
Thesis
RACE:GP – a Generic Approach to

Automatically Creating and Evaluating Hybrid
Recommender Systems

by

A.J. van Ramshorst
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on July 16, 2021 at 14:00

Student number: 4226631
Project duration: August 1, 2020 – July 16, 2021
Thesis committee: Dr. N. Yorke-Smith, TU Delft, supervisor

Dr. J. Yang, TU Delft, co-supervisor
Prof. dr. P.A.N. Bosman TU Delft, thesis committee

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract
In recent years, recommender systems have become a fundamental part of our online experience.
Users rely on such systems in situations with many potential choices, such as watching a movie on
a streaming service, reading a blog post, or listening to a song. Traditionally, these systems use
techniques such as collaborative filtering and content-based recommendation. Both approaches have
disadvantages, so to reduce those, recent research combines various techniques in different ways to
create hybrid recommender systems. Creating a well-performing hybrid recommender system gener-
ally requires extensive knowledge of recommender systems, the domain on which one wants to provide
recommendations, and trial and error. Automating this process makes recommender systems acces-
sible for organizations that lack the resources to build these systems themselves. However, there is
a lack of research regarding automating this process. This study aims to provide an initial exploration
into this area by proposing RACE:GP, an end-to-end approach that automatically produces accurate
non-trivial hybrid recommender systems with only a dataset and a definition of ‘relevance’. RACE:GP
automatically creates a programming language from a dataset in which any valid program is a rec-
ommender system on that dataset. By defining the relevant interaction, it can automatically evaluate
the accuracy of these programs. It uses a search strategy based on genetic programming to find the
best performing recommender systems in the language. To test our hypothesis, RACE:GP is used
to produce recommender systems on three well-known datasets in recommender systems literature,
and the results are compared to baselines based on collaborative filtering. Additionally, to verify its
adaptability, we analyzed the produced recommender systems given different recommendation sce-
narios. The results showed that RACE:GP is able to produce recommender systems that outperform
our chosen baselines by a significant margin. Furthermore, analysis of the produced recommender
systems on different recommendation scenarios within a dataset shows that it can find systems that
are especially accurate in situations with different densities or recommending specific interactions in
datasets that contain different interactions. These results suggest that RACE:GP is a viable and gen-
erally applicable approach that makes creating hybrid recommender systems accessible for anyone
with a dataset.
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1
Introduction

An increasing proportion of the limited amount of time we have in our lives is spent online. If we also
have to spend most of that time sifting through the enormous amount of available content, any chance
of ever being productive again would be practically non-existent. Fortunately, in conjunction with the
growth of the internet, recommender systems have been developed. These systems assist users by
filtering and ranking the enormous amounts of videos, films, songs, blogs, products, comments, and
memes so that we are not required to view, listen to, read, and buy them all. Since every user has their
own preferences, recommending these items is not trivial: these recommender systems must provide
personalized recommendations for each user.

The concept of recommendation (or filtering, as it was initially called) has existed since before the
world wide web, with the first well-documented approach using ‘collective human knowledge’ being
Tapestry in 1992 [13]. In the years after that, research into recommender systems soared, gaining
especially significant traction in 2006, when Netflix offered the ‘Netflix prize’ to the first researchers
that could improve the performance of Netflix’s ‘Cinematch’ algorithm by at least 10% [7]. Over 20,000
teams worldwide participated, collectively submitting over 13,000 recommender systems in the first two
years. Three years later, the 10% improvement border was crossed by a matrix-factorization-based
algorithm called BellKor, awarding the creators the prize of 1 million dollars [28].

Since then, research in this area has far from halted and has moved into many new directions
[33, 44]. Active areas of research are, for example, based around scalability [11, 49, 50], explainability
[1, 3, 5], and applying novel techniques such as deep learning [58] and neural networks [22] to (parts
of) recommender systems.

The field of recommendation is clearly extensively studied over the last couple of decades, and rec-
ommender systems are already widely applied online. However, creating these systems and applying
them in practice still requires considerable knowledge of recommender systems, the domain it is ap-
plied on, and how to effectively evaluate the performance of these systems. Additionally, trial and error
is often required to find systems that perform. In short, effectively creating and utilizing recommender
systems in practice requires a lot of time and money. While there has been some research trying
to create a standard framework for creating recommender systems [26, 46], it is mainly focused on
standardizing recommender systems for academic purposes and not on simplifying or even automat-
ing the process of creating well-performing recommender systems for specific situations. Automating
the creation of recommender systems for any situation would make it feasible for anyone with data to
produce meaningful recommendations for the users in their system. This thesis addresses that gap by
proposing an approach based on genetic programming that automatically creates novel and diverse
hybrid recommender systems, given any dataset as input.

1.1. Problem description
Recommender systems are generally based on the concept of collaborative filtering [8]. This is a tech-
nique based on the idea that if people had a similar preference in the past, they will have a similar
preference in the future. For example, in a movie recommendation system, if Alice and Bob both liked
‘The Shawshank Redemption’, ‘Pulp Fiction’ and ‘Back to the Future 2’, and Bob also liked ‘The Dark
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2 1. Introduction

Knight’, it is likely that Alice will like ‘The Dark Knight’ as well. Another approach to recommendation is
content-based recommendation, which uses properties of items to recommend items. In the same ex-
ample with movies, it could recommend Bob ‘Back to the Future 3’, since it has mostly the same actors
and director as its predecessor, which Bob also liked. Both approaches have drawbacks: collabo-
rative filtering never recommends items that are not yet rated by anyone, and content-based filtering
does not produce very diverse recommendations. Additionally, two movies having similar properties
does not necessarily translate to liking both. For example, while ‘Terminator 3’ is similar on paper to
its critically acclaimed predecessors, it is generally regarded as inferior. Both content-based and col-
laborative filtering approaches require users to rate several movies before relevant recommendations
can be made. When a new user enters the system, recommendation strategies such as ‘popular’ can
be used, which recommends items that are liked by other users not necessarily similar to you. The
obvious disadvantage is that it does not address a user’s particular taste.

Hybrid recommender systems combine different recommendation techniques to reduce or eliminate
the weaknesses of individual techniques. Within this thesis, we make a distinction between trivial and
non-trivial hybrid recommender systems. We define trivial hybrid recommender systems as systems
that recommend items based on a weighted linear aggregation of the recommendations of multiple rec-
ommender systems. Non-trivial hybrid recommender systems combine two or more recommendation
techniques in novel ways, such as using content-based filtering on the output of a collaborative filtering
system. Research shows that these systems can be very successful in many different situations and
domains [9].

Unfortunately, designing non-trivial hybrid recommender systems is not trivial. In addition to being
aware of recommendation techniques and the possibilities regarding combining them, domain-specific
knowledge is required. Even with this information, creating these systems generally requires a lot
of trial and error to get right, and even then they still only work for a single application. For every
new application or situation, this process has to be started from scratch. This process is costly and
time-consuming, making it infeasible for smaller organizations to incorporate recommendations in their
domain effectively. Automating the design and evaluation of recommender systems would enable these
parties to effectively incorporate recommendations into their application without investing the resources
generally associated with effective hybrid recommender systems.

Before we can verify whether our approach can automate this process, we need to define what
‘automating the creation of hybrid recommender systems’ means. Since our main goal is to make
implementing recommender systems accessible for everyone, our approach must be both generally
applicable and usable by anyone. For example, a webshop (1) designer that wants to suggest exactly
3 (2) relevant products a user might want to buy during checkout (3), must be able to create an accurate
recommender system with just these two decisions and a connection with the database (4). With this
in mind, we can translate our goal into the following four general requirements that an approach to
successfully achieve this goal must address:

1. It should make it trivial to create a non-trivial hybrid recommender system for any dataset without
any domain knowledge or knowledge of hybrid recommender systems in general.

2. It should automatically create recommender systems that perform specifically well on certain
recommending scenarios, such as when a system can only recommend a single item or when all
potentially relevant items must be recommended.

3. It should be able to automatically design recommender systems that accurately recommend items
based on a specific ‘relevant’ interaction type within a dataset, such as buying an item versus
reviewing an item.

4. It should create a recommender system that is as accurate as possible given the data density of
the actual dataset used to recommend items.

While the research regarding recommender systems is endless, not much has been done regarding
generalizing the concept, and even less about automating the process of designing these systems. As
far as we are aware, no research has been done that provides a solution that solves each of these
requirements, and thus automates the entire process of creating recommender systems. The goal of
this thesis is to be an initial exploration into this area of research by providing an end-to-end approach
that addresses each of the requirements and experimentally verify its potential.



1.2. Automating hybrid recommender system design 3

In this thesis, we introduce RACE:GP, which stands forRecommender systems: AutomaticCreation
and Evaluation using Genetic Programming. RACE:GP can easily be extended to work as a service,
where users can plug in any dataset and minimal configuration regarding ‘relevance’ to produce a
system that performs well in that exact situation. It enables anyone to easily implement hybrid recom-
mendation systems in any situation without the normally required knowledge, resources, and enormous
datasets.

1.2. Automating hybrid recommender system design
Hybrid recommender systems are created by combining different recommendation techniques and data
in many different ways. For example, using the output of one system as input for another, combining
different interactions, such as viewing product details and adding a product to a wishlist, with different
weights to build more accurate clusters of similar users, or use some properties of items to increase
or decrease the impact that ratings of similar users have on the predicted rating. In this thesis, we
propose a method to describe these interactions between different (parts of) recommender systems as
functions in a ‘programming language’. Given any dataset, we can use these functions, in addition to
functions that read properties or interactions from the dataset, to define a language in which one can
define hybrid recommender systems for that specific dataset.

RACE:GP is an algorithm that takes a dataset, an interaction to recommend, and a recommenda-
tion strategy as input and produces a recommender system capable of accurately recommending items
to users for whom it expects that the requested interaction should exist. RACE:GP uses genetic pro-
gramming, a heuristic search technique for programs in a language based on evolutionary algorithms
[30], to efficiently find accurate recommender systems. To evaluate whether or not a program is an
accurate recommender system, RACE:GP splits the dataset in a ‘training’ and a ‘validate’ set based on
the requested interaction and compares the recommendations for each user against the ‘validate’ set.

This study hypothesizes that, given any dataset, RACE:GP can consistently find non-trivial hybrid
recommender systems that outperform the baseline recommender systems popularity, item-based col-
laborative filtering, and user-based collaborative filtering. Additionally, for our algorithm to satisfy the
aforementioned requirements, changing either the recommendation strategy, the requested interac-
tion, or the density of the dataset should produce recommender systems that perform especially well
in that specific situation compared to both baseline recommender systems and systems produced on
different situations.

In this thesis, we experimentally verify the general applicability of RACE:GP by running experiments
on three different datasets often used within recommender system literature. We analyze the results
and the produced recommender systems to verify that our approach can produce non-trivial hybrid
recommender systems that outperform the chosen baseline recommender systems. Additionally, we
run multiple experiments where we change the requested interaction, dataset density, and recommen-
dation strategy to verify that our approach meets these conditions.

The main contributions of this thesis are summarized as follows:

• We define a method to transform any dataset that can potentially be used in a recommendation
scenario to a generic data model.

• We propose a set of functions that can be used to define the integration between different (parts
of) hybrid recommender systems. Combined with the functions that can read properties and
interactions from our generic data model, these make up a novel programming language that
defines hybrid recommender systems on a specific dataset.

• We propose an algorithm based on strongly typed genetic programming that searches for the best
performing recommender systems in the aforementioned language given a dataset, a requested
interaction, and a recommendation strategy.

• We show that our approach consistently finds non-trivial hybrid recommender systems by review-
ing the recommender systems produced on three different datasets. Compared to the strongest
baselines, the best-performing recommender systems improved accuracy by ∼ 8% on the Movie-
lens dataset, ∼ 192% on the Sobazaar dataset, and matched the baseline on the Filmtrust
dataset.
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• Finally, we demonstrate our approach’s adaptability and general applicability by comparing rec-
ommender systems created for specific interactions, dataset densities, and recommendation
strategies.

1.3. Thesis outline
Section 2 starts with a review of recent research and literature on (generic) hybrid recommender sys-
tems and the application of evolutionary algorithms on the problem of recommendation. Next, Section 3
explains in detail our approach to automatically generating recommender systems. The experiment to
validate the method and quantify the performance on different recommendation scenarios is described
in Section 4, and the results are shown in Section 5. In Section 6, we discuss the impact of these
results, the limitations of the study, and recommendations for further research. Finally, we conclude
our thesis in Section 7.



2
Literature review

This chapter aims to provide relevant background information regarding the techniques applied in this
thesis. In addition to that, we aim to give an overview of how this research fits within the context of
current research regarding recommender systems by giving an overview of recent research related
to hybrid recommender systems, genetic programming and its application on recommendation, and
generic approaches to recommender systems.

First, we introduce the concept of hybrid recommender systems and elaborate on the different types
and some recent applications and developments. Next, we give a short overview of genetic program-
ming, followed by recent applications of genetic programming and other evolutionary computing tech-
niques in the context of recommender systems. Finally, we identify how this thesis fits in the context of
recent research regarding automating the process of designing recommender systems.

2.1. Hybrid recommender systems
The problem of recommending relevant items to users given a limited amount of information has been
studied for quite a while. Traditional recommender systems are generally based on some form of col-
laborative filtering (CF). Collaborative filtering, originally coined by Goldberg et al. [13], is a technique
inspired by the idea that people generally prefer items that people with similar interests recommend.
Other forms of filtering, such as content-based filtering, where items are filtered based on their prop-
erties, exist as well. Often, recommendation systems combine both techniques, resulting in hybrid
recommender systems [9]. This section elaborates on the core concepts of hybrid recommender sys-
tems and gives an overview of recent research relevant to this study.

2.1.1. Overview
While there are other approaches regarding recommending [5, 45], at the basis of most recommender
systems is the concept of collaborative filtering: Using the knowledge and experience of other users in
the system to provide personal recommendations.

In online systems, ‘knowledge’ and ‘experience’ are usually represented in the form of ratings. While
some literature uses explicit ratings, such as star ratings (1 means a user dislikes the movie, 5 means
a user likes the movie, no value means a user did not rate the movie), often, implicit ratings such as
‘like a movie’ or ‘watch a movie’ are used. In this case, the absence of a ‘rating’ does not necessarily
imply a negative association: a user might not have seen a movie yet. To generalize one step further
and to get to the definition used in this thesis, we define rating as:

A rating is some interaction between a user and an item where the existence of that interaction
indicates that an item is relevant in some context.

Collaborative filtering The most basic form of collaborative filtering (CF) is user-based CF, where
the ratings in a system are used to find similar users, and then the items rated by similar users are
recommended. A different, slightly better approach is item-based CF [47]. Item-based CF uses ratings
to find related items based on the group of users that interacted with the item. The main advantage
of item-based CF on user-based CF is that the relevancy between items tends to be more stable than
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6 2. Literature review

between users and thus can be precalculated to improve the performance of recommendations sig-
nificantly. Additionally, systems tend to have fewer items than users, making calculating the similarity
between items require less computing power and memory than between users.

The main drawback of collaborative filtering is that it suffers heavily from the cold-start problem.
Both when a new user is added to the system and, even worse, when there is a new system where
ratings in general are sparse. Item-based CF suffers slightly less when a new user is added since one
or two ratings by that user enable the system to recommend similar items, but to accurately find similar
users, more ratings are required.

Content-based filtering Since most datasets contain more information about items than just ratings,
content-based filtering uses that information to recommend items with similar properties to items that
the user rated in the past. Since properties of items are not provided by users in the system, but usually
by the system itself, it suffers slightly less from the cold-start problem where there are not many ratings
in a system, but it still cannot recommend an item to a user without ratings [9].

Other approaches Some systems also contain information about users, for example, age, gender,
or education. Demographic information such as this can also be used to ‘group’ users. While this does
not suffer from the individual cold-start problem, privacy-related issues make it difficult to collect enough
information to make this feasible [2].

Another source of information that recommender systems can use is the context in which a rating
happened. Context data can be anything, such as the timestamp of the rating, the location, the time
of day, or the type of device. This information can both be used to improve the quality of collabora-
tive filtering approaches, as well as to give context-aware recommendations in addition to personal
recommendations.

Hybrid recommender systems To address the shortcomings of individual recommender systems,
many researchers have tried different ways to combine multiple different techniques to create so-called
hybrid recommender systems. It has been shown repeatedly that hybrid recommender systems can
significantly increase the accuracy compared to using stand-alone recommender systems. For an
extended overview of recent research related to hybrid recommender systems, we refer to Çano and
Morisio [9]. Since this thesis aims to automate the creation of hybrid recommender systems, the next
sections give an overview of techniques used in hybrid recommender systems, as well as some recent
research regarding the use of auxiliary information.

2.1.2. Techniques used in hybrid recommender systems
There are multiple ways to combine information from different recommender systems. Çano and Mori-
sio identify several different approaches to combining recommender systems, of which the most oc-
curring are: weighted, feature combination, cascade, switching, and feature augmentation [9]. Refer
to their survey for a detailed overview of research that uses each technique.

Weighted Weighted hybrid recommender systems aggregate the scores given by 2 or more recom-
mender systems according to some set of weights. While some implementations just produce some
linear combination of the scores given by different systems, some literature proposes training methods
that produce different weights per user. Although this is one of the most straightforward approaches to
hybrid recommender systems, it is also the one that is most mentioned in literature.

Feature combination Content-based recommendation uses ‘features’ to determine relevant items.
Feature combination is a technique where the output of one recommender system, usually based on
collaborative filtering, is added as a feature to a content-based recommender system.

Cascade Cascade recommender systems use a staged process. Often, one technique is employed
to make an initial ranking of items, after which a second technique uses the ranked list to produce
fine-tuned recommendations. For example, the first stage can be a general ranking technique, while
the second stage personalizes these to produce a final ranking of items.
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Switching Switching is when some criteria are used to determine which recommender system to use
in a certain situation. For example, using a cold-start resistant technique, such as most popular, until
a user has a certain number of ratings.

