
Federated Learning
for Mobile and

Embedded Systems
by

Stefan Hofman
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday November 27, 2020 at 1:00 PM.

Student number: 4887336
Project duration: February 1, 2020 – November 27, 2020
Thesis committee: Dr. ir. Z. Al­Ars, TU Delft, supervisor

Dr. T. G. R. M. van Leuken, TU Delft
Dr. ir. J. Hoozemans, TU Delft

Abstract
An increase in the performance of mobile devices has started a revolution in deploying artificial intelli­
gence (AI) algorithms on mobile and embedded systems. In addition, fueled by the need for privacy­
aware insights into data, we see a strong push towards federated machine learning, where data is
stored locally and not shared with a central server. By allowing data to stay on client devices and
do training locally, we work towards a more privacy­friendly future. Furthermore, utilizing federated
machine learning enables machine learning in data­constrained environments where bandwidth is not
sufficient to upload the entire dataset.

In this thesis, we look at the recent trend into less complex machine learning models. These models
optimize resource usage while reducing accuracy loss. We investigate how these simpler models hold
up within a federated setting. We also look into the developments of AI frameworks and their capabilities
for mobile platforms.

Based on these findings, we propose that model­hyper­parameter optimization is possible to max­
imize accuracy for smaller networks during federated learning. We show that it is possible to reduce
the accuracy loss from 15% to only 0.04%. We then demonstrate what a mobile implementation looks
like and the performance we see from an iPhone X. We show that an iPhone implementation takes less
than 2× the amount of a regular laptop implementation. Finally, we demonstrate that we can reduce
the model­size by up to 7× using modern weight quantization methods.

iii

Preface
Dear reader,

With this report, containing my MSc thesis, I am concluding my time at TUDelft. I have gained a
tremendous amount of knowledge that has preparedme to start my professional career with confidence.
The work in this report is the result of a nine­month effort within the ABS group and in collaboration
with Huawei under the supervision of Dr. Ir. Zaid Al­Ars.

First of all, I would like to thank Zaid for his continued support and constructive feedback. We had
great discussions that lead to new insights and creative solutions. Even while the world shut down,
and all the discussions moved online, Zaid was always open for a quick chat.

Secondly, I want to thank Dr. Ir. Joost Hoozemans and Dr. Ir. René van Leuken for being on
my thesis committee and giving me feedback along the way. Furthermore, a special thanks to David
Enthoven, who has given me many insights into the process of federated learning.

I also want to thank Ákos Hadnagy, his feedback on my report and his input during our lengthy
coffee breaks meetings were invaluable and have driven this research to a higher standard.

Finally, I would like to express my deepest appreciation to my entire family. In particular, my parents,
Ingeborg andDick, who have supported me the entire duration of my studies. I could not have achieved
this without them, so for that, I will be forever grateful.

Stefan Hofman
Den Haag, November 2020

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Challenges . 1
1.3 Problem statement . 1
1.4 Thesis outline . 2

2 Background 3
2.1 Machine learning . 3
2.2 Federated machine learning . 5

2.2.1 Overview . 5
2.2.2 Privacy . 6
2.2.3 Computational efficiency . 6
2.2.4 Data efficiency . 6

3 Mobile machine learning models 9
3.1 SqueezeNet. 9
3.2 MobileNet . 11

3.2.1 MobileNetV1 . 11
3.2.2 MobileNetV2 . 14

3.3 ShuffleNet. 15

4 Evaluating federated mobile machine learning networks 19
4.1 Setup . 19
4.2 Accuracy . 20
4.3 Designing mobile machine learning networks. 22

5 Mobile machine learning frameworks 25
5.1 HiAi . 25
5.2 TensorFlow Lite . 26
5.3 PyTorch Mobile . 27
5.4 PySyft . 27
5.5 CoreML . 28

6 Experimental results ­ Mobile implementation 31
6.1 Setup . 31
6.2 Data usage . 32
6.3 Accuracy . 32
6.4 Classification performance . 33
6.5 Quantization . 34
6.6 On­device learning . 35

7 Conclusion & further research 37
7.1 Conclusion . 37
7.2 Further research . 38

Bibliography 41

vii

1
Introduction

1.1. Context
Artificial intelligence (AI) is a useful and powerful technology. It enables a wide variety of applications
ranging from image classification, word prediction, to voice recognition. The common factor in all of
these applications is that a lot of data is necessary to train the models to provide accurate predictions.
Data to train these models might not always be readily available for developers of those models and
might live on devices of customers. Getting that data to developers to train neural networks is an
ever­growing challenge. Here we run into privacy and bandwidth related issues. It is undesirable
to distribute a user’s private data to a central place where a third­party might read that data. Also,
bandwidth limitations might arise where sending a large amount of data is simply impractical.

Another concern that might emerge is the amount of computational power that is needed to train
neural networks. Training a network at a central location requires a large amount of GPUs which are
expensive to purchase and to run due to electricity cost. This problem escalates with network size,
where bigger networks give higher accuracy but require even more computations to train. And where
more complex networks require more computing power to train, they also need more computing power
to do inference tasks. The increase in computing power to do inference might result in undesirable
scenarios where client devices might not have powerful GPUs to do these computations or are very
limited by power usage.

Especially now, we see more and more intelligent features coming into consumer devices. These
can be smart assistants on mobile phones, smart fridges, or even self­driving cars. All of these applica­
tions might run into the problems mentioned above, where it is undesirable to send data from a mobile
phone to a central place, or cars that do not have the bandwidth to send all data to a central place. This
is why new techniques are popping up to combat these problems. One of the most promising of these
is ”Federated Machine Learning” which was proposed in [35]. And in this research, we will investigate
whether and how we can combine federated machine learning with the efficiency of mobile­oriented
machine learning models like MobileNetV2 [36].

1.2. Challenges
The main problem is that there has been no research into using small machine learning models in a
federated environment. It is proven that a large machine learning model can be used effectively in a
federated setting without a significant accuracy loss, but it is unclear if this is also the case for small
(mobile) machine learning models.

One of the more challenging problems we might face along the way is support for on­device training
by artificial intelligence frameworks. This is something that would not be possible to solve in the time
span of this research.

1.3. Problem statement
This thesis aims at addressing the void that exists in federated machine learning with regards to its
effectiveness on smaller (mobile) networks. Based on the problems discussed above, the following

1

2 1. Introduction

research questions can be formulated:

• How do smaller (mobile) machine learning networks perform in a federated environment?

• How can we ensure that smaller (mobile) machine learning networks are able to perform well in
a federated environment?

• Are frameworks ready for mobile (on­device) machine learning training and inference?

• How well do mobile machine learning networks perform on mobile devices?

1.4. Thesis outline
This thesis is organized as follows:

• Chapter 2: (Background) provides background information regarding regular machine learning
and federated machine learning.

• Chapter 3: (Mobilemachine learningmodels) provides an overview of multiple mobile machine
learning networks.

• Chapter 4: (Evaluating federated mobile machine learning networks) shows the experimen­
tal results from federating a mobile machine learning network.

• Chapter 5: (Mobile machine learning frameworks) provides an extensive overview of multiple
machine learning frameworks with an orientation towards mobile and embedded devices.

• Chapter 6: (Experimental results ­ Mobile implementation) shows the experimental results
from running mobile machine learning networks on actual mobile hardware.

• Chapter 7: (Conclusion & further research) summarizes this thesis, provides some lessons
learned, and suggests some areas for further research.

2
Background

This chapter provides background regarding machine learning, distributed machine learning, and mo­
bile machine learning models.
2.1. Machine learning
Machine learning (ML) is a common term for the study of self­improving computer algorithms. These
computer algorithms, which we also call machine learning models, improve themselves by using what
is called training data in a procedure which is called training. During training, we try to fit a machine
learning model in such a way that with an input x we can predict an output y. We do this fitting by
presenting the model with an input and compare the output of the model with the ground truth. The
distance between our prediction and the ground truth is called the loss and can be calculated using a
loss­function. Two of the more common loss­functions are mean squared error loss Equation (2.1) and
cross­entropy loss Equation (2.2).

𝑙𝑜𝑠𝑠(𝑥, 𝑦) = (𝑥 − 𝑦)2 (2.1)

𝑙𝑜𝑠𝑠(𝑥, 𝑦) = −∑𝑥 log𝑦 (2.2)

This loss will then be propagated over the weights of the model in a step we call backpropagation. A
common representation of a machine learning model is shown in Figure 2.1, where we have a single
input layer, at least one hidden layer, and an output layer. These layers are comprised out of weights
that we update during backpropagation using the loss function to fit the model to predict the right output.

Input Hidden Layers Output

Figure 2.1: A schematic overview of a machine learning model with two hidden layers.

3

4 2. Background

The ultimate goal for a machine learning model is to predict the correct output with 100% accuracy.
For image classification, which we will be looking at in this thesis, this means that the model is supposed
to recognize the class of the object in the given input image. On our way to this goal, two unwanted
scenarios [24] might occur:

• Overfitting: this shows when a classifier is 100% accurate on the test dataset but significantly
less accurate on the validation dataset (this is a dataset that is not used during training, so we
can verify without bias that our model is accurate). It means that we might be learning too specific
details about images that might not occur in all images of the same class. For example, we are
training our model to classify cars from trucks, and in every training image of a car there is also a
tree visible. In this case, overfitting can mean that we can classify an image of a truck next to a
tree as a car. This can be solved by using more training images with a higher variety of contexts
in the images and numerous generalization techniques. [37]

• Underfitting: this is the opposite of overfitting, and occurs when the model is not complex
enough. The model will not be able to distinguish subtle differences, and thus not be able to
make accurate predictions. Solutions to underfitting often lie in pre­processing or adding more
complexity to the machine learning model by adding new layers. [40]

A schematic overview of what underfitting and overfitting look like can be found in Figure 2.2. Here
we see that underfitting clearly misses some detail, and overfitting has too much detail. With the right
amount of generalization, we can get the right amount of fitting and this will give the best result on
validation images and thus on general prediction use cases.

Underfitting Right fitting Overfitting

Figure 2.2: An example of what overfitting, underfitting, and a correct fitting look like.

Data distribution: The training data can be presented to our machine learning model in two distinct
ways:

• Independent and Identically Distributed (IID): if the training data is IID, every category has the
same probability distribution as the other categories and all are mutually independent. To put this
into an example, if we have a training dataset of pictures with dogs and cats, it means that we
have the same amount of dog pictures as we have cat pictures.

