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In this numerical study we investigate the flow induced by metachronal coordination
between beating cilia arranged in a densely packed layer by means of a continuum
model. The continuum approach allows us to treat the problem as two-dimensional
as well as stationary, in a reference frame moving with the speed of the metachronal
wave. The model is used as a computationally efficient design tool to investigate cilia-
induced transport of a Newtonian fluid in a plane channel. Contrary to prior continuum
models, the present approach accounts for spatial variations in the porosity along the
metachronal wave and thus ensures conservation of mass within the cilia layer. Using
porous-media theory the governing volume-averaged Navier–Stokes (VANS) equations
are derived and closure formulations are given explicitly for the model. This makes it
possible to investigate cilia-induced flow with a continuum model in both the viscous
regime and the inertial regime. The results show that metachronal coordination can
act as a transport mechanism in both regimes. Porosity variations appear to be the
key mechanism for correct prediction of the fluid transport in the viscous flow regime.
The reason is that spatial variations in the porosity break the symmetry of the drag
distribution along the metachronal wave. A new insight that has been gained is that
the fluid transport reverses, thus switches from plectic to antiplectic metachronism, for
the same cilia beat cycle when the wavespeed is increased such that inertial effects
occur. Based on a parameter study, the net transport in the channel is described by
a power-law relation of the amplitude, length and speed of the metachronal wave. It
is found that the wavelength has the strongest effect on the viscosity-dominated fluid
transport.
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1. Introduction
Cilia are slender 5–10 µm long hair-like organelles extending from the cell body.

Cilia play a vital role in many biological systems. There are two types of cilia:
motile and non-motile. The latter typically function as sensory organelles. Motile
cilia in mammalian airways transport mucus and pollution out of the lungs. Various
micro-organisms use motile cilia, covering their surface, to propel themselves in water.
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FIGURE 1. (a) Array of cilia attached to both sides of a plane channel. The cilia beat in
metachronal coordination which induces surface waves that travel with speed c. (b) Array of
cilia represented by a periodically deforming porous layer.

Motile cilia typically perform a configurationally asymmetric cilia beat cycle
(Khaderi et al. 2010) by carrying out either an oar-like beat cycle or a plain beat
cycle, where the cilium stretches during the forward stroke and bends during the
backward stroke. A configurationally asymmetric cilia beat cycle is known to be a key
mechanism for creating net transport of viscous flows (e.g. Purcell 1977).

When cilia occur in large groups they typically beat slightly out of phase
with respect to adjacent cilia. This synchronization between beating cilia is called
metachronal coordination. It results in a wave that travels along the cilia tip surface,
which we refer to as a metachronal wave.

Inspired by cilia in nature, increased effort is now devoted to the design and
fabrication of artificial cilia for microfluidic applications. Numerical studies have
been performed by Khatavkar et al. (2007) and Khaderi et al. (2009), showing that
electromagnetically driven artificial cilia can induce mixing and pumping. Cilia-like
structures of micrometre scale have been built by different groups (see Nonaka et al.
2005; Singh, Laibinis & Hatton 2005), but it was only recently that artificial cilia
could be synthesized and externally actuated to manipulate fluid on sub-millimetre
scales (see den Toonder et al. 2007; Baltussen et al. 2009; Fahrni, Prins & van
Ijzendoorn 2009; Oh et al. 2009; Hussong et al. 2011). A brief overview of
experimental work is given by Zhou & Liu (2008). To date, systems with artificial
cilia are based on a synchronous cilia motion (see Shields et al. 2010; Vilfan et al.
2009). If cilia beat in synchrony, a strongly oscillating forward–backward flow is
induced in the viscous regime and net fluid transport can be achieved only if the cilia
beat cycle exhibits a configurationally asymmetric beat cycle.

In this paper we show that metachronal coordination can be used in the design of
artificial cilia as another means for inducing net fluid transport. The present paper
introduces a numerical continuum model in which an array of out-of-phase beating
cilia (figure 1a) is represented by a periodically deforming porous layer that forms
travelling waves of speed c on the surface (figure 1b). The continuum model serves
as a computationally efficient design tool to investigate fluid transport by metachronal
coordination between beating cilia. The cilia are considered to be straight cylinders
that cover both channel walls. The rigid cilia rotate periodically forward and backward
around their base point. The cilia beat is configurationally symmetric since the forward
stroke is exactly the opposite of the backward stroke. It means that a net fluid
transport can originate solely from the metachronal coordination between beating cilia.

Existing models of cilia-induced flow can be divided into three groups: the discrete
cilia models, the cilia envelope models and the cilia sublayer models. In the group
of discrete cilia models, the cilia-interaction models, the effect of the cilia on the
fluid is represented by a simple viscous drag relation. Such an approach was used by
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Gueron & Liron (1993), who developed a slender-body approach to simulating three-
dimensional ciliary beats that allows for cilia interactions. Cilia-interaction models
have been extensively used to show that the onset and self-sustaining character of
metachronal coordination is the result of hydrodynamic interaction between beating
cilia (Gueron et al. 1997; Gueron & Levit-Gurevich 1998; Lenz & Ryskin 2006;
Guirao & Joanny 2007). Discrete cilia models that simulate the flow field around
the cilia typically make use of the immersed boundary method (IBM: Peskin 1972),
in which the effect of cilia on the flow is included as an additional forcing term
in the momentum equations. Dauptain, Favier & Bottaro (2008) developed a three-
dimensional, one-way coupled cilia model to investigate the flow induced by cilia rows
of Pleurobrachia. The flow was in the inertial regime with 50 < Re < 200 where the
Reynolds number is based on the cilia tip velocity and cilia length. Imposing the cilia
velocities obtained from PTV measurements (Barlow & Sleigh 1993), they found that
the propulsion of Pleurobrachia is related to a blowing/suction effect of the system
and the beat parameters. Heys et al. (2008) studied ciliary interaction of sensing hairs
of crickets by using the penalty immersed boundary method of Kim & Peskin (2007)
to account for inertia and gravity forces of the hairs. Mitran (2007) developed an
overlapping grid model in which a moving grid was fitted around single cilia moving
over a fixed Cartesian background grid.

Discrete models provide detailed insight into the flow, but they are computationally
expensive. They are therefore unsuitable for simulating many cilia or performing
extensive parameter studies. When the detailed flow around individual cilia is not of
interest, computationally efficient approaches are advantageous such as the envelope
and sublayer models. In the envelope model the tip surface of densely packed cilia
is approximated as a deforming impermeable wall. Envelope models were extensively
used for studies of self-propulsion of minute bodies in a viscous fluid (Taylor 1951;
Brennen 1974; Katz 1974) and investigations of the role of transverse and longitudinal
wave oscillations (Tuck et al. 1968; Nielsen & Larsen 1993). Such approaches hinge
on the assumption of an impermeable wall, which disregards the inflow and outflow of
fluid through a ciliated surface.

The sublayer models represent a ciliated surface as a fully submerged layer of
beating structures. Two types of sublayer models can be found in literature, known
as the discrete sublayer models and the continuum sublayer models. In the following,
we will simply refer to the continuum sublayer models as the continuum models. The
discrete sublayer model is based on the slender-body theory for Stokes flow, in which
a cilium is represented by force singularities distributed along the cilium’s centre line.
The velocity profile of cilia beating in metachronism in a viscous fluid is derived by
super-positioning the flow induced by multiple cilia (Blake 1972; Liron & Mochon
1976; Liron 1978; Smith, Gaffney & Blake 2007b). The discrete sublayer model is
only valid for Stokes flow, and since it neglects the hydrodynamic interaction between
adjacent cilia it is more appropriate for systems with widely spread cilia (Brennen &
Winet 1977).

