

Delft University of Technology

Enabling Real-Time Feedback in Software Engineering

Larios Vargas, Enrique; Hejderup, Joseph; Kechagia, Maria; Bruntink, Magiel; Gousios, Georgios

DOI
10.1145/3183399.3183416
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the 40th International Conference on Software Engineering

Citation (APA)
Larios Vargas, E., Hejderup, J., Kechagia, M., Bruntink, M., & Gousios, G. (2018). Enabling Real-Time
Feedback in Software Engineering. In Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE-NIER 2018 (Vol. Part F137347, pp. 21-24). ACM.
https://doi.org/10.1145/3183399.3183416
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3183399.3183416
https://doi.org/10.1145/3183399.3183416

Enabling Real-Time Feedback in Software Engineering
Enrique Larios Vargas

Software Improvement Group

e.lariosvargas@sig.eu

Joseph Hejderup

Delft University of Technology

j.i.hejderup@tudelft.nl

Maria Kechagia

Delft University of Technology

m.kechagia@tudelft.nl

Magiel Bruntink

Software Improvement Group

m.bruntink@sig.eu

Georgios Gousios

Delft University of Technology

g.gousios@tudelft.nl

ABSTRACT
Modern software projects consist of more than just code: teams

follow development processes, the code runs on servers or mobile

phones and produces run time logs and users talk about the soft-

ware in forums like StackOverflow and Twitter and rate it on app

stores. Insights stemming from the real-time analysis of combined

software engineering data can help software practitioners to con-

duct faster decision-making. With the development of CodeFeedr,

a Real-time Software Analytics Platform , we aim to make software

analytics a core feedback loop for software engineering projects.

CodeFeedr’s vision entails: (1) The ability to unify archival and cur-

rent software analytics data under a single query language, and (2)

The feasibility to apply new techniques and methods for high-level

aggregation and summarization of near real-time information on

software development. In this paper, we outline three use cases

where our platform is expected to have a significant impact on the

quality and speed of decision making; dependency management,
productivity analytics, and run-time error feedback.

ACM Reference Format:
Enrique Larios Vargas, Joseph Hejderup, Maria Kechagia, Magiel Bruntink,

and Georgios Gousios. 2018. Enabling Real-Time Feedback in Software

Engineering. In Proceedings of 40th International Conference on Software
Engineering: New Ideas and Emerging Results Track, Gothenburg, Sweden,
May 27-June 3 2018 (ICSE-NIER’18), 4 pages.
https://doi.org/10.1145/3183399.3183417

1 INTRODUCTION
Decisions in software engineering are typically made in dynamic

circumstances [3]. The main effect of the changing nature in soft-

ware development projects is that the time dimension has to be
taken into account explicitly. For that reason, feedback is consid-

ered to be one of the most crucial features of dynamic decision

tasks and a valuable resource that, if used properly, can facilitate

the decision-making process [9].

In an era where many fields of economic production strive for

higher efficiency through data-driven decision making, software

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5662-6/18/05. . . $15.00

https://doi.org/10.1145/3183399.3183417

production has yet to live up to the challenge. Modern software

projects are more than just the code that comprises them: teams

follow specific development processes; the code runs on servers

or mobile phones and produces run time logs; users talk about the

software in forums like StackOverflow and GitHub and rate the

product in app stores, in blog posts and on Twitter; the software is

part of a collection of similar applications and depends on external

code or API's to deliver its functionality. To optimize the delivery

and the user experience of software, modern organizations need to

integrate and combine hundreds of metrics in real-time.

While tools and methods for extracting data from software de-

velopment processes, products and ecosystems, do exist, three key

aspects are missing: integration, composition and real-time operation
[8]. As a result, it is challenging for organizations to capitalize on

the wealth of data that software projects produce. Consequently,

software analytics are seldom integrated as a feedback loop in

software projects.

To remedy this situation, we propose the introduction of real-

time software analytics as a core feedback loop for software teams.

Our hypothesis is that the implementation of CodeFeedr, a Real-

time Software Analytics Platform, will represent a significant contri-

bution in the field of software engineering in the following aspects:

(1) speeding up decision-making by reducing the time between

action and feedback or viceversa, (2) allowing the monitoring of

software development infrastructure in real-time and relating pro-

ductionmeasurements with development actions, (3) supporting the

integration of a multitude of data sources that comprise a modern

software project, and (4) enabling stakeholders to create up-to-

date customized information views of the software development

workflow.

