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Background: Identifying persons at risk for cognitive decline may aid in early detection
of persons at risk of dementia and to select those that would benefit most from
therapeutic or preventive measures for dementia.

Objective: In this study we aimed to validate whether cognitive decline in the
general population can be predicted with multivariate data using a previously proposed
supervised classification method: Disease State Index (DSI).

Methods: We included 2,542 participants, non-demented and without mild cognitive
impairment at baseline, from the population-based Rotterdam Study (mean age
60.9 ± 9.1 years). Participants with significant global cognitive decline were defined
as the 5% of participants with the largest cognitive decline per year. We trained DSI
to predict occurrence of significant global cognitive decline using a large variety of
baseline features, including magnetic resonance imaging (MRI) features, cardiovascular
risk factors, APOE-ε4 allele carriership, gait features, education, and baseline cognitive
function as predictors. The prediction performance was assessed as area under the
receiver operating characteristic curve (AUC), using 500 repetitions of 2-fold cross-
validation experiments, in which (a randomly selected) half of the data was used for
training and the other half for testing.

Results: A mean AUC (95% confidence interval) for DSI prediction was 0.78 (0.77–0.79)
using only age as input feature. When using all available features, a mean AUC of 0.77
(0.75–0.78) was obtained. Without age, and with age-corrected features and feature
selection on MRI features, a mean AUC of 0.70 (0.63–0.76) was obtained, showing the
potential of other features besides age.
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Conclusion: The best performance in the prediction of global cognitive decline in the
general population by DSI was obtained using only age as input feature. Other features
showed potential, but did not improve prediction. Future studies should evaluate
whether the performance could be improved by new features, e.g., longitudinal features,
and other prediction methods.

Keywords: population based, cognitive decline, epidemiology, Disease State Index, prediction

INTRODUCTION

It is well established that neuropathological brain changes related
to dementia accumulate over decades, and that the disease has a
long preclinical phase. This may facilitate early disease detection
and prediction (Jack et al., 2013). A large amount of literature on
potential features and risk factors for dementia exists. However,
clinicians often struggle to integrate all the data obtained from a
single patient for diagnostic or prognostic purposes. Therefore,
there is a need for information technologies and computer-based
methods that support clinical decision making (Kloppel et al.,
2008). Disease State Index (DSI) is a supervised machine learning
method intended to aid clinical decision making (Mattila et al.,
2011). This method compares a variety of patient variables with
those variables from previously diagnosed cases, and computes
an index that measures the similarity of the patient to the
diagnostic group studied. The DSI method has previously been
tested in specific patient populations and has shown to perform
reasonably well in the early prediction of progression from mild
cognitive impairment (MCI) to Alzheimer’s disease and has been
successful in the classification of different dementia subtypes
(Mattila et al., 2011, 2012; Munoz-Ruiz et al., 2014; Hall et al.,
2015). In a recent study DSI has been validated in a population-
based setting to predict late-life dementia (Pekkala et al., 2017).
Identification of persons at risk for global cognitive decline may
aid in early detection of persons at risk of dementia and may help
to develop therapeutic or preventive measures to postpone or
even prevent further cognitive decline and dementia (Blumenthal
et al., 2017). This is especially important since previous research
has shown that preventive interventions for dementia were more
effective in persons at risk than in unselected populations (Moll
van Charante et al., 2016). We therefore used DSI to predict
global cognitive decline in the general population to select the
persons at risk. The main aim of this study was to investigate
whether multivariate data can predict global cognitive decline
in the general population. If a high-risk group can be selected
from the general population, a population screening program
for this group might facilitate early detection of dementia. We
evaluated the prediction performance using several sets of clinical
features and brain magnetic resonance imaging (MRI) features, to
assess whether the prediction is dependent on the combination
of the input features. As brain MRI features we used all possible
measures we could acquire: volumetric measures of gray matter,
white matter, cerebrospinal fluid and white matter lesions, and
a large variety of brain regions, both cortical as subcortical,
diffusion measures, both globally as locally of a variety of tracts,
cerebral blood flow measures, and the presence of microbleeds
and infarcts. We used all these measures as we hypothesized

that they could improve the prediction performance of cognitive
decline. DSI was chosen as a classification method because this
method is able to handle datasets with missing data, which is
often the case in population study datasets. Also, this method
has been successfully applied in previous studies and performed
comparable to other state-of-the-art classifiers (Mattila et al.,
2012; Pekkala et al., 2017).