In the continuum model the action of cilia is represented by a spatially
continuous volume force. Continuum models have often been used to simulate
cilia-induced mucus transport and are therefore also called traction-layer models.
A forerunner model was developed by Barton & Raynor (1967), who achieved an
analytical continuum formulation by averaging the velocity fields of multiple cilia.
Different continuum models have been developed to simulate mucociliary transport
of Newtonian and non-Newtonian fluids (Blake & Winet 1980; King, Agarwal &
Shukla 1993; Smith, Gaffney & Blake 2007a). The long list of cilia-mucus models
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is thoroughly reviewed by Smith, Gaffney & Blake (2008). The continuum models
mentioned above bear a strong resemblance to the modelling of a so-called Brinkman
layer of slow non-uniform flow through a porous medium. They assume a linear
relation between cilia-induced drag and velocities in the viscous flow regime. They
also neglect variations of porosity along the metachronal wave, thereby violating local
mass conservation in the cilia layer.

In the continuum model presented in this paper, the action of the submerged cilia is
modelled as a periodically deforming porous layer. Unlike previous continuum models,
the model accounts for spatial variations in the porosity along the metachronal wave
and ensures conservation of mass within the porous layer. The model makes use
of the porous-media theory developed by Whitaker (1999) and others, incorporating
the full volume-averaged Navier–Stokes equations, which will be referred to as the
VANS equations. We solve the VANS equations in a frame of reference that moves
along with the travelling wave, so that the position of the cilia tip surface is fixed in
time and the problem can be treated as stationary. For solving the VANS equations
appropriate closures are required, for example, for the drag force, which is discussed
in § 2.1. The present model is the first continuum model that allows us to investigate
cilia-induced flows both in the viscous and inertial regime up to moderate Reynolds
numbers. This is of great importance for the process of designing artificial cilia
of variable size, interciliary spacing and beat frequencies. To support the results of
the present continuum model, we qualitatively compare its velocity field to that of
a discrete two-dimensional model. Subsequently, a sensitivity study will reveal the
influence of porosity variations on the fluid transport through the effect of mass
conservation and the drag force distribution along the metachronal wave. Finally, the
influence of the wave amplitude, the wavelength and the wavespeed is investigated.
Our study sheds light on the role of metachronal coordination on fluid transport and it
reveals the main mechanisms that are responsible for net fluid transport along with or
against the direction of the wavespeed.

2. The volume-averaged Navier–Stokes equations for a deforming porous
medium

In this paper, a dense array of cilia is interpreted as a locally nearly ordered
porous layer that is periodically deforming in time. The mathematical framework for
describing the macroscopic flow through the porous layer is provided by the method
of local volume averaging (Whitaker 1999). In this section, the governing VANS
equations are derived and appropriate closures are formulated for e.g. the drag force.
The superficial volume average of an arbitrary microscopic quantity ψα in phase α can
be formally defined as (Quintard & Whitaker 1994):

〈ψα〉 ≡
∫

V
m(y)γα(x+ y)ψα(x+ y) dV, (2.1)

where y is the relative position vector with respect to the centroid x of the averaging
volume V , m is the weighting function and γα is the phase-indicator function of phase
α (γα = 1 inside phase α and γα = 0 otherwise). Henceforth α = σ denotes the solid
phase of a porous medium and α = β refers to the fluid phase. Note that γα depends
on time for deformable porous media.

To derive a convenient form of the Navier–Stokes equations we need to link
volume-averaged derivatives to derivatives of volume-averaged quantities. The general
transport theorem provides such a link for time derivatives, which reads for a
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variable γα (Whitaker 1999):〈
∂ψα

∂t

〉
= ∂

∂t
〈ψα〉 −

∫
Aβσ

m(y)ψα(x+ y)w ·nβσ dA, (2.2)

where w is the local velocity of the interface, which in our case is equal to the local
value of uβ . Aβσ is the fluid–solid surface area within the averaging volume and nβσ is
the unit normal on Aβσ that points into the solid phase. The spatial averaging theorem
relates the volume average of a spatial gradient to the spatial gradient of a volume
average (Whitaker 1999):

〈∇ψα〉 =∇〈ψα〉 +
∫

Aβσ

m(y)ψα(x+ y)nβσ dA. (2.3)

Applying volume averaging to the Navier–Stokes equations and using (2.2) and (2.3)
yields the volume-averaged Navier–Stokes (VANS) equations:

∇ · 〈uβ〉 = −∂εβ
∂t
, (2.4a)

∂〈uβ〉
∂t
+∇ ·

( 〈uβ〉〈uβ〉
εβ

)
+∇ ·

(
〈uβuβ〉 − 〈uβ〉〈uβ〉

εβ

)
=− 1

ρ
∇〈pβ〉 + ν∇2〈uβ〉 + ν∇ ·

∫
Aβσ

muβnβσ dA

+
∫

Aβσ

m

(
−pβ
ρ

I + ν∇uβ
)
·nβσ dA, (2.4b)

where εβ is the volume fraction of the liquid phase and εσ = 1 − εβ is the volume
fraction of the solid phase inside V . Since (2.4b) describes the volume-averaged
momentum balance of the liquid phase inside a porous medium, it holds for 0< ε 6 1.
The left-hand side of (2.4b) is expanded by ∇ · (〈uβ〉〈uβ〉/εβ) such that the third
term on the left-hand side represents the effect of subfilter-scale dispersion on
transport of volume-averaged momentum. The third term on the right-hand side
represents the effect of net transport of solid material across the averaging volume
on viscous diffusion of volume-averaged momentum. The last term on the right-hand
side represents the drag force that the solid phase exerts on the fluid phase.

To reformulate the VANS equations in a convenient form we make use of intrinsic
volume averages. Superficial and intrinsic quantities are linked by the porosity
εα ≡ 〈γα〉 of the phase α inside V:

〈ψα〉 ≡ εα〈ψα〉α. (2.5)

Furthermore we make use of the decomposition of a microscopic quantity ψα into
an intrinsic volume average and a subfilter-scale contribution as introduced by Gray
(1975):

ψα = 〈ψα〉α + ψ̃α. (2.6)

An important simplification of the VANS equations can be obtained when assuming
that the volume-averaged quantities are well-behaved. A volume-averaged quantity is
well-behaved if it undergoes only small changes within an averaging volume. In this
case we can make use of the following relation:

〈〈ψα〉α〉α ≈ 〈ψα〉α. (2.7)
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The requirement of well-behaved volume-averaged quantities imposes some limitations
on the choice of the weighting function and averaging volume, since the flow rapidly
changes across the cilia tip interface. Therefore, an appropriate averaging volume for
the present study would be a thin elongated slab with a thickness of smaller order than
the interface thickness di and a streamwise extent on the order of the spacing between
two neighbouring cilia.

With help of (2.5)–(2.7), we can express the VANS equations (2.4a) and (2.4b) in
intrinsic quantities:

∇ · 〈uβ〉β =− 1
εβ

(
∂εβ

∂t
+ 〈uβ〉β · ∇εβ

)
, (2.8a)

∂〈uβ〉β
∂t
+ 〈uβ〉β · ∇〈uβ〉β + 1

εβ
∇ · εβ〈ũβ ũβ〉β

=− 1
ρ
∇〈pβ〉β + ν∇2〈uβ〉β + ν

εβ
∇ ·

∫
Aβσ

mũβnβσ dA

+ 1
εβ

∫
Aβσ

m

(
− p̃β
ρ

I + ν∇ũβ
)
·nβσ dA. (2.8b)

A detailed derivation of (2.8a) and (2.8b) is given in Appendix A. Equations (2.8a)
and (2.8b) are under-determined due to the unknown subfilter-scale quantities ũβ and
p̃β . For solving the VANS equations closures are required for the third term on the
left-hand side and the last two terms on the right-hand side. This is discussed in the
next subsection.

