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On the Estimation of Complex Speech DFT
Coefficients Without Assuming Independent

Real and Imaginary Parts
Jan S. Erkelens, Richard C. Hendriks, and Richard Heusdens

Abstract—This letter considers the estimation of speech signals
contaminated by additive noise in the discrete Fourier transform
(DFT) domain. Existing complex-DFT estimators assume indepen-
dency of the real and imaginary parts of the speech DFT coeffi-
cients, although this is not in line with measurements. In this letter,
we derive some general results on these estimators, under more
realistic assumptions. Assuming that speech and noise are inde-
pendent, speech DFT coefficients have uniform phase, and that
noise DFT coefficients have a Gaussian density, we show theoreti-
cally that the spectral gain function for speech DFT estimation is
real and upper-bounded by the corresponding gain function for
spectral magnitude estimation. We also show that the minimum
mean-square error (MMSE) estimator of the speech phase equals
the noisy phase. No assumptions are made about the distribution
of the speech spectral magnitudes. Recently, speech spectral am-
plitude estimators have been derived under a generalized-Gamma
amplitude distribution. As an example, we will derive the corre-
sponding complex-DFT estimators, without making the indepen-
dence assumption.

Index Terms—Complex-discrete Fourier transform (DFT) esti-
mators, independence assumption, minimum mean-square error
estimation.

I. INTRODUCTION

DISCRETE Fourier transform (DFT)-domain-based
methods are often employed to estimate a speech signal in

additive noise, see, e.g., [1]–[4]. These methods estimate either
the complex-DFT coefficients or their amplitudes. Common
assumptions in the derivation of almost all complex-DFT and
amplitude estimators are that noise and speech processes are
additive and independent, and that the noise DFT coefficients
follow a complex Gaussian distribution. These assumptions
are valid for many applications. Another assumption that is
often made is that the real and imaginary parts of the speech
DFT coefficients are independent. This assumption, however,
is not in line with measurements on speech data [2]–[4]. In
this letter, we will derive some general results for the min-
imum mean-square error (MMSE) estimators of complex-DFT
coefficients for uniformly distributed speech phase, without
assuming the independency of real and imaginary parts. We will
show that the estimators leave the phase of the noisy coefficient
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unaltered and that their magnitude is always less than or equal
to the corresponding amplitude estimator.

We also consider estimation of the clean speech phase.
Ephraim and Malah [1] showed, for a Gaussian speech and
noise model, that different estimators lead to the noisy phase
as an optimal estimator. In this letter, we will extend these
results by showing that MMSE estimation of the speech phase
generally leads to the noisy phase as an optimal estimator, for
any amplitude distribution of the speech.

II. MMSE ESTIMATION OF COMPLEX-DFT COEFFICIENTS

A. Definitions and Assumptions

Suppose we have a noisy speech signal that we process in
short analysis windows in the Fourier domain. This leads to a
sequence of short-time Fourier transforms , where is
a frequency index and is a time-frame index, as follows:

(1)

where are the DFT coefficients of the clean speech
signal and that of the noise. We will assume the co-
efficients to be independent in time and frequency, which al-
lows us to leave out the frequency and time-frame indices in
the following for ease of notation. Our problem is to estimate

, given . We will use the following notations for the ampli-
tudes and phases of the coefficients: , ,
and . We use capitals for random variables and their
corresponding lowercase symbols for realizations.

We will derive some results about the MMSE estimator of
under the following assumptions.

1) Speech and noise are independent.
2) The speech phase is uniformly distributed.
3) The noise DFT coefficients follow a complex Gaussian dis-

tribution with i.i.d. real and imaginary parts.
It is important to realize that, although we have speech signals in
mind as the primary application, these assumptions may be valid
for many other types of signals. Assumption 2) means that and

are independent and that their joint pdf satisfies
. Assumption 2) is motivated by measurements on real

speech data [2], [4]. Assumption 3) is motivated by the central
limit theorem. It means that the noise amplitude is independent
of the uniformly distributed noise phase. Assumptions 1) and
3) determine the conditional pdf , which follows from
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substituting for in the pdf of the noise DFT coefficient
as follows:

(2)

where is the noise spectral variance. is the
expectation operator. The variance of will be denoted as .