Feature augmentation While similar to feature combination, feature augmentation differs in that the
idea is to improve the use of a feature in recommendation. For example, using a recommendation
technique to predict ratings for users, and than use those predicted ratings instead of the actual ratings
to find similar users for collaborative filtering.

2.1.3. Auxiliary information
Almost all hybrid recommender systems make use of more data than just explicit ratings. Usually, four
categories of auxiliary data are recognized: properties of entities, demographic data, context data, and
implicit ratings.

Demographic data With the advent of social media, and especially connecting social media to other
online applications, many situations in which recommendation is applied have access to demographic
user data such as age, gender, and location. Zhao et al. use demographic information to recommend
products to buy to users by matching the demographic information extracted from their public profiles
to demographic information from products based on blogs and reviews [59, 60]. It is also used in
conjunction with collaborative filtering to solve the cold-start problem [38] or improve its accuracy [39,
56].

Context data Salah and Lauw use item context, such as information about items that are browsed in
the same session or items bought together, to improve their model and reduce the impact of sparsity
in the user-item context [45].

Implicit ratings and other interactions Often, recommender systems make use of explicit ratings.
In reality, however, explicit ratings are expensive to retrieve. In contrast, implicit preferences, such as
viewing an item, adding something to a wishlist, and viewing a video, are ‘cheap’ to collect. Cheap in
this context means that users need (almost) no incentive to provide that information. These ‘implicit
preference values’ can be used as input for recommendation systems as well [25].

Nguyen et al. propose a system that infers the explicit rating given the implicit interactions by users
in a fashion app called Sobazaar [36]. Their dataset contains the implicit ratings: ‘click’, ‘want’, and
‘purchase’. In their approach, they manually associate explicit ratings to them, which are then used as
input for multiple recommendation algorithms.

2.2. Genetic programming
In this thesis, we propose a method based on genetic programming [30]. Genetic programming (GP) is
an evolutionary computing technique where a population of programs, in a specific language, ‘evolves’
to produce a program that performs a certain task as well as possible. Evolutionary computing is the
collective name for algorithms and techniques inspired by nature and, more specifically, evolution.

2.2.1. Overview
Conceptually, genetic programming works by starting with a population of randomly generated pro-
grams, evaluating each program to determine their fitness, and then ‘breeding’ new programs by taking
programs from the previous generation with some bias towards fitter individuals and combining them
to produce the next generation.

Within the concept of genetic programming and related methods such as genetic algorithms, the
fitness of an individual program is represented by its ‘fitness score’. The fitness score is a numerical
expression of how well a program is able to do the task that is requested. In the case of genetic pro-
gramming, the fitness score is determined by comparing the output of evaluating an individual program
with some expected result.
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(a) (b) (c) (d)
+ var a = 3 - 1 (2 + (3 - 1)) + 3 (+ (+ 2 (- 3 1)) 3)
├── + var b = 2 - a
│ ├── 2 var c = b + 3
│ └── - return c
│ ├── 3
│ └── 1
└── 3

Figure 2.1: Example program in a programming language consisting of the terminals 1,2 and 3, and the functions +(a,b) and
-(a,b) described in 4 different ways: (a) the tree structure used within this thesis, (b) pseudocode, (c) mathematical notation, and
(d) a notation often used in the context of genetic programming.

A program While, in some applications of genetic programming, a program is represented as soft-
ware with actual lines of code, more often, a program is represented as a directed acyclic graph, gen-
erally called a ‘tree’, consistent with functional programming concepts. Every node in the tree is some
statement in the language. For example, if we assume a basic programming language suited to addi-
tion and subtraction. The statements it consists of are 1, 2, 3, + and -. These statements can be split
into two types: functions (+, and -) and terminals (1, 2, and 3). Functions require 1 or more arguments.
The amount of arguments a function takes is called its ‘arity’. + and - have an arity of 2, which means
they require 2 arguments as input. Both functions and terminals can be input. Terminals require no
input. In the analogy of the tree, every leaf node is a terminal, and all other nodes are functions. The
output of child nodes is used as the input of the parent node. To evaluate a program, start at the root
and recursively evaluate the child nodes until you have the input, and then evaluate the function using
the input to produce the output. See Figure 2.1 for a program in this language displayed in 4 different
ways.

Genetic operators After evaluating the fitness of every individual in a generation, a new population
is created based on the fittest individuals in the generation. The selected individuals are not copied
exactly, but genetic operators are applied to introduce variation in the new generation. Generally, these
genetic operators are crossover andmutation. Crossover is a technique where two parents are selected
from the original generation, after which a randomly selected subtree from the first parent is switched
with a randomly selected subtree from the second parent. Mutation is the process of randomly replacing
a subtree in the offspring with a randomly generated subtree. Often, these methods are applied with a
certain probability. Figure 2.2 shows an example of crossover and mutation on our previously defined
language.

2.2.2. Genetic programming on domain-specific languages
Usually, genetic programming is applied on math-based languages or ‘real’ programming languages.
In this thesis, we define our own ‘domain-specific language’ for recommender systems. There are
some examples in literature where genetic programming is applied on domain-specific languages as
well. For example, Hofmann [23] used genetic programming on a high-level programming language
he designed to describe music compositions, and Barclay et al. [4] applied genetic programming on a
programming language created to describe milling tool paths.

2.2.3. Application of evolutionary computing in recommendation
Additionally, to give a better impression of the landscape, we will mention here some applications of
genetic programming and other evolutionary techniques on the problem of recommendations.

One of the applications of evolutionary computing and genetic algorithms and programming in gen-
eral in recommender systems is to create personalized feature weighting strategies. Hwang et al.
use a genetic algorithm for feature weighing the outputs of collaborative filtering in multi-criteria rating
systems [24]. Following that, Gupta and Kant compare the genetic algorithm approach with genetic
programming and show that although the search space is much larger, genetic programming performs
at least as well as genetic algorithms, often improving given the same computational effort [20, 21].

Another application of evolutionary computing on hybrid recommender systems is by combining
the outputs of different recommender systems. Da Silva et al. use a genetic algorithm to combine
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(a) (b)
# parent 1 # # parent 2 # # offspring (pre-mutation) #
+ - +
├── + ├── + ├── +
│ ├── 2 │ ├── 2 │ ├── 2
│ └──(-)* │ └── 1 │ └── 2
│ ├── 3 └── - └──(3)*
│ └── 1 ├──(2)*
└── 3 └── 1

# offspring 1 # # offspring 2 # # offspring (post-mutation) #
+ - +
├── + ├── + ├── +
│ ├── 2 │ ├── 2 │ ├── 2
│ └──(2)* │ └── 1 │ └── 2
└── 3 └── - └──(-)*

├──(-)* ├── 3
│ ├── 3 └── 1
│ └── 1
└── 1

Figure 2.2: Example of crossover (a) and mutation (b) in our previously defined language. (x)* denotes the node where the
operator is applied.

the output of multiple CF and CB approaches on the Movielens dataset and show that their approach
outperforms all individual methods in each situation [12]. While they use an error-based evaluation
metric, Oliveira et al. use genetic programming instead to combine the outputs of multiple rank-based
recommender systems [37].

Finally, although less relevant in the context of this research but worth mentioning, some research
uses genetic programming to train models within a single recommender system, such as Lara-Cabrera
et al. (2020), who propose an alternative method to produce matrix factorizations using genetic pro-
gramming [31].

While the aforementioned research uses genetic programming or similar techniques within the con-
text of recommendation for things as personalized rating aggregation or personalized feature weighing,
there is no research yet that uses genetic programming to ‘build’ hybrid recommender systems from
scratch.

2.3. Generic recommender systems
Recent research on recommender systems often focuses specifically on the application of recom-
mender systems within certain domains, such as movies, music, or webshops [33]. However, since
the main goal of this thesis is to present a method that automatically produces a recommender system
for any domain possible, this section will review the literature on generic recommendation systems.

Räck et al. propose a generic multipurpose recommender called AMAYA that recommends items
based on ratings and clickstreams [42]. AMAYA defines a generic data model based on entities (which
contain information on users or items), entries (a single unit of personalization data such as a rating or
a click), and profiles, which are context-based subsets of entries associated with a user. The idea is
that this model can be applied to any situation without needing to be adapted to specific applications,
although the authors do not report any actual results, stating that the implementation is a work in
progress.

Gupta and Tripathy provide an approach that uses a standard model in which any property can be
defined as a number between 0 and 1 [19]. These properties are then used as input for training a
neural network that builds user profiles, which are used as input for collaborative filtering. However, in
their research, they only apply the approach on the Movielens dataset, and thus there are no results
verifying that it actually is generic. Additionally, their approach uses an error-based evaluation metric,
limiting the approach to situations in which numerical ratings are available.
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Guo et al. created a framework called LibRec based on generic interfaces and data structures that
makes it easy to run different recommendation algorithms and combine them with different evaluation
techniques on any dataset [18]. While LibRecmakes it easy to test and evaluate different recommender
systems, systems need to be manually configured, and combining different approaches is not possible.

2.3.1. Automating the creation of hybrid recommender systems
Some of the research regarding generic recommender systems touches on the idea of automatically
combining auxiliary information with user-based and item-based collaborative filtering. For example,
Kouki et al. propose HyPER, a probabilistic framework for hybrid recommender systems that combines
multiple similarity measures, auxiliary information, and existing recommender systems to produce ac-
curate ratings [29]. Their approach consists of an interface to connect these sources, after which their
algorithm learns how to balance them for accurate recommendations. Although their approach auto-
mates combining all available information, users of the system are still required to manually implement
systems that calculate user and item similarities based on the datasets, as well as implement individual
content-based and collaborative filtering methods.

Yu et al. proposed a similar approach based on knowledge graphs [57]. They suggest that item
relationships with auxiliary information, such as actors, genres, and directors in the case of movie
recommendation, can be used to improve recommendations, which they call the heterogeneous infor-
mation network. They use this network to generate latent features for users and items, which is then
used as input for a matrix factorization-based recommender system. Although they do not automate
the entire process, the auxiliary information is automatically translated into a generic dataset that can
be used by a generic recommender system.

Following their idea, Catherine and Cohen use the generic knowledge graph as input for a proba-
bilistic logic system [10]. While the heterogeneous information network by Yu et al. required that nodes
in the network had types, Catherine and Cohen propose two methods that work on untyped knowledge
graphs. Their approach, based on discovering latent factors in the knowledge graph, outperforms the
method by Yu et al. by a significant margin.

2.4. Conclusion
While there has been an enormous amount of research on recommender systems in the last couple
of decades, literature regarding automatically designing and tuning hybrid recommender systems is
scarce. Some of the research on generic recommender systems automate parts of the process, such as
automatically combining different information sources, providing a framework to evaluate recommender
systems, or automatically combining the outputs of multiple recommender systems. However, as far
as we are aware, there is a clear research gap regarding the topic of automating the entire process of
creating hybrid recommender systems for any dataset. This thesis aims to fill that gap by providing a
starting point, possibly opening up the way for more research in this direction.



3
Methodology

This chapter elaborates on the methodology of applying genetic programming to the problem of auto-
matically creating and evaluating recommender systems given any dataset. The first section will give a
conceptual overview, followed by a description of the data model used as input and the programming
language that describes a recommender system. Finally, we describe how we can determine the per-
formance of a given program in that programming language and how the data model and programming
language can be used within genetic programming.

3.1. Conceptual overview
In this chapter, we propose a method to automate this entire process in a generic way so that it can
be applied to any dataset. The idea is to have a high-level programming language specifically for
recommending items given a certain dataset in a generic data model and using genetic programming
to find the best performing recommender system by only determining which type of interaction you want
to recommend. We start by giving a high-level overview of the idea and the assumptions behind our
approach of automating the process of creating recommender systems, and then we will elaborate on
each part in more detail in the following sections of this chapter.

The first assumption is that any system in which some form of recommendation occurs can be
modeled generically based on the notion of ‘entities’ and ‘interactions’. Examples of entities are ‘users’,
‘movies’ and ‘holiday destinations’, and examples of interactions are ‘rated’, ‘clicked’, ‘bought’ and
‘watched’. Both interactions and entities can have properties attached to them, such as ‘age’, ‘genres’
and ‘writer’ for entities and ‘rating’ or ‘date’ for interactions.

The second assumption is that given a dataset in this generic datamodel, we can define an approach
to generate a domain-specific programming language specifically for recommender systems based
on this dataset. The functions of this language consist of generic recommender system techniques
translated into functions that operate on matrices and vectors, as well as some math-related functions,
in addition to functions that transform properties and interactions from the dataset into vectors and
matrices. Any valid program in this language is a recommender system for the dataset the language
is based on.

The next assumption is that given a certain type of interaction in the systemwhich we want to recom-
mend, such as ‘buy product’, or ‘like the movie’, we can automatically create an evaluation function that
uses the dataset to determine the accuracy with which a program recommends items for the requested
interaction.

The final assumption is that given the three previous assumptions are true, we can use an auto-
mated search strategy, such as genetic programming, to create a recommender system given any
dataset without needing any domain knowledge, recommender system knowledge, or trial and error,
that performs at least as good as our baseline recommender systems based on collaborative filtering
and popularity.

In this thesis, we present RACE:GP, which is a novel approach inspired by the aforementioned
assumptions. In this chapter, we will describe how it works in detail.

11
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3.2. Generic data model as input for recommender systems
The first step is defining a generic data model suitable for our purpose and providing an approach to
transform any existing dataset into this generic model. This section will first explain the notion behind
entities and interactions and then elaborate on different approaches to transforming an existing dataset
into this model.

There are two reasons why a generic model is required. First, it is used to define the building blocks
of a recommender system in terms of the dataset, and secondly, to automate the data preparation and
processing that is required to evaluate the performance of a recommender system. Most recommender
systems have a concept of ‘users’ and ‘items’, and some evaluation of items by users. This evaluation
can be explicit, such as ratings or likes, or implicit, such as ‘watching a video’ or ‘reading an article’.
Sometimes additional information about the user (such as demographic information), the item (director
of a movie, genre of a book), or the context of an evaluation (location where a product is bought,
timestamp of a rating) is used as well. In our data model, all of this is captured in the concept of
‘entities’ and ‘interactions’.

3.2.1. Entities
Usually, in recommender systems, a distinction is made between users and items. However, in our
generic data model, we capture both the users and the items within a single concept: ‘entities’. Anything
in a dataset with properties can be an entity: a movie, a user, a holiday location, or an artist. Our model
is not necessarily limited to the ‘user’ and ‘item’ entities. For example, on a website where people leave
reviews of both movies and actors, we can have the entities ‘user’, ‘movie’, and ‘actor’.

Every entity has a collection of properties associated with that entity. Examples of these properties
are demographic information of users such as age, gender, or location, or details of a movie such as
actors, the release date, genres, and director.

3.2.2. Interactions
The evaluation of items by users can be seen as an interaction between the user and the item: ‘user
rates a movie’, ‘user likes a book’, ‘user buys a product’. More often than not, a dataset consists of
many types of these interactions that might be relevant in deciding whether or not an item is relevant for
a user. For example, a blogging website might store the following interactions: ‘user clicked on link of
blog’, ‘user read blog’, ‘user liked blog’, ‘user commented on blog’, ‘user closed blog after 10 seconds’.
The goal of recommending something is almost always making sure one of these interactions happen.
In this case, the goal might be recommending a blog that the user reads, but depending on what the
website wants to achieve, it can also be recommending a blog that the user likes.

Some interactions are unique, either the interaction has taken place or not, such as rating a movie
or liking a picture. Other types of interactions can occur more than once, such as buying an item from
the grocery store. Additionally, some interactions have an explicit evaluation associated with them,
such as a star rating.

3.2.3. Transforming a dataset to the generic model
Now that the concept of interactions and entities are clear, we need a standard way of storing this
information so that it can both be used to define the building blocks of our language and to standardize
the evaluation process.

A dataset contains for each type of entity 𝑇 a set of individuals 𝐸ፓ. The type of an entity defines what
the potential properties are for each individual entity in the dataset. For each entity type, a dataset can
contain many different individual entities of that type and the properties belonging to each individual.
Since we mainly care about the properties of each individual, we can model each entity type as a set
of vectors of length 𝐿, 𝐿 being the number of individuals of that entity type in the dataset. Each vector
contains for a specific property the value for each individual in the dataset (or empty if a property is not
available). For example, if we have an entity type ‘user’, with the properties name, gender, and age,
and three individuals in our dataset, the corresponding set of vectors would be 𝐸፮፬፞፫.

𝐸፮፬፞፫ = {[‘Alice’, ‘Bob’, ‘Charlie’], [𝐹,𝑀,𝑀], [31, 42, 27]}

For the entity type ‘movie’ with the properties title and year we can do the same:
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𝐸፦፨፯።፞ = {[‘Titanic’, ‘The Shawshank Redemption’, ‘The Room’], [1997, 1994, 2003]}
To model the interactions between two entities, we can use a sparse matrix where each row corre-
sponds to the acting side of the interaction and each column to the receiving side. In the example
of ‘users’ and ‘movies’, we have, for example, the interactions: ‘watch’, ‘hide’, and ‘rate’. In these
examples, the user is the ‘actor’, and the movie is the ‘receiver’ of the interaction:

𝐼፰ፚ፭፜፡ = [
0 0 1
1 1 3
1 0 0

] , 𝐼፡።፝፞ = [
1 0 0
0 0 0
0 0 0

] , 𝐼፫ፚ፭፞ = [
0 0 5
3 5 5
1 0 4

]

Watching amovie can be donemultiple times, so in that case, the value is the number of interactions.
‘Hide’ is an interaction that can only be done once by a user, so it is either 1 (hidden) or 0 (not interacted).
Rating is done on a scale of 1 to 5, so the values can reflect that as well. In every case, 0 means that
no interaction has taken place.

