OC3-Hywind spar (6.5×6.5m2). Probabil-
ities were averaged per sea state bin, and it was observed that for this area the STE1QD model was more
conservative than the Rayleigh model. When single maximum exceedance probabilities are compared, the
Rayleigh model can be more conservative in several sea states until an area of 12×12m2, but when overall
occurrence probabilities are considered, this area appears to be roughly 6.5×6.5m2.
Following the long-term rogue wave probability analysis, four rogue waves were each embedded in random
wave series, based on their most likely wave spectrum, using a deterministic extreme wave model. With these
wave time histories, simulations were run in OrcaFlex using a publicly available OC3-Hywind model. During
the simulation the turbine was assumed to be in parked condition and only the wave loading was considered.
Mostly the pitch angles and nacelle accelerations are limiting for safety, due to stability criteria and sensitive
components in the nacelle. These limits are imposed by turbine manufacturers but are never shared publicly.
Therefore, the results were compared with reference values from the literature. The dynamic response did
not exceed these maximum reference values, but they can be considered quite serious as some did exceed
lower thresholds.

Based on the long return period of the considered rogue waves, together with their induced dynamic response
which does not exceed maximum reference values, it appears that these rogue waves alone are not dangerous
for the considered SFWT. However, ultimately this will depend on the sensitivity of the components inside the
turbine, as well as the desired risk profile of the wind farm owner.
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1
Introduction

Excessive use of fossil fuels in the last century has skyrocketed the concentration of carbon dioxide in the
earth’s atmosphere. Since the beginning of the industrial age, the amount of CO2 in the atmosphere has in-
creased 47% and in the short time-span from the year 2000 until present with 11% [16]. This CO2 surge has
caused the world’s temperature to increase up until the point that if no widespread carbon neutral energy is
adopted we are heading towards a large scale environmental disaster. In 2015, 196 parties signed the Paris
agreement with the goal to limit the global increase in temperatures to below 2°C, preferably even below
1.5°C. To reach this goal, participating countries have to reach their peak in carbon emissions as soon as pos-
sible to achieve a carbon-neutral world by 2050.

Due to the need for more renewable energy the interest in offshore wind energy has grown substantially over
the last years. Bottom founded wind turbines have grown larger and the price per kWh has been reduced
drastically. Northern Europe is a leader in the field of offshore wind energy where currently all the major wind
farms are located. As of 2019, 22 GW of offshore wind power has been installed in Europe, which accounts
for roughly 75% of the global installed power [54] [48]. In recent years other markets for offshore wind energy
have started to emerge at an accelerating pace as well, such as China, the United States, Taiwan and Japan.
Not only are these countries eager to decrease their carbon footprint, but also to establish their own supply
chain as to benefit their economies. Figure 1.1 presents a forecast by the International Renewables Energy
Agency IRENA of the expected total installed offshore wind energy, with a total capacity nearing 1000 GW by
2050.

As we progress into deeper waters where there is even more wind energy potential, the need for viable floating
wind concepts increases. The wind at deeper waters blows more consistently and strongly which can yield
more energy. In these depths bottom founded wind turbines become increasingly expensive, making float-
ing wind turbines an attractive alternative. Right now industry experts believe that in 2030, 5GW to 30GW of
floating offshore wind capacity could be installed worldwide [42]. At the moment, the Equinor Hywind Scot-
land and the Windplus WindFloat Atlantic farm are the only operational floating wind farms in the world.
The Hywind farm consists of 5 6-MW turbines placed on a spar substructure. It was the first wind farm to
demonstrate on an industrial scale the feasibility of floating offshore wind and paved the way for future ini-
tiatives. The WindFloat Atlantic farm consists of three 8.4-MW turbines supplying about 25MW to Portugal’s
electrical grid. The turbines are placed on a semi-submersible structure and are the world’s largest turbines
ever installed on a floating platform.

1.1. Floating wind concepts
Floating wind concepts can be divided into three main categories depending on their substructure: tension-
leg platform, spar and semi-submersible. Figure 1.2 shows an overview of the different support structure
types for both fixed and floating wind turbines. The floating designs are based mostly on structures from the
oil and gas industry. The main difference between these concepts is how they achieve their stability.

1
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Figure 1.1: Historical and expected offshore wind capacity statistics based on IRENA’s analysis [42].

1.1.1. Spar buoy
A spar buoy is a long slender ballast-stabilised cylinder attached to the seabed by a catenary or taut-spread
mooring system. A spar achieves its stability by having the center of gravity below the center of buoyancy
which provides a restoring moment to counteract wind and wave loads. The low center of gravity provides
high intertial resistance against roll and pitch motions and the small waterplane area of the spar reduces the
wave loads [50]. Fabrication is relatively simple because of the common shape, however the deep draught of
the hull can cause logistical challenges during the assembly, transportation and installation. Also, this deep
draught may restrict the spar type substructures to mostly deeper waters of >100m [17].

1.1.2. Semi-submersible
A semi-submersible structure is a buoyancy-stabilised platform connected to the seabed with a catenary
mooring system. Stability is achieved by changes in the submerged volume. Inclination of the platform due
to a heeling moment will result in a larger submerged volume on the leeward side, inducing a counteracting
restoring moment. Semi-submersibles have a low draught which allows outfitting, commissioning and even
the turbine installation to be done on the dock. [53].

1.1.3. Tension-leg platforms
A TLP is a structure with a large buoyancy held in place by a tension-leg mooring system. The tension-leg
mooring system connects the structure to the seabed via vertical tethers. The buoyancy of the structure is
greater than the weight of the turbine. The extra buoyancy is used to tension the tethers which are con-
nected to anchors on the seabed [73]. These are mostly gravity-based anchors, suction or pile driven. Due
to this design the anchor mooring system has to withstand large vertical loads. This imposes certain seabed
requirements and makes the installation complex and expensive [17]. The heeling moment induced by the
wind is counteracted by a restoring moment resulting from a higher tension in the windward leg compared
to the leeward leg. TLPs have a relatively shallow draft which allows for tow-out installation.
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Figure 1.2: Types of foundations and moorings for bottom fixed and floating offshore wind turbines. From left to right: Monopile, Jacket,
TLP, Spar, Semi-submersible [5].

1.2. Rogue waves
Floating wind turbines in deep water are subjected to harsh environmental conditions. Wind blowing unob-
structed over a large area can generate large waves which together with the already strong wind will exert a
significant environmental loading on the floating wind turbine. In the last 20 years, a lot of research has been
done on a wave phenomenon called rogue waves. Rogue waves (often also called freak waves or monster
waves) are unusually large waves relative to the surrounding sea state. Tales of single monster waves seen
on the seas and ocean were often dismissed as typical sailor stories and until recently there was no evidence
of these events. The concept of these oceanic rogue waves was introduced by Draper in 1966 [25]. Then, in
1984, the first rogue wave was recorded by the Gorm platform in the North sea. However, the New Years wave
measured at the Draupner plaform in 1995 is what really got the scientific community interested [27]. Figure
1.3 displays the time records of these two well-known examples where the abnormality of the wave height
relative to the sea state is clearly visible.

Figure 1.3: Two examples of a rogue wave record. The left panel displays the Gorm wave recording and the right panel the Draupner
wave [27].

Rogue waves have been attributed as the cause of numerous shipping disasters over the last decades, such
as the Louis Majesty cruise ship which was hit by an enormous rogue wave and killed two passengers, or
the Suwa-Maru incident where a rogue wave is suspected to have sunk a fishing boat with 20 crew members
in a moderate seastate [79] [20]. In a report from 2002, Faulkner evaluated cargo shipping accidents from
the years 1981 to 2000 and concluded that a significant portion of these accidents are due to inadequate de-
sign against the worst possible wave conditions, also believed to be rogue waves [30]. An EU funded project
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called MaxWave which involved different meteorological agencies, universities and research facilities set out
to prove the existence of rogue waves and the risk of encounter [68]. For three weeks parts of the oceans
were searched with radar and satellite technology to collect wave data. Numerous of these rogue waves were
found and one of the conclusions from the MaxWave project, endorsed by other subsequent research, was
that rogue waves occur more frequently than previously expected by conventional wave statistics [9] [31].

1.3. Research motivation
The question that arises from this conclusion is that when rogue waves are said to occur more frequently than
expected and numerous ship accidents have already been caused by these waves, could they be a threat to the
upcoming floating wind turbines as well? The motivation for this thesis therefore is to assess the probability
of a rogue wave striking a floating offshore wind turbine and whether the subsequent impact could pose a
threat to the survivability. To evaluate this, the spar type concept is chosen because of its technical maturity
and proven feasibility over multiple years.

This report is structured as follows: first the phenomenon of the rogue waves is further investigated with the
research focus on models which can predict the occurrence of rogue waves. Second, the physics govern-
ing the dynamic response of the spar floating wind turbine system is evaluated and existing research done
into extreme response of a SFWT as a result of large waves is presented. Then, the research objectives and
methodology is presented based on the identified literature gaps. Thereafter, the research into the rogue
wave probability is presented, followed by the research into the dynamic response of the SFWT against rogue
waves, after which relevant conclusions are made regarding the research objectives.



2
Rogue waves

Rogue (or freak) waves are not necessarily only very large waves. Their name refers to their size relative to the
surrounding waves and their spontaneous appearance. Although there is no single true definition of a rogue
wave, two scientific definitions have been widely adopted in academic literature to classify these waves. The
first definition was introduced by Klinting and Sand in 1987 and consists of three rules [59]:

• It has a wave height larger than two times the significant wave height.

• Its wave height is larger than two times of the fore-going and following waves.

• Its wave crest is larger than 65% of its wave height.

This definition was reformulated in 1990 to include only the first statement as presented by equation 2.1
below [71].

H

Hs
Ê 2 (2.1)

Here H denotes the rogue wave height and Hs the significant wave height. The second rogue wave definition
relates the crest height, ηc , to the significant wave height [27]:

ηc

Hs
Ê 1.25 (2.2)

It is common to assume a 20-minute sea state for these rogue wave thresholds, which is a characteristic du-
ration for wave buoy time series. The DNVGL-RP-C205, a guideline for environmental conditions analysis,
has adopted this sea state duration in their rogue wave definition, together with both possible thresholds as
given by equation 2.1 and 2.2 [24].

This chapter presents a brief introduction on the existing knowledge of rogue waves and evaluates methods
that can be used to predict rogue wave occurrence. First, linear and nonlinear wave theory is revisited to serve
as a stepping stone to explain mechanisms believed to be responsible for rogue wave formation and lay the
groundwork for basic wave statistics. Then, previous research into rogue wave occurrence is briefly evaluated
and statistical wave models are discussed.

5
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2.1. Linear wave theory
The basic concept to explain random water waves is based on the principle of summing a large number of
independent harmonic waves. The waves due to their linear character are assumed not to affect each other
as they travel across the water surface. For linear theory to be applicable the wave amplitude has to be small
compared to the wave length and the water depth. The linear wave theory is also known as the Airy wave
theory which is why the harmonic wave involved is sometimes called the Airy wave [3].

Figure 2.1 displays the superposition principle of the independent harmonic waves. The surface elevation at
any given time and location in 3D is given by equation 2.3.

η(x, y, t ) =
N∑

i=1

M∑
j=1

ai , j cos
(
ωi t −ki x cosθ j −ki y sinθ j +αi , j

)
(2.3)

Where ai , j is the wave amplitude, ωi the frequency, ki = 2π
λ represents the wave number with λ being the

wave length, θ j the direction and αi , j the phase. The amount of wave components (N) should approach
infinity and phase distribution should be uniform for the surface elevation to be Gaussian distributed.

Figure 2.1: Superposition of a large number of different harmonic waves moving across the ocean surface which results in the random
phase/amplitude model. Originally after Pierson et al., 1955, retrieved from [40].

The wave velocity potential is given by equation 2.4 below. The particle velocity components are obtained by
taking the derivatives δφ/δx and δφ/δz, respectively given by equation 2.5 and 2.6. In deep water, the water
particles under a harmonic wave move with an orbital motion where the wave-induced velocities decrease
exponentially as the distance from the surface increases.

φ= ωa

k

cosh[k(d + z)])

si nh(kd))
cos(ωt −kx)) (2.4)

ux =ωa
cosh[k(d + z])

sinh(kd)
sin(ωt −kx) (2.5) uz =ωa

sinh[k(d + z)]

sinh(kd)
cos(ωt −kx) (2.6)

Waves each propagate at their own velocity, which can be obtained from the dispersion relationship. The dis-
persion relationship relates frequency ω with the wave number k and the depth d (Eq. 2.7). By substituting
the wave number by the wavelength this relationship could also be written as equation 2.8.

ω2 = g k tanh(kd) (2.7) L = g T 2

2π
tanh

(
2πd

L

)
(2.8)

The expression for the phase speed (Eq. 2.9) shows that the velocity depends on the wave frequency and wave
number. These properties are related to each other via the dispersion relationship, displaying the property
that long waves propagate faster than short waves. Waves traveling over the free surface of the ocean will
separate themselves based on their wavelength.

cp = λ

T
or

ω

k
(2.9)
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Two (or more) waves with slightly different frequencies traveling over the free surface can add up to form a
series of wave groups. When the waves are in phase the crests coincide and the wave group has its maximum
surface elevation. Similarly, when a wave crest coincides with another wave’s trough they cancel each other
out and the wave group has its minimum surface elevation. This phenomenon is illustrated by figure 2.2.

Figure 2.2: Two waves with slightly different frequencies merging into a wave group, retrieved from [7].

2.2. Nonlinear waves
When waves become too steep or the water becomes too shallow, deviations from the linear wave theory
arise. The linear wave theory is no longer valid since the harmonic waves only approximate the nonlinear
equations. Stokes (1847) presented a nonlinear wave theory which aims to provide a better approximation
for a nonlinear wave profile by adding extra harmonic waves to the primary harmonic wave [37]. This theory
writes the nonlinear wave by successive corrections (each higher-order correction is acquired based on the
preceding lower-order correction) formulated in terms of the velocity potential. The wave steepness ε= ak is
specially represented by Stokes’ theory in the basic harmonic:

η(x, t ) = acos(ωt −kx) = εη1(x, t ) (2.10)

where η1(x, t ) = k−1cos(ωt −kx). Now, a correction can be added to this basic component, written with the
wave steepness raised to the second power (therefore also called a second-order correction or second-order
stokes wave):

η(x, t ) = εη1(x, t )+ε2η2(x, t ) (2.11)

The second harmonic wave which is added has the same phase speed as the initial linear wave and is therefore
called a bound second harmonic. The Stokes expansion can be continued in the same sense by adding a third,
fourth, fifth harmonic. Equation 2.12 illustrates the Stokes expansion up to the fifth order. This process can
be expanded indefinitely until the desired order of correction is achieved. Characteristic for these nonlinear
waves is the asymmetry between the crests and troughs as illustrated in figure 2.3. The crests are a little
sharper and the troughs are flatter compared to the linear wave.

η(x, t ) = εη1(x, t )+ε2η2(x, t )+ε3η3(x, t )+ε4η4(x, t )+ε5η5(x, t ) (2.12)

Figure 2.3: Schematic representation of the wave profiles of a linear Airy wave and a Stokes wave.
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2.3. Short-term wave statistics
Wind waves are usually assumed to be approximated by a stationary, Gaussian process. The Gaussian proba-
bility density function of the surface elevation η is given by Eq. 2.13, where σ is the standard deviation which
can also be written as m1/2

0 . This moment m0 is the zeroth moment of the wave energy spectrum.

p(η) = 1

σ (2π)1/2
exp

(
− η2

2m0

)
(2.13)

Generally there is a good agreement between observed or measured wave records and the Gaussian theoret-
ical distribution in deep water. However, high crests are slightly underestimated by this distribution while
deep troughs are somewhat overestimated [40]. Steeper waves or waves in shallow water deviate quicker be-
cause of their nonlinear character. Due to nonlinear processes wave crests become higher and sharper and
troughs become flatter and shallower.

2.3.1. Crest and wave height distribution
The probability density function of the linear crest height (ηc ) is a Rayleigh type distribution (Eq. 2.14). It
depends on only one parameter: the zero-order moment m0 of the variance density spectrum [40]. The cu-
mulative distribution function is then given by equation 2.15 below.

pη
c
(η) = η

m0
exp

(
− η2

2m0

)
(2.14) Pr

{
η

c
≤ η

}
= 1−exp

(
− η2

2m0

)
(2.15)

For linear waves in deep water we may approximate that the wave height is about twice the crest height:
H ≈ 2ηc . With that assumption the wave height probability distribution follows from Eq. 2.14 and is given
by equation 2.16 below. Equation 2.17 is derived from equation 2.15 in the same sense. The significant wave
height is defined as the mean of the highest one-third of the waves, see figure 2.4.

p(H) = H

4m0
exp

(
− H 2

8m0

)
(2.16) Pr

{
H ≤ H

}= 1−exp

(
− H 2

8m0

)
(2.17)

Figure 2.4: Rayleigh distribution as wave height probability density function. The significant wave height is indicated as H1/3. Retrieved
from [40].

2.3.2. Maximum wave heights
Intuitively one can already deduce that a within a large number of wave realizations the chance of a large wave
occurring increases compared to evaluating a single crest. During a time duration D there will be a certain
number of waves, which can be denoted by N . An estimate for N is to take the wave mean zero-crossing
frequency, or 1 divided by the mean zero-crossing period, and multiply this by the duration D in seconds (Eq.
2.18).

N = f0D = T −1
0 D =

√
m2

m0
D (2.18)



2.4. Rogue wave formation 9

The probability that a wave crest exceeds a certain threshold level η is given by Pr{ηc > η}, which can be
calculated with equation 2.14 when the Rayleigh distribution is considered. Subsequently, the probability
that this wave crest does not exceed the threshold can be written as 1 - Pr{ηc > η}. Assuming all crests to be
statistically independent, the probability that N wave crests within duration D do not exceed threshold η is
given by:

Pr{allηc ≤ η} = (1−Pr{η> η})N (2.19)

Then, to calculate the probability that a wave crest will be larger than the threshold, equation 2.20 can be
used.

Pr{η
max

> η} = 1− (1−Pr{ηc > η})N (2.20)

2.4. Rogue wave formation
There are different competing theories about physical mechanisms that are responsible for the formation of
rogue waves [59]. Both linear and nonlinear effects have been shown to cause these large wave outliers and
so far no true consensus has been reached about the most prominent generation mechanism.

First, there is geometrical (or spatial) focusing. This is the focusing of waves due to interference of wave sys-
tems coming from different directions, such as waves generated at different storm locations, or because of
refraction/diffraction due to specific bathymetry. See for example figure 2.5, where Fochesato et al. (2007)
created rogue waves in a numerical wave tank by directional focusing of waves [35].
Somewhat similar is temporal focusing of the waves due to their dispersive nature. Different ocean waves
propagating at their own velocity can come into phase at a single location which results in a large concentra-
tion of energy [76]. Figure 2.2 illustrates a simplified version of this effect, where the waves coming into phase
result in the largest wave of the group.

Figure 2.5: Numerical simulation of a rogue wave being formed by directional focusing of waves. Originally from [35], retrieved from
[26].

A nonlinear effect responsible for rogue wave formation which has received much attention is modulational
instability [43]. Modulational instability is the result of interaction between a carrier wave propagating at
frequency ω and sidebands at ω±Ω [89]. The crux of this effect is the unstable growth of weak wave mod-
ulations and can be illustrated as follows: when the Stokes wave becomes unstable, one wave in the middle
of the wave group starts to grow at the expense of the waves around it, thus enabling the creation of a single
large wave.

In recent years, the validity of the modulational instability theory for realistic ocean wind seas has been ques-
tioned. Experiments with rogue wave formation as a result of modulational instability ([64] [84] [83]) were
performed with long-crested uni- or (narrow banded) directional waves, while real sea states are character-
ized by short-crested multidirectional wave fields [84] [83]. In real seas, the wave energy can spread out direc-
tionally and nonlinear focusing due to modulation instability is diminished [34]. In recent research there is
increasing agreement that a plausible mechanism for rogue wave formation is spatio-temporal focusing as a
result of the dispersive nature of the water waves [10] [22] [34] , strengthened by second-order non-resonant
nonlinearities [80].
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2.5. Rogue wave occurrence
Estimating the occurrence probability of rogue waves is a key topic of rogue wave research. Their large size
and unpredictable nature can pose a real threat to ships and offshore structures. Since there is no consensus
on the principal mechanisms responsible for these waves, estimating their probability proves to be a difficult
task. Because rogue waves are rare statistical events, brute-force computational simulations are extremely
time-consuming and are deemed infeasible for most applications. In the same sense, searching for rogues in
ocean measurements, for example with wave buoys (figure 2.6), in order to extrapolate those statistics proves
to be very difficult. Wave buoys can underestimate the wave peaks by being dragged through the crest or
by sliding sideways from the highest point, thereby avoiding short-crested extreme waves [74] [36]. Further-
more, point measurements in a 2D grid do not provide accurate estimates of the space-time wave dynamics
and the associated maximum wave elevation over a given area surrounding the buoy [33]. This is what makes
it difficult to collect large amounts of high quality wave data containing rogues, causing research to search
for alternatives.

In this section, previous research into rogue wave occurrence is briefly evaluated and their applicability to
this thesis is discussed. Then, several statistical wave crest and crest-to-trough models are presented in detail
where special interest is paid to the state-of-the art space-time extreme (STE) wave models.

Figure 2.6: A Datawell directional waverider buoy deployed by the Hydrographic Institute of the Republic of Croatia. Retrieved from [52].

2.5.1. Previous research into rogue wave occurrence
A study by Cattrell et al. (2018) investigated whether characteristic wave parameters can be used as fast pre-
dictors of increased rogue wave probability [19]. Rogue waves in wave data from 80 waverider buoys were
identified and investigated in relation to significant wave height, wave steepness, wave skewness, kurtosis
and spectral bandwidth parameters. Overall, the research concluded that the large data size did not yield a
discernible link between rogue wave occurrence and the investigated characteristics.

Several studies looked into the influence of sea surface kurtosis on the occurrence probability of rogue waves
in relation to modulational instability of the waves [58] [43] [83]. Kurtosis is a scaled version of the fourth mo-
ment of the probability distribution and can be seen as a measure of the "tailedness" of this distribution. A
high kurtosis indicates a higher probability of outliers, such as rogue waves. Research into the modulational
instability assumes unidirectional waves since a narrow-band approximation is used. Validity for real seas
where the waves are spread out over multiple directions is therefore not assured.

The hindcasting of meteorological conditions for known rogue waves has been an extensive part of rogue
wave research. Due to the certainty of a rogue wave being present in those conditions researchers aim to
find key meteorological indicators and explanations for rogue waves. Many studies have investigated known
rogue waves [39] [21] [20], such as Adcock et al. (2011) who discussed different explanations for the famous
Draupner wave [1]. The focus in this area of research is predominantly on explaining how a rogue wave could
have formed in such conditions. At the moment, research into hindcasting has not yet produced usable key
indicators for rogue wave formation such that they could be used in a statistical analysis.
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2.5.2. Statistical wave models
Two rogue wave definitions were presented at the beginning of this chapter, one regarding the wave height
(crest-to-trough height) and one regarding the crest height. Due to the different statistical nature of crest
and crest-to-trough heights these wave parameters have to be estimated using separate models. Research
into statistical models that fit these wave parameters best has been an important research topic over the last
decades. These models could provide an accurate estimate of rogue wave occurrence and are therefore highly
interesting for this thesis.

Investigating short time wave statistics, research has shown that the statistical description of crest heights is
highly influenced by nonlinearities, while crest-to-trough heights are only slightly affected [18] [81] [57]. In
this section relevant time-extreme (TE) and space-time-extreme (STE) wave probability models will be pre-
sented for these wave parameters.

Crest-to-trough heights - TE
Because crest-to-trough heights are only slightly affected by nonlinearities, the linear Rayleigh distribution
(Eq. 2.16) presented in section 2.3.1 is generally considered an overestimation for wave heights occurring at
a certain location. A better estimation is given by a bandwidth corrected version of the Rayleigh distribution,
originally presented by Naess in 1985 [61]:

PN (H > h) = exp

[
− 4

1−Ψ∗

(
h

Hs

)2]
(2.21)

This distribution accounts for finite bandwidth effects by incorporating bandwidth parameter ψ∗. Here ψ∗
is the minimum of the autocorrolation function of the sea surface, which can be estimated from the wave
spectrum as:

ψ(t ) = 1

σ2

Ï
S(ω,θ)dθcos(ωt )dω (2.22)

The Rayleigh distribution is recovered from equation 2.21 for a value ψ∗ = -1.

