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Abstract: Multivariable parametric models are essential for optimizing the performance of
high-tech systems. The main objective of this paper is to develop an identification strategy
that provides accurate parametric models for complex multivariable systems. To achieve this,
an additive model structure is adopted, offering advantages over traditional black-box model
structures when considering physical systems. The introduced method minimizes a weighted
least-squares criterion and uses a refined instrumental variable method to solve the estimation
problem, achieving local optimality upon convergence. Experimental validation is conducted on
a prototype wafer-stage system, featuring a large number of spatially distributed actuators and
sensors and exhibiting complex flexible dynamic behavior, to demonstrate the effectiveness of

the proposed method.
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(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Parameter estimation, system identification, multivariable systems, frequency

response function

1. INTRODUCTION

System identification involves developing mathematical
models using experimental data, often incorporating in-
sights from physical principles (Ljung, 1999). Data-driven
parametric models of multi-input multi-output (MIMO)
systems are essential for optimizing the performance of
engineered systems, as they enable the design of high-
performance controllers and observers, provide design val-
idation and feedback, and facilitate online monitoring and
fault diagnosis (Steinbuch et al., 2022).

Traditional linear system identification approaches for
multivariable systems often rely on black-box model struc-
tures that do not consider the underlying structure of
the physical system. Examples include rational common
denominator models and matrix fractional descriptions
(Pintelon and Schoukens, 2012). The literature on these
model parameterizations is extensive (Correa and Glover,
1984; Vayssettes et al., 2016), yet they may not provide the
most parsimonious or physically relevant model descrip-
tions for practical applications. Many physical systems are
more naturally described by a sum of low-order transfer
functions. Examples can be found in vibrational analysis
(Vayssettes and Mercere, 2015; Dorosti et al., 2018) and in
the control of flexible motion systems (Voorhoeve et al.,
2021; Tacx et al., 2024), where models are often repre-
sented as a sum of transfer functions with distinct denom-
inators, corresponding to the individual resonant modes

* This project is funded by Holland High Tech — TKI HSTM via
the PPP Innovation Scheme (PPP-I) for public-private partnerships.

of the system (Gawronski, 2004). Similar approaches are
found in the thermal analysis of machine frames (Zhu
et al., 2008), RLC circuits (Lange and Leone, 2021), and
acoustic modeling of room responses (Jian et al., 2022).
The estimation of additive transfer function models, which
are related to unfactored transfer functions via partial
fraction expansion, offers several advantages. These mod-
els enable more efficient parameterization by minimizing
the number of parameters needed to represent the system,
thereby reducing model complexity and enhancing statis-
tical estimation properties (Soderstrom and Stoica, 2001).
Furthermore, they provide improved physical insight for
fault diagnosis (Classens et al., 2022) and enhance nu-
merical conditioning, which is crucial for the parametric
identification of stiff and high-order systems (Gilson et al.,
2018).

When identifying physical systems, estimating continuous-
time models offers distinct advantages over discrete-time
models. Continuous-time models facilitate the integration
of a priori knowledge, such as relative degree, and provide
more interpretable parameters that directly correspond to
physical quantities (Garnier, 2015). In this context, the
frequency-domain approach for parametric identification
of continuous-time models has become increasingly popu-
lar. Frequency-domain system identification offers several
advantages, including data and computational efficiency,
flexible data processing, nonparametric noise model es-
timation, and direct interpretation of system dynamics
(Pintelon and Schoukens, 2012).

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
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Many MIMO frequency-domain identification strategies
have been developed for models parameterized using non-
additive structures. These methods can largely be catego-
rized into pseudo-linear regression-based techniques (Blom
and Van Den Hof, 2010; Sanathanan and Koerner, 1961)
and gradient descent methods (Bayard, 1994). In contrast,
additive model estimation has primarily focused on single-
input single-output (SISO) approaches. Examples include
vector fitting (Semlyen, 1999), which involves fitting first-
order pole models, a simplified refined instrumental vari-
able method (SRIVC) for additive systems in (Gonzélez
et al., 2024; Young and Jakeman, 1980), and a block co-
ordinate descent method for offline and online estimation
(Gonzélez et al., 2023; Classens et al., 2024).