Properties versus entities In some situations, the line between properties and entities is unclear—
for example, movies belonging to a genre or actors that play in a movie. On the one hand, genres and
actors can be defined as a property of the entity ‘movie’ in the form of an array. On the other hand,
genres and actors can be seen as an entity, and ‘belonging to’ a genre or ‘acting in’ a movie can be
modeled as an interaction, where 1 means the relation exists, and 0 otherwise. In our experiments, we
include both approaches.

3.3. A programming language for hybrid recommender systems
In the previous chapter we have determined that hybrid recommender systems use different methods
to combine recommendation techniques, such as combining the outputs of multiple recommender sys-
tems, using the output of one system as input for another, or combining different types of information
to be used as input for a recommender system. This suggests that we can model these methods of
integration as functions in a language. If we add functions that perform recommendation techniques
such as content-based comparisons and clustering, we create a generic language that can describe
hybrid recommender systems. These functions can be combined with a set of terminals that can read
information from a dataset 𝐷, as defined in the previous section, to create a language 𝐿ፃ in which any
valid program is a recommender system for 𝐷. In this section, we first define the input and output
types of this language, followed by a description of the functions and terminals that make up this novel,
high-level language for recommender systems.

3.3.1. Input and output types
The first thing any language needs is a typing system. Therefore we start with defining the types a
function or terminal can return. Since the generic data model uses vectors and matrices to store the
properties and interactions of the dataset, it makes sense to base our typing system on this. Our
language is strongly typed, which means that types are used in our language to make sure that every
program is valid.

Entity properties As previously mentioned, entity properties are represented in the data model by
vectors, so we need a vector type as well. The vector in our language can contain different types of
properties, and it can specifically belong to a certain entity as well.

A basic example is the user’s age: each item in the vector consists of the age corresponding to the
user at that place in the vector. In that case the type is Vector[User]. Another option is the genres
belonging to a movie: Vector<String[]>[Movie].

Interaction properties Since interactions are modeled as a matrix where the rows and columns
represent entities, we define the type Matrix[A,B], where 𝐴 and 𝐵 are the entity types between which
the interaction takes place. Our data model can, for example, containMatrix[User,Movie] for ratings or
likes or Matrix[User,User] for trust relations between users. While these examples come directly from
the dataset to indicate some interaction, matrices can describe any relation between two entities. For
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Name Input Output Parameters

compareString Vector<String>[A]
Vector<String>[B] Matrix[A,B]

compareArray Vector<Array>[A]
Vector<Array>[B] Matrix[A,B]

popularity Matrix[A,B] Vector[B]

pearsonSimilarity Matrix[A,B] Matrix[A,A]

nearestNeighbour Matrix[A,A]
Matrix[A,B] Matrix[A,B] # of neighbours

nearestNeighbour(inverted) Matrix[B,B]
Matrix[A,B] Matrix[A,B] # of neighbours

transpose Matrix[A,B] Matrix[B,A]

addVector Matrix[A,B]
Vector[B] Matrix[A,B]

scaleMatrix Matrix[A,B] Matrix[A,B] Scalar

sumMatrix Matrix[A,B]
Matrix[A,B] Matrix[A,B]

Table 3.1: Selected functions for the language used by RACE:GP.

example, the matrix Matrix[Movie,Movie] can represent the overlap in genres between the movies,
how similar the movies are in general, or the number of users that liked both movies.

Generic types In addition to this, it is useful for our language to support ‘generic’ versions of vectors
and matrices so that we can add constants unrelated to the dataset as input/output for our functions.
This means the following types are also possible: Vector[*], Matrix[*,*]. Generic types are also used
to specify the domain and codomain of some of the functions and terminals in our language.

3.3.2. Functions
Any programming language consists of functions. A function has 1 or more inputs of predetermined
types and outputs a value of a specific type, which in some cases depends on the input. In our cases,
the goal of the language is to be a very high-level language for recommender systems, so the functions
included are based on ideas found in hybrid recommender systems. See Table 3.1 for an overview of
the input, output, and configurable parameters of each function.

compareString Returns a matrix 𝑀 with for each combination of strings in input 𝑉 and 𝑊 1 if they
are the same, or 0 otherwise.

𝑀።፣ = {
1, if 𝑉። = 𝑊፣
0, otherwise

compareArray Returns a matrix 𝑀 where for each combination of arrays in the input 𝑉 and𝑊:

𝑀።፣ =
|𝑉። ∩𝑊፣|
|𝑉። ∪𝑊፣|

popularity Returns a vector 𝑉 for input 𝑀, where:

𝑉፣ =∑
።
𝑀።፣
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Name Output Parameters
interaction(interaction) Matrix[A,B]

property(entity.property)<String> Vector<String>[A]

property(entity.property)<Array> Vector<Array>[A]

property(entity.property) Vector[A]

Table 3.2: Available terminals. Each property or interaction in the dataset translates as one of these terminals.

pearsonSimilarity Returns a matrix 𝑀 given input matrix 𝑁, where:

𝑀።፣ = PCC(𝑁።∗, 𝑁፣∗)

Here, 𝑁፣∗ represents the 𝑗th row of matrix 𝑁, and PCC is the function that returns the Pearson
correlation coefficient between two vectors [6].

nearestNeighbour Inspired by user-based collaborative filtering. Given input matrices 𝑀[𝐴, 𝐴] and
𝑁[𝐴, 𝐵], for each row 𝑖 in 𝑀, it picks the 𝑛 column indices 𝑗 ∈ 𝐽 with the highest values 𝑀።፣. Then it
returns a matrix 𝑃, where:

𝑃።፤ =
∑፣∈ፉ𝑀።፣𝑁፣፤

𝑛

nearestNeighbour(inverted) Inspired by item-based collaborative filtering. Given input matrices
𝑀[𝐵, 𝐵] and 𝑁[𝐴, 𝐵], for each row 𝑖 in 𝑀 it picks the 𝑛 column indices 𝑗 ∈ 𝐽 with the highest values
𝑀።፣. Then it returns a matrix 𝑃, where:

𝑃።፤ =∑
፣∈ፉ
𝑀፤፣𝑁።፣

transpose Given a matrix 𝑀, it returns 𝑀ፓ.

addVector Adds a vector 𝑉 and matrix 𝑁, it returns a matrix 𝑀, where:

𝑀።፣ = 𝑁።፣ + 𝑉፣

scaleMatrix Given a matrix 𝑁 and a scalar 𝑠, returns 𝑠𝑁.

sumMatrix Given two matrices 𝑁[𝐴, 𝐵],𝑀[𝐴, 𝐵], returns 𝑁 +𝑀

3.3.3. Terminals
While the functions make the language suitable for recommending, we also need to make it capable
of recommending items in a certain dataset. This is where the terminals come in. We have two types
of terminals, which are both dynamically generated based on the provided dataset: ‘interaction’ and
‘property’. An overview can be found in table 3.2.

interaction(<interaction>) Every interaction property in the dataset creates a terminal in the lan-
guage for that specific property. It returns the matrix in the dataset for that property.

property(<entity.property>) Every entity property in the dataset creates a terminal in the language
as well. This returns a vector containing the values for that property in the dataset.
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empty Finally, we have an ‘empty’ terminal which is used in some situations as a fallback terminal.
It returns a matrix filled with zeroes. This is never explicitly in a program, but due to sampling of the
datasets, there can be situations where a certain entity or interaction terminal does not exist. In that
case, it is replaced by this one.

3.3.4. Parameters in functions and terminals
Some of our functions require extra configuration in addition to the input matrices, such as scaleMatrix
(the scalar) and nearestNeighbour (the number of neighbors to consider). In regular programming, as
well as in the context of genetic programming, these ‘parameters’ are often added as an additional input
value. We have decided to go against the norm and add the concept of ‘configuration’ to functions. The
reason being that adding these values as function input would increase the search space exponentially
while not making any sense from a genetic programming structure since these parameters are not
really part of the program. Whenever a function is selected, the configuration is randomly picked from
a predetermined range of sensible values.

3.3.5. The reasoning behind the selection of functions and terminals
To make our language as effective as possible, we aimed to select the smallest possible set of func-
tions that make sense within the context of hybrid recommender systems. During the development of
RACE:GP, we have experimented with a large number of additional functions and terminals, such as
a constant terminal and additional math-related functions. Based on the initial results of our trials, we
decided to remove anything that did not contribute directly to meaningful recommender systems.

Initially, the set of terminals included a ‘constant’ terminal, which would return either a Scalar, Vec-
tor[*] or matrix[*,*] where every value was the same. However, this lead to programs containing large
subtrees that, for example, returned the similarity between rows in a matrix where every value is the
same, which always returns a matrix filled with 1’s. These subtrees pollute the search space, and
because the return value is generic, they can be (and were) applied for every input.

For the same reason, we decided to remove all math-related functions except ‘sumMatrix’, ‘addVec-
tor’, and ‘scaleMatrix’. Initially, our language contained ‘sum’, ‘multiply’ and ‘subtract’ for every possible
input combination type. While reasoning about and reviewing literature regarding hybrid recommender
systems, we could only map the three aforementioned functions consistently to concepts from hybrid
recommender systems and thus removed all other math-related functions.

We do not claim that improving on the selected set of functions is impossible. However, our re-
sults indicate that they are able to describe accurate hybrid recommender systems quite well. Future
research can be done to improve our selection.

3.4. Evaluating the fitness of a created recommender system
Now that we have defined our data model, a typing system, and a programming language based on that
data model, the next step is to define a method to evaluate whether or not a program in that language
is suitable to a certain task: the fitness function. Since a program in our language should be a recom-
mending system, the fitness score of a program should represent its ability to accurately recommend
relevant items to users. In this section, we will describe our approach to evaluating programs.

The first step is defining a generic way of determining what a ‘relevant’ recommendation is. The
next step is preparing a dataset in our generic model so we can simulate a realistic recommendation
scenario (and thus verify if recommended items are indeed relevant). Finally, we specify how we can
use the prepared dataset to calculate an actual ‘fitness value’ of any program in our language.

3.4.1. Defining what relevant means
The goal of recommender systems is usually described as ‘finding (a number of) relevant items for
a specific user’. However, relevant can mean different things depending on the available data, the
viewpoint of the user of such a system, or the viewpoint of the owner of a system. Since our approach
should be able to create recommender systems for every situation, we need to generalize what we
mean by ‘relevant’ in terms of the provided dataset.

Suppose we look at the goal of suggesting relevant items to a user. In practice, relevant means that
we want the user to interact with these items. Different systems can have different types of interactions
that determine ‘relevant’, such as ‘recommend a movie to watch’, ‘a holiday destination to book’, ‘or a
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book to buy’. Given this information, we define ‘relevant’ as: ‘given an item and a requested interaction
type, the likeliness that a user will have an interaction of that type if the opportunity presents itself’. This
idea is the basis for our fitness function, and thus, together with the dataset, the requested interaction
type is one of the inputs of our algorithm.

3.4.2. Preparing a dataset for evaluation
Now that we have defined what a relevant recommendation is, the next step is using that to process
our dataset into a realistic simulation of reality. Normally, a recommender system works by providing
the user with some options through a user interface, and if the user interacts with one of the provided
options, the recommendation can be seen as relevant. However, unless you have access to massive
amounts of users, evaluating the performance of a recommender system can take quite a while this
way. In our case, we want to evaluate a system in near real-time. This section describes a method
to automatically turn a dataset in our generic model combined with a requested interaction type into
a ‘training’ and ‘test’ set. Using this approach, we can simulate a real situation, in addition to giving
control over the size of the training set so that we can improve the speed of evaluation. On a high level,
the process works as follows:

1. Given the requested interaction type, pick a sample of the requesting entity type of the interaction
(generally the user).

2. For each sampled user:

(a) Sort their interactions of the requested type on date if available.
(b) Split their interactions of the requested type into a ‘training’ and ‘validation’ list and add the

receiving entities for each interaction in the training set to the ‘filter’ list and those of the
validation list to the ‘relevant’ list.

(c) For every entity in the ‘relevant’ list, remove all interactions between the user and it from the
dataset.

This preprocessing is necessary to achieve two goals: Reducing the size of the dataset and simu-
lating a realistic recommendation scenario.

Sampling the dataset Sampling the dataset has two primary purposes: increase the efficiency of
evaluation by reducing the runtime andmemory usage of the program and reducing the risk of overfitting
[14]. To generalize the sampling approach, the idea is to have some parameter 0 < 𝑠 ≤ 1, which
determines the probability that any user in the full dataset is included in the sample. For reproducibility,
a seeded PRNG is used to decide which users to pick. The higher the value chosen for 𝑠, the more
consistent the fitness scores over generations, but the longer the program takes to run. Choosing 𝑠
close to 1 might increase the risk of overfitting since there is no change in the test set over multiple
generations. If a user is not selected during the sampling process, all interactions related to that user
are also removed from the dataset.

Simulating a recommendation scenario The best way to validate the performance of a recom-
mender system is by testing it in the real world. You recommend something to a user, and if that user
interacts with it, it is an accurate recommendation. As stated before, the time and resources necessary
for this make it infeasible for our algorithm. Therefore we use a simulation of reality using the provided
dataset. In general, the problem of ‘simulating’ realistic recommendation scenarios is tackled by mak-
ing an assumption regarding what would constitute a relevant recommendation for each user based
on the available data. Filtering some of these relevant items from the dataset and comparing them
with the output of the recommender system enables us to calculate some accuracy score. Usually, the
accuracy is defined by a metric such as ‘is the selected relevant item in a set of 𝑛 items provided by the
recommender system?’ or: ‘given a ranking of items for a user, what is the index of the first relevant
item?’.

To create a realistic scenario, we split each user’s interactions into a set of ‘training’ and ‘validation’
interactions. The training interactions simulate the context in which the recommender system has to
recommend an item, and the ‘validation’ interactions simulate the relevant recommendations. This is
done per sampled user in three steps: sorting (optional), splitting, and cleaning.



18 3. Methodology

First, if it is relevant for the specific dataset and some timestamp-like property is available, the in-
teractions are sorted on time. This allows us to simulate recommending an item at a certain moment in
time by splitting the resulting list at some point. In our experiments we select the first 80% of the inter-
actions as training data, and the remaining 20% as validation interactions. If sorting makes no sense
for that dataset, the previously mentioned PRNG is used to randomly select 20% of the interactions for
each user as validation interactions.

Secondly, we add the entities related to the interactions in the training set to a ‘filter’ list since we
don’t want our program to recommend items that the user already interacted with and the entities for
the validation interactions to the ‘relevant’ list.

Finally, we remove all interactions between the user and the entities in the ‘relevant’ list from the
training dataset. This step is important for two reasons: first, in reality, we usually aim to recommend
items with which the user has not yet interacted, and second, recommender systems that just recom-
mend items with which you have already interacted perform unrealistically well. For example, users
generally only ‘tag’ a movie after they have seen it, which often also means they rated it. A recom-
mender system that recommends every movie that a user tagged makes no sense. However, if not all
interactions are removed between users and movies in the ‘relevant’ set, our fitness functions would
rate these recommender systems extremely high.

The terminals from the previous section that read from the dataset return only properties and inter-
actions from the training dataset.

3.4.3. Evaluating a program
Now that we have a dataset prepared to efficiently simulate a real situation, we need to assign a fitness
score to a program based on that dataset. This is done by first executing the program and then calcu-
lating the fitness score on the resulting matrix. To execute a program in our language, we start at the
root expression, recursively evaluating the input expressions (if there is input), and then evaluate the
expression itself given the input. For a program in our language to be valid according to the dataset
and requested interaction type, the output must correspond to the interaction type. For example, if the
requested interaction is ‘user likes movie’, the output must be of type Matrix<User, Movie>.

To transform the resulting matrix into a list of items based on relevancy for each user, we can return
for each row the entities related to the values in the row, sorted descending based on the values for the
corresponding entity. Since our dataset contains a list of the entities a user has already interacted with,
the filter list, we can remove those entities from the resulting list for each user, which leaves us with for
each user an ordered list of entities that this program recommends. The final evaluation step is then
comparing that list for each user with their validation list using some metric based on the requirements.
Taking the average of these values returns a fitness score for the entire program.

Selecting an evaluation metric should be done based on what the goals of recommending are. In
some situations, the first or second thing you recommend should be relevant, and items lower on the
list are ignored. In other situations, you might want to recommend every relevant item to the user,
and missing one would be bad. Depending on the context, different evaluation metrics can be chosen,
which can roughly be categorized in three ways: accuracy-based, decision-based, and rank-based.
Accuracy-basedmetrics aremostly used in explicit rating situations where a system estimates the rating
a user would give a certain item and compares that with what the user actually rated. Decision-based
metrics work on the premise of splitting a dataset into relevant and irrelevant items, and finally, rank-
based methods are based on the notion that relevant items should be ordered higher than irrelevant
items on average.

Since accuracy-based metrics are only applicable in very specific situations, our approach uses
precision and recall for decision-based evaluation and mean reciprocal rank for rank-based evaluation.

Mean reciprocal rank Mean reciprocal rank (MRR@𝑛) sums for each relevant item in the validation
list of size 𝑛 the reciprocal of its position in the order outputted by the program. The MRR@𝑛 for an
ordered list of items 𝑒 ∈ 𝐸 is:

MRR@𝑛 =
።ጾ፧

∑
።዆ኻ

1
𝑖 𝑒። , where 𝑒። = {

1, if item 𝑖 is relevant
0, otherwise
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Precision and recall Precision@𝑛 and Recall@𝑛 are metrics to determine how accurate a recom-
mendation of a set of items is. Precision@𝑛 is the ratio of relevant items in 𝑛 recommended items, and
Recall@𝑛 is the ratio of all relevant items that are recommended in the first 𝑛 recommended items. Both
these values can be calculated using the top 𝑛 relevant items according to the output and comparing
them with the validation list.

3.4.4. Summary
In this section, we determined how we can evaluate the performance of any program in our language.
We defined what it means for a recommendation to be relevant in our context, how the dataset is used
to simulate a real recommendation scenario, and multiple ways to turn the output of a program into a
numerical value describing the ‘fitness’ of a program.