2 THE NEED FOR REAL-TIME FEEDBACK
In the field of software engineering, Real-time analytics has been

applied in: (1) Autonomous Systems and (2) Adaptive and Self-

Managing Systems. However, there has been little research done on

real-time feedback analytics applied to the software development

life cycle. In this context, we present three use cases where real-time

feedback analytics can have a significant contribution.

2.1 Dependency Management
Open source software (OSS) libraries in large centralized code repos-

itories such as npm or Maven are increasingly becoming more and

more interconnected and interdependent. A side-effect of including

a highly interconnected library in a project, is that the projects

dependency tree of transitive dependencies can quickly grow large

over time. A growing number of transitive dependencies can intro-

duce complexities to conventional dependency management and

https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1145/3183399.3183417

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden E. Larios Vargas et al.

have recently lead to severe security and trust implications. For

instance, the Equifax1 incident leaked over 100.000 customers credit

card information due to a critical security bug in the Apache Struts

library. Equifax was not able to update to a patched version of the

library in time after the vulnerability was known because it was

underestimated the impact. Thus, we identify the following features

to lack in dependency management:

The lack of end-to-end visibility of interdependent libraries.
Dependencies in a dependency tree change and evolve indepen-

dently. A dependency tree may look different after a fresh build

due to the flexible dependency constraints, for example semantic
versioning ranges used in npm. A dependency can automatically in-

clude a more recent version, that may add additional dependencies

to the tree without the developer being aware of it. Further, the

additional dependencies may also be outdated, removed, include

more or new dependencies that may be unstable or have many crit-

ical bugs. These different evolution characteristics have to co-exist

in a dependency tree, making it overwhelming and difficult for

developers to digest. Moreover, developers have little control over

transitive dependencies and have to accept the decisions or risks

taken by other library maintainers.

Difficulty to evaluate the impact and risk associated with a
dependency. The active use of dependency checkers and monitor-

ing information feeds allow developer teams to keep up-to-update

with bug reports and new releases. This can yield a low signal-to-

noise ratio since it is difficult to comprehend the benefits or the

urgency of updating a dependency to a newer version. For instance,

a dependency may be used through out a software portfolio, a

project may use outdated dependencies that require major re-write

or is in conflict with other used dependencies.

A received bug report only indicates affected versions and not

the actual use of a dependency. This makes it difficult to know

whether a transitive dependency puts a software project under risk

due to a security bug. Developers need to use subjective judgment
in these scenarios that could have devastating consequences.

Bugor change-impact propagation in an interconnected code
repository. A challenging part for library maintainers is to esti-

mate the damage (e.g breaking changes) made to clients due to

changes made or identified bugs in the library. Understanding how

a library is used in other libraries and applications can help main-

tainers to better understand the risks before making changes. This

could be helpful in the event of a security bug, solving the bug

should be seen as a collaborative effort between maintainers and

clients. Therefore, ways to minimize breaking changes for clients

could be achieved by understanding how clients directly or indi-

rectly use affected code segment in a library.

The ever-changing nature of centralized code repositories explic-

itly impacts regular software project at the heart of the dependency

level. Therefore, it is important that changes are captured in real-

time and those changes are provided as feedback to developers and

library maintainers. In doing so, we believe that lightweight code

analysis can capture the risk and bug propagation across an ecosys-

tem and in dependency trees at the client-level. For instance, library

maintainers can identify a potential critical bug in the source coude

1
https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax

if they receive at the refactoring stage as a real-time feedback how

many clients are directly and in-directly affected by the changes.

2.2 Productivity Analytics
Effective software productivity measurement is becoming a crucial

factor for decision-making in the current software development

practices, which have the goal to achieve faster application delivery

using new infrastructure, tools and methods focused on continuous

integration (CI), continuous delivery (CD) or continuous deploy-

ment. This scenario calls for switching towards a near real-time or

just in time approach for measuring productivity.

We envision that real-time analytics can have a significant con-

tribution in the following challenges in productivity analytics:

Extending the scope of productivity measurement. Most ap-

proaches in this domain use only the outputs generated in the

coding stage, usually in terms of Source Lines of Code (SLOC),

functionalities or story points completed over time. However, we

can get a better understanding of stakeholders’ work by looking at

their interactions at a more detailed level and associating them to a

specific stage in the software development.

