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The UMD Property for Musielak—Orlicz M)
Spaces s

Nick Lindemulder, Mark Veraar, and Ivan Yaroslavtsev

Dedicated to Ben de Pagter on the occasion of his 65th birthday

Abstract In this paper we show that Musielak—Orlicz spaces are UMD spaces
under the so-called A, condition on the generalized Young function and its
complemented function. We also prove that if the measure space is divisible, then
a Musielak—Orlicz space has the UMD property if and only if it is reflexive. As
a consequence we show that reflexive variable Lebesgue spaces L") are UMD
spaces.

Keywords UMD - Musielak—Orlicz spaces - Variable L”-spaces - Young
functions - Vector-valued martingales - Variable Lebesgue spaces

1 Introduction

Theclass of Banach spaces X with the UMD (unconditional martingale differences)
property is probably the most important one for vector-valued analysis. Harmonic
and stochastic analysis in UMD spaces can be found in [6, 8, 23, 34] and references
therein. Among other things the UMD property of X implies the following results
in X-valued harmonic analysis:

* Marcinkiewicz/Mihlin Fourier multiplier theorems (see [8], [23, Theorem 5.5.10]
and [24, Theorem 8.3.9]);

¢ the Tp-theorem (see [21]);

¢ the L?”-boundedness of the lattice maximal function (see [34, Theorem 3]);
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and in X-valued stochastic analysis:

* the L?-boundedness of martingale transforms (see [6, 23]);
* the continuous time Burkholder—Davis—Gundy inequalities (see [36—38]);
* the lattice Doob maximal L?-inequality (see [34, 37]).

Most of the classical reflexive spaces are UMD spaces. A list of known spaces
with UMD can be found in [23, p. 356]. On the other hand, a relatively simple to
state space without UMD is given by X = LP(LY(LP(L9(...)...))) with 1 < p #
q < oo (see [33]). The latter space is not only reflexive, but also uniformly convex.

In [17] and [28] it has been shown that an Orlicz space L® has the UMD property
if and only if it is reflexive. In [17] the proof is based on an interpolation argument
and in [28] a more direct argument is given which uses known ®-analogues of the
defining estimates in UMD. The Musielak-Orlicz spaces of course include all Orlicz
spaces but also the important class of variable Lebesgue spaces LP®).

It seems that a study of the UMD property of Musielak-Orlicz spaces L® and
even LP®) is not available in the literature yet. In the present paper we show that
under natural conditions on @, the Musielak-Orlicz space L® has UMD. We did not
see how to prove this by interpolation arguments and instead we use an idea from
[28]. Even in the Orlicz case our proof is simpler, and at the same time it provides
more information on the UMD constant.

Theorem 1.1 Assume that @,V : T x [0, 00) — [0, oo] are complementary Young
Sfunctions which both satisfy the Ay condition. Then the Musielak-Orlicz space
L®(T) is a UMD space.

This theorem is a special case of Theorem 3.1 below, in which we also have
an estimate for the UMD constant in terms of the constants appearing in the A;
condition for @, W. The result implies the following new result for the variable
Lebesgue spaces.

Corollary 1.2 Assume 1 < po < p1 < ooand p : T — [po, p1] is measurable.
Then LPO(T) is a UMD space.

In the case the measure space is divisible, one can actually characterize the UMD
property in terms of A; and even in terms of reflexivity (see Corollary 3.3 below).

In the Orlicz setting (i.e. ® does not dependent on 7') the noncommutative
analogue of [17, 28] was obtained in [15, Corollary 1.8]. It would be interesting
to obtain the noncommutative analogues of our results as well. Details on non-
commutative analysis and interpolation theory can be found in the forthcoming
book [16].

Notation For a number p € [1, co] we write p’ € [1, oo] for its Holder conjugate
which satisfies 117 + [i, = 1. For a random variable f, E(f) denotes the expectation
of f.
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2 Preliminaries

2.1 Musielak-Orlicz Spaces

For details on Orlicz spaces we refer to [27, 35] and references therein. Details on
Musielak—Orlicz spaces can be found in [14, 25, 26, 30, 40].