3.5. Finding recommender systems using genetic programming
Now that we have a data model, a programming language, and a way to determine how accurate a
program is, we can tackle the last step of our problem: Automating the process of finding a program that
performs well. This problem can be split into two subproblems. First, we need a way to randomly gen-
erate valid programs, and secondly, an efficient way to search the entire space of available programs
given a certain language for a good performing solution. This section will first describe how we can
generate random valid programs, and we will then elaborate on how we can use genetic programming
to efficiently search for well-performing programs.

3.5.1. Generating a random valid program
The next step of automating recommender systems is by providing a way to randomly generate a valid
program in our specific language. In general, the approach to create a random programwith amaximum
depth is explained by the pseudocode in Algorithm 1. To create a program tree, the algorithm takes
a maximum depth and a method. The maximum depth determines the allowed size of the tree, and
thus the maximum number of functions that can be used recursively as input. After the maximum depth
is reached, the algorithm always selects a terminal. There are two different approaches for creating
a random tree: ‘GROW’ or ‘FULL’. If ‘GROW’ is chosen and the maximum depth is not yet reached,
the algorithm selects a random node from either the functions or terminals, but if ‘FULL’ is chosen, it
always selects a function until the maximum depth is reached.

Algorithm 1 Basic program generation, 𝐹 is list of available functions, 𝑇 is list of available terminals
function GenerateProgram(max_depth, method)

if max_depth = 1 then
root ←Random(𝑇)

else if method = ‘FULL’ then
root ←Random(𝐹)

else
root ←Random(𝐹 ∪ 𝑇)

end if
for all arguments of root do generate a subtree:

GenerateProgram(max_depth - 1, method)
end for

end function

While this approach to program generation works if every function and terminal in the language can
always be selected (for example, in the previously defined example language containing the functions
+ and -, and the terminals 1, 2, and 3), this is not the case in our situation. As stated before, our
language is strongly typed: it contains the types Matrix and Vector. This means that terminals output
a certain type, and functions require a certain type as input. The straightforward approach is to adjust
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Input[0] Input[1] Output
Matrix<User,Item> Matrix<User,Item> Matrix<User,Item>

Matrix<User,Item> Matrix<User,Actor> Invalid input

Matrix<Actor,Item> Matrix<User,Item> Invalid input

Matrix<User,Item> Matrix<*,*> Matrix<User,Item>

Matrix<User,Item> Matrix<User,*> Matrix<User,Item>

Matrix<*,Item> Matrix<User,*> Matrix<User,Item>

Matrix<User,*> Matrix<User,*> Matrix<User,*>

Matrix<*,*> Matrix<*,*> Matrix<*,*>

Table 3.3: Example of output given certain input for function sumMatrix

the previous algorithm to add the required output type as an argument to the GenerateProgram function
and filter the functions and terminals based on that output type. We can then generate a valid program
in our situation by calling the GenerateProgram function with the type based on the interaction we want
to recommend.

Unfortunately, this is not enough since our language also contains so-called ‘generic functions’.
Generic functions are functions that can receivemultiple (combinations of) valid input types and produce
different output types based on the provided argument types. An example of a generic function in our
language is the ‘sumMatrix’ function. If we assume our dataset has the entities: ‘User’, ‘Movie’ and
‘Actor’, some examples of inputs and the corresponding output for ‘sumMatrix’ are given in table 3.3.
Types with a ‘*’ mean that they are still generic: until they are defined higher or lower in the program
tree, they do not have a fixed type yet. This also shows that generic types can be ‘passed through’.
This means that filtering the terminals and functions to check if they are potential valid inputs is not as
straightforward anymore.

To solve this problem, we need to recursively check if it is possible for a function to produce the
required output type based on the maximum depth remaining and the available terminals and functions
in the language before we can add it. To achieve this, we use the strategy created by Montana [35],
which uses a precalculated table to determine what the possible output types are for each level of
a potential program and use that to determine what functions and terminals can be selected given a
certain maximum depth. For a more in-depth explanation of this approach, please refer to their paper
for a detailed explanation of how we implemented this.

3.5.2. Genetic programming overview
Now that we have a way to generate a random program that outputs a certain type, we can tackle the
problem of efficiently searching for problems in the problem space. A naive solution is to repeatedly
generate a program and evaluate it until a program with a fitness score above a certain threshold is
found. While this can work, it is not very efficient. An alternative solution to this problem that can be
more efficient is genetic programming. Genetic programming is an evolutionary computing technique
that uses evolution-inspired approaches such as crossover, mutations, and pressured selection to iter-
atively produce generations of improving maximum and average fitness [30]. In our approach, genetic
programming is applied as follows:

1. Generate an initial population of random programs in the language, using the ‘ramped-half-and-
half’ method, where 50% of the programs are generated using the ‘GROW’ method, and 50%
using the ‘FULL’ method. This ensures that a diverse population is created [34].

2. Generate a validation dataset used to validate the performance of the best-found RS every gen-
eration. The validation dataset is used to compare the performance of programs in multiple gen-
erations if interleaved sampling is used.

3. Repeat until a certain end-condition is reached (max generation, certain fitness value, or no im-
provement for a number of generations).
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(a) Generate a random sample of the dataset, used to define the relative fitness of individuals
in the current generation. This is done for the two reasons stated in the section on dataset
preparation: reducing overfitting and reducing the time required to evaluate an individual.

(b) Evaluate each individual in a generation using the fitness function over this generation’s
sample dataset.

(c) Evaluate the best individual for this generation using the validation dataset, and if the fitness
is better than the best found so far, replace the best found with this.

(d) Produce the next generation by selecting individuals using the fitness score over the sampled
data and then applying crossover and mutation. This step is discussed in more detail in the
next section.

4. Return the individual with the highest fitness value on the validation set found so far.

While most of these steps are standard genetic programming or covered in previous sections, such
as the approach to evaluation, step 3d, reproduction, needs some elaboration.

3.5.3. Producing offspring
In item 3d in the previous section, the process of reproduction is mentioned. This process consists of
two steps. First, a number of the fittest individuals from the previous generation is copied to the next
generation, which is called elitism. After that, we pick two individuals using a selection procedure that
prefers individuals with a higher fitness score and then combine these two individuals in some way
(crossover) to produce two new individuals. Finally, to keep some diversity and reduce the chance that
a local maximum is reached, some parts of the offspring can be randomly changed (mutation). Step
two of this process is repeated until the size of the new generation is the same as the previous one.
This section describes in more detail how elitism, selection, crossover, and mutation are implemented
in our approach.

Elitism Elitism in genetic programming is used to make sure that the best individuals of a generation
remain a part of the population. In our implementation, before we start selection and crossover and/or
mutation, we select the best individuals from the current population, and without applying evolutionary
operators, we put them in the next generation. The amount of individuals taken is based on the elitism
ratio. An additional advantage of using elitism is that it reduces ‘bloat’ in later generations [40][54].
Bloat happens when over the course of generations, the average size of programs tends to increase.

Selection The goal of the selection step is to make sure that the average and maximum fitness of the
next generation is higher than that of the current generation. This is done by preferring fitter individuals
during selection, also called ‘selection pressure’. While there exist multiple approaches to this, in our
experiment, we use ‘tournament selection’. To pick an individual, we randomly select 𝑘 programs from
the parent generation and pick from those the one with the highest fitness for reproduction. Since we
need two individuals for crossover, we repeat this process to get the other parent.

Crossover After two individuals are selected, we can produce their offspring. The idea is that we
select a node in both parents and replace the respective subtrees with each other to produce the
offspring. Since our programs are strongly typed, this does not always produce a valid tree. Therefore
it first selects a node in one parent and then randomly picks a subtree from the other parent that
produces the same output type. If that does not exist, both parents are copied into the new generation.
In case the depth of one of the offspring programs is larger than the configured maximum depth, only
the offspring that falls within the restrictions remain. This approach is inspired by Montana [35].

Subtree mutation Subtree mutation is relatively straightforward. With a predefined probability, select
a random node from a program, and generate a new subtree that falls within the maximum depth with
the same output type as the node that is replaced.
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Parameter mutation In addition to subtree mutation, we define a second form of mutation not found
in standard genetic programming: parameter mutation. For parameter mutation we pass through each
node and, with a predefined probability, we mutate each (numerical) parameter. Since in the initial
tree generation parameters are chosen in a certain (relatively small) range, it might be possible that
better values lie outside that range, therefore this step allows us to go outside these ranges. Given a
parameter value 𝑁, a mutation rate 𝑃፩፦, a mutation speed 𝑆፩፦ and two random values 0 < 𝑟ኻ, 𝑟ኼ < 1,
the new parameter value 𝑁ᖣ is calculated as follows:

𝑁ᖣ = {
𝑁, if 𝑟ኻ > 𝑃፩፦
⌈((1 − 𝑆፩፦) + 2𝑆፩፦𝑟ኼ)𝑁⌉, else if 𝑟ኼ > 0.5
⌊((1 − 𝑆፩፦) + 2𝑆፩፦𝑟ኼ)𝑁⌋, else

3.5.4. Improving the performance of program evaluation
Genetic programming depends on being able to relatively quickly evaluate an entire generation of
individuals. These generations often consist of 100’s or even 1000’s of individuals. Thus, to effectively
use genetic programming as a search strategy, it is vital that calculating the fitness score of any program
is as efficient as possible, both in terms of CPU andmemory. Reducing unnecessary processing makes
the time to evaluate a single program shorter, and reducing memory means that it is much cheaper and
easier to evaluate many programs in parallel.

Reducing CPU usage Genetic programming is generally quite CPU intensive. One of the main
techniques often applied in genetic programming to speed up evaluation is subtree caching [27, 43].
The basic idea is that there is some lookup table in which the output of subtrees is stored. Before
calculating a subtree, the algorithm checks the lookup table if the output is already there and just returns
that if it is. Otherwise, it calculates the output and stores it in the lookup table. Since the building blocks
(the subtrees) are often similar over generations, this approach can speed up calculations significantly
at the cost of memory or disk space.

Since the output of subtrees in our programs are generally large matrices, storing the output of
each subtree is infeasible and does not necessarily increase the speed for every function. Reading
the output from disk takes 𝑂(𝑛𝑚) for a matrix with size 𝑛 by 𝑚, and the sumMatrix function also takes
𝑂(𝑛𝑚). However, the pearsonSimilarity function is quite slow and takes 𝑂(𝑛ኼ𝑚). In this case, reading
from disk is a significant speed improvement. In practice, we only cache the output of subtrees where
the root node has a run time larger than 𝑂(𝑛𝑚).

For the lookup table, we use a hashing algorithm 𝐻 to check for subtree equivalence, which takes
internal function parameters into account, as well as the dataset used, interaction requested, and the
interleaved sampling parameters (seed and size). We serialize the output to disk since keeping it in
memory is infeasible. Due to our hashing algorithm, our caching approach is also safe to use over mul-
tiple runs. Additionally, to reduce the required disk space, the hash algorithm uses some optimization
techniques inspired by Wong [55] to make different subtrees return an equivalent hash if their outputs
are the same, for example:

𝐻(transpose(transpose(𝐴))) = 𝐻(𝐴)
𝐻(sumMatrix(𝐴, 𝐵)) = 𝐻(sumMatrix(𝐵, 𝐴))

Additionally, we also cache the fitness scores of fully evaluated programs. Since these are only
a few bytes, we can cache them all. Especially with elitism enabled, which keeps individuals in the
population without changes, this can save a significant amount of unnecessary evaluations and thus
increase the performance.

Reducing memory Another result of working with large matrices is that during the evaluation of a
tree, a number of these matrices need to be stored in memory. To reduce the memory usage and
provide an upper bound on the maximum memory of a program evaluation, we prioritize evaluating
functions over terminals in the input. This gives an upper bound on the memory usage for any program
in our language:
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𝑂((𝑎 − 1)𝑑𝑛ኼ)
Here, 𝑑 is the maximum depth, 𝑎 is the largest arity of any function in our language, and 𝑛 is the

size of the largest set of entities in 𝐷.

3.6. Summary
In this chapter, we have described every step necessary to automatically generate well-performing
recommender systems given any dataset that can be modeled in our generic data model. First, we
defined a way to transform any dataset to our generic model based on entities and interactions. Then
we proposed a programming language based on the underlying dataset and described its functions and
terminals. Additionally, to verify whether or not a program in the language could be successfully used
as a recommender system, we described a way to automatically evaluate the fitness of a recommender
system given only a dataset and a requested interaction type. Finally, we described a way to search
the complete space of available programs in an efficient way using genetic programming. The next
step is experimentally verifying whether or not the assumptions made in this chapter are correct and
that this is indeed a viable approach to automatically generate accurate hybrid recommender systems.
The next chapter elaborates on the design and implementation of these experiments.





4
Experiment design

Now that we have an overview of how RACE:GP works, it is time to experimentally verify that the ap-
proach works. This chapter starts by elaborating on the goals of our experiment and their corresponding
success metrics. Next, it describes the parameters of our algorithm that can be adjusted during exper-
iments. Finally, we describe the datasets used for the experiments and how they are modeled in our
previously defined generic model.

4.1. Experiment goals and success metrics
The main idea behind our approach is that it is flexible and thus usable for every situation in which
recommender systems could be used to determine the relevancy of items to a user given a certain
interaction. Thus, the main goal of our experiments is first to prove that our algorithm can be used to
find non-trivial hybrid recommender systems that outperform certain baseline recommender systems.
The next step is to verify that adjusting certain parameters before the search produces recommender
systems that perform well in different circumstances.

4.1.1. Main goal
Before we can verify our approach’s flexibility, we need to compare our approach with some default
baselines. The baselines we use are popularity, user-based CF, and item-based CF. For our approach
to work, it needs to consistently find recommender systems that outperform all three baselines. Addi-
tionally, it should find these recommender systems using fewer evaluations than a random search on
the solution space would require on average.

4.1.2. Flexibility
After verifying that our approach can consistently find non-trivial recommender systems using a default
dataset, the next step is verifying that our algorithm provides the flexibility to find different programs for
different situations. In the experiment, we will look at three different situations:

• Different situations in which the actual recommending takes place, e.g.

– A system shows only a single item to a user
– It is vital that all relevant items are selected
– The order of relevant items is important

• Different situations regarding the available data, e.g.

– A cold-start situations with a limited amount of available interactions
– An dense dataset with many interactions

• Recommending different types of interactions, e.g.

– Recommending an item to view

25
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– Recommending an item to buy

Within our experiment, we will simulate these situations by adjusting parameters or modifying the
datasets. To verify whether or not these goals are achieved, we first compare the found recommender
systems with the baselines for each situation and then compare the produced recommender systems
for different situations. Ideally, it should produce different, specialized recommender systems for each
situation.

4.2. Experiment hyperparameters
Now that we have defined the goal of the experiments, this section elaborates on which parameters
of the algorithm can be adjusted to achieve these goals. We broadly categorize these parameters
into three categories: search strategy hyperparameters, solution space hyperparameters, and recom-
mender system hyperparameters. This section will elaborate on the parameters that can be adjusted
for each category.

4.2.1. Search strategy hyperparameters
The search strategy category contains all hyperparameters that influence how the potential search
space is explored. Since we are using genetic programming to explore the search space, the hyper-
parameters in this category are relatively standard in genetic programming.

Crossover and mutation rates Since genetic programming depends on crossover and mutation to
‘evolve’ better programs each generation, the probabilities with which these take place have a big
impact on the exploration of the search space. In our algorithm, 4 parameters can be adjusted: 𝑃፬፦, or
the probability of subtree mutation in an offspring program, 𝑃፜፨, or the probability that crossover takes
place between two selected programs for reproduction, 𝑃፩፦, or the probability that a parameter inside
a function or terminal mutates, and 𝑆፩፦, or the speed with which parameter mutations can change
values. Each parameter can take a value between 0 and 1, 0 meaning it is skipped completely, and 1
meaning it happens every time. Finally, we have the elitism ratio 𝑅፞, which determines the amount of
best-performing individuals of a generation to add to the next generation without applying crossover or
mutation.

Population size The next step is choosing a population size. The population size has a strong impact
on the reproducibility of genetic programming approaches. Since genetic programming algorithms
depend on the initially randomly generated population to be able to consistently explore the solution
space, there needs to be enough diversity of potential subtrees (sometimes called building blocks) in
the initial population [48]. Thus, choosing a population size large enough makes sure that running the
algorithm multiple times produces similar results.

Tournament size The tournament size impacts the selection pressure. Setting the tournament size
too large leads to selecting a small subset of each generation’s best individuals for reproduction. In turn,
the algorithm loses diversity and converges too fast. Conversely, a tournament size too small reduces
the speed with which the average fitness of the population increases. While almost all research in
genetic programming uses a tournament size of 2, recent research indicates that larger tournaments
perform better in some situations [32]. Therefore we add tournament size as a hyperparameter as well.

(Interleaved) sampling Another hyperparameter related to the learning process is sampling. Sam-
pling training and test data within recommender systems and genetic programming is usually done for
two reasons: increasing evaluation speed and reducing overfitting. Our approach is based on the idea
of interleaved sampling [14]. The idea is that the entire dataset is used for the initial generation, and
from there on, every other generation uses a sample to create the training and test data to be used by
the fitness function. Every individual in a generation is always evaluated on the same sample, but over
multiple generations, different samples exist. In our algorithm, this value is a value between 0 and 1,
where 1 means that the entire dataset is used in every generation. Any value below 1 is the proportion
of the dataset used for the generations where the data is sampled.
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4.2.2. Solution space hyperparameters
Next, we look at the parameters that impact the potential solution space. These parameters must be
chosen so that the hypothetical ‘best’ recommender systems are part of this solution space. However,
there is a trade-off because the larger this solution space is, the larger the population size needs to be
to have enough diversity to consistently find good results. It is thus vital to select these as strictly as
possible, but not so strict that it potentially excludes good solutions.

