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Abstract
In this study, the stability dependence of turbulent Prandtl number ( Pr

t
 ) is quantified via 

a novel and simple analytical approach. Based on the variance and flux budget equations, 
a hybrid length scale formulation is first proposed and its functional relationships to well-
known length scales are established. Next, the ratios of these length scales are utilized to 
derive an explicit relationship between Pr

t
 and gradient Richardson number. In addition, 

theoretical predictions are made for several key turbulence variables (e.g., dissipation rates, 
normalized fluxes). The results from our proposed approach are compared against other 
competing formulations as well as published datasets. Overall, the agreement between 
the different approaches is rather good despite their different theoretical foundations and 
assumptions.

Keywords Anisotropy · Buoyancy length scale · Gradient Richardson number · Shear 
length scale · Stable boundary layer

1 Introduction

According to the K-theory, based on the celebrated hypothesis of Boussinesq in 1877, tur-
bulent fluxes can be approximated as products of the eddy exchange coefficients (known 
as the Austausch coefficients in earlier literature) and the mean gradients [45]. Specifi-
cally, for incompressible, horizontally homogeneous, boundary layer flows, the along-wind 
momentum flux ( u′w′ ) and the sensible heat flux ( w′�′ ) can be simply written as follows: 

(1a)u�w� = − KMS,
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 Here S and �  denote the vertical gradients of the mean along-wind velocity component 
and the mean potential temperature, respectively. The eddy viscosity and diffusivity for 
heat are represented by KM and KH , respectively. In contrast to molecular diffusivities, 
these eddy exchange coefficients are not intrinsic properties of the fluid [4, 64]; rather, they 
depend on the nature of the turbulent flows (e.g., stability) and position in the flow (e.g., 
distance from the wall).

The ratio of KM and KH is known as the turbulent Prandtl number:

This variable is fundamentally different from the molecular Prandtl number:

where, � and � denote kinematic viscosity and thermal diffusivity, respectively. According 
to a vast amount of literature, Prt is strongly dependent on buoyancy and somewhat weakly 
dependent on other factors (see below).

For non-buoyant (also called neutral) flows, in this paper, the turbulent Prandtl num-
ber is denoted as Prt0 . In the past, for simplicity, a number of studies assumed Prt0 = 1 
by invoking the so-called ‘Reynolds analogy’ hypothesis [55, 68, 69]. Basically, they 
implicitly assume that the turbulent transport of momentum and heat are identical. How-
ever, this assumption of Prt0 = 1 is not supported by the vast majority of experimental 
data (see [33] and the references therein). On this issue, Launder [39] commented:

It would also be helpful to dispel the idea that a turbulent Prandtl number of unity 
was in any sense the “normal” value. We shall see [...] that a value of about 0.7 
has a far stronger claim to normality.

Perhaps, it is not a mere coincidence that the theoretical study of Yakhot et  al. [78] 
predicted that Prt0 asymptotically approaches 0.7179 in the limit of infinite Re (see also 
[66]). One of the most cited studies in atmospheric science, by Businger et al. [11], also 
reported Prt0 = 0.74. According to a review article by Kays [33], for laboratory flows, 
Prt0 typically falls within the range of 0.7 to 0.9; the most frequent value being equal 
to 0.85. Most commercial computational fluid dynamics packages (e.g., Fluent, Open-
FOAM) assume 0.85 to be the default Prt0 value.

There is some evidence that Prt0 may not be a universal constant; it might weakly 
depend on Prm , Re, and/or position in the flow. However, there is no general agreement 
in the literature on this matter (e.g., [3]). Reynolds [56] summarized numerous empiri-
cal and semi-empirical formulations capturing such dependencies for a wide range of 
fluids (including air, water, liquid metal) and engineering flows (e.g., pipe flow, jet flow, 
shear flow). However, to the best of our knowledge, these formulations are yet to be 
confirmed for high-Re atmospheric flows. In such flows, buoyancy effects have been 
found to be far more dominant than any other factors.

In atmospheric flows, especially under stably stratified conditions, the value of Prt 
departs significantly from Prt0 . Over the decades, several empirical formulations have 
been developed by various research groups (see [40] for a recent review). For example, 

(1b)w��� = − KH� .

(2)Prt =
KM

KH

.

(3)Prm =
�

�
,
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by regression analysis of aircraft measurements from different field campaigns, Kim and 
Mahrt [34] proposed:

where, Rig is the gradient Richardson number, commonly used to quantify atmospheric 
stability. It is defined as follows:

where, g is the gravitational acceleration and �0 represents a reference temperature. The 
variable � is known as the buoyancy parameter. The so-called Brunt Väisälä frequency is 
denoted by N.

More recently, Anderson [1] conducted rigorous statistical analysis of observational 
data from the Antarctic. By avoiding the self-correlation issue, he proposed the following 
empirical relationship for 0.01 < Rig < 0.25:

Clearly, the Rig-dependence of Prt becomes rather weak as the stability of the flow 
decreases.

In addition to field observational data, laboratory and simulated data were also utilized 
to quantify the Prt–Rig relationship. In this regard, a popular semi-empirical formulation by 
Schumann and Gerz [58] is worth noting:

where, Rf∞ is the asymptotic value of the flux Richardson number ( Rf = Rig∕Prt ) for 
strongly stratified conditions. Recently, Venayagamoorthy and Stretch [72] used direct 
numerical simulation (DNS) data and revised the formulation by Eq. (7) as follows:

For all practical purposes, the differences between Eqs. (7) and (8) are quite small.
In parallel to observational and simulation studies, there have been a handful of attempts 

to derive the Prt—Rig formulations from the governing equations with certain assumptions. 
In the appendices, we have summarized two competing hypotheses by Katul et al. [32] and 
Zilitinkevich et  al. [82]. The readers are also encouraged to peruse the following papers 
describing other relevant hypotheses: [14, 15], and [29]. In the present study, we report an 
alternative analytical derivation which leads to a closed-form Prt–Rig relationship.