Let X be a Banach space and let (7, X, 1) be a o-finite measure space. We say
that a measurable function @ : T x [0, co) — [0, oo] is a Young function if for each
teT,

1. ®(,0) =0,3x;,x2 > 0s.t. D(¢,x1) > 0and P(z, x2) < o0;
2. ®(t, ) is increasing, convex and left-continuous.

As a consequence of the above lim,_, o, (¢, x) = co.

A function ® with the above properties is a.e. differentiable, the right-derivative
¢ = 9, is increasing and

X
D(t, x) :/ e, A)dr, teT, x eR;.
0

Note that the function ¢(z, -) has a right-continuous version since any increasing
function has at most countably many discontinuities, so ¢(#, A) = limg_0 @ (¢, A+¢)
foreacht € T fora.e. A € [0, 00).

For a strongly measurable function f : T — X we say that f € L®(T; X) if
there exists a A > O such that

[ ewironmaun <.
T
The space L®(T'; X) equipped with the norm

I o0z = inf {2 > 0 :/ch(t, L@ lx/0) dn(o) < 1 @.1)

is a Banach space. Here as usual we identify functions which are almost everywhere
identical. The space L®(T; X) is called the X-valued Musielak-Orlicz space
associated with .

The following norm will also be useful in the sequel.

o1
1 /lx.o = inf [1+ / Ot Ol du (o) | 2.2)
A>0 A T
It is simple to check that this gives an equivalent norm (see [22, Lemma 2.1])

Iflleer.x) = 1 lx.o <20 fliLer.x)- (2.3)

Incase X = R or X = C, we write L®(T) for the above space.
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Example 2.1 Let p : T — [1,00) be a measurable function and let ®(¢, 1) =
[A|”®_ Then L®(T) coincides with the variable Lebesgue space L),

Next we recall condition Aj from [30, Theorem 8.13]. There it was used to study
the dual space of the Musielak—Orlicz space and to prove uniform convexity and in
particular reflexivity (see [30, Section 11]). Let LEF(T) C LY(T) be the set of all
nonnegative integrable functions.

Definition 2.2 A Young function ® : T x [0, o0) — [0, oo] is said to be in Ay if
there existsa K > 1 andan & € LL(T) such that fora.a.t € T

D, 20) < KP(t,A) + h(t), Ae€l0,00).

Note that ® € Aj implies that ®(r, A) < oo foralmostallz € T and all A € [0, 00).
Unlike is standard for Young’s function independent of T, the condition A, depends
on the measure space; namely, if one has that u(7) = oo and /& does not depend on
t € T,thenh = 0.

If®: T x[0,00) — [0, 0] is a Young function, we define its complemented
function ¥ : T x [0, 0c0) — [0, oc] by the Legendre transform

Y (t, x) = sup(xy — @, y))-
y=0

Then W is a Young function as well. Moreover, one can check that the comple-
mented function of W (¢, -) equals O (¢, -).

Example 2.3 Let the notations be as in Example 2.1. Then the following statements
hold.

(i) ®isin Ay ifandonlyif p € L°°(T), in which case ® satisfies the Aj-condition
with K = 2lIPll< and i = 0.
(i1)) The complemented function ¥ to @ is given by
W(t, %) = 17 D1 o 1) (0,00) (1 1) + 00 - Lp=i)(t o0 (1 ),
where p’(t) = p(¢)’ is the Holder conjugate.

In particular, ® and ¥ are both in Aj if and only if 1 < essinf p < esssup p < oo,
in which case W (¢, x) = xP'® foraa.t e T andall x € [0, c0).

Proof Let us only give the proof of Example (2.3)(i). If p € L°°(T), then, for a.a.
teT,

@(t,20) = 2O (1, 1) < 2IPlodp (s, 1), A € [0, 00).