Available functions and terminals The first solution space parameter is not exactly a numerical
parameter, but it is the set of functions and terminals the algorithm can choose from. If a function
or terminal (almost) never appears in high-performing programs, removing it from the available set
reduces the solution space significantly.

Maximum program depth The maximum program depth impacts the maximum nested functions a
program created by the algorithm can have. In our implementation, the crossover and subtree mutation
operators are also limited by this depth. Thus it is important that programs within the selected depth
can capture the complexity of the dataset. We define two parameters, initial program depth, which is
used during the generation of the initial population, and maximum program depth, which is used during
crossover and mutation.

4.2.3. Recommender system hyperparameters
Finally, we have hyperparameters that influence the properties of the resulting recommender systems.
These can be adjusted based on what is expected from the produced recommender system and are
entirely dependent on the dataset and the recommendation problem.

Requested interaction The first parameter is the interaction one wants to recommend. The re-
quested interaction is used as input for the fitness function and therefore makes sure that the algorithm
evolves recommender systems that recommend the chosen interaction.

Evaluation metric The fitness function uses the selected evaluation metric to determine an individ-
ual’s fitness score. The evaluation metric can be selected based on the use case. For example, if a
system only shows a single item to a user, it makes sense to evaluate a recommender system based
on the relevancy of the most relevant item according to the system. Alternatively, if a system needs
to return all 10 relevant items for each user, it makes sense to put a recall-based evaluation metric in
there. In this thesis, we use the mean reciprocal rate of the first 10 items (MRR@10), the precision
score of the first recommendation (P@1), and the recall given the first 10 items (Recall@10).

Dataset preparation The last ‘parameter’ is not a hyperparameter in the strictest sense, but different
methods of preprocessing the training data can influence the resulting recommender system. For ex-
ample, it is common practice within recommender system research to filter users and items with a small
number of interactions to increase the performance of collaborative filtering techniques. However, the
opposite is also possible: if one filters the training data to simulate a cold-start situation, the algorithm
will produce recommender systems that perform well in cold-start situations.

4.3. Datasets
We use three datasets often used in recommender system literature for our experiments: Movielens,
Sobazaar, and Filmtrust. This section will elaborate on each dataset, why we chose it for our experi-
ments, and how it is transformed into our data model. Additionally, we show the structure of the recom-
mender systems we use as a baseline for each dataset. The reason we chose these three datasets is
that they are quite different in structure. Movielens has multiple properties related to movies, Sobazaar
has 7 different interaction types between users and products, and Filmtrust contains interactions be-
tween users, the trust relation, in addition to ratings between users and movies.

In general, for each dataset, we split the data based on the requested interaction. For each user, we
sort the requested interactions on the corresponding timestamp and take the first 80% of the interactions
as training data and the last 20% as test data. Afterward, we remove all interactions between the user
and the test entities, as stated in the previous chapter.
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4.3.1. Movielens
The Movielens dataset is quite well-known and well-studied within the realm of recommender systems.
However, the original dataset only contains ratings and tags and, except for the title, no other metadata.
Since we want to validate the capabilities of our algorithm to produce hybrid recommender systems,
having a dataset with some auxiliary data would be preferred. To achieve that, we use the version of
Movielens as gathered by Sun et al. [51]. They used the Movielens dataset and added information
about genre, actors, and director to each movie. Their version of the dataset consists of 943 users,
1674 movies, and 100k ratings.

The dataset mapped to our generic model can be seen in table 4.1. Since our approach is based on
recommending relevant items and not on guessing an explicit value such as a rating, we model ratings
as 1 if a user has rated a movie and 0 otherwise. The idea behind that is that if a user has rated a
movie, we can assume the movie is relevant, regardless of whether or not the user actually liked it.
This is the same approach as taken by Sun et al.

entity # properties type
user 943 - -

genres string[]
movie 1674 actors string[]

director string

actor 3946 - -

genre 26 - -

interaction # from to values
rating 80348 user movie 0, 1

acts 6544 actor movie 0, 1

genre 3975 genre movie 0, 1

Table 4.1: Movielens: table containing the entities and interactions for training, with rating as requested interaction.

The three baseline recommender systems for Movielens are found in Figure 4.1. Of the three,
item-based collaborative filtering performed the strongest, with an MRR@10 of 0.5672.

### Popularity: ###
addVector
├── randomMatrix {”seed”:0}
└── popularity

└── interaction(rating)
MRR@10: 0.339, P@1: 0.1442, P@10: 0.1043

### User-based CF: ###
nearestNeighbour {”N”:15}
├── pearsonSimilarity
│ └── interaction(rating)
└── interaction(rating)
MRR@10: 0.5316, P@1: 0.2078, P@10: 0.1604

### Item-based CF: ###
nearestNeighbour(inverted) {”N”:15}
├── pearsonSimilarity
│ └── transpose
│ └── interaction(rating)
└── interaction(rating)
MRR@10: 0.5672, P@1: 0.2344, P@10: 0.167

Figure 4.1: Baselines for Movielens based on popularity, user-based CF and item-based CF

4.3.2. Sobazaar
The second dataset we use in our experiments is the Sobazaar dataset [36]. Sobazaar is a social
fashion app in which users can view, like, want, and purchase articles of clothing. The dataset consists
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of users, products, and 7 interaction types. For our purpose, we created three datasets with different
densities from Sobazaar: sobazaar-default, sobazaar-dense, and sobazaar-sparse. Their properties
can be seen in Table 4.2. sobazaar-default is found by removing all users and products with less than
5 buy_clicked interactions. For sobazaar-dense, we took the 1000 users and products with the most
interactions, and for sobazaar-sparse, we filtered all users with zero requested interactions (buy_clicked
in this experiment), and then took the 1000 users with the least interactions and the 1000 products with
the most interactions.

entity # # sparse # dense property type
user 784 916 1000 - -

product 811 888 1000 - -

interaction # # sparse # dense from to values
prod_clicked 172 8 40 user product 0, 1

prod_detail_clicked 17207 2603 42735 user product 0, 1

prod_detail_viewed 7619 785 15027 user product 0, 1

pixel-init 932 47 502 user product 0, 1

prod_wanted 10813 418 48229 user product 0, 1

interact:prod_wanted 434 42 505 user product 0, 1

buy_clicked 3279 191 1206 user product 0, 1

Table 4.2: Sobazaar dataset: Table containing the entities and interactions used for training, with buy_clicked as requested
interaction.

Our baselines, in Figure 4.2, are again based on popularity, user-based collaborative filtering, and
item-based collaborative filtering. The differencewithMovielens is that we use the product_detail_clicked
interaction to find similar users instead of the requested interaction buy_clicked. With some trial and
error, we discovered that that interaction produced the strongest baseline.

4.3.3. Filmtrust
The last dataset we use for our experiments is Filmtrust [15]. Filmtrust contains movie ratings, as well
as directional trust relationships between users. Contrary to the Movielens dataset, we use numerical
ratings in the training data and only use ratings of 3 and higher as ‘relevant’ interactions. Table 4.3
contains the details of the training data. The baselines, found in Figure 4.3, for Filmtrust are the same
as for the Movielens dataset. However, the performance of the baselines is curiously enough the other
way around. Popularity performs the best by a large margin, followed by user-based collaborative
filtering, and item-based collaborative filtering performs the worst.

entity # properties type
user 1002 - -

movie 2071 - -

interaction # from to values
rating 27010 user movie 0, 1-5

trust 1100 user user 0, 1

Table 4.3: Filmtrust: table containing the entities and interactions for training, with rating as requested interaction.

4.4. Summary
In this chapter, we defined the main goal of our experiment: producing accurate non-trivial hybrid
recommender systems. Additionally, we defined the parameters that can be adjusted to achieve our
goal, and finally, the datasets used in the experiment. The next chapter will go into detail on the
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### Popularity: ###
addVector
├── randomMatrix {”seed”:0}
└── popularity

└── interaction(buy_clicked)
MRR@10: 0.0054, P@1: 0, P@10: 0.0023

### User CF: ###
nearestNeighbour {”N”:15}
├── pearsonSimilarity
│ └── interaction(product_detail_clicked)
└── interaction(buy_clicked)
MRR@10: 0.001, P@1: 0, P@10: 0.0005

### Item CF: ###
nearestNeighbour(inverted) {”N”:15}
├── pearsonSimilarity
│ └── transpose
│ └── interaction(product_detail_clicked)
└── interaction(buy_clicked)
MRR@10: 0.0023, P@1: 0, P@10: 0.0013

Figure 4.2: Baselines for Sobazaar based on popularity, user-based CF and item-based CF, MRR@10 is calculated on sobazaar-
default.

experiments ran and the corresponding results. Additionally, we will discuss these results in relation to
the goals stated in this chapter.
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### Popularity: ###
addVector
├── randomMatrix {”seed”:0}
└── popularity

└── interaction(rating)
MRR@10: 0.9868, P@1: 0.4162, P@10: 0.2839

### User CF: ###
nearestNeighbour {”N”:15}
├── pearsonSimilarity
│ └── interaction(rating)
└── interaction(rating)
MRR@10: 0.8502, P@1: 0.3443, P@10: 0.2571

### Item CF: ###
nearestNeighbour(inverted) {”N”:15}
├── pearsonSimilarity
│ └── transpose
│ └── interaction(rating)
└── interaction(rating)
MRR@10: 0.5257, P@1: 0.1776, P@10: 0.1803

Figure 4.3: Baselines for Filmtrust based on popularity, user-based CF and item-based CF





5
Experiment results

This chapter presents the results from our experiments. First, we show the results from running a grid
search on several hyperparameters and compare that with our baselines. Following that, we present
the results of our experiments to determine the impact of changing the recommender system hyper-
parameters on the produced recommender systems. Additionally, we analyse some of the produced
recommender systems.

5.1. Hyperparameter tuning and baseline results
Before running more in-depth experiments, we have to find a tuple of hyperparameters that works as
best as possible for our genetic programming implementation. This is done by performing a grid search
over a range of sensible possible values for each hyperparameter. We select one dataset to run this
grid search on, so we can compare the performance of individual runs with each other. This search
is performed on the Movielens dataset. Although some hyperparameters might have different optimal
values on different datasets, such as maximum depth, population size and maximum generation, the
hyperparameters included in the grid search only affect the algorithm’s ability to effectively search
the solution space, while simultaneously making sure that the average and maximum fitness increases
each generation. Thus, we assume that these parameters translate well to different datasets. Following
that, we will go over the best-performing recommender systems produced by the algorithm during the
grid search and compare them with the defined baselines.

The hyperparameters have a strong influence on the ability of our genetic programming algorithm
to consistently search and evolve in the right direction, therefore it is vital to find a combination that
performs well. In Table 5.1 we list a couple of sensible potential values for each hyperparameter. We
performed a grid search on every combination possible, with the only requirement that the crossover
probability 𝑃፜፨ and subtree mutation probability 𝑃፬፦ satisfies 𝑃፜፨ +𝑃፬፦ ≥ 1, since having at least one of
them is a requirement for genetic programming to function at all.

5.1.1. Hyperparameter tuning results
There are 60 possible combinations of hyperparameters based on the possible values for each param-
eter we selected, and for each combination we used our algorithm to produce a recommender system.
The complete results for each of the 60 runs of the grid search can be found in the appendix in Ta-
ble A.1. To compare the performance of different combinations of hyperparameters we look at three
different values for each run:

• MRR@10: The score of the best performing recommender system found during the run. Higher
is better.

• ΔMean: The average increase of the mean performance for each generation during the entire
run. The higher this value, the better the upwards pressure is for the algorithm. The expected
value of ΔMean using a random search is 0.
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Parameter Values
Training fitness function MRR@10

Initial depth 5

Max depth 8

Interleaved sampling 1.0

Max generation 20

Population size 100

Tournament size 2

𝑃፜፨ crossover probability* 1, 0, 0.1, 0.9, 1

𝑃፬፦ subtree mutation probability* 1, 1, 0.9, 0.1, 0

𝑃፩፦ parameter mutation probability 0.1, 0.5, 0.9

𝑆፩፦ parameter mutation speed 0.1, 0.5

𝑅፞ elitism ratio 0, 0.05

Table 5.1: Potential values for hyperparameters used for the grid search, resulting in 60 unique combinations of hyperparameters.
* The possible values for crossover and subtree mutation probability in the table are linked.

• ΔMax: The average increase of the max performance for each generation during the entire run.
The expected value of ΔMax using a random search is 0. A higher value means the algorithm
can consistently find improvements over generations.

The goal of the grid search is to find a combination of hyperparameters that leads to the best search
performance and results. In the next paragraphs, we will discuss the best and worst combinations found
in our experiments, and the impact individual (combinations of) parameters have on the performance.
Finally, we extrapolate the tuple of hyperparameters that we use in the rest of the experiments based
on the previous findings.

Best and worst performing The 5 best- and worst-performing combinations of hyperparameters can
be seen in Figure 5.1a (MRR@10), 5.1b (ΔMean), and 5.1c (ΔMax). Out of the 60 runs performed in
the grid search, 53 (≈ 88%) produced a recommender system that performed better than all three of
our chosen baselines. The ones performing worse are all within 1% of the MRR@10 of the strongest
baseline. Additionally, 56 (≈ 93%) of the runs has a positive ΔMean, and 57 (= 95%) has a positive
ΔMax. Thus, most combinations of hyperparameters chosen for the grid-search lead to hill-climbing
results over multiple generations.

Elitism Looking at Figure 5.1a, the 5 best results all include elitism, and 4 out of the worst-performing
5 have no elitism. This is confirmed if we look at the average values for runs with and without elitism
in Figure 5.2a. Regardless of the other parameters, runs with elitism score on average 1.7% better
than runs without elitism on MRR@10, and 59% better with regards to ΔMax. Interestingly, contrary to
what intuition would say, ΔMean is not impacted by whether elitism is enabled or not. Ultimately, setting
𝑅፞ = 0.05 is strictly better than 𝑅፞ = 0.

Crossover and Subtree mutation Crossover and subtree mutation have the same purpose: creat-
ing variation over different generations. For this reason, we linked the potential values in the grid search
together, and look at their combined impact on the resulting recommender systems and evolution pro-
cess. Figure 5.2b shows the average results for each combination of 𝑃፜፨ , 𝑃፬፦. Looking at MRR@10,
using only crossover produces the best results on average, closely followed by (0.9, 0.1) and (0.1, 0.9)
for (𝑃፜፨ , 𝑃፬፦). These three tuples also produce the best average increase over generations, suggesting
that they are suitable for our approach. Although not strictly the best tuple found in our grid search, we
select 𝑃፜፨ = 0.9, 𝑃፬፦ = 0.1 for the rest of our experiments. The reason for this is that without subtree
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Figure 5.1: Grid search, best and worst results for MRR@10, ጂMean and ጂMax.

mutation the first randomly generated population can limit the search space if certain potential subtrees
are not generated, therefore this is chosen instead of using just crossover.

Parameter mutation In Figure 5.2c the average results are shown for each combination of parameter
mutation chance 𝑃፩፦, and parameter mutation speed 𝑆፩፦. 𝑃፩፦ = 0.9, 𝑆፩፦ = 0.1 outperforms every
other combination with regards to MRR@10 and ΔMax. This suggests that slowly but consistently
searching relatively close around parameters of systems that are performing well produces the best
recommender systems. Interestingly, a smaller chance of parameter mutation increases the upwards
selection pressure of the entire generation, since 𝑃፩፦ = 0.1 gives a good result for ΔMean. However, the
explorative nature of higher parameter mutation rates and speeds leads to better-performing systems
at the upper end.

Hyperparameters for next experiments Based on the results discussed in the previous paragraphs,
we select the hyperparameters for the rest of our experiments. The complete list can be found in Table
5.2. Additionally, we increase the max generation from 20 to 50, the population size from 100 to 200,
and the tournament size from 2 to 4. These changes are made to improve the consistency of the results
of the algorithm.

5.1.2. Example non-trivial hybrid recommender system
The grid search found many recommender systems that outperform our baseline, many of which are
indeed non-trivial hybrid recommender systems. The following program, grid-search-1 is one of the
smaller programs found, with a ∼ 4.4% improvement on the item-based CF baseline.

### grid-search-1 ###
transpose (6)
└── nearestNeighbour {”N”:30} (5)

├── pearsonSimilarity (4)
│ └── transpose
│ └── interaction(rating)
└── nearestNeighbour {”N”:12} (3)

├── compareArray (1)
│ ├── property(movie.actors)
│ └── property(movie.actors)
└── transpose (2)

└── interaction(rating)
MRR@10: 0.592, P@1: 0.2577, P@10: 0.171

This program is a clear example of a non-trivial hybrid recommender system, and since it is quite small
it lends itself perfectly to showcase the individual parts.
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Figure 5.2: Average results for parameter combinations of the grid search

• (1) First, it uses the actors that play in movies to calculate the similarity between movies.

• (2) Then, it takes the ratings each movie has received by each user.

• (3) Next, it takes the averages of these ratings and applies them to the users that rated some of
the 12 movies with similar actors.

• (4) Following, it calculates the similarity between movies based on the ratings given by users.

• (5) Finally, it averages the clustered ratings from (3) for each movie based on the 30 most similar
movies from (4).

• (6) The final results are transposed to produce a rating (or likeliness of ‘liking’) of every movie for
each user.

It is clear that this system combines collaborative filtering with content-based filtering in a non-trivial
way: it uses content (1) as input for collaborative filtering (3), of which the output is then used as part
of a different collaborative filtering strategy (5).
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Parameter Values
Training fitness function MRR@10

Initial depth 5

Max depth 8

Interleaved sampling 1.0

Max generation 50

Population size 200

Tournament size 4

𝑃፜፨ crossover probability 0.9

𝑃፬፦ subtree mutation probability 0.1

𝑃፩፦ parameter mutation probability 0.9

𝑆፩፦ parameter mutation speed 0.1

𝑅፞ elitism ratio 0.05

Table 5.2: Hyperparameters chosen for our main experiments based on the grid search

5.2. Main experiments
Since the main goal of our approach is that it is applicable to any dataset, we run RACE:GP on each of
the datasets described in Section 4.3 using the hyperparameters found in the grid search. Since one
of the requirements is that our algorithm is able to consistently outperform our baseline, we repeat the
experiment so that it produces 4 recommender systems per dataset. That way, we can compare the
results between runs, and verify the consistency of our approach. Figure 5.3 shows the average and
maximumMRR@10 scores for each generation during the search per dataset. In the next subsections,
we discuss the results on each dataset.
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Figure 5.3: Average and maximum fitness over generations for four runs on each of the three datasets.