2  Analytical derivations

In this section, based on the variance and flux budget equations, we first derive a hybrid length 
scale ( LX ) and establish its relationship with three well-known length scales: the Hunt length 
scale ( LH , [23, 24]), the buoyancy length scale ( Lb , [10, 76]), and the Ellison length scale ( LE , 

(4)Prt = 1 + 3.8Rig,

(5)Rig =

(
g

�0

)
�

S2
=

��

S2
=

N2

S2
.

(6)Pr−1
t

= (0.84 ± 0.03)Ri−0.105±0.012
g

.

(7)Prt = Prt0 exp

(
−

Rig

Prt0Rf∞

)
+

Rig

Rf∞

,

(8)Prt = Prt0 exp

[
−
Rig

(
1 − Rf∞

)
Prt0Rf∞

]
+

Rig

Rf∞

.



1276 Environmental Fluid Mechanics (2021) 21:1273–1302

1 3

[16]). Next, the ratios of various length scales (e.g., Lb∕LE ) are shown to be explicit functions 
of Rig and Prt . Equating these functions with one another results in a quadratic equation for 
Prt . One of the roots of this quadratic equation provides an explicit Prt–Rig relationship.

2.1  Budget equations

The simplified budget equations for turbulent kinetic energy (TKE), variance of temperature 
( �2

�
 ), and sensible heat flux ( w′�′ ) can be written as [18, 53, 75]: 

 where � and �� denote the dissipation rates of TKE and �2
�
 , respectively. The variance of 

vertical velocity is �2
w
 . In Eq.  (9c), the parameter ap influences the buoyant contribution 

to the pressure-temperature interaction term; whereas, the last term of this equation is a 
parameterization of the turbulent-turbulent component of the pressure-temperature interac-
tion. The return-to-isotropy time scale is denoted by �R . Please refer to “Appendix 1” for 
further technical details on the parameterization of pressure-temperature interaction.

The Eqs.  (9a), (9b), and (9c) assume steady-state and horizontal homogeneity. Further-
more, the terms with secondary importance (e.g., turbulent transport) are neglected. Eqs. (9a) 
and (9b) assume that production is locally balanced by dissipation. Please refer to Wyngaard 
[75] and Fitzjarrald [18] for further details. The celebrated ‘local scaling’ hypothesis by Nieu-
wstadt [53] also utilizes these equations.

2.2  A hybrid length scale

In analogy to Prandtl’s mixing length hypothesis (see [4, 50, 73]), let us assume that �w is a 
characteristic velocity scale for stably stratified flows. Further assume that LX and LX∕�w are 
characteristic length and time scales, respectively. Then, the eddy diffusivity, the dissipation 
rates, and turbulent-turbulent component of the pressure-temperature interaction can be re-
written as follows: 

(9a)� = −
(
u�w�

)
S + �w���,

(9b)�� = −2
(
w���

)
� ,

(9c)0 = −�2
w
� +

(
1 − ap

)
��2

�
−

w���

�R
.

(10a)KM = c1�wLX ,

(10b)� = c2
�2
w(

LX

�w

) = c2
�3
w

LX
,

(10c)�� = c3
�2
�(

LX

�w

) = c3
�w

LX
�2
�
,
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 Here the unknown (non-dimensional) coefficients are denoted as ci , where i is an inte-
ger. The parameterizations for the dissipation rates (i.e., � and �� ) are further discussed in 
Sect. 4.

If we now make use of Eqs. (1a), (1b), (2), (10a), (10b) and substitute all the terms of 
Eq. (9a), we arrive at: 

 By simplifying Eq. (11b), we get: 

 where LH(=
�w

S
) is the Hunt length scale and cH is an unknown proportionality constant. 

The length scale equation, Eq. (12a), was originally derived by Holtslag [22].
The Hunt length scale is related to the so-called buoyancy length scale ( Lb ) as 

follows:

Thus, Eq. (12b) can be re-written as:

If we substitute the individual terms of Eq. (9b) by utilizing Eqs. (1b), (2), (10a), and (10c), 
we get:

Simplification of this equation leads to: 

(10d)
w���

�R
= c4

w���(
LX

�w

) = −c1c4
�2
w

Prt
� .

(11a)c2
�3
w

LX
= c1�wLXS

2 − c1�wLX

(
�

Prt

)
� ,

(11b)or, c2
�3
w

LX
= c1�wLXS

2

(
1 −

Rig

Prt

)
.

(12a)LX =

�
c2

c1

��w
S

�⎛⎜⎜⎜⎝
1�

1 − Rig∕Prt

⎞⎟⎟⎟⎠
,

(12b)or, LX = cHLH

⎛⎜⎜⎜⎝
1�

1 − Rig∕Prt

⎞⎟⎟⎟⎠
=

cHLH√
1 − Rf

,

(13)LH =
(�w
S

)
=
(�w
N

)
N

S
=
(�w
N

)√
Rig = Lb

√
Rig.

(14)LX = cHLb

⎛⎜⎜⎜⎝

√
Rig�

1 − Rig∕Prt

⎞⎟⎟⎟⎠
.