Although additive identification offers benefits for mod-
eling physical systems, identification methods for MIMO
systems in additive structures remain limited. The ap-
proach in Gonzélez et al. (2024) enables the estimation of
SISO additive systems using time-domain data but is not
directly applicable to MIMO systems. This paper intro-
duces a comprehensive MIMO frequency-domain identifi-
cation method for estimating additive linear continuous-
time models. The main contributions are:

Cl1 A frequency-domain refined instrumental variable
method for estimating continuous-time MIMO mod-
els in additive transfer function form.

C2 Experimental validation of the developed identifica-
tion on a prototype wafer-stage system.

This paper is organized as follows. First, Section 2 formally
introduces the additive model structure and outlines the
identification problem considered. In section 3, the identi-
fication strategy is presented with experimental validation
in Section 4. Finally, conclusions are given in Section 5.

Notation: Scalars, vectors and matrices are written as =z,
x and X, respectively. The imaginary unit is denoted by
j2 = —1, and for z € C", the operation R{z} returns
the real part of the complex vector z. For a matrix A, its
transpose is written as AT, and its Hermitian (conjugate
transpose) as A" If x € C" and Q € C™™" is a

Hermitian matrix, then the weighted 2-norm is given by
|x]lq@ = vVxHQx. For X = [xy,...,x,], with x;, € C", the
operation vec(X) = [x{ ,...,x,]T restructures the matrix
into a vector by stacking its columns.

2. SETUP AND PROBLEM FORMULATION

In this section, the experimental setup is presented and the
additive model structure is formally introduced. Finally,
the identification problem considered is formulated.

2.1 FExperimental setup: prototype wafer-stage system

The considered experimental setup depicted in Figure 1 is
a prototype wafer stage system. The system is actively con-
trolled in six motion degrees of freedom at a sampling rate
of 10 kHz, achieving accuracy in the sub-micrometer range.
The stage is magnetically levitated using gravity compen-
sators, achieving a mid-air equilibrium and eliminating any
mechanical connections to the fixed world. These systems
exhibit pronounced flexible dynamics, which pose signifi-
cant challenges for controller design, model updating, and

Fig. 1. Experimental setup featuring a prototype wafer-
stage system.

Fig. 2. Schematic overview of the featured actuators w;
and sensors z; in the out-of-plane direction.

monitoring techniques. The availability of accurate math-
ematical models that capture the dynamics of the flexible
multivariable system is crucial for effectively addressing
these challenges.

The system contains 17 actuators: 13 are in the z direction
and two each for the z and y directions. Furthermore,
the system includes 7 positioning sensors, 4 for the z-
direction, 2 for the z-directions, and a single sensor for the
y-direction. Only out-of-plane motions, that is, translation
along the z axis, and rotations around the x and y axes,
are considered in this paper to facilitate the exposition.
An overview of the sensors and actuators considered is
provided in Figure 2.

2.2 Model structure

To model the input/output dynamics of the wafer-stage
system, an additive model structure is adopted, which is
formally introduced in this section. Consider the linear
and time-invariant (LTT) model of a MIMO system with
ny inputs and n, outputs in additive form

K
P(s7ﬂ) = ZPi(Saai)a (1)
i=1

with K the number of submodels, s the Laplace variable
and B and 6; the joint and submodel parameter vector.
Each submodel P;(s, 0;) is parametrized according to

1

P; =—B; 2
1(87/3) SgiAi(S) 1(5)7 ( )
where at most one submodel may include ¢; > 0 poles

at the origin. The scalar denominator polynomial A;(s)
and the matrix numerator polynomial B;(s) are such that
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no complex number z simultaneously satisfies 4;(z) = 0
and B; ( ) = 0. To ensure a unique characterization of

{P;(s )}Z 1, it is assumed that at most one submodel
P,(s) is biproper. The A;(s) and B;(s) polynomials are
parametrized as
Ai(s)=14a;18+ ...+ ain,s™, (3)
Bl(s) = BZ',() + Bi,ls +...+ Bi’mismi, (4)
where the A;(s) polynomials are stable, i.e., all roots
lie in the left-half plane, and they do not share any

common roots. The polynomials A;(s) and B;(s) are
jointly described by the parameter vector