Conversely assume that @ is in A,. Let K and & be as in the A, condition for .
Then, fora.a.r € T and all A € [0, c0),

2PD@ (1, 1) = d(t,21) < KP(t, L) + h(t)
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and thus
QPO — KYd(1, 1) < h(1).

As limy_, oo (¢, 1) = o0, this implies that 2P < K for aa. t € T. Hence,
p € L=(T). O

By the properties of the functions ® and W one can check that for ¢ = 9, ® and
Y = 9,W (where ¢ and ' are taken right-continuous in x), we have ¢ ~1(¢, ) =
Y (t, ), where

o Nt y) = supfx : @(r,x) <y} y=0. (2.4)

Note that ¥ (¢, (¢, x)) > x and ¢(t, ¥ (¢, x)) > x because of the above choices.
Recall Young’s inequality (see [27, Section 1.2] or [35, Proposition 15.1.2]) for
aa.reT,

xy <o, x)+¥(,y), x,y>0 2.5)

with equality if and only if y = ¢ (¢, x) or x = ¥ (¢, y).

Lemma 2.4 Let ® : T x [0, 00) — [0, 00) be a Young function and let W be its
complemented function. If ® € A with constant K > 1 and h € L}r(T), then for
almostallt € T,

K 1
Y(t,A) < A (t, A h(t), »>0.
W= o MWD+ RO

Proof We use a variation of the argument in [27, Section 1.4]. By the A, condition
there exist K > l and & € LL(T) such that for almost allt € T and all A > 0

21 21
Ko, M) +h(t) > O(t,20) = / o(t,x)dx > / o(t,x)dx > do(t, 1),
0 A

where we used the fact that ¢ (¢, -) is increasing. Using the identity case of (2.5) we
obtain

Kip(t,A) — KV(t, o, X)) + h(t) = ro(t, 1)
Therefore,

KW (t, o, 1) - h(t)

rp(t, 1) - rp(t,A)°
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Taking A = ¥ (¢, x) and using the estimates below (2.4) and the fact that y +
is increasing (see [27, (1.18)]) we obtain

W(t,y)
y

KWz, x) - KW, o, ¥(t,x)))
xyt,x) — Y@, e, v, x))
h(t) h(t)

K —1 K —1 .
=AM ey =8 T e

We may conclude that

W (t x)<K 1x¢(t x)+1h(t)
T K ’ K 7

2.2 UMD Spaces

For details on UMD spaces the reader is referred to [6, 34] and the monographs
[23, 24]. Let (2, A, (%1)n>0, P) denote a filtered probability space which is rich
enough in the sense that it supports an i.i.d. sequence (&,),>0 such that P(e, =
1) =P, = —1) = ; for each n > 0. Such a sequence is called a Rademacher
sequence.

For a sequence of random variables f = (f,)n>0 With values in X, we write
fo = supg<, 1 fillx and f* = supgoq [l fkllx. Moreover, if € = (€x)n>0 is a
sequence of signs, we write (€ x f), = ZZ:O €x(fr — fi—1), where f_; = 0.

We say that X is a UMD space if there exists a p € (1, oo) and B € [1, 0o0) such
that for all L”-martingales f = (f,)n>0 and all sequences of signs € = (€,),>0 We
have that

e * OnllLr;x) < Bl fullLr;x), n =0,

where the least admissible constant 8 is denoted by B, x and is called the UMD
constant. If the above holds for some p € (1,00), then it holds for all p €
(1, 00). Examples and counterexamples of UMD spaces have been mentioned in
the introduction. Every UMD space is (super-)reflexive (see [23, Theorem 4.3.8]).

We say that f = (f)u>0 is a Paley—Walsh martingale if f is a martingale with
respect to the filtration (%,),>0 with Fy = {@, Q} and ¥, = o{ex : 1 < k < n}
for some Rademacher sequence (g )r>0 and if fo = 0.