(15)c3
�w

LX
�2
�
= 2c1

�wLX

Prt
� 2.
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 where LE
(
= ��∕�

)
 is the Ellison length scale and cE is an unknown (nondimensional) 

coefficient.
We would like to point out that in the appendices of Basu et al. [6, 7] we have summarized 

the characteristics of Hunt, buoyancy, Ellison, Bolgiano, Ozmidov, and several other length 
scales. For brevity, we do not repeat them here.

2.3  Ratios of length scales

By comparing Eq. (12b) with Eq. (16b), it is rather straightforward to derive: 

 where cP =
c2
H

c2
E

 . Using Eq. (13), this equation can be re-written as follows:

An alternative expression for 
(

L2
b

L2
E

)
 can be found if we use Eqs. (1b), (2), (10a), and (10d) to 

substitute the individual terms of Eq. (9c) as follows: 

 where c5(= c1c4) is an unknown proportionality constant.

(16a)LX =

�
c3

2c1

���
�

�√
Prt,

(16b)or, LX = cELE

√
Prt.

(17a)Prt =

(
cHLH

cELE

)2

+ Rig,

(17b)or,
L2
H

L2
E

=

(
Prt − Rig

)
cP

,

(18)
L2
b

L2
E

=

(
Prt − Rig

)
cPRig

=

(
1 − Rf

)
cPRf

.

(19a)−c1c4
�2
w

Prt
� = −�2

w
� +

(
1 − ap

)
��2

�
,

(19b)or,

(
1 −

c5

Prt

)
�2
w
� =

(
1 − ap

)
��2

�
,

(19c)or,

(
1 −

c5

Prt

)
L2
b
=
(
1 − ap

)
L2
E
,

(19d)or,
L2
b

L2
E

=

(
1 − ap

)
(
1 −

c5

Prt

) ,
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2.4  Derivation of Prandtl number

By equating Eqs. (18) and (19d), we immediately get the following quadratic equation:

Since Prt = Prt0 for neutral conditions ( Rig = 0 ), via Eq. (20), we find:

The roots of Eq. (20) are:

where, X =
[
Prt0 + Rig +

(
1 − ap

)
cPRig

]
 . Only the larger root is physically meaningful. 

Equation (22) includes three unknown parameters (i.e., Prt0 , ap , and cP ). Similarity theory 
can be used to estimate cP (discussed in the following section). However, Prt0 and ap must 
be prescribed.

We would like to emphasize that Eq. (22) is a closed form analytical solution for the 
stability-dependence of Prt . It is derived directly from the budget equations without any 
additional simplification. Since our derivation makes use of certain length scale ratios 
(LSRs), we refer to our proposed approach as the LSR formulation.

3  Estimation of unknown coefficients

For near-neutral conditions, Eqs. (12b) and (16b) simplify to the following expressions, 
respectively: 

In order to be consistent with the logarithmic velocity profile in the surface layer, LX should 
be equal to �z in the surface layer, where � is the von Kármán constant. Therefore,

Numerous studies reported that �w = cwu∗ and �� = c��∗ in near-neutral stratified surface 
layer. The surface friction velocity and temperature scale are denoted by u∗ and �∗ , respec-
tively. Thus, we get:

(20)Pr2
t
−
[
c5 + Rig +

(
1 − ap

)
cPRig

]
Prt + c5Rig = 0.

(21)c5 = Prt0.

(22)Prt =
X ±

√
X2 − 4Prt0Rig

2
,

(23a)LX ≈ cH
�w

S
,

(23b)LX ≈ cE
��

�

√
Prt0.

(23c)cH ≈
�zS

�w
,

(23d)cE ≈
�z�√
Prt0��

.
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 Please note that the non-dimensional velocity gradient, 
(
�zS∕u∗

)
 , equals to unity accord-

ing to the logarithmic law of the wall. Whereas, the non-dimensional temperature gradient, (
�z�∕�∗

)
 , equals to Prt0.

By using Eqs.  (1a), (10a), and (12b), we can expand the along-wind momentum flux as 
follows: 

Thus, the normalized momentum flux can be written as:

For neutral condition, Ruw simplifies to: Ruw0 = −c1cH . Since, �w = cwu∗ , we get:

 Since, cH ≈
1

cw
 , the unknown coefficient c1 is also approximately equal to 1

cw
 . Typical val-

ues of Ruw0 are documented in Table 1.
From Eqs. (12b), (16b), (17b), (19d), (21), (23e), and (23f), via simple algebraic calcula-

tions, we can write all the unknown ci coefficients as functions of cw , c� , and Prt0 as follows: 

(23e)cH ≈
�zS

cwu∗
=

1

cw
,

(23f)cE ≈
�z�√
Prt0c��∗

=

√
Prt0

c�
.

(24a)
u�w� = −c1cH�

2
w

1√
1 − Rig∕Prt

,

(24b)Ruw =

(
u�w�

�2
w

)
= −

c1cH√
1 − Rig∕Prt

.

(24c)Ruw0 = −
1

c2
w

= −c1cH .

