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1. Introduction

This investigation is carried out in the framework of a research project
on morphological computations for large ranges of grainsizes. It is then

necessary to describe the transport of each sizefraction seperately.

This paper shows some of the major efforts which have been made to develop
a bed-load formula for every fraction of the sediment mixture. The most

general form of such a formula reads:

(2]
]
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in which: s; = bed-load rate of fraction i in volume (including pores) per

unit time and unit width

u = flow velocity

Di = diameter of sediment fraction i

p; = probability of sediment fraction i
n - = number of fractions.

All the bed-load formulae per sediment fraction which are discussed here
are deduced from one of the classical bed-load formulae for uniform sedi-
ment. These formulae, which have an empirical or stochastical—-empirical

character, are summarized below.

The formula of Kalinske (1947) results from stochastical considerations.

In order to calculate the bed—load transport he uses parameters like the
particle velocity and the probability of a particle being eroded from the
bed.

Because of the turbulent watermovement he assumes a normally distributed
water velocity at the bottom.

The bed—-load formulae of Einstein (1950) also has a sﬁochastical—empirical

character. He assumes a normal distribution of the liftforce working on

a sediment particle and includes the intermittent movement of the sediment
particles in his considerations.

In both the formula of Kalinske and Einstein appear several correction
coefficients which have been determined empirically.

The bed-load formula of Meyer-Peter and Muller (1948) gives the bed-load

transport of uniform sediment in the form of a relation between two
dimensionless parameters. The constants in this formula have been determined

out of many experiments. A general form of this formula is:
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in which: X

Y

dimensionless transportparameter

dimensionless flowparameter.

These three bed-load formulae have been adapted more or less by other

investigators for heterogeneous sediment.

In Tabie 1 a review is given of the different investigators who carried

out these adaptions.

Basic Adaption for heterogeneous Remarks

bed~load formula sediment by

Kalinske (1947) Pantelopulos (1955,1957)

Einstein (1950) Ning Chien (1953) "Large ranges of

grain sizes"

Meyer-Peter & Egiazaroff (1965) theoretical ana-
Muller (1948) lysis of the cri-
tical shear stress
of a fraction in

a sediment mixture
Antsyferov (1973)

Ashida & Michiue (1973) correction of
Egiazaroff's the-
orie and experi-
mental verification
of the bed-load

formula.

Suzuki (1976)

Table 1

The basic bed-load formulae are compared in Fig. 1. The above-mentioned
bed-load formulae for heterogeneous sediment will be treated in the next

sections.
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Fig. 1 Comparison of basic bed-load formulae (after Paintal, 1971)

2. Kalinske and Pantelopulos

The bed-load formula of Kalinske (1947) can be derived in a simple way.

He considers the toplayer of a plane bed and assumes that the sediment
particles are spheres with diameter D. Suppose P = percentage-of a bed
area occupied by grains. Then P/({ﬂDz) = number of grains per unit of
bedarea. According to Kalinske the water velocity near the bottom is nor-—

mally distributed:

f(u) = setlns . exp (= ———

(u - 5)2)
210 4 2

20
u

in which: 02
u

variance of the water velocity near the bottom

u mean velocity near the bottom.

The probability of a grain, with critical velocity us of being eroded
is: o
J f(u) . du

u
C
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The number of grains that moves per unit of bedarea is then:

o
F— 1 £(w) . du
D"/ 4 u,

Kalinske assumes an empirical relation for the grainvelocity during move-

ment:

up ol uc)bottom

The bed-load transport per unit time and width (real volume) becoues:

D P
qq = “6 u 5 J f(u)du
P ap%/4 v
C
g = 2/3PD u, (3)
[ee]
in which: u_ =u_ J f(u)du = "mean grain velocity"
Ue (including rest periods)

This expression in combination with the normal distribution can be worked

out to a general relationship:

up/u = f(TC/Te,Ou/G) (4)

n

in which: T critical shear stress of the sediment particle

To effective shear stress acting on the particles.
Combination of Egs. (3), (4) and an empirical relation for T, gives, for

different intensities of turbulence, the bedload formula of Kalinske.