2.1. Closure formulations
The third term on the left-hand side of (2.8b) represents the effect of subfilter-scale
dispersion. Scaling shows that this term is of lower order of magnitude compared to
the drag force and can therefore be neglected (Breugem & Boersma 2005; Breugem,
Boersma & Uittenbogaard 2006).

To derive a closure model for the third term on the right-hand side of (2.8b), we
assume locally near-uniform motion of the solid phase. This means that the local
solid phase velocity can be approximated by its intrinsic average: uσ ≈ 〈uσ 〉σ . This
assumption is allowed provided that the streamwise extent of our averaging volume
is small compared to the wavelength of the metachronal wave. We can use this
assumption to approximate the no-slip condition at the interface Aβσ by

〈uβ〉β + ũβ ≈ 〈uσ 〉σ (on Aβσ ). (2.9)

This relation allows us to approximate the subfilter-scale contribution ũβ by ũβ ≈
〈uσ 〉σ −〈uβ〉β . The third term on the right-hand side of (2.8b) can then be parametrized
as follows:

ν

εβ
∇ ·

∫
Aβσ

mũβnβσ dA≈− ν
εβ
∇ ·

(
[〈uβ〉β − 〈uσ 〉σ ]

∫
Aβσ

mnβσ dA

)
= ν

εβ
∇ · ([〈uβ〉β − 〈uσ 〉σ ]∇εβ), (2.10)

where we used that
∫

Aβσ
mnβσ dA = −∇εβ . This follows from (2.3) by substituting

ψα = 1.
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For the last term in (2.8b) we make use of the closure formulation proposed by
Whitaker (1996) for a rigid porous medium. We assume that this parametrization
is also valid for a deforming porous medium where the drag force between the
porous medium and the fluid phase is not based on 〈uβ〉β alone but on the difference
〈uβ〉β − 〈uσ 〉σ ; this is consistent with the Galilean invariance of the drag force and
the previous assumption of a locally uniform motion of the solid phase. The closure
formulation for the drag force reads:

1
εβ

∫
Aβσ

m

(
− p̃β
ρ

I + ν∇ũβ
)
·nβσ dA=−νεβK−1 (I + F ) · [〈uβ〉β − 〈uσ 〉σ ], (2.11)

where I , K and F are the unit, the permeability and the Forchheimer tensors,
respectively. In (2.11) the effect of flow non-uniformity on the drag force (Breugem
2007) is neglected, since this correction is usually small; the effective viscosity
experienced by the volume-averaged flow is therefore approximated by the fluid
viscosity. Neglecting subfilter-scale dispersion and applying (2.10) and (2.11) to (2.8a)
and (2.8b) yields the following closed form of the VANS equations:

∇ · 〈uβ〉β =− 1
εβ

(
∂εβ

∂t
+ 〈uβ〉β · ∇εβ

)
, (2.12a)

∂〈uβ〉β
∂t
+ 〈uβ〉β · ∇〈uβ〉β =− 1

ρ
∇〈pβ〉β + ν∇2〈uβ〉β + ν

εβ
∇ · ([〈uβ〉β − 〈uσ 〉σ ]∇εβ)

− νεβK−1 (I + F ) · [〈uβ〉β − 〈uσ 〉σ ], (2.12b)

where the third and the fourth term on the right-hand side are the closure formulations
for the equivalent terms in (2.12b). The third term on the right-hand side represents
the contribution to viscous diffusion of the volume-averaged momentum due to net
transport of solid material across the averaging volume. The last term on the right-
hand side represents the drag force that the solid phase exerts on the fluid phase.

The system of equations given by (2.12a) and (2.12b) can now be solved
numerically provided that the porosity, the solid phase motion, the permeability and
the Forchheimer tensor are given.

3. The flow geometry
In this section, we derive expressions for the solid phase motion 〈uσ 〉σ , the porosity

εβ , the permeability tensor K and the Forchheimer tensor F . The macroscopic flow
geometry is illustrated in figure 2(a). We consider a plane channel of which the walls
are covered by beating cilia in a staggered arrangement. The cilia are considered to be
straight rigid cylinders of length h and diameter D which periodically rotate forward
and backward around their anchor points between a maximum orientation angle of
θmax = π/2 and a minimum orientation angle of θmin = arcsin(1− (2A/h)) which results
from (3.2) and (3.3). Adjacent cilia beat slightly out of phase such that the deviation
of the cilia tip surface from its nominal position can be described by a travelling
(metachronal) wave of length λ and amplitude A that propagates at speed c over the
cilia tip surface:

d(x, t)= A sin(k[x− ct]), (3.1)

where A is the wave amplitude, k = 2π/λ the wavenumber with λ the wavelength, and
c the wavespeed. The orientation angle θ of the cylindrical cilia elements is related to
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FIGURE 2. (a) Illustration of the densely packed arrangement of cilia attached to the walls
of a plane channel. The tip surface of the beating cilia is described by a travelling wave
with wave amplitude A, wavelength λ, wavespeed c and interface thickness di. The height
of the computational domain equals the sum of the nominal half-channel height Hn and the
cilia length h. (b) Close-up of a unit cell of the staggered cilia arrangement which is used
to determine the bulk porosity εβ . The rigid cilia rotate periodically forward and backward
around their base point at y = −h. The deviation of the cilia tip position from the nominal
thickness of the cilia layer dn at x ± a/2 is defined as d1,2 = d(x ± a/2) and consequently
l1,2 =

√
h2 − (d1,2 + dn)2.

Hn

dn

h–Amax
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–h

0

0 2
2

FIGURE 3. The wave amplitude A of the metachronal wave is restricted by the cilia length h
and the interface thickness di of the metachronal wave.

the phase angle of the travelling wave according to

sin(θ)= d + dn

A+ dn
=
(

A

h

)
sin(k[x− ct])+

(
dn

h

)
, (3.2)

where dn is the nominal thickness of the cilia layer. Since the cilia cannot penetrate
the channel wall, the minimum height of the cilia layer equals the cilia thickness.
However, to ensure a smooth transition of the porosity at the cilia tip surface, the
interface thickness di must be resolved along the wave (see figure 3). The resulting
maximum wave amplitude is therefore described by

Amax 6
1
2

(
h− di

2

)
= dn − di

2
. (3.3)

3.1. The solid phase motion
The solid phase velocity 〈uσ 〉σ can be derived from the angular velocity of a cilium
which is computed by taking the time derivative of (3.2):

∂θ

∂t
=−Akc cos(k[x− ct])

h cos(θ)
. (3.4)
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Assuming solid body rotation, the velocity of a small segment of the cylindrical
element is given by uσ = [(y + h)/ sin(θ)](∂θ/∂t)eθ , with eθ being the unit vector
pointing in the θ -direction. The horizontal velocity component follows from the inner
product with the unit vector ex in the x-direction, where eθ · ex = − sin(θ). Assuming
locally uniform motion of the solid phase (see § 2.1), the solid phase velocity is
approximately equal to its intrinsic volume average: uσ ≈ 〈uσ 〉σ . For hA/λ2 � 1, the
intrinsic solid phase velocities over the height of the cilia layer are well approximated
with the velocities along the cilia elements:

〈uσ 〉σ ≈ Akc cos[k(x− ct)]
(

y+ h

d + dn

)
tan(θ), (3.5a)

〈vσ 〉σ ≈−Akc cos[k(x− ct)]
(

y+ h

d + dn

)
. (3.5b)

3.2. The porosity
The porosity in the core of the cilia layer is related to the volume fraction of cilia
within a representative volume, as shown in figure 2. For simplicity the porosity is
assumed to be only a function of the cilia position in the x-direction but constant over
the height of the cilia layer, which holds if the ratio of the wave amplitude A to the
wavelength λ stays small compared to the cilia number density λ/a, which can be
expressed as Aa/λ2� 1. After some mathematical manipulations (see Appendix B) the
following expression is found for the porosity in the core of the cilia layer:

εβ,c(x, t)= 1− πD2h

b(a[d1 + d2 + 2dn] − l1[d2 + dn] + l2[d1 + dn]) , (3.6)

where D is the cylinder diameter, b is the cilia spacing in the spanwise direction,
d1,2 = d(x± (1/2)a) and l1,2 =

√
h2 − (d1,2 + dn)2.