MATERIALS AND METHODS

Study Population
We included participants from three independent cohorts within
the Rotterdam Study (RS), a prospective population-based
cohort study in a suburb of Rotterdam, that investigates the
determinants and occurrence of diseases in the middle-aged and
elderly population (Ikram et al., 2017). Brain MRI-scanning was
implemented in the study protocol since 2005 (Ikram et al., 2015).
The Rotterdam Study has been approved by the medical ethics
committee according to the Population Study Act Rotterdam
Study, executed by the Ministry of Health, Welfare and Sports of
the Netherlands. Written informed consent was obtained from all
participants (Ikram et al., 2017). We used data from RS cohorts
I, II, and III, of which each consists of multiple subcohorts. In
this study a subcohort of RS cohort I, II, and III was used, to
which we refer as sI, sII, and sIII, respectively. Baseline features
of sI were collected during 2009–2011 and sII were collected
during 2004–2006. The participants of the both cohorts were
55 years or older. For RS cohort III participants were 45 years or
older at time of inclusion. Baseline features of sIII were collected
during 2006–2008. Participants with prevalent dementia, MCI
and MRI defined cortical infarcts at baseline were excluded for
all analyses. In total, 4328 participants with baseline information
on cognition, MRI and other features were included. Baseline
MRI was acquired on average 0.3± 0.45 years after collecting the
non-imaging features. Furthermore, diffusion-MRI was acquired.
However, for a subset of 680 participants in RS cohort II
diffusion-MRI data was obtained on average 3.5 ± 0.2 years later
than the other baseline MRI features. Longitudinal data on global
decline was available for 2,542 out of 4,328 participants. The
follow-up cognitive assessment was on average 5.7 ± 0.6 years
after the baseline visit.

Disease State Index
Prediction was performed with DSI (Mattila et al., 2011). This
classifier derives an index indicating the disease state of the
participant under investigation based on the available features of
that participant. DSI has two major advantages: (1) it can cope
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with missing data and (2) it gives an interpretable result because
DSI also provides a decision tree that can be quite well explained.

Disease State Index classifier is composed of the components:
fitness and relevance (Mattila et al., 2011). Let N be the total
number of negatives, P the total number of positives, FN(x)
the number of false negatives, and FP(x) the number of false
positives, when x is used as classification cut-off. Then the fitness
function is estimated for each feature i as:

fi (x) =
FNRi(x)

FNRi (x)+ FPRi(x)
=

FNi(x)
FNi (x)+ P

N FPi(x)

where FNR(x) = FN(x)/P is the false negative rate and
FPR(x) = FP(x)/N is the false positive rate in the training data
when the feature value x is used as the classification cut-off.
The fitness automatically accounts for the imbalance in class size
making implicitly both classes equal in size, as the fraction P/N
in the denominator scales the negative class [related to FP(x)] to
correspond the size of the positive class. The fitness function is
a classifier where the values <0.5 imply negative class and >0.5
positive class. The relevance of each feature is estimated by:

R = max{sensitivity + specificity − 1, 0},

which measures how good the feature is in differentiating the
two classes. The lower the overlap between the distributions of
positives and negatives, the higher R. Finally, DSI is computed
from the equation:

DSI =
∑

i Rifi∑
i Ri

Disease State Index is a value between zero and one; somebody
is classified as positive if DSI >0.5 and as negative if DSI
<0.5. DSI is an ensemble classifier, meaning that it combines
multiple independent classifiers (fitness functions) defined for
each feature separately. Because of that, DSI can tolerate missing
data. Features can be grouped in a hierarchical manner. The
final DSI is a combination of the levels in the hierarchy. The
fitness, relevance and their combination as a composite DSI
are repeated recursively by grouping the data until a single
DSI value is obtained. Therefore, the final DSI, which is used
for the classification, depends on the hierarchy structure, as a
different structure leads to a different averaging of the feature
combinations. The top-level part of the hierarchy defined for this
study is shown in Figure 1.

Baseline Features
Figure 1 shows the used categories of features in hierarchical
manner. Please note that not all individual features are shown
in this figure. The sections below describe all the used features
(indicated in bold font) in detail.