(25a)c1 = cH =
1

cw
,

(25b)c2 = c3
H
=

1

c3
w

,

Table 1  Statistics associated the proposed LSR Model

Prescribed Estimated

Prt0 cw c� cH cE cP c
1

c
2

c
3

c
4

c
5

Ruw0 Rw�0

0.74 1.25 1.80 0.80 0.48 2.80 0.80 0.51 0.37 0.93 0.74 − 0.64 − 0.44
0.74 1.30 2.00 0.77 0.43 3.20 0.77 0.46 0.28 0.96 0.74 − 0.59 − 0.38
0.85 1.25 1.80 0.80 0.51 2.44 0.80 0.51 0.42 1.06 0.85 − 0.64 − 0.44
0.85 1.30 2.00 0.77 0.46 2.78 0.77 0.46 0.33 1.11 0.85 − 0.59 − 0.38
0.85 1.05 2.00 0.95 0.46 4.27 0.95 0.86 0.40 0.89 0.85 − 0.91 − 0.48
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In the literature, the most commonly reported values of cw range from 1.25 to 1.30 [4, 
27, 53, 60]. Similarly, c� values vary approximately from 1.8 to 2.0 [27, 60]. In a few pub-
lications, somewhat different values were also reported (e.g., [45, 74]). In Table 1, we have 
computed ci and other coefficients for a few combinations of Prt0 , cw , and c�.

4  Parameterizations of dissipation rates

4.1  Energy dissipation rate

The energy dissipation rate is commonly parameterized as follows [46]:

where q2 is twice TKE. LM is known as the master length scale and B1 is a constant coef-
ficient. In this study, following Townsend [70], we use Eq. (10b) as an alternative param-
eterization for � which makes use of �3

w
 instead of q3 . Using Eqs. (12b), and (25), we can 

re-write this parameterization as follows: 

If the value of cw is approximately in the range of 1.25–1.30 (refer to Table 1), for small 
values of Rig (i.e., weakly stable conditions), we get:

It is important to note that Eq. (27b) (with an unknown proportionality constant) was origi-
nally proposed by Hunt [24] using heuristic arguments. He hypothesized that the energy 
dissipation in weakly/moderately stably stratified flows is dictated by mean shear (S) and 
root-mean-square value of vertical velocity fluctuations (i.e., �w ) which is the character-
istic velocity scale in the direction of S. Later on Schumann and Gerz [58] analyzed vari-
ous observational and simulation datasets and validated Hunt’s parameterization (see their 
Fig. 1). More recently, Basu et al. [7] utilized a database of direct numerical simulations 
and found:

for 0 < Rig < 0.2 . TKE is denoted by e . It is remarkable that the DNS-based empirical for-
mulation of [7] is virtually identical to our analytical prediction, i.e., Eq. (27b). However, 

(25c)c3 =
2Prt0

cwc
2
�

,

(25d)c4 = Prt0cw,

(25e)and recall that c5 = Prt0.

(26)� =
q3

B1LM
,

(27a)� =

(
c2

cH

)
�2
w
S

√
1 − Rig∕Prt =

(
1

c2
w

)
�2
w
S

√
1 − Rig∕Prt.

(27b)� = 0.60�2
w
S.

(27c)� = 0.23eS = 0.63�2
w
S,



1282 Environmental Fluid Mechanics (2021) 21:1273–1302

1 3

we are unable to ascertain the validity of either Eqs. (27b) or (27c) for Rig > 0.2 . We will 
discuss more on this issue in Sect. 6.

The exact value of B1 in Eq.  (26) is not settled in the literature. Over the years, a num-
ber of researchers estimated its value from diverse observational and simulated datasets; see 
a brief summary in Table 2. By combining the analytical results from the present study with 
the DNS results from Basu et al. [7], we can also estimate B1 as follows. From Eq. (27c), for 
0 < Rig < 0.2 , we can write:

Next, if we assume our proposed length scale ( LX ) is equal to the master length scale ( LM ), 
then from Eqs. (12b) and (26), we get:

Here we have assumed cH = 0.8 and 
√

1 − Rig∕Prt ≈ 1 for small values of Rig . Clearly, our 
estimated value of B1 agrees reasonably well with some of the published studies; however, 
it is significantly higher than the widely used value of 16.6. Please note that due to a miss-
ing multiplying coefficient of value 2.1, Basu et  al. [7] incorrectly reported B1 = 12.3 
instead of 25.8.

4.2  Dissipation rate of temperature variance

Once again, following Townsend [70], we parameterized the dissipation rate of temperature 
variance ( �� ) by Eq. (10c). Combining this equation with Eqs. (12b), (15), and (25), we get:

For small values of Rig , we can assume Prt ≈ 0.85 . As before, if we also consider cH = 0.8 , 
we arrive at: �� ≈ 1.51

(
�2
w

S

)
� 2 . Almost the same formulation was reported by Basu et al. 

[6] based on their analysis of a DNS database. For 0 < Rig < 0.2 , they found: 
�� = 1.47

(
�2
w

S

)
� 2.

(28)e =
q2

2
=
(
0.63

0.23

)
�2
w
= 2.74�2

w
.

(29)B1 =
q3

�LX
=

(2 × 2.74)3∕2�3
w(

0.63�2
w
S
)(
cH�w∕S

) = 25.5.

(30)�� =

(
2c1cH

Prt

) (
�2
w

S

)
� 2

√
1 − Rig∕Prt

=

(
2c2

H

Prt

) (
�2
w

S

)
� 2

√
1 − Rig∕Prt

.

Table 2  Published values of B
1
 

coefficient
Study B

1

Mellor and Yamada [46] 16.6
Enger [17] 27.0
Andrén and Moeng [2] 27.4
Nakanishi [52] 24.0
Janjić [25] 11.9
Cheng et al. [14] 19.3
Basu et al. [7] 25.8
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In summary of this section, we can state that our analytical formulations of dissipation 
rates are very reliable for 0 < Rig < 0.2 . However, more research will be needed for their 
rigorous validation for the very stable regime (i.e., Rig > 0.2).