In a thin layer of thickness di centred around the cilia tip surface (−(1/2)di 6 y 6
(1/2)di), the porosity varies rapidly from εβ = εβ,c to εβ = 1. A rapid but smooth
change in the porosity can be modelled appropriately by a fifth-order polynomial
(Breugem & Boersma 2005):

εβ,i(x, y, t)= 1− 6(εβ,c − 1)
(

y+ A− d − di/2
di

)5

− 15(εβ,c − 1)
(

y+ A− d − di/2
di

)4

− 10(εβ,c − 1)
(

y+ A− d − di/2
di

)3

. (3.7)

The simple porosity formulation (3.6) holds provided that adjacent cilia do not
overlap. If it is assumed that D/h� 1, this requirement is fulfilled when it holds that(

d1 + dn

d2 + dn

)
>

(
l1 − a

l2

)
. (3.8)

3.3. The permeability and Forchheimer tensor
As a first ansatz for the permeability and Forchheimer tensors we choose the modified
Ergun model (MacDonald et al. 1979; Bird, Stewart & Lightfoot 2002), which is a
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semi-empirical model that is widely used for packed beds:

K = d2
p

180

ε3
β

(1− εβ)2 I, (3.9a)

F = εβ

100(1− εβ)
|〈uβ〉β − 〈uσ 〉σ |dp

ν
I, (3.9b)

where dp is the so-called mean particle diameter. In the present model we are dealing
with rigid cylinders of diameter D, and we therefore use dp = (3/2)D.

4. Discretization
4.1. The normalized VANS equations

Henceforth we solve the VANS equations in a frame of reference that moves along
with the travelling wave, so that the position of the cilia tip interface is fixed in time
and the problem can be treated as stationary. Note that in this case ∂εβ/∂t = 0.

Our flow geometry contains several velocities and length scales. The bulk velocity
in the channel region is expected to scale with the wavespeed c, so c is chosen
as a characteristic velocity scale. Since the dependency of the bulk velocity on the
wavelength and wave amplitude is not known a priori, we simply choose the nominal
half-channel height Hn as a length scale. The VANS equations are normalized with
c and Hn, hence the Reynolds number reads Re = Hnc/ν. In the moving frame of
reference the non-dimensionalized VANS equations read:

∇ · 〈uβ〉β =− 1
εβ
〈uβ〉β ·∇εβ, (4.1a)

∂〈uβ〉β
∂t
=−〈uβ〉β ·∇〈uβ〉β −∇〈pβ〉β + 1

Re
∇2〈uβ〉β + 1

εβRe
∇ · ([〈uβ〉β − 〈uσ 〉σ ]∇εβ)

− 1
Re

[√
180(1− εβ)
εβdp

]2

(〈uβ〉β − 〈uσ 〉σ )

−
[

1.8(1− εβ)
εβdp

]
|〈uβ〉β − 〈uσ 〉σ |(〈uβ〉β − 〈uσ 〉σ ). (4.1b)

The last two terms of (4.1b) were derived by substituting (3.9a) and (3.9b) for the
permeability and the Forchheimer tensor into the last two terms of (2.12b), which
represent the linear and nonlinear contribution of the drag force that the solid phase
exerts on the fluid phase. Note that (4.1b) is only defined for 0 < ε 6 1. For ε = 1
it recovers the Navier–Stokes equations. The flow is subjected to the following (non-
dimensionalized) boundary conditions: 〈uβ〉β = −1 and 〈vβ〉β = 0 at y/Hn = −h/Hn,
∂〈uβ〉β/∂y = 〈vβ〉β = 0 at y/Hn = 1. Periodic boundary conditions are applied at x = 0
and x= λ. Note that all results are shown in a fixed frame of reference.

4.2. Numerical scheme
The VANS equations (4.1a) and (4.1b) are discretized on a staggered and uniform
Cartesian grid. In all simulations the dimensions of the grid are dx/Hn = dy/Hn =
1/100. The spatial derivatives are estimated with a second-order central-difference
scheme. The flow problem can be treated as stationary in a frame of reference
moving along with the travelling wave. A time-marching algorithm is used to reach
the stationary solution. The terms in (4.1b) are integrated in time with a second-order
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Adams–Bashforth scheme, except for the pressure-gradient term that is integrated with
the Crank–Nicolson scheme (Wesseling 2001). To satisfy (4.1a), a pressure-correction
scheme is used in which the correction pressure is kept small by updating the pressure
every time step. The total scheme is second-order accurate in both space and time and
can be summarized as follows:

ûi − un
i

1t
=−∂pn−1/2

∂xi
+ 3

2
Rn

i −
1
2

Rn−1
i , (4.2a)

∂2p̂

∂x2
i

= 1
1t

1
εβ

∂[εβ ûi]
∂xi

, (4.2b)

un+1
i = ûi −1t

∂ p̂

∂xi
, (4.2c)

pn+1/2 = pn−1/2 + p̂, (4.2d)

where un
i is a short notation for 〈uβ,i〉β at time step n, ûi is the prediction velocity,

p̂ is the correction pressure, and Ri is the right-hand side of (4.1b) excluding the
pressure-gradient term.

Equation (4.2b) was obtained by taking the divergence of (4.2c), replacing ∂un+1
i /∂xi

by the right-hand side of (4.1a) and estimating the velocity in this term at time step
n+ 1 by ûi. The error in this estimate is small since according to (4.2c) the difference
un+1

i − ûi is given by the product of the time step and the gradient of the correction
pressure, which are both kept small in our scheme. For steady flows the error rapidly
approaches zero when time progresses. The present scheme allows us to use a fast
direct Poisson solver. The VANS equations are solved on an equidistant Cartesian grid
with 28 500 to 75 000 cells for wavelengths between 1.9 and 5.0. The time step 1t is
computed from the stability constraints for the second-order Adams–Bashforth scheme
(Wesseling 2001).

5. Numerical results
5.1. Qualitative comparison with a discrete model

The macroscopic flow simulated with the continuum model is qualitatively compared
with the results of a discrete two-dimensional model. For the discrete model the
computationally efficient IBM of Uhlmann (2005) is used. When forcing is applied in
a sufficiently smooth spatial field, this method is second-order accurate.