MRI Features
Multi-sequence MR imaging was performed on a 1.5 Tesla
MRI scanner (GE Signa Excite). The imaging protocol and
sequence details were described extensively elsewhere (Ikram
et al., 2015). Morphological imaging was performed with
T1- weighted, proton density- weighted and fluid-attenuated

inversion recovery (FLAIR) sequences. These sequences were
used for an automated tissue segmentation approach to segment
scans into gray matter, white matter, cerebrospinal fluid (CSF)
and background tissue (Vrooman et al., 2007). Intracranial
volume (ICV) (excluding the cerebellum and surrounding CSF
cerebellar) was estimated by summing total gray and white
matter and CSF. Brain tissue segmentation was complemented
with a white matter lesion segmentation based on the tissue
segmentation and the FLAIR image with extraction of white
matter lesion voxels by intensity thresholding (de Boer et al.,
2009). We obtained (sub)cortical structure volumes, cortical
thickness, and curvature of the cortex and hippocampal volume
using the publicly available FreeSurfer 5.1 software (Dale et al.,
1999; Fischl et al., 2004; Desikan et al., 2006). For cerebral
blood flow measurements, we performed a 2D phase-contrast
imaging as previously described (Vernooij et al., 2008b). In
short, blood flow velocity (mm/sec) was calculated based on
regions of interest (ROI) drawn on the phase-contrast images
in the carotid arteries and basilar artery at a level just under
the skull base. The value of mean signal intensity in each
ROI reflected the flow velocity with the cross-sectional area
of the vessel. Flow was calculated by multiplying the average
velocity with the cross-sectional area of the vessel (Vernooij
et al., 2008b). A 3D T2∗-weighted gradient-recalled echo was
used to image cerebral microbleeds. Microbleeds were defined
as focal areas of very low signal intensity, smaller than 10 mm
in size and were rated by one of five trained raters who were
blinded to other MRI sequences and to clinical data (Roob et al.,
1999; Vernooij et al., 2008a). Lacunar infarcts were defined as
focal parenchymal lesions >3 mm and <15 mm in size with
the same signal characteristics as CSF on all sequences and
with a hyperintense rim on the FLAIR image (supratentorially).
Probabilistic tractography was used to segment 15 different
white matter tracts in diffusion-weighted MR brain images, and
we obtained mean fractional anisotropy (FA), mean diffusivity
(MD), axial and radial diffusivity inside each white matter tract
(de Groot et al., 2015).

Cardiovascular Risk Factors
Cardiovascular risk factors were based on information derived
from home interviews and physical examinations during
the center visit. Blood pressure was measured twice at the
right brachial artery in sitting position using a random-zero
sphygmomanometer. We used the mean of two measurements
in the analyses. Information on the use of antihypertensive
medication was obtained by using questionnaires and
by checking the medication cabinets of the participants.
Hypertension was defined as a systolic blood pressure
>140 mmHg or a diastolic blood pressure >90 mmHg or
the use of anti-hypertensive medication at baseline. Serum total
cholesterol and high-density lipoprotein (hdL) cholesterol were
measured in fasting serum, taking lipid-lowering medication into
account. Smoking was assessed by interview and coded as never,
former and current. Body-mass index (BMI) is defined as weight
kilograms divided by height in meters squared. Diabetes mellitus
status was defined as a fasting serum glucose level (>7.0 mmol/l)
or, if unavailable, non-fasting serum glucose level (>11.1 mmol/l)
or the use of anti-diabetic medication (Hofman et al., 2015).
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FIGURE 1 | Feature categories shown in a hierarchy as used by the Disease State Index. Please note that not all individual features are included in this graph.

Alcohol consumption was acquired in a questionnaire. Prevalent
stroke was ascertained as previously described (Akoudad et al.,
2016). Educational level was assessed during a home interview
and was categorized into seven categories, ranging from primary
education only to university level (Hofman et al., 2015).

APOE-ε4 Allele Carriership
APOE-ε4 allele carriership was assessed on coded genomic DNA
samples. APOE- genotype was in Hardy- Weinberg equilibrium.
APOE-E4 allele carriership was coded positive in case of one or
two APOE-E4 alleles (Wenham et al., 1991).

Gait Features
Gait was assessed by three walking tasks over a walkway:
“normal walk,” “turn,” and “tandem walk” (heel to toe)
(Lahousse et al., 2015). Using a principal component analysis
we obtained the following gait factors which we used: rhythm,
Variability, Phases, Pace, Base of Support, tandem, and turning
(Verlinden et al., 2013).