5.2.1. Movielens
Although we have runmany experiments on theMovielens dataset during the grid search, in this section
we review the results of 4 additional runs using the selected hyperparameters. In Figure 5.3a the
average and maximum MRR@10 for each of the runs are plotted per generation. Each run produced
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a system that outperforms the baseline within 10 generations. The best performing system produced
by each run can be seen in Appendix A.2.1.

Interestingly, there is some variance between the runs. In two of the runs, the average fitness per
generation seems to get stuck between 0.4 and 0.5 after 20 generations, and in the other two, it gets
stuck between 0.5 and 0.6. The maximum fitness for the latter two runs is also significantly better than
the former.

The recommender with the best score can be found in Appendix A.2.1. With an MRR@10 of 0.6138,
it is an improvement of 8.2% on the item-based baseline, which is significant. It combines multiple
clustering approaches, using both actors and ratings to create different ‘similarity’ measures between
movies and users, and combines them all in different ways to produce the final recommendations.

5.2.2. Filmtrust
The Filmtrust dataset only has two types of interactions: ratings and trust, and no other properties for
users or movies. If we look at the results in Figure 5.3b, it seems that the available functions in our
language are unable to properly make use of that trust relationship. It finds the ‘best’ recommender
system within 4 generations, on which it does not improve in later generations. Each run produced a
recommender system with approximately the same score, which is very close to the MRR@10 score
from the popularity baseline. Looking at the produced recommender systems in Appendix A.2.3, 3
of the 4 runs produced a system that, after stripping the functions that have no impact on what is
recommended, are slight variations of popularity. The only exception being filmtrust-3, which has two
subtrees that make use of the trust interaction to recommendmovies. This does not, however, influence
the resulting MRR@10 score by any significant margin.

These results suggest that our language cannot describe recommender systems that perform well
on this particular dataset. In the discussion, we will elaborate on possible reasons for this, and potential
adjustments that would solve this limitation.

5.2.3. Sobazaar
The final dataset on which we ran the main experiment is the Sobazaar dataset, which includes 6 dif-
ferent interaction types between users and products. The results in Figure 5.3c indicate that RACE:GP
is well suited to datasets with this structure: it relatively consistently finds improvements during the first
20 generations of each run, and in one of them, it also improves multiple times in later generations. Our
baseline, trivial item-based collaborative filtering, results in an MRR@10 of 0.0023, while naive pop-
ularity is the strongest baseline, with an MRR@10 of 0.0054. The best found recommender system,
sobazaar-3, with an MRR@10 of 0.0158, improves on item-based CF with 586%, and on popularity with
192%. sobazaar-3, found in Figure 5.4, is a great example of the success of our method on datasets
like this.

First, it sums the similarity between users based on three different interactions (1), then it uses that
to increase the score of items that these similar users have bought (2). Next, it uses similar users based
on purchases (3) to increase the score of the clustered items that those similar users would likely buy
(4). Finally, it adds these personalized scores to items that are popular based on the product_wanted
interaction (5) to produce the final recommendations.

5.3. Changing recommender system hyperparameters
Now that we verified that our approach produces non-trivial hybrid recommender systems, we will ex-
plore the adaptability of our approach. In this section we review the results of three different experiments
to validate the potential of our approach to be applied to different recommendation situations without
needing additional configuration or manual testing. This exploration is done in three dimensions. First,
we use scores from different evaluation functions in our selection process on the Movielens dataset.
Secondly, we request different interactions to recommend on the Sobazaar dataset. Third, we test
the impact of selecting datasets with different densities on the recommender systems produced by our
algorithm on the Sobazaar dataset.

5.3.1. Using different evaluation functions
Different evaluation functions represent different recommendation strategies. For example, Preci-
sion@1 models a scenario where an application can only recommend a single item, and that item
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### sobazaar-3 ###
addVector (5)
├── nearestNeighbour {”N”:8} (4)
│ ├── pearsonSimilarity (3)
│ │ └── addVector
│ │ ├── interaction(purchase:buy_clicked)
│ │ └── popularity
│ │ └── interaction(product_detail_clicked)
│ └── nearestNeighbour {”N”:9} (2)
│ ├── scaleMatrix {”scale”:4}
│ │ └── sumMatrix (1)
│ │ ├── scaleMatrix {”scale”:1}
│ │ │ └── pearsonSimilarity
│ │ │ └── interaction(purchase:buy_clicked)
│ │ └── sumMatrix
│ │ ├── pearsonSimilarity
│ │ │ └── interaction(content:interact:product_detail_viewed)
│ │ └── pearsonSimilarity
│ │ └── interaction(content:interact:product_wanted)
│ └── interaction(purchase:buy_clicked)
└── popularity

└── interaction(product_wanted)
MRR@10=0.0158

Figure 5.4: Recommender system sobazaar-3.

must be relevant, Recall@10 suggests a situation where all relevant items must be recommended. For
this experiment, we ran three runs, where the score used by tournament selection was respectively
MRR@10, Precision@1, and Recall@10. The rest of the parameters were the same as in the main
experiments from the previous section. In Figure 5.5, the scores for each recommender system for
every evaluation metric can be seen.
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Figure 5.5: MRR@10, Precision@1, and Recall@10 scores for the recommender systems produced when MRR@10, Preci-
sion@1, and Recall@10 were used as evaluation functions during the selection process.

The results give no clear indication that using a specific evaluation function during the training pro-
duces a recommender system that performs especially well on that evaluation metric. Except for Pre-
cision@1, the results indicate that the system that performs the best on MRR@10 also scores the best
on Recall@10 and Precision@1. This suggests a correlation between those evaluation metrics. This
might be related to this specific dataset, or it might be due to our approach regarding splitting the data
into training and test data.
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5.3.2. Requesting different interactions
The second goal of RACE:GP is to make it easy to create recommender systems for different situations
within a single dataset. In this experiment, we used 4 different interaction types of the Sobazaar dataset
to create different train and test sets used during genetic programming, resulting in four recommender
systems: product_detail_viewed, product_detail_clicked, product_wanted and buy_clicked. Then, for
each produced recommender system, we calculated the MRR@10 on the three data splits on which
it was not trained. Figure 5.6 shows the results. The resulting recommender systems can be seen in
Appendix A.3.2. Immediately it is clear that for each data split, the recommender system that was pro-
duced by running RACE:GP specifically on that split performs best on that split. These results suggest
that our approach can automatically find recommender systems that perform well on recommending a
specific interaction. Additionally, it shows that in the Sobazaar dataset, the different interactions are
not directly correlated. If that was the case, then the relative scores of each recommender system on
a single data split should be similar for each data split.
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Figure 5.6: The MRR@10 score for each interaction for the best recommender system found in each run.

5.3.3. Impact of data density
The final adaptability experiment of our approach is based on dataset density. We use the two variations
of the Sobazaar dataset described in Section 4.3: sobazaar-dense and sobazaar-sparse. On both
datasets, we run the experiment twice to reduce variance. This results in 4 recommender systems:
dense-0, dense-1, sparse-0 and sparse-1. In Figure 5.7 the MRR@10 scores of each recommender
system on both datasets. It is immediately clear that dense-1 and dense-2 perform significantly better
on the dense dataset than their sparsely trained counterparts, which is to be expected, however, one
would expect that a recommender system that performs well on a dense dataset would also performwell
on a sparse dataset, which is in contrast to the results of this experiment: dense-1 is the best performing
system on sobazaar-dense, but the worst performing system on sobazaar-sparse. Additionally, the
converse is certainly not true, sparse-0 and sparse-1 perform quite well on the sparse dataset, but on
the dense dataset, they score significantly worse than their dense counterparts.

These results suggest that RACE:GP is indeed able to create recommender systems that perform
especially well on datasets with certain density properties. This is especially applicable in situations
where the density of a dataset changes over time, which is generally the case for most platforms that
use some form of recommendation.

5.4. Summary
In this chapter, we gave an overview of the experiments we ran and their results. We performed a
grid search over several sensible hyperparameters to find the best performing combination. Then we
showed the general applicability of RACE:GP by using it to create 4 recommender systems each for
the Movielens, Filmtrust, and Sobazaar datasets. All produced recommender systems were at least
as accurate as our strongest baselines. For Movielens and Sobazaar, it produced non-trivial hybrid
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Figure 5.7: The MRR@10 scores on both the sparse and dense version of the Sobazaar datasets for the systems produced
using either one of them as the training set.

recommender systems that improved on the strongest baselines by 8.2% and 192% respectively. Fi-
nally, we showed that our approach can automatically create recommender systems that are optimized
for different scenarios, such as recommender systems for specific interactions in a dataset or recom-
mender systems for the same dataset with different interaction densities. In the next chapter, we will
discuss the impact of these findings, the limitations of the experiment, and recommendations for further
research.





6
Discussion

In the previous chapter, we have shown the results of running RACE:GP on different recommendation
scenarios. In this chapter, we will discuss how we can interpret these results and what their implications
are, as well as reviewing the unexpected results. Next, we elaborate on the limitations of our experi-
ments and potential ways to solve these limitations. Finally, we will extrapolate some recommendations
for future research directions to improve our approach.

6.1. Discussion of results
As stated in the introduction, this thesis aims to show that our approach can find non-trivial hybrid
recommender systems that outperform the selected baselines on any dataset. The previous chapter
shows that the recommender systems found by RACE:GP outperform the Movielens baselines by 8.2%
and the Sobazaar baselines by 192%. Additionally, it matches the accuracy of the Filmtrust baselines.
Furthermore, we have demonstrated that the produced recommender systems are non-trivial hybrid
recommender systems that combine different recommendation techniques. We have demonstrated the
adaptability and general applicability in the experiments where we produced recommender systems on
the Sobazaar dataset with different densities and with different requested interactions. These results
clearly indicate that our approach confirms the hypotheses stated in the introduction. This section first
discusses the results that are in line with our hypotheses, followed by unexpected results.

6.1.1. General interpretations
Finding non-trivial hybrid recommender systems An important requirement for our approach is
that the produced recommender systems incorporate non-trivial combinations of different recommen-
dation techniques. Looking at the recommender systems produced on the Movielens and Sobazaar
dataset, we find non-trivial hybrid recommenders using multiple techniques often used in hybrid rec-
ommender system research. If we look at the categories regarding combining techniques as defined
by Çano and Morisio [9], we find the following examples in our produced recommender systems:

• Weighted evaluation-mrr@10 combines item-based collaborative filtering based on clusters of
movies with similar actors with user-based collaborative filtering.

• Feature combination sobazaar-2 combines multiple features to calculate the similarity between
products, which is then used as input for item-based collaborative filtering.

• Cascade sobazaar-3 uses collaborative filtering to first produce a list of recommendations based
on the combined similarity on different interactions. Then it refines that list using users that specif-
ically purchased similar items.

• Feature augmentation movielens-3 uses the expected ratings on clustered movies by actors
and item-based collaborative filtering as a feature for user-based collaborative filtering.

There is one technique that does not appear in any of the recommender systems: ‘switching’. The
reason for this is that our language does not contain a function that can emulate this technique. A
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potential function that would solve this could be an ‘if-else’ function that takes three inputs: Vector<A>,
Matrix<A,B>, Matrix<A,B>. The output it produces would be a Matrix<A,B> where it takes row 𝑖 from
the first input matrix if value 𝑖 in the vector is higher than some threshold, and row 𝑖 of the second matrix
otherwise. In combination with the popularity function to produce the input vector, this could emulate
the behavior of selecting a different recommender system based on how many items a user has rated.

Capability of our programming language to describe accurate hybrid recommender systems
Our experiments show that the functions and terminals we chose for our language are capable of
producing accurate hybrid recommender systems for the Movielens and Sobazaar datasets. This indi-
cates that the multiple types of interactions in the Sobazaar dataset and the properties in the Movielens
dataset lend themselves especially well to the selected set of functions for our experiments. However,
looking at the recommender systems produced for Filmtrust, the selected functions are unable to ef-
fectively use the ‘trust’ interaction between users, even though literature suggests that using the trust
relationship improves the recommendation accuracy [53].

Efficiency of finding accurate recommender systems In our experiments, our language consisted
of 10 functions. The number of terminals depends on the dataset: 6 for Movielens, 7 for Sobazaar, and
2 for Filmtrust. For any maximum depth 𝑑, an upper bound of the number of potential programs 𝑃 is

|𝑃 | ≤ #functions ⋅ |𝑃 ዅኻ|ኼ + #terminals

The actual value is smaller since not every function in our language requires two inputs, and since
our language is strongly typed, not every function or terminal is a valid input for every other function.
However, with a maximum depth of 5, this gives an upper bound of∼ 10ኼዀ. The realistic number is likely
much smaller, but it indicates the enormous search space. Add the fact that some functions include
numerical parameters, such as scaleMatrix and nearestNeighbour, making an exhaustive search im-
possible. Fortunately, the grid search results indicate that genetic programming is an effective search
strategy. Regardless of the chosen hyperparameters, in most situations, the ability of genetic program-
ming to find accurate recommender systems is significantly better than what a random search would
produce.

Adapting to different requested interactions The recommender systems produced by running
RACE:GP with different requested interactions on the Sobazaar dataset clearly show that a recom-
mender system that accurately recommends products to buy does not necessarily accurately recom-
mend items to view. This suggests that there is no correlation between the ‘implicit feedback’ provided
by the different interaction types. This contradicts the hypothesis by Nguyen et al. that there is a linear
relationship between ‘clicks’, ‘wants’, and ‘purchases’ [36]. Furthermore, this validates our decision to
model ‘relevance’ as the probability that a certain interaction should take place between a user and
an item. If recommending an item were the same as recommending an interaction, the recommender
systems produced on different interactions should have performed similarly (relative to each other) on
each interaction.

Adapting to different densities Results indicate that the structure of a dataset: the interaction types
and properties, is not the only thing that determines the structure of an accurate hybrid recommender
system. For example, the produced recommender systems trained on the dense version of the dataset,
dense-0 and dense-1, perform ∼ 250% better on the dense dataset than the systems produced on the
sparse version. The other way around, the systems trained on the sparse dataset match dense-0 and
improve on dense-1 by ∼ 275%. This suggests that if the density of a dataset used for recommendation
changes over time, the accuracy might be improved when updating or retraining the recommender
system periodically.

In practice, the density of interactions within a dataset varies not only over time but also varies
between users. Hybrid recommendation techniques such as switching can be used to adjust results
based on the number of interactions a user has within the dataset. The ‘if-else’ function mentioned
before combined with the popularity function could potentially create systems that dynamically adjust
the recommendations based on their amount of interactions.
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6.1.2. Unexpected results
Although, in general, our hypothesis is confirmed, there are also some unexpected results. For exam-
ple, the performance on the Filmtrust dataset and the impact of changing the evaluation function on
the produced recommender systems. In this section, we discuss these results and hypothesize their
cause and potential solutions.

Performance on Filmtrust While the systems produced on the Movielens and Sobazaar datasets
are true hybrid recommender systems, the best systems found for Filmtrust are all slight variations
on popularity and thus trivial. This suggests that our language is unable to formulate recommender
systems that performwell on that dataset. Guo et al. [16, 17] show that it is definitely possible to produce
recommender systems on the Filmtrust dataset that outperform popularity. Although in their research
they use numerical evaluation methods (MAE and RMSE), they compare their method (and several
other methods) to ItemAVG, which is the numerical variant of popularity, and show that it performs
significantly better. Their approach is based on singular value decomposition, which in turn is a form
of matrix factorization. Since our language does not contain any matrix factorization functions, our
language is likely unable to describe recommender systems that perform well on the Filmtrust dataset.
In general: our approach is limited by the ability of the language to describe potential recommender
systems. The fact that much research regarding recommender systems uses approaches based on
matrix factorization suggests that adding functions to support these systems can significantly improve
our approach.

Changing the evaluation function While the results confirm that our approach can find recom-
mender systems for specific scenarios related to the requested interaction type or the density of a
dataset, our results indicate that changing the evaluation function does not impact the produced rec-
ommender systems. In fact, the relative performance of the produced systems on the three evaluation
functions used in our experiments, MRR@10, Precision@1, and Recall@10, is quite similar. This sug-
gests that the correlation between these metrics is too significant for our approach to produce mean-
ingfully distinct recommender systems. It might make sense to introduce different strategies regarding
splitting the dataset into training and validation data in conjunction with different evaluation metrics.
For example, for precision@1, only select a single interaction for each user for the validation set. Ad-
ditionally, recent research suggests that there exist less biased evaluation metrics than precision and
recall [41]. This indicates that exploring different evaluation metrics makes sense as well. Finally, the
most accurate way to evaluate recommender systems is by using them in practice and tracking whether
users interact with the provided recommendations or not. In a system with enough users, it might even
be possible to incorporate real user feedback in the calculation of the fitness scores of individuals.

6.1.3. Implications of our findings
As far as we are aware, this thesis is the first exploration of finding an approach that completely au-
tomates the process of finding hybrid recommender systems for specific situations and datasets. Fur-
thermore, our results suggest that our methodology is capable of consistently finding these systems.

With a small amount of development work, RACE:GP can be improved to a complete ‘recommen-
dations as a service’ platform or project. The only manual work required is mapping the dataset to our
model based on entities and interactions, which is quite straightforward. Anyone with a dataset and
an idea of which interaction they would like to recommend can create these recommender systems,
making them accessible for everyone, regardless of available resources.