Crest heights - TE
Crest heights are largely affected by nonlinearities. Tayfun (1980) presented a probability model to approx-
imate second order Stokes’ waves [80]. The Tayfun distribution is solely dependent on the wave steepness,
and is given by:

PT
{
ηc /σ> ξ}= exp

[
− (−1+√

1+2µξ)2

2µ2

]
(2.23)

where ξ= ξ0 + µ
2 ξ

2
0 is the second order wave elevation related to the linear wave elevation ξ0 and

µ=µm
(
1−ν+ν2) (2.24)

is a measure of the wave steepness where

µm =σ (2πm001/m000)2 /g (2.25)

is corrected with the spectral bandwidth as given by equation 5.5 [32]. The directional spectral moments

are given by mi j k =Î
k i

x k j
y f k S( f ,θ)d f dθ. Although this distribution was originally derived for narrowband

waves, it was recently proven to be valid for broadband waves as well [32]. The Tayfun distribution is consid-
ered accurate for second-order nonlinear seas where these nonlinearities are said to play a dominant role in
the probability structure of a random sea state [34].

Forristall (2000) presents a nonlinear probability model based on the Weibull distribution (Eq. 2.26) fitted to
second order simulations and experimental data [36].

PF
(
ηc > η

)= exp

[
−

(
η

αHs

)β]
(2.26)
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The parameters α and β were found as functions of the wave spectrum and the water depth. These were
based on the degree of the degree of nonlinearity as given by the wave steepness and the Ursell number. The
steepness number used in the fits is given by:

S1 = 2π

g

Hs

T 2
1

(2.27)

where T1 = m000/m001 is the spectral mean wave period. The Ursell number is a parameter which is often
used to quantify the degree of nonlinearity of waves. Here, the Ursell number is given by:

Ur = Hs

k2
1d 3

(2.28)

where k1 is the wave number for the frequency of the mean wave period and d is the water depth. The fits of
the parameters α and β to the data can then be written as:

α= 0.3536+0.2568S1 +0.0800Ur (2.29)

β= 2−1.7912S1 −0.5302Ur+0.284Ur2 (2.30)

Tayfun and Fedele (2007) presented an improvement of the Tayfun model to include third-order nonlinear-
ities [81]. Third-order nonlinearities due to quasi-resonant wave-wave interactions together with second-
order nonlinearities provide a contribution to the excess kurtosis of a wave field. Comparison with 2D wave-
flume experiments and 3D numerical simulations showed that this model predicted unusually large waves
surprisingly well. Research has shown that third-order nonlinearities can significantly amplify the heights
of 2D narrowband waves, however it should be noted that these effects are mostly investigated in terms of
modulational instability for which the application to realistic sea conditions is questioned [34].

The probability of exceedance of a normalised crest by the Tayfun-Fedele model is given by:

PTF
{
ηc /σ> ξ} = exp

[
−1

2

(
−1+√

1+2µξ

µ

)2][
1+ Λ

64
ξ2 (

ξ2 −4
)]

(2.31)

where µ again is the wave steepness as presented in equation 2.24 and Λ is a function of the joint fourth-
order cumulants of the surface elevation. Λ may in practice be approximated only as a function of the excess
kurtosis by Λappr = 8λ40/3, for which Λ≈Λappr is within a 3% error margin in agreement with observations
for third-order nonlinear seas [34]. This excess kurtosis for a third-order nonlinear sea includes a dynamic
componentλd

40 due to the quasi resonant nonlinear wave-wave interactions and a bound Stokes contribution

λb
40 so that the total excess kurtosis becomes:

λ40 =λd
40 +λb

40 (2.32)

Due to the dynamic component being an order of magnitude smaller than the bound component we may
assume its contribution to total excess kurtosis to be negligible. Therefore the excess kurtosis can be approx-
imated as λ40 ≈ λb

40. In deep water the bound component reduces to the simple form λb
40 = 18µm , where µm

is given by equation 2.25.

Crest heights - STE
The Tayfun, Forristall and Tayfun-Fedele model are time-extreme models: their theoretical distributions ap-
proximate the sea surface at a given position in time. Ships and offshore structures are not pointlike objects
and have a footprint area > 0 m2. As mentioned before, research suggests that the spatial domain should be
included when approximating occurrence probabilities of rogue waves. So, for calculations regarding these
practical offshore applications the spatial dimension should be evaluated as well. Fedele, drawing upon Adler
and Taylor (2007), presented in his 2012 paper a space-time extreme wave probability model [2] [31]. The
model considers a stationary homogeneous Gaussian wave field η(x, y, t ) which is bounded by a space-time
volume Vst = X Y D . The model considers the average number of waves within the 3D domain NV , waves on
the 2D surfaces NS and waves along the 1D perimeter NB .

NV = 2π
X Y D

Lx Ly Tm

√
1−α2

xt −α2
x y −α2

y t +2αxtαx yαy t (2.33a)
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NS =p
2π

(
X D

Lx Tm

√
1−α2

xt +
X Y

Lx Ly

√
1−α2

x y +
Y D

Ly Tm

√
1−α2

y t

)
(2.33b)

NB = X

Lx
+ Y

Ly
+ D

Tm
(2.33c)

Where Tm is the mean zero-crossing period, Lx and Ly are the mean components of the wavelength in x- and
y-direction and αxt , αy t and αx y are the irregularity parameters of the sea state. These irregularity parame-
ters account for correlations between space and time or space and space so that waves are not counted twice.
All these parameters are given by the equations below.

Tm =
√

m000

m002
(2.34) Lx = 2π

√
m000

m200
(2.35)

Ly = 2π

√
m000

m020
(2.36) αxt = m101p

m200m002
(2.37)

αy t = m011p
m020m002

(2.38) αx y = m110p
m200m020

(2.39)

Now, the exceedance probabilities that a 3D crest height normalised with σ exceeds a certain threshold z
within the 3D volume, on the 2D surfaces and along the 1D perimeter are given by:

PB
{
ηc /σ> z | B

}= PR (2.40a)

PS
{
ηc /σ> z |V

}= zPR (2.40b)

PV
{
ηc /σ> z |V

}= (
z2 −1

)
PR (2.40c)

with PR representing the Rayleigh distribution. The probability that the global surface maximum ηmax ex-
ceeds threshold z (given z >> 1) over the 3D volume by the space-time model (STE1) is given by:

PSTE1,max
{
ηmax/σ> z | (NV , NS , NB )

}
≈ [

1− (1−PV )NV
]+ [

1− (1−PS )NS
]+ [

1− (1−PB )NB
]

≈ NV PV +NS PS +NB PB ≈ (
NV z2 +NS z +NB

)
PR

(2.41)

Benetazzo et al. (2015) extend the STE1 model to include the second-order contribution of the waves ξ as
originally presented by the Tayfun model [9]:

PSTE2,max
{
ηmax/σ> ξ | (NV , NS , NB )

}
≈ (

NV z2 +NS z +NB
)

PR
(2.42)

Fedele noted that for small thresholds the exceedance probability of the space-time model is larger than 1
[33]. The Gumbell asymptotic limit ensures exceedance probabilities smaller than 1 for small thresholds,
resulting in equation 2.44 and 2.45 for the ST1 and ST2 model respectively. Here hst is the dimensionless
most probable extreme value ηmax /σ which can be found by solving the following implicit equation:(

NV h2
st +NS hst +NB

)
exp

(−h2
st /2

)= 1 (2.43)

Benetazzo compared stereo camera measurements with these two models where the predictions of the STE2
model were in very good agreement with the measurements [9]. Measurements over a grid of 11.2 x 11.2 m2

already showed increased maximum crest height probability compared to time-extreme models, which could
be very interesting for floating wind turbine applicability. However it should be noted that the sea state of the
measurements was mild and larger waves may reduce this spatial relevance.

PSTE1,max
{
ηmax/σ> z | (NV , NS , NB )

}≈ exp

{
−exp

[
− (z −hST)

(
hST − 2NV hST +NS

NV h2
ST +NS hST +NB

)]}
(2.44)

PSTE2,max
{
ηmax/σ> ξ | (NV , NS , NB )

}≈ exp

−exp

−
(
ξ−hST − µ

2 h2
ST

)(
hST − 2NV hST+NS

NV h2
ST+NS hST+NB

)
1+µhST


 (2.45)
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Crest-to-trough heights - STE
By extending the linear STE1 model, an expression can be formulated for a space-time crest-to-trough model.
For this purpose, use is made of the Quasi-Determinism theory presented by Boccotti [13]. This linear theory
states that the largest waves in a certain sea state follow a deterministic shape, based on the autocorrolation
function of the wave spectrum as earlier defined by equation 2.22. Using the deterministic shape of the largest
waves, the relation between crest and crest-to-trough height can be estimated as:

H =√
2(1−ψ∗) ·η (2.46)

Hereψ∗ is defined as the minimum of the autocorrolation function. Rewriting equation 2.44 using the deter-
ministic relationship of crest and crest-to-trough gives us equation 2.47 for the STE1QD model.

PSTE1QD,max {Hmax > H | (NV , NS , NB )} ≈ exp

−exp

−(
H −hST ·σ

√
2(1−ψ∗)

)hST − 2NV hST+NS

NV h2
ST+NS hST+NB

σ
√

2(1−ψ∗)





(2.47)

Previous research with space-time models
Although the space-time statistical model was introduced quite recently, research has been positive about its
applicability. Cavaleri et al. (2016) used it as an example to explain the possibility of the Draupner rogue wave
happening in a certain area of the North Sea [21]. Barbariol et al. explain in their 2017 paper how they imple-
mented the model into WAVEWATCH III and present a first verification of this implementation against wave
crest maxima measured on March 10, 2014 in space-time by a stereo camera placed on-board a platform in
the Adriatic sea (e.g. figure 2.7). These measured space-time wave maxima are compared to the expected
space-time extremes (STE) resulting from sea-state parameters as simulated by WAVEWATCH III. The results
of this comparison show that the WAVEWATCH III STE model is in agreement with the observations.

Figure 2.7: (Left panel) An example of stereo camera 3D wave measurements from the Aqua Alta platform in the Adriatic sea. (Right
panel) The normalized maximum sea surface elevation at each position in the grid during time duration D. Here, the black contour
illustrates areas where H > 2Hs . Retrieved from [10].

In their 2019 paper, Barbariol et al. aim to combine numerical wave model outputs and extreme statistics to
study the global maximal wave heights of the world’s oceans [8]. For the first time they focus on the climate
features of the maximum crest and wave height in a statistical sense. A time-extreme model and space-time
extreme model are used to calculate expected maxima. ERA-interim directional spectra of the world’s oceans
are used to estimate the statistical wave distributions. For the space-time extremes an area of 100 x 100 m2 is
chosen to represent an offshore rig. One of the conclusions of this study was that the effect of 3D geometry
and the short-crestedness of realistic ocean waves over this fixed area are not negligible but that the impor-
tance of the spatial dimension lessens when wave conditions become extremer and thus more long-crested.
The study did not mention from what area or from which sea states this effect reduces and how this then
compares to ’regular’ time-extreme models.
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Benetazzo et al. (2020) present a study on an improvement for the phase-averaged spectral wave model
WAM to incorporate extreme wave analysis with the spatio-temporal extreme model [12]. As explained be-
fore, WAVEWATCH III was already equiped with routines to estimate online spatio-temporal maximum wave
heights. The study compares extreme wave outputs from the newly adapted WAM and WAVEWATCH III with
stereo observations of 3D wave fields in the Adriatic and North sea. Model performance and differences be-
tween the models appear to stem mostly from the significant wave height estimation. Results from the com-
parison with the measurements shows that the theories used to calculate the extremes provide good model
performance.

2.6. Concluding remarks - Rogue waves
In this chapter the rogue wave phenomenon was investigated. Several competing theories for the generation
of rogue waves have been laid out and research into methods to predict rogue waves was briefly discussed.
The goal was to evaluate what methods could possibly be used for one of the research objectives of this thesis:
estimate the probability of a rogue wave hitting a SFWT.
Characteristic wave parameters of rogue seas have been investigated to find fast predictors of increased rogue
wave probability, however research found no discernible link. Kurtosis seems to indicate a higher chance of
rogue waves and was explored in relation to modulational instability, however validity for realistic, short-
crested multidirectional seas is questioned. Hindcasting meterological conditions of known rogues increases
our understanding of these waves but research in this corner is predominantly focused on explaining how a
rogue could have formed in such environmental conditions and not so much on the probability of this event
happening.

Statistical wave models, some which incorporate higher-order nonlinearities, appear to be best suited for this
thesis. Wave height models which incorporate both space and time in particular have received much atten-
tion over the last years and are considered state-of-the-art.
According to research, the influence of area on rogue wave occurrence probability increases for low sea states
and decreases for higher seas due to the waves becoming longer crested. What the authors, and others, did
not research is from what area or sea state the spatial importance diminishes or increases and how this then
compares to time-extreme probability models. More in general, the space-time extreme wave models have
not yet been used directly with the footprints of real offshore structures to evaluate the possible increased
rogue wave probability compared to time-extreme models. It will be highly interesting for the floating wind
industry to know whether they should account for increased extreme wave heights based on the footprint of
the structure. This is a gap in the literature that this thesis aims to answer.



3
Dynamic response spar floating wind

turbine

To evaluate the effect of a rogue wave striking a SFWT, the dynamic response of the structure will be assessed.
Large induced angles or nacelle accelerations will result in high loads and fatigue strain on the turbine and
the blades which could be damaging [77] [67]. This chapter gives a brief overview of the dynamic response of
a SFWT and an outline of the research that has already been done in evaluating the dynamic response of the
turbine to gain a better understanding of how other authors have approached this case.

3.1. Dynamic response
A floating body such as a floating wind turbine has six degrees-of-freedom: surge, sway, heave, roll, pitch and
yaw (see Figure 3.1). The motions of the structure are governed by a corresponding 6-DOF motion equation:

(M+A)X′′+ (B)X’+ (C)X = F(t ) (3.1)

Here M, A, B, C are the [6x6] matrices of the mass, added mass, damping and stiffness respectively, X is the
[6x1] motion vector containing the displacements where X’ and X” denote the first and second time deriva-
tives containing the velocities and accelerations respectively and F(t) is the [6x1] external force vector con-
taining the forces in x, y, z direction and the corresponding moments about those axes. The external force
vector can be composed of the environmental forces, the mooring forces and the static restoring forces, visu-
alised by equation 3.2 below. Regarding the environmental forces, only the wave loading will be considered
in this research. The static force relates to the equilibrium of the displaced water with the structure’s weight.

F(t ) = Fenvi r onment al +Fmoor i ng +Fst ati c (3.2)

Figure 3.1: The six degrees-of-freedom of a floating body visualised by axis and directions of rotation. Retrieved from [38].
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3.1.1. Wave loading
Wave loading results in a dynamic force acting on the structure due to the oscillatory nature of the waves.
The induced motions as a result of this depend on the magnitude, variability and location of the force. Wave
forces acting on a slender cylinder in oscillatory flow are governed by the Morison equation (Eq. 3.3) [60]. This
equation is a summation of two wave force components: the linear inertial force and the quadratic drag force.
Here ρ is the density of seawater, Cm and CD are the empirical inertia and drag coefficients respectively, D is
the diameter of the cylinder and u(t ) and u̇(t ) are the velocity and acceleration of the wave. When viewing
this equation in time it is important to note that the acceleration and velocity components are 90◦ out of
phase due to the oscillatory motion.

F (t ) = π

4
ρCM D2 · u̇(t )+ 1

2
ρCD D ·u(t )|u(t )| (3.3)

For a harmonic deep water wave, the velocity components u(t ) and u̇(t ) can be analytically derived from the
velocity potential function, which was introduced in section 2.1. By deriving this function with respect to x
or z the velocity in the that direction can be found (see Eq. 2.5 and 2.6). Further integration with respect to
time of a velocity component will result in its acceleration.

3.1.2. Hydrostatic stability
The law of Archimedes states that a floating body stays afloat by displacing an amount of water equal to its
weight. The center of gravity of that displaced water is the center of buoyancy as illustrated by B in Figure 3.2.
A small heel angle φ imposed on the structure shifts the center of buoyancy thereby creating a restoring mo-
ment around the center of gravity. These restoring forces are only dependent on the structure’s displacements
and not on time.

Figure 3.2: Schematic view of a floating body with center of gravity (G), center of buoyancy (B), keel (K) and metacenter (M) in neutral
and slightly heeled position. Originally after [87].

3.1.3. Mooring loads
To restrict motions and keep a floating structure in place, a mooring system is used. There are two main
mooring line configurations which differ in the way they counteract movement (Figure 3.3). The restoring
force from catenary mooring lines comes from an increase in suspended weight of the chain which is caused
by movements. Taut mooring lines act as low-stiffness springs and provide a restoring force when elongated.

Figure 3.3: A schematic view of a catenary and taut mooring system [86]
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3.2. Previous research - Dynamic response of SFWTs
A considerable amount of research has been done into the dynamic response of SFWTs. As mentioned in
the introduction, the first concept that demonstrated on an industrial scale the feasibility of floating offshore
wind was the spar concept. A frequently chosen concept for research into the SFWT is that as presented
by Jonkman (2010) in his definition of a floating system for phase IV of the IEA Offshore Code Comparison
Collaboration (OC3) [45]. This concept consists of the NREL 5MW reference turbine and a spar buoy based
on the Hywind concept and scaled to accommodate a 5MW turbine, hereafter referred to as OC3-Hywind
concept [47]. Below, research of three authors into the dynamic response of a SFWT is briefly evaluated.

• Aggerwal et al. (2012) investigated the short term extreme response of the OC3-hywind concept by
a coupled wind-wave analysis by combining aerodynamic software FAST and hydrodynamic software
ANSYS-AQWA. The 3-hour short term extreme responses are derived from those short time domain sets
with the Global Maxima Method. With this method the maximum response of each time series is taken
and then fitted against the Gumbell and Weibull distributions.

• Jeon et al. (2013) numerically investigated the dynamic response of a rigid floating spar substructure
moored by three catenary mooring lines to unidirectional irregular waves [44]. The wind turbine itself
was modelled as a tower with a lumped mass on top. Wind loading was not incorporated in the mod-
elling. Time and frequency response of the cylindrical substructure and the tension in the mooring
cables were parametrically investigated by changing the position of the cables on the substructure and
their total length.

• Yu et al. (2015) studied the dynamic response of the OC3-Hywind concept with a numerical simu-
lation method to evaluate the wind-wave dynamic characteristics under two different environmental
conditions [88]. With the software FAST a time-domain analysis was conducted and from the results
of the two load cases comparisons are made for wave and wind-wave induced loads. Also, the excited
frequencies and motion coupling are investigated.

Figure 3.4: A visualisation of the OC3-Hywind concept with a 5MW wind turbine, retrieved from [45].

3.2.1. SFWT response to a rogue wave
Limited research has been done on the response of a SFWT to a single rogue wave. Here, two research papers
into this subject are discussed, where increased attention is paid to the way the wave forces and the dynamic
responses are calculated from the rogue wave profile.

Ruzzo et al. (2018) analyzed the dynamic response of a SFWT (OC3-Hywind) in parked conditions to a rogue
wave generated by Quasi-Determinism (QD) theory [70]. From the velocity potential of the deterministic
rogue wave the velocity and acceleration of the wave profile are calculated. Subsequently, the horizontal wave
forces on the structure are calculated with the Morison’s equation. The vertical wave force is taken as the sum
of the Froude-Krylov force and the variation of buoyancy due to structure motion. The responses in heave,
pitch and surge are evaluated with a 3-DOF in-house nonlinear numerical code. Only the hydrodynamics
were considered, no wind forces were modelled and the turbine was assumed to be in parked conditions.
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Only one sea state is assessed, where the rogue wave is assumed to be twice the height of the significant wave
height. A parametric analysis is performed by varying the equilibrium position of the spar and evaluating the
responses.

Qu et al. (2020) investigated the effect of the wave-current interaction on the generation process of a rogue
wave [66]. To generate the free surface profile of a sea with a current containing a rogue wave they apply a
phase-modulating algorithm. The waves and current are assumed 1-dimensional, only dependent on time.
One sea state is considered against which 5 different current speeds are evaluated for the rogue wave gen-
eration. For each current speed multiple simulations are run where they report how many waves in those
simulations are found to meet the rogue wave criterion of Hr og ue ≥ 2Hs . They aim, among other things, to
illustrate differences in rogue wave generation for following and opposing currents. The wave forces are ob-
tained from surface elevation time-histories containing the rogue waves by applying transfer functions they
obtained using the software WADAM. Then, the dynamic response is evaluated by a 6-DOF in-house numer-
ical code. The turbine is assumed to be in parked conditions and only the wind drag force working on the
turbine is included. Due to the 1-dimensional nature of the waves and current, limited to one sea state, noth-
ing about rogue wave statistics or their severity can be concluded for realistic ocean conditions.

3.3. Concluding remarks - Dynamic response SFWT
In this chapter a brief overview of the motion response of a spar-type floating wind turbine was given, as well
as some previous research into this subject. Two research papers have evaluated a case of a single rogue wave
hitting a SFWT. The OC3-Hywind concept is used by many authors in their dynamic analysis and is consid-
ered a valid reference SFWT design. Therefore it is the obvious choice to use this design for this thesis as well.

What stands out from the previous research into the dynamic response induced by a rogue wave is that the
authors consider only one sea state, and do not say anything about the probability of such an event happen-
ing or whether this wave is the worst that could happen. Furthermore, none of the papers say something
about the tower-top acceleration, which is a common industrial operational limit [67]. It would be most valu-
able if the dynamic response was known to rogue waves of different sizes, with each their own occurrence
probability as estimated by different probability models. This way, for the first time, a risk assessment can
be done on the possible danger of these rogue waves to a SFWT. This is an area where this research aims to
contribute to the literature.



4
Research objectives and methodology

The objective of this thesis is to evaluate whether rogue waves could be a threat to spar-type floating wind
turbines, based on their occurrence probability and the subsequent induced motions of the turbine. Some
practical choices are made regarding site selection and software. California is chosen as a location of interest
for floating wind energy. Also, the software program OrcaFlex is chosen for the motion response time-domain
simulations. OrcaFlex is the industry standard for dynamic offshore analysis and a license was made avail-
able by IntecSea for this research.
Based on the thesis objective and the literature gaps, the following research main and sub-questions have
been established:

• How threatening are rogue waves to a spar-type floating wind turbine, based on the probability of the
wave occurring and the accompanying motion response?

Whereby the following sub-questions are formulated:

• How do space-time extreme wave probability models compare to time-extreme models in predicting
rogue waves off the Californian coast on a spatial scale relevant to floating offshore wind turbines?

– From what spatial scale do space-time extreme and time-extreme wave models yield significant
differences?

– What is the influence of the shape of the directional wave spectrum on the predicted rogue wave
occurrence?

• What is the dynamic response of a spar-type floating wind turbine to rogue waves with different oc-
currence probabilities as predicted by space-time and time-extreme wave models based on OrcaFlex
time-domain simulations?

4.1. Methodology
Figure 4.1 visualizes the research methodology for this thesis. Squares 1 - 6 are part of the rogue wave prob-
ability part, squares 7 and 8 are part of the dynamic response modeling and squares 9 and 10 represent the
results and conclusion. These steps are briefly explained below.

1. Collect environmental data
The first step is to collect environmental data. More specifically, directional wave data is needed. Around 23
years of wave data has been evaluated, which is a significant amount since this is close to the life-span of a
typical offshore structure.

20
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2. Calculate directional spectra
With the directional wave data the spectral wave moments are calculated. From these spectral moments the
input parameters for the probability models are found.

3. Evaluate the probability models
With the input parameters from the previous step, the different TE and STE probability models are evaluated
in all sea states. Rogue wave crest and crest-to-trough exceedance probabilities are calculated according to
their definition.

4. Compare models
Once the exceedance probabilities are calculated using the historical wave data, the models can be compared
on their estimated probabilities of a rogue event. This is done for different STE area sizes.