Baseline Cognitive Function
We included the following objective memory and non-memory
cognitive tests: 15-word Learning test immediate and delayed

recall (Bleecker et al., 1988), Stroop tests (reading, color-
naming and interference) (Golden, 1976; Goethals et al.,
2004), the Letter-digit Substitution task (Lezak, 1984), word
fluency test (Welsh et al., 1994) and the Purdue Pegboard
test (Desrosiers et al., 1995). Subjective cognitive complaints
were evaluated by interview. This interview included three
questions on memory (difficulty remembering, forgetting what
one had planned to do, and difficulty finding words), and three
questions on everyday functioning (difficulty managing finances,
problems using a telephone, and difficulty getting dressed)
(Hoogendam et al., 2014).

Outcome: Definition of Cognitive Decline
A principal component analysis incorporating different cognitive
tests was used to calculate a general cognitive factor (g-factor).
For cognitive tests with multiple subtasks we chose only one
subtask in order to prevent highly correlated tasks distorting
the factor loadings. The following cognitive tests were included:
color-word interference subtask of the Stroop test (which taps
into information processing speed and executive functioning),
LDST (testing executive function), verbal fluency test (tapping
into executive functioning), delayed recall score of the 15-WLT
(testing memory), and Purdue pegboard test (testing fine motor
speed). The g-factor was identified as the first unrotated
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component of the principal component analysis and explained
49.2% of all variance in the cognitive tests. This is a typical
amount of variance accounted for by the g-factor (Deary, 2012;
Hoogendam et al., 2014). Cognitive decline was defined by the
g-factor from the follow-up visit minus the g-factor from the
baseline visit resulting in a delta g-factor. Since the follow-up
time was not the same for each participant, the delta g-factor was
divided by the follow-up time to obtain global cognitive decline
per year. Significant global cognitive decline (yes/no) was defined
as belonging to the 5% of participants with the highest cognitive
decline (delta g-factor) per year. In the used dataset, consisting
of 2,542 participants, this resulted in 127 participants with a
positive class label.

Evaluation Experiments
Prediction Performance Evaluation
The performance of DSI in predicting occurrence of global
cognitive decline was evaluated using cross-validation. The area
under the receiver-operator curve (AUC) was determined using
500 repetitions of 2-fold cross-validation (CV) experiments. This
means that with each repetition 50% of the study dataset was
used for training and the other 50% was used for testing, and
vice versa, keeping the class ratio in the training and test set
equal. We report the mean AUC, and the uncertainty of the mean
expressed by its 95% confidence interval, derived from the 1,000
resulting AUC values. The confidence interval was determined
with the corrected resampled t-test for CV estimators of the
generalization error (Nadeau and Bengio, 2003). AUCs were
considered significantly different if the 95% confidence interval
of their difference did not contain zero.

Please note that the sample size was the same for baseline and
follow-up, since we constructed a delta g-factor based on two time
points. Only the people with cognitive assessment at both baseline
and follow up were included in the analysis.

Since global cognitive decline per year is age dependent,
we expect that age is an important feature for the prediction.
We therefore include age as feature in the model. However,
since other features might depend on age, correcting these
features might improve the prediction performance (Falahati
et al., 2016). We therefore also assessed the prediction
performance using age-corrected features. We corrected
the non-binary features for age using a linear regression
model (Koikkalainen et al., 2012). We evaluated four
different models:

(1) age was included and no age-correction was performed on
the non-binary features

(2) age was excluded and no age-correction was performed on
the non-binary features

(3) age was included and non-binary features, except age, were
corrected for age

(4) age was excluded and non-binary features, except age, were
corrected for age.

To assess whether the performance of DSI was dependent
on the combination of input features, we evaluated various
feature combinations. In each cross-validation experiment the

feature set was expanded with a feature or category of features.
We analyzed four of such cumulative feature sets, differing in
the order in which the feature set was expanded. Additionally,
we analyzed MRI features separately and a set including all
features but age.

Relevance Analysis
To gain insight into the relevance weight that DSI assigns to each
feature, we calculated the feature relevance distribution
over the 500 repetitions of 2-fold CV, for the top-level
feature categories of the hierarchy: age, sex, cognitive
tests, cardiovascular risk factors, gait, education, genetics,
and MRI features.