The following result follows from [4, Theorems 1.1 and 3.2].
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Proposition 2.5 Let X be a Banach space. Then X is a UMD space if and only if
for all Paley—Walsh martingales f and all sequences of signs € we have

sup || fullLoo(;x) < 00 == P(sup||(€ * fallx < o00) > 0.

n>0 n>0

We will also need the following lemma which allows to estimate the e-transform
for different functions than @ (x) = |x|”. This lemma is a straightforward extension
[3, p. 1001] where the case b = 0 was considered. Moreover, since we only state it
for Paley—Walsh martingales it follows from [6, Proof of (10)].

Lemma 2.6 Assume X is a UMD space. Let ® : [0,00) — [0, 00) be a Young
function and assume that there exist constants K > 1 and b > 0 such that

d(21) < KdA) +b, 1> 0. (2.6)

Let f = (fu)n>0 be a Paley—Walsh martingale, € = (€,)n>0 be a sequence of signs,
and set g := € x f. Then there exists a constant Cx x > 0 only depending on K
and (the UMD constant of) X such that

E®(g") < Cx x(EQ(f™) + D).

Remark 2.7 To obtain Lemma 2.6 in the case of general martingales (as it is done
in [3, p. 1001]), one can use the Davis decomposition to reduce to a bad part and a
good part of f. To estimate the bad part of the Davis decomposition one can use [7,
Theorem 3.2 and the proof of Theorem 2.1] (see [31, Proposition A-3-5] and [29,
Theorem 53] for a simpler proof).

Recall that X is a UMD space if and only if it is ¢-convex, i.e. there exists a
biconvex function ¢ : X x X — R such that ¢(0,0) > O and ¢(x,y) < ||x + y||
for all x, y € X with ||x|| = |ly]l = 1 (see [4, 5, 23]). By the ¢-function we will
usually mean the optimal ¢ -function which can be defined as the supremum over all
admissible ¢’s, and this obviously satisfies the required conditions.

The following theorem can be found in [6, equation (20)].

Theorem 2.8 (Burkholder) Let X be a UMD Banach space and let ¢ : X x X —
R be an optimal ¢ -function (i.e. £(0, 0) is maximal). For any 1 < p < 0o one then
has that

72 1)2
== (p+17 27

(0,0 00,00 p—1

The following lemma follows from [4, p. 49].

Lemma 2.9 Let X be a UMD Banach space and let ¢ : X x X — R be an optimal
¢ -function (i.e. £(0,0) is maximal). Then for any ¢ > 0 there exists an X-valued
Paley—Walsh martingale f = (f,)n>1 which starts in zero and a sequence of signs
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€ = (€n)n>1 such that P(g* > 1) = 1 and sup,~; E|| full < ;((;,0) + &, where
g:=¢€xf.
Remark 2.10 Let us compute an upper bound for Cg y in Lemma 2.6. Let M > 1

be the least integer such that 2~¥ < ﬁg’lg). Fix B := 2 and § := 2~ Then by
formula [3, (1.8)] one has that for f and g from Lemma 2.6

P(g* > 2x, f* <27M)y) <eP(g* > 1), 1 >0,

where ¢ = 3¢§/(B—8 — 1) < 1/(2K), and where we used the fact that the constant
¢ from [3, (1.2)] can be bounded from above by 4/¢ (0, 0) by [32, Theorem 3.26 and
Lemma 3.23] (see also [39]). Note that by (2.6)

DB <KD +b, DN <KMo +bMKM, 1 >0,

where one needs to iterate (2.6) M times in order to get the latter inequality.
Therefore by exploiting [2, proof of Lemma 7.1] one has the following analogue
of the formula [2, (7.6)]

E®(2'g%) < eEd(g*) + KMED(f*) + bMK™,

and by using the fact that Ed(g*) < KE® (2~ ¢*) + b and the fact that eK < 1/2
one has that

Ed(g*) < 2KMHED(f*) +2b(1 + MKMTY)y < 2(MKMT! £ 1)(ED(f*) + b),

soCkx x < 2(MKMJrl + 1), where M can be taken [log, ;glg)] + 1. Of course this
bound is not optimal.