5. Spectrum analysis
To investigate the influence of the shape of the wave spectrum, two spectral bandwidth parameters are eval-
uated and their relation to the estimated probabilities of a rogue event are investigated.

6. Probabilistic analysis
Using the previously calculated hourly exceedance probabilities, a method is established to estimate overall
rogue wave probabilities.

7. Generate deterministic rogue wave series
Using a deterministic extreme wave theory, random wave series are generated with a deterministic rogue
wave embedded. These wave series are based on real wave spectra and the most likely shape of the rogue
wave.

8. Probabilistic analysis
The previously generated wave series with the embedded rogue waves are imported in OrcaFlex and simu-
lations are run. The dynamic responses are presented as results and are used when evaluating the research
questions.

Figure 4.1: A schematic representation of the research methodology.
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Rogue wave probability

This chapter presents the research into the rogue wave occurrence probability. Directional wave data, re-
quired to calculate the input parameters for the statistical models, is retrieved from a wave buoy located
offshore California. Subsequently, this data is imported, filtered and further processed in Python. The wave
climate is mapped by sorting the sea states in bins of significant wave height and mean wave period, creating
a scatter diagram. The probability of a rogue wave crest and wave occurring is calculated in each sea state
using the TE and STE models. With this data, the following points have been investigated:

• The influence of the area size of a STE model on the rogue wave estimate is investigated by comparing
it with the estimate of the TE models. More specifically, the area size from which a STE model yields a
more conservative rogue wave estimate compared to a TE model is explored.

• The influence of the shape of the wave spectrum on the estimated rogue wave probability has been
investigated using two spectral width parameters.

• A long-term occurrence probability for four rogue wave and crest sizes has been calculated, using the
different TE and STE models.

5.1. Wave data
The National Oceanic and Atmospheric Administration (NOAA) collects data of several wave buoys located
off the coast of California. Figure 5.1 A displays a map retrieved from the NOAA website where these wave
buoys are marked by coloured squares. A yellow square means the buoy is active and a red square means
the buoy has been inactive for some time. Three of these buoys, operated by the National Data Buoy Center
(NDBC), are directional wave buoys and are marked in figure 5.1 B by the letters A, B and C. Some properties
of these buoys are summarized in table 5.1 below.

Figure 5.1: (Left) A: All wave buoys located off the Californian coast which are available through the NOAA. (Right) B: Three directional
wave buoys marked by letters A, B and C. Retrieved from [63].
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Buoy Water depth [m] Years of data available
A: St. Martin 1112 2003-2020
B: Monterey 1646 1998-2020
C: Santa Rosa Island 1005 2003-2020

Table 5.1: Properties of the three directional wave buoys.

The wave data of the NDBC buoys is not acquired from direct measurements. Accelerometers or inclinome-
ters within the buoy measure the heave acceleration or the vertical displacement of the hull during the 20-
minute data acquisition window each hour, together with sensors such as a triaxial magnetometer and/or
three ortogonal angular rate sensors, which measure the hull azimuth, pitch and roll angles. Then this data
is transformed from the time domain to the frequency domain by applying a Fast Fourier transform. After
this transformation, response amplitude operator processing is performed on the data to eliminate hull and
electronic noise so that the directional and non-directional wave parameters can be derived.

Buoy A, B and C each provide six different data files, which are sampled per hour and collected per year. The
measurements taken during the 20-minute data acquisition window are assumed to represent the conditions
for the whole hour. The first file contains meteorological data such as wind speed, significant wave height,
dominant wave period, air pressure, etc. The second file contains the wave energy in m2/H z. The third until
sixth file contain parameters necessary to calculate the directional wave spectrum sampled per frequency:
mean wave direction, principle wave direction and Fourier constants r1 and r2, which are explained further
in section 5.2. Figure 5.2 below illustrates how these six files relate to each other. Each line of data of all six
files is sampled per hour. To calculate the directional wave spectrum at a specified time you would need to
extract the data lines from the relevant files with the same timestamp, thus on the same line.

Figure 5.2: A visual representation of the data files provided by the directional wave buoys. The green line illustrates how the data lines
in the files are interconnected as they are sampled at the same time intervals.

The wave buoy located in the Monterey bay has with 23 years the most wave data available. Therefore the
data of this buoy is the obvious choice for this research. This is a significant amount of wave data compared
to the typical life of an offshore structure [29]. All data was downloaded as .txt files so that they can be easily
imported into Python.

Input from all six files is needed for calculations with the wave data. Therefore a corrupt or missing data line
in one of the files (figure 5.3) means that the line with that particular time-stamp becomes useless and has to
be removed in all data files. The first python script imports all wave data from the .txt files, filters the corrupt
data, excludes the incomplete lines in all files, and returns the usable data. This usable data is then stored per
year in a type of python data file called a ‘pickle’, so that it can be easily accessed later on.

Figure 5.3: An illustrative representation of corrupt or missing data inputs in the six data files, which leads to the complete deletion of
that particular line in all files.
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5.2. Directional wave moments
The most widely used method to represent a directional wave spectrum is by the directional Fourier series
expansion, which was originally developed by Longuet-Higgins et al. in 1963 [28] [55]. The parameters that
govern the directional spectrum in this method are: α1 = mean wave direction, α2 = principal wave direction,
r 1 = first normalized directional Fourier constant, r 2 = second normalized directional Fourier constant and
C11 = non-directional spectral density (energy). Notice that these are the parameters provided by the wave
buoys (figure 5.2).

The directional wave spectrum S( f ,θ) can be written as:

S( f ,θ) =C11( f )D( f ,θ) (5.1)

where D( f ,θ):

D( f ,θ) =
1
2 + r1 cos(θ−θ1)+ r2 cos(2(θ−θ2))

π
(5.2)

is the directional spreading function without any weighing values to prevent negative energy. These weighing
values can be added in an analogous manner to the cosines of equation 5.2. For this research they are chosen
as 2/3 and 1/6 for the first and second cosine respectively, after [28].
In section 2.5.2 of chapter 2, various statistical wave models were introduced. Their input parameters are
dependent on the directional moments of the wave spectrum. For good readability a recap of the relevant
equation for these moments is presented below:

mi j k =
Ï

k i
x k j

y f k S( f ,θ)d f dθ (5.3)

Here kx and ky are the directional wave number in x- and y-direction respectively, f the wave frequency and
S( f ,θ) the directional wave spectrum. Using equation 5.2, this integral can be evaluated numerically with the
available buoy data. This is done for all sea states within the 23 year data set.

The buoy provides directional wave data in degrees, measured clockwise from true north. The main direction
of wave propagation is chosen as the direction of the positive x-axis when calculating the spectral directional
moments. Using the imported and filtered directional wave data as illustrated in the section before, the spec-
tral directional moments for all sea states are calculated in Python.

5.3. Probability models - Python implementation
In section 2.5.2 various wave probability models were introduced. As these models and the corresponding
terminology will be often used in this chapter, some extra attention will be paid to their categorization. The
probability models can be classified in two ways:

• They either estimate the probability of a wave crest, or the probability of a ’complete’ wave (crest-to-
trough) occurring.

• They either estimate the wave occurring at a point in time (TE models) or they estimate the wave oc-
curring within an area (STE models).

See table 5.2 below for a clear overview of the probability models with these two categories considered.

Probability models Time extreme (TE) Space-time extreme (STE)
Crest Forristall, Tayfun, Tayfun-Fedele STE2
Crest-to-trough Naess, Rayleigh STE1QD

Table 5.2: An overview of the probability models considered in this research and their categorization based on two above mentioned
criteria.
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Equations 2.21 to 2.47 presented in section 2.5.2, containing the Naess, Forristall, Tayfun, Tayfun-Fedele,
STE2 and STE1QD model, together with the Rayleigh model (Eq. 2.17) have been implemented in Python.
The necessary input parameters follow from the earlier calculated directional wave moments.

The crest models are defined with respect to the wave crest exceedance probability, normalized with σ (the
standard deviation of the surface elevation). In this research, the significant wave height( Hs ) is assumed to
be Hs = 4σ, which is common practice [40]. The rogue crest definition given by equation 2.2 is redefined by
substituting 4σ in place of Hs , which leads to a new rogue wave threshold of η/σ = 5. The crest-to-trough
models are defined with respect to the wave height exceedance probability, so no substitutions have to be
made regarding the crest-to-trough rogue threshold (Eq. 2.1).

Remember from chapter 2 that the rogue waves are defined using one of the two size criteria, which have
to be met within a 20-minute time duration for the waves to be considered rogue. Therefore, all probabili-
ties which will be calculated will be exceedance probabilities of the rogue wave threshold, within 20 minutes.

In high sea states (large Hs ), wave lengths will become long and they will become wide crested (perhaps a
couple hundred meters). Since the TE and STE probability models will be compared in multiple sea states,
including these high ones with the long waves, it could be that quite a large area is required before signifi-
cant differences will be observed between some models. According to Benetazzo et al., the area evaluated
with the STE models should be smaller than 100×100m2 for the unbounded models to stay accurate and pre-
vent theoretical unlimited growth [11]. Therefore, 100m has been chosen as upper limit for the STE area sides.

Figure 5.4 gives a schematic representation of how the different Python scripts used to evaluate the wave
probability models relate to each other. First the wave data is imported and filtered. Then this filtered data
is stored in a pickle data file. The script ’Moments & parameters’ imports this data, calculates the spectral
directional moments and subsequently the model input parameters. These input parameters are then again
stored in a pickle. The script ’Probability models’ imports these parameters and evaluates the probability
models for each available sea state within the data set. The calculated probability data is then again stored in
a pickle so that it can be easily accessed by later scripts using it for comparisons and other calculations. As
they serve a core function in the probability analysis, these three Python scrips are presented in Appendix F.

Figure 5.4: A schematic representation of the different Python scripts used to evaluate the probability models using the wave data.
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5.4. Wave climate - scatter diagram
In order to compare the statistical models in different sea states it is desired to sort the sea states in bins. To
do so, a scatter diagram with the significant wave height and the mean zero-crossing period is made (figure
5.5). The average amount of waves (N) which have occurred in each sea state are calculated using the mean
zero-crossing wave period and are subsequently stored in their respective bin. From this diagram, frequently
occurring combinations of Hs and Tm can be chosen as a criterion to compare the models on. Also, this dia-
gram can be used to address the occurrence probability of a certain sea state.

At the end of section 5.1 the process of excluding corrupt data lines was introduced. Due to the fact that a
single corrupt line in one of the 6 interdependent data files leads to the exclusion of that line in all 6 data files,
quite some data lines had to be removed in order to prepare the data for the calculations. Also, in the first
file from 1998, the first sampled date is not January 1st like in the others, but June 19th. If no data lines had
been excluded, we would have had a total of 197568 hourly sea states. After the corrupt data exclusion there
are 170845 hourly sea states left. In the following sections and chapters, these 170845 hourly sea states will be
addressed as ’the data set’ and the included years (1998-2020) might be given as reference to the time period.
This exact number will be revisited when return periods are considered in calculations, due to the influence
it will have on the overall probability.

Figure 5.5: Scatter diagram of the significant wave height and the mean zero-crossing wave period. Data set from Monterey Bay from
1998-2020.
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5.5. Influence of spatial scale on predicted rogue wave probability
In this section, the TE and STE models are compared to each other, based on their estimated probability
that a rogue crest or wave (crest-to-trough) will occur. The comparisons will be done with ratios where the
probability estimated by the STE model is divided by that of the TE model, in a range starting with no spatial
component (X=0, Y=0) to A = 100×100m2, to investigate the influence of the spatial scale on the probability of
a rogue wave event. Especially interesting is the area size which will result in the STE model estimating higher
probabilities of a rogue wave occurring compared to the TE model.

5.5.1. Method
Several comparisons are made between TE and STE probability models. These comparisons are made for 10
different sea state combinations of Hs & Tm , based on figure 5.5. These combinations of Hs & Tm are chosen
as follows:
First, for each possible Hs range of figure 5.5 (such as 2 < Hs ≤ 2.5, 2.5 < Hs ≤ 3, etc.) the Hs & Tm bins con-
taining the most waves (N) are picked out. Since there are 21 rows with sea state entries, this comes down to
21 bins. This way, frequently occurring Hs & Tm combinations are identified. Then, from those frequently
occurring combinations, 10 bins were chosen as sea states to compare the models in.

The STE and TE models are compared on their estimated exceedance probability of a rogue wave event within
a 20-minute time series. This is P (η/σ ≥ 5) for a rogue wave crest and P (H/Hs ≥ 2) for a rogue wave, af-
ter equation 2.2 and 2.1 respectively. Within each of the 10 previously chosen sea state bins, the maximum
exceedance probability of the rogue threshold is identified for each wave model. These are the highest ex-
ceedance probabilities per bin and are chosen as a way to represent a worst-case scenario in terms of rogue
wave occurrence. The probability estimated by a STE model is then divided by that of a TE model, in a range
starting with no spatial component (X=0, Y=0) to A = 100×100m2, in each sea state.

By dividing the probability of the STE model by that of the TE model their difference ratio is easily obtained.
An important number here is ’1’, since a result lower than ’1’ indicates that the TE model estimates a higher
probability and a result larger than ’1’ indicates that the STE model estimates a higher probability. The fol-
lowing comparisons are made and presented in the figures below:

Comparisons rogue crest models

• STE2 - Forristall model (figure 5.6)

• STE2 - Tayfun model (figure 5.7)

• STE2 - Tayfun-Fedele model (figure 5.8)

Comparisons rogue wave models

• STE1QD - Naess model (figure 5.9)

• STE1QD - Rayleigh model (figure 5.10)

5.5.2. Results - Wave crest models
Figure 5.6, 5.7 and 5.8 present the comparisons between the STE2 model and the Forristall, Tayfun and
Tayfun-Fedele models respectively. The area size is reported on the x-asis in terms of

p
x y as a way to in-

dicate the length of the sides of the squared area. An area size of
p

x y = 10m means that the considered area
was 10×10m2. Some observations regarding these figures:

• A first observation shows that as the area size increases, the relative difference between the TE and STE
models increases. This is of course what was expected.

• The values on the y-axis show the ratio difference between the STE and TE model, where higher values
mean a larger difference. Regarding the TE models, the Forristall model appears to estimate the lowest
probabilities, followed by the Tayfun model and Tayfun-Fedele model estimates the highest rogue crest
probabilities.
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• Figure 5.6 and 5.7 clearly show a decreasing trend of the relative difference between the estimated rogue
crest probability by the STE and TE model, as the sea state becomes higher. This can be explained by the
fact that as waves become higher, they generally become longer crested, thus decreasing the amount
of unique waves that exist within or on the borders of the considered area and therefore decreasing the
influence of the spatial dimension.

• Figure 5.8 also shows traits of the above mentioned trend, though it is less pronounced. Many of the
curves in figure 5.8, from a sea state of 4 < Hs ≤ 4.5m and higher, are somewhat clustered together. This
could be explained due to the fact that the Tayfun-Fedele model is an extension of the Tayfun model
where an extra parameter, the excess kurtosis, is taken into account to incorporate 3rd order surface
nonlinearities.

What is interesting to see is that when the area sides X and Y approach 0, the STE2 model still approximates
higher exceedance probabilities of a rogue crest occurring than the Forristall and Tayfun model. This can be
clearly seen in both figure 5.6 (b) and 5.7 (b). The black dashed line denotes the y-value threshold of ’1’, indi-
cating whether the STE or the TE model estimates a higher probability. From an analytical point of view one
might expect the STE2 and Tayfun model to converge at

p
x y = 0m, since the Tayfun crest definition was used

to extend the linear STE1 model to the nonlinear STE2 model. However, when formulating the exceedance
probability function of the STE model, the asymptotic Gumbel limit was used to ensure probabilities lower
than ’1’ for small η/σ thresholds. Therefore these two models do not converge as the area sides approach 0m.

Only the Tayfun-Fedele model, in two sea states, slightly estimates a higher rogue crest exceedance probabil-
ity as the area sides X and Y approach 0. However, this difference can be considered quite insignificant, as
from an area of approximately 2×2m2 onwards the STE2 model again predominates. Due to the dependence
of the Tayfun-Fedele model on the excess kurtosis of the wave field, this exact area size may of course vary.
Nevertheless, since the area (2×2m2) is so small, and the Tayfun-Fedele model is the most conservative TE
wave crest model, one could conclude that when rogue wave crests are considered for structures like floating
offshore wind turbines, inclusion of the spatial dimension using the STE2 model will provide the most con-
servative estimate in all sea states.

(a) (b)

Figure 5.6: Comparison of the STE2 and Forristall estimate of P (ηmax /σ ≥ 5 |D) with D = 1200s. (a) Area sizes ranging from no spatial
component (X=0,Y=0) to 100×100m2. (b) Area sizes ranging from no spatial component (X=0,Y=0) to 20×20m2. The horizontal black
dashed line visualises a y-ratio of ’1’.
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(a) (b)

Figure 5.7: Comparison of the STE2 and Tayfun estimate of P (ηmax /σ ≥ 5 |D) with D = 1200s. (a) Area sizes ranging from no spatial
component (X=0,Y=0) to 100×100m2. (b) Area sizes ranging from no spatial component (X=0,Y=0) to 20×20m2. The horizontal black
dashed line visualises a y-ratio of ’1’.

(a) (b)

Figure 5.8: Comparison of the STE2 and Tayfun-Fedele estimate of P (ηmax /σ ≥ 5 |D) with D = 1200s. (a) Area sizes ranging from no
spatial component (X=0,Y=0) to 100×100m2. (b) Area sizes ranging from no spatial component (X=0,Y=0) to 20×20m2. The horizontal
black dashed line visualises a y-ratio of ’1’.

5.5.3. Results - Wave crest-to-trough models
Figure 5.9 and 5.10 present the comparisons of the STE1QD model with the Naess and Rayleigh model re-
spectively. Again clearly visible is the increasing difference in estimated exceedance probability of the rogue
wave threshold between STE and TE model as the area increases, and the declining relative difference as the
sea state becomes higher. Notice also that both in figure 5.9 and 5.10 the lines belonging to the two lowest sea
states seem to approach a maximum as the area increases. This is because in those sea states the STE1QD
model estimates an exceedance probability of almost ’1’ from a certain area size onwards.

Figure 5.9 (b) shows that as the area sides X and Y decrease to 0, the STE1QD model still predominates the
Naess model. This can again be seen by looking at the black-dashed line symbolizing y = 1 , which is never
crossed by any of the curves. In figure 5.10 (b) it is observed that for a small area (approximately <2×2m2),
the Rayleigh model always estimates a higher rogue wave probability than the STE1QD model, regardless of
the sea state. As the area size increases, the STE1QD model starts to predominate, and from an area size of
around 12×12m2 onwards the STE1QD model estimates higher rogue wave probabilities even in the highest
sea states. This is interesting because the Rayleigh model is generally regarded to be conservative (e.g. see
[57]). These results would indicate that when rogue waves are evaluated for an offshore structure with a foot-
print larger than 12×12m2, inclusion of the spatial dimension using the STE1QD model will provide the most
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conservative estimate in all sea states.

(a) (b)

Figure 5.9: Comparison of the STE1QD and Naess estimate of P (Hmax /Hs ≥ 2 |D) with D = 1200s. (a) Area sizes ranging from no spatial
component (X=0,Y=0) to 100×100m2. (b) Area sizes ranging from no spatial component (X=0,Y=0) to 20×20m2. The horizontal black
dashed line visualises a y-ratio of ’1’.

(a) (b)

Figure 5.10: Comparison of the STE1QD and Rayleigh estimate of P (Hmax /Hs ≥ 2 |D) with D = 1200s. (a) Area sizes ranging from no
spatial component (X=0,Y=0) to 100×100m2. (b) Area sizes ranging from no spatial component (X=0,Y=0) to 20×20m2. The horizontal
black dashed line visualises a y-ratio of ’1’.
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5.6. Influence of wave spectrum on rogue wave probability
To investigate the influence of the wave spectrum on the predicted rogue wave probability, two spectral width
parameters are investigated. These spectral bandwidth parameters, ε (Eq. 5.4) and ν (Eq. 5.5), range between
0 and 1. As their values approach ’0’ it indicates that the wave energy is concentrated around the peak fre-
quency and the spectrum is considered narrow (figure 5.11a) . When their values approach ’1’ it indicates
that the wave energy is spread out over multiple frequencies, giving a wide spectrum (figure 5.11b). Notice
the irregular shape of the wide wave spectrum together with the existence of negative crest heights due to the
energy being spread out over multiple frequencies.

ε=
√

1− m2
2

m0m4
(5.4) v =

√
m2m0

m1m1
−1 (5.5)

(a) (b)

Figure 5.11: A representation of a narrow wave spectrum (a) and a wide wave spectrum (b). Retrieved from [40].

This comparison uses the previously calculated exceedance probabilities of the two rogue thresholds within
a 20-minute duration. Additionally, the two spectral width parameters are evaluated in each sea state. Then
the exceedance probabilities of all considered sea states are matched with their corresponding spectral width
values in order to create scatter plots.
Regarding the two spectral parameters, ν is preferred to ε since the calculation of εdepends on the 4th spectral
moment m4 (see equation 5.4). Because m4 is a high-order moment, it is sensitive to noise in the spectrum at
the high frequencies. Therefore, the value of ε depends not only on the shape of the wave spectrum, but also
on errors, the high frequency cut-off or nonlinear distortions in the high-frequency part of the wave spectrum
[40].

5.6.1. Results - Wave crest models
Figure 5.12 to figure 5.15 present the scatter plots of the four considered wave crest probability models and
the two spectral width parameters. Each dot represents a 1 hour sea state, with on the vertical axis the ex-
ceedance probability of the rogue threshold in 20 minutes, and on the horizontal axis the spectral parameter
ε or ν. The trendlines are based on a polynomial fitted to the data using a MATLAB Polyfix function [6]. Ap-
pendix A presents a brief trendline shape comparison for both the crest and crest-to-trough models.

For all four models, an increase in estimated exceedance probability of the rogue crest threshold can be ob-
served as the spectral parameters ε and ν decrease. This indicates that the considered probability models
estimate a higher chance of rogue wave crests occurring as the wave spectrum becomes more narrow. The co-
efficient of determination, R2, is presented in the figure descriptions. This coefficient represents a ’goodness-
of-fit’ of the trendline for all data points and ranges between 0 and 1. Due to the very large data size with a
wide spread, these values are rather low. This means that the presented trendline is not an exact representa-
tion of the data, but should be regarded more like an indication.
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(a) (b)

Figure 5.12: Exceedance probability of the rogue wave threshold P (η/σ ≥ 5) for D = 20 minutes as estimated by the Forristall model,
plotted against (a) spectral width parameter ε with 3rd order trendline (R2 =0.3577) and (b) spectral width parameter ν with 2nd order
trendline (R2 = 0.0865).

(a) (b)

Figure 5.13: Exceedance probability of the rogue wave threshold P (η/σ≥ 5) for D = 20 minutes as estimated by the Tayfun model, plotted
against (a) spectral width parameter ε with 3rd order trendline (R2=0.3479) and (b) spectral width parameter ν with 3rd order trendline
(R2=0.1055).

(a) (b)

Figure 5.14: Exceedance probability of the rogue wave threshold P (η/σ≥ 5) for D = 20 minutes as estimated by the Tayfun-Fedele model,
plotted against (a) spectral width parameter ε with 3rd order trendline (R2 =0.3012) and (b) spectral width parameter ν with 3rd order
trendline (R2 =0.1093).
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(a) (b)

Figure 5.15: Exceedance probability of the rogue wave threshold P (η/σ ≥ 5) for D = 20 minutes as estimated by the STE2 model with
A=6.5×6.5m2, plotted against (a) spectral width parameter ε with 3rd order trendline (R2 = 0.3296) and (b) spectral width parameter ν
with 3rd order trendline (R2 = 0.0301).

5.6.2. Results - Wave crest-crest-to-trough models
Figure A.9 to figure 5.18 present the scatter plots of the three considered crest-to-trough wave probability
models. See appendix A for a brief trendline shape analysis. In the scatterplot where the Naess model is con-
sidered, figure A.9, no clear trend regarding the spectral parameters and the rogue wave probability can be
observed. The Naess model is dependent on two parameters: the ratio of the inquired wave height to the
significant wave height, and the minimum value of the underlying autocorrolation spectrum. The minimum
value of the autocorrolation spectrum has no direct connection to ε and ν, which can explain the absence of
a trend.