5  Results

5.1  Turbulent Prandtl number

Our proposed formulation for the turbulent Prandtl number, Eq. (22), contains 3 unknown 
coefficients: Prt0 , ap , and cP . Based on the discussion in the Introduction, in this study, we 
have opted to use Prt0 = 0.85. The value of cP is selected from Table 1; it is evident that it 
should vary within a range of 2.4–4.3 for typical values of cw and c� . The parameter ap is 
discussed in “Appendix 1”.

In Fig. 1, the predictions from our LSR approach are reported for various combinations 
of ap and cP . In addition to Prt , we have also reported the stability-dependence of Rf  . The 
results are sensitive to ap values for Rig > 0.1 . It is encouraging to see that the predictions 
are qualitatively in agreement with the published observations. They are also in-line with 
the predictions from the co-spectral budget (CSB; [32]) and energy- and flux-budget (EFB; 
[82]) approaches.

We would like to emphasize out that Eqs. (22) and (72b) in “Appendix 2” have nearly 
identical mathematical form despite the fundamental differences in the LSR and CSB 
approaches. The CSB approach includes prescribed coefficients from Kolmogorov–Obuk-
hov–Corrsin hypotheses and from a parameterization of the pressure-temperature decorre-
lation (refer to “Appendix 2”); they are all lumped into a variable called �CSB in Eq. (72b). 
However, it does not consider the buoyancy-turbulence interaction term in the sensible 
heat flux equation. Thus, Eq. (72b) does not include the ap parameter. In contrast, the LSR 
approach largely depends on cw and c� coefficients (combined into the cP coefficient) in 
addition to ap . These coefficients are integral part of surface layer similarity theory for 
near-neutral conditions. Furthermore, by construction, the CSB approach assumes Prt0 = 1 . 
Whereas, in the case of the LSR approach, Prt0 is assumed to be equal to 0.85.

For very stable condition (i.e., Rig ≫ 1 ), Eq. (22) is simplified to:

In contrast, Eq. (72b) from the CSB approach leads to:

Thus, the CSB approach predicts Rf∞ ≈ 0.25 . On the other hand, for ap = 0 and cP = 4.27, 
Rf∞ equals to 0.19 for the LSR approach. However, for ap = 0.5 and cP = 2.4, Rf∞ increases 
to 0.46. In the literature (see [16, 20, 70, 79]), Rf∞ has been reported to be within the limits 
of 0.15 and 0.5; both the LSR-based and CSB-based predictions are in this range.

5.2  Normalized variances and fluxes

In the literature, there is no consensus regarding the exact stability-dependence of a few nor-
malized variables. Different formulations (e.g., [43, 82]) predict different trends. The LSR 

(31)Prt ≈
(
1 +

(
1 − ap

)
cP
)
Rig =

Rig

Rf∞

.

(32)Prt ≈ �CSBRig ≈ 4Rig.
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approach allows us to independently predict some of these ratios without further approxima-
tions as elaborated below.

5.2.1  Ratio of turbulent potential and kinetic energies

We first consider the ratio of the turbulent potential energy (TPE; denoted as ep ) and the verti-
cal component of TKE (i.e., ew ). These variables are commonly written as [43]: 

(33a)e
p
=

(
�

N

)2

e
T
,
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10-2

100

102

104
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Fig. 1  The dependence of Prt (left panel) and Rf  (right panel) on Rig . As a default, the length scale ratio 
(LSR) approach assumes Prt0 = 0.85 , ap = 0.33, and cP = 2.8. In the top panels, published data from vari-
ous sources [51, 54, 62, 63, 77] are overlaid. The sensitivities of the LSR-based predictions with respect to 
ap and cP coefficients are documented in the bottom panels. The predictions from Schumann and Gerz [58], 
Zilitinkevich et al. [82], and Katul et al. [32] are also shown in these panels for comparison
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 where eT =
�2
�

2
 . By using the definition of the Ellison length scale ( LE ), we can re-write ep 

as follows:

Thus, the ratio of ep and ew is simply: 

By making use of Eq. (18), we can re-write Rpw as follows:

 In the left panel of Fig. 2, the dependence of Rpw on Rig is shown. Clearly, Rpw is strongly 
influenced by ap for Rig > 0.2 . In contrast, somewhat surprisingly, Rpw is not very sensitive 
to the coefficient cP . In the denominator of Rpw , the term (Prt − Rig) appears which strongly 
depends on cP . It effectively cancels out the influence of cP in the numerator of R

pw
.

5.2.2  Normalized momentum flux

The formulations for Ruw and Ruw0 are derived earlier in Eqs. (24b) and (24c), respectively. 
Hence, their ratio becomes:

(33b)ew =
�2
w

2
,

(34)ep =
1

2
N2L2

E
.

(35a)Rpw =
ep

ew
=

N2L2
E

�2
w

=
L2
E

L2
b

.

(35b)Rpw =
cPRig(

Prt − Rig
) =

cPRf(
1 − Rf

) .

(36)
Ruw

Ruw0

=
1�

1 − Rig∕Prt

=
1√

1 − Rf

.
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Fig. 2  The dependence of Rpw (top panel), normalized Ruw (middle panel), and normalized Rw� (bottom 
panel), on Rig . As a default, the length scale ratio (LSR) approach assumes Prt0 = 0.85 , ap = 0.33, and 
cP = 2.8 . The sensitivities of the LSR-based predictions with respect to ap and cP coefficients are docu-
mented in all the panels



1286 Environmental Fluid Mechanics (2021) 21:1273–1302

1 3

The dependence of the normalized momentum flux on Rig is shown in the middle panel of 
Fig. 2. It is marginally sensitive to ap and cP.