• Not Independent and Identically Distributed (Non­IID): if the training data is Non­IID, we do
not have the same probability distribution, nor are they all mutually independent. This means, for
the same example, that we might have more pictures of dogs in our training than pictures of cats.

Hyper­parameters: Whenwe talk aboutmachine learning, we come across so­called hyper­parameters.
These hyper­parameters need to be set by the developer, as opposed to the other parameters like
weights that are derived during training. Some of these hyper­parameters are:

• Learning rate (𝜂): the learning rate indicates how much each epoch counts toward the final
weight of the layers. The learning rate is one of the most important hyper­parameters, as using

2.2. Federated machine learning 5

a learning rate that is too small would result in impractical training times, but using a learning
rate that is too big would result in a machine learning network that does not converge. A variable
learning rate might be used to make quick progress in the beginning with a large learning rate,
and a small learning rate at the end to end up with high accuracy.

• Batch size (𝐵): the batch size indicates how much of the training data we process at a time.
Historically, one would often use only one single example of the dataset to fit on the model. But
more commonly these days, we give a ”batch” of examples to fit on the model. Common batch
sizes are 2, 4, 8, 16, 32, 64, 128, 256. Using a larger batch size is more computationally efficient,
but requires more memory.

• Number of Epochs: the number of epochs is the number of times we fit a single example or
batch on the network. If this number is too low, our network will not be fully trained yet, but if it is
too high, it may take a long time to finish. A technique used is early stopping, which terminates
the learning process if the accuracy does not improve in 𝑥 rounds.

2.2. Federated machine learning
2.2.1. Overview
Federated machine learning is a type of distributed machine learning [33]. Distributed machine learning
is a collective name used to bundle machine learning techniques where the training of a machine
learning model is not done on the same compute node. This can indicate that we split our training
dataset into multiple (more or less) even parts that we will send to multiple compute nodes, these
compute nodes will then collectively train the machine learning model. Distributed machine learning
is used because training a machine learning model is extremely compute­intensive, and splitting this
computational intensity will significantly decrease training times. Federated machine learning is, as
stated above, a form of distributed machine learning where the main difference is that the data to train
the machine learning model is not available at the central server. While in distributed machine learning
we split the dataset into multiple parts, it is not possible to do that in federated machine learning,
because we do not have this data. Instead, every device with data will learn from that data locally and
send the machine learning model to a central server. The central server will then average the models
it receives from various clients and sends back the averaged model to the clients. Both a general
distributed learning and a federated learning sequence is shown in Figure 2.3.

Some hyper­parameters used in federated machine learning are:

• Local epoch size (𝐸): the local epoch size is similar to the number of epochs from the general
hyper­parameters, but here it represents the number of epochs that are done on a client device
before sending the updated machine learning network.

• Number of Clients (𝑢): this is the number of client devices being utilized during the federated
learning.

• Client fraction (𝐶): this is the fraction of clients being used within a single ”communication round”
or global epoch.

By using federated machine learning, we can identify three main advantages which we will discuss
in the next sub­chapters: privacy, computational efficiency, and data efficiency.

Data

Data Nodes

Full Model

Models
PartialComputePartial

Data Devices

Full Model

Models
Own

Models
Partial Updated

Figure 2.3: A schematic overview of a general distributed learning process (left) and a federated learning process (right).

6 2. Background

2.2.2. Privacy

Privacy is a big part of why we use federated machine learning. People are getting more privacy­aware,
and even laws like the general data protection regulation (GDPR) in the European Unionmight mandate
these privacy precautions. In regular centralized machine learning or general distributed learning, it is
necessary to have all the training data at the central server to start training. Sending the training data
to the central server means that, for example, private images on a mobile device will have to be sent
off­device where we do not have any control over what happens to that image anymore.

Amore elegant solution would be to use federatedmachine learning. In federatedmachine learning,
we do not have to send the training data to a central server. Instead, we can train on devices locally
and only send the averaged models to the central server. Now our private information stays private on
our own devices [45].

While this thesis research does not focus on privacy, specifically, it is worth noting that federated
machine learning is not inherently private [25]. There are attack methods that enable the reconstruction
of images from the gradients in the machine learning model itself [26]. While there are attack methods
to extract information from the model, there are also defense methods to defend against such attacks.
These defense methods do usually come with an accuracy trade­off, so it is possible to make a model
more private but at the cost of lower model accuracy.

2.2.3. Computational efficiency

Federated machine learning also has a significant impact on computational efficiency compared to
regular machine learning. As we have said earlier, training a machine learning model requires a lot
of computing power, and training is therefore mostly done on large GPU (Graphical Processing Unit)
clusters or sometimes even TPU (Tensor Processing Unit) clusters. It can be an incredible cost­saving
measure if machine learning models were to be trained on client­devices instead of a central GPU
cluster. Training on client­devices comes with its own set of problems since client­devices often do not
have powerful GPUs to train machine learningmodels. Also, client­devicesmight be power­constrained
and might have to run on batteries or are running in low­power settings. The key element which allows
the client­devices to train the machine learning models themselves is that they only work on their data.
Because they only work on their data, they only have to process a subset of the total data, and thus
require less computation to train the model.

The viability of training on client­devices is also expected to increase over time. As a consequence
of Moore’s law, which predicts that the number of transistors in a dense integrated circuit double every
two years, computational power in client­devices is predicted to only go up. And especially for mobile
phones which, are getting fitted with dedicated neural engines to do machine learning tasks efficiently.

2.2.4. Data efficiency

The last main advantage of using federated machine learning is data efficiency. With data efficiency, we
mean that we can reduce the amount of bandwidth that is required to train a machine learning model.
During regular distributed machine learning, all the training data has to be sent to the central server for
training. After training, the trained model has to be sent back to the client devices. This process can
be seen in Figure 2.4. From the image, we can see that the clients either send their data to the central
server (CS) or just the models which they trained using their data locally. In this thesis, we will explore
how to use small machine learning models, and the smaller a model is, the more data­efficient we can
get.

2.2. Federated machine learning 7

Client

Client CS

Data

Data

Data

Model

Client

Client

Client

Client

Distributed Learning

Client

Client

Client

CS

Data

Data

Data

Model

Client

Client

ClientModel

Model

Model

Federated Learning

Figure 2.4: A schematic overview of the data­flow of distributed learning (left) and federated learning (right).

The reason data­efficiency is important is because most client­devices have a restricted bandwidth
capacity. Mobile phones might be on a cellular or WiFi connection, and self­driving cars might only
have a cellular connection. These wireless connections have a restricted bandwidth and might have
difficulties sending all the data to the central server. By only sending the machine learning model
sometimes, we limit the bandwidth needed to train such a model.

3
Mobile machine learning models

The general trend inmachine learning is to create deeper, more accurate convolutional neural networks.
[30, 38, 39] These improvements in accuracy, however, create machine learning networks that are big­
ger in size and show lower inference throughput. For real life implementations in mobile and embedded
environments, it is often not possible to use these big networks. So what we are seeing now is that
more resource efficient networks are being developed. [31, 32, 36, 41, 43] These resource­efficient
networks try to reduce model complexity while retaining as much accuracy as possible. Reducing
model complexity might, besides lower accuracy, also result in less resilient networks. This means that
accuracy can drop fast when only changing things like hyper­parameters or the training environment.
In this chapter, we will go over multiple mobile machine learning networks to highlight what they do to
decrease network size, improve performance, and minimize accuracy loss.

3.1. SqueezeNet
SqueezeNet [32] is one of the earlier mobile machine learning networks. SqueezeNet lays out a 3 step
strategy on how to decrease the size of the network by decreasing the number of parameters, while
keeping the accuracy reasonable.

• Step 1: Replace as many 3×3 filters with 1×1 filters as possible, this will decrease the network
size significantly, since 1 × 1 filters have 9× fewer parameters than 3 × 3.

• Step 2: Decrease the number of input channels to 3 × 3 filters. When a convolutional layer is
fully composed out of 3 × 3 filters, the number of parameters is equal to Equation (3.1), where 𝑀
is the number of input channels, and 𝐹 is the number of filters.

𝑀 ⋅ 𝐹 ⋅ 3 ⋅ 3 (3.1)

As we can derive from Equation (3.1), it is not only beneficial to decrease the filter size, but it can
also be advantageous to decrease the number of input channels of the 3 × 3 filters. This is done
in SqueezeNet with so­called squeeze layers.

• Step 3: Delay downsampling in the network to maintain large activation maps. As we can see
in [28], delaying downsampling leads to higher accuracy by maintaining large activation maps.
Downsampling is done by using a 𝑠𝑡𝑟𝑖𝑑𝑒 > 1. If downsampling is done at the beginning of the
network, the subsequent layers in the network will have small activation maps which will lead to
worse accuracy.

While Step 1 and 2 will decrease the network size while trying to preserve accuracy, step 3 is about
maximizing the accuracy while keeping the size of the network in mind.

SqueezeNet proposes, based upon the three steps, a new building block called the Fire module.
The Fire module is made up of a squeeze convolution layer which feeds into an expand layer. The
squeeze layer only contains 1×1 convolution filters, and the expand layer contains both 1×1 and 3×3
convolution filters. The Fire module exposes the following new hyper­parameters:

9

10 3. Mobile machine learning models

• 𝑠1×1 ­ the number of 1 × 1 filters in the squeeze layer.

• 𝑒1×1 ­ the number of 1 × 1 filters in the expansion layer.

• 𝑒3×3 ­ the number of 3 × 3 filters in the expansion layer.

The hyper­parameters can be set using the constraint Equation (3.2) to follow Step 2 where the
squeeze layer limits the number of input channels in the expansion layer. A schematic overview of the
Fire module can be found in Figure 3.1 and an overview of the SqueezeNet architecture can be found
in Table 3.1

𝑠1×1 < (𝑒1×1 + 𝑒3×3) (3.2)

Input

squeeze (𝑠1×1 ⋅ 1 × 1 conv layers)

ReLU

expand (𝑒1×1 ⋅ 1 × 1 and 𝑒3×3 ⋅ 3 × 3 conv layers)

ReLU

Figure 3.1: Fire module.

Table 3.1: Architecture of SqueezeNet.