Remark: For relatively large T, Or water velocities and therefore large
bedload transports this formula is incorrect, because Kalinske
only considers one grainlayer, while in these circumstances more

layers can be moving at the same time (Fig. 1).

Pantelopulos (1955, 1957) extends with an identical derivation Kalinske's

formula to a bed-load formula per sedimentfraction.

In stead of Eq. (3) he finds for every fraction:

qsi = 2/3 p(Di) . ADi . Di . up (Di) (5)




in which: p(Di)'ADi = part of a unit bedarea cccupied by grains with a

diameter between Di and Di + ADi

up (Di) = (u - uc(Di))bottom‘ uC{Di) £(u).du

In the same way as Kalinske did Pantelopulos finds:

w0/ = [14,0,/u) (6)

1

Now Pantelopulos only needs an empirical relation for T which, however,

i

was not available.

He carries out
critical shear
mixture can be

same particles

1.0

(N/md)

some experiments and calculations and finds out that the
stress of particles of a certain fraction in a sediment
entirely different from the critical shear stress of the

in the uniform case. (Fig. 2).

uniform sediment

0.8 X

x/< . .
fractions part of amixture

10 —=D; (mm)

Fig. 2 Critical shear stresses of particles, as well as part of a mixture

as in the uniform case (after Pantelopulos, 1957).



It seems that in these experimental circumstances the critical shear stress
of the larger particles is decreasing and of the smaller particles is in-
creasing when compared with the uniform case.

The experimental results show that the critical shear stresses of all the
fractions nearly have the same value. This value can be estimated by the
mean of the values calculated with a formula of Kalinske-White, in which
the critical shear stress for uniform grains is linearly dependent of the
graindiameter (Tc = a(pS - p)g Di).

The conclusion that this procedure is correct for every sediment mixture
may not be justified. The sediment mixtures used by Pantelopulos are

shown in Fig. 3.
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Fig. 3 Sediment mixtures used by Pantelopulos

Remark: In the experiments Pantelopulos did not directly measure the cri-
tical shear stress for every fraction. He only measured the bed-
load transport per fraction and then determined Tc in such a way

that the bedload formula (Eqs. (5),(6)) gave the right value.

Because of the restricted experimental verification it is hardly possible
to draw general conclusions about this bed-load formula per sediment

fraction of Pantelopulos.
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3. Einstein

The bed-load formula of Einstein (1950) is derived by equaling the number

of sediment particles being deposited per unit time and bedarea (na) to
the number of particles being eroded per unit time and bedarea (ne).

In the expression of ny Einstein uses the mean steplength of the particles.
This is according to Einstein a constant times the grain diameter (ALDi)'
He finds an expression for this steplength by using a parameter p, which
is the probability of erosion. If this probability is large as a result

of hydraulic conditions the steplength of the particles also will be large.
The parameter p can also be found in the expression for n,-

Next Einstein states that p is also the probability of the liftforce on

the particle being larger than its weight (under water):

p = probability of L/W > 1

3

in which: W = g(pS = p)AzD. = particle weight under water
2 :
L = cL.p.é u AlDi = lift force
c, = liftcoefficient.