Feature Selection on MRI Features
In this study, hundreds of MRI features were extracted from
images. It is likely that many of those features are not very
efficient in detecting cognitive decline. Typically feature selection
is applied to exclude poor features which may induce noise
to the classifier. In DSI, weighting with relevance suppresses
the effect of such features. If the number of features is high,
their cumulative effect may, however, be remarkable. Previous
results have shown that when including many features with a
low relevance, the performance of DSI may decrease (Pekkala
et al., 2017). We therefore included an experiment evaluating
the effect of feature selection on MRI features using their
relevance. Due to averaging, feature noise reduces in higher
levels of the feature hierarchy. The relevance of top- level feature
categories may therefore be higher than lower-level, individual
features. Therefore, due to the selection on the individual
features, the top-level features may drop out, despite their
high relevance. To prevent entire top-level feature categories
to drop out of the model, we chose to only apply feature
selection on the MRI features, which made up 80% of all input
features, before selection. The relevance of the MRI features was
determined on the entire dataset, before training. MRI features
were selected by thresholding the relevance. Subsequently, an
AUC distribution was determined in 10 repetitions of 2-fold
CV. The following relevance thresholds were chosen: t ∈
{0.0, 0.01, . . . , 0.09, 0.1}. For each threshold we assessed
three feature sets in which the relevance-based feature selection
on the MRI features was applied: (1) all features, (2) all features
but age, and (3) MRI features only.

Sub-Group Analyses
As subjects close to the decision boundary (DSI ∼0.5) are more
likely to be misclassified, we evaluated classification performance
when only accepting/providing the classification for test subjects
with low (<0.2) or high (>0.8) DSI. In this way, the subjects
with 0.2 < DSI < 0.8 are disregarded, which, in a clinical case,
would mean that there is no diagnosis possible for these cases. We
computed the AUC of this sub-group for DSI using all available
features, both with age-correction and without age-correction.
Furthermore, we performed a sensitivity analysis in which the
diffusion-MRI of 680 participants in RS cohort II were ignored,
because this data was obtained on average 3.47 ± 0.15 years later
than the other baseline MRI features.
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RESULTS

Table 1 presents the characteristics of the study population. The
mean age of the participants was 60.9 ± 9.1 years and 55.6%
were females. The absolute decline, given in an average difference
in g-factor per year (standard deviation), was −0.25 (0.08) for
the positive group (N = 127) and −0.02 (0.07) for the negative

group (N = 2415). The threshold at 5% with the steepest decline
was set at−0.18.

Prediction Performance
Figure 2A shows the mean AUC (95% confidence interval)
for several combinations of features in predicting global
cognitive decline, without correcting the non-binary features

TABLE 1 | Baseline features of the study population and their relevances.

Feature Rnac Rac Positive (N = 127) Control (N = 2415)

Age, years 0.38 – 71.2 (10.1) 60.3 (8.7)

Sex, female 0.01 – 73 (54.5%) 1340 (55.6%)

Objective cognitive test results 0.28 0.16 – –

Word Learning Test immediate recall 0.09 0.02 7.7 (2.2) 8.1 (2.0)

Word Learning Test delayed recall 0.05 0.04 7.9 (2.9) 8.2 (2.8)

Reading subtask of Stroop test, s 0.20 0.03 17.2 (2.7) 16.3 (2.9)

Color naming subtask of Stroop test, s 0.18 0.06 23.6 (3.6) 22.3 (4.0)

Interference subtask of Stroop test, s 0.32 0.10 53.8 (20.3) 44.0 (13.0)

Letter-Digit Substitution Task, number of correct digits 0.15 0.00 29.7 (6.7) 32.2 (6.2)

Word Fluency Test, number of animals 0.04 0.08 23.2 (5.7) 23.8 (5.7)

Purdue Pegboard test, number of pins placed 0.15 0.07 10.3 (2.1) 10.9 (1.7)

Mini-mental-state examination 0.14 0.11 27.8 (1.7) 28.4 (1.5)

Education1 0.07 0.07 3 (1-3) 3 (2-5)

Cardiovascular risk factors 0.34 0.27 – –

Alcohol1, glasses per week 0.06 0.04 3.5 (0.3-5.5) 5.5 (1.0-5.5)

Systolic blood pressure, mmHg 0.24 0.04 146.2 (20.3) 135.9 (19.6)

Diastolic blood pressure, mmHg 0.00 0.02 82.8 (9.4) 82.4 (10.6)

Blood pressure lowering medication 0.26 – 51 (38.3%) 284 (11.9%)

Body Mass Index, kg/m2 0.07 0.07 28.2 (4.4) 27.4 (4.1)