In the same sense, a clear trend for the Rayleigh distribution (figure 5.17) is difficult to distinguish. For spec-
tral parameter ε, a distinctive positive slope can be observed as ε goes to 0. However, since the Rayleigh
distribution is only dependent on the significant wave height, this behaviour is most probably due to the
mean zero-crossing period Tm , defined as

p
m0/m2, which is used to calculate the amount of waves N in the

20-minute time interval. The second spectral moment m2 can be found to the power of 2 in the numerator
of the fraction in equation 5.4. A relatively high m2 will result in a lower Tm and a low value of ε. This lower
value of Tm results in a high amount of waves in the 20-minute time interval, resulting in increased rogue
wave probability.

Lastly, the STE1QD model trendline appears to slope upwards when ε is regarded, though overall it cannot be
said that the shape of this data brings forward a robust trendline. This model is a linear STE model which was
extended using the QD theory. Due to the dependence on many parameters governed by spectral moments
and the unclear trendline, a clear conclusion regarding the influence of the spectral parameters on the esti-
mated rogue probabilities cannot be drawn.

5.6.3. Relation to previous literature
In section 2.5.1, a study from Cattrell et al. was presented where data from 80 wave buoys was used to find
possible connections between characteristic wave parameters and rogue waves [19]. They reported that the
normal seas and rogue seas had similar ν values, but that higher ν values showed increased rogue crest and
wave probability. In the case of the rogue crests, those results differ from the results from this section. Re-
garding ε, the rogue crests appeared to have a higher occurrence probability in seas with a more narrow
bandwidth, which is in accordance with the results of this section.
Similarly, Christou and Ewans (2014) also investigated characteristic sea parameters in relation to rogue
waves, but with measurements from fixed sensors on offshore platforms [22]. They did not differentiate be-
tween crest and crest-to-trough height in their bandwidth analysis. In contrast to Cattrell, they reported for
ν that the rogue waves occurred slightly more frequently in narrowband waves, which is more in accordance
to the results of this study. For ε they report a similar distribution for normal waves and rogue waves.
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(a) (b)

Figure 5.16: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the Naess model,
plotted against (a) spectral width parameter ε, trendline is 3rd order, R2 = 0.0726 and (b) spectral width parameter ν, trendline is 3rd
order, R2 = 0.2498.

(a) (b)

Figure 5.17: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the Rayleigh model,
plotted against (a) spectral width parameter ε with 2nd order trendline (R2=0.3471) and (b) spectral width parameter ν with 2nd order
trendline (R2=5.77e-4).

(a) (b)

Figure 5.18: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the STE1QD model
with A=6.5×6.5m2, plotted against (a) spectral width parameter εwith 3rd order trendline (R2 = 0.1106) and (b) spectral width parameter
ν with 3rd order trendline (R2 = 0.1881).
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5.7. Long-term rogue wave probability
To estimate the long-term rogue wave probability, both the short-term rogue statistics and the sea state oc-
currence probability have to be taken into account. In figure 5.5 the wave climate was visualised by a scatter
diagram sorting the average number of waves into bins of significant wave height and mean zero-crossing
period. For the purpose of calculating the overall rogue probability this scatter diagram is slightly modified,
such that instead of the amount of waves it now shows the amount of 1-hour sea states sorted in each bin
(figure 5.19). With this scatter diagram the expected occurrence of a certain sea state in the duration of the
data set can be addressed, while at the same time serving as a sort criterion to estimate average rogue proba-
bilities per bin.

Note that in section 5.4 the exact amount of usable sea states after the corrupt data exclusion was introduced.
This corresponds to 170845 hourly sea states, which converted to years is 19.5. This means that an overall
probability of a rogue wave occurring within the data set corresponds to this return period of 19.5 years,
which will also be used when extrapolating to longer return periods.

Figure 5.19: Scatter diagram of the significant wave height and the mean zero-crossing wave period. Numbers in the respective bins
correspond to the amount of 1-hour sea states found in the data set. Data from Monterey Bay from 1998-2020.

First, rogue size thresholds are established for both the crest and the crest-to-trough height. Since we are only
interested in the very large waves, the four most upper rows containing sea state entries of figure 5.19 are in-
vestigated. For each of these rows the average significant wave height is calculated to serve as benchmark for
the thresholds. Table 5.3 below presents these Hs averages, together with the corresponding rogue thresholds.

Scatter diagram row Hs Avg Hs ηr og ue Hr og ue

[m] [m] [m] [m]
10 - 10.5 10.31 12.89 20.62
9.5 - 10 9.92 12.40 19.84
9 - 9.5 9.13 11.41 18.26
8.5 - 9 8.78 10.98 17.56

Table 5.3: Average significant wave height and corresponding rogue thresholds of the four rows containing the highest sea states of the
scatter diagram.

In theory, one could state that in each of the sea states found in figure 5.19 a rogue wave could form which will
exceed a threshold from table 5.3, given enough time. Though this is extremely unlikely, it will be the starting
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point of this calculation. To evaluate the probability that at least one wave will exceed one of the thresholds,
one can calculate the probability that in all sea states no waves will exceed the threshold (Pno r og ue ). The
probability of at least one wave exceeding a rogue threshold is then easily found by evaluating Pr og ue = 1-
Pno r og ue .

Crest height and crest-to-trough height exceedance probabilities P (η/σ ≥ ξ | D) and P (H/Hs ≥ z | D) for a
large range of ξ and z values have been calculated in all sea states, using the different probability models. The
duration D is 20 minutes to comply with the rogue definitions. In a low sea state the threshold ξ or z which has
to be exceeded in order to produce a rogue wave large enough to surpass the thresholds established in table
5.3 will be much higher compared to those of a high sea state. The probability of exceeding a high threshold
ξ or z rapidly decreases as the threshold grows larger. This means that, having the scatter diagram in mind,
from a certain sea state range downwards the contribution of those sea states to the exceedance probability
of the rogue thresholds will be nihil.
Note that only waves which classify as rogue are of interest to this calculation. If in a sea state the threshold
is not considered rogue, then that sea state is excluded from the calculation.

Each bin of figure 5.19 is evaluated separately in terms of their exceedance probability of the rogue thresholds.
This is done by first calculating the average Hs of the sea states within that bin. This average Hs is then used
to determine the average threshold ξ or z that a sea state within that particular bin will have to exceed in order
to exceed the rogue thresholds. Using these ξ and z values an average exceedance probability is calculated
per bin. This is done by taking the average of the exceedance probabilities of all the sea states within the bin
evaluated at that average ξ or z value. To check whether these probabilities may directly be averaged, or that
the input parameters should be averaged, a comparison between these two methods is made in selected sea
states where Hs ≥ 7.5m, see Appendix B. From this comparison it is concluded that since the difference in
results is minimal, the probabilities will be directly averaged as this is the fastest method. Now, to calculate
the probability of at least one wave exceeding a threshold within the data set, the following equation will be
evaluated:

P (r og ue) = 1−
(

N⋂
i=1

P (no r og ue | Ssi )

)
(5.6)

Where the P (no r og ue | Ssi ) is defined as the average probability of no wave exceeding the rogue threshold
in that particular sea sate (Ssi ), to the power K , which represents the number of 20-minute time series found
in the respective sea state bin:

P (no r og ue | Ssi ) = P (no r og ue)K
i ,av g (5.7)

Notice that in figure 5.19 the number in each bin represents a sea state of 1 hour. So to calculate K this num-
ber is multiplied by three.

At some point sea states will be excluded from the calculation based on the wave breaking limit H/L < 0.14
[40]. To give a quick indication of this cut-off limit the lowest crest-to-trough threshold of table 5.3, Hr og ue

= 17.56 m, is taken as an example. The minimum wavelength which a wave should have in order to attain
such a wave height and not break would be ∼ 125 m. Using the dispersion relationship, this corresponds to
a minimum wave period of 9 s. For each bin this wave breaking limit is evaluated using the average mean
zero-crossing period. Since the wave breaking limit is defined with respect to the wave height and not the
crest height, the rogue wave height from table 5.3 is used to determine the wave breaking limit belonging to
the rogue crest height in the same row as well.

By keeping in mind the wave period cut-off limit for wave breaking, an assumption can be made from which
point the inclusion of low sea states in the overall rogue wave probability calculation becomes insignificant.
Since the lowest rogue wave threshold requires a minimum wave period of 9 s, we can disregard all bins con-
taining waves with a lower mean zero-crossing period. The largest amount of sea states found in one bin in
the valid Tm range then becomes ’2758’ (bin 2 < Hs ≤ 2.5 & 9 < Tm ≤ 10). Following equation 5.7, this would
lead to Kmax = 8274. Once the largest average sea state exceedance probabilities P (no r og ue)i ,av g are found
to be in the order 10−9, the inclusion of lower sea states are disregarded. Even using the value Kmax , this
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would no longer significantly influence the overall rogue probability.

5.7.1. Results - Overall probability within data set
In tables 5.4 and 5.5 below the probabilities of at least one wave within the data set exceeding one of the rogue
thresholds are presented. As considered area 6.5×6.5m2 has been chosen in accordance with the waterline
diameter of the OC3 Hywind spar.
Notice that in some cases the probabilities in column 3 (second rogue threshold) are lower than those in
column 4 (first rogue threshold). This may seem counterintuitive but can be explained by the fact that sea
states in which a certain treshold is not considered rogue are excluded from the overall probability calcula-
tion. Raising the threshold means the inclusion of higher sea states, and in this case the inclusion of these
higher sea states adds more to the probability than what is lost by raising the threshold.
An example, the third rogue crest threshold (ηr og ue = 11.41m) was formulated using the average Hs of the sea
states in the range 9 < Hs ≤ 9.5m. The higher sea states, such as 9.5 < Hs ≤ 10m and 10 < Hs ≤ 10.5m, are
excluded in this calculation because there the crest would not be considered rogue.

Probability at least one rogue crest ηr og ue = 10.98m ηr og ue = 11.41m ηr og ue = 12.4m ηr og ue = 12.98m
Data set, 19.5 years [%] [%] [%] [%]
Forristall 7.5 5.7 1.2 1.7
Tayfun 13.6 10.5 2.4 2.7
Tayfun-Fedele 28.5 22.1 5.9 5.6
STE2 6.5×6.5m2 65.5 55.8 22.4 20.2

Table 5.4: Probabilities of at least one rogue crest exceeding one the rogue thresholds within the data set, according to the Forristall,
Tayfun, Tayfun-Fedele and the STE2 model.

Probability at least one rogue wave Hr og ue = 17.56m Hr og ue = 18.26m Hr og ue = 19.84m Hr og ue = 20.62m
Data set, 19.5 years [%] [%] [%] [%]
Naess 37.9 27.8 6.6 8.5
Rayleigh 93.4 83.3 32.7 35.5
STE1QD 6.5×6.5m2 93.2 84.7 43.1 40.4

Table 5.5: Probabilities of at least one rogue wave exceeding one the rogue thresholds within the data set, according to the Naess, Rayleigh
and STE1QD model.

5.7.2. Results - 50-year probability extrapolation
A common extreme wave return period for offshore design calculations is 50 years. To estimate the proba-
bility of at least one of the rogue waves occurring within 50 years, the results from the data set have to be
extrapolated. Hereby the assumption is made that the distribution of sea states retrieved from the data set is
representative for the wave climate. Extrapolation from 19.5 to 50 years is done by multiplying exponent K
(Eq. 5.7) by a factor Y = 50/19.5 = 2.56 and subsequently rounding K down to a whole number. The extrapo-
lated 50-year return probabilities are presented in table 5.6 and 5.7 below.

Probability at least one rogue crest ηr og ue = 10.98m ηr og ue = 11.41m ηr og ue = 12.40m ηr og ue = 12.98m
50-year extrapolation [%] [%] [%] [%]
Forristall 18.2 14.0 3.0 4.4
Tayfun 31.3 24.6 6.1 6.8
Tayfun-Fedele 57.8 47.2 14.6 13.8
STE2 6.5×6.5m2 93.5 87.6 48.0 43.9

Table 5.6: Probabilities of at least one rogue crest exceeding one the rogue thresholds extrapolated from 19.5 to 50 years, according to
the Forristall, Tayfun, Tayfun-Fedele and the STE2 model.
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Probability at least one rogue wave Hr og ue = 17.56m Hr og ue = 18.26m Hr og ue = 19.84m Hr og ue = 20.62m
50-year extrapolation [%] [%] [%] [%]
Naess 70.6 56.6 16.3 20.4
Rayleigh 99.9 99.0 64.1 67.5
STE1QD 6.5×6.5m2 99.9 99.2 76.6 73.5

Table 5.7: Probabilities of at least one rogue wave exceeding one the rogue thresholds extrapolated from 19.5 to 50 years, according to
the Naess, Rayleigh and STE1QD model.

5.7.3. Results - Estimated return periods
To compare the probability models in a way which is perhaps more relevant for design purposes, their esti-
mated return periods will be evaluated. To do this, we again assume that the distribution of the sea states
from the data set is representative for the full wave climate at this location. Also, an assumption has to be
made about with which rogue wave probability one may say that the wave will occur. This probability will
differ regarding ones desired risk profile, but for the purpose of this thesis a probability of 95% will be consid-
ered sufficient. These return periods are found by the same extrapolation method as applied for the 50-year
return period in the previous subsection.

The 95% probability is an arbitrary threshold chosen as a value to represent the situation that ’most probably’
at least one rogue wave has occurred. This value could also have been slightly higher or lower, depending the
desired risk profile. Its good to note that these exact return periods are not the primary interest, but they are
used rather to compare the models in terms of a common parameter used in design processes. Again clearly
visible here is the behaviour that for some models, when the threshold is raised from the one in the third
column to that of the fourth, the rogue wave actually becomes more likely due to the inclusion of higher sea
states in which it is now considered rogue.

Probability at least one rogue wave ηr og ue = 10.98m ηr og ue = 11.41m ηr og ue = 12.40m ηr og ue = 12.98m
Return period until 95% probability [years] [years] [years] [years]
Forristall 750 1000 5000 3350
Tayfun 400 525 2400 2150
Tayfun-Fedele 175 235 960 1010
STE2 6.5×6.5m2 55 72 230 260

Table 5.8: Return periods in years necessary for a 95% probability of at least one rogue crest occurring, per threshold, for the Forristall,
Tayfun, Tayfun-Fedele and STE2 model.

Probability at least one rogue wave Hr og ue = 17.56m Hr og ue = 18.26m Hr og ue = 19.84m Hr og ue = 20.62m
Return period until 95% probability Years Years Years Years
Naess 123 180 850 660
Rayleigh 22 33 147 134
STE1QD 6.5×6.5m2 22 31 104 113

Table 5.9: Return periods in years necessary for a 95% probability of at least one rogue wave occurring, per threshold, for the Naess,
Rayleigh and STE1QD model.
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5.8. Conclusions - Rogue wave probability
In this chapter, research into the probability of a rogue wave occurring offshore California was presented. The
following subjects have been treated:

• Different probability models have been compared, whereby the influence of the spatial scale of the STE
models was investigated.

• The influence of the shape of the wave spectrum on the estimated rogue wave probability was explored
by evaluating two spectral parameters.

• Overall rogue wave probabilities were calculated for four rogue wave crest and crest-to-trough sizes.

When comparing the wave crest probability models on maximum exceedance probability per sea state, it was
observed that even as the area sides X and Y approached 0m, the STE2 model estimated a higher probability
of a rogue crest occurring than the Forristall and Tayfun model in all sea states. The Tayfun-Fedele model es-
timated a slightly higher rogue crest probability than the STE2 model in two sea states, though only when the
area size was smaller than 2×2m2. Because the Tayfun-Fedele model is the most conservative TE crest model,
and an area size of 2×2m2 is small when floating offshore wind turbines are considered, the inclusion of the
spatial dimension using the STE2 model for rogue wave crests will provide the most conservative estimate in
all sea states.

Regarding the crest-to-trough probability models, the results from the comparison of the Naess and STE1QD
model indicate that the STE1QD model predominates the Naess model regardless of the area size in all sea
states. In the comparison with the Rayleigh and the STE1QD model, it was observed that the Rayleigh model
estimates a higher rogue wave probability in all sea states when the area is smaller than 2×2m2. As the area
size increases, the rogue probability estimated by the STE1QD model increases and from an area size of
12×12m2 and larger it was observed that the STE1QD predominates the Rayleigh model. The Rayleigh model
is generally considered to be conservative. These results indicate that if a structure with a footprint larger
than 12×12m2 is considered, the STE1QD model would be the most conservative in all sea states. Hereby it
should be noted that the exact area size may differ based on the environmental parameters of a location. Nev-
ertheless, seeing as the original STE1 model is constructed using the Rayleigh distribution, and the Rayleigh
distribution is only dependent on the ratio of desired wave height to significant wave height, this area size is
a good indication.

The influence of two spectral shape parameters on the estimated rogue wave probability was investigated.
For the wave crest models it was observed that the rogue crest probability increases as the wave spectrum
became more narrow. This was seen for all four wave crest models. Exceptionally large wave crests, such as
these rogues, influence the height of the platform of offshore structures. These results would indicate that
rogue crests may occur more frequently at locations with in general more narrow wave spectra, which in
combination with the platform’s footprint should be taken into account when designing the platform height
above the MSL.

The Naess and Rayleigh crest-to-trough probability models showed no clear preference for a narrow or wide
spectrum. The STE1QD model displayed a slight tendency of increased rogue wave probability for a narrower
wave spectrum, though the slope of the trendline was minimal from which nothing can be concluded.

Four rogue crest and crest-to-trough sizes were chosen by calculating the average significant wave height of
the four upper rows of the wave climate scatter diagram, and using those wave heights to evaluate the rogue
thresholds. The probability of at least one of those rogue waves occurring within a certain time-span was
calculated for each probability model. For the STE models an area size of 6.5×6.5m2 was chosen after the
OC3-Hywind spar waterline diameter. Three scenarios were investigated:

• The probability of at least one rogue event occurring within the usable data set, consisting of 19.5 years
worth of wave data.

• The probability of at least one rogue event occurring with a 50-year return period.

• The return period per model until a 95% occurence probability of at least one rogue event is achieved.
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For the long-term rogue crest probability it was observed that the Forristall model estimates the lowest oc-
currence probability, followed by the Tayfun model, then by the Tayfun-Fedele model, and the STE2 model
estimates the highest occurrence probability. The difference between the Tayfun-Fedele model and the STE2
model was significant, which was expected regarding the earlier results from section 5.5.
The estimated return periods until a 95% probability of at least one rogue crest were given in section 5.7.3. In
offshore design practices it is common to work with 50- and 100-year return periods for extreme environmen-
tal conditions [24]. The return periods estimated by the TE models all largely exceed the 100 years. Only the
STE2 model estimates return periods lower than 100 years for the two smallest rogue crests. This illustrates
how using an STE model could provide more conservative estimates than a TE model.

Between the crest-to-trough models it was observed that the Rayleigh and STE1QD model estimate higher
overall occurrence probabilities than the Naess model. Earlier, during the model comparisons of maximum
exceedance probabilities, we observed that up until an area size of 12×12m2 the Rayleigh model estimated
higher rogue wave probabilities in several sea states. In this overall rogue probability calculation, where the
probabilities are averaged per bin, the results indicate that for the considered area size of 6.5×6.5m2 the
Rayleigh and STE1QD model estimate similar occurrence probabilities. For the two smallest rogue waves
they are nearly identical, and for the two largest the STE1QD model is slightly more conservative. When the
overall rogue wave probability is considered, it appears that the STE1QD model is already more conservative
from an area size of 6.5×6.5m2.



6
Dynamic response SFWT to rogue wave

This chapter presents the research into the dynamic response of the OC3-Hywind model to a rogue wave.
First, an overview of the OrcaFlex OC3-Hywind model is given. Then, a theory to embed deterministic ex-
treme waves in a random wave series, called the most likely wave model (MLW), is presented. Subsequently,
using the rogue wave heights with different occurrence probabilities as evaluated in the previous chapter, a
deterministic rogue wave is embedded in a random wave series based on real wave spectra from the envi-
ronmental data, using the MLW model. These wave time-series are then imported into OrcaFlex to simulate
the rogue wave impact with the SFWT. The dynamic response is presented in terms of surge, heave, pitch and
nacelle accelerations of the SFWT. In the end, these values are compared to some reference limits that exist
in the literature to asses the severity of the motions.

6.1. Description OC3-Hywind OrcaFlex model
Orcina has constructed an OrcaFlex OC3-Hywind model, ’K01 Floating wind turbine’, which is publicly avail-
able on their website [65]. This model consists of the 5MW NREL reference turbine (table 6.1a) placed on the
OC3 Hywind spar substructure (table 6.1b). The 5MW NREL reference turbine is recognised as an industry-
standard reference model which is representative for a utility-scale, multi-megawatt wind turbine. To keep
the turbine from drifting, the spar is anchored to the sea bed by three catenary mooring lines. The spar has a
draft of 120m and the top, upon which the turbine tower is placed, extends 10m above the SWL.

5MW wind turbine OC3-Hywind spar substructure
Parameter Value Parameter Value
Rotor, hub diameter 126 m, 3 m Total draft 120 m
Hub height 90 m Elevation to platform top above SWL 10 m
Cut-in, Rated, Cut-Out wind speed 3 m/s, 14 m/s, 25 m/s Depth to top of taper below SWL 4 m
Rotor mass 110 000 kg Depth to bottom of taper below SWL 12 m
Nacelle mass 240 000 kg Platform diameter above taper 6.5 m
Tower mass 347 460 kg Platform diameter below taper 9.4 m
Coordinate CM (0.2m, 0.0m, 64.0m) Total platform mass 7 466 330

Number mooring lines 3
Depth to fairleads below SWL 70 m
Depth to anchors below SWL 320 m

Table 6.1: Some parameters of the OC3-Hywind model. (a) Properties of the 5MW reference turbine. (b) Properties of the OC3-Hywind
spar substructure.

6.1.1. System modelling
The OrcaFlex OC3-Hywind model is built up out of the following components: the turbine, the tower, the spar
platform and the mooring system. This subsection gives a brief overview of the modelling approach of the
relevant parts.

41
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The turbine element is a conventional three-bladed rotor, with options for variable speed and pitch control.
A gear ratio can be specified and is set to 97 for the OC3-Hywind model. The rotor hub has a radius of 1.5m
and is assigned to the turbine object. The transverse and axial moments of inertia around the main shaft are
specified and the centre of mass of the hub is located at the geometric centre of the rotor.

The turbine blades in OrcaFlex are modelled by a structural model somewhat similar to the one used by lines,
with inertia lumped at the nodes which are connected by massless segments. Each blade consists of 17 dif-
ferent elements, which can vary in length, wing type and (initial) pitch angle. The blade DOF’s are set to
’free’, which means that for each node, 6 DOF’s are included. This allows the blade parts to move in a rota-
tional and translational direction with respect to eachother, thus allowing the blade flexibility to be modelled.

The Nacelle is modelled as a 6D buoy object, with the proper mass, CM and inertia properties, as well as the
appropriate CM and Ca coefficients to capture the aerodynamic effects. Figure 6.1 below illustrates how the
whole turbine element is modelled.

Figure 6.1: A detail of the nacelle to illustrate the turbine modelling. Retrieved from [69].

The conical tower is modelled as a line object with a ’homogeneos pipe’ line type assigned to it. By doing
so, a variable wall thickness can be modelled with the appropriate inner and outer diameters, as well as the
physical properties of the tower such as the material density, young’s modulus and Poisson ratio. This leads
to a model where OrcaFlex can take the structural deflection of the tower into account.

The spar platform is modelled in Orcaflex using the ’spar’ category of the 6D buoy element. This results in
a rigid body spar platform, with 6 DOF’s and the appropriate geometric and physical properties assigned to
it. The spar buoy is split up into 40 discrete cylinders. To accurately capture changes to the hydrodynamic
loading and buoyancy on the surface-piercing part of the spar buoy, the cylindric parts in the top section have
been assigned a fine discretisation of 1m, while for the lower part a discretisation of 10m is considered (see
figure 6.2). To calculate the hydrodynamic loads on the spar in Orcaflex, the extended Morison’s equation is
considered (Eq. 6.7). The influence of radiation damping and diffraction effects are assumed negligible, as is
assumed by the OC3 NREL report [46].
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Figure 6.2: The OC3 Hywind spar substructure as built in OrcaFlex. Retrieved from [69].