L

In finding an expression for the liftforce Einstein introduces a number
of correction coefficients and figures. The roughness of the bedsurface
and the frequency of a certain fraction are important parameters. The most

force for the phenomenon of "hiding of smaller particles behind larger

ones".
Because of earlier experimental results Einstein assumes that the liftforce

is fluctuating according to a normal distribution.

near the bottom is normally distributed. The bed-load formula of Einstein

which already gives the bedload transport per fraction can be written as

follows:
q
&
s El P (7)
AgD? Ax .
i
For the probability of eroesion p Einstein finds the expression:
+
1 wax l/no 9
p=1- S exp(-t7)dt (8)
TR ¢ -1/n
4L 0




According to Einstein A, B and n, are universal constants, which have
to be determined empirically. As a result of experiments with uniform

sediment he finds Ax = 27,0 and B_ = 0,156. For n, he finds: n, = 0,5

The dimensionless flow parameter wx is defined as:

v, = EY B8 9)
N AD;
in which: = e
with: i = energy slope
R = hydraulic radius with respect to the grain
and: Y = pressure correction in transition smooth-rough
8/8, = ('°log 10,6)/(' 10g 10,6%/8")

X = characteristic grain size of the mixture

A' = apparent roughness diameter.

Einstein and Ning Chien (1953) carry out experiments with "large-range"

mixtures (= mixtures with a large range of grainsizes). In this way they

find empirically modified values of the hiding factor ¢

)

A disadvantage of Einstein's formula is the complex form in which it appears
after combination of Eqs. (7), (8) and (9). The formula includes many
correction coefficients which have to be found in different figures. Further
only the hiding factor is corrected for large-range mixtures. The other

coefficients Ax’ Bx’ Ny Y and A' are determined in experiments with uni-

form sediment.
In the next chapter the simplest form of a bedload formula per size

fraction is given, which can be derived from the Einstein formula.

4. Basic-hypothesis

Under certain conditions a basic hypothesis can be derived from Einstein's

bedload formula. Expression (7) can be written as:
3
/AgDi 5
s 1A, 1 - p

or
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in which: Co 1 - €, with A porosity of sediment.

With the assumption that the underlined term I is only a function of Di
and u (but not of pi) the basic hypothesis results. If p; = 1 term I is
equal to the sediment transport s; of fraction i in the uniform case. In

a general form this basic hypothesis sounds:

= e 5 = '
s; fi(ulDl"'"Di’°"Dn’pl""’Pi""pn-l) pi.f (u,Di)

This simplified bedload formula per fraction assumes that the bedload

(10)

transport of fraction i is a linear function of the probability of fraction

i. It also means that the different fractions are transported independently.

- e - -

In Fig. 4 this basic hypothesis is shown in case of two sediment fractions

and a constant flow velocity u.

002 0705 08 30

Fig. 4 Basic hypothesis for two fractions

Despite the simplification of this formula Antsyferov (1973) uses it in
experiments with heterogeneous sediment (0.1 = 5.0 mm). According to the
experimeutal results he substitutes for the function f'(u,Di) a formula

similar to the transport formula of Engelund and Hansen.

Combination of Eq. (10) with the E.H.-formula gives:
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Ve, \5/2 1
s, = pi[0.084 X7 (R 3)7 BT]
The dimensionless form becomes:
By uRb1)5/2

= p. = 0.084 (——
v/AgD:i5 = ADi

(1)

2
in which: p = (Ci/g)“/5

Ct = Chézy-coefficient of bedforms and grains.

The total shear stress multiplied by M gives the effective shear stress

(= the part of the total shear stress working on the grains).

Using this formula there are two possibilities:

(i) The righthandside of Eq. (il) except Py is independent of P
Expression (11) is in agreement with the basic hypothesis.

(ii) Factor p is a function of p,. A change in the composition of the bed
(pi) may change the bedformland the roughness of the grains and hence
M will be influenced. The form of this function u(pi) is unknown.

Formula (11) then deviates from the basic hypothesis.

The basic hypothesis can also be combined with a typical bedload formula

like Meyer—-Peter and Muller (1948). This formula gives (like the formula

of Engelund and Hansen) a relation between two dimensionless parameters:

- 3/2
x =133 @1 - 0041
in which: X = s//AgD3 = gsediment transportparameter
Y = AD/pri = flow parameter

The inverse value of Y is sometimes called: the dimensionless effective
=1
shear stress: T = Y .