Serum cholesterol, mmol/L 0.11 0.12 5.4 (0.9) 5.6 (1.1)

HDL-cholesterol, mmol/L 0.04 0.09 1.4 (0.4) 1.5 (0.4)

Lipid lowering medication 0.13 – 46 (34.6%) 510 (21.3%)

Smoking 0.08 0.08 – –

Never – – 49 (36.6%) 746 (31.2%)

Former – – 54 (40.3%) 1154 (48.2%)

Current – – 31 (23.1%) 492 (20.6%)

Diabetes mellitus, presence 0.09 – 24 (18.2%) 220 (9.2%)

APOE-E4 allele carriership 0.02 – 39 (30.2%) 639 (28.3%)

MRI features 0.41 0.25 – –

Intra-cranial volume, mL 0.03 0.00 1137 (119) 1144 (113)

Brain tissue volume 0.38 0.08 – –

White matter volume, mL 0.13 0.01 390 (60) 419 (57)

Gray matter volume, mL 0.10 0.01 522 (54) 537 (52)

CSF volume, mL 0.29 0.07 223 (53) 186 (46)

Brain region volume 0.35 0.12 – –

Hippocampus volume, mL 0.23 0.09 6.4 (0.8) 6.8 (0.7)

White matter lesion volume1, mL 0.31 0.08 5 (2.5-9.4) 2.4 (1.4-4.3)

Cerebral microbleeds, presence 0.09 – 33 (24.6%) 370 (15.6%)

Lacunar infarcts, presence 0.04 – 10 (7.5%) 72 (3.0%)

Global FA 0.17 0.07 0.3 (0.02) 0.3 (0.01)

Global MD, 10−3 mm2/s 0.33 0.07 0.8 (0.03) 0.7 (0.03)

Global cortical thickness, mm 0.08 0.01 2.4 (0.2) 2.5 (0.1)

Gait 0.19 0.17 – –

The relevances were computed on the entire dataset. Continuous variables are presented as mean (standard deviation) and categorical variables as n (percentages). N,
number of participants; HDL, high-density lipoprotein; s, seconds; FA, fractional anisotropy; MD, mean diffusivity 10-3 mm2/s. CSF, cerebrospinal fluid. Symbols: Rnac;
relevance when feature was not corrected for age, Rac; relevance when feature was age-corrected. 1Education, alcohol and white matter lesion volume are presented
as median (inter-quartile range).
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FIGURE 2 | (A) Graphs showing the AUC and 95% confidence interval for classification of cognitive decline for different combinations of features in the DSI model.
Other feature combinations are not shown, since they were not significantly different from the feature combinations shown in this figure. The features have not been
corrected for age. AUC performance for the different combinations of features are shown on the y-axis. Abbreviations are used for the various features: cognitive
tests (ct), cardiovascular risk factors (cvr), MRI features (mri), genetics (APOE-E4 carrier-ship) (gen), and educational level (edu). Note that the y-axis scale ranges
from 0.65–085. (B) Graphs showing the AUC and 95% confidence interval for classification of cognitive decline for different combinations of features in the DSI
model. Other feature combinations are not shown, since they were not significantly different from the feature combinations shown in this figure. The binary features
have been corrected for age. AUC performance for the different combinations of features are shown on the y-axis. Abbreviations are used for the various features:
cognitive tests (ct), cardiovascular risk factors (cvr), MRI features (mri), genetics (APOE-E4 carrier-ship) (gen), and educational level (edu). Note that the y-axis scale
ranges from 0.45–085.

for age. Other feature combinations are not shown, since they
were not significantly different from the feature combinations
shown in Figure 2A. When using only MRI features, the
AUC was 0.75 (0.70–0.80). When using only age as baseline

feature, the AUC was 0.78 (0.74–0.83). Using additional
features on top of age resulted in an equal or slightly lower
AUC (differences not statistically significant). When using all
available features with DSI, the AUC was 0.77 (0.72–0.82).
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FIGURE 3 | Mean relevance weight R and 95% confidence interval for the top-level features categories: total DSI, age, sex, cognitive tests, cardiovascular risk
factors, genetics, education, gait, and MRI features. The blue line shows the case where the non-binary features were not corrected for age and the golden line
shows the case where the non-binary features were age-corrected.

The mean AUC of DSI without age as baseline predictor was
0.75 (0.70–0.80).