The three catenary mooring lines holding the spar in place are assigned their physical properties via the
appropriate line type elements. The anchors and mooring lines are placed evenly around the spar in azimuth
increments of 120°, and the radius of the anchors to the centerline of the spar is approximately 854m. The
mooring lines are connected to the spar via a ’delta’ or ’crowfoot’ connection, as illustrated in figure 6.3. Each
line is connected to the spar at a radius of 5.2m measured from the spar’s centerline.

Figure 6.3: The mooring line arrangement of the OrcaFlex OC3-Hywind model. Retrieved from [65].

6.2. Most likely wave model
Computer simulations of a structure in a random wave field aimed at obtaining extreme loads can be incred-
ibly time-consuming. A preferred alternative is a deterministic load condition which is accurate to a high
enough degree. This section gives an overview of a popular theory, the most likely wave model, used to gen-
erate deterministic extreme waves and embed them in a random wave series.

Tromans et al. (1991) presented a theory for a deterministic probabilistic formulation of a single extreme
wave called the NewWave theory [85]. Comparisons between this wave theory, time domain simulations and
Stokes fifth order waves proved to be in excellent agreement. This section will give a brief overview of the
NewWave theory.

The free surface elevation η(x, y, t ) may be assumed stationary over a finite area for a certain time duration,
typically three hours. Then, η can be presented as a summation of harmonic components:

η(x, y, t ) =∑
n

cn cos
(
kn x cosθn +kn y cosθn −ωn t +εn

)
(6.1)

where n is a large number and cn is given by:
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< c2
n >= 2 f (ωn ,θn)S (ωn)∆ω∆θ (6.2)

For a component n, the wave number is kn , the direction relative to the mean wave direction is θn , the fre-
quency is ωn and the phase is εn . The directional wave spectrum is given by f (ωn ,θn)S (ωn). Extreme waves
are waves that form when many components come into phase. In the NewWave theory a formulation is pre-
sented such that the largest waves of the sea can be described with deterministic phases and amplitudes.
The surface elevation can be written as a function of time such that it is normally distributed around a most
probable (and expected) value η∗d :

η∗ =αρ(τ)+ g (τ) (6.3)

where τ= t − t1,α is the crest amplitude and ρ(τ) is the autocorrelation function of the surface elevation. The
first term of equation 6.3 is the most probable value η∗d :

η∗d =αρ(τ) (6.4)

This most probable value is deterministic and proportional to the crest amplitude. The second term of Equa-
tion 6.3 is a non-stationary Gaussian function with a zero mean and a standard deviation that increases from
zero at the crest to the regular standard deviation of the underlying wave once it moves away from the crest.
Equation 6.4 can be generalised such that:

η∗d (X , t ) = α

σ2

∑
n

dn cos(kn X −ωn t ) (6.5)

where dn = S (ωn)∆ω and X = x −x1.

Taylor et al. showed in their 1997 paper how the NewWave profile embedded in a stochastic wave time-series
can be used to estimate the extreme response of a Jack-Up [82]. Their method ensures a deterministic extreme
wave at t0, after which the wave series returns to the random shape of the background waves. Their approach
can be explained as follows: they state that a random wave series has an elevation a0 and slope ȧ at t0. This
elevation and slope are multiplied by the autocorrolation functionρ(τ) and its derivative ρ̇(τ) respectively and
subtracted from the signal. Due to the specific shape of the autocorrolation function this process essentially
’removes’ the random wave which originally was at t0. Then they add the desired deterministic wave back
to the wave series with a ·ρ(τ). The exact process is given by equation 6.6 below. By adding equation 6.6 to
equation 6.1 the NewWave model is embedded in the random wave series. This combination of NewWave
theory and equation 6.6 is also referred to as the most likely wave (MLW) model.

∆a = (−a0 +a) ·ρ(τ)− ȧ

λ2 · ρ̇(τ) (6.6)

Here λ2 is obtained using the second spectral moment: m2 =λ2σ2.

6.3. Deterministic rogue wave time-series
To embed a deterministic rogue wave in a random wave series, both the NewWave theory and equation 6.6
(together the MLW model) are used. For each of the four rogue wave thresholds defined in table 5.3, five wave
time-series have been generated with a deterministic rogue wave at tr . These wave time-series consist of two
parts: a random generated wave series from a wave spectrum and a deterministic rogue wave with a crest-to-
trough height corresponding to the four rogue wave sizes. These two parts are explained further in detail in
the subsections below.

6.3.1. Part 1: the wave spectrum
The wave spectrum which is used to generate the random wave series is different for the four rogue wave
sizes. As explained in section 5.7, the four rogue wave thresholds were established by taking the four upper
most rows of figure 5.19, calculating the average significant wave height per row, and using that average value
to evaluate equation 2.1 and 2.2.
For each size rogue wave a ’most likely wave spectrum’ is estimated. This most likely wave spectrum aims
to reflect the average of the sea states in which that particular size rogue wave is most likely to occur. This



6.3. Deterministic rogue wave time-series 45

is useful because in theory such a rogue wave could form in many of the sea states, but averaging them all
would not reflect the most probable conditions. The lower sea states are much less likely to produce a large
rogue wave, despite them being more numerous. An assumption is made that the most likely wave spectrum
consists of the averaged wave spectra belonging to the scatter diagram row of that particular rogue wave
threshold, together with two rows below. An example: the third largest rogue wave, Hr og ue ≥ 18.26, was
defined by taking the average Hs of row 9 < Hs < 9.5m to evaluate the rogue wave definitions. To calculate the
most likely wave spectrum, all wave spectra belonging to that row, and two rows below (8 < Hs < 8.5m and
8. < Hs < 9m) are averaged. See for example figure 6.4, which shows the considered wave spectra (grey lines)
used to calculate the most likely wave spectrum (red line) for the third rogue wave threshold.

Figure 6.4: A visual representation of the most likely wave spectrum for the third rogue wave threshold Hr og ue ≥ 18.26. Grey lines
represent the considered wave spectra and the red line represents the average, or the most likely wave spectrum. Only wave spectra
belonging in the scatter diagram row of the particular rogue wave threshold and two rows below are considered.

The random wave time-series were generated from these most likely wave spectra, using the Python random
module for the phase of each wave component, with a unique seed for each series. To determine whether a
specific simluation duration is needed before the spar model reaches its equilibrium position, a few OrcaFlex
simulations are done using the generated random wave series. Based on the surge response of the spar in
these wave series no specific ramp-up period seems to be necessary in the main simulation, as the surge re-
sponse immediately shows steady state behaviour.

Before the main simulation in Orcaflex there is usually a build-up stage, during which the motions of the
vessel and the waves are smoothly built up from zero to their full magnitude. This build up period is chosen
to be 50s. When importing a wave time history in Orcaflex, one of the requirements is that it should have a
number of components equal to a power of two (eg. 1024, 2048, 4096). Based on this requirement, the 50s
build up period and the fact that no specific duration is needed before the system reaches its equilibrium,
a total simulation time of 512s is chosen, where -50s to 0s is the build up stage, and 0s to 462s is the main
simulation. The time for the deterministic rogue wave to occur within the simulations is chosen to be at 350s.

6.3.2. Part 2: the deterministic rogue wave
The deterministic rogue wave is modeled using the NewWave theory. The autocorrolation function of the
underlying wave spectrum, used to estimate the deterministic shape of the large waves in that sea state, is
obtained by averaging the autocorrolation functions of the wave spectra previously used to determine the
most likely spectrum. This average autocorrolation function should therefore represent, in the same sense
as the spectrum, a ’most likely’ rogue wave shape. Figure 6.5 illustrates this process, where the considered
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spectra are the same as those in figure 6.4, for the third rogue wave threshold. Notice that the peak of the
function is already positioned at the desired timestamp of the deterministic rogue wave, at tr = 350s.

Figure 6.5: A visual representation of the most likely rogue wave shape for the third rogue wave threshold Hr og ue ≥ 18.26. Grey lines
represent autocorrolation functions of the considered wave spectra where the red line represents the average.

The most likely rogue wave shape greatly influences the period of the final rogue wave embedded in the wave
time-series. The wave periods associated with the most likely wave shapes for the four rogue wave sizes are
presented in table 6.2 below.

Hr og ue Period most likely shape
[m] [s]
20.62 16.0
19.84 15.8
18.26 15.6
17.56 15.4

Table 6.2: Wave periods of the corresponding most likely rogue wave shapes.

Now, using equation 6.6, the deterministic rogue wave can be embedded in a random wave series based on
the relevant most likely wave spectrum. Figure 6.6 shows an excerpt of a random wave series, from 250s to
450s, with the embedded deterministic rogue wave at 350s. The deterministic wave series (black solid line)
converges again with the unmodified random wave series (red dashed line) after about 40 seconds.
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Figure 6.6: An excerpt from a wave time-series with a deterministic rogue wave embedded at 350s (black solid line). The red dashed line
shows the unmodified random wave series. The rogue wave crest-to-trough height is 18.26m, after the third rogue wave threshold.

The MLW model gives a stochastic wave series where the size of the deterministic wave can be easily con-
trolled. The peak of the wave is the point where the model is completely deterministic. Here the autocor-
rolation function equals ’1’ and the underlying wave of the random wave spectrum is essentially removed.
However, once we start progressing away from this peak, the shape of the wave starts to get influenced by
both the autocorrolation function and the underlying wave spectrum. Due to this influence of the under-
lying wave spectrum we will not see the exact shape of the autocorrolation embedded in the random wave
series, but it will be very similar. This also influences the wave period, which will not be the exact value from
table 6.2. At the moment this is a known shortcomming of the MLW model and unfortunately no improved
alternative has been found yet.

6.4. From wave time history to dynamic response in OrcaFlex
A wave time history which is imported in OrcaFlex gives the wave elevation at a single point, the wave ori-
gin. However, OrcaFlex needs to obtain the wave elevation at any point on the sea surface for a successful
simulation. OrcaFlex achieves this by performing a Fast Fourier Transform (FFT) on the wave elevation data,
transforming the data into a number of frequency components. The FFT requires the number of samples N
in the time history to be a power of 2 and returns N /2 components. A single Airy wave is used to represent
such a component, and the combination of all these Airy waves is then used to determine the wave elevation
and its kinematics at all points. This estimation which uses Airy wave components linearizes the waves. The
velocity field of a nonlinear wave can be larger in magnitude, however if the waves are assumed to be non
breaking, velocities approximated using linear wave theory will not deviate much [4].

In the previous section the choice was made to generate time histories with 2048 components. With N = 2048
our time history will be approximated by a superposition of 1024 Airy wave components. OrcaFlex essentially
extrapolates these Airy wave components from the wave origin to all other points in order to derive the kine-
matics and elevation there. Such extrapolation induces errors which increase further away from the wave
origin. To reduce these errors it is advised to choose the wave origin such that it is placed as close as possible
to the most wave-sensitive parts of the model. During the simulations the wave origin is defined to be at
x = 0, y = 0, which corresponds to the initial position of the centerline of the spar.

6.4.1. Dynamic response
During a time domain simulation in OrcaFlex the vessel motions are calculated by solving a 6-DOF equation
of motion, as previously given by equation 3.1. Hydrodynamic loads are calculated by an extended form of
the Morison’s equation, which was given in its original form by equation 3.3. The extended form applies the
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same principles, but for a moving body. For a moving body the inertia term is reduced by Ca∆ab and the drag
term uses the velocity relative to the body. This results in the following extended Morison’s equation used by
OrcaFlex:

f = (CM∆af −Ca∆ab)+ 1

2
ρCD A |v r|v r (6.7)

where f is the wave force per unit length, CM , Ca and CD are the inertia, added mass and drag coefficient
respectively, ∆ is the water mass displaced by the body, a f and ab are the water acceleration and the vessel
acceleration both relative to earth, ρ is the density of the water, A is the drag surface area and vr is the water
velocity relative to earth. The superposition of Airy waves which is created from the time history input can
then be used by OrcaFlex to calculate the water particle velocity and acceleration components to serve as
input in equation 6.7.

OrcaFlex offers two options for the solution method of the time simulation: an implicit and explicit integra-
tion scheme. The implicit integration scheme was introduced after the explicit scheme and provides huge
improvements in run time. This is the default integration scheme and will be used for this thesis. For the
implicit integration, OrcaFlex uses the generalised−α integration method as described by Chung and Hubert
[23]. At the start of the simulation, the system takes into account the initial positions and orientations of all
objects and nodes, which follow from the static analysis. The forces and moments acting on each node and
free body are calculated. These forces and moments include: weight, buoyancy, hydro- and aerodynamic
forces, shear and tension, bending and torque, friction with the seabed and forces due to contact with other
objects. Then at the end of the time step the system equation of motion is solved. The dynamic equilibri-
ums are found using an iterative method. If after a certain number of iterations no convergence has been
achieved, the simulation is aborted.

6.5. OrcaFlex simulations
For each size rogue wave, five random seeds have been used to generate five random wave-time series. Per
random seed, one wave time-series with, and one wave series without a rogue wave is made. This wave series
without a rogue wave embedded can be seen as a base case, allowing a comparison to be made between the
dynamic response induced by the rogue wave and the dynamic response which would have been observed
in just the heavy sea state.
During the simulations, only the wave loads are considered. The wind and current speeds are set to 0 m/s,
and the turbine is assumed to be in a parked condition, specified by setting the variable speed of the rotor to
0 m/s. These environmental conditions do however influence the dynamic response, which is why research
in this area will be recommended for future work.

The dynamic response of the SFWT will be investigated on the basis of the surge, heave, pitch and nacelle
acceleration. The wave time-series are imported as .txt files containing surface elevation and time in two
columns. The default time-step for time domain simulations in OrcaFlex is 0.1s, and there is no time-step
size requirement when using the implict solution scheme. A time step sensitivity check is done by running
one case using three different time steps: 0.1s, 0.05s and 0.01s. The goal is to asses which time step should be
used in the further simulations, where a tradeoff between computation time and accuracy is made. A 0.05s
time step is deemed best for this research, since a smaller time step only shows marginal differences in the
results. See Appendix C for the evaluation.

6.5.1. Results - Dynamic response
Table 6.3 below presents the dynamic response of the SFWT in the base case wave series, and table 6.4
presents the results for the wave series with a rogue wave embedded. The reason a rogue wave size is re-
ported in table 6.3, despite it being a random wave series without such a wave, is to make clear to which
rogue wave threshold the wave series belong. For each parameter, the average maximum of the five simula-
tions is reported. Also, the average period of the rogue wave is reported, due to this being slightly different
in each wave series as explained in section 6.3.2. The individual simulation results for both the simulations
with, and without a rogue wave, together with for each size rogue wave an impression of the dynamic re-
sponse during the full simulation, are given in appendix D.
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Some observations regarding the results from table 6.3 and table 6.4:

• The differences in dynamic response between the base case simulations (table 6.3), and the simulations
with a rogue wave (table 6.4) can be clearly seen. The values of the four reported parameters in simu-
lations with a rogue wave, for all wave series, are significantly higher. For example, for the simulation
with the largest rogue wave the surge increased with 99.9%, the heave with 87.6%, the pitch with 60.7%
and the nacelle acceleration with 61.1%.

• The largest rogue wave led to the largest surge response of 16.91m, followed by the third largest rogue
wave inducing a surge response of 15.32m.

• The heave response is mild overall. The largest rogue wave led to the largest response, which is only
3.02m. This comes as no surprise, as spar designs are great at reducing heave motions [56]. Also, the
maximum of the heave motion did not always directly correlate with the rogue wave, but could also be
found some time later. See for example figure 6.7.

• The largest rogue wave led to the largest pitch angle of 7.15°, followed by the third largest rogue wave
inducing a pitch angle of 6.97°.

• The top three rogue wave sizes produced almost identical averaged nacelle accelerations of about 3.81-
3.83 m/s2, and the response to the fourth rogue wave is very close to this value.

• In both the simulations with the third and fourth largest rogue wave there is one simulation which could
be considered an outlier (see Appendix D), due to the significantly higher induced response. In the case
of the third largest rogue, this simulation is the cause that the induced motions are higher compared to
those of the second largest rogue wave. In the case of the fourth largest rogue wave, the ’outlier’ causes
the motions to be more similar to the simulations with a higher wave than one would perhaps expect.

It is not always the case that larger rogue wave simulations induce motions which are much more extreme
than the lower ones. This can be explained as follows: the seeds used to generate the random underlying wave
spectrum are different for each simulation. This leads to different initial conditions of the floating turbine
system before the rogue wave impact. Due to this, some initial conditions might be more favorable to induce
extreme motions than others, which can lead to lower rogue waves inducing similar or more extreme motions
than the larger ones.

Rogue wave size Rogue period Surge Heave Pitch Nacelle acceleration
Without embedded rogue wave [s] [m] [m] [°] [m/s2]
Hr og ue = 20.62 - 8.46 1.61 4.45 2.43
Hr og ue = 19.84 - 8.41 1.81 4.66 2.77
Hr og ue = 18.26 - 6.45 1.42 3.90 2.44
Hr og ue = 17.56 - 6.56 1.37 3.73 2.29

Table 6.3: Dynamic response results from the OrcaFlex simulations. The wave series used for these simulations consisted of only the
random wave series without a rogue wave embedded. Reported values are the average of the maximums of five simulations. Surge,
heave and pitch are evaluated for the spar at the height of the MSL. Only the hydrodynamic loads are considered.

Rogue wave size Rogue period Surge Heave Pitch Nacelle acceleration
With embedded rogue wave [s] [m] [m] [°] [m/s2]
Hr og ue = 20.62 15.67 16.91 3.02 7.15 3.81
Hr og ue = 19.84 15.57 14.31 2.51 6.35 3.83
Hr og ue = 18.26 15.3 15.32 2.53 6.97 3.82
Hr og ue = 17.56 14.3 13.07 2.01 5.63 3.69

Table 6.4: Dynamic response results from the OrcaFlex simulations. The wave series used for these simulations had the rogue waves
embedded. Reported values are the average of the maximums of five simulations. Surge, heave and pitch are evaluated for the spar at
the height of the MSL. Only the hydrodynamic loads are considered.

The dynamic response observed in the rogue wave simulations can be compared with the results of the two
papers described in section 3.2.1, to see whether they are in the same ballpark. Both these authors used the
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same OC3-Hywind spar design used in this study. Ruzzo et al. used an in-house 3-DOF numerical code and
reported a maximum surge of 5.62m, maximum heave of 4.38m and a maximum pitch angle of 7.77°, in re-
sponse to a 20m rogue wave [70]. Qu et al. used an in-house 6-DOF numerical code and reported a maximum
surge of about 16m, maximum heave of about 1.75m and a maximum pitch of about 11.7°, in response to a
18.28m rogue wave with a 26m/s wind speed [66]. These results, though obviously not the same, suggest that
the results from the OrcaFlex simulations seem very reasonable.

To illustrate the dynamic response, figure 6.7 presents an excerpt of the surface elevation and the response in
surge, heave and pitch, of one simulation. This simulation was done with a rogue wave size of 20.62m, which
is visible at 350s. The heave response is in phase with the large waves, and the maximum heave response is
seen some time after the rogue wave. The surge and pitch response attain their maximum shortly after the
rogue wave has passed.

Figure 6.7: An excerpt from a simulation with a rogue wave Hrogue = 20.62m, showing the surface elevation, surge, heave and pitch
response from 280s to 420s.

Figure 6.8 presents an excerpt of the surface elevation and the nacelle acceleration. The nacelle acceleration
is reported by Orcaflex only in absolute values, which is why the acceleration never moves below y = 0. The
maximum nacelle acceleration is attained just after the rogue wave has passed. It appears that the nacelle
acceleration varies with a second frequency besides the wave excitation, which may be due to the flexible
modeling of the tower (see section 6.1.1).

Figure 6.8: An excerpt from a simulation with a rogue wave Hrogue = 20.62m, showing the surface elevation and the nacelle acceleration
from 280s to 420s.
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6.6. Conclusions - Dynamic response
In this chapter, research into the dynamic response of the OC3-Hywind SFWT against multiple rogue waves
with different occurrence probabilities was presented. The rogue waves were each embedded in a random
wave series, based on their most likely wave spectrum, using the MLW model. The time domain simulations
have been done in OrcaFlex and both the responses to the wave series with and without a rogue wave have
been reported. Earlier, the return period until a 95% occurrence probability for these rogue waves was cal-
culated using different models. From these return periods it can be concluded that these rogue waves are a
single, rare event during the life of an offshore structure, which good to consider when the dynamic responses
are evaluated.

When comparing the dynamic response of the SFWT in the base case wave series (table 6.3) to the response
of the wave series with a rogue wave embedded (table 6.4), it became evident that the deterministic rogue
waves induced significantly more extreme motions compared to just the heavy sea state alone. The biggest
surge, heave and pitch response followed from simulations with the largest rogue wave. The three largest
rogue waves produced nearly identical nacelle accelerations, which can be explained by the turbine having
more or less favorable initial conditions before the rogue wave impact.

It is difficult to make unambiguous conclusions regarding the potential danger of a rogue wave to the SFWT
based only on the dynamic response. First of all, there are no specific limits for translational displacements of
a catenary moored SFWT. Mostly the pitch angles and nacelle accelerations are limiting, due to stability cri-
teria and the presence of sensitive components in the nacelle, such as the gearbox, generator and bearings.
In the industry, these maximum angles and accelerations of wind turbines are imposed by the turbine OEM’s
(original equimpment manufacturers) and are treated very secretively. Even when a company is working on
a project with an OEM, these limits tend not to be shared unless absolutely necessary (personal communi-
cation IntecSea). Regarding the OC3-Hywind system, no such limits were shared with NREL, and they were
unsure if such information even had been developed (personal communication NREL).

In the literature, a few claims have been made regarding maximum allowable inclination and nacelle accel-
erations. Papers that discuss the pitch angle state that the maximum pitch angle should be taken as 10° [49]
[72] [41] [78]. In absence of exact values from the industry, and in regard to the unanimity of the papers all
deciding on a 10° maximum pitch angle, this could be used as a reference value for this thesis. Though it has
to be said that the 10° seems to be regarded as a conventional value, mostly assumed in papers or desired as
a maximum value during power production, and that little research seems to have been done into the true
survivability aspect of this inclination angle. Whether the 10° relates to power production or survivability is
something the literature doesn’t agree on.
Regarding the nacelle acceleration, some papers state that 0.4g (3.92 m/s2) is a common industry limit [78]
[14] [15]. Other papers assume lower limits, such as 0.3g [62], or even 0.2g [51]. These provide some reference
value for this thesis, although again the notion has to be made that little to no substantiation is given in these
papers in terms of calculations regarding this number, and that the argumentation seems to be mostly based
on ’common industry knowledge’.

When comparing the responses of table 6.4 with the reference values found in the literature, it appears that
the pitch angles are below the conventional literature limit of 10° , and the nacelle accelerations are below
0.4g . Regarding the pitch angle, its important to note that in the current simulations only the hydrodynamic
loads have been considered. No wind or current speeds were simulated, while these also contribute to the
dynamic response. It is expected that the addition of these environmental forces will increase the already
significant pitch angles to values over this literature limit. Whether this will then be damaging to the turbine
is difficult to say.
The nacelle accelerations can be said to be quite significant, as they are only slightly below the 0.4g literature
limit, and notably higher than the lower 0.2 and 0.3g limits. It’s not certain that the addition of more environ-
mental factors will increase the maximum nacelle accelerations further, as the wind may also have a damping
effect on the turbine motion.
When considering induced motions in single simulations (Appendix D), as opposed to the average of the five,
sometimes the nacelle acceleration does exceed the 0.4g . This does not immediately mean that the waves are
dangerous. First of all, it’s good to remember that the 0.4g is a reference value and that a single excursion over
this limit may not immediately damage components. Also, different initial conditions of the turbine result in
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more or less extreme motions. As this wave is a single, rare event in the life of a SFWT, the results are averaged
over the five simulations to reduce the importance of these initial conditions, so the average portrays a more
stable estimate.
To summarize, because the rogue wave is a single rare event and the values are below the 0.4g threshold, it
appears that these nacelle accelerations are not especially threatening, but in the end this will depend on the
sensitivity of the components inside the nacelle.