According to Meyér-Peter and Muller the value 0.047 must not be interpreted

as a dimensionless critical shear stress. Factor | is now defined as:
a 3/2
U= (Ct/cg)

in which: Cg = Chézy-coefficient of the grains.

The bedload formula per fraction becomes:

S, UR i n §9
L =gy 133 e = 0.047)3/' (12)

3 | AD.
/AgDi 1
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Just as before there are two possibilities:
(i) n is not a function of s (basic hypothesis)

(ii) ¢ is a function of P

The second possibility - probably the best one - has the disadvantage that

the relation u(pi) is unknown.

Remarks

1. In practice the factor | is partly used to match measurements and

formula.

2. The next chapters will show that other investigators do not correct

via | or T, (= E%%l) but via the constant 0.047.

3. This bedload formula per fraction Eq. (12) has not been verified

experimentally.

5. Egiazaroff's theory

Starting from physical considerations Egiazaroff (1965) derives an expres-

sion for the dimensionless critical shear stress of a grain (D = Di) which
is part of a mixture (Dm = E piDi)'

First of all he derives the same parameter for uniform sediment (Egiazaroff
1957).

b

He considers the equilibrium of forces working on a spherical grain which

is on the threshold of movement (Fig. 5).

—.—’u

N

.o
7T % 77T

w

Fig. 5 Forces working on a spherical sedimentgrain on the threshold of

movement.
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Here: Dr = Dragforce
FL = Liftforce
W = Weight of the particle under water
Ff = Friction force
N = Normal force = W - F..

L

According to Egiazaroff:

Dr = f . N=£(W - FL) = Ff

in which: f = friction coéfficient.

Equation (13) can be written as:

2 3 2
% Cp ¢ 3 u f{-——-g(p - p) = —j— <L 4 pu?}

in which: ¢ drag coefficient

1lift coefficient

]
£
I

(=1
]

water velocity near the grain.

LEgiazaroff introduces a factor Eo:

Eo = u0/u
in which u = mean flow velocity.

For the critical shear stress he writes:

Cc o

Combination of Eqs. (14), (15) and (16) gives an expression for the dimen—

sionless critical shear stress Tc :
x

c,. g(ps -p)D 31+ f,cL/cD.cD.Ei

Egiazaroff neglects the liftforce by staL:ng that:
: <<
f cL/cD 1

which gives as a result:

(13)

(14)

(15)

(16)
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(18)
“x cD.Ez

o

He assumes a logarithmic velocity profile near the bottom in the (verti-

cal) z-direction:

u (z) =u 5.75 lolog(30.2 z/k )
(o) x S

in which: u,

k
s

shear velocity

]

Nikuradse sand roughness = D.

Egiazaroff defines the bottom (z = 0) by assuming that for complete turbu-
lence (cD = 0.4) the dimensionless critical shear stress is equal to the
Shields-value (Tc = 0.06). He finds then z = 0.63 D as the point of appli-

cation of the fortes on the particle.

ol

z ug (z)

0.63D T“

7777777770

Fig. 6 Point of application of the forces on the particle.

Now Egiazaroff extends his theory to non-uniform particles. Important

assumptions are:

(i) The point of application is now z = 0.63 Di

(ii) The value of ks is equal to the mean grain diamcter of the mixture:
ks =D -

For complete turbulence Egiazaroff's result is:

Teq 0,1

'1' ¢ . = - =
=i (ps p)gDi (lolog 19Di/Dm)2

(19)

in which: Tewy = critical dimensionless shear stress of fraction i.
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Egiazaroff verifies this relationship with experimental results of Pante-

lopulos (1957, see page 5) and others.

05 T

~ Theoretical curve (Eq. 19)
Pantelopulos
Oumarov -—
Ramette
Nizery and Bradeau

!