Figure 2B shows the mean AUC (95% confidence interval)
for the same combinations of features as in Figure 2A, but here
the non-binary features were corrected for age. The AUC for
MRI features only was significantly lower with age-correction
compared to without age correction, with an AUC of 0.55 (0.50–
0.61). For the other feature sets, the AUC of the models where age
correction was applied was not statistically significantly different,
compared to not using age correction. When the effect of age
was totally removed from the model, i.e., model IV, the AUC was
0.65 (0.58–0.73).

Relevance Analysis
Figure 3 shows the relevance weight per feature category
when the non-categorical features were corrected for age prior
to computing DSI and without age-correction. Without age-
correction, the features with the best discriminating abilities
according to their relevance weights were MRI features [0.42
(0.33–0.51)], age [0.39 (0.27–0.51)], cognitive tests [0.35 (0.24–
0.45)] and cardiovascular risk factors [0.34 (0.26–0.43)]. When
correcting the non- binary features, except age, for age, the most
discriminating features were age 0.39 (0.27–0.51)], MRI features
[0.37 (0.24–0.51)], and cognitive tests [0.32 (0.17–0.47)].

Feature Selection on MRI Features
Feature selection for MRI features had no effect on the AUC in
any of the three feature sets, when the non-binary features were
not corrected for age (Figure 4A). The AUC did increase after
MRI feature selection when the non-binary features, except age,
had been corrected for age, with the optimal t being 0.07 (see

Figure 4B). For t = 0.07, the AUC increased from 0.55 (0.50–0.61)
to 0.62 (0.58–0.67) when only MRI features were included in the
model. When using all features, the AUC increased from 0.75
(0.70–0.79) to 0.77 (0.73–0.82), and when using all features but
age, the AUC increased from 0.65 (0.58–0.73) to 0.70 (0.63–0.76).

Sub-Group Analyses
When only taking into account the extreme cases, i.e., cases for
which 0.2 < DSI < 0.8 (∼40% of the total dataset, i.e.,∼1000
subjects), the mean AUC increased to 0.82 (0.76–0.88) using age
as input feature only. Again in this group, additional features
did not significantly improve the performance of DSI (results not
shown). Ignoring the diffusion-MRI features of 680 participants
of whom this data was acquired on average 3.47± 0.15 years later
than the assessment of the other baseline MRI features did not
change AUC significantly compared to the performance in the
total population (results not shown).

DISCUSSION

The objective of this study was to assess whether global
cognitive decline can be predicted using multivariate data with
the previously proposed DSI. We found the best prediction
performance, evaluated with AUC, using only age as input
feature. Adding more features to DSI did not improve its
performance in predicting global cognitive decline as defined
in this study. Overall performance of DSI in the prediction
of global cognitive decline (mean AUC 0.78) was comparable
to previously reported performances of DSI for prediction of
dementia in the population-based CAIDE study, consisting
of 2,000 participants who were randomly selected from four
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FIGURE 4 | (A) Mean AUC and 95% confidence interval for several combinations of features where the MRI features were selected based on their relevance without
correcting the non-binary features for age. Feature selection does not improve the AUC and there is no difference between all features without age and MRI features
only. (B) Mean AUC and 95% confidence interval for several combinations of features where the MRI features were selected based on their relevance where the
non-binary features were corrected for age.

separate, population-based samples, originally studied in midlife
(1972, 1977, 1982, or 1987) (Rusanen et al., 2014) and to other
population-based prediction models of dementia (Kivipelto et al.,
2006). In this study we included a large number of heterogeneous
features. Age was the most important feature for predicting global
cognitive decline using DSI, yielding the highest AUC. This was
further supported by the observation that the performance of DSI
reduced when using all features except age. Our finding that age
is the single strongest predictor for cognitive decline is in line

