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Costas A. Kokke‡, Mario Coutino∗, Richard Heusdens†‡, Geert Leus‡
∗Radar Technology, Netherlands Organisation for Applied Scientific Research, The Hague, The Netherlands

†Netherlands Defence Academy, Den Helder, The Netherlands
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Abstract—Sensor selection is a useful method to help re-
duce computational, hardware, and power requirements while
maintaining acceptable performance. Although minimizing the
Cramér-Rao bound has been adopted previously for sparse
sensing, it did not consider multiple targets and unknown target
directions. We propose to tackle the sensor selection problem
for direction of arrival estimation using the worst-case Cramér-
Rao bound of two uncorrelated equal power sources on planar
arrays. We cast the problem as a convex semi-definite program
and retrieve the binary selection by randomized rounding. We
illustrate the proposed method through numerical examples
related to planar arrays. We show that our method selects a
combination of edge and center elements, which contrasts with
solutions obtained by minimizing the single-target Cramér-Rao
bound.

Index Terms—array processing, Cramér-Rao bound, multi-
target estimation, sensor selection, sparse sensing

I. INTRODUCTION

One of the main functions of a radar system is angle
of arrival (AoA) estimation. To realize the acquisition of
spatial data and the application of beamforming, modern radars
employ antenna arrays. While the aperture of the array is the
main contributor to angular resolution, its density controls the
suppression outside of the main beam and when sufficient
prevents spatial aliasing.

It should come as no surprise then, that having an array
with both a large aperture and a large density is ideal. Both
the aperture and the density however, come with a cost. The
cost increase can be in terms of hardware, amount of space
required, and the amount of throughput and processing that
is required. Additionally, the increased need for hardware and
processing increases the amount of power required to drive
the system.

As a result, several works have focused on answering the
question: is it possible to design an array with a reduced
number of sensors while preventing spatial aliasing and
achieving sufficient suppression of out-of-beam emitters and
reflectors? One effective method of reducing the amount of
data processing while maintaining acceptable performance is
compressed sensing [1]–[3]. While CS methods indeed reduce
the amount of data that needs to be processed, it does not
relieve us fully of the hardware requirements. Sparse array

The work is part of a project funded by the Netherlands Organisation for
Applied Scientific Research (TNO) and the Netherlands Defence Academy
(NLDA).

design and sensor selection however can help us reduce more
hardware.

Sensor selection as a means of designing a sparse array uses
the idea of a candidate set of sensors. From this candidate set
of sensors, we would like to select a subset that performs
better than any other subset of the same size, which is
determined using a metric or cost of choice. The candidate
set of sensors can be physically present or not. When they
are physically present, one can think about a scenario where
there are many antennas, which are cheap, but not so many
frontends, which are expensive. The frontends can then be
switched to different antennas based on the sensor selection
procedure results. If the sensors in the candidate set are not
all physically present, sensor selection is similar to the sensor
placement problem, where the space in which the sensors can
be placed is discretized.

To perform the sensor selection, convex optimization has
been used to some success, for example by relaxing a non-
convex problem to a convex one [4]–[6]. Convex optimization
has the immediate benefits of having well-studied optimization
methods, including many off-the-shelf solvers, as well as
guarantees of reaching a global optimum. In this work, we also
take the approach of formulating a relaxed convex program as
part of our proposed method.

To evaluate the quality of the selected subset of sensors,
we need a metric. For this work we choose the Cramér-Rao
bound (CRB) as it is agnostic to the estimation method used,
making it especially relevant for sensor selection during the
array design phase. Some works have already used the CRB
for sensor selection [7]–[10], but planar arrays with multiple
unknown targets have not yet been considered. This is what
we will discuss in this work.

In Section II we present the signal model, its associated
multi-target CRB and discuss the specific selection that we
would like to find using our method. The proposed cost
function and method are presented in Sections III and IV,
where we also show the derivations to obtain the final convex
semidefinite program. We present the results of our simulations
as verification of our proposed method in Section V and we
conclude in Section VI with some discussion.

II. SIGNAL MODEL AND PROBLEM STATEMENT

We start from a candidate set of array elements, from which
we will select a subset of elements that performs better than
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any other subset of the same size according to our chosen cost
function. The signal model for the full array, i.e., the candidate
set, is given by

X =

K∑
k=1

a(ωk)s
T
k +E ,

= A(ω)ST +E ∈ CN×T ,

where

[a(ωk)]n = ejr
T
nωk ,

A(ω) =
[
a(ω1) · · · a(ωK)

]
∈ CN×K ,

S =
[
s1 · · · sK

]
∈ CT×K ,

ω =
[
ωT

1 · · · ωT
K

]T ∈ [0, 2π)DK×1 ,

vec(E) ∼ CN
(
0, σ2I

)
,

with ωk the D-dimensional target angle of the kth source
(note that the actual AoAs are a function of this), rn the
D-dimensional position of the nth array element, and D the
number of dimensions of the array, i.e., D = 1 for linear
arrays and D = 2 for planar arrays. For the remainder, we
assume that the matrix R = STS/T is diagonal (orthogonal
sources), which is for instance a fair assumption if T is large
and the sources are independent.