Type Stride Input Size 𝑠1×1 𝑒1×1 𝑒3×3
Conv 2 224 × 224 × 3
Maxpool 2 111 × 111 × 96
Fire 55 × 55 × 96 16 64 64
Fire 55 × 55 × 128 16 64 64
Fire 55 × 55 × 128 32 128 128
Maxpool 2 55 × 55 × 256
Fire 27 × 27 × 256 32 128 128
Fire 27 × 27 × 256 48 192 192
Fire 27 × 27 × 384 48 192 192
Fire 27 × 27 × 384 64 256 256
Maxpool 2 27 × 27 × 512
Fire 13 × 12 × 512 64 256 256
Conv 1 13 × 13 × 512
Avg pool 1 13 × 13 × 1000

3.2. MobileNet 11

3.2. MobileNet

MobileNets are a small type of network that are developed at Google Inc. These networks aim at cutting
computational power, memory usage, and storage utilization. Currently, two MobileNets are getting a
lot of attention, MobileNetV1, and MobileNetV2. We will go over both, and see what they do and what
is different between them.

3.2.1. MobileNetV1

The core layers of MobileNetV1 [31] are called depthwise separable filters. These filters are based
on depthwise separable convolutions which split a standard convolution (Figure 3.2) into a depthwise
convolution (Figure 3.3) and a 1×1 (pointwise) convolution (Figure 3.4). The parameters used in these
images are as follows:

𝑀

𝐷𝐾

𝐷𝐾 ← 𝑁 →

...

Figure 3.2: Standard Convolution.

1

𝐷𝐾

𝐷𝐾 ← 𝑀 →

...

Figure 3.3: Depthwise Convolution.

12 3. Mobile machine learning models

𝑀

1

1 ← 𝑁 →

...

Figure 3.4: 1 × 1 (pointwise) Convolution.

• 𝑀 ­ The number of input channels.

• 𝐷𝐾 ­ The kernel size.

• 𝑁 ­ The number of output channels.

A standard convolution takes 𝐷𝐹×𝐷𝐹×𝑀 as a feature map and generates a 𝐷𝐹×𝐷𝐹×𝑁 feature map.
𝐷𝐹 represents the spatial width and height of the feature map. This results in a standard convolution
that has a computational cost of Equation (3.3), which is dependent on the kernel size (𝐷𝐾), the number
of input channels (𝑀), the number of output channels (𝑁), and the feature map size (𝐷𝐹).

𝐷𝐾 ⋅ 𝐷𝐾 ⋅ 𝑀 ⋅ 𝑁 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 (3.3)

To reduce the computational intensity, it is possible to split this normal convolution via the use of
factorized convolutions, which are called depthwise separable convolution. This depthwise separable
convolution exists of two convolutional layers, depthwise convolution, and pointwise convolution.

The computational intensity of depthwise convolution is given in Equation (3.4) and is extremely
efficient relative to normal convolution, however, it does not combine input channels to create new
features, it only filters them.

𝐷𝐾 ⋅ 𝐷𝐾 ⋅ 𝑀 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 (3.4)

To generate new features a second layer is introduced called the 1 × 1 or pointwise convolutional
layer. This pointwise convolutional layer has a computational intensity of Equation (3.5), and introduces
new features.

𝑀 ⋅ 𝑁 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 (3.5)

If we combine these two layers, so we filter and generate new features, we get depthwise separable
convolution which has a computational intensity of Equation (3.6).

𝐷𝐾 ⋅ 𝐷𝐾 ⋅ 𝑀 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 +𝑀 ⋅ 𝑁 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 (3.6)

So by splitting our normal convolutional layer into two separate layers we can achieve a reduction
in the computational intensity of Equation (3.7).

𝐷𝐾 ⋅ 𝐷𝐾 ⋅ 𝑀 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 +𝑀 ⋅ 𝑁 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹
𝐷𝐾 ⋅ 𝐷𝐾 ⋅ 𝑀 ⋅ 𝑁 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹

= 1
𝑁 +

1
𝐷2𝐾

(3.7)

With MobileNet using 3 × 3 kernels, this results in an 8 to 9­time reduction in the computational
intensity with only a small reduction in accuracy of about 1%.

MobileNet has also two hyper­parameters called awidth multiplier (𝛼) and a resolution multiplier (𝜌).
The width multiplier can be used to thin the MobileNet even more extensively. This is done uniformly
across all layers. With the number of input channels 𝑀 of a layer and a width multiplier 𝛼, we get

3.2. MobileNet 13

𝛼𝑀. Similarly, we see the number of output channels 𝑁 with width multiplier 𝛼 becomes 𝛼𝑁. We can
then derive the computational intensity of a separable convolutional layer with width multiplier 𝛼 in
Equation (3.8).

𝐷𝐾 ⋅ 𝐷𝐾 ⋅ 𝛼𝑀 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 + 𝛼𝑀 ⋅ 𝛼𝑁 ⋅ 𝐷𝐹 ⋅ 𝐷𝐹 (3.8)
The baseline MobileNet has 𝛼 = 1, but with 𝛼 ∈ (0, 1], reduced MobileNets are possible with

common values being 0.75, 0.5, and 0.25. These lower width multipliers will reduce the computational
intensity, and size, but also accuracy.

The second hyper­parameter introduced, the resolution multiplier, is applied to the input image,
and the internal representation of all the layers. With the resolution multiplier 𝜌 ∈ (0, 1] and the width
multiplier we have a computational intensity for the separable convolutional layers of Equation (3.9).

𝐷𝐾 ⋅ 𝐷𝐾 ⋅ 𝛼𝑀 ⋅ 𝜌𝐷𝐹 ⋅ 𝜌𝐷𝐹 + 𝛼𝑀 ⋅ 𝛼𝑁 ⋅ 𝜌𝐷𝐹 ⋅ 𝜌𝐷𝐹 (3.9)
The general architecture of the MobileNet network can be found in Table 3.2. From this table, it can

be seen that MobileNet is build using normal convolutional layers combined with separable depthwise
convolutional layers. Also after each convolutional layer there is a batch­normalization layer and a
ReLU layer as shown in Figure 3.5.

Input

Dwise 3x3, Stride=s, BN, Relu6

Conv 1x1, BN, Relu6

Figure 3.5: Depthwise Separable Convolution module.

Table 3.2: Architecture MobileNetV1.

Type Stride Filter Shape Input Size
Conv 2 3 × 3 × 3 × 32 224 × 224 × 3
Conv dw 1 3 × 3 × 32 dw 112 × 112 × 32
Conv 1 1 × 1 × 32 × 64 112 × 112 × 32
Conv dw 2 3 × 3 × 64 dw 112 × 112 × 64
Conv 1 1 × 1 × 64 × 128 56 × 56 × 64
Conv dw 1 3 × 3 × 128 dw 56 × 56 × 128
Conv 1 1 × 1 × 128 × 128 56 × 56 × 128
Conv dw 2 3 × 3 × 128 dw 56 × 56 × 128
Conv 1 1 × 1 × 128 × 256 28 × 28 × 128
Conv dw 1 3 × 3 × 256 dw 28 × 28 × 256
Conv 1 1 × 1 × 256 × 256 28 × 28 × 256
Conv dw 2 3 × 3 × 256 dw 28 × 28 × 256
Conv 1 1 × 1 × 256 × 512 14 × 14 × 256
5× Conv dw
5× Conv

1
1

3 × 3 × 512 dw
1 × 1 × 512 × 512

14 × 14 × 512
14 × 14 × 512

Conv dw 2 3 × 3 × 512 dw 14 × 14 × 512
Conv 1 1 × 1 × 512 × 1024 7 × 7 × 512
Conv dw 2 3 × 3 × 1024 dw 7 × 7 × 1024
Conv 1 1 × 1 × 1024 × 1024 7 × 7 × 1024
Avg Pool 1 Pool 7 × 7 7 × 7 × 1024
FC 1 1024 × 1000 1 × 1 × 1024
Softmax 1 Classifier 1 × 1 × 1000

14 3. Mobile machine learning models

3.2.2. MobileNetV2
The new MobileNetV2 [36] continues with the general idea of MobileNetV1 as it also uses depthwise
separable convolution layers and the two hyper­parameters, width multiplier and resolution multiplier.
The main novel improvement in MobileNetV2 is the addition of a newmodule: the inverted residual with
linear bottleneck. The general idea behind this module is that it takes a low­dimensional compressed in­
put which is expanded into a high­dimensional input and filtered with lightweight depthwise convolution.
The features are then projected back to a low­dimensional representation using a linear convolution.
This works on the principle that ”manifolds of interest” could be embedded in the low­dimension sub­
space of a neural network. Two properties are indicative of the requirement this manifold of interest
should lie in a low­dimensional subspace of higher­dimensional activation spaces. The properties are
[36]:

• If the manifold of interest remains non­zero volume after the ReLU transformation, it corresponds
to a linear transformation.

• ReLU is capable of preserving complete information about the input manifold, but only if the input
manifold lies in a low­dimensional subspace of the input space.

Based on these two properties, we can insert linear bottleneck layers into our convolutional blocks.
And we use linear layers because non­linear layers would destroy too much information as shown in
various works [27, 36].

Finally, just as in classical residual networks, shortcuts are added to the module. These shortcuts
are added to improve the propagation of the gradient, but in contrast to classical residual networks,
these shortcuts are inverted which greatly reduces memory usage and even result in better accuracy.
Figure 3.6 shows a schematic overview of this inverted residual with linear bottleneck and Table 3.3
shows the layers of which MobileNetV2 consists of.

Input

Conv 1x1, Relu6

Dwise 3x3, Relu6

Conv 1x1, Linear

Add

Input

Conv 1x1, Relu6

Dwise 3x3, Relu6

Conv 1x1, Linear

Stride=1 Stride=2

Figure 3.6: Inverted residual with linear bottleneck for stride = 1 (left) and stride = 2 (right).

3.3. ShuffleNet 15

Table 3.3: Architecture MobileNetV2 with 𝑛 indicating the number of identical repetitive blocks.

Type Stride 𝑛 Input Size
Conv 2 1 224 × 224 × 3
Bottleneck 1 1 112 × 112 × 32
Bottleneck 2 2 112 × 112 × 16
Bottleneck 2 3 56 × 56 × 24
Bottleneck 2 4 28 × 28 × 32
Bottleneck 1 3 14 × 14 × 64
Bottleneck 2 3 14 × 14 × 96
Bottleneck 1 1 7 × 7 × 160
Conv 1 1 7 × 7 × 320
Avg Pool ­ 1 7 × 7 × 1280
Conv ­ 1 × 1 × 1280

3.3. ShuffleNet

ShuffleNets [34, 41] utilize the efficient model design from SqueezeNet, depthwise separable convo­
lution from MobileNet, and adds a channel shuffle operation to help information flow across feature
channels.