.
B=10],...,0y . (5)

where 6; for i = 1,..., K contains the parameters of the
ith submodel

T
0, =|ai1,...,0n,,vec (Biyo)—r ye e,y VEC (Bi’mi)—r} . (6)

2.3 Identification problem

A dataset of noisy plant frequency response function
(FRF) measurements G(wp) € C™*™ of length N,
is assumed to be available for the estimation problem.
To estimate continuous-time models from the measured
FRF, the pseudo-continuous-time setting is adopted (see
Wang and Garnier (2008), Chapter 8 for details). The
identification problem is formulated based on the matrix
residual, which is computed as the difference between the
FRF measurement and the model, according to

E(wkaﬂ) :G(wk)fp(gkw@)a (7)

where &, = jwyg. The parameter vector estimate ﬁ is
obtained as the minimizer of the weighted least-squares
criterion

8= arg mln— Z [|vec(E (wy, 3)) ||3,V(wk) ;o (8)

where W(wy) € (C"“”yx”“”y is a frequency-dependent
weighting matrix. The problem considered is to estimate
additive models as described by (1), that minimizes the
cost function in (8), given a dataset of noisy FRF mea-
surements.

3. IDENTIFICATION STRATEGY FOR ADDITIVE
MIMO SYSTEMS

In this section, an iterative linear regression method is
introduced to solve the nonlinear and nonconvex optimiza-
tion problem (8), thereby constituting contribution C1.
3.1 Criterion for optimality

The minimizers of the cost function in (8) satisfy the first-
order optimality condition

Z%{ (wg, B

with the gradlent

W (wi) Vec(E (Wi, ﬂ)) } . 9)

(10)

dvec(E (wy, 8)) "
0B’ '

& (wy,, B) = <

For the considered additive model structure the gradient
corresponds to

& (wi, B) = [ciﬁ' (wi, 01) ... B (wi,0k) H, (11)

where ®; (wg, 0;) for i =1,..., K is given by
2 —&kPi(Ek, 03 =& P&k 0i
@i (wk, ,6) _ 5]2}) (Ek ) e, gk;eip (gk ),
§;€ Ai(fk) fk Ai(fk)
R (12)
Inuny f;@nl Inuny
A& A |
with p;(&x, 0;) = vec(P;(&k, 0;)) the vectorized plant of

the ith submodel. In the following subsections, the first-
order optimality condition (9) will be exploited to derive

an estimator for the parameter vector 3.
3.2 Refined instrumental variables for additive systems

The condition in (9) is non-linear in the parameter vec-
tor B. A solution is obtained by reformulating (7) to a
pseudolinear form which enables the refined instrumental
variables approach. For each submodule in the additive
model structure, the residual can be reformulated into an
unique pseudolinear regression, as stated in the following
lemma.

Lemma 1. The pseudolinear regression form of the resid-
ual (7) corresponding to the ith submodel is expressed as

VEC(E (wkaﬁ)) :gf,l(wkvﬁ)_é;r (wkvﬁ) 0i7 (13)
with the regressor
. | =k8iwr, B) =& gi(wr, B)
@1<wk7ﬁ) - Az(é-k) 3ty Az(é-k) )
, T (14)
Inuny g[ZnIInuny
e AiG) gt AE) |

and where g7 i (wi, B) = A; " (&) &i(wk, B) with & (wk, 8) =
vec(G;(wk, B)) the residual plant of the ith submodel,
defined by

G; (Wi, B) = Glwr) — Y Pul&,00)

0=1,....K
0#i

(15)

Proof. The residual (7) is rewritten for i = 1,..., K
according to
B ek, 8) = G (e B) — ) (16)

& Ai (&) Gi (wi, B) = Bi (&), (17)
g @Kk )

with Gy defined in (15). Substituting the numerator and
denominator polynomials (3) and (4), and vectorizing both
sides, (17) yields

gi (wk, B) an &' i (Wi, B)
vec(E (wy, B)) = 222 4 NN
(Ble8) = "4 16 Ai (&)
VeC(Bio)i.” & vec (B Zm)' (18)
§k (gk) fk i (fk)
This expression can directly be written in the form (13) by
considering (6), thereby completing the proof. O
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The residual formulation in (13) defines K pseudolinear
regressions. Introducing the stacked signals