7
Conclusion

Due to the need for more renewable energy, interest in floating wind turbines has greatly increased over the
last years. With research indicating that rogue waves occur more frequently than expected, the question arose
whether rogue waves could be dangerous for these floating turbines. That was the objective that this thesis
aimed to answer. First the main question will be answered, after which the sub-questions are evaluated in
their chronological order. The following main research question had been established:

How threatening are rogue waves to a spar-type floating wind turbine, based on the probability of the
wave occurring and the accompanying motion response?

In the literature there is no consensus on the occurrence probability of rogue waves and quantifiable statistics
are seldom to never given. For this research, historical wave data from a wave buoy located off shore Califor-
nia is used to estimate an overall occurrence probability of four sizes rogue waves by TE and STE wave prob-
ability models. The rogue waves were embedded in a random wave series, based on their most likely wave
spectrum, using a deterministic extreme wave model. With these wave time-histories, simulations were run
in OrcaFlex using a publicly available OC3-Hywind model. During the simulation the turbine was assumed
to be in parked condition and only the wave loading was considered. Mostly the pitch angles and nacelle
accelerations are limiting for safety, due to stability criteria and sensitive components in the nacelle. These
limits are imposed by turbine OEM’s but are never shared publicly. Therefore, the results were compared with
reference values from the literature. The dynamic response did not exceed these maximum reference values,
but they can be considered quite serious as some did exceed lower thresholds. By using both the long-term
occurrence probability of the rogue waves as estimated by the statistical models and the dynamic response,
this research presents a new and advanced approach for a risk analysis of rogue waves to floating offshore
structures. Based on the fact that for the two largest rogue waves the most conservative probability model
estimates a return period of over 100 years until a 95% occurrence probability, and all four waves induced a
dynamic response which did not exceed maximum reference limits, it appears that these rogue waves alone
present no danger for the considered SFWT. However, ultimately this will depend on the sensitivity of the
components inside the turbine, as well as the desired risk profile of the wind farm owner(s).

How do space-time extreme wave probability models compare to time-extreme models in predicting
rogue waves off the Californian coast on a spatial scale relevant to floating offshore wind turbines?

The exceedance probability of the rogue crest and wave threshold was calculated in all hourly sea states by
several TE and STE wave probability models. Using these probabilities different comparisons have been made
to answer the considered sub-question. This paragraph presents the conclusions to this question, partly by
answering the additionally formulated questions:

• From what spatial scale do space-time extreme and time-extreme wave models yield significant dif-
ferences?

• What is the influence of the shape of the directional wave spectrum on the predicted rogue wave oc-
currence?
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The influence of the spatial scale on the estimated rogue wave probability was investigated by comparing TE
and STE models on the basis of maximum exceedance probability of the rogue threshold for different area
sizes. For the first time, this research investigated the area size which will result in the STE model estimat-
ing higher rogue wave probabilities than the TE model. Regarding the considered TE crest models, it was
observed that the Forristall model estimates the lowest probabilities, followed by the Tayfun model, and the
Tayfun-Fedele model estimates the highest. Of those three models, only the Tayfun-Fedele model estimates
higher probabilities than the STE2 model in two sea states, for an area size smaller than 2×2m2. Abnormal
high wave crests such as these rogues influence the platform design height of offshore structures. Because
the Tayfun-Fedele model is the most conservative TE crest model, and 2×2m2 is small compared to floating
offshore wind turbines, incorporating the spatial dimension when evaluating rogue wave crests for a SFWT
will result in the most conservative design.

Regarding the crest-to-trough models, it was observed that the STE1QD model estimates higher exceedance
probabilities of the rogue threshold than the Naess model for all areas in all sea states. The Rayleigh model
estimates higher probabilities than the STE1QD model in several sea states for an area size smaller than
12×12m2. When the area size was smaller than 2×2m2, the Rayleigh model estimated higher probabilities
in all sea states. While evaluating the overall rogue wave probabilities where the probabilities were averaged
per bin, it was observed that for the considered area of 6.5×6.5m2 the STE1QD model started to become
more conservative than the Rayleigh model. It appears that when single maximum exceedance probabilities
are compared, the Rayleigh model can be more conservative in several sea states until a STE area of 12×12m2,
but when comparing the overall occurrence probabilities, the STE area from which the STE1QD model be-
comes more conservative is roughly 6.5×6.5m2.

The influence of the shape of the wave spectrum on the estimated rogue wave probability was investigated
using two spectral bandwidth parameters which indicate whether the spectrum is narrow or wide. All four
wave crest models displayed an increase in rogue crest probability as the wave spectrum became narrower.
Regarding the crest-to-trough models, no clear preference was observed. These results indicate a heightened
rogue crest occurrence probability for locations with frequent narrow wave spectra.

What is the dynamic response of a spar-type floating wind turbine to rogue waves with different oc-
currence probabilities as predicted by space-time and time-extreme wave models based on Orcaflex time-
domain simulations?

Following the overall rogue wave probability analysis, four rogue waves were each embedded in random wave
series, based on their most likely wave spectrum, using the MLW model. For each rogue wave five simulations
were run with and without a rogue wave embedded in this random wave series. The deterministic rogue wave
induced significantly more extreme motions than the heavy sea state alone. The surge, heave, pitch and na-
celle acceleration were investigated, where the reported maximums were averaged over the five simulations.
The biggest surge, heave and pitch response followed from simulations with the largest rogue wave. The
three largest rogue waves induced nearly identical nacelle accelerations, which can be explained by the tur-
bine having more or less favorable initial conditions before the rogue wave impact.



8
Discussion and recommendations

This chapter presents the discussion of the results and recommendations for further work. The subjects that
will be discussed are presented in the same order as they have appeared in the report.

In this research, the rogue wave probability was evaluated using historical wave data obtained from a wave
buoy located offshore California. This was a large 23 year data set which facilitated accurate mapping of the
wave climate and subsequent probability calculations. It should be noted that this wave buoy is stationed is
relatively deep water (1646m), which would be considered too deep for floating wind turbines. It’s possible
that closer to shore, where the water depth is more suitable for floating wind turbines, the wave climate is less
extreme than at the wave buoy location, ultimately reducing the occurrence probability of large rogue waves.

The area size of the STE wave probability models was based on the OC3-Hywind turbine waterline diam-
eter. These STE wave probability models are defined such that the waves are assumed to freely propagate
within the area bounds. When a solid structure exists in the sea, the waves can no longer propagate within
the bounds of the structure, only on the surfaces. When the area is sufficiently small compared to the wave
length, the wave-structure interaction can be neglected and the current 3D models can be assumed valid. If
one wants to take the wave-structure interaction into account, further research into a 2D adaptation of the
STE models should be done.

The influence of the shape of the wave spectrum was investigated using two spectral bandwidth parameters.
Due to the large data size, the scatter diagrams had a very wide spread of data points. The trendlines which
were used to indicate a possible trend in the data therefore had low R2 (coefficient of determination) values,
which indicate a ’goodness-of-fit’ of the trendlines. These trendlines should therefore not be regarded as be-
ing an exact representation of the data, but more like an indication to identify a preference.
The results of this study were related to two previous papers where the two spectral bandwidth parameters
where investigated as possible rogue wave indicators. These papers did not agree on the preference of rogue
waves for a more narrow or wide spectrum. Some results were in accordance with this study, while others
indicated the opposite. It is possible that these spectral preferences could be dependent on the geograph-
ical location, as Cattrell concluded that rogue wave generation mechanisms are location dependent. They
retrieved their data from buoys around North-America, Christou and Ewans retrieved the majority of their
data from offshore platforms in the North sea, and this research evaluated data from a single buoy stationed
in California. Further research could investigate the location dependence on possible spectral preferences of
rogue waves to increase this understanding.

In section 5.7, the overall occurrence probability of four rogue crests and waves was calculated. During this
calculation, sea states were excluded if the wave was not considered rogue in that sea state. This means that
when, for example, the smallest rogue wave was considered, the highest sea states were not included in that
calculation in order to uphold the rogue wave definitions, while in those high sea states that particular wave
may not be so rare. It may therefore be good to note that the goal of this thesis was not to find occurrence
probabilities of the most extreme waves, but to investigate rogue waves in particular, which are unexpected
outliers with respect to their surrounding waves. When the only interest is the occurrence probability of ex-
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treme waves, one would include all sea states in the calculation, leading to higher occurrence probabilities
for all but the largest considered (rogue) wave.
Moreover, since only waves which classified as rogue were investigated in this thesis, it would be highly inter-
esting to do further research and compare the STE and TE models on their estimation of the most probable
maximum to explore the influence of the spatial dimension using a different criterion.

A deterministic extreme wave method was adopted for this research to efficiently simulate the rogue waves.
Section 6.3.2 presented the process of embedding this deterministic rogue wave in a random wave series us-
ing the MLW model. Here the notion was made that the MLW model is completely deterministic on the wave
peak, but as we move away from this peak the underlying wave spectrum starts to influence the wave shape,
ultimately leading to slightly different rogue wave periods in each random wave series. At the moment there
are no alternative deterministic models which preserve the exact period of the most likely wave shape. As the
wave period influences the induced dynamic response, further research into a technique to better model this
wave period can ultimately lead to a more accurate results.

As explained in section 6.4, the wave time-histories are approximated by a large amount of Airy waves which
allow OrcaFlex to calculate the surface elevation and kinematics at all points. By approximating the surface
elevation using Airy waves the rogue wave is essentially linearized, while in reality such a wave will be non-
linear. To more accurately model the fluid dynamics of a rogue wave, one could use computational fluid
dynamics (CFD). However, CFD is extremely time-consuming and should therefore only be used for specific
situations. In relation to this, the results from OrcaFlex can be a very useful indicator whether further CFD
analysis should be done. If the dynamic response reported in section 6.5.1, together with the estimated occur-
rence probability of the accompanying rogue wave, appear dangerous during the design process, it is advised
to do a further CFD analysis.

During the simulations the turbine was assumed to be in parked condition, and no wind or current speed
was simulated. Since the considered rogue waves are large they are likely to occur in a high sea state, which
are usually accompanied by significant wind speeds. At the moment the dynamic response due to the rogue
wave alone is already serious, though the maximum literature reference values are not exceeded. With the
additional loading of the wind and current it’s possible that these reference values are exceeded. To give a
more complete picture of the dynamic response of the SFWT to a rogue wave, further research should be
done to include these environmental factors.
Furthermore, since a rogue wave can occur in every sea state, it would be interesting to asses the probabil-
ity of a rogue wave striking the turbine during operation. As the turbine is in operation, a large thrust force
is working on a substantial distance from the center of buoyancy, which pitches the turbine. A rogue wave
during operation may be smaller than the ones considered in this thesis, however combined with the heeling
moment due to the thrust force, it could induce more extreme angles and motions.

The individual results from the simulations with the same rogue wave height were observed to differ relative
to each other. While in general it could be observed that larger rogue waves induced more extreme motions,
there where two outliers in the simulations with the third and fourth largest rogue wave which induced sig-
nificantly more extreme motions compared to both their equal rogue waves and the larger rogue waves. It
appears that the initial conditions before the rogue wave impact have a great influence on the induced mo-
tions. Since the time was limited and the primary focus of this study was not on the dynamic response, no
further simulations or analysis were done to investigate this. It is very interesting for further research to inves-
tigate what factors cause the dynamic response to a rogue wave to increase or decrease, and how this relates
to the once in a life time nature of these waves.
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A
Trendline analysis

This appendix presents three different trendline shape comparisons as addition to section 5.6 for the Tayfun,
Naess and STE1QD models. Three trendlines are plotted: a linear, second order and third order line. The
coefficient of determination, R2, is mentioned in the description of the graphs. The wave crest models show
similar behaviour, which is why only the Tayfun model is shown. The crest-to-trough models display no clear
trend, which can be seen in the trendline analysis. The trendlines of the Rayleigh model, not shown here, are
similar for the first, second and third order lines.

The Tayfun spectrum comparisons display an increase in estimated exceedance probability as the wave spec-
trum becomes more narrow for the three considered trendlines. Here the second and third order lines have
a slope of 0 at a bandwidth value of 1 for a better fit to the data. The spread of the data points is wide, which
makes the trendline less accurate in terms of the coefficient of determination. This can be seen in the low val-
ues of R2. The second and third order trendlines show nearly identical shape and R2 values. Other trendlines
of the wave crest probability models display similar behaviour as those of the Tayfun model.

The Naess and STE1QD spectrum comparison data appear to be spread out over the bandwidth range and
display no clear trend of increased rogue wave probability for a narrow or wide spectrum. The third order
trendlines have the highest R2 value but this still remains low due to the wide spread of the data. Due to the
absence of a robust shape of the trendlines for the Naess and STE1QD models, the third order trendline is
chosen as this has the highest R2 value.

(a) (b)

Figure A.1: Exceedance probability of the rogue wave threshold P (η/σ≥ 5) for D = 20 minutes as estimated by the Tayfun model, plotted
against (a) spectral width parameter ε, trendline is linear, R2 = 0.3358 and (b) spectral width parameter ν, trendline is linear, R2 = 0.1021.
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(a) (b)

Figure A.2: Exceedance probability of the rogue wave threshold P (η/σ≥ 5) for D = 20 minutes as estimated by the Tayfun model, plotted
against (a) spectral width parameter ε, trendline is second order with slope 0 at ε = 1, R2 = 0.3477 and (b) spectral width parameter ν,
trendline is second order with slope 0 at ν = 1, R2 = 0.1053.

(a) (b)

Figure A.3: Exceedance probability of the rogue wave threshold P (η/σ≥ 5) for D = 20 minutes as estimated by the Tayfun model, plotted
against (a) spectral width parameter ε, trendline is third order with slope 0 at ε = 1, R2 = 0.3479 and (b) spectral width parameter ν,
trendline is third order with slope 0 at ν = 1, R2 = 0.1055.

(a) (b)

Figure A.4: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the STE1QD model with
A=6.5x6.5m2, plotted against (a) spectral width parameter ε, trendline is linear, R2 = 0.0011 and (b) spectral width parameter ν, trendline
is linear, R2 = 0.0192.
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(a) (b)

Figure A.5: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the STE1QD model with
A=6.5x6.5m2, plotted against (a) spectral width parameter ε, trendline is second order, R2 = 0.1087 and (b) spectral width parameter ν,
trendline is second order, R2 = 0.1706.

(a) (b)

Figure A.6: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the STE1QD model with
A=6.5x6.5m2, plotted against (a) spectral width parameter ε, trendline is second order, R2 = 0.1106 and (b) spectral width parameter ν,
trendline is second order, R2 = 0.1881.

(a) (b)

Figure A.7: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the Naess model, plotted
against (a) spectral width parameter ε, trendline is linear, R2 = 0.0137 and (b) spectral width parameter ν, trendline is linear, R2 = 0.0818.
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(a) (b)

Figure A.8: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the Naess model, plotted
against (a) spectral width parameter ε, trendline is second order, R2 = 0.0721 and (b) spectral width parameter ν, trendline is third order,
R2 = 0.2244.

(a) (b)

Figure A.9: Exceedance probability of the rogue wave threshold P (H/Hs ≥ 2) for D = 20 minutes as estimated by the Naess model, plotted
against (a) spectral width parameter ε, trendline is third order, R2 = 0.0726 and (b) spectral width parameter ν, trendline is third order,
R2 = 0.2498.



B
Analysis averaged probabilities

This appendix presents, for all considered probability models, comparisons between the average probability
per bin and the probability resulting from the averaged input parameters in some high sea states. When
calculating the overall rogue wave probabilities, an average probability has to be found per bin. The results in
this appendix support the choice to directly average the exceedance probabilities per bin, since the difference
between that and the probability resulting from the average parameters is very small, and it is the fastest
method. The reviewed sea states are from a significant wave height of 7.5m and upwards, where the bin with
the most sea state entries was chosen. The first section presents the tables for the wave crest models and the
second section presents the tables for the crest-to-trough models.

B.1. Wave crest models

Sea state bin Average Variance Average parameters Difference
7.5 < Hs ≤ 8m and 11 < Tm ≤ 12s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Foristall 0.00149 1.328e-8 0.00149 0
Tayfun 0.00244 2.062e-7 0.00240 1.67
Tayfun-Fedele 0.00469 1.681e-6 0.00450 4.22
STE2 6.5×6.5m2 0.01184 2.566e-6 0.01175 0.77

Sea state bin Average Variance Average parameters Difference
8 < Hs ≤ 8.5m and 11 < Tm ≤ 12s P (η/σ≥ 5 | D) P (η/σ≥ 5 | D) ∆%
Foristall 0.00166 3.746e-8 0.00164 1.22
Tayfun 0.00281 1.604e-7 0.00279 0.72
Tayfun-Fedele 0.00585 1.468e-6 0.00572 2.27
STE2 6.5×6.5m2 0.01296 1.347e-6 0.01294 0.15

Sea state bin Average Variance Average parameters Difference
8.5 < Hs ≤ 9m and 12 < Tm ≤ 13s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Foristall 0.00140 2.394e-8 0.00140 0
Tayfun 0.00245 1.215e-7 0.00243 0.82
Tayfun-Fedele 0.00487 1.039e-6 0.00476 2.31
STE2 6.5×6.5m2 0.01126 1.163e-6 0.01122 0.36
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Sea state bin Average Variance Average parameters Difference
9 < Hs ≤ 9.5m and 12 < Tm ≤ 13s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Foristall 0.00145 3.437e-9 0.00145 0
Tayfun 0.00242 2.343e-8 0.00241 0.41
Tayfun-Fedele 0.00476 2.199e-7 0.00473 0.63
STE2 6.5×6.5m2 0.01124 2.284e-7 0.01125 -0.09

Sea state bin Average Variance Average parameters Difference
9.5 < Hs ≤ 10m and 12 < Tm ≤ 13s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Foristall 0.00146 0 0.00146 0
Tayfun 0.00258 0 0.00258 0
Tayfun-Fedele 0.00536 0 0.00536 0
STE2 6.5×6.5m2 0.01164 0 0.01164 0

Sea state bin Average Variance Average parameters Difference
10 < Hs ≤ 10.5m and 13 < Tm ≤ 14s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Foristall 0.00139 1.880e-10 0.00139 0
Tayfun 0.00197 5.621e-10 0.00197 0
Tayfun-Fedele 0.00354 6.594e-9 0.00354 0
STE2 6.5×6.5m2 0.00955 1.891e-9 0.00955 0

B.2. Crest-to-trough models

Sea state bin Average Variance Average parameters Difference
7.5 < Hs ≤ 8m and 11 < Tm ≤ 12s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Naess 0.00682 1.557e-6 0.00672 1.49
Rayleigh 0.03434 7.193e-7 0.03432 0.06
STE1QD 6.5×6.5m2 0.02615 1.311e-5 0.02596 0.73

Sea state bin Average Variance Average parameters Difference
8 < Hs ≤ 8.5 and 11 < Tm ≤ 12 P (H/Hs ≥ 2 | D) P (H/Hs ≥ 2 | D) ∆%
Naess 0.00660 4.233e-6 0.00634 4.1
Rayleigh 0.03457 8.786e-7 0.03454 0.09
STE1QD 6.5×6.5m2 0.02550 3.790e-5 0.02497 2.12

Sea state bin Average Variance Average parameters Difference
8.5 < Hs ≤ 9m and 12 < Tm ≤ 13s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Naess 0.00637 1.624e-6 0.00627 1.59
Rayleigh 0.03217 5.227e-7 0.03215 0.06
STE1QD 6.5×6.5m2 0.02372 1.033e-5 0.02357 0.02

Sea state bin Average Variance Average parameters Difference
9 < Hs ≤ 9.5m and 12 < Tm ≤ 13s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Naess 0.00678 9.298e-7 0.00672 0.89
Rayleigh 0.03201 1.498e-7 0.03201 0
STE1QD 6.5×6.5m2 0.02493 6.456e-6 0.02486 0.28
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Sea state bin Average Variance Average parameters Difference
9.5 < Hs ≤ 10m and 12 < Tm ≤ 13s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Naess 0.00887 0 0.00887 0
Rayleigh 0.03100 0 0.03100 0
STE1QD 6.5×6.5m2 0.02995 0 0.02995 0

Sea state bin Average Variance Average parameters Difference
10 < Hs ≤ 10.5m and 13 < Tm ≤ 14s P (η/σ≥ 5 |D) P (η/σ≥ 5 |D) ∆%
Naess 0.00660 3.919e-8 0.00660 0
Rayleigh 0.03025 3.795e-8 0.03025 0
STE1QD 6.5×6.5m2 0.02370 3.008e-7 002370 0



C
Time step sensitivity check

A time step sensitivity check is done to determine which time step should be used in the simulations, where
a tradeoff between computation time and accuracy is made. If a smaller time step results in approximately
the same results as the larger time step before, the larger time step is chosen to reduce simulation time.

One case is run using three different time steps: 0.1s, 0.05s and 0.01s. Here OrcaFlex’ default value is 0.1s.
This is a wave series containing the largest crest-to-trough rogue wave, one where Hr og ue = 20.62m. First the
default value of 0.1s is run. When the rogue wave hits the turbine at 350s, the simulation has trouble find-
ing the dynamic equilibriums using multiple iterations. As explained in section 6.4.1, when after a certain
number of iterations no convergence has been found, the simulation is aborted. In this case, no solution was
found after 100 iterations and the simulation with the 0.1s time step was aborted. The default value of 0.1s
therefore is not adequate for the simulations.

The two simulations with a time step of 0.05s and 0.01s had no trouble running at all. Table C.1 below presents
the results of the simulations, where the spar surge, heave and pitch are evaluated, together with the nacelle
acceleration. The values have been rounded to two decimals.

Rogue wave size Max. surge Max. heave Max. pitch Max. nacelle acceleration
Hr og ue = 20.62 [m] [m] [°] [m/s2]
∆t = 0.05s 16.51 2.57 6.86 3.83
∆t = 0.01s 16.52 2.57 6.86 3.78
% difference 0.06 0 0 1.3

Table C.1: A comparison of the results from the same wave series input with a time step of 0.05s and 0.01s.

The surge, heave and pitch show little to no differences. The maximum nacelle acceleration shows a marginal
difference of 1.3%. Based on this comparison, the choice is made to use a time step of 0.05s in all the simula-
tions.
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Appendix C

This appendix presents four images of the dynamic response of the SFWT in a wave series with a deterministic
rogue wave at 350s. Starting from lowest to highest, the results of one simulation for each size rogue wave are
presented. These results are shown here to illustrate the responses observed during the whole simulation.

Figure D.1: A complete dynamic response of the SFWT in a wave series with a deterministic rogue wave Hr og ue = 17.56m. Upper left:
surge, upper right: pitch, bottom left: nacelle acceleration, bottom right: heave. Random seed 58.
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Figure D.2: A complete dynamic response of the SFWT in a wave series with a deterministic rogue wave Hr og ue = 18.26m. Upper left:
surge, upper right: pitch, bottom left: nacelle acceleration, bottom right: heave. Random seed 31.

Figure D.3: A complete dynamic response of the SFWT in a wave series with a deterministic rogue wave Hr og ue = 19.84m. Upper left:
surge, upper right: pitch, bottom left: nacelle acceleration, bottom right: heave. Random seed 7.
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Figure D.4: A complete dynamic response of the SFWT in a wave series with a deterministic rogue wave Hr og ue = 20.62m. Upper left:
surge, upper right: pitch, bottom left: nacelle acceleration, bottom right: heave. Random seed 69.