*

-

=] [}

— ~N
_ ,2’/

o8 » x

0.02

N~
~

|
|
!
~
|

001
0.1 1.0 10 50

— :D.‘/Dm

Fig. 7 Experimental verification of equation (19)

Egiazaroff concludes that experimental results and Eq. (19) are in good

agreement.

Remarks:

1. Comparison of qui (calculated, Egiazaroff) and Tcxi (measured, Pante-
lopulos (1957) shows that Egiazaroff must have multiplied the measured
mention this and it is unclear whether the definition of the "threshold
of movement" has anything to do with this.

2. The way Egiazaroff chose the dimensionless variables along the axis
in Fig. 7 includes the danger of a spurious correlation. A better com-
parison takes place in Fig. 8; here the non-dimensionless values of
Te; are shown as a function of Di in the particular case of the experi-

ments of Pantelopulos (1957).

In Fig. 8 it is also possible to compare the differences between Egiaza-
roff's calculated and Pantelopulos' measured values of Tes with those in
the uniform case.

These last values are determined in two ways:

1. calculated according Kalinske-White (see page 5)

2. measured by Pantelopulos (1957).
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Fig. 8 Comparison between measured and calculated values of T.. for non-
uniform and uniform sediment *
The factor 5, mentioned above, has been used for all the values in Fig. 8,
except for the theoretical ones of Egiazaroff. It can be seen in this
figure that Egiazaroff's theory has only been tested in a restricted area.
Egiazaroff's line is steeper than the nearly constant measured values of
Pantelopulos (per fraction).
However, the smaller steebness in the non-uniform case seems to be a
general trend which is found in the measurements of Pantelopulos as well
as in the calculated values of Egiazaroff.
The next step of Egiazaroff is the substitution of the new expression (19)

in his own sediment transport formula. The result is:

Rb.l .

(20)




This formula which shows some resemblance with the formula of Meyer-
Peter and Muller (M-P & M) has not been verified (experimentally or with

river measurements) by Egiazaroff.

6. Ashida & Michiue using Egiazaroff's theory

Ashida & Michiue (A & M, 1973) develop & bedload formula per fraction by

combination of their own bedload formula (uniform sediment), the theory
of Egiazaroff and the basic hypothesis.
This bedload formula for uniform sediment is as follows:

dg 3/2

— =17 T (1 -1 /t)Q -u /Ju) (21)
/AgDJ ex cx x cx x

* - . - — 2 -
in which: T, T/(DS' p)gh = pux/(ps p)gD

T = total shear stress on the bed
Te = ut = effective shearstress
L critical shearstress of the grains

This formula also shows a large resemblance with the bedloadformula of M-P & M.
The bedload formula per fraction can be found by multiplying the righthand
side of Eq. (21) by P; (basic hypothesis) and by substituting for T the

theoretical expression of Egiazaroff: ®
s 3/2 -
=17 . p, . 1 -1 /t)Q = u_/u) (22)
i e c x c ' x
/AgDi % x, x

experiments they find a good agreement except in the range Di/Dm < 0.4.

In this area they give a correction on Egiazaroff's theory based on only

one measurement (Fig. 9).

A
D, = 2.47 mm
; ovt\é__
L3
O A
2 -@? £
Rd
[P\
S \_s-..__._—-——‘/ O
O
modified
0 i

107" 2 L 681 2 L 6810

—_— Di/[)m
Eig. 9 Experimental verification of Egiazaroff's theory (A & M, 1973)



The final form of the bedload formula per fraction (A & M, 1973) is:

9s; 3/2
i o . . -
3 =17 -p; -1 U= ft )0 - /ux) (23)
YAgD’, b % %
i i i
. . 0,1 -
in which: T =5 5 for Di/D > 0.4
o, (""log 19 D./D ) o
1 1 m
T = 0,0519 D /D. for D./D < 0.4
Cx' m L 1 m
i

Remarks:

1. The verification of Egiazaroff's theory with four experiments and the
correction of it on the basis of only one measurement seems arbitrary.
Moreover A & M only use one grainsize mixture (Dm = 2.47 mm; grainsize
distribution see Fig. 10 = 1) so that it seems impossible to draw gene-—
ral conclusions from these experiments.