B. General MMSE Expressions

In MMSE estimation of the complex DFT-coefficients, we
minimize the following Bayesian risk :

(3)

where is the clean speech DFT coefficient, its estimate, and
the joint conditional pdf of the real and imag-

inary parts of , given the noisy DFT coefficient . Mini-
mizing (3) w.r.t. and leads to the following expression for
the estimator:

(4)

is often expressed as multiplied by a spectral gain function
, i.e., . The spectral gain function depends on ,
, and . Using Bayes’ rule, it can be expressed as follows:

(5)

The transformation to polar coordinates will be useful in the
following. Making use of Assumption 2), (5) turns into

(6)

C. Proof That Is Real and Positive

The denominator of (6) is real and positive. To prove that
is real and positive, we only have to consider the numerator.
Consider the integral over as follows:

(7)

From Assumptions 1) and 3) in the previous section, it follows
that depends only on the distance between
the noisy DFT coefficient and the clean DFT coefficient. See (2)
and the graphical explanation in Fig. 1. When considered as a
function of , is symmetric, i.e., an even function,
around and is periodic in with period . Since

Fig. 1. Consider y which could result from many different speech and noise
DFT-coefficient pairs, for example, s +n or s +n . Under Assumptions 1)
and 3), f (yjs) is given by (2) and depends only on the magnitude d = jy�sj
of the noise DFT coefficientn. Therefore, f (yjs ) equals f (yjs )when
d = d .

is an odd function around , the imaginary part of the
integral (7) will vanish and we are left with

(8)

Therefore, (6) is real. Since , seen as a function
of , has its largest values where , i.e., between

and , (8) is positive and as well.

D. Proof That Is Less Than or Equal to

The expression for the gain function for MMSE estimation
of the amplitude is (see, e.g., [1])

(9)

The only difference with (6) is the complex exponential
in the numerator of (6) of which only the real part
contributes to the integral. Since , it follows
immediately that , since and are
greater than or equal to 0. Note that we have not assumed any
specific distribution for the speech amplitudes.

III. MMSE ESTIMATION OF THE SPEECH PHASE

Ephraim and Malah [1] considered estimation of the speech
phase under the assumption of a complex Gaussian distribution
for the DFT coefficients of noise and speech. They showed that
the MMSE estimator of the complex exponential of the speech
phase has an argument equal to the noisy phase, but it has a mag-
nitude smaller than one. The MMSE estimator of the complex
exponential, constrained to have unity magnitude, was shown to
be equal to the complex exponential of the noisy phase. Further-
more, they showed that the estimator minimizing the following
cosine criterion

(10)

again leads to the noisy phase as the optimal estimator for the
clean speech phase. We will extend these results in the following
way: under the fairly general conditions of Section II-A, we will
show that the MMSE estimator of the speech phase itself equals
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the noisy phase. We will not make any assumptions about the
speech amplitude distribution .

We will use in the following that is symmetric
around the noisy phase . This can be shown as follows. Using
Bayes’ rule and Assumption 2), we can express as

(11)

is periodic in with period and depends on
. The integral over in the denominator is over one

whole period and therefore does not depend on . In the numer-
ator, only depends on and is symmetric around

. Therefore, is symmetric around .
is also periodic in with period , because is pe-
riodic in and does not depend on [Assumption 2)].

The MMSE estimator of the clean phase follows from
minimizing

(12)

w.r.t. . Note that we have not specified the boundaries of the
integral yet. integrates to 1 for any -interval of .
Still, the value of depends on the integration bound-

aries, because of the term . For a given value of ,
(12) will be minimized w.r.t. the integration boundaries if we
integrate from to . The MMSE estimator of is
therefore the value of that minimizes

(13)

This equation means that we will minimize the mean-square
error w.r.t. and the integration boundaries. To make the min-
imization of (13) easier, we make the substitution ,
leading to

(14)

where is symmetric around . Further-
more, it will have most of its probability mass near that value
since in (11) does not depend on . will there-
fore be minimized if we choose such that the maximum of

lies at , i.e., for , where there is min-
imal weighting from the term. This leads to the noisy phase

as the MMSE estimator of the clean phase.

A. Relaxation of Assumption 3)

From the explanations, it should be clear that all results of
Sections II and III remain valid if we relax Assumption 3) of
Section II-A to: the noise phase is uniformly distributed, i.e.,

, and has most of its probability mass near
the origin.