T (w0 8) = [EralnB) - ErxnB)] . (19
T
® (i B)= @] @B) ... BB . (0)
and the parameter matrix
01 0
B = , (21)
0 BK

which contains the elements of 3 along the block diagonal,
allows to write the equivalent optimality condition (9) for
the K subproblem as

ZN:% {@(wk,ﬂ)W(wk)(TT(wk,ﬂ) - @T(wk,ﬂ)g)} ~o.
k=1

(22)
The solution to (22) is found iteratively by fixing 8 =
BY) at the jth iteration in (19), the regressor (20), and
additionally the gradient (11), which leads to the following
iterative procedure.
Algorithm 1. Given an initial estimate ,6'<0> and a tol-
erance €, compute a new estimate until ||,6(J+1) -
BIN/1BY] < e using:
N —1

B (wp, B9 )W (wr)® " (wr, 87| %

k=1

B+ —

N
> ®(wi, BY )W (wi) X T (wi, BY), (23)
k=1

where the updated parameter vector ,B(j‘H) is extracted

from the block-diagonal coefficients of BU*1) | as described
in (21).

The convergence point of the iterations described by (23)
satisfies the first-order optimality condition in (9). As a
result, the estimate corresponds to a stationary point of
the cost function defined in (8), thereby ensuring local
optimality. Since the original cost function is non-convex,
accurate initialization is critical to ensure convergence to
the global optimum.

Remark 1. As stability is not explicitly enforced in the
estimator (23), the resulting model may contain unstable
poles. A common approach to address this is to reflect any
unstable continuous-time poles across the imaginary axis
at each iteration (Wang and Garnier, 2008). Alternatively,
if each submodel has a denominator of order n; < 2,
stability can be directly enforced by constraining the
denominator coefficients to be positive.

Remark 2. Note that the iterations described by (23) cor-
respond to a refined instrumental variable method, where
& is interpreted as the instrument matrix (Young and
Jakeman, 1980). Furthermore, for K = 1, the iterations
in (23) correspond to the frequency-domain refined in-
strumental variable method in Blom and Van Den Hof
(2010), and by replacing ® with ® to the SK iterations
by Sanathanan and Koerner (1961). The method can be
considered as a MIMO frequency-domain variant of the
SISO approach introduced in Gonzdlez et al. (2024).

3.8 Initialization

The iterations in (23) require an initial estimate 8% of
the model parameters. This section introduces a method
for computing the numerator parameters assuming fixed
denominator polynomials. This reduces the initialization
problem to determining initial pole locations, which are
often effectively obtained from the nonparametric FRF
model. To this end, assume that the denominator polyno-
mials are fixed at A4;(s), and let n represent the parameter
vector from (5) without the denominator coefficients. The
estimate 7) is found as the solution to the convex problem

N

R .1

iy = argmino— 3 | vee(Gen)) — @ (@)l (24)
n k=1

where the regressor matrix ® is obtained by stacking for
each submodel
; T
Inuny gmi:[nuny

P, W) = |: = N =
)= @ Aey ]
in the same way as (20). Hence, an initial estimate 8% is
determined by first providing initial pole locations, which
enables the computation of the numerator parameters by
solving the convex problem (24) given data.

(25)

4. EXPERIMENTAL VALIDATION

This section presents the experimental validation of the in-
troduced identification strategy, thereby providing contri-
bution C2. The considered system is the prototype wafer-
stage system introduced in Section 2.

4.1 Model structure

The input/output dynamics of the wafer-stage system,

which consists of n, = 4 outputs and n, = 13 inputs,
is modeled in the additive structure
P(s,8) = Bio +ni: Bio (26)
’ S P2 w)s 1

where the components of the decomposition are inter-
preted as rigid-body modes and flexible dynamic modes,
with w; > 0 the resonance frequencies, {; > 0 the cor-
responding damping coefficients, and ngex the number of
flexible modes (Gawronski, 2004).