2. Figure 10-2 shows a comparison between these experiments, those of
Pantelopulos (factor 5) and the calculated critical shearstresses ac-—
cording to Egiazaroff's theory (Dm as a parameter).

Especially the steep part of Egiazaroff's theory (small Di) is verified

insufficiently.

In the same paper A & M verify the new bedload formula per fraction , Eq.
(23). The experimental conditions were chosen in such a way that there
existed no_bedforms. This means that the total shear stress T is equal

to the effective shearstress Tor In Fig. 11 a comparison between formula

and experiments is shown.

Ashida & Michiue conclude from this figure that the bedload transport
per fraction is sufficiently described by Eq. (23) except for the larger

fractions (Di/Dm > 1); in this area they recommend further investigations.
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Fig. 11 Comparison between the bedload formula per fraction of A & M and

experimental results.

7. Suzuki using Egiazaroff's theory

Suzuki (1976) follows the principle ideas of A & M; The difference is that

he does not use the bedload formula (uniform sediment) of A & M but that
of M-P & M:
q MR, i

S =8 (=2~ 0,047)°2 (2)
/AgD3 AD

The correction for non-uniform sediment does not take place via the dimen-
sionless effective shear stress To (or via p), but via the value 0.047.
He replaces this value by a constaht times the dimensionless critical
shear stress per fraction from Egiazaroff. (A . Tcxi). The constant A is
chesen in such a way that substituting Di = Dm in this expression gives
0.047 again. According to the basic hypothesis he multiplies the righthand

side of Eq. (24) by p;- The bedload formula per fraction becomes now:



-.)9_

L P VR, 1 “ayy
13 =8 . p; . ("Er? - 0.78 1_ yol2 (25)
YAgD T %,
1
in which: TC = eepr Bal 5
x;  (log 19 Di/Dm)

of p for the different fractions. Obviously, the correction for non-uniform
sediment via Egiazaroff's theory is insufficient.

However, the number of experiments is too small to get a real verification
of Eq. (25).

Remark:

Suzuki. carries out two experiments, each with two sediment fractions

(D1 = 0.6 nm, D2 = 1.0 mm).

In both experiments he has to use a larger p-value for fraction 1 (smaller
particles) and a smaller p-value for fraction 2 Lo get agreement between
formula (25) and experimental results. This means that the bedload trans-
port of fraction 1 is larger and of fraction 2 is smaller than according

to Eq.. (25). In bothexperiments bedforms werc present.

8. Summary

Some of the major conclusions of this investigation are that the number

of available concepts for a bedload formula per sediment fraction is small
and that generally there is a lack of experimental verification.

The stochastical-empirical approaches (Pantelopulos, Einstein) are, because
of the large number of correction coefficients and figures, more compli-
cated than the empirical formulas (M-P & M, A & M, E & H).

The basic-hypothesis is the simplest transport formula per fraction. It is

assumed that the different fractions move independently and that the factor
p (M-P & M and E & H) is not a function of p;- Antsyferov uses the basic-
hypothesis in combination with a formula similar to that of Engelund and
Hansen.

The formula of Kalinske-Pantelopulos is not right in case of large shear

stresses. An experimental verification is missing. Pantelopulos carried
out some experiments in which he determined critical shear stresses per
fraction (in a sediment mixture); these values appecared to be nearly con-

stant, in contrast with those for the uniform case. The bedload formula
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of Einstein is already written in the form of a bedload formula per
fraction. However, some of the correcticen coefficients and constants are
determined in conditions with uniform sediment. For large-range mixtures
Ning-Chien gives a correction for the hiding-factor { and he investigates
effects as surface segregation and bedstratification. Egiazaroff derives

a theoretical expression for the critical shear stress per fraction T,
In the derivation remain some uncertainties: .4
1. The friction coefficient f is taken equal to unity.