In both models the motion of the cilia tip surface as well as the cilia length, cilia
thickness and streamwise spacing in between adjacent cilia are identical and fixed
in the simulations. The cilia width in both models differs since the geometry of
the discrete model is a two-dimensional configuration of rigid flaps with zero mass
flux across the cilia while the continuum model represents a staggered arrangement
of straight cylinders where fluid may flow around the cilia. Furthermore, we
approximated the cilia layer in the continuum model as an isotropic porous medium
by making use of the Ergun model. Due to the different cilia geometry and underlying
drag model, the results of the discrete and the continuum model can only be compared
qualitatively. The following simulation parameters are the same for all simulations
shown in this paper: h/Hn = 0.5, D/Hn = 0.04, a/Hn = 0.25 and di/Hn = 0.09. For
comparison a wave amplitude of A/Hn = 0.15 and a wavelength of λ/Hn = 3 are
chosen (see figure 2a).
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FIGURE 4. Qualitative comparison of the simulated velocity fields at Re= 1. (a) Discrete
IBM model, (b) continuum model.

Results of the discrete and the continuum model are shown in figures 4 and 6 in a
fixed frame of reference for a low and a high Reynolds number, respectively. In the
results for the discrete model the positions of the cilia are indicated by grey bars. For
the continuum model the cilia tip surface is indicated by a grey line. Velocity vectors
are shown in blue for the fluid phase and in red for the solid phase. Streamlines are
used to border regions of fluid recirculation, which are labelled R, and regions of fluid
transport, which are labelled T. For ease of discussion, we define in the following
the streamwise fluid velocity as positive when it points in the same direction as the
wavespeed and negative otherwise.

5.1.1. The viscosity-dominated flow regime
Figure 4 shows that at Re = 1 the simulated velocity field of the continuum model is

very similar to that of the discrete model. We verified that at this Reynolds number the
flow is dominated by viscous diffusion, i.e. inertial effects are negligible. A striking
feature of the flow is the upward directed fluid jet near the wave top at x = λ/4. This
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FIGURE 5. Porosity distribution and intrinsic solid phase velocities in the continuum model.

originates from cilia that move towards each other and thereby squeeze fluid out of
the voids in between them. At low Reynolds number this results in an upward fluid
jet that splits into a clockwise and an anticlockwise rotating recirculation cell. Part
of the ejected fluid is deflected in the propagation direction of the wave and dragged
into the cilia layer at the lee side of the wave until it merges into the jet of the next
wave downstream. The interplay between fluid being ejected and dragged generates a
‘street’ along which the actual fluid transport takes place. The different transport (T)
and recirculation (R) regions are bordered by streamlines.

Figure 5 depicts the porosity distribution inside the cilia layer. From this figure it
is observed that the porosity distribution is horizontally asymmetric with respect to a
line passing through the wave top at x/Hn = 3/4. A lower porosity at the lee side
compared to a higher porosity at the front side of the wave results in an asymmetric
distribution of the drag force according to the penultimate term in (4.1b). The positive
drag force at the lee side of the wave is larger than the negative drag force at the front
side of the wave, since the forward motion of the cilia at the lee side coincides with a
lower porosity.

5.1.2. The inertia-dominated flow regime
Figure 6(a,b) shows vector fields of the inertia-dominated flow. For the continuum

model the nonlinear drag contribution inside the cilia layer dominates over the linear
drag contribution for Re > 1450. Therefore we used Re = 2000 for the continuum
model to qualitatively compare the results at high Reynolds number. We verified that
at Re= 2000 the nonlinear drag contributes on average approximately 60 % to the total
drag inside the cilia layer. It is remarked that in figure 6 the Reynolds number is
not the same for the discrete and the continuum model. This is because the Reynolds
number only represents the wavespeed and the channel height, while it does not
account for the differences in the underlying cilia geometries of the discrete model
and the continuum model. Related to the different underlying cilia geometries, inertial
effects are much less pronounced in the continuum model, which implies that equal
Reynolds numbers in the two models do not yield quantitatively equal flow results. A
quantitative validation of the present continuum model requires a comparison with a
three-dimensional discrete model of the same underlying geometry (i.e. cylinders in a
staggered arrangement). Moreover, such a discrete model can be used to develop and
test a closure formulation for the drag force that more closely represents the action
of fast-beating cylindrical cilia than the formulation used in the present continuum
model as a first ansatz (see § 3.3). Such an investigation lies beyond the scope of
the present investigation and is left for future studies. Although in the discrete model
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FIGURE 6. Qualitative comparison of the simulated velocity fields. (a) Discrete IBM model
at Re= 100. (b) Continuum model at Re= 2000.

inertial effects become dominant at a significantly lower Reynolds number than in the
continuum model, the changes in the macroscopic flow pattern are qualitatively similar
for the transition from a viscosity-dominated to an inertia-dominated flow regime.
Unlike the low Reynolds number case, at high Reynolds number the fluid jet near the
wave top bends opposite to the direction of wave propagation and merges into a single
anticlockwise rotating recirculation cell. The deflection of the jet seems to originate
from a low-pressure region at the lee side of the wave. This in turn can be related
to the accelerating flow along the streamlines in this region, while simultaneously
viscous diffusion appears to be negligible. The recirculation cell extends in the
y-direction up to about y/Hn ≈ 0.5 and separates a major part of the cilia layer
from the fluid in the core of the channel. In the channel core the sense of rotation
of the recirculation cell induces a fluid transport in the direction opposite to the
wavespeed.
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Vortices at the tip of the cilia are present in the discrete model, for instance at
x/Hn ≈ 1 and x/Hn ≈ 1.5. These tip vortices are absent in the continuum model since
this model describes only the volume-averaged flow.

5.2. Sensitivity study of the effect of spatial porosity variations
The results in the previous section substantiate that metachronal coordination between
beating cilia may lead to net fluid transport. It was suggested that spatial variations
in the porosity along the cilia layer play a crucial role in this. In the governing
equations, the effect of porosity variations become evident in the mass conservation
equation (4.1a) and in the drag force formulation in the momentum equation (4.1b).
In a sensitivity study we investigated the effect of porosity variations on the flow for
λ/Hn = 3, A/Hn = 0.15 and Re = 0.01. When porosity variations were neglected in
the drag force formulation or in the mass conservation equation, a constant porosity
value of εβ = 0.82 was chosen, which is close to the spatially averaged porosity
value derived from the porosity distribution shown in figure 5. It is noted that the
results are qualitatively similar for different uniform porosity values (0.62 6 εβ 6 0.92).
The resulting wave-averaged superficial velocity profiles are depicted in figure 7. The
velocity profile including all effects of porosity variations is denoted by εβ(x) (solid
line without symbols). The velocity profile that results from a constant porosity in
both (4.1a) and (4.1b) is labelled εβ = 0.82 (line with triangles). A comparison of
both velocity profiles indicates that neglecting porosity variations leads to a strong
underestimation of the net flow and even predicts a fluid transport in the reversed
direction. A similar reversal in flow direction is observed when porosity variations
are neglected only in the drag force formulation (εβ,d = 0.82, circles). Neglecting
porosity variations in the mass conservation equation, on the other hand, leads to an
overestimation of the fluid transport (εβ,c = 0.82, squares).

Interestingly, when porosity variations are neglected in both the mass conservation
equation and the drag force formulation, the horizontal solid phase velocity does
not influence the flow. As depicted in figure 7 the resulting velocity profiles for
εβ = 0.82 with 〈uσ 〉σ = 0 and εβ = 0.82 with 〈uσ 〉σ 6= 0 fall on top of each other
(lines with triangles and hollow circles). The reason is that for a constant porosity
and a configurationally symmetric cilia beat the net horizontal drag force along the
metachronal wave is zero. In this case the flow is created by peristaltic motion of the
cilia layer.

From the above sensitivity study it is concluded that at low Reynolds numbers
the fluid transport is predominantly driven by the effect of porosity variations on the
distribution of the drag force along the metachronal wave. However, to correctly
predict the flow created by cilia beating in metachronal coordination, porosity
variations have to be incorporated in both the drag force formulation and the mass
conservation equation.