4.2 Nonparametric modeling

As a first step in frequency-domain identification, a non-
parametric model needs to be identified. The nonparamet-
ric FRF model of the (4 x 13) plant, representing the out-
of-plane dynamics of the wafer-stage system, is obtained
using the robust best-linear approximation approach de-
scribed in (Pintelon and Schoukens, 2012, Chapter 3). The
experiments are performed in a closed-loop configuration
since active control of the mid-air equilibrium is required
for stable operation. The plant FRF is derived using the
indirect method, where the system is excited by n, single-
axis random-phase multisine signals with a flat amplitude
spectrum. The multi-sine excitation includes 10 periods
and 10 realizations, resulting in a plant FRF consisting
of N = 4000 complex data points spanning a frequency
range of 0.25 Hz to 2000 Hz. Frequency lines below 20 Hz
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are discarded during the parametric estimation step, as the
coherence of the estimated FRF is of low quality at lower
frequencies. The delays introduced by the hold circuit
in the digital measurement environment are determined
based on the FRF model. The dataset is then compensated
for these delays, allowing the delay-corrected FRF to be
modeled in continuous time (Wang and Garnier, 2008,
Chapter 8).

4.8 Weighting filter design

For the weighting filter an element-wise inverse plant
magnitude weighting is selected, given by

Wi(wy) = diag (vee (IG(wr))) (27)

The inverse plant magnitude weighting effectively trans-
forms the matrix residual (7) from absolute to relative
error criterion. This prevents overemphasizing frequencies
with a large magnitude, which can dominate the estima-
tion process, especially for systems containing integrator
dynamics.

4.4 Initialization and model order selection

Due to the non-convexity of the cost function in (8),
accurate initialization of the estimator in (23) is essential.
The initialization approach followed is to first derive
initial pole locations using the Complex Mode Indicator
Function (CMIF) (Shih et al., 1988), which are then
used to initialize the numerator parameters via (24). The
CMIF is computed as the squared singular values of the
FRF matrix at each frequency point, with the number of
flexible modes ngex and their corresponding frequencies
determined by the peak locations in the CMIF.

Figure 3 shows the CMIF of the FRF dataset. Using this
approach, ngex = 17 distinct flexible modes are identified
in the dataset. The frequency locations of the peaks in
the CMIF are used to initialize the natural frequencies
w;. The corresponding damping coefficients are initialized
as (; = 0.01 for ¢ = 1,...,ngex, which is a typical value
encountered for lightly-damped systems. The initial modal
parameters determine the pole locations, which in turn
allow the initial estimates of the numerator parameters to
be computed by solving the convex problem (24).

4.5 Results

The parametric model is estimated through 10 iterations
of (23). The frequency response of the estimated plant
model is shown in Figure 4, along with the FRF model
used as data. Additionally, Figure 5 presents the frequency
response of a single plant entry, together with the cor-
responding residual. The parametric model closely aligns
with the FRF measurement across the entire frequency
range, demonstrating the validity of the proposed method.
In particular, the high-frequency flexible modes are accu-
rately captured by the additive structure, which is often
challenging to achieve using traditional model structures.

5. CONCLUSION

This paper addresses the parametric identification of mul-
tivariable systems using frequency-domain datasets. The

-150 ' '
-200
m
=,
B -250
g
z(wk)
(wr)
-300 3
3 (wr)
o (wr) ‘
% Selected modes
-350 . . |
102 103

Frequency [Hz]

Fig. 3. CMIF plot with o;(wy) the ith singular value of the
measured FRF dataset. The frequency locations of the
flexible modes are indicated by peaks in the singular
value plot. This information is used to determine
the number of modes and provides accurate initial
estimates of the corresponding natural frequency.

introduced method, which uses a refined instrumental vari-
able method to minimize a least-squares criterion, enables
direct estimation of additive transfer function models.
Many systems are more naturally described in an ad-
ditive structure, leading to reduced complexity models,
improved conditioning, and enhanced physical insight. The
procedure has been successfully tested on a prototype
wafer-stage system, providing accurate models over a large
frequency range.
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