2. The neglection of the liftforce.

Egiazaroff verifies his theory with experiments of Pantelopulos and others.
A question which arises is: Why did Egiazaroff multiply Pantelopulos' re-
sults with a factor 5? The general trend of Egiazaroff's theory appears

to be in agreement with Pantelopulos' measurements.

Egiazaroff substitutes his theoretical expression in his own transport
formula. A verification with experiments of river measurements did not

take place.

Ashida & Michiue give a correction of Egiazaroff's theory; this seems ar-

bitrary because it is based on only one measurement. They combine their
own bedload formula with the basic hypothesis and the corrected theory of
Egiazaroff. Experimental results are in reasonable agreement with the new
bedload formula per fraction, except for Di/Dm > 1.

Despite of some uncertainties, which are still present in this formula,

it has some advantages:

1. It has been verifieéd experimentally

2. It is written in a relatively simple analytical form.

3. It takes into account the mutual influences of the different fractions.
Suzuki combines in the same way as A & M did the bedload formula of M-P & M,
the basic-hypothesis and the theoretical expression of Egiazaroff (no
correction). The resulting formula is insufficiently experimentally veri-
fied. In the two experiments of Suzuki it was found necessary to use
different factors p for both fractions, to get the calculated bedload

transport per fraction in agreement with the measured one.

In Table 2 a summary is given of the bedload formulas per fraction which

have been treated in this report.



Investigator

Sediment transport formula

per fraction

Remarks

~ "Basic Hypothesis"

Antsyferov (1973)

Einsteia (1950)

Pantelopulos (1955)

Egiazaroff (1965)

Ashida and Michiue (1973)

Suzuki (1976)
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Large simplification; independent movement
of the different fractions

Similar to Engelund and Hansen.

Two possibilities:

(1) u # u(pi) - "basic hypothesis"

(1) u = ulp))

Similar to Meyer-Peter and Muller

(1) u# u(pi)

(ii) u = u(p;)

Gives in his orfginal formdirectly the
bedload transport per fraction.

Many correction coefficients. Only the
hiding-factor § is adapted to large-range

mixtures (Ning-Chien, 1953).

Similar to the concept of Kalinske. -
Incorrect for relatively large transports

No analytical expression for %c

i
Egiazaroff's own transport formula with
an analytical expression for.?c..
Only an experimental verification of T,

with results of Pantélopulos and othersti

Large resemblance with formula of M~P & M
Experimental verification of Ty, 28 well

b
i
as the total formula.

Similar to M-P & M.

Unsufficient experimental verification

Table 2
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Main Symbols

a waterdepth (LT ]

Cg Chézy-coefficient of the grains [L%T—]]

Ct tqtal Chézy-coefficient [L%T—]]

D, grain diameter of sediment fraction i [L]

Dm mean grain diameter of a sediment mixture [L]
(= I p;D))

ib bottom slope [=]

i probability of sedimentfraction i [—£ .
. sedimenttransport in volume (real) per unit [L°T 7]

time and width

1y sediment transport of fraction i in volume (real) [LZT—]]

. per unit time and width

Rb hydraulic radius [L% =

s sedimenttransport in volume (including pores) [L°T 7]
per unit time and width

s; sedimenttransport of fraction i in volume [L2T~]]
(including pores) per unit time and width

u mean flow velocity [LT‘]]

Ep mean grain velocity (including restperiods) [LT_]]

X transport parameter (= s//AgD3) [-]

Y flow parameter (= AD/uRbib) (-]

A relative density ((ps - p)/p) [-]

M bedformfactor [-]

T total shear stress on the bed [MLF]T%z]

T, critical shearstress of sediment [ML—JT—Z]

T, effective shear stress on the bed [ML—IT_Z]

T, dimensionless shear stress (=T/(pS - p)gDd) -]