Absence of environments to improve performance. Meyer

et al. [12] highlights that knowing about the current progress of

work items and time spent in each activity provide with metrics

for self-monitoring and feedback. Additionally, Calvo et al. [4]

affirms that there is a strong correlation between self-awareness of

one’s current state and person’s performance or behavior. Current

research in this area, such as TimeAware [10], is an example of

how real-time self-monitoring systems can contribute to improve

personal productivity.

The difficulty in identifying developers’ behavior patterns
to enhance productivity.During the software development work-

flow, multiple tools capture real-time data about stakeholder’s ac-

tivities such as local environments, control versioning systems, CI

servers, testing environments and CD servers. What is missing is

a unified data layer for mining patterns from developers activities

data that can be correlated to productivity factors to help tuning

productivity measurements.

An immediate and more effective visibility of the interplay
between code quality and productivity. Source code is contin-
uously changing in terms of enhancements, fixing bugs and new

requirements. It is a challenging task to understand and measure

the impact of changes over time. Furthermore, the possibility of

introducing an unintended fault or defect during those changes

is relatively high. This situation calls for urgent measures to im-

prove source code visualization by aligning near real-time data

from the software delivery pipeline with software quality factors

and productivity analytics metrics.

Assessing productivity using feedback resulted from aggregating

near real-time and archival data can contribute to conduct real-time

operational performance monitoring of software delivery pipelines.

2.3 Run-time Error Feedback
As software evolves rapidly, the need for new methods and tech-

niques that can ensure systems and applications’ availability be-

comes more intense. Software reliability is important for critical

systems, such as medical devices, smart vehicles, aircrafts and so

on, as well as for mobile applications that we use in every day life.

https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax

Enabling Real-Time Feedback in Software Engineering ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden

Traditional approaches for developing robust programs include:

software verification, prevention mechanisms using programming

languages’ features, as well as debugging, but these techniques are

time-consuming and suffer from false positives.

Next-generation real-time feedback mechanisms are able to effec-

tively support the productive development of modern software appli-

cations by reducing execution failures. Systems based on real-time

analytics can give feedback that addresses the following challenges.

Classification of crash causes. To predict and prevent future

execution failures there is a need for grasping knowledge from

crowdsourcing data. Such data include: source code, commits, is-

sues, and crash reports and stem from online sources, such as: q&a

consulting sites (e.g. stackoverflow.com), issue tracking systems (e.g.

Bugzilla, Jira, GitHub, etc.), and so on. Then, there is a need for effi-
cient processing of data from software repositories and crash report

management services for real-time feedback on the classification of

common failure reasons and the prevention from similar failures.

A real-time analytics platform can be used in order to enable

real-time integration analysis of diverse data. Given that these data

are in the form of text, natural language processing techniques (e.g.

similarity metrics, textual analysis, and parsing) can be applied here.

Therefore, such a real-time system can automate the processing of

data from a variety of sources improving decision-making.

Recommendations for the prevention of software crashes.
For preventing software and its consumers from suffering from

future execution failures, researchers have devised algorithms that

learn from past software failure patterns and predict possible new

crashes. However, currently, it is not easy for developers to use these

theoretical methods. There is a need for more practical solutions.
A real-time analytics system will provide developers with alerts

for possible execution failures while they program new software.

For this, machine learning and software engineering techniques can

be used. Behind the scenes, a predictionmodel can be applied for the

identification of failure prone modules during software production

based on learning the bad and good design and coding patterns

from source code, crash data, and so on. Additionally, applying

program and root cause analysis on appropriate data, an automatic

fault localization method can be used for the efficient reproduction

and prevention of future software crashes. Thus, a tool such as a

plug-in for an IDE that can give real-time feedback regarding the

quality of software programs, assisting developers to write more

robust software.

Prioritization of bug fixes. Crash reports produced during ex-

ecution failures are very valuable for understanding and fixing

software bugs. However, crash data might include a lot of noise,

be incomplete, and hide important information hindering their

analysis and comprehension. Therefore, several approaches try to

interpret the messages that these reports convey to achieve accu-

rate error recovery. However, nowadays, there is also a need for

fixing software problems as soon as possible.
A real-time analytics solution can automatically identify pat-

terns in crash data, revealing actual reasons of failures. “Intelligent

tools” that are able to pinpoint critical faults, which should be fixed

soon, can eliminate developers’ effort to conduct manual root cause

analysis and guarantee fast as well as precise bug fixing.