E
Appendix E

Simulations with embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 20.62m [m] [m] [m] [m/s2]
Sim1 18.73 2.92 7.89 3.95
Sim2 16.52 2.57 6.86 3.84
Sim3 19.41 3.18 8.36 4.00
Sim4 13.1 4.08 6.83 4.24
Sim5 16.77 2.34 5.82 3.04

Simulations with embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 19.84m [m] [m] [m] [m/s2]
Sim1 17.34 2.66 6.56 4.07
Sim2 13.35 2.48 4.91 3.59
Sim3 12.73 2.54 6.10 3.24
Sim4 10.72 2.64 5.43 4.08
Sim5 17.34 2.23 8.71 4.17

Simulations with embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 18.26m [m] [m] [m] [m/s2]
Sim1 15.73 1.96 6.53 3.61
Sim2 13.41 3.76 6.38 3.94
Sim3 12.94 2.53 5.22 3.49
Sim4 13.79 1.63 5.95 3.38
Sim5 20.71 2.76 10.75 4.67

Simulations with embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 17.56m [m] [m] [m] [m/s2]
Sim1 14.13 1.85 6.70 3.91
Sim2 12.73 1.55 4.47 3.29
Sim3 19.10 2.68 9.29 4.51
Sim4 8.28 2.64 3.82 3.49
Sim5 11.12 1.35 3.90 3.23
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Simulations without embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 20.62m [m] [m] [m] [m/s2]
Sim1 6.48 1.67 3.07 2.51
Sim2 9.85 1.55 5.30 2.94
Sim3 9.16 1.29 4.17 2.34
Sim4 9.00 1.78 5.53 2.27
Sim5 7.81 1.78 4.19 2.10

Simulations without embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 19.84m [m] [m] [m] [m/s2]
Sim1 13.28 2.18 5.69 3.10
Sim2 8.24 1.41 4.01 2.45
Sim3 8.14 1.68 3.91 2.68
Sim4 9.61 1.56 5.11 2.83
Sim5 8.29 2.23 4.59 2.80

Simulations without embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 18.26m [m] [m] [m] [m/s2]
Sim1 5.89 0.98 2.55 2.03
Sim2 10.39 1.47 5.35 2.85
Sim3 5.79 1.27 2.90 2.51
Sim4 7.71 1.62 3.39 2.37
Sim5 9.27 1.77 5.31 2.45

Simulations without embedded rogue wave Surge Heave Pitch Nacelle acceleration
Hr og ue = 17.56m [m] [m] [m] [m/s2]
Sim1 7.63 1.39 3.82 2.00
Sim2 7.66 1.34 4.46 2.42
Sim3 8.17 1.47 3.48 2.24
Sim4 6.88 1.45 3.65 2.37
Sim5 7.34 1.21 3.25 2.44
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Appendix D

F.1. Script: Import and sort data
import os
import pickle

#Script: Import and sort data

#Define the paths to the environmental data files
Path_meteo = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\Meteo\\",→
Path_energy = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\Energy\\",→
Path_alpha1 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\Alpha1\\",→
Path_alpha2 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\Alpha2\\",→
Path_r1 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\r1\\",→
Path_r2 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\r2\\",→

Path = [Path_meteo,Path_energy, Path_alpha1, Path_alpha2, Path_r1, Path_r2]

filelist_m = os.listdir(Path_meteo)
filelist_e = os.listdir(Path_energy)
filelist_a1 = os.listdir(Path_alpha1)
filelist_a2 = os.listdir(Path_alpha2)
filelist_r1 = os.listdir(Path_r1)
filelist_r2 = os.listdir(Path_r2)

filelist = []

filelist.append(filelist_m)
filelist.append(filelist_e)
filelist.append(filelist_a1)
filelist.append(filelist_a2)
filelist.append(filelist_r1)
filelist.append(filelist_r2)

data =[]
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#Here all data coming from the 6 subfolders are imported.
#For each parameter the yearly data is appended in a list thus containing all years.
#Data structure first index: 0 'Meteo', 1 'Energy', 2 'Alpha1', 3 'Alpha2', 4 'r1', 5

'r2',→
#Data structure second index: Year
#Data structure third index: Hour
#Data structure fourth index: Column

for j in range(len(filelist)):
data_all_years = []
for i in filelist[j]:

if i.endswith(".txt"):
with open(Path[j] + i, 'r') as f:

data_year =[]
next(f)
for line in f:

stripped_line = line.strip()
line_list = [float(x) for x in stripped_line.split()]
data_year.append(line_list)

data_all_years.append(data_year)
data.append(data_all_years)

#Here the first corrupt data lines are filtered out. Corrupt data is displayed as a
'999' entry.,→

#Therefore the criterium of column 8 < 900 is adopted. Column 8 should be normal data
#in all data files.

data_sorted = []
for k in range(len(data)): #Parameter

data_sorted_parameter =[]
for j in range(len(data[k])): #Year

data_sorted_year =[]
for i in range(len(data[k][j])): #Select line

if k == 0: #Select the meteo file
if j == 22: #Last year of the set

if data[k][j][i][4] == 40: #Only select data sampled at
40 min,→
if len(data[k][j][1]) >17: #Some meteo files have an

extra column,→
if data[k][j][i][8] < 90: #Corrupt meteo data is 99

data_sorted_year.append(data[k][j][i])
else:

if data[k][j][i][7] < 90:
data_sorted_year.append(data[k][j][i])

else:
if len(data[k][j][1]) >17:

if data[k][j][i][8] < 90:
data_sorted_year.append(data[k][j][i])

else:
if data[k][j][i][7] < 90:

data_sorted_year.append(data[k][j][i])
else:

if data[k][j][i][8] < 900: #Other corrupt data is
999,→
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data_sorted_year.append(data[k][j][i])
data_sorted_parameter.append(data_sorted_year)

data_sorted.append(data_sorted_parameter)

#Since we need input from all 6 data files it's important that there are no
timestamps for,→

#which data from one of the files is missing. Therefore all remaining dates in the
sorted data,→

#files are extracted so that they can be compared. Incomplete timestamps (not all 6
files,→

#contain it) will be removed later on.

dates = []
for k in range(len(data_sorted)): #Parameter

dates_parameter = []
for j in range(len(data[k])): #Year

dates_year = []
for i in range(len(data_sorted[k][j])): #Lines in year

date = str(data_sorted[k][j][i][0])+str(data_sorted[k][j][i][1])+str(d c
ata_sorted[k][j][i][2])+str(data_sorted[k][j][i][3]),→

dates_year.append(date)
dates_parameter.append(dates_year)

dates.append(dates_parameter)

#The code below compares the available dates of one parameter to those of the other
#parameters and adds the differences to a list. This list is later used to exclude

all dates,→
#for which certain information is missing.
#Note: The structure is different than above. First index is year, then parameter
differences = []
for j in range(len(dates[0])): #Year

diff_parameter = []
for k in range(len(dates)): #Parameter

if k == 0:
a = [1,2,3,4,5]

elif k ==1:
a = [0,2,3,4,5]

elif k ==2:
a = [0,1,3,4,5]

elif k ==3:
a = [0,1,2,4,5]

elif k ==4:
a = [0,1,2,3,5]

elif k ==5:
a = [0,1,2,3,4]

diff1 = list(list(set(dates[k][j])-set(dates[a[0]][j])) +
list(set(dates[a[0]][j])-set(dates[k][j]))),→

diff2 = list(list(set(dates[k][j])-set(dates[a[1]][j])) +
list(set(dates[a[1]][j])-set(dates[k][j]))),→

diff3 = list(list(set(dates[k][j])-set(dates[a[2]][j])) +
list(set(dates[a[2]][j])-set(dates[k][j]))),→
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diff4 = list(list(set(dates[k][j])-set(dates[a[3]][j])) +
list(set(dates[a[3]][j])-set(dates[k][j]))),→

diff5 = list(list(set(dates[k][j])-set(dates[a[4]][j])) +
list(set(dates[a[4]][j])-set(dates[k][j]))),→

diff_parameter.append(diff1+diff2+diff3+diff4+diff5)
differences.append(diff_parameter)

#Append all corrected data

data_good = []
for k in range(len(data_sorted)): #parameter

data_good_parameter = []
for j in range(len(data_sorted[k])): #year

data_good_year = []
for i in range(len(data_sorted[k][j])): #lines

string = str(data_sorted[k][j][i][0])+str(data_sorted[k][j][i][1])+str(d c
ata_sorted[k][j][i][2])+str(data_sorted[k][j][i][3]),→

if string not in differences[j][k]:
data_good_year.append(data_sorted[k][j][i])

data_good_parameter.append(data_good_year)
data_good.append(data_good_parameter)

#Print all data to one file
outfile = open('data_good','wb')
pickle.dump(data_good,outfile)
outfile.close()

#Print data of seperate years to pickle files
path_pickle = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_data",→

name =['\\data_1998', '\\data_1999', '\\data_2000','\\data_2001', '\\data_2002',
'\\data_2003','\\data_2004',,→

'\\data_2005', '\\data_2006','\\data_2007', '\\data_2008',
'\\data_2009','\\data_2010', '\\data_2011', '\\data_2012',,→

'\\data_2013', '\\data_2014','\\data_2015', '\\data_2016',
'\\data_2017','\\data_2018', '\\data_2019', '\\data_2020'],→

for j in range(len(data_good[0])): #year
data_year =[]
for k in range(len(data_good)): #parameter

data_year.append(data_good[k][j])
file = open(path_pickle + name[j],'wb')
pickle.dump(data_year,file)
file.close()
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F.2. Script: Calculate spectral moments and input parameters
import numpy as np
import math as m
import pickle

#Import data

data_energy = []
with open('C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental
data\\NOAA\\Monterey\\Energy\\energy_2020.txt') as energy:

,→
,→

next(energy)
for line in energy:

stripped_line = line.strip()
line_list = [float(x) for x in stripped_line.split()]
data_energy.append(line_list)

data_alpha1 = []
with open('C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental
data\\NOAA\\Monterey\\Alpha1\\alpha1_2020.txt') as alpha1:

,→
,→

next(alpha1)
for line in alpha1:

stripped_line = line.strip()
line_list = [float(x) for x in stripped_line.split()]
data_alpha1.append(line_list)

data_alpha2 = []
with open('C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental
data\\NOAA\\Monterey\\Alpha2\\alpha2_2020.txt') as alpha2:

,→
,→

next(alpha2)
for line in alpha2:

stripped_line = line.strip()
line_list = [float(x) for x in stripped_line.split()]
data_alpha2.append(line_list)

data_r1 = []
with open('C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\r1\\r1_2020.txt') as
r1:

,→
,→

next(r1)
for line in r1:

stripped_line = line.strip()
line_list = [float(x) for x in stripped_line.split()]
data_r1.append(line_list)

data_r2 = []
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with open('C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\r2\\r2_2020.txt') as
r2:

,→
,→

next(r2)
for line in r2:

stripped_line = line.strip()
line_list = [float(x) for x in stripped_line.split()]
data_r2.append(line_list)

data_meteo = []
with open('C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\NOAA\\Monterey\\Meteo\\meteo_2020.txt')
as meteo:

,→
,→

next(meteo)
for line in meteo:

stripped_line = line.strip()
line_list = [float(x) for x in stripped_line.split()]
data_meteo.append(line_list)

#Here the sorted data from the script 'Import_data' is loaded from a pickle file.
infile = open("C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_data\\data_2020", 'rb'),→
data_year = pickle.load(infile)
infile.close()

#Here the paths are defined to write the pickle data files containing the different
parameters,→

path_foristall = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_Foristall",→

path_tayfun = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_Tayfun",→

path_ste = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_STE",→

#Define constants
radian_array = np.linspace(2*np.pi/36, 2*np.pi,36)
radian_list = radian_array.tolist()

#Frequency array for the 'short' sampling frequency of 0.1Hz until 0.35Hz

freq_array_s = np.linspace(0.03,0.35,33)
freq_list_s = freq_array_s.tolist()
freq_matrix_s = np.ones((36,33))*freq_array_s

#Custom frequency array for the sampling frequency of 0.0325 to 0.48. Delta_f changes
throughout...,→

freq_list_l = [0.02,.0325,.0375, .0425, .0475, .0525, .0575, .0625, .0675,
.0725, .0775, .0825, .0875, .0925, .1000, .1100, .1200, .1300, .1400,
.1500, .1600, .1700, .1800, .1900, .2000, .2100, .2200, .2300, .2400,
.2500, .2600, .2700, .2800, .2900, .3000, .3100, .3200, .3300, .3400,
.3500, .3650, .3850, .4050, .4250, .4450, .4650, .4850]

,→
,→
,→
,→
freq_array_l =np.array(freq_list_l)
freq_matrix_l = np.ones((36,47))*freq_array_l
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#Directional matrix produces the right result compared to my excel file. Checked
twice,→

def directional_matrix(meteo,energy,alpha1,alpha2,r1,r2,radian_list):
dir_all = []

if len(meteo) > 17: #Threshold for different sampling
wd = meteo[11]

else:
wd = meteo[10]

for i in range(len(radian_list)):
dir_row = []

if len(alpha1)<40: #Threshold for different sampling
for j in range(4, len(alpha1)):

D = (1/np.pi)*(0.5+(2/3)*(r1[j]/100)*m.cos(rad c
ian_list[i]-(alpha1[j]-wd c
+90)/180*np.pi)+(r2[j]/100)*(1/6)*m.cos(2*(rad c
ian_list[i]-(alpha2[j]-wd+90)/180*np.pi)))

,→
,→
,→
dir_row.append(D)

dir_all.append(dir_row)

else:
for j in range(5, len(alpha1)):

D = (1/np.pi)*(0.5+(2/3)*(r1[j]/100)*m.cos(rad c
ian_list[i]-(alpha1[j]-wd c
+90)/180*np.pi)+(r2[j]/100)*(1/6)*m.cos(2*(rad c
ian_list[i]-(alpha2[j]-wd+90)/180*np.pi)))

,→
,→
,→
dir_row.append(D)

dir_all.append(dir_row)

dir_matrix = np.array(dir_all)

return(dir_matrix)

#Energy matrix procudes the right result compared to my excel file. Checked twice
def energy_matrix(dir_matrix,energy,alpha1):

delta_theta = (2*np.pi)/36

if len(alpha1)<40:
delta_f = 0.01

else:
delta_f =

[0.0125, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.0075, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.015, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],→

#print(data_energy)

energy_list = []
if len(alpha1)<40: #Threshold for different sampling

for i in range(4,37):
energy_list.append(energy[i])
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else:
for i in range(5,52):

energy_list.append(energy[i])

energy_vector = np.array(energy_list)
energy_matrix = dir_matrix*energy_vector*delta_theta*delta_f

return(energy_matrix)

def kx(freq_list_s,freq_list_l,alpha1,radian_list):

k_vector = []
if len(alpha1) <40: #Threshold for different sampling

for i in range(len(freq_list_s)):
k = ((freq_list_s[i]*2*np.pi)**2)/9.81
k_vector.append(k)

else:
for i in range(len(freq_list_l)):

k = ((freq_list_l[i]*2*np.pi)**2)/9.81
k_vector.append(k)

kx_list = []
for j in range(len(radian_list)):

kx_row =[]
for i in range(len(k_vector)):

#Counterintuitively, due to the way the degrees are defined we have to
use sin(),→

k_x = k_vector[i]*m.sin(radian_list[j])
kx_row.append(k_x)

kx_list.append(kx_row)

kx_array =np.array(kx_list)
return(kx_array)

def ky(freq_list_s,freq_list_l,alpha1,radian_list):

k_vector = []
if len(alpha1) <40: #Threshold for different sampling

for i in range(len(freq_list_s)):
k = ((freq_list_s[i]*2*np.pi)**2)/9.81
k_vector.append(k)

else:
for i in range(len(freq_list_l)):

k = ((freq_list_l[i]*2*np.pi)**2)/9.81
k_vector.append(k)

ky_list = []
for j in range(len(radian_list)):

ky_row =[]
for i in range(len(k_vector)):

#Counterintuitively, due to the way the degrees are defined we have to
use cos(),→

ky = k_vector[i]*m.cos(radian_list[j])
ky_row.append(ky)
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ky_list.append(ky_row)

ky_array =np.array(ky_list)
return(ky_array)

def moments(en_matrix,kx_matrix,ky_matrix,freq_matrix_s, freq_matrix_l,alpha1):

#Define the coefficients for the directional moments:
i_coef = [0,0,2,0,1,0,1,0,0] #m000, m002, m200 ,m020, m101, m011, m110, m001,

m004,→
j_coef = [0,0,0,2,0,1,1,0,0] #m000, m002, m200 ,m020, m101, m011, m110, m001,

m004,→
l_coef = [0,2,0,0,1,1,0,1,4] #m000, m002, m200 ,m020, m101, m011, m110, m001,

m004,→

dir_moments = []

for i in range(len(i_coef)):
if len(alpha1) <40: #Threshold for different sampling

total_matrix =
(kx_matrix**i_coef[i])*(ky_matrix**j_coef[i])*(freq_matrix_s**l_coef[i])*en_matrix,→

moment = total_matrix.sum()
dir_moments.append(moment)

else:
total_matrix =

kx_matrix**i_coef[i]*ky_matrix**j_coef[i]*freq_matrix_l**l_coef[i]*en_matrix,→
dir_moments.append(total_matrix.sum())

return(dir_moments)

#Parameters necessary for Tayfun model. Compared to excel
def parameters_T(dir_moments):

m000 = dir_moments[0]
m002 = dir_moments[1]
m001 = dir_moments[7]
m004 = dir_moments[8]

e = m.sqrt(1-(m002**2/(m000*m004)))
v = m.sqrt(m000*m002/(m001**2)-1)
mu_m = m.sqrt(m000)*((2*np.pi*m001/m000)**2)/9.81

mu = mu_m*(1-v+v**2)

parameters_t = []
parameters_t.append(mu)
parameters_t.append(mu_m)
parameters_t.append(e)
parameters_t.append(v)

return(parameters_t)

#Parameters necessary for Space-Time extreme model. Compared to excel
def parameters_ST(dir_moments):

#order m000, m002, m200 ,m020, m101, m011, m110
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Tm = m.sqrt(dir_moments[0]/dir_moments[1])
Lx = 2*np.pi*m.sqrt(dir_moments[0]/dir_moments[2])
Ly = 2*np.pi*m.sqrt(dir_moments[0]/dir_moments[3])
a_xt = dir_moments[4]/m.sqrt(dir_moments[2]*dir_moments[1])
a_yt = dir_moments[5]/m.sqrt(dir_moments[3]*dir_moments[1])
a_xy = dir_moments[6]/m.sqrt(dir_moments[2]*dir_moments[3])
parameters =[]
parameters.append(Tm)
parameters.append(Lx)
parameters.append(Ly)
parameters.append(a_xt)
parameters.append(a_yt)
parameters.append(a_xy)
return(parameters)

#Parameters necessary for Foristall model. Compared to excel
def parameters_F(dir_moments,meteo):

if len(meteo) > 17: #Threshold for different sampling
Hs = meteo[8]

else:
Hs = meteo[7]

T1 = dir_moments[0]/dir_moments[7] #spectral mean wave period
s1 = (2*np.pi/9.81)*(Hs/T1**2) #steepness
omega_1 = 1/T1*2*np.pi
k1 = omega_1**2/9.81
d = 1646 #Depth of buoy in meters

Ur = Hs/((k1**2)*(d**3))
alpha = 0.3536 + 0.2568*s1+0.08*Ur
beta = 2-1.7912*s1-0.5302*Ur+0.284*Ur**2

foristall_par = []
foristall_par.append(alpha)
foristall_par.append(beta)

return(foristall_par)

def main():

parameters_ste = []
parameters_t = []
parameters_f = []
for i in range(len(data_year[0])): #Iterate over all lines data set

#Calculate all necessary matrices
dir_matrix =

directional_matrix(data_year[0][i],data_year[1][i],data_year[2][i],d c
ata_year[3][i],data_year[4][i],data_year[5][i],radian_list)

,→
,→
en_matrix = energy_matrix(dir_matrix,data_year[1][i],data_year[2][i])
kx_matrix = kx(freq_list_s,freq_list_l,data_year[2][i],radian_list)
ky_matrix = ky(freq_list_s,freq_list_l,data_year[2][i],radian_list)
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#Calculate directional spectral moments
dir_moments =

moments(en_matrix,kx_matrix,ky_matrix,freq_matrix_s,freq_matrix_l,d c
ata_year[2][i])

,→
,→

#Calculate the probability model parameters and append them to a list
parameters_ste.append(parameters_ST(dir_moments))
parameters_t.append(parameters_T(dir_moments))
parameters_f.append(parameters_F(dir_moments,data_year[0][i]))

#Foristall
file_f = open(path_foristall + '\\Foristall_2020','wb')
pickle.dump(parameters_f,file_f)
file_f.close()

#Tayfun
file_t = open(path_tayfun + '\\Tayfun_2020','wb')
pickle.dump(parameters_t,file_t)
file_t.close()

#STE
file_ste = open(path_ste + '\\STE_2020','wb')
pickle.dump(parameters_ste,file_ste)
file_ste.close()

if __name__ == "__main__":
main()
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F.3. Script: Probability models
import pickle
import math as m
import numpy as np
from scipy.optimize import fsolve

#Here the paths are defined to the pickle data files containing the different
parameters,→

path_foristall1 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_Foristall",→

path_tayfun1 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_Tayfun",→

path_ste = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_STE",→

path_autocor = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_autocor",→

#Here the paths are defined to write the probability data to different folders
path_rayleigh = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\Rayleigh",→
path_foristall = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\Foristall",→
path_tayfun = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\Tayfun",→
path_tayfun_fedele = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\Tayfun_Fedele",→
path_ste1 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\STE1",→
path_ste2 = "C:\\Users\\tijme\\Documents\\TU Delft\\Master

Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\STE2",→

path_rayleigh_cor = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\Rayleigh_cor",→

path_ste1QD = "C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Probabilities\\STE1_QD",→

def Rayleigh(meteo,Tm):

#This function calculates the Rayleigh WAVE HEIGHT distribution

if len(meteo) > 17: #Threshold for different sampling
Hs = meteo[8]

else:
Hs = meteo[7]

#Vector with different H/Hs ratios
z =

[1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3],→
#z =

[2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5,5.1,5.2,5.3,5.4,5.5],→
#Define the duration [s]
d = 1200 #s

#Calculate average number of waves
N = d/Tm
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p_r = []
p_r.append(meteo[0])
p_r.append(meteo[1])
p_r.append(meteo[2])
p_r.append(meteo[3])
p_r.append(Hs)

#Calculate the probability of exceedance during 20 minutes
for i in range(len(z)):

pr = m.exp(-2*(z[i])**2)
prob_20 = 1-(1-pr)**N
p_r.append(prob_20)

return(p_r)

def Bandwidth_rayleigh(meteo,Tm,auto_cor):

#This function calculates the bandwidth corrected Rayleigh WAVE HEIGHT
distribution,→

if len(meteo) > 17: #Threshold for different sampling
Hs = meteo[8]

else:
Hs = meteo[7]

#Vector with different H/Hs ratios
z =

[1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3],→
#Rogue specific vector
#z =

[2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5,5.1,5.2,5.3,5.4,5.5],→
#Define the duration [s]
d = 1200 #s

#Calculate average number of waves
N = d/Tm

#Extract psi
psi_star = auto_cor[0]

p_r = []
p_r.append(meteo[0])
p_r.append(meteo[1])
p_r.append(meteo[2])
p_r.append(meteo[3])
p_r.append(Hs)

#Calculate the probability of exceedance during 20 minutes
for i in range(len(z)):

pr = m.exp(-(4/(1-psi_star))*(z[i])**2)
prob_20 = 1-(1-pr)**N
p_r.append(prob_20)

return(p_r)
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def Foristall(parameters_f,meteo,Tm):
if len(meteo) > 17: #Threshold for different sampling

Hs = meteo[8]
else:

Hs = meteo[7]

#Define the duration [s]
d = 1200 #s

#Calculate average number of waves
N = d/Tm

#Different size rogue wave thresholds, ranging from eta = 1-1.5 Hs
eta =

[0.5*Hs,0.55*Hs,0.6*Hs,0.65*Hs,0.7*Hs,0.75*Hs,0.8*Hs,0.85*Hs,0.9*Hs,0.95*Hs,Hs,1.05*Hs,1.1*Hs,1.15*Hs,1.2*Hs,1.25*Hs,1.3*Hs,1.35*Hs,1.4*Hs,1.45*Hs,1.5*Hs],→
#Rogue
#eta =