Just like MobileNet, ShuffleNetV1 [41] uses depthwise separable convolution, but ShuffleNet also
utilizes group convolutions which are significantly more efficient than normal convolution. The idea of
group convolution is to increase the number of kernels per layer to learn more intermediate features.
This increases the number of channels in the next layer. The improved efficiency comes from the
possibility to use these kernels in parallel.

One way of implementing group convolution in pointwise convolutional layers is by stacking multiple
group convolution layers together, as can be seen in Figure 3.7. The issue with this is that the outputs
from a group only relate to the inputs from that same group and thus weakens the representation.

Input

GConv1

Feature

GConv2

Output

Channels

Figure 3.7: Regular Grouped Convolution.

The proposed solution in ShuffleNet is to add a channel shuffle operation. The shuffle operation,
as shown in Figure 3.8, allows information from different groups to flow to other groups. This way the
input and output channels will be fully related.

16 3. Mobile machine learning models

Input

GConv1

Feature

Channel Shuffle
GConv2

Output

Channels

Figure 3.8: Grouped Convolution with a channel shuffle operation.

ShuffleNet proposes a new ShuffleNet Unit which is derived from a standard bottleneck module
(similar to Figure 3.6 with stride = 1). We then replace the first pointwise convolution with a group con­
volution followed by a channel shuffle. This is then followed by a standard 3×3 depthwise convolution
and finally, the linear bottleneck layer is replaced with a group convolution to recover the channel di­
mension to match the shortcut path. This is shown in Figure 3.9 (left). When ShuffleNet is used with a
stride, two changes have to be made, first, an average pool is added on the shortcut path, and second,
the addition is replaced with a concatenation Figure 3.9 (right). A full ShuffleNet is comprised out of
layers visible in Table 3.4.

Input

GConv 1x1, ReLU

Dwise 3x3

GConv 1x1

Add

Channel Shuffle

Input

GConv 1x1, ReLU

Dwise 3x3, stride = 2

GConv 1x1

Concat

Channel Shuffle
AVG Pool 3x3, stride = 2

Figure 3.9: Schematic overview of the ShuffleNet unit for stride = 1 (left) and stride = 2 (right).

3.3. ShuffleNet 17

Table 3.4: Architecture of ShuffleNet with 𝑛 being the number of repetitive units and the complexity given in number of trainable
parameters.

Type Stride Output Size 𝑛 Output channels (𝑔 groups)
𝑔 = 1 𝑔 = 2 𝑔 = 3 𝑔 = 4 𝑔 = 8

Conv 2 112 × 112 1 3 3 3 3 3
Maxpool 2 56 × 56 1 24 24 24 24 24

ShuffleNet Unit 2
1

28 × 28
28 × 28

1
3

144
144

200
200

240
240

272
272

384
384

ShuffleNet Unit 2
1

14 × 14
14 × 14

1
7

288
288

400
400

480
480

544
544

768
768

ShuffleNet Unit 2
1

7 × 7
7 × 7

1
3

576
576

800
800

960
960

1088
1088

1536
1536

GlobalPool 1 × 1
FC 1000 1000 1000 1000 1000
Complexity 143M 140M 137M 133M 137M

Finally, it is also possible to give ShuffleNet a scale factor 𝑠 which applies to the number of channels.
Common given scale factors are 𝑠 = 1, 𝑠 = 0.5, and 𝑠 = 0.25. A network is denoted as ShuffleNet 𝑠×,
so ShuffleNet 1× has a 𝑠 = 1.

4
Evaluating federated mobile machine

learning networks
In this chapter, we will evaluate the implementation of MobileNetV2 and ShuffleNet into a federated
environment. We will report mainly on their performance in regards to accuracy, and what we had to
do to achieve these results.

4.1. Setup
Framework: For this evaluation, we opted to use PyTorch, because of its versatility and wide adoption
in the academic community. We used, and adapted a small framework that was used to reproduce the
results from [8].

Dataset: Three datasets have been used in this evaluation which are:

1. MNIST: MNIST is the easiest dataset and contains 60.000 images with handwritten digits for
training and 10.000 images for testing/ verification. These images have a dimension of 28 × 28
and are black and white resulting in having only one color channel.

2. CIFAR­10: CIFAR­10 is a dataset that contains 60.000 images in ten different classes. The
ten different classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. The number of images for each class is distributed equally thus there are 6.000 images
per class. The CIFAR­10 images have a size of 32 × 32 and are colored resulting in CIFAR­10
images having three channels.

3. ImageNette: ImageNette is a subset of the more famous ImageNet dataset. ImageNet is a
large database of images with more than 14 million images distributed over more than 20.000
categories. These 20.000 categories are distributed over several hundred top­level categories.
An example of a top­level category might be dog with subclasses for each breed. ImageNette
takes images from ImageNet with the same classes as CIFAR­10, but instead of 32 × 32, these
images have a variable size and are multiple times bigger. These images have color resulting in
three channels.

Machine learning models: Most of the evaluation is done on MobileNetV2 that we adapted for bet­
ter performance in federated environments. Besides MobileNetV2, ShuffleNet was used to verify our
approach to make MobileNetV2 ready for federated environments.

Platforms: The evaluation with the MNIST and CIFAR­10 datasets were done on Google Colab [5].
On Google Colab we used a GPU (Nvidia Tesla K80) as an accelerator to speed up training. For
ImageNette we used the TUDelft GPU compute infrastructure for more performance during our training.
This computing infrastructure was necessary because of the larger images which takemore time to train
a network.

19

20 4. Evaluating federated mobile machine learning networks

4.2. Accuracy
MNIST: We first started with a plain MobileNetV2 that is pre­implemented in PyTorch [12]. A couple
of changes were made to allow MNIST images to be processed because MobileNetV2 was built for the
larger images from ImageNet. After training on the network, we instantly saw results similar to those
fromMcMahan et al. [35] which trained a general­purpose convolutional network on theMNIST dataset.
Both reach and accuracy of around 98% − 99%, which is on par with non­federated environments.

0 10 20 30 40
Communication Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

Plain MobileNetV2 for MNIST

B=10 E=1 (MobileNetV2)
B=10 E=1 (reference line)

Figure 4.1: The accuracy during training of MobileNetV2 in a federated environment on MNIST. Included is a reference line from
[35].

The results from this experiment are shown in Figure 4.1 where we have the accuracy in percent­
ages on the y­axis, and the number of communication rounds on the x­axis. The results show us that
for MNIST it is very straightforward to implement MobileNetV2 in a federated environment.

CIFAR­10: After a successful implementation with MNIST, it was now time to move on to CIFAR­10.
The CIFAR­10 dataset is normally seen as a little bit more difficult to learn than MNIST, so this is the
next logical step. So after modifying MobileNetV2 again to make sure it would now be compatible with
CIFAR­10 images, we started training in a federated environment. The results of this were surprisingly
bad, this can be seen in Figure 4.2 (red and magenta lines). After training, an accuracy of 70% for
10 clients, and 66% for 100 clients was reached. Even with only 1 client, which is a non­federated
environment, we were only able to achieve an accuracy of 85%.

0 1000 2000 3000 4000 5000
Communication Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

MobileNetV2 with stride changes for CIFAR-10

1 Client
10 Clients
100 Clients
10 Clients (non-optimized)
100 Clients (non-optimized)

Figure 4.2: The accuracy during training of MobileNetV2 in a federated environment on CIFAR­10 for 1, 10, and 100 clients.
Included are two reference lines from the non­optimized MobileNetV2.

4.2. Accuracy 21

To increase accuracy with the CIFAR­10 dataset, we looked at MobileNets that are optimized for
training on CIFAR­10 and found [13]. This network can achieve an accuracy of 94.43% outside a
federated environment. This new accuracy is significantly higher than the accuracy received with the
original MobileNetV2, so we implemented this into our federated framework. However, the same hap­
pened again and our accuracy dropped from 94.43% to 79% and 73% for 10 clients, and 100 clients,
respectively.

We then performed various experiments to identify the source of the drop in accuracy when using
more than one client. One of the directions we investigated was to inspect the optimizations that were
made in the CIFAR­10 optimized MobileNetV2. From this optimized network, we identified one specific
optimization that might be particularly beneficial for accuracy. These are the stride changes in the first
layer, the second block, and the third block as can be seen in Table 4.1. From this point, we refer to
this new configuration FedMobileNetV2.

Table 4.1: Architecture MobileNetV2 compared our new FedMobileNetV2 architecture.

Type Old Stride New Stride
Conv 2 1
Bottleneck 1 1
Bottleneck 2 1
Bottleneck 2 1
Bottleneck 2 2
Bottleneck 1 1
Bottleneck 2 2
Bottleneck 1 1
Conv 1 1
Avg Pool ­ ­
Conv

Now only using this specific optimization, we do the same experiment again and see much better
results. The results are visualized in Figure 4.2 where we see the accuracy on the y­axis and the
number of communication rounds on the x­axis. Where our one client implementation got an accuracy
of 94.39% which is only a 0.04% drop from the ideal non­federated MobileNetV2 we spoke about a
bit earlier. If we look at 10 and 100 clients, we see that we can achieve accuracies of 93.1% and
87.2%, respectively. One thing to point out is that we do require a significant increase in the number of
communication rounds compared to the MNSIT example in Figure 4.1. Another thing to point out is that
we can see in Figure 4.2 that the lines are going up in terraces, this is because the learning rate has
been lowered manually during the training process when the accuracy would not increase anymore.

ImageNette: One of our hypotheses for the accuracy jump with the increase in the stride size was
that the smaller would lose too much information. The loss of information can be a problem for smaller
images because they contain fewer data points overall. To test this hypothesis, we started training the
original MobileNetV2 on the ImageNet dataset. Our hypothesis would hold when we notice a smaller
drop in accuracy when doing federated training compared to the CIFAR­10 scenario.

The results of this experiment are shown in Figure 4.3. In this figure, we have the accuracy on the
y­axis and the communication rounds on the x­axis. The results show what we expected, a smaller
accuracy drop when training with ten clients. Where we have 88% accuracy for a one client configu­
ration, we see, from our results, 80% accuracy for a ten client configurations and is only an 8% drop.
This accuracy drop is significantly less than observed with the CIFAR­10 experiments.

22 4. Evaluating federated mobile machine learning networks

0 100 200 300 400 500 600 700
Communication Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

MobileNetV2 for ImageNette

10 Clients

Figure 4.3: The accuracy during training of MobileNetV2 in a federated environment on ImageNette for 10 clients.

4.3. Designing mobile machine learning networks
It now appears to be possible to use MobileNetV2 in a federated setting, but is our technique only
applicable on MobileNet, or is this technique universal, and can we apply this to other mobile ma­
chine learning networks too. Also, what are the consequences of increasing the stride this early in the
network?