Selecting M array elements from the full candidate set can
be expressed as Y = ΦpX ∈ CM×T , where

Φp ∈ {0, 1}M×N
, ΦT

pΦp = diag(p) , ΦpΦ
T
p = I ,

and p =
[
p1 · · · pN

]T ∈ {0, 1}N is a binary selection
vector where the M ones indicate the corresponding selected
array elements, and zeros indicate the elements that are not
selected.

Finding the optimal binary p for the array element selection
problem can in general be expressed as

min
p

f(p) , s.t. 1Tp = M , p ∈ {0, 1}N , (1)

where f(p) is the considered cost function.

III. THE WORST-CASE MULTI-TARGET CRAMÉR-RAO
BOUND

The CRB seems a logical choice for a cost function,
since it serves as an indication of the theoretically achievable
performance of an estimator. So we need a selection dependent
CRB for multi-target AoA estimation. Let

Dk =
∂a(ωk)

∂ωk
∈ CN×D , (2)

D =
[
D(ω1) · · · D(ωK)

]
∈ CN×DK . (3)

For notational convenience, let A = A(ω), and P =
diag(p). For the derivation of the CRB, we take θ =[
Re

{
sT

}
Im

{
sT

}
ωT

]T
, for our unknown parameter vec-

tor, where s = vec(S). Note that the parameter σ2 is
also unknown, but it is known that it is uncorrelated to the
parameters in θ [11], [12], so it does not need to be considered
here.

By combining the results from [10]–[12], the DK × DK
block of the selection dependent CRB matrix corresponding
to ω, is given by

CRB−1
ωω(ω,p) =

2T

σ2
Re

{
DHP

(
I −A

(
AHPA

)−1
AH

)
PD ◦ R̃

}
,

where R̃ = R ⊗ JD, and JD is a D × D matrix of ones.
Because each target angle is in general given by a length-D
vector ωk, the CRB for one of the targets is given by a D×D
matrix. The selection dependent CRB matrix for the angle of
arrival of one of the targets is then proportional to

CRB−1
ωkωk

(ω,p) ∝ Fk(ω,p) =

Re
{
DH

k P
(
I −A

(
AHPA

)−1
AH

)
PDk

}
. (4)

To obtain a scalar objective, we propose to use

f(p) = max
k,ω

tr
(
F−1
k (ω,p)

)
, (5)

which will optimize the worst performing target and worst
performing set of target angles.

IV. ARRAY ELEMENT SELECTION METHOD

To evaluate (5), we need the number of targets and their
AoAs, which are in general not available. To address this issue,
we took inspiration from a widely-used idea in waveform, filter
and beamformer design in unknown multi-target scenarios:
peak sidelobe (PSL) suppression.

When observing a specific filter response when the beam
is aimed in a particular direction, we observe sidelobes in the
directions outside of the beam. These sidelobes can change
when the beam is aimed in different directions and therefore, if
we want to find the PSL level, we should consider all mainlobe
directions. The PSL can be considered as the maximum
interference that one target can inflict upon another, a worst-
case two-target metric. For a given array element selection p,
we can formulate finding the PSL as

PSL = max
ω∈[0,2π)2D×1

SL(ω,p) , (6)

where SL(ω,p) is the sidelobe level at ω2 when the beam is
aimed at ω1. Note that the PSL implicitly assumes two equi-
power targets. Since the PSL is completely filter/estimator
dependent, we propose to make use of the estimator-agnostic
properties of the CRB to construct a performance metric for
the unknown multi-target case similar to (6). Here we advocate
the use of the CRB metric in (5) with only two targets with
equal power.

Combining (1) and (5), we then obtain the following opti-
mization problem:

min
p

max
k∈{1,2}

ω∈[0,2π)2D×1

tr
(
F−1
k (ω,p)

)
s.t. 1Tp = M , p ∈ {0, 1}N .

(7)
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It is not immediately obvious how we can optimize this
efficiently. To do so, we propose to relax the above formu-
lation and exploit the characteristics of the two-target CRB
expression. For the remainder, we will assume D = 2, the
planar array case.