5.3. Influence of wave amplitude, length and speed on fluid transport
A parameter study is performed of the three parameters of the metachronal wave that
dominate the flow: the wave amplitude A, the wavelength λ, and the wavespeed c.
Since the Reynolds number Re = cHn/ν is linearly proportional to the wavespeed, we
represent an increasing wavespeed by an increasing Reynolds number.

The requirements of non-overlapping cilia and finite thickness of the cilia layer
at x = (3/4)λ impose restrictions on the range of the wave parameters A and λ:
see (3.3) and (3.8). Based on these criteria the maximum wave amplitude should
be A/Hn . 0.25 for λ/Hn = 3.0 and the wavelength should be λ/Hn & 1.9 for
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A/Hn = 0.15. The chosen range of wave amplitude and wavelength are well within
these limits.

Figures 8(a), 9(a) and 10(a) show the simulated velocity profiles averaged over
one wavelength. Figures 8(b), 9(b) and 10(b) show the corresponding net flow rates
Ub/c= (1/cλ(h+ Hn))

∫ Hn
−h

∫ λ
0 εβu(x, y) dx dy. In figure 8(a) velocity profiles are shown

for increasing wave amplitudes at a fixed wavelength of λ/Hn = 3.0 and fixed
Reynolds number of Re = 1. Within the cilia layer (−0.5 < y/Hn < 0) the wave-
averaged velocity is strongly varying. The velocity profile has a local minimum in
the upper half and a local maximum in the lower half of the cilia layer. The wave-
averaged velocity is nearly constant above the cilia layer (0 < y/Hn < 1). Figure 8(b)
shows that the bulk velocity increases almost linearly with the wave amplitude, which
is expressed by the following proportionality: Ub/c ∼ (A/Hn)

p with p = 1.127 ± 0.004
based on a least-squares error estimate.



A continuum model for flow driven by metachronally beating cilia 153

–0.5
0 0.05 0.10 0.15 0.20 0.25 0.30

0

0.5

1.0(a) (b)

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.05

0.10

0.15

A/ Hn = 5.0
A/ Hn = 4.2
A/ Hn = 3.8
A/ Hn = 3.4
A/ Hn = 3.0
A/ Hn = 2.6
A/ Hn = 2.2
A/ Hn = 1.9

A/

Ub/  c

u/ c

y/ Hn

/ Hn

FIGURE 9. Results for increasing wavelengths λ/Hn ∈ [1.9, 5.0] at A/Hn = 0.15 and Re = 1.
(a) Wave-averaged velocity profiles u(y)/c. The arrow points in the direction of increasing
λ/Hn. (b) Bulk velocities.

–0.1 0 0.1 0.2 0.3–0.5

0

0.5

1.0(a) (b)

Re = 40
Re = 140
Re = 500
Re = 3500

10–3 10–2 10–1 100 101 102 103

–0.02

0

0.02

0.04

0.06

Re

Re    0.1 Re     200
Re = 0.001
Re = 9

Ub/  c

u/ c

y/ Hn

FIGURE 10. Results for increasing Reynolds number Re= Hnc/ν ∈ [10−3, 3500] at
A/Hn = 0.15 and λ/Hn = 2.2. (a) Velocity profiles u(y)/c. (b) Bulk velocities.

Like figure 8, figure 9 shows the effect of the wavelength on the wave-averaged
velocity and the bulk velocity. The wave amplitude is fixed at A/Hn = 0.15 and Re= 1,
so the flow is in the viscous regime. In the limit λ/Hn →∞, the net flow rate
approaches zero, since in this limit all cilia beat in synchrony and thereby induce
a reversing forward–backward fluid motion in the viscous flow regime. A maximum
flow rate of Ub/c = 0.17 is reached at wavelength λ/Hn = 1.9 (see figure 9b), which
is almost four times higher than the flow rate reached at λ/Hn = 3 for the same
wave amplitude. Note that λ/Hn = 1.9 corresponds to nearly intersecting cilia; further
reducing the wavelength is physically prohibited. The bulk velocity decreases with the
wavelength according to Ub/c∼ (Hn/λ)

p with p= 2.958± 0.008.
In figure 10 the effect of the Reynolds number is depicted. The wave amplitude and

wavelength are fixed at A/Hn = 0.15 and λ/Hn = 3.0, respectively. At small Reynolds
numbers, the wave-averaged velocity profile is positive and relatively uniform over the
channel height (figure 10a). The normalized bulk velocity approaches Ub/c ≈ 0.037
for Re ∼ 0 (figure 10b), showing that the bulk velocity scales linearly with the
wavespeed in the viscous regime. Figure 10(a) reveals that for increasing Reynolds
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numbers a positive velocity peak evolves in the velocity profile around y ≈ 0. At a
Reynolds number of Re ≈ 9 the bulk velocity reaches a maximum (figure 10b). At
this Reynolds number the flow inside the cilia layer is dominated by linear drag
(i.e. the last term in (4.1b) is negligible compared to the penultimate term in (4.1b)).
When the Reynolds number is further increased the flow in the core of the channel
decreases. At Re ≈ 140 the velocities in the channel core are zero while a positive
net fluid transport takes place within the cilia layer. In the Reynolds number range of
200 . Re . 3500 the bulk flow Ub/c decreases according to Ub/c ∼ log10(Re

p) with
p = −0.064 ± 0.002. At a Reynolds number of Re ≈ 1000 the bulk velocity drops to
zero. In this case the positive net flow in the cilia layer balances the negative net flow
in the core of the channel (figure 10a). For higher Reynolds numbers the backflow in
the channel core increases further while the flow in the cilia layer does not, leading
to an overall negative bulk velocity. At a Reynolds number of Re ≈ 1500 linear and
nonlinear drag contribute equally to the transport within the cilia layer. If the Reynolds
number is increased beyond Re ≈ 3500 shear instabilities of the Kelvin–Helmholtz
type occur at the lee side of the wave where vertical gradients in the streamwise
velocity are large (see figure 6b). The flow becomes instationary and exhibits travelling
waves. The transition to a turbulent flow is suppressed in the present two-dimensional
simulations, since vortex stretching is essentially a three-dimensional phenomenon.
The investigation of this high-Reynolds-number range at which the flow might become
turbulent is beyond the scope of this paper. Therefore only results up to Re= 3500 are
shown in figures 10 and 11.

From figures 8(b), 9(b) and 10(b), relations have been derived for the bulk velocity
as a function of the wave amplitude, length and speed. For the viscous regime these
relations can be combined to relate the bulk Reynolds number Reb ≡ 2Ub(Hn + h)/ν to
the characteristics of the metachronal wave according to

Reb ≡ αW with W =
(

A

Hn

)1.13(Hn

λ

)2.96(cHn

ν

)
, (5.1)

where α is a constant of proportionality. W is introduced here for convenience and
referred to as the viscous wave parameter. Figure 11(a,b) shows the bulk Reynolds
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number plotted as a function of the viscous wave parameter W. In figure 11(a)
all data points of figures 8–10 are plotted, while figure 11(b) shows only values
for 0 < Reb < 0.75. Up to Reb ≈ 0.2, the results of figures 8–10 fall on top of
one straight line, which is plotted as a solid line in figure 11(a,b). The slope α

equals α = 29.49 ± 0.06 as obtained from line-fitting according to the least-squares
error method. The extrapolation of the best-fit line is shown by a dash-dotted
line. For Reb > 0.2 the results increasingly deviate from the power-law relation
given by (5.1).