ShuffleNet: To test if changing the stride might hint towards a universal solution, we looked at Shuf­
fleNet and tested its performance on MNIST and CIFAR­10. As expected, we saw that MNIST was
no problem at all, but CIFAR­10 was losing a significant amount of accuracy again as can be seen in
Figure 4.4 (left).

ShuffleNet_0.5 ShuffleNet_1.0 ShuffleNet_1.5 ShuffleNet_2.0
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

Accuracies of MNIST and CIFAR-10 on different ShuffleNet configurations.
MNIST
CIFAR-10

ShuffleNet_2.0 FedShuffleNet_2.0
 (10 clients)

FedShuffleNet_2.0
 (100 clients)

0

20

40

60

80

Te
st

 A
cc

ur
ac

y

Accuracies of CIFAR-10 on ShuffleNet_2.0 and FedShuffleNet_2.0.

Figure 4.4: The accuracy during training of ShuffleNet on MNIST and CIFAR­10 for 1 client (left) and the accuracy during training
of ShuffleNet_2.0 vs. FedShuffleNet_2.0 with 10 and 100 clients (right).

If we change the stride of the first layer as we did in FedMobileNet, we create a new configu­
ration called FedShuffleNet. The CIFAR­10 performance of this new configuration can be seen in
Figure 4.4 (right). We see an instant increase in the accuracy even over non­federated ShuffleNets.
ShuffleNet_2.0 achieves an accuracy of 70.9% with only one client, in comparison, FedShuffleNet_2.0
achieves an accuracy of 88.9% and 79.9% for 10 and 100 clients, respectively.

Disadvantages: The disadvantage of the method we apply is that we increase the amount of memory
needed to do training and inference. For FedMobileNet we require more than 10× the amount of
memory and go from 3𝑀𝐵 to 37𝑀𝐵. For FedShuffleNet, the difference is less extreme, because we
only changed the stride for the first layer and did not touch the Shuffle Unit. For ShuffleNet we go from
20𝑀𝐵 to 28𝑀𝐵.

4.3. Designing mobile machine learning networks 23

The increase in memory usage is not necessarily an issue because modern devices normally have
gigabytes available. And this does give us control over accuracy within a resource budget. For memory­
constrained environments, it is possible to reduce accuracy and improve resource usage. If accuracy
is extremely important, it is possible to increase the memory budget and achieve higher accuracies.

5
Mobile machine learning frameworks

Mobile machine learning frameworks are frameworks that are capable of performing machine learning
tasks on mobile devices. Mobile devices in this context will relate to mobile phones and tablets. In
this chapter, we will go over a couple of mobile machine learning frameworks we have tried, give some
background information, and tell you what they can or cannot do at this moment. These frameworks
are being actively developed, and therefore might at the moment of reading be more capable than
described here.

5.1. HiAi
HiAi [9] is being developed by Huawei and proposes a ”three­layer” open architecture. These three
layers are:

• Chip: it is possible to convert existing models and achieve high performance by utilizing NPU
(Neural Processing Unit) optimizations.

• Device: it allows the app to use AI and make it more intelligent.

• Cloud: it can push services that are based on users’ requirements and do this in a proactive way.

HiAi also provides tools to convert, optimize, visualize, and simulatemodels. One of these tools enables
the possibility to execute the model on a hosted mobile device.

Operational information: HiAi can only be used for Android devices and for this reason, HiAi can
be used with either Java or Kotlin. HiAi does have the capability to convert models from the following
formats to use in HiAi applications:

• Huawei MindSpore [11]: this is an AI framework developed by Huawei and is intended to ”bridge
the gap between AI and applications”.

• TensorFlow [21]: this is an AI framework developed by Google and is one of the most complete
and most used AI frameworks. It lets researchers push the state of the art while letting developers
build and deploy models with ease. See more about TensorFlow at Section 5.2.

• Caffe [4]: this is an AI framework developed by Berkeley AI Research and community contribu­
tions. Caffe is developed using an expressive architecture, extensible code, optimized for speed,
and community.

• Paddle [1]: this is developed by PadlePadle and they pride themselves on being the only inde­
pendent R&D deep learning platform in China. This platform advertises four leading technolo­
gies, which are: an agile framework for industrial development of deep neural networks, support
ultra­large­scale training of deep neural networks, accelerated high­performance inference over
ubiquitous deployments, and industry­oriented models and libraries with open source reposito­
ries.

25

26 5. Mobile machine learning frameworks

Capabilities: For capabilities we will look at three different areas. First, we will look at inference ca­
pabilities, then, we will look at on­device training capabilities, and finally, we will evaluate quantization.

• Inference: HiAi fully supports inference on mobile devices. All the networks we tested fully
worked, so we feel strongly that most if not all networks will work. For some model conversions,
it is however necessary to have the source framework at a specific target level.

• On­device training: HiAi at themoment does not support any on­device training. After contacting
Huawei, they mention this is an area that they are investigating, and quite likely, on­device training
will be supported in the (near) feature.

• Quantization: at this point, post­training quantization is supported with convolution, fully con­
nected, and depthwise convolution operators. This includes weight quantization, offset quanti­
zation, and data quantization. There is one weight quantization level available, which is fp32 to
int8.

Optimizations: HiAi is optimized for high throughput inference on someHuawei devices. The devices
currently supported are the newer high­end smartphones that have a dedicated NPU, and it is likely
that more Huawei devices in the future will include a dedicated NPU to efficiently do machine learning.

5.2. TensorFlow Lite
TensorFlow Lite [22] is the mobile variant of TensorFlow [21] designed by Google Inc. TensorFlow
Lite is designed to be extremely efficient on mobile and embedded devices. It claims that TensorFlow
Lite models introduce optimizations and reduce file size while achieving the same accuracy as normal
TensorFlow models.

Operational information: TensorFlow Lite can be used on Android with Java, iOS with Objective­C,
Embedded Linux with either Python or C++, and Microcontrollers with an experimental C++ framework.
While a lot of operations are supported in TensorFlow Lite, some operations might be missing and can
be imported using the experimental library TensorFlow Select. Using TensorFlow Select will increase
the size of the binary as these operations are not optimized for mobile or embedded use. The Ten­
sorFlow Lite model converter can convert the following model types from TensorFlow V2 to its efficient
model representation:

• SavedModel directories: a TensorFlow SavedModel directory contains a complete TensorFlow
Program which includes weights and computation. The advantage is that it does not require the
original code to build the model to run, so this is a useful format for sharing or deploying the
model.

• Kerasmodels [10]: is an AI library that acts as an interface for TensorFlow. It promotes itself as a
simplification layer between TensorFlow and the end­user by offering a simple API that minimizes
the steps to develop a model, provides clear error messages, and extensive documentation.

Although the number of direct conversion options is limited, it remains possible to convert a model
to a TensorFlow model first and then convert it to a TensorFlow Lite model.

Capabilities: For capabilities we will look at three different areas. First, we will look at inference ca­
pabilities, then, we will look at on­device training capabilities, and finally, we will evaluate quantization.

• Inference: as we mentioned a bit earlier, mobile inference is completely supported. Not every­
thing is supported by TensorFlow Lite, but everything that is not supported will be available in
TensorFlow Select. The only disadvantage is that these imported operations are not optimized
for mobile execution and increase the model size.

• On­device training: TensorFlow Lite, at this moment, does not support on­device training. It is
unclear whether TensorFlow is working on implementing on­device training at the moment, but it
is unlikely that we see a fully supported version any time soon.

• Quantization: TensorFlow Lite does support post­training quantization from fp32 to either half­
precision (fp16) or int8.

5.3. PyTorch Mobile 27

Optimizations: While TensorFlow Lite does not have any hardware­specific optimizations, it does op­
timize the network with general optimizations when converting from other networks. Also, TensorFlow
has an optimization toolkit that can be used to optimize TensorFlow lite networks.

5.3. PyTorch Mobile
PyTorch Mobile [19] is the mobile variant for PyTorch [18] designed by Facebook Inc. PyTorch tries
to remove the friction between developing a model and deploying it on mobile or embedded devices.
It tries to provide an end­to­end workflow that simplifies the entire process. It also wants to focus on
privacy­preserving learning techniques, like federated machine learning.

Operational information: PyTorch Mobile is available for iOS in Swift, Android in Java, and Linux
Embedded devices in C++. PyTorch Mobile can convert all regular PyTorch models by tracing the
model using TorchScript. TorchScript is a representation that enables the transformation from Python
(the natural language of PyTorch) to C++, Java, or Objective­C.

Although there is no dedicated converter tool to convert machine learning models to PyTorch Mobile
format we can still convert all models to the regular PyTroch format, which we can then convert to
PyTorch Mobile models.

Capabilities: For capabilities we will look at three different areas. First, we will look at inference ca­
pabilities, then, we will look at on­device training capabilities, and finally, we will evaluate quantization.

• Inference: PyTorch Mobile is still in beta, so while most operations are supported, some API
changes may occur with version upgrades.

• On­device training: this is currently not supported, but PyTorch Mobile mentioned privacy­
preserving techniques like federated learning as one of its advantages, so it is quite likely they
are working on this. So future support is probably imminent.

• Quantization: post­training quantization is supported in the form of fp32 to int8 conversion. This
includes support for per­channel quantization, dynamic quantization, and per­tensor quantization.

Optimizations: PyTorch Mobile has, besides quantization, dedicated optimization build­in in the form
of build level optimizations and selective compilation. They do not optimize for any specific device,
however, they mention support for backends like GPU, DSP (Digital Signal Processing), and NPU will
be available soon. PyTorchMobile is also optimized for ease of use with a PyTorch end­to­end workflow.

5.4. PySyft
PySyft [2] is a Python library developed by OpenMined [16] and is specially designed for secure and
private Deep Learning. Build­in features enable federated learning, Differential Privacy, and encrypted
Computation.

Operational information: PySyft has an implementation for iOS in Swift, Android in Kotlin, desktop
in Python, and web in JavaScript. PySyft does not convert models but traces them by hooking into
third­party backends. The supported backends are:

• PyTorch: as discussed in Section 5.3, PyTorch is a Python AI framework developed by Facebook.
It is arguably the most used AI framework with support for almost any operator imaginable.

• TensorFlow: as we discussed earlier in Section 5.2, TensorFlow is a very extensive AI framework
with support for many operators, lots of tools, and excellent documentation.

PySyft can also use PyGrid [17], another library that is developed by OpenMined. PyGrid can be
used to set up peer­to­peer networks, which can be used to share models easily and efficiently. This
can be very effective in building federated learning applications.