3 Musielak-Orlicz Spaces Are UMD Spaces

The main result of this paper is the following.

Theorem 3.1 Assume X is a UMD space. Let ®, ¥ : T x [0, 00) — [0, 00) be
complemented Young functions which both satisfy A>. Then the Musielak-Orlicz
space L®(T; X) is a UMD space.

Moreover, if ® € Ay with constant K¢ and he € LL(T) and V € A, with
constant Ky and hy € L_li_(T), then for the optimal ¢ -function ¢ : LY(T: X) x
L®(T; X) — R (see the discussion preceding Theorem 2.8) one has that

1

0,0) > , 3.8
q )_6K\I/CK¢,XCh (3.8)
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and
(p+1)?
ﬁp,Lq)(T;X) S 432K\[’CK<1>,XC/1 p _ 1 5 (39)
where Ckg, x is as in Lemma 2.6 and Cp, := 2 + ||hollp1(7) + Kl\,, NhwllLicry-
This result is well-known in the case of ®(x) = |x|”, and then it is a simple

consequence of Fubini’s theorem which allows to write LP(Q2; LP(T; X)) =
LP(T; LP(K2; X)) and to apply the UMD property of X pointwise a.e. in T (see [23,
Proposition 4.2.15]). Such a Fubini argument is necessarily limited to L”-spaces.
Indeed, the Kolmogorov—Nagumo theorem says that for Banach function spaces E
and F one has E(F) = F(E) isomorphically, if and only if E and F are weighted
LP-spaces (see [1, Theorem 3.1]).

To prove Theorem 3.1 we will use several results from the preliminaries.
Moreover, we will need the following scalar-valued result which is a well-known
version of Doob’s maximal inequality for a certain class of Young functions.

Proposition 3.2 Suppose that ® : [0,00) — [0, 00] is a Young function with a
right-continuous derivative ¢ : [0, 00) — [0, 00) and that there exists a g € (1, 00)
and ¢ € [0, 00) such that

1
P = rp()+ec, 2=0.
q

Then for all nonnegative submartingales ( f;,)n>0
Eo(f)) <E®(q'fu) +¢c, n=0.

In particular, | f¥lo < q'(1+ )|l fullo

Proof The result for ¢ = 0 is proved in [13, estimate (104.5)], and the case ¢ > 0
follows by a simple modification of that argument. The final assertion follows from
the obtained estimate since for any A > 0 we have

I e <2711 + ERGLH)
<A Ye+1+EDMG £)
<+ DA YA +EdGq f).

Taking the infimum over all A > 0 yields the required conclusion. O
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Proof of Theorem 3.1 Let Y := L®(T; X). In order to prove the theorem we will
use Proposition 2.5. Let f = (f,)n>0 be a Paley—Walsh martingale with values in
Y. Let € = (€x)n>0 be a sequence of signs and g := € x f. We will show that
g* < oo a.s. For this it is enough to show that

Esup [lgnlly < KwCko,xCnsup || fullLoo@;v)s (3.10)

n>0 n>0

where Ck,, x is as in Lemma 2.6 and C, = 2 + |[hollp1 ) + Kl\,, Ihwll 1) By
homogeneity we can assume sup, g || fzllL>Q.v) = 1.

We know that K¢ > 1 and a function hgp € L}r(T) satisfy the following
inequality

D(,20) < Ko®(t,A) +hao(t), Ae€[0,00), teT. (3.11)

Since W satisfies A, with constant Ky > 1 and hy € Lﬂr(T) it follows from
Lemma 2.4 that

Ky —

1 1
d(t, 1) < ot )+ o hu(), hel0.00), (€. (3.12)
v

One can check that for ae. t € T, f(t) is an X-valued martingale and
gn(t) = (e x (f(t))), (use that f is a Paley—Walsh martingale). Therefore,
first applying (3.11) and Lemma 2.6 and then (3.12) and Proposition 3.2 to the
submartingale (|| fx(¢)|| x)x>0 gives that for almost allz € T,

Eo(, sup gk lx) < Ckq.x |:E<I>(t, sup I f&@llx) +h<1>(t)]

< Croux [EQ. Kul u®lx) + ho () + , hw(®)].