Figure 1: Feedback-driven platform architecture.
3 DESIGN GUIDELINES
The three uses cases show a currently unfulfilled need of software

projects: an integrated, near-real time, feedback loop based on

software analytics. To fill this gap, we envision a platform that will

pursue the following design guidelines:

Provide instant feedback. This will enable DevOps teams tomon-

itor their infrastructure in real-time and relate production measure-

ments with development actions.

Integrate all potential data sources that comprise a modern
software project. Contrary to current software big data efforts

that prioritize source code or repository analysis, CodeFeedr will

integrate all possible data sources, including natural language based

ones. Moreover, it will create a process and a data schema that will

enable other researchers to integrate arbitrary data sources.

Devise novelways of aggregation and summarization of soft-
ware analytics. CodeFeedr will enable various stakeholders (de-
velopers, DevOps, managers) to create up-to-date customized in-

formation views (textual or even graphical).

4 PRELIMINARY RESULTS
To realize our vision of an integrated real-time feedback loop in

software analytics, we present the architecture of the initial im-

plementation of a system to process software engineering data in

real-time. An overview of the high-level architecture is presented

in Figure 1. In the following numbered paragraphs, we explain the

role of each key component for our platform:

1) Stream processing of data sources. To deliver feedback in

near real-time, data needs to be ingested, processed and analyzed

upon arrival and piped-out in an acceptable time frame. Software

processes that trigger events such as commit to a repository, release
of an npm package, stack trace reports in a created JIRA issue or a
security advisory are the first-class citizens in the platform. However,

certain software processes focus on learning from past data or

events. This could be abandoned software projects that are no

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden E. Larios Vargas et al.

longer maintained or learning from past mistakes to improve better

bug resolution. Therefore, it is important to be able to replay such

data or create stateful models of data sets.

These requirements are ideal for event stream processing to de-

liver a near real-time processing of software processes.

2) Software tool as a stream function. Event stream process-

ing frameworks support business-related functionally such as data

aggregation and summarization. In a feed-back driven platform,

many use cases would depend on advanced techniques such as

program analysis to evaluate whether a set of code changes reduces
or improves the code quality to a project before committing the

changes.

The platform should support the integration of current software

tools or techniques as stream processing functions. This implies that

tools that handle tasks such as automatic test suit generation, type
checker and taint analysis will be treated as a function. This also

further entails that certain of these tools need to be adapted to

process events as input data. This is different from processing the

entire projects as input data (i.e. the analysis must be incremental).

3) Dynamic data source and function integration. Software
processes are ever-changing, and so are data sources and software

tools. An identified requirement of our platform is the dynamic

integration of new data sources and processing functions (e.g soft-

ware tools). Further, the data sources and functions should be aware

about each others compatibility such that users can compose their

stream topology of functions and data sources freely. This implies

that data sources and functions need some form of schema or type

information to ensure compatibility. As an example, a function

that processes commit messages from Github should dynamically

recognize and be able to process commit messages from BitBucket.

We are currently building the means to support dynamic recog-
nition of data sources and functions, and also being able to modify
running stream topologies to e.g add Bitbucket data source in an

already running Github commit processing topology.

4) SQL query Interface. SQL being a declarative language de-

signed for static data has an expressiveness that could be ideal for

processing software data. SQL is the most popular query language,

therefore being able to express SQL queries over data streams could

make it useful not only for developers but also stakeholders who

are more acquainted to work with databases. Here is an example of

how a query could be expressed in natural language:

For [all | 100 recent | 50 most discussed] pull requests

on project A, prioritize those that are most important

to [me or my team]

The result would be feedback-driven and continuously updated.

5 RELATEDWORK
Our approach connects two major research domains: streaming

data processing and software repository mining.

The software repository mining community identified early on

the need for platforms to analyze data from software repositories

on a large scale, for instance, Kenyon [2] and Boa [6]. Additionally,

Microsoft developed Codemine, a software development data an-

alytics platform for collecting and analyzing engineering process

data, its constraints, and organizational and technical choices [5].