with published prediction models for dementia, that invariably
assign the highest weight to age (Stephan et al., 2015; Park et al.,
2019). Also, a recent paper by Licher et al. (2018) which validated
four dementia prediction models in the general population also
concluded that the discriminatory ability of different models
was as good as using age alone. We found that the relevance
R, which indicates how well a feature can discriminate between
persons who will develop cognitive decline and those who will
not, was highest for MRI features (0.42) followed by age (0.39).
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DSI, however, performed worse when using only MRI features,
compared to using only age. We speculate that the high relevance
of the MRI features may be explained by age-specific effects that
are captured in these MRI features, which is supported by our
finding that MRI feature relevance (0.37) and DSI performance
dropped when adjusting MRI features for age. When the non-
binary features were age-corrected and age was not included in
the model, the mean AUC was 0.65, still significantly better than
chance (0.5), indicating that relevant information for predicting
global cognitive decline could be present in the other features.
In this study, however, they did not improve the predicting
performance when added to age. To our surprise we found
that APOE-ε4 allele carrier-ship had a low relevance weight and
did not improve the performance of DSI, even though it is
the best known genetic risk factor for AD. This is in contrast
to a previous study focusing on the progression from MCI to
AD, which found APOE-genotype to have high predictive value
(Lowe et al., 2016). It may be that our study population was too
young to show an effect of APOE on prediction (mean age 60.9),
since the risk progression effect of APOE-ε4 allele carriership has
been described to peak between ages 70 and 75 years (Bonham
et al., 2016). The relevance-based feature selection on the MRI
features showed an increase in the AUC, but only when the non-
binary features were corrected for age. A possible explanation is
that without age correction, the AUC is strongly driven by the
age-factor that is present in the MRI features.

In this case, less and different features were excluded
compared to the age-corrected models, causing the selection
to have no effect on the prediction performance. However,
after removal of these age-specific effects by age correction,
performance can be increased by removal of irrelevant features.
When age was totally excluded from the model IV (age was
excluded and age correction was applied to the non-binary
features), an AUC of 0.70 was obtained, showing the potential
of the other features. One limitation of this analysis is that
the relevance computation and threshold selection was done on
the entire dataset, i.e., the training data was included in these
computations. Therefore, AUC increase due to application of the
relevance threshold might be overestimated, but can be seen as an
upper limit. The overall conclusions do not change.

To our knowledge, this is the first population-based study
testing the supervised machine learning DSI tool for prediction of
global cognitive decline. We did not choose dementia as outcome
as the predictive power would be too low, since there were too
few cases of dementia in the used dataset as we focused on a non-
demented population. We also did not choose MCI as outcome.
The diagnosis of MCI may be less reliable in a population-based
setting, as it is a clinical diagnosis which is strongly dependent on
a subject seeking clinical care for experienced subjective cognitive
complaints (Edmonds et al., 2016). There have been previous
attempts to diagnose MCI in the setting of The Rotterdam Study,
but the MCI diagnosis definition used in this context is based on
a number of baseline features that were used as predictor in our
study. It would therefore not have been statistically sound to use
MCI as an outcome, given our set of predictors. Furthermore, in
a general population and for application in a first line setting, it
may be most helpful to more broadly predict which individuals

may experience a higher than expected rate of global cognitive
decline in the future.

Strengths of our study include the population-based design,
large sample size and availability of an extensive set of features.
However, limitations of our dataset need to be considered. We
constructed a g-factor as a measure of global cognition and
participants without complete cognitive data were excluded.
This might have caused some selection bias toward relatively
healthy subjects. Also, mortality and drop-out was not taken
into account. Persons who are lost to follow-up usually have a
poorer health status and are therefore more likely to develop
cognitive decline or die before onset of cognitive decline. The
exclusion of these assumingly more severe cases might have
lowered the performance of DSI. The result that age is the
main predictor for cognitive decline indicates that the age
distribution of the subjects with cognitive decline differs from
the entire set of subjects. Hence age could be used to select
people at risk of cognitive decline. However, when screening
for significant cognitive decline, an age-dependent threshold on
cognitive decline might be needed, e.g., using the 5% percentile
of the cognitive decline as function of age, to detect young
people at risk of developing dementia. The usage of such an
age-dependent threshold will be part of future research. Finally,
it should be noted that cognitive decline is not equivalent
to neurodegeneration/dementia and may result from other
causes as well, due to conditions affecting the participant’s
cognition at the time of the cognitive assessment, normal human
variability and normal aging. Nevertheless, being able to predict
cognitive decline would be a step forward in selecting people for
therapy or prevention.

CONCLUSION AND FUTURE WORK

Based on our results we can conclude that age is the
most important predictor for cognitive decline in the general
population using DSI. Other features showed potential, but did
not improve prediction performance. A next step could be to
use longitudinal features in DSI, as these might improve its
prediction performance. To validate whether our findings are
not due to limitations of DSI, also other methods need to be
evaluated in this prediction challenge. Finally, to be able to
detect younger people at risk of significant global cognitive
decline in future studies, thresholds for cognitive decline should
be carefully chosen depending on the population, for example
be age-adjusted.
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