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Recently, a lasing effect has been observed in a superconducting nanocircuit where a Cooper-pair box, acting
as an artificial three-level atom, was coupled to a resonator �O. Astafiev, K. Inomata, A. O. Niskanen, T.
Yamamoto, Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai, Nature �London� 449, 588 �2007��. Motivated by this
experiment, we analyze the quantum dynamics of a three-level atom coupled to a quantum-mechanical reso-
nator in the presence of a driving on the cavity within the framework of the Lindblad master equation. As a
result, we have access to the dynamics of the atomic level populations and the photon number in the cavity as
well as to the output spectrum. The results of our quantum approach agree with the experimental findings. The
presence of a fluctuator in the circuit is also analyzed. Finally, we compare our results with those obtained
within a semiclassical approximation.
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I. INTRODUCTION

In recent years, a considerable progress has been achieved
in the field of quantum manipulation with nanocircuits based
on the Josephson effect.1,2 This progress has been initially
inspired by the ideas of quantum information processing,3

which require the physical realization of qubits as an elemen-
tary quantum information unit. The degree of control
achieved in Josephson-based qubits is so high that these sys-
tems have become a test bed for the ideas of quantum me-
chanics such as quantum noise detection,4–6 quantum
measurements,7,8 and realization of circuit-quantum electro-
dynamics �QEDs�.9,10 Very recently, the experimental real-
ization of a single Josephson-atom laser has been reported.11

In the experiment of Ref. 11, a Cooper-pair box �CPB� is
coupled to a superconducting waveguide resonator. The CPB
is used as a three-level artificial atom. While the lowest two
levels constitute a qubit, population inversion is achieved
with the Josephson quasiparticle �JQP� cycle12 involving the
third level. The lasing condition can be determined from the
steady-state photon number, pointing out that a too strong
pumping suppresses the lasing action.13 Experimentally, evi-
dence for lasing action was found through measurements of
the output power spectrum of the resonator. An additional
driving was applied on the cavity to induce phase locking,
thereby enhancing the lasing effect. The results are consistent
with theoretical work on a two-level atom coupled to a
resonator.14,15 Studies concerning the coupling between a su-
perconducting qutrit and a resonator have been also carried
out.16 However, currently no quantitative results are avail-
able for the dynamics of a three-level Josephson atom
coupled to a resonator.

In this paper we present a theoretical analysis of the lasing
effect observed in the experiment,11 using a quantum-
mechanical approach. We first obtain the complete time evo-
lution of the system, including transient effects upon switch-
ing on the pumping. We obtain estimates for the
characteristic time scales of the corresponding dynamics.

Then, we study the output spectrum of the cavity field with
and without an additional driving applied to the cavity. We
show that the latter requires a full quantum treatment and
cannot be obtained from a semiclassical approximation. Our
results are in good agreement with the experimental findings.
The possibility to induce off-resonance lasing, observed in
the experiment with a second hot spot, is also considered by
adding a two-level fluctuator in the circuit. Since our model
is system independent it can be applied to the study of other
circuit-QED implementations, such as the currently much-
studied transmon.17

II. MODEL

The system under consideration is depicted in Fig. 1. It is
composed of the three-level artificial atom ��0� , �1� , �2��, with
an energy difference ��10 between the ground state and the
first excited state, and the cavity with a mode frequency
�0 /2�. These two subsystems are coupled coherently ac-
cording to the Jaynes-Cummings Hamiltonian

H =
1

2
��10�z + ��0a†a + i�g��01a

† − �10a� , �1�

where �ij = �i�	j�, �z=�11−�00, and a �a†� is the canonical
bosonic annihilation �creation� operator of a photon in the
cavity. The dynamics of the third level �2� is described with
a Lindbladian, as presented below. This Hamiltonian is ob-
tained after applying the rotating-wave approximation
�RWA�, valid when the coupling strength is small compared

|0〉
|1〉

|2〉

g κ
ω10

ω0v

γ21 γ12
Γ γ20

FIG. 1. �Color online� Scheme of the three-level system coupled
to a cavity with the corresponding transition rates.
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to the typical frequency of the isolated subsystems, which
will be the case in the following. The legitimacy of the RWA
is also established through numerical simulations. The atom
is pumped from �0� to �2� at the rate �, the state �2� decays to
�1� at the rate �21. The reverse processes occur at the rates,
respectively, �20 and �12. Finally, the cavity has a damping
rate �, conferring to the photons a lifetime �−1. As a conse-
quence, the time evolution of the total density matrix 	 has
two contributions: the evolution due to the coherent coupling
between the artificial atom and the cavity according to
Hamiltonian �1� and the evolution due to the incoherent pro-
cesses and controlled by the Lindbladian L=L�+L�21