6. Summary and discussion
In the present study a new continuum model has been presented to investigate

flow induced by metachronal coordination between adjacent cilia. The main advantage
of the continuum model over a discrete model is its computational efficiency. This
is because the two-dimensional continuum model allows us to simulate a staggered
arrangement of cylindrical cilia which otherwise would require a three-dimensional
discrete model. For simplicity we qualitatively compared the continuum model with a
simple discrete model. Despite the geometrical differences between both models, the
same macroscopic flow characteristics were observed in the simulation results.

In contrast to existing continuum models (Blake & Winet 1980; King et al. 1993;
Smith et al. 2007a), the presented continuum model considers porosity variations
along the metachronal wave and thereby ensures mass conservation within the cilia
layer. The modulation of the porosity along the metachronal wave was shown to
be an essential feature for the viscous fluid transport. A sensitivity study showed
that neglecting porosity variations in the mass conservation equation leads to an
overestimation of the net flow while the fluid transport rates can be strongly
underestimated and even lead to a reversed transport direction if porosity variations
are not considered in the drag force formulation. At low Reynolds numbers, the
fluid transport is predominantly driven by the interplay of solid phase velocities
and porosity variations present in the drag force formulation. The reason is that
the presence of porosity variations breaks the symmetry of the drag distribution along
the metachronal wave such that forward moving cilia overlap with a low porosity
region creating a positive net drag force that leads to symplectic metachronism. Fluid
is transported in the direction of the wavespeed by being continuously ejected from the
cilia layer at the wave top and dragged into the cilia layer at the lee side of the next
wave.

Existing studies showed that metachronal coordination increases fluid transport if
combined with a configurationally asymmetric cilia beat cycle (Khaderi et al. 2010).
We show that metachronal coordination can act as independent transport mechanism in
the viscous and inertial regime. For the design of artificial cilia it means that, in the
viscous regime, any kind of cilia beat can create net flow, if the cilia beat slightly out
of phase.

While existing sublayer models are limited to Stokes flow, the present model
holds for both small and moderate Reynolds numbers, such that cilia-induced
flows within a wide range of metachronal wave parameters can be studied. The
parameter study showed that the same type of cilia beat leads to a flow reversal
by increasing the wavespeed. When advection of momentum dominates over viscous
diffusion the fluid transport is altered by the presence of pressure variations. Fluid is
accelerated along the streamlines at the lee side of the wave. This is accompanied
by a low-pressure region, which deflects ejected fluid at the wave top in the
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direction opposite to the wavespeed. The jet merges into one single anticlockwise
rotating recirculation cell inducing a fluid transport in the direction opposite to
the wavespeed. From earlier Stokes flow models it was known that symplectic and
antiplectic metachronism depend on the shape asymmetry of the cilia beat (Blake
1972). We show that a switch from symplectic to antiplectic metachronism is
possible by increasing the beat frequency. It might shed light on the fact that
in nature relatively stiff and straight cilia beat in symplectic metachronism at low
Reynolds numbers (Lardner & Shack 1972), while antiplectic metachronism is often
observed at higher Reynolds numbers such as with the paddle worm (Phyllodoce
maculata) (Merz & Edwards 1998) or the sea gooseberry (Pleurobrachia pileus)
(Dauptain et al. 2008).

For the specific cilia geometry and beat cycle studied in this paper a power-law
relation of the amplitude, length and speed of the metachronal wave is found for
the net transport in the channel at low bulk Reynolds numbers (see (5.1)). For the
design of artificial cilia we conclude from (5.1) that of all three wave parameters the
wavelength has the strongest effect on the viscosity-dominated fluid transport.

This work is part of the European project ARTIC, under Contract No. STRP 033274.
We would like to thank Professor J. M. J. den Toonder for his suggestions for
improving the manuscript.

Appendix A. The VANS equations in intrinsic quantities

A.1. The volume-averaged continuity equation

The volume-averaged continuity equation of the liquid phase β is given in (2.4a) in
superficial quantities:

∇ · 〈uβ〉 = −∂εβ
∂t
. (A 1)

With (2.5) we can express (A 1) in intrinsic quantities:

∇ · (εβ〈uβ〉β)=−∂εβ
∂t
. (A 2)

By applying the chain rule to the left-hand side term in (A 2) and dividing by the
porosity, (2.4a) is readily obtained:

∇ · 〈uβ〉β =− 1
εβ

[
∂εβ

∂t
+ 〈uβ〉β · ∇εβ

]
. (A 3)
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A.2. The volume-averaged momentum equation

Accordingly, we derive the volume-averaged momentum equations in intrinsic
quantities starting from (2.4b):

∂〈uβ〉
∂t
+∇ ·

( 〈uβ〉〈uβ〉
εβ

)
+∇ ·

(
〈uβuβ〉 − 〈uβ〉〈uβ〉

εβ

)
=− 1

ρ
∇〈pβ〉 + ν∇2〈uβ〉 + ν∇ ·

∫
Aβσ

muβ nβσ dA

+
∫

Aβσ

m

(
−pβ
ρ

I + ν∇uβ
)
·nβσ dA. (A 4a)

For ease of reading, each term in (A 4a) is treated separately in the following. The first
term on the left-hand side of (A 4a) is rewritten in intrinsic quantities and decomposed
by making use of the chain rule:

∂〈uβ〉
∂t
= ∂

∂t
(εβ〈uβ〉β)= 〈uβ〉β ∂εβ

∂t
+ εβ ∂〈uβ〉

β

∂t
. (A 5)

The second and the last term on the left-hand side of (A 4a) are expressed in intrinsic
quantities according to (2.5):

∇ ·

( 〈uβ〉〈uβ〉
εβ

)
=∇ ·

(
εβ〈uβ〉βεβ〈uβ〉β

εβ

)
=∇ · (εβ〈uβ〉β〈uβ〉β). (A 6)

The second term on the left-hand side of (A 4a) is further rearranged by applying
the chain rule to (A 6):

∇ · (εβ〈uβ〉β〈uβ〉β)= 〈uβ〉β∇ · 〈uβ〉 + εβ〈uβ〉β ·∇〈uβ〉β . (A 7)

The third term on the left-hand side of (A 4a) is reformulated in intrinsic quantities
with (2.5) and hence decomposed according to Gray’s decomposition (2.6):

∇ · 〈uβuβ〉 = ∇ · (εβ〈uβuβ〉β)=∇ · (εβ〈(〈uβ〉β + ũβ)(〈uβ〉β + ũβ)〉β)
= ∇ · (εβ[〈〈uβ〉β〈uβ〉β〉β + 〈〈uβ〉β ũβ〉β + 〈ũβ〈uβ〉β〉β + 〈ũβ ũβ〉β])
= ∇ · (εβ[〈uβ〉β〈uβ〉β + 〈uβ〉β〈ũβ〉β + 〈ũβ〉β〈uβ〉β + 〈ũβ ũβ〉β])
= ∇ · (εβ[〈uβ〉β〈uβ〉β + 〈ũβ ũβ〉β]). (A 8)

The binomial terms in the second line of (A 8) are simplified by using the assumption
of well-behaved volume averages (2.7). The second and third terms in the third line
of (A 8) are approximated to zero, since the volume average of a subfilter scale
quantity is small (〈ũβ〉β ≈ 0).