Another potential application for our approach is assisting experienced recommender system de-
signers or researchers with manually creating and optimizing highly tuned recommender systems. The
recommender systems produced by RACE:GP can inspire or suggest interesting hybrid techniques to
combine certain properties and interaction types given a dataset. These suggestions can then be used
in manually designed systems that focus on performance or handle extremely large-scale datasets.

6.2. Experimental limitations
Although our experiments have shown that it is definitely possible to automate the process of creating
recommender systems, our experiments were still subject to some limitations that, if removed or re-
duced, could significantly improve the results of our approach. The three main limitations are based on
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the chosen functions and their implementation, the size of the datasets used in our experiments, and
the performance of evaluating an individual program. In this section, we will discuss these limitations
and elaborate on their impact on the validity of our conclusions.

6.2.1. Chosen functions and their implementation
The first limitation of our experiments is the functions of our language. The success of RACE:GP
depends on whether or not the language is sufficiently able to express well-performing recommender
systems in it. This is clearly the case in our experiment on the Filmtrust dataset. The best-found recom-
mender systems are all variations of the ‘popularity’ approach, while Guo et al. are able to significantly
improve on popularity [16, 17]. It must be said that in their research, they use numerical evaluation,
namely mean absolute error and root mean squared error, and thus they compare those values with
ItemAVG, which is similar to our popularity baseline. Nevertheless, these results suggest that it is
possible to improve on these baselines. However, our language is unable to find these recommender
systems. Their approach is based on singular value decomposition, and the baselines they compare
against are based on matrix factorization. Within our experiments, both of these techniques are not
included as functions of the language.

Related to that, in early experiments, we included a matrix product function in our language, which
allowed for the creation of interesting systems as well. The idea being that it could model relations
between different interactions, such as actors in movies that users rated highly. However, since calcu-
lating a matrix product has a runtime of about 𝑂(𝑛ኽ), it significantly increased the time it took to evaluate
an individual that had one or more matrix product functions in it, and thus we decided to remove it from
the pool of available functions for our experiments.

The fact that our implementation is able to find non-trivial hybrid recommender systems for the
Movielens and Sobazaar dataset that perform significantly better than the baselines, even with the
limited set of functions and terminals, shows that our approach has a lot of potential. More research
regarding the set of functions and experimentation with different combinations of functions and terminals
can ensure that our approach can produce accurate recommender systems for every dataset.

6.2.2. Size of the datasets in our experiments
The second limitation in our experiments is the size of the datasets. Most functions in our experiment
implementation require one or more matrices as input and produce a matrix as output. Our implemen-
tation uses dense matrices, which require a significant amount of memory: ratings between 1000 users
and 1000 movies require 1000 ⋅ 1000 ⋅ 64bits = 8MB of memory, regardless of the number of actual
ratings. And while storing a number of those matrices in memory is easily achievable on a modern
system, most realistic recommendation datasets have exponentially more users and items, making the
implementation used in our experiments infeasible in reality.

However, this does not mean that our approach can not be used on larger systems. There are
multiple ways to mitigate this problem in practice. First, RACE:GP can be used on a smaller set of
data with similar characteristics as the complete dataset to evaluate individual programs, similar to our
experiments, and only using the resulting system on the complete dataset. At that point, the evaluation
speed is less critical than during the genetic programming stage since intermediate values can be
cached efficiently.

Another possibility is to use sparse matrices and modify functions to efficiently use sparse matrices
as well. Intuitively, only the outlying values are relevant to recommending. Keeping only the outlying
values for each row and column before returning a matrix in a function can significantly reduce memory
usage and evaluation speed. Research is necessary to confirm this.

6.2.3. Performance of evaluating an individual program
The last limitation of our approach is related to the previous limitation: the amount of time it takes to
evaluate an individual program and the impact that has on our population size. For genetic program-
ming to consistently find the best approaches, the initial population must have enough diversity [48].
Our experiment results show quite a lot of variance in the result of multiple runs of the same experi-
ment. This is especially visible in the main experiment, where we performed 4 runs on each dataset
with a population size of 200. For Sobazaar, Sobazaar-3 found a system with an MRR@10 of 0.0158,
which is 30% better than the best system found by Sobazaar-1, which has an MRR@10 of 0.0121.
For Movielens, the system from Movielens-3 outperformed Movielens-1 by 7%. These differences are
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significant and suggest that the chosen population size of 200 is too small to consistently find the best
performing recommender systems.

Schweim et al. [48] recommend population sizes of 1000-3000 individuals given languages with
similar or fewer functions and terminals, and it is safe to assume that according to them, our language
would require at least a similar population size to produce the best possible results consistently. Unfor-
tunately, with our current implementation, using these population sizes would not be feasible within the
time span for this thesis. However, there are many possibilities to reduce the time required to evaluate
an individual, such as improved methods for caching or trading disk space for performance by caching
the output of every subtree, or, as mentioned before, using sparse matrices instead of dense matrices.

Even with the limited population sizes used in our experiments, almost every run produced a system
that performed better than our baselines, and in some cases, significant improvements. Thus, our
experiments show that it would find these systems even more consistently with larger population sizes,
verifying its success.

6.3. Conclusion and recommendations
In this chapter, we discussed the results of our experiments, what their implications are, and the limita-
tions of our experiments. We conclude this chapter by providing recommendations for further research
based on our findings and limitations. Since this thesis is an initial exploration into a novel approach
regarding recommendation, there are many different areas where further research is necessary. Our
recommendations can be broadly categorized in two ways: research to improve the capability of our
language to define hybrid recommender systems and research that improves the efficiency with which
our approach can find the most accurate hybrid recommender systems.

Improving our language As stated earlier in this chapter, the accuracy of the recommender systems
our approach can find depends on the ability of our language to define these systems. Since this is a
new area of research, the functions and terminals defined in this thesis for the language are based on
intuition and reasoning on hybrid recommender systems. The effect of adding or removing functions
on the performance and general applicability requires more research. Examples of new functions are
the earlier discussed matrix factorization or ‘if-else’ functions. In this thesis, the functions are based
on traditional collaborative filtering, but it might also make sense to introduce different techniques as
functions based on classifiers or neural networks, for example.

Additionally, in recent literature, context is often used to improve recommendations. The context in
our data model translates to information related to interactions, such as type of device, time of day, or
location. Our proposed data model does not support context data, and the functions in our language are
unable to deal with it. Being able to automatically include context data in our approach to automatically
create recommender systems would strongly increase the general applicability.

Improving the efficiency of our algorithm In the previous section, we stated that the population
sizes in our experiments were not sufficient to eliminate the variation in the resulting recommender
systems. To increase the population size without increasing the runtime of our algorithm, its efficiency
needs to be improved. We suggest three research directions that can potentially increase the efficiency
of RACE:GP.

First, our implementation currently uses dense matrices to pass information between functions.
This is because of functions such as pearsonSimilarity and nearestNeighbour, which output potentially
unique values for each cell in the matrix. We hypothesize that only outlying values within a matrix or
within each row or column are relevant for recommending or ranking. Thus removing all values except
the outliers before returning a matrix in a function would significantly reduce the number of calculations
necessary in the function that uses that result as input. Further research to confirm or deny this is
necessary, as well as the impact this has on performance.

The second area where improvement is possible is the actual implementation of functions within
our algorithm. For example, in the implementation used for our experiments, pearsonSimilarity is a
bottleneck. We reduced the impact by introducing a caching mechanism that caches the output of
every subtree with pearsonSimilarity at its root. However, with larger program sizes, this starts to
become infeasible due to the disk space required. Replacing functions like that with alternatives with
similar accuracy but an improved runtime could improve efficiency.
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Finally, another way to increase the efficiency of our search strategy is by reducing the search space.
During our evolution process, many (parts of) recommender systems are evaluated that make no sense
in the context of recommendation or matrix calculations. Applying stricter rules to our language so that
subtrees that can never contribute to recommendation accuracy are invalid could greatly reduce the
search space, thus increasing the efficiency.

Applying the resulting recommender systems in practice As mentioned before, one of the po-
tential applications for our approach is assisting engineers with the design of non-trivial hybrid recom-
mender systems that can be used in practice for large-scale recommendations, since our matrix based
implementation to evaluate the performance of a recommender system does not directly translate to
situations with millions of users. We are confident that it is also possible to create a different interpreter
of our high-level language that can be used on a very large scale. Since this was outside the scope
of this thesis, we strongly recommend researching the possibilities regarding this, since that is the last
step to using our approach in practical situations.
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Conclusion

In this thesis, we have presented RACE:GP, an approach based on genetic programming to auto-
matically create non-trivial hybrid recommender systems that can be applied to any recommendations
scenario. We have shown that RACE:GP can produce recommender systems that are more accu-
rate than standard item-based and user-based collaborative filtering recommender systems as well
as popularity-based recommender systems on three different datasets often used in literature. Addi-
tionally, we have shown that our approach can produce accurate recommender systems that perform
especially well on specific recommendation scenarios, such as recommending different interactions
within a dataset and recommending in scenarios with different densities of the same dataset. Based
on these results, we can conclude that our approach is an effective and generally applicable method
of producing recommender systems without any specific knowledge of the recommendation domain
or recommender systems in general. Thus, we have succeeded in making recommender systems
more accessible for everyone, regardless of expertise. Our main contributions can be summarized as
follows:

• We have proposed a method to automatically derive a high-level programming language from any
dataset in which any valid program is a hybrid recommender system on that dataset. Additionally,
we have defined an initial set of functions based on techniques often seen in hybrid recommender
systems. Our results have shown that programs in the language can be accurate recommender
systems, and analysis of the produced recommender systems show that our set of functions is
able to represent most techniques generally found in hybrid recommender systems.

• We introduced a generic approach for defining what ‘relevant’ means in the context of recom-
mending relevant items based on interactions. Furthermore, we have shown a method that can
automatically evaluate the accuracy of a recommender system in the aforementioned language
based on a requested interaction.

• We have experimentally verified that our version of genetic programming can consistently find
accurate non-trivial hybrid recommender systems in the languages that outperform our chosen
baselines by a significant margin. Additionally, we have shown the flexibility of our approach by
applying it to different recommendation scenarios and verifying that it produces recommender
systems that are especially accurate in those situations.

With this thesis, we have provided an initial exploration into the realm of automating the process of
designing and creating accurate hybrid recommender systems. In addition, we have identified areas
where future research might improve on our approach, such as adjusting the set of functions in the
language to incorporate more recommendation techniques, improving the performance of evaluating
a recommender system, or applying the recommender systems produced by RACE:GP in practice on
large-scale real-life scenarios.
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A
Experiment results

A.1. Grid search

𝑅፞ 𝑃፬፦ 𝑃፜፨ 𝑃፩፦ 𝑆፩፦ 𝛿mean 𝛿max MRR@10 P@1 P@10 Generation
Baseline: Popularity 0.3390 0.1442 0.1043 -

Baseline: User based CF 0.5316 0.2078 0.1604 -

Baseline: Item based CF 0.5672 0.2344 0.1670 -

0 0 1 0.1 0.1 0.0151 0.0002 0.5714 0.2407 0.1679 19.0

0 0 1 0.1 0.5 0.0095 0.0015 0.5815 0.2513 0.1666 13.0

0 0 1 0.5 0.1 0.0101 0.0008 0.5769 0.2513 0.1664 8.0

0 0 1 0.5 0.5 0.009 0.0003 0.5692 0.2471 0.162 14.0

0 0 1 0.9 0.1 0.0094 0.001 0.5721 0.2577 0.1618 10.0

0 0 1 0.9 0.5 0.0121 0.0003 0.5646 0.2322 0.1663 2.0

0 0.1 0.9 0.1 0.1 0.0077 0.0005 0.5795 0.2344 0.1736 16.0

0 0.1 0.9 0.1 0.5 0.0109 0.0003 0.5687 0.245 0.1635 2.0

0 0.1 0.9 0.5 0.1 0.007 0.0008 0.5711 0.2439 0.1637 14.0

0 0.1 0.9 0.5 0.5 0.0033 0.0015 0.5674 0.2344 0.1678 10.0

0 0.1 0.9 0.9 0.1 0.0117 0.0012 0.5798 0.2481 0.1665 14.0

0 0.1 0.9 0.9 0.5 0.01 0.0005 0.576 0.246 0.1652 16.0

0 0.9 0.1 0.1 0.1 0.0113 0.0014 0.575 0.2428 0.1683 14.0

0 0.9 0.1 0.1 0.5 0.0125 0.0019 0.5805 0.2407 0.1676 18.0

0 0.9 0.1 0.5 0.1 0.0142 0.0008 0.5724 0.2503 0.1636 17.0

0 0.9 0.1 0.5 0.5 0.0198 0.0008 0.574 0.2524 0.1621 18.0

0 0.9 0.1 0.9 0.1 0.0079 0.0003 0.568 0.2322 0.1674 12.0

0 0.9 0.1 0.9 0.5 0.0155 0.0034 0.5871 0.2524 0.1738 15.0

0 1 0 0.1 0.1 0.0116 0.0006 0.5754 0.2397 0.1673 15.0

0 1 0 0.1 0.5 0.0138 0.0007 0.5714 0.246 0.165 15.0

Table A.1: Results of the grid search applied on the Movielens dataset.
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𝑅፞ 𝑃፬፦ 𝑃፜፨ 𝑃፩፦ 𝑆፩፦ 𝛿mean 𝛿max MRR@10 P@1 P@10 Generation
Baseline: Popularity 0.3390 0.1442 0.1043 -

Baseline: User based CF 0.5316 0.2078 0.1604 -

Baseline: Item based CF 0.5672 0.2344 0.1670 -

0 1 0 0.5 0.1 -0.0003 -0.0036 0.5711 0.2397 0.1691 18.0

0 1 0 0.5 0.5 0.0156 0.0023 0.5817 0.2513 0.166 18.0

0 1 0 0.9 0.1 0.0143 0.0037 0.5845 0.2556 0.1684 18.0

0 1 0 0.9 0.5 -0.003 0.001 0.5598 0.2259 0.1668 8.0

0 1 1 0.1 0.1 0.0092 0.0029 0.5658 0.2481 0.1625 14.0

0 1 1 0.1 0.5 0.004 0.001 0.5761 0.246 0.1671 1.0

0 1 1 0.5 0.1 0.0022 -0.0004 0.5665 0.2428 0.1617 4.0

0 1 1 0.5 0.5 0.005 0.001 0.5715 0.2439 0.1644 6.0

0 1 1 0.9 0.1 -0.0007 0.0017 0.5648 0.2397 0.1648 5.0

0 1 1 0.9 0.5 0.0019 0.0001 0.5652 0.2481 0.1628 0.0

0.05 0 1 0.1 0.1 0.0103 0.0023 0.5944 0.2577 0.1749 19.0

0.05 0 1 0.1 0.5 0.0103 0.0021 0.6005 0.2704 0.1682 12.0

0.05 0 1 0.5 0.1 0.0095 0.0009 0.5823 0.2619 0.1632 17.0

0.05 0 1 0.5 0.5 0.006 0.0017 0.5861 0.2492 0.1673 7.0

0.05 0 1 0.9 0.1 0.0123 0.0022 0.6023 0.2534 0.1745 17.0

0.05 0 1 0.9 0.5 0.0179 0.0013 0.5878 0.2577 0.1671 18.0

0.05 0.1 0.9 0.1 0.1 0.0057 0.0005 0.5688 0.2386 0.1646 18.0

0.05 0.1 0.9 0.1 0.5 0.0079 0.0008 0.5713 0.2492 0.1636 18.0

0.05 0.1 0.9 0.5 0.1 0.0147 0.0008 0.5829 0.2513 0.1689 19.0

0.05 0.1 0.9 0.5 0.5 0.0077 0.0027 0.5984 0.2428 0.1762 15.0

0.05 0.1 0.9 0.9 0.1 0.0112 0.0015 0.5944 0.2598 0.1685 19.0

0.05 0.1 0.9 0.9 0.5 0.0074 0.0024 0.5894 0.2598 0.1718 19.0

0.05 0.9 0.1 0.1 0.1 0.0098 0.0016 0.5894 0.2524 0.1698 17.0

0.05 0.9 0.1 0.1 0.5 0.0144 0.0006 0.5779 0.2418 0.1674 17.0

0.05 0.9 0.1 0.5 0.1 0.0072 0.0017 0.5874 0.2672 0.1651 16.0

0.05 0.9 0.1 0.5 0.5 0.0061 0.0005 0.5734 0.2333 0.1682 13.0

0.05 0.9 0.1 0.9 0.1 0.0119 0.0035 0.6093 0.2683 0.1735 13.0

0.05 0.9 0.1 0.9 0.5 0.0157 0.0015 0.572 0.2428 0.1643 18.0

0.05 1 0 0.1 0.1 0.0088 0.003 0.5787 0.2492 0.1685 17.0

0.05 1 0 0.1 0.5 0.0098 0.0013 0.5735 0.2397 0.1638 18.0

0.05 1 0 0.5 0.1 0.0082 0.0012 0.5768 0.2418 0.1676 12.0

0.05 1 0 0.5 0.5 0.0097 0.0009 0.5802 0.2333 0.1729 19.0

0.05 1 0 0.9 0.1 -0.0029 0.0 0.5712 0.2407 0.1676 17.0

Table A.1: Results of the grid search applied on the Movielens dataset.
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𝑅፞ 𝑃፬፦ 𝑃፜፨ 𝑃፩፦ 𝑆፩፦ 𝛿mean 𝛿max MRR@10 P@1 P@10 Generation
Baseline: Popularity 0.3390 0.1442 0.1043 -

Baseline: User based CF 0.5316 0.2078 0.1604 -

Baseline: Item based CF 0.5672 0.2344 0.1670 -

0.05 1 0 0.9 0.5 0.0021 0.0004 0.5651 0.2375 0.1646 15.0

0.05 1 1 0.1 0.1 0.0119 0.0019 0.5828 0.2503 0.1692 15.0

0.05 1 1 0.1 0.5 0.0043 0.0011 0.5784 0.245 0.1659 11.0

0.05 1 1 0.5 0.1 0.0085 0.0035 0.5858 0.2577 0.1662 18.0

0.05 1 1 0.5 0.5 0.006 0.0008 0.5699 0.246 0.1612 15.0

0.05 1 1 0.9 0.1 0.0113 0.0014 0.579 0.246 0.167 11.0

0.05 1 1 0.9 0.5 0.0033 0.0014 0.5706 0.2365 0.1665 9.0

Table A.1: Results of the grid search applied on the Movielens dataset.