+L�20
+L�12

+L� with

L�ij
	 =

1

2
�ij�2� ji	�ij − �ii	 − 	�ii� , �2�

for the pumping and the relaxation rates, noting �
�02, and

L�	 =
1

2
��2a	a† − a†a	 − 	a†a� , �3�

for the damping of the cavity. These expressions are obtained
in the Born-Markov approximation, supposing a weak cou-
pling between the system and the environment. The resulting
time evolution of the density matrix satisfies the master
equation18

	̇�t� =
1

i�
�H,	�t�� + L	�t� . �4�

To characterize the coherence properties of the emitted field

we calculate the output spectrum Ŝ��� defined as the Fourier
transform of the cavity correlator,

Ŝ��� = lim
t→

�

−


+


d�e−i��	a†�t + ��a�t�� . �5�

The output spectrum is obtained from the steady-state den-
sity matrix using the quantum regression theorem,19 valid
within our approach, which establishes a matrix relation be-
tween them. We also include the possibility to drive the cav-
ity with the additional pumping

Hd = i�v�e−i�ta† − ei�ta� , �6�

where � is the detuning from the cavity frequency. The am-
plitude can be expressed in terms of the photon number N0
created by the driving20 v=��N0 /2. If the emitted field is
coherent, the injection locking effect occurs and the cavity
field oscillates at the same frequency as the driving field
�0+�.

III. CHOICE OF PARAMETERS

The results that we present below have been obtained us-
ing a particular choice for the numerical values of the various
system parameters, corresponding to those of the
experiment.11 The three-level atom is a CPB, the properties
of which are controlled by an external parameter, the dimen-
sionless gate-voltage ng. Varying the parameter ng corre-

sponds to rotating the charge basis around the state �2� by an
angle 
 defined by tan 2
=EJ / �EC�ng−1��, where EJ and EC
are the Josephson energy and the charging energy of the
CPB, respectively �EC /EJ
15�. The qubit energy then reads
��10=EJ /sin 2
, the coupling varies like sin 2
, the rates �
and �21 are proportional to cos2 
, and the rates �20 and �12
are proportional to sin2 
. In the experiment, the cavity fre-
quency is �0 /2�
10 GHz; the resonance condition �10
=�0 for the lowest two atom levels and the cavity is
achieved when the parameter ng=1.1. At this working point,
the atom-cavity coupling frequency is ḡ /2�=44 MHz.
Population inversion is achieved using the JQP cycle; the
relevant rates are �=4.2 GHz, �21=3.3 GHz, �20
=0.29 GHz, and �12=0.37 GHz. The damping rate is set to
�=8.2 MHz. What can be measured experimentally is the
spectrum of the cavity, Eq. �5�, with or without an additional
driving Eq. �6�. The photons being emitted at an energy of 10
GHz, this lasing effect is actually a masing effect.

IV. DISCUSSION OF THE RESULTS

The Lindblad master equation, Eq. �4�, gives access to the
time evolution of the photon number in the cavity and of the
Josephson atom level populations. The dynamics of these
quantities is shown in Figs. 2 and 3, using the parameters
given above. We express time in units of the inverse pump-
ing rate 1 /�. We see that the transient time, i.e., the time
needed to reach the steady state, is on the order of 4000
pumping cycles �a microsecond for the experiment�. At very
short time scales, the three-level atom shows a significant
population imbalance; this accompanies a fast increase in the
photon number in the cavity. In the steady state more than
100 photons are present in the cavity, in agreement with the
experimental estimates. The photon distribution follows a bi-
nomial law �see Fig. 2, inset�, characteristic for correlated
particles at zero temperature.2 We next calculate the output
spectrum, Eq. �5�, as a function of the frequency � and of the
parameter ng. The result is plotted in Fig. 4. It presents a
peak centered at the resonance. Furthermore, in the experi-
ment the presence of charge fluctuations widens the spec-
trum. This broadening can be overcome by driving the cav-

FIG. 2. �Color online� Time evolution of the photon number in
the cavity. The coupling and various rates correspond to the experi-
mental parameters at the resonance, as discussed in the text. Inset:
distribution of the photon population in the steady state �histogram�
compared to the corresponding binomial distribution �solid line�.
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ity. Figure 5 represents the spectrum as a function of the
driving strength. As v increases, the initial Lorentzian is con-
verted into a Dirac peak located at the driving frequency,
thus emphasizing the lasing effect. Charge noise can be
strongly suppressed if a transmon qubit is used instead of the
standard CPB.