The same holds with (f, g) replaced by (Af, Ag) for any A > 0. Integrating over
t € T (and using (2.2)) we find that

1
Bswplgilno <Eswp (14 [ 00 rlg0lode)
k<n T

k<n

& 1
2E (14 [ o suprlg@induo)
A T k<n

1
< CK¢,XE/\(1+/ St Ko faOI0dR@) + lholl iy + 1 &y el ).
T

where (x) follows form the fact that sup f < f sup and the fact that the map A +—
® (¢, A) is increasing in A > 0. Since fT O, || fr®llx)du@) < 1as.by(2.1) and
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the assumption || fy |1 (;y) < 1, it follows by setting A = 1/Ky that

Esupligkllx,o < KwCkqy xCh.
k<n

Now the required estimate (3.10) follows from (2.3).

For proving (3.8) and (3.9) we will use Lemma 2.9. By the first part of the proof,
Y = L®(T; X) is UMD. Fix ¢ > 0. Then by Lemma 2.9 there exists a Y-valued
Paley—Walsh martingale f = (f,;)»>0 which starts in zero and a sequence of signs
€ = (en)n>0 such that P(g* > 1) = 1 and sup,-o E|l fully < 4(%’0) + ¢, where
g := € * f. By Burkholder [4, Lemma 3.1] there exist discrete Y-valued Paley—
Walsh martingales F = (Fy,)>0 and G = (Gp)p>o0 such that G = € x F, P(G* >
1) <1/2,and

n>0

sup || Fyllzoeo(:.vy < 6supE| fully.
n>0

Therefore, by (3.10),

1
<EG* < KyCkq, xChsup | FyllLo:v)
2 n>0

< 6KyCky xCrsupE| fully < 3KyCkqs,xCr(¢(0,0) + 2¢),
n>0

so letting ¢ — 0 gives (3.8). Equation (3.9) follows from (3.8) and (2.7). |

We recover the following result of [17] and [28]. Recall that a measure space
(T, X, ) is divisible if for every A € ¥ and ¢ € (0, 1) there exist sets B,C € X
such that B,C € A, u(B) = tu(A) and u(C) = (1 — t)u(A). The divisibility
condition is only needed in the implication (ii)=>(iii).

Corollary 3.3 Let X # {0} be a Banach space and assume that T is divisible and
o-finite. Suppose ©, W : T x [0, co) — [0, oo] are complementary Young functions.
Then the following are equivalent:

(i) L®(T; X) is a UMD space;
(ii) L®(T) is reflexive and X is a UMD space;
(iii) ® and V both satisfy A, and X is a UMD space.

For the proof we will need the following lemma which follows from [26,
Theorem 2.2] and [25, Theorem 4.7].

Lemma 3.4 Let &,V : T x [0, 00) — [0, 0o] be complementary Young functions.
Then there exists a decomposition L®(T)* = LY (T) & A of the dual of L®(T)
into a direct sum of two Banach spaces, where g € LY (T) acts on L®(T) in the
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following way:
(f.8) =fong, [ eL®(D).

Proof of Corollary 3.3 (i)=>(ii): Fix h € L®(T) and x € X of norm one. Then
L®(T) and X can be identified with the closed subspaces L®(T) ® x and h ® X
of the UMD space L® (T; X), respectively, and therefore have UMD themselves. In
particular, L®(T) is reflexive.