28 5. Mobile machine learning frameworks

Capabilities: For capabilities we will look at three different areas. First, we will look at inference ca­
pabilities, then, we will look at on­device training capabilities, and finally, we will evaluate quantization.

• Inference: PySyft currently supports inference on mobile­devices without limitations.

• On­device training: this is currently partially supported. For very simple networks it is possible
to on­device learning, but a lot of operations are not supported at the moment. This framework
is under active development by OpenMined and the community, and we expect the number of
supported operations to keep increasing.

• Quantization: at the moment PySyft does not support any form of quantization. Some contrib­
utors are looking to implement some form of weight quantization, but nothing is available at the
moment of writing.

Optimizations: PySyft does not optimize for performance on mobile devices, it does however opti­
mize for privacy with support for Differential Privacy, and encrypted computation with Multi­Party Com­
putation and Homomorphic Encryption.

5.5. CoreML
CoreML [6] is a mobile machine learning framework developed by Apple Inc. CoreML tries to optimize
for on­device performance without making it more complicated for the developer. They also advertise
privacy with encrypted models, and easy deployment with Cloud Deployment using CloudKit.

Operational information: CoreML is available for Apple devices only (iOS, MacOS, etc.). The lan­
guage used for CoreML is Apple’s Swift language, and some bindings for Objective­C are available. A
helper tool called coremltools [7] is available to build, edit, and convert models from other frameworks.
Frameworks it can convert from are:

• TensorFlow: (see Section 5.2)

• PyTorch: (see Section 5.3)

• Keras: (see Section 5.2)

• Caffe: (see Section 5.1)

• Onnx [15]: this is an open model format for machine learning model representations developed
by Facebook and Microsoft. The idea behind ONNX is that you do not have to worry about down­
stream applications because you are using an open format that should be able to be interpreted.

• SciKit Learn [20]: this is an AI framework that includes a lot of machine learning routines that
can easily be used by data scientists to carry out some predictive work on NumPy arrays.

If a model is available in another format, it is also possible to first convert it to TensorFlow or PyTorch,
and then convert it to a CoreML model.

Capabilities: For capabilities we will look at three different areas. First, we will look at inference ca­
pabilities, then, we will look at on­device training capabilities, and finally, we will evaluate quantization.

• Inference: CoreML fully supports any inference operators.

• On­device training: this is mostly supported on widely used operations, however, on more com­
plicated layers we might find unsupported (support) layers. Our intuition is that the current im­
plementation is not intended to train entire models but only do specific layer retraining. This is
impractical for academic research purposes, but this is in line with the expectations from practical
applications.

• Quantization: this is supported in the form of weight quantization. Normal weights are fp32 and
these can be quantized to fp16, int8, in7, in6, int5, int4, int3, int2, or int1. There are also multiple
quantization modes available which are linear, linear symmetric, and kmeans LUT. Finally, it is
also possible to control which layers in a network need to be quantified.

5.5. CoreML 29

Optimizations: CoreML is highly optimized for Apple hardware, and especially for the dedicated
hardware accelerator in the latest Apple­designed chips called the Neural Engine. The most recent
chip, the A14 Bionic, includes 16 dedicated Neural Engine cores and a new machine learning matrix
accelerator.

6
Experimental results ­ Mobile

implementation
In this chapter, we will implement somemobile networks using real mobile devices tomeasure accuracy,
classification performance, and on­device learning performance.

6.1. Setup
Framework: After analyzing the mobile machine learning frameworks in Chapter 5, we decided to do
our experiments with CoreML. This decision was made because it has the best support for on­device
learning, it has model conversion support from most other frameworks, and it has an iOS implementa­
tion. The iOS implementation was beneficial because we had an iPhone with accelerator that we can
use to run experiments on.

App: The iOS app that is used to run the experiments is a modified version of [3] by Jacopo Man­
giavacchi. The original app uses the MNIST dataset, but we had to change it to support CIFAR­10
and ImageNet images. I also changed replaced the network that it was using, with different versions
of MobileNet.

Dataset: Asmentioned in the previous paragraph, the datasets used in these experiments are CIFAR­
10 and ImageNette (which is a subset with ten classes of ImageNet) to test accuracy (Section 6.3),
classification performance (Section 6.4), and quantization performance (Section 6.5). For on­device
learning performance (Section 6.6), the MNIST dataset was used.

Machine learning models: For accuracy (Section 6.3), classification performance (Section 6.4), and
quantization (Section 6.5) MobileNetV2 was used. There is however a difference in the MobileNetV2
we use for CIFAR­10 and ImageNette. The model for CIFAR­10 is converted, using the coremltools
conversion tool while the model for ImageNette is downloaded from the CoreML developer website.
For on­device learning, a generic convolution neural network is used.

Hardware: The hardware that was used is an iPhone X with an Apple A11 Bionic with a Hexa­core
64­bit (2×High power core at 2.39𝐺𝐻𝑧 + 4× low power core at 1.42𝐺𝐻𝑧) with a dual­core Neural Engine
which acts as a hardware accelerator. This Neural Engine is, according to the Apple press release”,
able to process ”600 billion” operations per second. For inference comparisons, we used a MacBook
Pro Mid 2014 with a 2.6𝐺𝐻𝑧 dual­core Intel i5 processor.

Other Frameworks: For our experiments, we used CoreML, but if these experiments would be done
using a different framework, performance results could differ. This is especially true for classification
performance, because all frameworks tend to optimize mobile machine learning networks in their own
way. Out of experiments we ran, most accuracy performances stayed the same when using different

31

32 6. Experimental results ­ Mobile implementation

kinds of frameworks. Also, the workflow and setup are likely to remain similar, especially for other
frameworks on iOS. Frameworks on Android will need a slightly different setup, but the workflow will
remain mainly the same.

6.2. Data usage
We spoke already about data usage at the beginning of this thesis and named it one of the advantages
of federated learning. The question that remained is: is it even feasible to send only the model and not
the images itself? In other words, how many images do we need to send to make it more efficient to just
send the model. It is clear that if we need to send thousands of images, it would become impossible to
design a use­case for this federated learning routine and save bandwidth in the process. So what we
are looking for, is the intersection between the size of sending the model once and the size of sending
𝑥 images (see Equation (6.1)).

𝑚𝑜𝑑𝑒𝑙_𝑠𝑖𝑧𝑒 ≤ 𝑥 ⋅ 𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 (6.1)

An MNIST image has a size of about 550𝐵, whilst MobileNet has a size of 9.1𝑀𝐵. This would mean
that we can send 18200 images and be just as efficient as sending the model to the server once. We
can do the same for CIFAR­10, whose images are about 2𝐾𝐵, so that means we can send 4550 images
and still be as efficient as sending just the model to the server. This has been plotted in Figure 6.1 (left).

This would indicate that a relatively large amount of images would be required to make federated
learning more data­efficient than regular machine learning. MNIST and CIFAR­10, however, contain
very small images and it is very unlikely that real­world use cases would use images this tiny. For this
reason, we also experimented with ImageNette. ImageNette images have a more realistic size, so this
gives us a more realistic representation of a real­live environment.

ImageNette images are on average 150𝐾𝐵 (about 75× bigger than CIFAR­10) and because the
images of ImageNette are bigger than CIFAR­10 or MNIST images, we also see an increase in the size
of MobileNet. A MobileNet for ImageNette is about 14𝑀𝐵 (about 1.5× larger than for CIFAR­10) and it
becomes clear that when the image size increases, the size of the network does not increase linearly
with it. So if we then look at how many images we would need to send to be as efficient as sending
the model once, we see that the number drops significantly to approximately 93. For Squeezenet1_0,
with a size of 4.7𝑀𝐵, this would drop down even more towards approximately 31 images. To compare
this result with a widely used ”normal” network, VGG16 [38] which has a size of about 574𝑀𝐵, we
see that we would require at least 3826 images to be as efficient. This shows that mobile machine
learning networks do have the potential to be used in bandwidth­constrained use­cases, where regular
networks would struggle to fulfill the requirements.

0 5000 10000 15000 20000 25000
Number of Images

0

10

20

30

40

50

Si
ze

 (M
B)

MNIST Images
CIFAR-10 Images
MobileNet

0 1000 2000 3000 4000 5000 6000
Number of Images

0

200

400

600

800

Si
ze

 (M
B)

Imagenette Images
Squeezenet 1_0
MobileNet
VGG16

Figure 6.1: A comparison of (left) how many images (MNIST, CIFAR­10) one can send compared to sending the model (Mo­
bileNet) once. And a comparison (right) of how many images (Imagenette) one can send compared to sending the model
(Squeezenet, MobileNet, VGG16) once.

6.3. Accuracy
To measure accuracy, we implemented two different models into our application. First, we down­
loaded a MobileNetV2 model from the Apple Developer website [14], which is a pre­trained model in
the CoreML format .mlmodel. This model is trained on the ImageNet dataset, so for accuracy, we use

6.4. Classification performance 33

ImageNette (a subset of ImageNet). Second, we trained our, for federated learning optimized, Mo­
bileNetV2 on CIFAR­10 and converted that model, using CoreMLTools to a .mlmodel. In Listing 6.1
you can see a code­sample used to convert PyTorch models to CoreML models.

1 import torch
2 import coremltools as ct
3 from torch import nn
4

5 # Load the PyTorch model.
6 model = torch.load(
7 ”model.pth”,
8 map_location=torch.device(torch.device(’cpu’)),
9)
10 model.eval()
11

12 # Create a sample input for tracing.
13 example_input = torch.rand(1, 3, 32, 32)
14 traced_model = torch.jit.trace(model, example_input)
15

16 # Define the image classes.
17 class_labels = [
18 ’Airplane’, ’Autombile’, ’Bird’, ’Cat’, ’Deer’, ’Dog’, ’Frog’, ’Horse’, ’Ship’, ’Truck’
19]
20

21

22 # Convert to Core ML using the Unified Conversion API
23 model = ct.convert(
24 traced_model,
25 inputs=[ct.ImageType(
26 name=”input_1”,
27 shape=example_input.shape,
28 bias=[­1, ­1, ­1],
29 scale=2/255.0,
30)],
31 classifier_config = ct.ClassifierConfig(class_labels),
32)
33

34 model.save(”MobileNetV2.mlmodel”)

Listing 6.1: Conversion script for PyTorch Models to CoreML models.