[1.25*Hs,1.275*Hs,1.3*Hs,1.325*Hs,1.35*Hs,1.375*Hs,1.4*Hs,1.425*Hs,1.45*Hs,1.475*Hs,1.5*Hs,1.525*Hs,1.55*Hs,1.575*Hs,1.6*Hs,1.625*Hs,1.65*Hs,1.675*Hs,1.7*Hs,1.725*Hs,1.75*Hs,1.775*Hs,1.8*Hs,1.825*Hs,
1.85*Hs,1.875*Hs,1.9*Hs,1.925*Hs,1.95*Hs,1.975*Hs,2*Hs,2.025*Hs,2.05*Hs,2.075*Hs,2.1*Hs,2.125*Hs,2.15*Hs,2.175*Hs,2.2*Hs,2.225*Hs,2.25*Hs,2.275*Hs,2.3*Hs,2.325*Hs,2.35*Hs,2.375*Hs,2.4*Hs,2.425*Hs,2.45*Hs,2.475*Hs,2.5*Hs]

,→
,→
alpha = parameters_f[0]
beta = parameters_f[1]

p_f = []
#Add the timestamps to the probability list for later use
p_f.append(meteo[0])
p_f.append(meteo[1])
p_f.append(meteo[2])
p_f.append(meteo[3])
p_f.append(Hs)

#Calculate the probability of exceedance during 20 minutes
for i in range(len(eta)):

pf = m.exp(-(eta[i]/(alpha*Hs))**beta)
prob_20 = 1-(1-pf)**N
p_f.append(prob_20)

return p_f

def Tayfun(parameters_t,meteo,Tm):
if len(meteo) > 17: #Threshold for different sampling

Hs = meteo[8]
else:

Hs = meteo[7]

#Define the duration [s]
d = 1200 #s

#Calculate average number of waves
N = d/Tm

#Vector with ratios eta/sigma
xi = [2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5,5.2,5.4,5.6,5.8,6]
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#xi =
[5,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10],→

mu =parameters_t[0]

p_t = []
p_t.append(meteo[0])
p_t.append(meteo[1])
p_t.append(meteo[2])
p_t.append(meteo[3])
p_t.append(Hs)

#Calculate the probability of exceedance during 20 minutes
for i in range(len(xi)):

pt = m.exp(-((-1+m.sqrt(1+2*mu*xi[i]))**2)/(2*mu**2))
prob_20 = 1-(1-pt)**N
p_t.append(prob_20)

return(p_t)

def Tayfun_Fedele(parameters_t,meteo,Tm):

if len(meteo) > 17: #Threshold for different sampling
Hs = meteo[8]

else:
Hs = meteo[7]

#Define the duration [s]
d = 1200 #s

#Calculate average number of waves
N = d/Tm

#Vector with ratios eta/sigma
xi = [2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5,5.2,5.4,5.6,5.8,6]
#xi =

[5,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10],→
mu =parameters_t[0]
mu_m = parameters_t[1]

#The approximation for the bound excess kurtosis
l40 = 18*mu_m**2
Lambda = 8*l40/3

p_tf = []
p_tf.append(meteo[0])
p_tf.append(meteo[1])
p_tf.append(meteo[2])
p_tf.append(meteo[3])
p_tf.append(Hs)

#Calculate the probability of exceedance during 20 minutes
for i in range(len(xi)):

ptf = m.exp(-0.5*((-1+m.sqrt(1+2*mu*xi[i]))/mu)**2)*(1+Lambd c
a/64*xi[i]**2*(xi[i]**2-4)),→

prob_20 = 1-(1-ptf)**N
p_tf.append(prob_20)
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return(p_tf)

def STE1(parameters_ste,meteo,Tm):

if len(meteo) > 17: #Threshold for different sampling
Hs = meteo[8]

else:
Hs = meteo[7]

#Extract the space-time parameters

Lx = parameters_ste[1]
Ly = parameters_ste[2]
axt = parameters_ste[3]
ayt = parameters_ste[4]
axy = parameters_ste[5]

if abs(axt) > 1 or abs(ayt) > 1 or abs(axy)>1:
print(meteo[0],meteo[1],meteo[2],meteo[3])

#Define the spatial grid [m]
x = [0,0.5,5,6.5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100] #m
y = [0,0.5,5,6.5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100] #m
#Define the duration [s]
d = 1200 #s

#Vector with ratios eta/sigma
z = [2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5,5.2,5.4,5.6,5.8,6]
#z =

[5,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8,8.1,8.2,8.3,8.4,8.5],→

p_ste1_total = []
for j in range(len(x)):

Nv = 2*np.pi*(x[j]*y[j]*d c
)/(Lx*Ly*Tm)*m.sqrt(1-axt**2-axy**2-ayt**2+2*axt*axy*ayt),→

Ns = m.sqrt(2*np.pi)*((x[j]*d)/(Lx*Tm)*m.sqrt(1-axt**2) +
(x[j]*y[j])/(Lx*Ly)*m.sqrt(1-axy**2) + (y[j]*d)/(Ly*Tm)*m.sqrt(1-ayt**2)
)

,→
,→
Nb = x[j]/Lx+y[j]/Ly+d/Tm

#Most probable maximum of eta/sigma
h_st = abs(fsolve(f,[4],(Nv,Ns,Nb))) #Solve the implicit function for H_st

p_ste = []
p_ste.append(meteo[0])
p_ste.append(meteo[1])
p_ste.append(meteo[2])
p_ste.append(meteo[3])
p_ste.append(Hs)
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#Calculate the probability of exceedance during 20 minutes
for i in range(len(z)):

pste =
m.exp(-m.exp(-(z[i]-h_st)*(h_st-(2*Nv*h_st+Ns)/(Nv*h_st**2+Ns*h_st+Nb)))),→

prob_20 = 1-pste
p_ste.append(prob_20)

p_ste1_total.append(p_ste)

return(p_ste1_total)

def STE2(parameters_ste,meteo,Tm,parameters_t):
if len(meteo) > 17: #Threshold for different sampling

Hs = meteo[8]
else:

Hs = meteo[7]

#Extract the space-time parameters
mu = parameters_t[0]
Lx = parameters_ste[1]
Ly = parameters_ste[2]
axt = parameters_ste[3]
ayt = parameters_ste[4]
axy = parameters_ste[5]

#Define the spatial grid [m]
x = [0,0.5,5,6.5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]#m
y = [0,0.5,5,6.5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]#m
#Define the duration [s]
d = 1200 #s

#Vector with ratios eta/sigma
xi = [2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5,5.2,5.4,5.6,5.8,6]
#xi =

[5,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10],→

p_ste2_total = []
for j in range(len(x)):

Nv = 2*np.pi*(x[j]*y[j]*d c
)/(Lx*Ly*Tm)*m.sqrt(1-axt**2-axy**2-ayt**2+2*axt*axy*ayt),→

Ns = m.sqrt(2*np.pi)*((x[j]*d)/(Lx*Tm)*m.sqrt(1-axt**2) +
(x[j]*y[j])/(Lx*Ly)*m.sqrt(1-axy**2) + (y[j]*d)/(Ly*Tm)*m.sqrt(1-ayt**2)
)

,→
,→
Nb = x[j]/Lx+y[j]/Ly+d/Tm

#Most probable maximum of eta/sigma
h_st = abs(fsolve(f,[4],(Nv,Ns,Nb))) #Solve the implicit function for H_st
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p_ste2 = []
p_ste2.append(meteo[0])
p_ste2.append(meteo[1])
p_ste2.append(meteo[2])
p_ste2.append(meteo[3])
p_ste2.append(Hs)

#Calculate the probability of exceedance during 20 minutes
for i in range(len(xi)):

pste =
m.exp(-m.exp(-((xi[i]-h_st-mu/2*h_st**2)*(h_st-(2*Nv*h_st+Ns)/(Nv*h_st**2+Ns*h_st+Nb)))/(1+mu*h_st))),→

prob_20 = 1-pste
p_ste2.append(prob_20)

p_ste2_total.append(p_ste2)

return(p_ste2_total)

def STE1_QD(parameters_ste,meteo,Tm,autocor):

if len(meteo) > 17: #Threshold for different sampling
Hs = meteo[8]

else:
Hs = meteo[7]

#Extract the space-time parameters

Lx = parameters_ste[1]
Ly = parameters_ste[2]
axt = parameters_ste[3]
ayt = parameters_ste[4]
axy = parameters_ste[5]

psi_star = autocor[0]
sigma = Hs/4

if abs(axt) > 1 or abs(ayt) > 1 or abs(axy)>1:
print(meteo[0],meteo[1],meteo[2],meteo[3])

#Define the spatial grid [m]
x = [0,0.5,5,6.5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100] #m
y = [0,0.5,5,6.5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100] #m
#Define the duration [s]
d = 1200 #s

#Vector with ratios h/Hs
z =

[1*Hs,1.1*Hs,1.2*Hs,1.3*Hs,1.4*Hs,1.5*Hs,1.6*Hs,1.7*Hs,1.8*Hs,1.9*Hs,2*Hs,2.1*Hs,2.2*Hs,2.3*Hs,2.4*Hs,2.5*Hs,2.6*Hs,2.7*Hs,2.8*Hs,2.9*Hs,3*Hs],→
#z =

[2*Hs,2.1*Hs,2.2*Hs,2.3*Hs,2.4*Hs,2.5*Hs,2.6*Hs,2.7*Hs,2.8*Hs,2.9*Hs,3*Hs,3.1*Hs,3.2*Hs,3.3*Hs,3.4*Hs,3.5*Hs,3.6*Hs,3.7*Hs,3.8*Hs,3.9*Hs,4*Hs,4.1*Hs,4.2*Hs,4.3*Hs,4.4*Hs,4.5*Hs,4.6*Hs,4.7*Hs,4.8*Hs,4.9*Hs,5*Hs,5.1*Hs,5.2*Hs,5.3*Hs,5.4*Hs,5.5*Hs],→

p_Hste1_total = []
for j in range(len(x)):
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Nv = 2*np.pi*(x[j]*y[j]*d c
)/(Lx*Ly*Tm)*m.sqrt(1-axt**2-axy**2-ayt**2+2*axt*axy*ayt),→

Ns = m.sqrt(2*np.pi)*((x[j]*d)/(Lx*Tm)*m.sqrt(1-axt**2) +
(x[j]*y[j])/(Lx*Ly)*m.sqrt(1-axy**2) + (y[j]*d)/(Ly*Tm)*m.sqrt(1-ayt**2)
)

,→
,→
Nb = x[j]/Lx+y[j]/Ly+d/Tm

#Most probable maximum of eta/sigma
h_st = abs(fsolve(f,[4],(Nv,Ns,Nb))) #Solve the implicit function for H_st

p_ste = []
p_ste.append(meteo[0])
p_ste.append(meteo[1])
p_ste.append(meteo[2])
p_ste.append(meteo[3])
p_ste.append(Hs)

#Calculate the probability of exceedance during 20 minutes
for i in range(len(z)):

pste =
m.exp(-m.exp(-(z[i]-h_st*sigma*m.sqrt(2*(1-psi_star)))*((h_st-(2*Nv*h_st+Ns)/(Nv*h_st**2+Ns*h_st+Nb))/(sigma*m.sqrt(2*(1-psi_star)))))),→

prob_20 = 1-pste
p_ste.append(prob_20)

p_Hste1_total.append(p_ste)

return(p_Hste1_total)

def f(h,Nv,Ns,Nb): #This is the implicit function to solve for h_st
return (Nv*h**2+Ns*h+Nb)*m.exp(-h**2/2)-1

#Here the seperate functions containing the probability models are excecuted
def main():

name_f =['\\Foristall_1998', '\\Foristall_1999',
'\\Foristall_2000','\\Foristall_2001', '\\Foristall_2002',
'\\Foristall_2003','\\Foristall_2004',

,→
,→

'\\Foristall_2005', '\\Foristall_2006','\\Foristall_2007',
'\\Foristall_2008', '\\Foristall_2009','\\Foristall_2010',
'\\Foristall_2011', '\\Foristall_2012',

,→
,→
'\\Foristall_2013', '\\Foristall_2014','\\Foristall_2015',

'\\Foristall_2016', '\\Foristall_2017','\\Foristall_2018',
'\\Foristall_2019', '\\Foristall_2020']

,→
,→

name_t =['\\Tayfun_1998', '\\Tayfun_1999', '\\Tayfun_2000','\\Tayfun_2001',
'\\Tayfun_2002', '\\Tayfun_2003','\\Tayfun_2004',,→
'\\Tayfun_2005', '\\Tayfun_2006','\\Tayfun_2007', '\\Tayfun_2008',

'\\Tayfun_2009','\\Tayfun_2010', '\\Tayfun_2011', '\\Tayfun_2012',,→
'\\Tayfun_2013', '\\Tayfun_2014','\\Tayfun_2015', '\\Tayfun_2016',

'\\Tayfun_2017','\\Tayfun_2018', '\\Tayfun_2019', '\\Tayfun_2020'],→

name_ste =['\\STE_1998', '\\STE_1999', '\\STE_2000','\\STE_2001', '\\STE_2002',
'\\STE_2003','\\STE_2004',,→



F.3. Script: Probability models 90

'\\STE_2005', '\\STE_2006','\\STE_2007', '\\STE_2008',
'\\STE_2009','\\STE_2010', '\\STE_2011', '\\STE_2012',,→

'\\STE_2013', '\\STE_2014','\\STE_2015', '\\STE_2016',
'\\STE_2017','\\STE_2018', '\\STE_2019', '\\STE_2020'],→

name_data =['\\data_1998', '\\data_1999', '\\data_2000','\\data_2001',
'\\data_2002', '\\data_2003','\\data_2004',,→
'\\data_2005', '\\data_2006','\\data_2007', '\\data_2008',

'\\data_2009','\\data_2010', '\\data_2011', '\\data_2012',,→
'\\data_2013', '\\data_2014','\\data_2015', '\\data_2016',

'\\data_2017','\\data_2018', '\\data_2019', '\\data_2020'],→

name_rayleigh =['\\Rayleigh_1998', '\\Rayleigh_1999',
'\\Rayleigh_2000','\\Rayleigh_2001', '\\Rayleigh_2002',
'\\Rayleigh_2003','\\Rayleigh_2004',

,→
,→

'\\Rayleigh_2005', '\\Rayleigh_2006','\\Rayleigh_2007', '\\Rayleigh_2008',
'\\Rayleigh_2009','\\Rayleigh_2010', '\\Rayleigh_2011',
'\\Rayleigh_2012',

,→
,→
'\\Rayleigh_2013', '\\Rayleigh_2014','\\Rayleigh_2015', '\\Rayleigh_2016',

'\\Rayleigh_2017','\\Rayleigh_2018', '\\Rayleigh_2019',
'\\Rayleigh_2020']

,→
,→

name_rayleigh_cor =['\\Rayleigh_cor_1998', '\\Rayleigh_cor_1999',
'\\Rayleigh_cor_2000','\\Rayleigh_cor_2001', '\\Rayleigh_cor_2002',
'\\Rayleigh_cor_2003','\\Rayleigh_cor_2004',

,→
,→

'\\Rayleigh_cor_2005', '\\Rayleigh_cor_2006','\\Rayleigh_cor_2007',
'\\Rayleigh_cor_2008', '\\Rayleigh_cor_2009','\\Rayleigh_cor_2010',
'\\Rayleigh_cor_2011', '\\Rayleigh_cor_2012',

,→
,→
'\\Rayleigh_cor_2013', '\\Rayleigh_cor_2014','\\Rayleigh_cor_2015',

'\\Rayleigh_cor_2016', '\\Rayleigh_cor_2017','\\Rayleigh_cor_2018',
'\\Rayleigh_cor_2019', '\\Rayleigh_cor_2020']

,→
,→

name_foristall =['\\Foristall_1998', '\\Foristall_1999',
'\\Foristall_2000','\\Foristall_2001', '\\Foristall_2002',
'\\Foristall_2003','\\Foristall_2004',

,→
,→

'\\Foristall_2005', '\\Foristall_2006','\\Foristall_2007',
'\\Foristall_2008', '\\Foristall_2009','\\Foristall_2010',
'\\Foristall_2011', '\\Foristall_2012',

,→
,→
'\\Foristall_2013', '\\Foristall_2014','\\Foristall_2015',

'\\Foristall_2016', '\\Foristall_2017','\\Foristall_2018',
'\\Foristall_2019', '\\Foristall_2020']

,→
,→

name_Tayfun =['\\Tayfun_1998', '\\Tayfun_1999', '\\Tayfun_2000','\\Tayfun_2001',
'\\Tayfun_2002', '\\Tayfun_2003','\\Tayfun_2004',,→
'\\Tayfun_2005', '\\Tayfun_2006','\\Tayfun_2007', '\\Tayfun_2008',

'\\Tayfun_2009','\\Tayfun_2010', '\\Tayfun_2011', '\\Tayfun_2012',,→
'\\Tayfun_2013', '\\Tayfun_2014','\\Tayfun_2015', '\\Tayfun_2016',

'\\Tayfun_2017','\\Tayfun_2018', '\\Tayfun_2019', '\\Tayfun_2020'],→

name_Tayfun_Fedele =['\\Tayfun-Fedele_1998', '\\Tayfun-Fedele_1999',
'\\Tayfun-Fedele_2000','\\Tayfun-Fedele_2001', '\\Tayfun-Fedele_2002',
'\\Tayfun-Fedele_2003','\\Tayfun-Fedele_2004',

,→
,→

'\\Tayfun-Fedele_2005', '\\Tayfun-Fedele_2006','\\Tayfun-Fedele_2007',
'\\Tayfun-Fedele_2008', '\\Tayfun-Fedele_2009','\\Tayfun-Fedele_2010',
'\\Tayfun-Fedele_2011', '\\Tayfun-Fedele_2012',

,→
,→
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'\\Tayfun-Fedele_2013', '\\Tayfun-Fedele_2014','\\Tayfun-Fedele_2015',
'\\Tayfun-Fedele_2016', '\\Tayfun-Fedele_2017','\\Tayfun-Fedele_2018',
'\\Tayfun-Fedele_2019', '\\Tayfun-Fedele_2020']

,→
,→

name_STE1 =['\\STE1_1998', '\\STE1_1999', '\\STE1_2000','\\STE1_2001',
'\\STE1_2002', '\\STE1_2003','\\STE1_2004',,→
'\\STE1_2005', '\\STE1_2006','\\STE1_2007', '\\STE1_2008',

'\\STE1_2009','\\STE1_2010', '\\STE1_2011', '\\STE1_2012',,→
'\\STE1_2013', '\\STE1_2014','\\STE1_2015', '\\STE1_2016',

'\\STE1_2017','\\STE1_2018', '\\STE1_2019', '\\STE1_2020'],→

name_STE2 =['\\STE2_1998', '\\STE2_1999', '\\STE2_2000','\\STE2_2001',
'\\STE2_2002', '\\STE2_2003','\\STE2_2004',,→
'\\STE2_2005', '\\STE2_2006','\\STE2_2007', '\\STE2_2008',

'\\STE2_2009','\\STE2_2010', '\\STE2_2011', '\\STE2_2012',,→
'\\STE2_2013', '\\STE2_2014','\\STE2_2015', '\\STE2_2016',

'\\STE2_2017','\\STE2_2018', '\\STE2_2019', '\\STE2_2020'],→

name_STE1_QD =['\\STE1_QD_1998', '\\STE1_QD_1999',
'\\STE1_QD_2000','\\STE1_QD_2001', '\\STE1_QD_2002',
'\\STE1_QD_2003','\\STE1_QD_2004',

,→
,→

'\\STE1_QD_2005', '\\STE1_QD_2006','\\STE1_QD_2007', '\\STE1_QD_2008',
'\\STE1_QD_2009','\\STE1_QD_2010', '\\STE1_QD_2011', '\\STE1_QD_2012',,→

'\\STE1_QD_2013', '\\STE1_QD_2014','\\STE1_QD_2015', '\\STE1_QD_2016',
'\\STE1_QD_2017','\\STE1_QD_2018', '\\STE1_QD_2019', '\\STE1_QD_2020'],→

name_autocor =['\\autocor_1998', '\\autocor_1999',
'\\autocor_2000','\\autocor_2001', '\\autocor_2002',
'\\autocor_2003','\\autocor_2004',

,→
,→

'\\autocor_2005', '\\autocor_2006','\\autocor_2007', '\\autocor_2008',
'\\autocor_2009','\\autocor_2010', '\\autocor_2011', '\\autocor_2012',,→

'\\autocor_2013', '\\autocor_2014','\\autocor_2015', '\\autocor_2016',
'\\autocor_2017','\\autocor_2018', '\\autocor_2019', '\\autocor_2020'],→

for k in range(len(name_data)):
#Import the relevant parameters from the pickles
infile_f = open(path_foristall1 + name_f[k],'rb')
data_foristall = pickle.load(infile_f)
infile_f.close()

infile_t = open(path_tayfun1 + name_t[k],'rb')
data_tayfun = pickle.load(infile_t)
infile_t.close()

infile_ste = open(path_ste + name_ste[k],'rb')
data_ste = pickle.load(infile_ste)
infile_ste.close()

#Import the autocorrolation parameters
infile_autocor = open(path_autocor + name_autocor[k],'rb')
data_autocor = pickle.load(infile_autocor)
infile_autocor.close()

#Import the wave data from the pickle
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infile_data = open("C:\\Users\\tijme\\Documents\\TU Delft\\Master
Offshore\\Afstuderen\\Environmental data\\Python\\Pickle_data" +
name_data[k], 'rb')

,→
,→
data_year = pickle.load(infile_data)
infile_data.close()

#Excecute Rayleigh model
prob_r = []
for i in range(len(data_foristall)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_r = Rayleigh(data_year[0][i],Tm)
prob_r.append(p_r)

file_r = open(path_rayleigh + name_rayleigh[k],'wb')
pickle.dump(prob_r,file_r)
file_r.close()

#Execute bandwidth corrected Rayleigh model
prob_r_cor = []
for i in range(len(data_foristall)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_r_cor = Bandwidth_rayleigh(data_year[0][i],Tm,data_autocor[i])
prob_r_cor.append(p_r_cor)

file_r_cor = open(path_rayleigh_cor + name_rayleigh_cor[k],'wb')
pickle.dump(prob_r_cor,file_r_cor)
file_r_cor.close()

#Excecute Foristall model
prob_f = []
for i in range(len(data_foristall)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_f = Foristall(data_foristall[i],data_year[0][i],Tm)
prob_f.append(p_f)

file_f = open(path_foristall + name_foristall[k],'wb')
pickle.dump(prob_f,file_f)
file_f.close()

#Excecute Tayfun model
prob_t = []
for i in range(len(data_tayfun)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_t = Tayfun(data_tayfun[i],data_year[0][i],Tm)
prob_t.append(p_t)

#Tayfun
file_t = open(path_tayfun + name_Tayfun[k],'wb')
pickle.dump(prob_t,file_t)
file_t.close()

#Excecute Tayfun-Fedele model
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prob_tf = []
for i in range(len(data_tayfun)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_t = Tayfun_Fedele(data_tayfun[i],data_year[0][i],Tm)
prob_tf.append(p_t)

file_tf = open(path_tayfun_fedele + name_Tayfun_Fedele[k],'wb')
pickle.dump(prob_tf,file_tf)
file_tf.close()

#Excecute STE1 model
prob_ste1 = []
for i in range(len(data_ste)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_ste1 = STE1(data_ste[i],data_year[0][i],Tm)
prob_ste1.append(p_ste1)

file_ste1 = open(path_ste1 + name_STE1[k],'wb')
pickle.dump(prob_ste1,file_ste1)
file_ste1.close()

#Excecute STE2 model
prob_ste2 = []
for i in range(len(data_ste)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_ste2 = STE2(data_ste[i],data_year[0][i],Tm,data_tayfun[i])
prob_ste2.append(p_ste2)

file_ste2 = open(path_ste2 + name_STE2[k],'wb')
pickle.dump(prob_ste2,file_ste2)
file_ste2.close()

#Excecute STE1-QD model
prob_H_ste1 = []
for i in range(len(data_ste)):

Tm = data_ste[i][0] #Calculate the mean zero-crossing period Tm
p_Hste1 = STE1_QD(data_ste[i],data_year[0][i],Tm,data_autocor[i])
prob_H_ste1.append(p_Hste1)

file_ste1_QD = open(path_ste1QD + name_STE1_QD[k],'wb')
pickle.dump(prob_H_ste1,file_ste1_QD)
file_ste1_QD.close()

print(data_year[0][0][0])

if __name__ == "__main__":
main()
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