Equation (2.5) is applied to the first term on the right-hand side of (A 4a) to derive
the pressure gradient in intrinsic quantities and subsequently the chain rule is applied,
which yields

− 1
ρ
∇〈p〉 = − 1

ρ
∇(εβ〈p〉β)=− 1

ρ
(εβ∇〈p〉β + 〈p〉β∇εβ). (A 9)
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The viscous diffusion term on the right-hand side of (A 4a) is rewritten in intrinsic
quantities. Using the chain rule, this yields

ν∇2〈uβ〉 = ν∇2(εβ〈uβ〉β)
= ν[εβ∇ · (∇〈uβ〉β)+∇〈uβ〉β · ∇εβ + 〈uβ〉β∇ · (∇εβ)+∇εβ ·∇〈uβ〉β]
= νεβ∇2〈uβ〉β + 2ν∇〈uβ〉β · ∇εβ + ν〈uβ〉β∇2εβ . (A 10)

The intrinsic form of the third term on the right-hand side of (A 4a) is derived in
three steps. All transformation steps are given in (A 11):

ν∇ ·

∫
Aβσ

muβnβσ dA= ν∇ ·
∫

Aβσ

m〈uβ〉βnβσ dA+ ν∇ ·
∫

Aβσ

mũβnβσ dA

= ν[∇〈uβ〉β] ·
∫

Aβσ

mnβσ dA+ ν〈uβ〉β · ∇
∫

Aβσ

mnβσ dA

+ ν∇ ·
∫

Aβσ

mũβnβσ dA

=−ν∇〈uβ〉β · ∇εβ − ν〈uβ〉β · ∇2εβ + ν∇ ·
∫

Aβσ

mũβnβσ dA.

(A 11)

Firstly, the surface integral is decomposed according to Gray’s decomposition.
Secondly, the chain rule is applied to the intrinsic volume average term. In a third
step we make use of the following geometrical theorem that follows from substituting
ψα = 1 in (2.3): ∫

Aβσ

mnβσ dA=−∇〈1〉. (A 12)

Note that the superficial average of one equals the porosity (〈1〉 = εβ).
We apply Gray’s decomposition to the first term on the right-hand side of (A 4a),

which yields∫
Aβσ

m

[
− p

ρ
I + ν∇uβ

]
·nβσ dA

=
∫

Aβσ

m

[
−〈p〉

β

ρ
I + ν∇〈uβ〉β

]
·nβσ dA+

∫
Aβσ

m

[
− p̃

ρ
I + ν∇ũβ

]
·nβσ dA

=
[
−〈p〉

β

ρ
I + ν∇〈uβ〉β

]
·

∫
Aβσ

m nβσ dA+
∫

Aβσ

m

[
− p̃

ρ
I + ν∇ũβ

]
·nβσ dA

=
[
−〈p〉

β

ρ
I + ν∇〈uβ〉β

]
· (−∇εβ)+

∫
Aβσ

m

[
− p̃

ρ
I + ν∇ũβ

]
·nβσ dA

= 〈p〉
β

ρ
∇εβ − ν∇〈uβ〉β · ∇εβ +

∫
Aβσ

m

[
− p̃

ρ
I + ν∇ũβ

]
·nβσ dA. (A 13)

Since we assume that volume averages are well-behaved, we can further simplify the
first integral term in the second line of (A 13) such that the geometrical theorem (A 12)
can be applied to it. Also here we make use of 〈1〉 = εβ .
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Substituting all terms (A 5)–(A 13) into (A 4a) yields[
〈uβ〉β ∂εβ

∂t
+ εβ ∂〈uβ〉

β

∂t

]
+
[
〈uβ〉β∇ · 〈uβ〉 + εβ〈uβ〉β ·∇〈uβ〉β

]
+
[
∇ · (εβ[〈uβ〉β〈uβ〉β + 〈ũũ〉β])

]
−
[
∇ · (εβ〈uβ〉β〈uβ〉β)

]
=−

[
1
ρ
εβ∇〈p〉β + 1

ρ
〈p〉β∇εβ

]
+
[
νεβ∇2〈uβ〉β + 2ν∇〈uβ〉β · ∇εβ + ν〈uβ〉β∇2εβ

]
+
[
−ν∇εβ ·∇〈uβ〉β − ν〈uβ〉β∇2εβ + ν∇ ·

∫
Aβσ

mũβnβσ dA

]

+
[
〈p〉β
ρ
∇εβ − ν∇〈uβ〉β · ∇εβ +

∫
Aβσ

m

(
− p̃

ρ
I + ν∇ũβ

)
·nβσ dA

]
.

(A 14)

Nine terms of (A 14) cancel each other out, yielding[
〈uβ〉β ∂εβ

∂t
+ εβ ∂〈uβ〉

β

∂t

]
+
[
〈uβ〉β∇ · 〈uβ〉 + εβ〈uβ〉β ·∇〈uβ〉β

]
+
[
∇ · εβ〈ũũ〉β

]
=−

[
1
ρ
εβ∇〈p〉β

]
+
[
νεβ∇2〈uβ〉β

]
+ ν∇ ·

∫
Aβσ

mũβnβσ dA+
∫

Aβσ

m

(
− p̃

ρ
I + ν∇ũβ

)
·nβσ dA. (A 15)

The sum of the first and third terms of (A 15) equals zero due to mass conservation
according to (2.4a). Finally we divide (A 15) by the porosity of the solid phase, and
write it together with (A 3) to derive the VANS equations in intrinsic quantities in the
form as given in (2.8a) and (2.8b):

∇ · 〈uβ〉β =− 1
εβ

(
∂εβ

∂t
+ 〈uβ〉β · ∇εβ

)
, (A 16a)

∂〈uβ〉β
∂t
+ 〈uβ〉β · ∇〈uβ〉β + 1

εβ
∇ · εβ〈ũβ ũβ〉β

=− 1
ρ
∇〈pβ〉β + ν∇2〈uβ〉β + ν

εβ
∇ ·

∫
Aβσ

mũβnβσ dA

+ 1
εβ

∫
Aβσ

m

(
− p̃β
ρ

I + ν∇ũβ
)
·nβσ dA. (A 16b)

Appendix B. Derivation of the bulk porosity
An analytical expression for the porosity εβ of the solid phase is derived. The

porosity εβ is generally defined as the void fraction or fluid volume fraction:

εβ = Vβ
V
= 1− εσ = 1− Vσ

V
. (B 1)
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FIGURE 12. Representative unit cell volume bordered by the centreline axes of four
neighbouring cilia. Partial areas A1 to A3 are used to compute area A of the unit cell.

For simplicity the porosity inside the cilia layer is defined as the volume fraction
of a representative volume V = Ab whereas A is indicated in figure 12 and b is the
cilia spacing in the z-direction. The resulting porosity distribution varies only along
the x-direction but stays constant over the height of the cilia layer. This approximation
holds if Aa/λ2 � 1. The representative volume as shown in figure 12 is bordered
by the centreline axes of four neighbouring cilia. For simplicity it is assumed that
the tip of the fifth cilium in the middle of the volume lies on the surface of the
representative volume V such that the solid phase Vσ can be approximated to two
times the volume of a cilium. We determine the volume V by simple geometrical
relations (see figure 12),

Vσ = 1
2 hπD2, (B 2a)

V = Ab= b[Atotal − A1 − A2 − A3], (B 2b)

whereas Atotal denotes the sum of all partial areas:

Atotal = (a+ l2)(d1 + dn), (B 3a)

A1 = 1
2 l2(d2 + dn), (B 3b)

A2 = 1
2(a+ l2 − l1)(d1 − d2), (B 3c)

A3 = 1
2 l1(d1 + dn). (B 3d)

Substituting (B 2a), (B 2b) and (B 3a)–(B 4) into (B 1) leads to the bulk porosity inside
the cilia layer as given by (3.6):

εβ,c(x, t)= 1− πD2h

b(a[d1 + d2 + 2dn] − l1[d2 + dn] + l2[d1 + dn]) . (B 4)
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