When we used the model from option 1, the pre­trained model downloaded from the Apple De­
veloper website can achieve a Top­1 accuracy of 88%. This level of accuracy is equal to a similar
implementation in PyTorch, so we can say that there is no accuracy loss in this case. If we look at op­
tion 2, where we have PyTorch model and convert it to a CoreML model using Listing 6.1, a noticeable
drop in Top­1 accuracy occurs. Where we have a Top­1 accuracy of 89% in PyTorch, we only see a
Top­1 accuracy of 77% in CoreML after conversion.

A possible explanation for this might be that the model from option 1 is converted from a TensorFlow
model. TensorFlow models have a slightly different structure and are more similar to the overall struc­
ture of CoreML models. This could result in a more favorable conversion, however, this fell outside of
the scope of this research and might be a good question for further research.

6.4. Classification performance
For classification performance, we used the same setup as for the accuracy performance in Section 6.3.
We used themodel from the Apple Developer website and our model that is converted fromPyTorch. As
mentioned in Section 6.1, we used an iPhone X to measure the performance that uses its Neural Engine
as an accelerator. Having an accelerator means that it has specialized hardware that will accelerate
the task that it needs to do. In this case, it means that it will do calculations on tensors from the neural
network more efficiently than a CPU or GPU.

Table 6.1: The number of images classified per second.

Dataset Images per Second
CIFAR­10 69
ImageNette 127.5

34 6. Experimental results ­ Mobile implementation

Table 6.1 shows how many images can be classified per second. In this table, we see that using
our converted model from PyTorch on the CIFAR­10 dataset we achieve an average of 69 image clas­
sifications per second. This result means that it can be used in real­time photography and videography
applications and do instant image recognition on these images. However, as we have mentioned ear­
lier in Section 6.2, CIFAR­10 is a dataset that is too small for real­world scenarios. Because of this, we
also experimented with ImageNette on the pre­trained MobileNetV2 model from the Apple Developer
website.

Surprisingly, we saw that the performance of this model increased significantly to an average of
127.5 images per second. The increase in speed is unexpected because larger images contain more
data and subsequently require more computations. Two factors might play a role in this result. First, we
saw an increase in CPU usage for the ImageNette dataset. While with the CIFAR­10 dataset, we only
saw a constant CPU usage of 50%, we saw a constant CPU usage of 70% for our ImageNette dataset.
The increase in the CPU utilization leads obviously to higher performance. The second reason, which
also might explain the increase in the CPU cap, is that the downloaded model is better optimized for
CoreML.We already saw that higher accuracy was achieved with this model and nowwe also see better
performance. An example of this might be the way a ReLU6 is performed in both models. Where in
the model converted from PyTorch the ReLU6 is consolidated into one single layer, the ReLU6 from
the downloaded model is split into four distinct steps. These steps are visible in Figure 6.2 and are:

• ReLU: a ReLU function looks as follows: 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) and takes the maximum value be­
tween 0 and x. This means that we are left with 0 if 𝑥 is below zero, and 𝑥 if 𝑥 > 0.

• ­1: this function looks as follows: 𝑓(𝑥) = −𝑥 and negates all the values.
• Threshold ­6: this function looks as follows: 𝑓(𝑥) = 𝑚𝑎𝑥(−6, 𝑥) and takes the maximum value
between −6 and 𝑥. This means that we are left with 𝑥 if the value is above −6, and −6 if the value
is below −6.

• ­1: this function looks as follows: 𝑓(𝑥) = −𝑥 and negates all the values, but because our values
are negative already, they become positive again to complete the ReLU6.

ReLU ­1 Tresh ­6 ­1

Figure 6.2: ReLU6 from MobileNetV2 for ImageNette dataset with separate steps.

6.5. Quantization
The weights in our models are stored in 32­bit floating­point (32fp) values. These 32fp values allow for
precise calculations, but it is often not necessary to use these full precision values [23, 42, 44]. While
we are now focusing on model size compared to the accuracy of the model, it is also possible to see a
performance increase when quantizing a model. This performance increase would come from reduced
computation on less complex values, but this is often hardware related. Some hardware is optimized
to calculate with 32fp and does not profit from this reduction. On the other side, some hardware is
only able to do half­precision 16­bit floating­point (16fp) calculations, so it is important to see what
quantization does with the accuracy of the model.

With CoreML it is possible to quantize down from 32fp to 16fp, 8­bit integer (8b), 7b, 6b, 5b, 4b, 3b,
2b, and 1b. There are also three quantization modes available that distribute and scale the quantized
values in a particular way. The three modes are:

• Linear: this uses linear quantization for the weights with a scale and a bias term.

• Linear Symmetric: this uses linear quantization for the weights but only using a scale.

• Kmeans LUT: this uses the Kmeans [29] algorithm to construct a lookup table for the quantization
of the weights.

6.6. On­device learning 35

Figure 6.3 shows the results of quantizing MobileNetV2 with CoreMLTools using the Linear tech­
nique. We used the same setup as before, where we have our PyTorch converted model for the CIFAR­
10 dataset and our pre­trained downloaded model for ImageNette. We can see that for CIFAR­10 we
can go down to 4­bit integer values while still maintaining acceptable accuracy. Once we use 2­bit val­
ues, the accuracy goes over a cliff and the model becomes unusable. Quantizing the model reduces
the size of the model from 9.1𝑀𝐵 by 7× to 1.3𝑀𝐵.

51015202530
Quantization (bits)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Accuracy Quantized MobilenetV2

CIFAR-10 Images
Imagenette2 Images

51015202530
Quantization (bits)

0

5

10

15

20

25

Si
ze

 (M
b)

Model Size of Quantized MobilenetV2
CIFAR-10 MobileNet
Imagenette2 MobileNet

Figure 6.3: Shows the accuracy drop when reducing the number of bits representing the weights (left) and the size of the model
with that same reduction of bits representing the weights (right).

Looking at MobileNetV2 for ImageNette, we see that we can reduce the model accuracy to 8­bit
integers without losing significant amounts of accuracy. Here we see that if we go to 4­bit integers that
the accuracy goes over a cliff, and the model becomes unusable. By Quantizing the model to 8­bit
integers, we reduce the model size from 24.7𝑀𝐵 by 3.9× to 6.3𝑀𝐵.

6.6. On­device learning
Because it is currently impossible to train a full MobileNetV2 within any of the frameworks we tested,
we used a very simple convolutional network to train on the MNIST dataset. An architectural overview
of this network can be found in Table 6.2, and this network contains 600.000 trainable parameters.
The number of trainable parameters of this network is about 15 𝑡ℎ of the trainable parameters on Mo­
bileNetV2.

Table 6.2: An overview of the simple convolutional network used for on­device training.

Type Stride
Conv 1
ReLU
Pooling 2
Conv 1
ReLU
Pooling 2
Flatten
InnerProduct
ReLU
InnerProduct
Softmax

For training, we again used the iPhone X, and for comparison this time, we used a MacBook Pro
Mid 2014. Keep in mind that the MacBook used only its CPU while the iPhone is allowed to use its
Neural Engine as an accelerator. Furthermore, we will train the network for 10 epochs on both devices
and compare the accuracies and runtime.

36 6. Experimental results ­ Mobile implementation

MacBook Pro Mid 2014 iPhone X
0

50

100

150

200

250

Ru
nt

im
e

10
 e

po
ch

s (
s)

Figure 6.4: Shows the runtime of 10 epochs during training on our convolutional network (smaller is better).

In Figure 6.4 you can find the results of our 10 epoch training. On the y­axis, you see the runtime
in seconds, and on the x­axis, you find the two platforms we have experimented with. From this graph,
we see that the MacBook had a runtime of 158𝑠 compared to 248𝑠 for the iPhone. This is only a 1.6×
increase for a battery­powered mobile device.

If we look at the accuracy achieved by both, we see that we achieve a Top­1 accuracy of 99%+ for
both platforms, which shows there is not any significant difference between these implementations.

7
Conclusion & further research

7.1. Conclusion
In this thesis, we strove at filling the void that exists in current research into mobile machine learning
networks in a federated setting. Also, we aimed at providing a comprehensive overview of what is
possible in terms of machine learning on mobile and embedded devices, and what performance could
we see using mobile machine learning networks.

The thesis shows that mobile networks do not necessarily work, in their original form, in a federated
setting, and we find that there is a nice balance that we can tune to optimize a network either for
performance, accuracy, or a mix of both. We also see that this optimization is very dataset dependent,
and that some datasets have fewer problems than others. This dependency occurs either because a
dataset is very trivial like MNIST (which results in little problems for federation), or because images
are too small, and thus they do not provide enough context like CIFAR­10. If we then use ImageNet
images, which are larger, we see accuracy drops decrease again.

We continue this thesis with an overview of the mobile (on­device) machine learning frameworks. It
is clear that this is a new area, and a lot of work still has to be done. While most frameworks fully support
on­device inference, most do not support on­device training, and where we do see some support it is
more towards doing single layer retraining than full model training. This is indicated by the fact that the
main operators are supported while most support layers are not.

Finally, we looked at the performance of mobile networks on mobile devices using CoreML, a frame­
work from the previously mentioned overview. We see that we can do inference with near­real­time
performance and training with only a 2× increase in training time.

Based on the findings in this thesis, it becomes possible to answer the research questions stated in
Section 1.3:

• How do smaller (mobile) machine learning networks perform in a federated environment?
Smaller mobile machine learning networks are seeing a recent uptick in popularity. Where we
used to see an increasing interest in more complex and more accurate machine learning net­
works, we see that recent trends tend to design smaller machine learning networks that take
resource usage into account. We also contemplate that it is possible to achieve acceptable ac­
curacy while significantly reducing the size of the networks and thus also reducing the resource
requirements to train such a network. We do see that these accuracies are achieved in perfect en­
vironments and that it is not trivial to achieve such accuracies in a federated setting. Especially
on smaller images, we notice that there is not enough information there to achieve high accu­
racies. This, however, is not necessarily a problem caused by federation for mobile machine
learning networks, since we also see this problem occur with mobile machine learning networks
in a non­federated setting.
To specifically answer the research question, smaller (mobile) machine learning networks perform
generally a bit worse in a federated setting than in a normal training setting. This gets amplified
when working on smaller images like CIFAR­10.

37

38 7. Conclusion & further research

• How can we ensure that smaller (mobile) machine learning networks are able to perform well in
a federated environment?

We have noticed mobile machine learning networks lose accuracy when placed in a federated
environment. To make these small (mobile) networks work in a federated setting, we notice that
it might be necessary to tune some (hyper)­parameters and increase resource usage a little bit.
The ability to tune these parameters does give us a unique opportunity to have some sort of
a balance where we can tune a network to its exact needs. If we have a resource­constrained
environment where accuracy is less important, we can start downsampling earlier and reduce the
network size. On the other side, if we have some more resources available, we can downsample
later in the network and increase the accuracy of the network.