A.2. Main experiment recommender systems
A.2.1. Movielens
### Movielens-0 ###
nearestNeighbour(inverted) {”N”:17}
├── scaleMatrix {”scale”:3}
│ └── pearsonSimilarity
│ └── scaleMatrix {”scale”:2}
│ └── transpose
│ └── sumMatrix
│ ├── interaction(rating)
│ └── interaction(rating)
└── sumMatrix

├── sumMatrix
│ ├── interaction(rating)
│ └── interaction(rating)
└── interaction(rating)

MRR@10=0.5745

### Movielens-1 ###
nearestNeighbour(inverted) {”N”:17}
├── pearsonSimilarity
│ └── transpose
│ └── sumMatrix
│ ├── sumMatrix
│ │ ├── interaction(rating)
│ │ └── interaction(rating)
│ └── interaction(rating)
└── interaction(rating)
MRR@10=0.5732
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### Movielens-2 ###
transpose
└── nearestNeighbour(inverted) {”N”:34}

├── pearsonSimilarity
│ └── sumMatrix
│ ├── addVector
│ │ ├── sumMatrix
│ │ │ ├── interaction(rating)
│ │ │ └── interaction(rating)
│ │ └── popularity
│ │ └── interaction(genre)
│ └── sumMatrix
│ ├── sumMatrix
│ │ ├── interaction(rating)
│ │ └── interaction(rating)
│ └── interaction(rating)
└── transpose

└── nearestNeighbour {”N”:19}
├── sumMatrix
│ ├── pearsonSimilarity
│ │ └── interaction(rating)
│ └── pearsonSimilarity
│ └── interaction(rating)
└── interaction(rating)

MRR@10=0.5931
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### Movielens-3 ###
nearestNeighbour {”N”:26}
├── pearsonSimilarity
│ └── sumMatrix
│ ├── sumMatrix
│ │ ├── interaction(rating)
│ │ └── nearestNeighbour(inverted) {”N”:8}
│ │ ├── pearsonSimilarity
│ │ │ └── transpose
│ │ │ └── interaction(rating)
│ │ └── interaction(rating)
│ └── nearestNeighbour(inverted) {”N”:18}
│ ├── compareArray
│ │ ├── property(movie.actors)
│ │ └── property(movie.actors)
│ └── nearestNeighbour(inverted) {”N”:8}
│ ├── pearsonSimilarity
│ │ └── transpose
│ │ └── interaction(rating)
│ └── interaction(rating)
└── transpose

└── sumMatrix
├── addVector
│ ├── nearestNeighbour {”N”:5}
│ │ ├── compareArray
│ │ │ ├── property(movie.actors)
│ │ │ └── property(movie.actors)
│ │ └── nearestNeighbour {”N”:6}
│ │ ├── compareArray
│ │ │ ├── property(movie.actors)
│ │ │ └── property(movie.actors)
│ │ └── transpose
│ │ └── interaction(rating)
│ └── popularity
│ └── transpose
│ └── interaction(rating)
└── transpose

└── interaction(rating)
MRR@10=0.6138

A.2.2. Sobazaar

### Sobazaar-0 ###
transpose
└── nearestNeighbour {”N”:21}

├── pearsonSimilarity
│ └── transpose
│ └── interaction(product_wanted)
└── scaleMatrix {”scale”:6}

└── transpose
└── interaction(content:interact:product_wanted)

MRR@10=0.0137
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### Sobazaar-1 ###
addVector
├── transpose
│ └── transpose
│ └── interaction(purchase:buy_clicked)
└── popularity

└── pearsonSimilarity
└── nearestNeighbour(inverted) {”N”:21}

├── addVector
│ ├── scaleMatrix {”scale”:1}
│ │ └── pearsonSimilarity
│ │ └── interaction(product_wanted)
│ └── popularity
│ └── pearsonSimilarity
│ └── interaction(content:interact:product_wanted)
└── transpose

└── interaction(content:interact:product_clicked)
MRR@10=0.0121

### Sobazaar-2 ###
nearestNeighbour(inverted) {”N”:12}
├── addVector
│ ├── pearsonSimilarity
│ │ └── transpose
│ │ └── sumMatrix
│ │ ├── interaction(content:interact:product_detail_viewed)
│ │ └── interaction(product_detail_clicked)
│ └── popularity
│ └── scaleMatrix {”scale”:7}
│ └── interaction(product_wanted)
└── addVector

├── interaction(product_wanted)
└── popularity

└── interaction(product_wanted)
MRR@10=0.0124
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### Sobazaar-3 ###
addVector
├── nearestNeighbour {”N”:8}
│ ├── pearsonSimilarity
│ │ └── addVector
│ │ ├── interaction(purchase:buy_clicked)
│ │ └── popularity
│ │ └── interaction(product_detail_clicked)
│ └── nearestNeighbour {”N”:9}
│ ├── scaleMatrix {”scale”:4}
│ │ └── sumMatrix
│ │ ├── scaleMatrix {”scale”:1}
│ │ │ └── pearsonSimilarity
│ │ │ └── interaction(purchase:buy_clicked)
│ │ └── sumMatrix
│ │ ├── pearsonSimilarity
│ │ │ └── interaction(content:interact:product_detail_viewed)
│ │ └── pearsonSimilarity
│ │ └── interaction(content:interact:product_wanted)
│ └── interaction(purchase:buy_clicked)
└── popularity

└── interaction(product_wanted)
MRR@10=0.0158

A.2.3. Filmtrust

### Filmtrust-0 ###
addVector
├── sumMatrix
│ ├── interaction(rating)
│ └── interaction(rating)
└── popularity

└── addVector
├── sumMatrix
│ ├── interaction(rating)
│ └── interaction(rating)
└── popularity

└── scaleMatrix {”scale”:0}
└── interaction(rating)

MRR@10=0.9961
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### Filmtrust-1 ###
sumMatrix
├── addVector
│ ├── nearestNeighbour {”N”:9}
│ │ ├── sumMatrix
│ │ │ ├── interaction(trust)
│ │ │ └── interaction(trust)
│ │ └── interaction(rating)
│ └── popularity
│ └── nearestNeighbour {”N”:1}
│ ├── interaction(trust)
│ └── interaction(rating)
└── scaleMatrix {”scale”:2}

└── scaleMatrix {”scale”:9}
└── scaleMatrix {”scale”:0}

└── scaleMatrix {”scale”:2}
└── interaction(rating)

MRR@10=0.996

### Filmtrust-2 ###
addVector
├── interaction(rating)
└── popularity

└── sumMatrix
├── interaction(rating)
└── interaction(rating)

MRR@10=0.9955

### Filmtrust-3 ###
sumMatrix
├── addVector
│ ├── transpose
│ │ └── transpose
│ │ └── interaction(rating)
│ └── popularity
│ └── interaction(rating)
└── addVector

├── sumMatrix
│ ├── nearestNeighbour {”N”:19}
│ │ ├── sumMatrix
│ │ │ ├── interaction(trust)
│ │ │ └── interaction(trust)
│ │ └── interaction(rating)
│ └── nearestNeighbour {”N”:20}
│ ├── interaction(trust)
│ └── interaction(rating)
└── popularity

└── sumMatrix
├── interaction(rating)
└── nearestNeighbour {”N”:18}

├── interaction(trust)
└── interaction(rating)

MRR@10=0.9963
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A.3. Adaptability experiments recommender systems

A.3.1. Evaluation

### evaluation-mrr@10 ###
sumMatrix
├── nearestNeighbour(inverted) {”N”:4}
│ ├── pearsonSimilarity
│ │ └── transpose
│ │ └── interaction(rating)
│ └── addVector
│ ├── nearestNeighbour(inverted) {”N”:7}
│ │ ├── compareArray
│ │ │ ├── property(movie.actors)
│ │ │ └── property(movie.actors)
│ │ └── interaction(rating)
│ └── popularity
│ └── interaction(acts)
└── nearestNeighbour {”N”:22}

├── scaleMatrix {”scale”:3}
│ └── pearsonSimilarity
│ └── interaction(rating)
└── scaleMatrix {”scale”:8}

└── interaction(rating)
MRR@10=0.6293

### evaluation-precision@1 ###
sumMatrix
├── addVector
│ ├── nearestNeighbour(inverted) {”N”:16}
│ │ ├── pearsonSimilarity
│ │ │ └── transpose
│ │ │ └── interaction(rating)
│ │ └── transpose
│ │ └── transpose
│ │ └── interaction(rating)
│ └── popularity
│ └── interaction(rating)
└── addVector

├── addVector
│ ├── nearestNeighbour(inverted) {”N”:10}
│ │ ├── compareArray
│ │ │ ├── property(movie.actors)
│ │ │ └── property(movie.actors)
│ │ └── sumMatrix
│ │ ├── interaction(rating)
│ │ └── interaction(rating)
│ └── popularity
│ └── sumMatrix
│ ├── interaction(rating)
│ └── interaction(rating)
└── popularity

└── interaction(rating)
MRR@10=0.5966
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### evaluation-recall@10 ###
nearestNeighbour {”N”:21}
├── pearsonSimilarity
│ └── nearestNeighbour(inverted) {”N”:11}
│ ├── pearsonSimilarity
│ │ └── transpose
│ │ └── interaction(acts)
│ └── scaleMatrix {”scale”:3}
│ └── scaleMatrix {”scale”:5}
│ └── interaction(rating)
└── transpose

└── sumMatrix
├── sumMatrix
│ ├── transpose
│ │ └── interaction(rating)
│ └── transpose
│ └── interaction(rating)
└── nearestNeighbour(inverted) {”N”:3}

├── pearsonSimilarity
│ └── interaction(rating)
└── transpose

└── interaction(rating)
MRR@10=0.5843

A.3.2. Interaction
### interaction-product_detail_viewed ###
nearestNeighbour {”N”:29}
├── sumMatrix
│ ├── sumMatrix
│ │ ├── pearsonSimilarity
│ │ │ └── scaleMatrix {”scale”:0}
│ │ │ └── interaction(purchase:buy_clicked)
│ │ └── sumMatrix
│ │ ├── pearsonSimilarity
│ │ │ └── interaction(purchase:buy_clicked)
│ │ └── pearsonSimilarity
│ │ └── interaction(product_wanted)
│ └── pearsonSimilarity
│ └── addVector
│ ├── scaleMatrix {”scale”:0}
│ │ └── interaction(content:interact:product_clicked)
│ └── popularity
│ └── interaction(product_wanted)
└── transpose

└── nearestNeighbour(inverted) {”N”:8}
├── scaleMatrix {”scale”:4}
│ └── pearsonSimilarity
│ └── interaction(product_detail_clicked)
└── scaleMatrix {”scale”:7}

└── transpose
└── interaction(content:interact:product_detail_viewed)

sobazaar-product_detail_viewed MRR@10: 0.0601
sobazaar-product_detail_clicked MRR@10: 0.0866
sobazaar-product_wanted MRR@10: 0.1068
sobazaar-buy_clicked MRR@10: 0.0163
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### interaction-product_detail_clicked ###
nearestNeighbour {”N”:26}
├── sumMatrix
│ ├── pearsonSimilarity
│ │ └── interaction(product_detail_clicked)
│ └── pearsonSimilarity
│ └── scaleMatrix {”scale”:0}
│ └── interaction(content:interact:product_detail_viewed)
└── nearestNeighbour {”N”:5}

├── sumMatrix
│ ├── pearsonSimilarity
│ │ └── scaleMatrix {”scale”:0}
│ │ └── interaction(product_detail_clicked)
│ └── pearsonSimilarity
│ └── interaction(product_wanted)
└── scaleMatrix {”scale”:2}

└── sumMatrix
├── interaction(product_detail_clicked)
└── interaction(content:interact:product_detail_viewed)

sobazaar-product_detail_viewed MRR@10: 0.0171
sobazaar-product_detail_clicked MRR@10: 0.1316
sobazaar-product_wanted MRR@10: 0.0834
sobazaar-buy_clicked MRR@10: 0.006

### interaction-product_wanted ###
nearestNeighbour {”N”:30}
├── pearsonSimilarity
│ └── addVector
│ ├── nearestNeighbour {”N”:11}
│ │ ├── pearsonSimilarity
│ │ │ └── interaction(product_wanted)
│ │ └── interaction(product_wanted)
│ └── popularity
│ └── interaction(content:interact:product_wanted)
└── nearestNeighbour {”N”:20}

├── sumMatrix
│ ├── pearsonSimilarity
│ │ └── interaction(product_detail_clicked)
│ └── sumMatrix
│ ├── pearsonSimilarity
│ │ └── interaction(product_detail_clicked)
│ └── pearsonSimilarity
│ └── interaction(product_detail_clicked)
└── interaction(product_wanted)

sobazaar-product_detail_viewed MRR@10: 0.0159
sobazaar-product_detail_clicked MRR@10: 0.1032
sobazaar-product_wanted MRR@10: 0.1717
sobazaar-buy_clicked MRR@10: 0.0081
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### interaction-buy_clicked ###
nearestNeighbour {”N”:6}
├── sumMatrix
│ ├── pearsonSimilarity
│ │ └── interaction(content:interact:product_detail_viewed)
│ └── sumMatrix
│ ├── scaleMatrix {”scale”:10}
│ │ └── pearsonSimilarity
│ │ └── interaction(purchase:buy_clicked)
│ └── pearsonSimilarity
│ └── sumMatrix
│ ├── interaction(purchase:buy_clicked)
│ └── interaction(content:interact:product_clicked)
└── transpose

└── nearestNeighbour(inverted) {”N”:11}
├── pearsonSimilarity
│ └── interaction(purchase:buy_clicked)
└── nearestNeighbour(inverted) {”N”:20}

├── pearsonSimilarity
│ └── interaction(purchase:buy_clicked)
└── transpose

└── interaction(purchase:buy_clicked)
sobazaar-product_detail_viewed MRR@10: 0.0196
sobazaar-product_detail_clicked MRR@10: 0.0525
sobazaar-product_wanted MRR@10: 0.0625
sobazaar-buy_clicked MRR@10: 0.0176
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A.3.3. Dense and sparse experiment recommender systems

### dense-0 ###
nearestNeighbour {”N”:21}
├── addVector
│ ├── addVector
│ │ ├── pearsonSimilarity
│ │ │ └── scaleMatrix {”scale”:5}
│ │ │ └── interaction(purchase:buy_clicked)
│ │ └── popularity
│ │ └── pearsonSimilarity
│ │ └── interaction(product_detail_clicked)
│ └── popularity
│ └── sumMatrix
│ ├── pearsonSimilarity
│ │ └── interaction(product_detail_clicked)
│ └── pearsonSimilarity
│ └── interaction(product_wanted)
└── nearestNeighbour {”N”:9}

├── pearsonSimilarity
│ └── interaction(purchase:buy_clicked)
└── nearestNeighbour {”N”:14}

├── pearsonSimilarity
│ └── interaction(product_detail_clicked)
└── nearestNeighbour {”N”:12}

├── pearsonSimilarity
│ └── interaction(product_detail_clicked)
└── scaleMatrix {”scale”:3}

└── interaction(purchase:buy_clicked)
sobazaar-dense MRR@10: 0.0241
sobazaar-sparse MRR@10: 0.0135

### dense-1 ###
nearestNeighbour(inverted) {”N”:13}
├── addVector
│ ├── pearsonSimilarity
│ │ └── nearestNeighbour(inverted) {”N”:16}
│ │ ├── pearsonSimilarity
│ │ │ └── interaction(content:interact:product_detail_viewed)
│ │ └── transpose
│ │ └── interaction(product_detail_clicked)
│ └── popularity
│ └── interaction(purchase:buy_clicked)
└── transpose

└── nearestNeighbour(inverted) {”N”:24}
├── pearsonSimilarity
│ └── interaction(content:interact:product_detail_viewed)
└── transpose

└── interaction(product_detail_clicked)
sobazaar-dense MRR@10: 0.025
sobazaar-sparse MRR@10: 0.0049
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### sparse-0 ###
nearestNeighbour {”N”:5}
├── addVector
│ ├── scaleMatrix {”scale”:0}
│ │ └── pearsonSimilarity
│ │ └── scaleMatrix {”scale”:2}
│ │ └── interaction(product_wanted)
│ └── popularity
│ └── transpose
│ └── interaction(purchase:buy_clicked)
└── addVector

├── scaleMatrix {”scale”:6}
│ └── transpose
│ └── transpose
│ └── interaction(purchase:buy_clicked)
└── popularity

└── interaction(content:interact:product_wanted)
sobazaar-dense MRR@10: 0.0069
sobazaar-sparse MRR@10: 0.0134

### sparse-1 ###
nearestNeighbour(inverted) {”N”:16}
├── sumMatrix
│ ├── pearsonSimilarity
│ │ └── transpose
│ │ └── interaction(purchase:buy_clicked)
│ └── sumMatrix
│ ├── pearsonSimilarity
│ │ └── transpose
│ │ └── interaction(pixel-init)
│ └── pearsonSimilarity
│ └── transpose
│ └── interaction(content:interact:product_wanted)
└── scaleMatrix {”scale”:3}

└── nearestNeighbour {”N”:26}
├── sumMatrix
│ ├── pearsonSimilarity
│ │ └── interaction(product_detail_clicked)
│ └── pearsonSimilarity
│ └── interaction(content:interact:product_wanted)
└── sumMatrix

├── interaction(purchase:buy_clicked)
└── interaction(content:interact:product_clicked)

sobazaar-dense MRR@10: 0.0062
sobazaar-sparse MRR@10: 0.0114
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