V. COUPLING TO A TWO-LEVEL SYSTEM

The experimental spectrum in the �ng ,�� plane shows an
additional peak centered at �10
1.5�0. Such a second peak
is absent in our simulations, which is consistent with the fact
that the coupling strength g is below the threshold for two-
photon masing. Indeed, even when including the counter-
rotating terms of the master equation that are neglected in the
RWA and can lead to multiphoton processes, lasing effect
occurs only at the resonance. Moreover, if the observed peak
were due to two-photon processes, it should have been lo-
cated at �10
2�0. A possible source of additional reso-
nances is the coupling to a two-level system �TLS�. We will
consider two kinds of coupling, first a resonant coupling with
the lasing transition of the CPB and second a dispersive cou-
pling with both the CPB and the cavity. To understand if it is
possible to observe off-resonant lasing effect with a simple
TLS we focus on the steady-state photon number.

The Josephson junction of the CPB can be a source of
fluctuators, resulting from the tunneling of a charge between
two sites in the insulating layer.21 The TLS is then composed
of two states, ground state �g� and excited state �e�, separated
by an energy �� f =�Ef

2+4T2, where Ef is the energy differ-
ence between the two sites and T is the tunneling strength.
The TLS is described by the Hamiltonian Hf =

1
2�� f�z with

�z= ��+ ,�−�, where �+= �e�	g� and �−=�+
†. The tunneling

charge position couples to the Cooper-pair number, with an
energy �gr, forming a four-level system ��0� , �1�� � ��g� , �e��.
This system is furthermore coupled to the single-electron
state �2� with the incoherent pumping and to the cavity states
through the Jaynes-Cummings Hamiltonian �1�. While vary-
ing the gate voltage, different transitions of the four-level
system can become resonant with the cavity and induce las-
ing. The interaction Hamiltonian turns out to comprise both a
transverse and a longitudinal coupling, as well as frequency
shifts,

Hr =
1

2
��10�z +

1

2
�� f�z + �gr

t��−�+ + �+�−� + �gr
l�z�z,

�7�

where �10=4grEc�1−ng� /��10, � f =grEf�1−ng� /�� f, gr
t =

−grEJT /�2�10� f, and gr
l =2gr�1−ng�EcEf /�2�10� f. The en-

ergy spectrum of the four-level system ���1� , ��2� , ��3� , ��4��
is given by E1,4= ����10+� f� /2+�gl and E2,3

= �����10−� f�2+4gr
t2 /2−�gl, where �10,f =�10,f +�10,f.

The ground state is ��1�= �0,g�, the highest state is ��4�
= �1,e�, and the central terms are obtained after rotating
�0,e� , �1,g� by an angle � satisfying tan 2�=2gt / �� f −�10�.
Finally, the coupling Hamiltonian with the cavity, obtained
from Eq. �1�, reads

HFLS = �g�cos ��S02 + S13� + sin ��S01 − S23��a† + H.c.,

�8�

where Sij = ��i�	� j�. A lasing effect thus occurs if the transi-
tion 2-0, 3-1, 1-0, or 3-2 is in resonance with the cavity and
the corresponding coupling strength is large enough. The
photon number as a function of the frequency �10 is plotted
in Fig. 6 for different values of the coupling strength gr. The
frequency of the TLS is adjusted close to �0 ��10%� to

FIG. 4. �Color online� Density plot of the spectrum �logarithmic
scale� from our fully quantum model as a function of the probing
frequency and the reduced gate charge.

FIG. 5. �Color online� Spectrum in the presence of an additional
driving on the cavity �� /2�=−1 MHz�. The damping � has been
increased fivefold.

FIG. 3. �Color online� Time evolution of the level populations at
the resonance �level �0� in blue, �1� in green, and �2� in red�. The
dynamics of the first pump cycles for a qubit initially in the state �0�
is presented in the inset.
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observe the second resonance at �10=1.5�0, in the regime
Ef =T.

A second resonance can also be produced by a fluctuator
of frequency � f =1.5�0 coupled to both the Josephson atom
and the cavity. The cavity can then be indirectly excited
when the transition �10 approaches the resonance with the
TLS, �10
� f. In this dispersive regime, we consider only
the transverse coupling,22

Hd = ��g1
t ��− + �+� + g2

t �a + a†����+ + �−� , �9�

where g1/2
t is the transverse coupling strength between the

TLS and the Josephson atom/cavity. The coupling g1
t has the

same dependence on ng as g while g2
t is ng independent. The

steady-state photon number is plotted in Fig. 6 as a function
of the gate voltage through �10 for g1

t =g and different values
of g2

t / ḡ. The damping rate has been increased fivefold for
numerical reasons but this does not change the results quali-
tatively.