5.2.3  Normalized correlation of w and �

Similar to the momentum flux expression, the sensible heat flux can be re-written using 
Eqs. (1b), (2), (10a), and (16b) as follows: 

Hence, the correlation between w and � becomes:

For neutral condition, we have Rw�0 = −
c1cE√
Prt0

 . So, the normalized correlation can be writ-
ten as:

 Typical values of Rw�0 are documented in Table 1. The normalized correlations are plot-
ted in the right panel of Fig. 2. Similar to the normalized momentum flux, this ratio is also 
very weakly dependent on ap and cP.

5.2.4  Comparison of different theoretical approaches

As documented in “Appendix 2”, the CSB approach of Katul et al. [32] predicts:

where cCSB
0

 and cCSB
T

 equal to 0.65 and 0.80, respectively. On the other hand, according to 
the EFB approach of Zilitinkevich et al. [82], we have (refer to “Appendix 3”):

where, cEFB
P

 is 0.86. Zilitinkevich et al. [82] assumed that the anisotropy parameter Az (dis-
cussed in the following section) varies from 0.2 (neutral condition) to 0.03 (strongly strati-
fied condition).

We intercompare Eqs. (35b), (38) and (39) via Fig. 3 (left panel). In comparison to the 
LSR approach, the CSB approach underestimates Rpw by a factor of more than 2. The CSB 
approach makes an assumption that the temperature spectrum has a flat shape in the buoy-
ancy range (refer to “Appendix 2”) which is not supported by field observations. We specu-
late that, as a consequence of this idealization, the CSB approach underestimates the vari-
ance of temperature, and in turn, underestimates Rpw . The predictions of the EFB approach 

(37a)w��� = −c1cE�w��
1√
Prt

.

(37b)Rw� =

�
w���

�w��

�
= −

c1cE√
Prt

.

(37c)
Rw�

Rw�0

=

√
Prt0

Prt
.

(38)RCSB
pw

=

(
cCSB
T

cCSB
0

)
Rf(

1 − Rf

) ,

(39)REFB
pw

=

(
cEFB
P

Az

)
Rf

(1 − Rf )
,
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and the LSR approach agree reasonably well up to Rf ≈ 0.15 . For higher stability condi-
tions, the EFB predicts a sharp increase in Rpw values. This drastic behavior can be attrib-
uted to the assumed stability-dependence of Az (see Fig. 6 of [82]).

In the context of normalized momentum fluxes, the CSB and LSR approaches make 
identical predictions; please compare Eqs.  (36) and (76). However, the prediction from 
the EFB approach include terms involving Az in the numerator [refer to Eq. (85b)]. Thus, 
owing to the assumed stability-dependence of Az , the EFB approach predicts much higher 
value of normalized momentum fluxes in comparison to the LSR approach as depicted in 
the right panel of Fig.  3. Rigorous analyses of observational and simulated data will be 
needed to (in)validate these predictions.

All the theoretical approaches predict an almost identical relationship for the normal-
ized correlation of w and � ; refer to Eqs. (37c), (77), and (85c). The only difference arises 
due to the assumed value of Prt0 . The LSR, CSB, and EFB approaches assume Prt0 to be 
equal to 0.85, 1, and 0.8, respectively.

6  Discussions

In this section, we elaborate on a few limitations of the proposed LSR approach and how to 
overcome them in a practical manner.

6.1  Vertical anisotropy of turbulence

In this study, we have used Eq. (10b) to parameterize energy dissipation rate ( � ). A more 
common practice would be to use Eq. (26) or its following variant: 

(40a)� = c∗
2

q2(
LX

�w

) = c∗
2

�3
w

AzLX
,
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Fig. 3  The dependence of Rpw (left panel) and normalized Ruw (right panel) on Rf  . As a default, the length 
scale ratio (LSR) approach assumes Prt0 = 0.85 , ap = 0.33, and cP = 2.8. The sensitivities of the LSR-based 
predictions with respect to ap and cP coefficients are documented in both the panels. In addition, the predic-
tions from the EFB approach are overlaid in these panels for comparison. The CSB-based result is also 
included in the left panel. Since the CSB and LSR approaches predict an identical relationship for normal-
ized momentum flux, the CSB-based results are not shown in the right panel
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where,

 and c∗
2
 is an unknown coefficient. In Sect. 2, we have implicitly assumed c∗

2
Az to be a con-

stant ( c2 ). In the literature, there is some evidence that the anisotropy parameter, Az , may 
be dependent on Rig.

Based on observational and simulation data of turbulent air flows, Schumann and Gerz 
[58] proposed the following empirical equation for 0 < Rig < 1:

According to this equation Az is weakly dependent on Rig ; as a matter of fact, Schu-
mann and Gerz [58] stated “the conclusions do not change much” if Az = 0.22 is used. 
Based on a DNS database, Basu et al. [7] reported Az to be approximately equal to 0.18 
for 0 < Rig < 0.2 . The parameterizations of Canuto et al. [12], Kantha and Clayson [28], 
and Cheng et  al. [15] predict gradual decrease of Az from near-neutral to strongly strat-
ified conditions. Their predicted A(Rig=0)

z  range from 0.22 to 0.26; whereas, A(Rig>1)

z  vary 
from about 0.15 to 0.20. In contrast, Zilitinkevich et al. [82] used an empirical formula-
tion which assumes A(Rig=0)

z  = 0.20 and A(Rig>1)

z ≈ 0.03. The published datasets documented 
by Zilitinkevich et al. [82] (see their Fig. 6) and Cheng et al. [15] (see their Fig. 3c), in 
order to corroborate their respective formulations, do not portray any clear trends. A case 
in point are the wind tunnel measurements by Ohya [54] which exhibit random fluctuating 
behavior. Surprisingly, a strongly increasing trend of Az with respect to Rig was predicted 
by large-eddy simulation data of [80] (see their Fig. 4); this was in direct contradiction to 
their analytical prediction. Given this diversity in the Az-vs-Rig relationship, we strongly 
recommend more research in this arena.