Firstly, let us introduce the following notation:
¯̄Z = DH

k PDk (8)

=

[ ∑N
n=1 [rn]

2
1pn

∑N
n=1 [rn]1[rn]2pn∑N

n=1 [rn]1[rn]2pn
∑N

n=1 [rn]
2
2pn

]
,

Z̄1(∆ω) = AHPD1 (9)

=

[∑N
n=1 [rn]1pn

∑N
n=1 [rn]1pne

jrT
n∆ω∑N

n=1 [rn]2pn
∑N

n=1 [rn]2pne
jrT

n∆ω

]H

,

Z̄2(∆ω) = AHPD2 (10)

=

[∑N
n=1 [rn]1pne

jrT
n∆ω

∑N
n=1 [rn]1pn∑N

n=1 [rn]2pne
jrT

n∆ω
∑N

n=1 [rn]2pn

]T

,

Z(∆ω) = AHPA (11)

=

[
M

∑N
n=1 pne

jrT
n∆ω∑N

n=1 pne
−jrT

n∆ω M

]
,

where ∆ω = ω2 − ω1. From these expressions and (4) it is
clear that Fk(ω,p) only depends on ∆ω and can be rewritten
as

Fk(∆ω,p) = Re
{
¯̄Z − Z̄H

k (∆ω)Z−1(∆ω)Z̄k(∆ω)
}
.

We can further show that Z̄k(∆ω) = Z̄∗
k(−∆ω), Z(∆ω) =

Z∗(−∆ω), Z̄1(∆ω) = PZ̄∗
2 (∆ω) and Z(∆ω) =

PZ∗(∆ω)P , where P =

[
0 1
1 0

]
is a permutation matrix.

Because of this

Fk(∆ω,p) = Fk(−∆ω,p) , (12)
F1(∆ω,p) = F2(∆ω,p) , (13)

and as such we equivalently reformulate (7) as

min
p

max
∆ω∈D+

tr
(
F−1
1 (∆ω,p)

)
s.t. 1Tp = M , p ∈ {0, 1}N ,

simplifying our problem. The set D+ is the set of all angle
difference vectors that we want to consider in our optimization.
It should not contain differences that are too small, since
Z(∆ω) will become ill-conditioned, but also because a very
small angle difference might lead to unresolvable targets. Also,
recall that due to the symmetry given by (12), D+ can be
halved.

To further handle the maximization, we propose that D+ is
a discrete set. For each entry of the set, we can then consider
a constraint to ensure that the maximum cost is minimized.
This leads to

min
p,C

tr(C)

s.t. 1Tp = M , p ∈ {0, 1}N

F1(∆ω,p) ⪰ C−1 , ∀∆ω ∈ D+ .

By separating the constraints into parts that do and do not
depend on ∆ω by introduction of a variable G, and application
of the Schur complement, we can obtain the following binary
semi-definite program (SDP):

min
p,C,G

tr(C)

s.t. 1Tp = M , p ∈ {0, 1}N ,

[ ¯̄Z −G I
I C

]
⪰ 0[

G Z̄H
1 (∆ω)

Z̄1(∆ω) Z(∆ω)

]
⪰ 0 , ∀∆ω ∈ D+ ,

(14)

where all the matrix inequalities are linear in all the variables,
see (8), (9) and (11).

This means that, except for the binary constraint, (14) is a
convex program. To handle this final obstacle, we propose to
use a continuous variable p̃, instead of p in the SDP:

min
p̃,C,G

tr(C)

s.t. 1Tp̃ = M , p̃ ∈ [0, 1]
N
,

[ ¯̄Z −G I
I C

]
⪰ 0[

G Z̄H
1 (∆ω)

Z̄1(∆ω) Z(∆ω)

]
⪰ 0 , ∀∆ω ∈ D+ .

To obtain our desired binary vector p, we finally perform a
randomized rounding procedure on the optimal p̃ [5]. The
optimal p̃ can be obtained by any off-the-shelf solver for
convex SDPs.

Though we derived the optimization problem here for planar
arrays (D = 2), similar problems can be derived for the D =
1 and D = 3 cases, where the cost also only depends on
the difference of AoAs and the symmetries in (12) and (13)
also apply. The problem has been derived for linear arrays
in [10]. Since the complexity of SDPs primarily scales in the
size and number of LMIs [13], the problem is greatly reduced
in complexity in the case of D = 1: In that case ∆ω is a
scalar and all the linear matrix inequalities (LMI) are two-by-
two instead of four-by-four.