In both cases the effect of the TLS on the photon number
is small even for strong couplings �see Fig. 6, inset�. An
ultrastrong coupling between the fluctuator and the system,
unrealistic for the experiment,11 is needed to observe off-
resonant lasing. A simple TLS is thus unlikely to explain the
second hot spot of the experiment.

VI. SEMICLASSICAL APPROXIMATION

The results presented so far were obtained by numerically
solving the Lindblad master equation. When the steady-state
photon number is large, one can use the semiclassical ap-
proximation to get analytical results.14 It consists of factor-
izing the operators pertaining to the three-level atom and to
the cavity. The steady-state value of the photon number, for
instance, is then obtained from a set of equations involving
	�z�, 	�11�, 	�01a

†�, and 	�zn�. The latter can be factorized in
the semiclassical limit and the resulting solution is in good
agreement with the numerical results. At the level of the
spectral function, the time derivative of S��� induces more

complex correlators such as C���= 	�z���a†���a�0��. Using
the amplitude-phase representation of the operator a and as-
suming that the correlation time of the phase fluctuations is
much longer than that of the amplitude fluctuations, the fac-
torization can be improved,14

	�z���a†���a�0�� 

1

2
�	�z� +

	�zn�
	n�

�S��� . �10�

The set of differential equations leads to a Lorentzian spec-
trum of width k=� /2−2g2��+�21�	sz� / ���+�21�2+4�2� and
centered at the reduced frequency ��= �4g2�	sz�� / ���
+�21�2+4�2�, where we note 	sz�= 1

2 �	�z�+ 	�zn� / 	n�� and �

=�10−�0 is the detuning. The maximum spectrum Ŝmax with
respect to the frequency � is plotted as a function of the
reduced charge gate ng in Fig. 7 and compared to the Lorent-
zian solution in the semiclassical limit. The time evolution of
the correlators in Eq. �10� in the rotating frame of the cavity
is shown in the inset, where the real part of the normalized
difference �	sz�S���−C���� / 	�zn� is plotted for two different
values of the gate voltage. At the resonance, the dynamics of
the factorized correlator 	sz�S��� is in good agreement with
C���. Off-resonance at �10=1.06�0, where the semiclassical
spectrum exhibits the second peak, the difference oscillates
at ��0 /2�+1 MHz, giving rise to a non-negligible contri-
bution in the Fourier transform. These comparisons reveal
that the semiclassical treatment is not correct in the region
close to the resonance where the correlations between the
atom and the cavity cannot be neglected. The resulting
double-peak structure thus appears to be an artifact of the
factorization.15 Further improvement of the factorization, Eq.
�10�, is needed to describe the spectrum properly in the semi-
classical limit.

VII. CONCLUSION

In conclusion, the Lindblad master equation together with
the quantum regression theorem is powerful tools to calcu-
late quantum mechanically the time evolution of the photon

FIG. 6. �Color online� Steady-state photon number in the pres-
ence of a two-level system. The different lines correspond to differ-
ent coupling strengths in the case of a resonant coupling and a
dispersive one �see the legend, ḡ /2�=44 MHz�. The inset is a
zoom around the frequency 1.5�0, where the second peak appears.
The damping � has been increased fivefold and the photon number
is normalized by the number at the resonance without TLS.

FIG. 7. �Color online� Maximum value of the spectrum as a
function of the reduced gate charge. The quantum solution is plotted
in purple and the semiclassical one in black. Inset: accuracy of the
factorization Eq. �10�. The time evolution of the real part of the
normalized difference �	sz�S���−C���� / 	�zn� in the rotating frame
of the cavity is plotted at the resonance ��10=�0� in blue and at the

second peak of Ŝmax�ng� ��10=1.06�0� in red.
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number and the output spectrum of the cavity. A comparison
with the experimental results of Ref. 11 gives access to the
typical time scales of the system. The calculation of the spec-
trum enables us to understand the experimental results and
the effect of driving the cavity. It shows in particular that the
presence of charge noise reduces the lasing effect. Consider-
ing the presence of a fluctuator in the system, we show that
an ultrastrong coupling is needed to explain the second hot
spot. Finally, the fully quantum treatment for a three-level
artificial atom, based on the density matrix of the whole sys-
tem, allows to figure out the validity of the semiclassical

approximations, which do not take into account all the cor-
relations between the atom and the cavity.
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