If we utilize Eq. (40a) instead of Eq. (10b), it is straightforward to re-derive all the equa-
tions reported in earlier sections. Some of the key equations are given here: 

(40b)Az =
ew

e
=

�2
w

q2
,

(41)Az = 0.15 + 0.02Rig + 0.07 exp

(
−

Rig

0.25

)
.

(42a)LX =

�
c∗
2

c1Az

��w
S

�⎛⎜⎜⎜⎝
1�

1 − Rig∕Prt

⎞
⎟⎟⎟⎠
,

(42b)
L2
H
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E
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(
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)
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P

,

(42c)Rpw =
c∗
P
Rig(
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)
Az

=
c∗
P
Rf(

1 − Rf

)
Az

,

(42d)
Ruw

Ruw0

=

����A
(Rig=0)

z
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⎛⎜⎜⎜⎝
1�

1 − Rig∕Prt

⎞⎟⎟⎟⎠
=

����A
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�
1√

1 − Rf

�
.
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 Here c∗
P
 is an unknown coefficient and can be estimated following the procedure for cP . 

Furthermore, the quadratic equation for the turbulent Prandtl number becomes:

6.2  Imbalance of production and dissipation of TKE

In Eq. (9a), we have assumed that the production and dissipation of TKE balances exactly. 
Following Schumann and Gerz [58], we can define their ratio, termed a ‘growth factor’, as 
follows:

It is likely that under strongly stratified condition, dissipation exceeds production. Thus, G 
can become less than unity for high values of Rig . We can re-write Eq. (44) as follows:

The key equations will then become: 

 In this case, the quadratic equation for the turbulent Prandtl number becomes:

We would like to emphasize that the exact dependence of G on stability is not well studied 
in the literature. Schumann and Gerz [58] proposed an empirical (exponential decay) equa-
tion for G-vs-Rig based on limited data. We hypothesize that for very stable conditions 
( Rig > 1 ), G should be proportional to Ri−1

g
 . For practical applications, we propose the fol-

lowing heuristic parameterization for G:

(43)Pr2
t
−

[
c5 + Rig +

(
1 − ap

)
c∗
P

Az

Rig

]
Prt + c5Rig = 0.

(44)G =
−
(
u�w�

)
S

−�w��� + �
.

(45)� = −
(
u�w�

)
S

G
+ �w���.

(46a)LX = cHLH

⎛⎜⎜⎜⎝
1�

1∕G − Rig∕Prt

⎞⎟⎟⎟⎠
= cHLb

⎛⎜⎜⎜⎝

√
Rig�

1∕G − Rig∕Prt

⎞⎟⎟⎟⎠
,

(46b)
L2
H

L2
E

=

(
Prt∕G − Rig

)
cP

,

(46c)Rpw =
cPRig(

Prt∕G − Rig
) =

cPRf(
1∕G − Rf

) ,

(46d)
Ruw

Ruw0

=
1√

1∕G − Rig∕Prt

=
1√

1∕G − Rf

.

(47)Pr2
t
−
[
c5 + RigG +

(
1 − ap

)
cPGRig

]
Prt + c5GRig = 0.
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Thus, for Rig < 1 , G equals to 1. In other words, production and dissipation of TKE bal-
ance each other for weakly and moderately stable condition. However, the balance is lost 
(i.e., G < 1 ) for very stable conditions.

If Eq.  (48) is valid, then according to Eq.  (46a), LX will be approximately equal to 
the buoyancy length scale ( Lb ) for very stable conditions. Perhaps more interestingly, if 
Eq.  (48) indeed holds, Eq.  (47) predicts that Prt should saturate to a constant value for 
Rig > 1 . Such a prediction is not in agreement with some of the datasets reported in 
Fig. (1). However, it is consistent with the findings reported by [35] based on wind tunnel 
experiments and large-eddy simulations; refer to their Fig. 3.

We would like to emphasize that Eq. (48) is based on a heuristic argument and has not 
been verified yet. By making use of Eq. (46d), it might be feasible to extract a reliable for-
mulation for G.

6.3  Combined scenario

For the most general case, one should account for the effects of both anisotropy and decay 
of TKE. In such a combined scenario, both Az and G terms will appear in the aforemen-
tioned equations. For example, the length scale equation will read:

Similar to Eq. (31), for very stable condition (i.e., Rig ≫ 1 ), the Prandtl number equation 
will be simplified to:

Thus, the exact value of Rf∞ depends on ap , Az , G and c∗
P
 . Since stability dependencies of 

ap , Az and G are rather uncertain, empirical parameterizations for the combined terms (e.g., 
G∕Az ) might be more practical for certain applications. High quality data from laboratory 
experiment (e.g., wind tunnel) and/or direct numerical simulation will be needed to derive 
such parameterizations.