To specifically answer the research question, we can ensure smaller (mobile) machine learning
networks keep performing in a federated environment by changing some of the hyper­parameters
of the network. In particular, decreasing the stride parameters of the earlier layers/ blocks in the
network proved very effective to improve accuracies.

• Are frameworks ready for mobile (on­device) machine learning training and inference?

We see that on­device machine learning is a relatively new technology. It is not surprising that
we only see on­device machine learning popping up now because machine learning is a compu­
tational and memory­intensive task. Mobile client devices are only becoming capable of doing
such tasks within the last 3 to 6 years. We only have to look at the difference between the first
Neural Engine in the iPhone X from 2017 which could perform 600 billion operations per second
with the new Neural Engine in the iPhone 12 from 2020 that can perform 11 trillion operations
per second. It is then also not surprising most AI frameworks are just starting with implementing
on­device inference, and most have not even started with on­device training that is an even more
computational intensive task than inference.

To then explicitly answer the research question, most frameworks support full (on­device) infer­
ence or will in the very near future. Looking at on­device training, it is unlikely an application can
use on­device training with the current frameworks. We will probably see this gap decrease in
the next 2 to 3 years when frameworks are catching up with the new hardware that becomes
available.

• How well do mobile machine learning networks perform on mobile devices?

CoreML gave us a platform to run MobileNet on an actual mobile client­device. This gave us in­
sights into how an actual handheld, battery­powered, client­device would fulfill the task of training
and inference. As we have mentioned, these tasks were performed on a device from three years
ago and new devices have 11× more raw performance. Also, we could not do a full fletched
training scenario because MobileNet is not fully supported for on­device training. The lack of this
experimentation might influence the end­result because we were unable to test if memory would
eventually become a bottleneck.

To specifically answer the research question, we were positively surprised by the performance
of our three­year­old device. Even on this device, we could see that inference would not be a
problem at all and might even be used in near­real­time applications. The limited experiments we
could do using on­device learning were promising with only doubling the time spend on a training
task of 10 epochs.

7.2. Further research
Some areas which would benefit from further research are:

• CoreML accuracy and efficiency: we see that performance and accuracy are getting lost during
model conversion in CoreML. This shows that the models on the Apple Developer website have
undergone some optimizations that are not standard with the conversion tool. It will be interesting
to see what operations are more performant than others and to see whether we can combine
multiple operations to achieve a more performant bigger operation.

7.2. Further research 39

• On device training: as we have seen on­device learning is very much in its infant shoes, and
it would be extremely useful if more research/ development would be spent on developing these
frameworks to support or better support on­device learning. After this has been developed it
would be interesting to see what the memory requirements do with training on a mobile device if
larger images and bigger networks are used.

• Distortion in prediction labels: we got mobile networks working in a federated setting, but we
only feed it relatively clean data. It would be interesting to see how these mobile networks would
hold up if data with distortion would be provided. This would resemble a more real­life scenario
where data is never perfect and distortion is very common.

• Quantization 2.0: after speaking with the Circuits and Systems group at TuDelft, it appears
there is a big interest in quantization. While we only performed entry­level quantization, it would
be interesting to see how more advanced forms of quantization would possibly further decrease
network sizes while maintaining the same accuracy.

Bibliography
[1] Paddle github. URL https://github.com/PaddlePaddle/Paddle.

[2] Pysyft github. URL https://github.com/OpenMined/PySyft.

[3] App experiment environment, 2020. URL https://github.com/JacopoMangiavacchi/
MNIST­CoreML­Training.

[4] Caffe developer website, 2020. URL https://caffe.berkeleyvision.org.

[5] Google colab, 2020. URL https://colab.research.google.com.

[6] Coreml developer website, 2020. URL https://developer.apple.com/
machine­learning/core­ml/.

[7] Coremltools developer website, 2020. URL https://coremltools.readme.io/docs.

[8] Federated learning framework, 2020. URL https://github.com/shaoxiongji/
federated­learning.

[9] Hiai developer website, 2020. URL https://developer.huawei.com/consumer/en/hiai.

[10] Keras developer website, 2020. URL https://keras.io.

[11] Huawei mindspore developer website, 2020. URL https://e.huawei.com/en/products/
cloud­computing­dc/atlas/mindspore.

[12] Pytroch mobilenetv2 implementation, 2020. URL https://github.com/pytorch/vision/
blob/master/torchvision/models/mobilenet.py.

[13] Mobilenetv2 cifar­10 optimized, 2020. URL https://github.com/kuangliu/
pytorch­cifar.

[14] Mobilenetv2 apple developer, 2020. URL https://developer.apple.com/
machine­learning/models/.

[15] Onnx developer website, 2020. URL https://onnx.ai.

[16] Openmined developer website, 2020. URL https://www.openmined.org.

[17] Pygrid github, 2020. URL https://github.com/OpenMined/PyGrid.

[18] Pytorch developer website, 2020. URL https://pytorch.org/.

[19] Pytorch mobile developer website, 2020. URL https://pytorch.org/mobile/home/.

[20] Scikit learn developer website, 2020. URL https://scikit­learn.org/stable/.

[21] Tensorflow developer website, 2020. URL https://www.tensorflow.org.

[22] Tensorflow lite developer website, 2020. URL https://www.tensorflow.org/lite/.

[23] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Ze­
roq: A novel zero shot quantization framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13169–13178, 2020.

[24] Pedro Domingos. A few useful things to know about machine learning. Communications of the
ACM, 55(10):78–87, 2012.

41

https://github.com/PaddlePaddle/Paddle
https://github.com/OpenMined/PySyft
https://github.com/JacopoMangiavacchi/MNIST-CoreML-Training
https://github.com/JacopoMangiavacchi/MNIST-CoreML-Training
https://caffe.berkeleyvision.org
https://colab.research.google.com
https://developer.apple.com/machine-learning/core-ml/
https://developer.apple.com/machine-learning/core-ml/
https://coremltools.readme.io/docs
https://github.com/shaoxiongji/federated-learning
https://github.com/shaoxiongji/federated-learning
https://developer.huawei.com/consumer/en/hiai
https://keras.io
https://e.huawei.com/en/products/cloud-computing-dc/atlas/mindspore
https://e.huawei.com/en/products/cloud-computing-dc/atlas/mindspore
https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenet.py
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://developer.apple.com/machine-learning/models/
https://developer.apple.com/machine-learning/models/
https://onnx.ai
https://www.openmined.org
https://github.com/OpenMined/PyGrid
https://pytorch.org/
https://pytorch.org/mobile/home/
https://scikit-learn.org/stable/
https://www.tensorflow.org
https://www.tensorflow.org/lite/

42 Bibliography

[25] David Enthoven and Zaid Al­Ars. Fidel: Reconstructing private training samples from weight
updates in federated learning. arXiv preprint, 2020.

[26] David Enthoven and Zaid Al­Ars. An overview of federated deep learning privacy attacks and
defensive strategies. arXiv preprint arXiv:2004.04676, 2020.

[27] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5927–5935, 2017.

[28] Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5353–5360, 2015.

[29] Kaiming He, Fang Wen, and Jian Sun. K­means hashing: An affinity­preserving quantization
method for learning binary compact codes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2938–2945, 2013.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[31] Andrew GHoward, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, WeijunWang, TobiasWeyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[32] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet­level accuracy with 50x fewer parameters and< 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

[33] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor­Yiing Su. Scaling distributed machine learning with the
parameter server. In 11th {USENIX} Symposium on Operating Systems Design and Implementa­
tion ({OSDI} 14), pages 583–598, 2014.

[34] Ningning Ma, Xiangyu Zhang, Hai­Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European conference on computer
vision (ECCV), pages 116–131, 2018.

[35] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication­efficient learning of deep networks from decentralized data. In Artificial Intelli­
gence and Statistics, pages 1273–1282. PMLR, 2017.

[36] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang­Chieh Chen. Mo­
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510–4520, 2018.

[37] Robert E Schapire. The boosting approach to machine learning: An overview. In Nonlinear esti­
mation and classification, pages 149–171. Springer, 2003.

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large­scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[39] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception­v4, inception­
resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261, 2016.

[40] Wil MP Van der Aalst, Vladimir Rubin, HMW Verbeek, Boudewijn F van Dongen, Ekkart Kindler,
and Christian W Günther. Process mining: a two­step approach to balance between underfitting
and overfitting. Software & Systems Modeling, 9(1):87, 2010.

[41] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient con­
volutional neural network for mobile devices. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6848–6856, 2018.

Bibliography 43

[42] Baozhou Zhu, Zaid Al­Ars, and Peter Hofstee. Nasb: Neural architecture search for binary con­
volutional neural networks. In International Joint Conference on Neural Networks (IJCNN), pages
1–8, 2020. doi: 10.1109/IJCNN48605.2020.9207674.

[43] Baozhou Zhu, Zaid Al­Ars, and Wei Pan. Towards lossless binary convolutional neural networks
using piecewise approximation. European Conference on Artificial Intelligence (ECAI), 2020.

[44] Baozhou Zhu, Peter Hofstee, Jinho Lee, and Zaid Al­Ars. Sofar: Shortcut­based fractal architec­
tures for binary convolutional neural networks. arXiv preprint arXiv:2009.05317, 2020.

[45] Stefan Zwaard, Henk­Jan Boele, Hani Alers, Christos Strydis, Casey Lew­Williams, and Zaid Al­
Ars. Privacy­preserving object detection & localization using distributed machine learning: A case
study of infant eyeblink conditioning. arXiv:2010.07259, 2020.

	Introduction
	Context
	Challenges
	Problem statement
	Thesis outline

	Background
	Machine learning
	Federated machine learning
	Overview
	Privacy
	Computational efficiency
	Data efficiency

	Mobile machine learning models
	SqueezeNet
	MobileNet
	MobileNetV1
	MobileNetV2

	ShuffleNet

	Evaluating federated mobile machine learning networks
	Setup
	Accuracy
	Designing mobile machine learning networks

	Mobile machine learning frameworks
	HiAi
	TensorFlow Lite
	PyTorch Mobile
	PySyft
	CoreML

	Experimental results - Mobile implementation
	Setup
	Data usage
	Accuracy
	Classification performance
	Quantization
	On-device learning

	Conclusion & further research
	Conclusion
	Further research

	Bibliography