However, all those projects have in common the integration of

important archival data sources; and, they do not aggregate any

information apart from source code, issues and emails. Furthermore,

they also do not use real-time analysis in their data sources.

In the field of mining software repositories (MSR), it is important

to mention three cases that inspired our work in the development of

CodeFeedr: (1) GHTorrent’s [7] approach to follow GitHub’s event

stream processing for events happening in real time on all project

repositories across GitHub, instead of mining the repository histo-

ries in a static way. On the other hand, (2) CodeAware’s [1] effort
to provide an integrated mechanism for giving early feedback to

engineers and to automate follow-up actions. This approach uses a

sensor-actuator-based ecosystem for distributed and fined-grained

artifact analysis. Furthermore, (3) data-driven requirements engi-
neering [11], in which software practitioners could systematically

use explicit and implicit user feedback describing user experiences

in an aggregated form to support requirements decisions.

6 CONCLUSION
The development of CodeFeedr, a Real-time Software Analytics

Platform represents our vision to tackle current challenges for mod-

ern software projects. Our platform enables a real-time feedback

loop environment in order to: (1) speed up decision-making, (2)

monitor software development infrastructure in real-time and (3)

create up-to-date customized information views of the software

development workflow.

CodeFeedr’s architecture facilitates integration, aggregation,

analysis and summarization of software analytics data as streams.

These features will enable software practitioners to cut across pro-

duction/run time layers in order to optimize software delivery,

performance and quality.

REFERENCES
[1] Rui Abreu, Hakan Erdogmus, and Alexandre Perez. 2015. CodeAware: Sensor-

based Fine-grained Monitoring and Management of Software Artifacts. In Pro-
ceedings of the 37th International Conference on Software Engineering - Volume 2
(ICSE ’15). IEEE Press, Piscataway, NJ, USA, 551–554.

[2] Jennifer Bevan, E. James Whitehead, Jr., Sunghun Kim, and Michael Godfrey.

2005. Facilitating Software Evolution Research with Kenyon. SIGSOFT Softw.
Eng. Notes 30, 5 (sep 2005), 177–186.

[3] Janet E. Burge, John M. Carroll, Raymond McCall, and Ivan Mistrik. 2008.

Rationale-Based Software Engineering. Springer-Verlag, Berlin, Chapter 5, 67–76.
[4] Rafael A. Calvo and Dorian Peters. 2014. Positive Computing: Technology for

Well-Being and Human Potential. The MIT Press.

[5] Jacek Czerwonka, Nachiappan Nagappan,Wolfram Schulte, and BrendanMurphy.

2013. CODEMINE: Building a Software Development Data Analytics Platform at

Microsoft. IEEE Softw. 30, 4 (jul 2013), 64–71.
[6] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.

Boa: A Language and Infrastructure for Analyzing Ultra-large-scale Software

Repositories. In Proceedings of the 2013 International Conference on Software
Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 422–431.

[7] Georgios Gousios. 2013. The GHTorent Dataset and Tool Suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233–236.

[8] Georgios Gousios, Dominik Safaric, and Joost Visser. 2016. Streaming Software

Analytics. In Proceedings of the 2nd International Workshop on BIG Data Software
Engineering (BIGDSE ’16). ACM, New York, NY, USA, 8–11.

[9] Jose H. Kerstholt and Jeroen G.W. Raaijmakers. 1997. Decision Making: Cognitive
Models and Explanations. Routledge, Abingdon, Oxon, Chapter 12, 205–217.

[10] Young-Ho Kim, Jae Ho Jeon, Eun Kyoung Choe, Bongshin Lee, KwonHyun Kim,

and Jinwook Seo. 2016. TimeAware: Leveraging Framing Effects to Enhance

Personal Productivity. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16). ACM, New York, NY, USA, 272–283.

[11] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe. 2016. Toward

Data-Driven Requirements Engineering. IEEE Softw. 33, 1 (jan 2016), 48–54.

[12] Andre Meyer, Laura E. Barton, Gail Murphy, Thomas Zimmermann, and Thomas

Fritz. 2017. The Work Life of Developers: Activities, Switches and Perceived

Productivity. IEEE Transactions on Software Engineering 43, 12 (dec 2017), 1178–

1193.