IV. COMPLEX-DFT ESTIMATORS UNDER

GENERALIZED-GAMMA AMPLITUDE PRIORS

In this section, we derive MMSE complex-DFT estimators
under a generalized-Gamma density of the speech DFT magni-
tudes with the assumptions of Section II-A. The corresponding

MMSE DFT-magnitude estimators have been published in [4].
The generalized-Gamma density is defined as

(15)

The parameter depends on , , and . We consider here the
cases and . For , and
for , [4].

We are interested in . From Section II, we know that
the corresponding gain function is given by

(16)
This gain function can always be written as a function of two di-
mensionless parameters, the a priori SNR and the a posteriori
SNR , defined as and , respectively.
The density was given in (2).

A. Gain Function for

Inserting (15) with and (2) into (16) and using [5, Eqs.
8.431.5, 6.643.2, 9.210.1, 9.220.2] leads, for , to

(17)

where is the confluent hypergeometric function. The su-
perscript indicates that . Equation (17) reduces to the
Wiener filter for .

B. Gain Function for

Substituting (15) with and (2) into (16) and using [5,
Eq. 8.431.5] leads to

(18)
where is the modified Bessel function of the first kind and
order . The superscript means that . If we make the
transformation and define , (18)
can be written as

(19)
The derivative of is . Using partial integration of the
numerator, (19) can alternatively be written as

(20)

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:17:28 UTC from IEEE Xplore.  Restrictions apply. 



216 IEEE SIGNAL PROCESSING LETTERS, VOL. 15, 2008

The integrals cannot be solved analytically. Similar integrals ap-
pear in the equations for the amplitude gain functions under the
same [4]. Approximation of the Bessel functions leads
to integrals that can be solved analytically. Using Taylor expan-
sions in (19) leads to approximations that are accurate at low
SNRs. The Taylor expansions of and , truncated
after terms, are given by [6, Eq. 9.6.10]

(21)

Substitution of (21) into (19) and using [5, Eq. 3.462.1], we find
for the gain function for for low SNRs as follows:

(22)

where , is the gamma function, and
is a parabolic cylinder function of order . Notice that

one could also derive a gain function for low SNRs by using the
Taylor expansion of in (20). However, it can be shown
that this will lead to a less accurate approximation than (22).

Using the large-argument approximation [6, Eq. 9.7.1]

(23)

in (20) leads to an approximation that is most accurate at high
SNRs. We find the gain function, valid for , by substi-
tution of (23) into (20) and using [5, Eq. 3.462.1]

(24)

where .
1) Combining and : In order to combine the two

gain functions and into one estimator,
we adopt the procedure used in [4], where the maximum of both
gain functions was found to be an accurate approximation of
the exact MMSE gain for a wide range of the parameters. The
combined gain function is then defined as

(25)

valid for . Numerical computations have shown that the
maximum relative errors in (25) w.r.t. (18) lie between dB
and 0.7 dB for , and between dB and 0.7 dB for

, where a positive error means (25) is larger than (18).

Fig. 2. Complex-DFT and DFT-magnitude gain curves for � = �5 dB and
� = 10 dB, for (a) 
 = 1, � = 0:6, K = 20 and (b) 
 = 2, � = 0:15.

C. Illustration of Complex-DFT Estimators

We have computed the gain functions and for a
wide range of the parameters, compared them to their ampli-
tude counterparts in [4], and verified that the complex-DFT gain
functions are always the smallest. This remains true for the ap-
proximations applied in the case. The complex-DFT and
amplitude gain functions are illustrated in Fig. 2 for ,

, and , and for , . All gain func-
tions are plotted for the a priori SNR values dB and

dB, as a function of .

V. CONCLUDING REMARKS

Existing complex-DFT estimators of speech generally as-
sume the real and imaginary parts to be independent, although
this assumption is not valid. We have shown some interesting
general relations between the complex-DFT estimators and
their magnitude counterparts, without making the indepen-
dence assumption. For example, the complex-DFT estimators
always suppress more noise than the corresponding magnitude
estimators. This is a consequence of minimizing a different
error criterion. It depends on the application which type of
estimator is to be preferred.
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