(ii)=(iii): We show that @ satisfies Ay. The proof for W is similar. By
Lemma 3.4, L*(T)* = LY(T) & A, so

where the latter inclusion follows from Lemma 3.4 and means that L®(T) @ A* is
a closed subspace of LY (T)* @ A*, and hence of L®(T)**. Thus A = 0 due to
the reflexivity of L®(T), and since T is divisible the desired statement follows from
[26, Corollary 1.7.4].

(iii)=(i): This follows from Theorem 3.1. |

As a consequence of the above results many other spaces are UMD as well.
Indeed, it suffices to be isomorphic to a closed subspace (or quotient space) of
an L®(T; X) space with UMD. This applies to the Musielak-Orlicz variants of
Sobolev, Besov, and Triebel-Lizorkin spaces.

Remark 3.5 A result of Rubio de Francia (see [34, p. 214]) states that for a Banach
function space E and a Banach space X one has that E(X) is a UMD space if and
only if £ and X are both UMD spaces. Therefore, it actually suffices to consider
X = R in the proof of Theorem 3.1. Since our argument works in the vector-valued
case without difficulty, we consider that setting from the start.

For the variable Lebesgue spaces we obtain the following consequence. For a
measurable mapping p : T — [1, oo] we will write py = ||pllp~(r) and p_ =

—1
11/PIz k-
Corollary 3.6 Let X # {0} be a Banach space and assume T is divisible and o -

finite. Assume p : T — [1,00] is measurable. Then the following assertions are
equivalent.

(i) LPO(T; X) is a UMD space;
(ii) LPO(T) is reflexive and X is a UMD space;
(iii) p— > 1 and p4 < oo and X is a UMD space.

The result that LP)(T) is reflexive if and only if p_ > 1 and p; < 0o can also
be found in [12, Proposition 2.79&Corollary 2.81] and [14, Remark 3.4.8].
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Proof This is an immediate consequence of Corollary 3.3 and Example 2.3. O

Remark 3.7 Let Y := LPO(T; X). Let us bound ¢ (0, 0) from below using (3.8).
Note that by Example 2.3 one has that K¢ = p4+, Ky = p/ ,and he = hy = 0, s0

1
0,0) > - ,
¢ 6KuCrkoxCh 39 Cp, x

where an upper bound for C),, x can be found using Remark 2.10. From this one
can obtain an upper bound for the UMD constant using (2.7).

In [20] the analytic Radon—Nikodym (ARNP) and analytic UMD (AUMD)
properties are shown to hold for Musielak-Orlicz spaces L®(T) where ® satisfies
a condition which is slightly more restrictive than A,. To end the paper we want to
state a related conjecture about spaces satisfying a randomized version of UMD.
In order to introduce it let (2, &', ") be a second probability space with a
Rademacher sequence ¢’ = (g),),>1. A Banach space X is said to be a UMDpy,
space if there is a p € [1, co) and a constant C > 0 such that for all Paley—Walsh
martingales f,

I fllr:x) < ll€"* fllLr@xar:x)-

This property turns out to be p-independent, and it gives a more general class of
Banach spaces than the UMD spaces (see [9-11, 18]). For instance, L'isa UMDy,
space.

Conjecture 3.8 Assume ® : T x [0, 00) — [0, 00) is a Young function such that
® € Ay. Then L®(T) is UMDpy,.

The conjecture is open also in the case @ is not dependenton 7. If  : [0, c0) —
[0, oo) is merely continuous, increasing to infinity and ®(0) = 0 and satisfies A»,
then the same question can be asked. However, in this case L®(T) is not a Banach
space, but only a quasi-Banach space. Some evidence for the conjecture can be
found in [11, Theorem 4.1] and [19, Theorem 1.1] where analogues of Lemma 2.6
can be found (only ® € A; is needed in the proof). Doob’s inequality plays a less
prominent role for UMD™ because of [11, Lemma 2.2]. Similar questions can be
asked for the possibly more restrictive “decoupling property” of a quasi-Banach
space X introduced in [10, 11].
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