V. SIMULATION RESULTS

To verify the proposed method and quantify its performance,
we have performed a number of simulations comparing our
method to random selection and selection using the single-
target CRB. The single-target CRB optimization is given by

min
p̃,C,G

tr(C)

s.t. 1Tp̃ = M , p̃ ∈ [0, 1]
N[ ¯̄Z −G I

I C

]
⪰ 0 ,

[
G z̄T

1

z̄1 M

]
⪰ 0 ,

where z̄1 =
[∑N

n=1 [rn]1pn
∑N

n=1 [rn]2pn

]
, i.e., the first

row of Z̄1(∆ω).
The following parameters are fixed, except where noted: 100

randomized rounding trials, M = 1
2N , D+ consists of 500

vector samples with uniformly sampled magnitudes between
∆ωmin and π and uniformly sampled directions. In practice,
∆ωmin would be determined by the system requirements and/or
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Fig. 1: Example of planar array selections for different minimum separations. The blue dots indicate array elements by the
proposed method, red stars are array elements selected by the single source CRB optimization, and green crosses indicate those
that are not selected by either method.

prior knowledge of the radar scene, for example. For the
candidate array, we pick a square uniform planar array (UPA).
Let

√
N = Nx = Ny , where Nx and Ny are the amount of

columns and rows of the UPA, respectively.

In Fig. 1, we show a number of selection examples for the
eight-by-eight planar array candidate set. The blue dots, of
which there are twenty-four, indicate array elements selected
by the proposed method, red stars are array elements selected
by the single source CRB optimization, and green crosses
indicate those that are not selected by either method. By
varying ∆ωmin, we can obtain different selections that are more
or less distinct from the single-target optimization result. As
∆ωmin increases, the results become more and more similar to
the single-target optimization result. Similar to the linear array
results in [10], we see a mix of edge and center elements being
selected for small ∆ωmin, with the center selections ‘moving
outward’ as ∆ωmin gets larger. This implies that the worst case
happens mostly for smaller differences between targets, which
makes intuitive sense. For smaller ∆ωmin, we don’t see notably
different results. Note that while we expect some symmetry
in the selection (this due to our metric only depending on the
angle differences), we may not always obtain this in the final
selection, due to the randomized rounding step.

Fig. 2 shows the results of more extensive simulations for
different candidate set sizes and sparsities. The CRB that
is plotted is max∆ω∈D+

tr
(
F−1
1 (∆ω,p)

)
, with ∆ωmin =

3.5N−1
x . We see there that the optimization is successful

in optimizing the worst-case two-target CRB and is thus
outperforming the other methods. The shaded regions indicate
the worst and best performing randomized rounding results.
While the shaded region is generally slim for our proposed
method, there is clearly some merit to performing multiple
rounding trials and picking the best result. It should be noted,
that the differences in performance may not be very large, and
that our proposed method is more complex to compute than
the others. Whether this trade-off is worthwhile depends on
the specifics of the application. During offline optimization

however, where the computation of the array selection is done
prior to deployment, the increased computational complexity
is less of an issue.

Finally, we show two example matched filter responses
where the mainlobe is aimed at

[
π
4

π
4

]T
, N = 64, and

M = 24. We see that compared to the single target method,
for the proposed method, there are less prominent sidelobes
near the mainlobe and the peak sidelobe level is lower, at the
cost of mainlobe width.

VI. CONCLUSIONS

We showed our method is successful in optimizing the
worst-case two-target CRB for planar arrays. The worst-case
two-target CRB functions as an estimator agnostic surrogate
for peak sidelobe suppression, which makes it useful for
modern estimators which do not produce sidelobes like, for
example, a matched filter receiver. We have shown that using
the worst-case two-target CRB also leads to PSL reduction by
inspecting some example array responses, without the need to
include sidelobe suppresing constraints or costs explicitly.

The proposed method is a convex semidefinite program
which, after randomized rounding, produces a binary selection
vector. Both steps can be efficiently solved [5], [13]. Though
we have shown only results for square UPAs, the method
does not require a specific candidate set structure. In fact, it
will work for any candidate set of planar array elements by
adapting (8), (9) and (11) for that particular set.

We have shown that our method outperforms random se-
lection and single-target CRB optimization in terms of the
worst-case two-target CRB through simulation. This shows
our method is successful in optimizing the metric. Further,
simulations have shown that the variation in performance
due to the randomized rounding step is small, but not al-
ways insignificant, warranting choosing the best from multiple
rounding trials. Through example array element selections
it appears that center elements of the array are useful in
distinguishing closely spaced targets. As targets become more
separated, the benefit of the center elements decreases.
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(a) Results for varying candidate set sizes. M = N
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(b) Results for varying sparsities. N = 64.

Fig. 2: Worst-case two-target CRB performance of a number of
different methods using different planar candidate array sizes
and sparsities.

For future work, we would like to investigate alternative
directions for solving the original minimax problem, e.g.,
methods which do not require sampling the feasible region
of the maximizer and thus do not result in a large number
of constraints in the SDP. Furthermore, we would like to
adapt the method to correlated sources and to performing the
selection on both transmit and receive.
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