7  Conclusions

In this study, we have analytically derived an explicit relationship between the Prandtl 
number and the gradient Richardson number. Our derivation is rather simple from a mathe-
matical standpoint and does not make elaborate assumptions beyond variance and sensible 
heat flux budget equations. Most of the unknown coefficients of the proposed relationship 
are easily estimated from well-known surface layer similarity relationships. Our proposed 
Prandtl number formulation agrees very well with other competing approaches of quite dif-
ferent theoretical foundations and assumptions.

(48)G = min
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1,Ri−1

g

)
.
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�
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�⎛⎜⎜⎜⎝
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⎞⎟⎟⎟⎠
.
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Our original analysis can be easily extended to include the effects of vertical anisot-
ropy. It can also account for an imbalance of production and dissipation of TKE under very 
stable conditions. We have provided generalized formulations to account for these effects. 
However, these generalized formulations require stability-dependent formulations for a 
few parameters (e.g., Az , G) which are not well established in the literature. We recom-
mend  analyzing wind tunnel measurements and DNS-generated datasets to derive these 
formulations in a robust manner.

One of the limitations of the present study is that, for simplicity, it omits any discus-
sion of internal gravity waves [61, 67]. However, in stable boundary layers, specially under 
strong stratification, wave-turbulence interactions are extremely important. Thus far, only a 
handful of analytical studies have looked into such interactions [36, 37, 65, 81]. We hope to 
further advance our proposed LSR approach along this direction in the future.

Appendix 1: Parameterization of the pressure–temperature interaction 
term

In the prognostic equation of sensible heat flux ( u′
i
�′ ), a pressure-temperature interaction 

term �i =

(
−

1

�
0

��
�p�

�xi

)
 appears [5, 19]. This loss term is significant for atmospheric 

boundary layer (ABL) flows and requires a reliable parameterization. Using the product 
rule of calculus, �i can be decomposed as follows [21, 30, 64]:

Here p and �0 denote pressure and a reference density, respectively. The symbol �ik repre-
sents Kronecker delta.

The first term on the right hand side of Eq. (51) represents turbulent diffusion of tem-
perature field by pressure fluctuations and is sometimes neglected under the assumption of 
isotropy or using scaling argument [64]. As an alternative, in a number of modeling stud-
ies, it has been combined with the turbulent transport term, and in turn, the total term is 
parameterized via K-theory [47].

The second term 
(
�i =

1

�
p�

���

�xi

)
 is known as the pressure scrambling of the fluctuating 

temperature field. This term is split into three separate components representing different 
interactions [14, 21]:

The term �TT
i

 captures turbulence-turbulence interactions. Following Rotta’s celebrated 
return-to-isotropy hypothesis [57], Monin [49] parameterized this term as follows:

where �R is the return-to-isotropy time scale. In the absence of external forces, this term 
relaxes turbulence to an isotropic state with zero overall heat flux [71]. Even though 
Eq.  (53) is the most popular in the literature, alternative parameterizations for �TT

i
 have 

been proposed in the past (please refer to [21]).

(51)−
1

�0
��
�p�

�xi
= −

�

�xk
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1

�0
p����ik

)
+

1

�0
p�
���

�xi
.

(52)�i = �TT
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+�S
i
+�B

i
.
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= −
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The mean shear-turbulence interaction is denoted by �S
i
 and is parameterized as follows [2, 

13, 21]:

In the absence of significant subsidence or under quiescent synoptic condition, the vertical 
component (i.e., �S

3
 ) is negligible in the ABL flows since u3 = w ≈ 0 ; a comprehensive 

modeling study by [2] provides supporting results.
The following equation is often used for representing the buoyancy-turbulence interaction 

[21, 38]:

Even though this term is known to be important for non-neutral flows, quite interestingly, 
the well-known parameterizations of Mellor and Yamada [46] disregarded it.

Over the years, various studies recommended different sets of values for as and ap . Some of 
them are documented in Table 3. Additionally, an empirical stability-dependent formulation 
for ap was proposed by Wyngaard [75]: 

 However, ap = 1 for Rig > 1 does not lead to a physically meaningful solution when used 
in conjunction with Eq. (22). It is trivial to show that the solutions of the quadratic equa-
tion lead to two solutions: (i) Prt = Prt0 and (ii) Prt = Rig . Neither of these solutions are 
plausible for the strongly stratified regime. In lieu of a realistic stability-dependent parame-
terization, in this study, we have decided to set ap as a fixed coefficient and have performed 
simple sensitivity analysis to quantify its influence on the overall predictions.

By combining Eqs. (51–54), the overall pressure-temperature interaction term for the verti-
cal component of sensible heat flux can be simplified as follows:

The terms on the right hand side of Eq. (57) are included in the simplified budget equation 
[i.e., Eq. (9c)] for sensible heat flux. The other terms of Eq. (9c) account for productions 
due to mean gradient ( −�2

w
�  ) and buoyancy ( ��2

�
).

(54)�S
i
= asu
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�xk
.
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= −ap��

2
�
�i3.

(56a)ap = 0.5 + 1.5Ri2
g
− Ri3

g
for 0 < Rig < 1

(56b)ap = 1 for Rig > 1.

(57)−
1

�0
��
�p�

�z
= −

w���

�R
− ap��

2
�
.

Table 3  Recommended values of 
a
s
 and a

p
 coefficients

Study as ap

Launder [38] 0.50 0.50
Moeng and Wyngaard [47] – 0.50
Andrén and Moeng [2] 0.75 –
Kantha and Clayson [30] 0.70 0.20
Nakanishi [52] 0.65 0.294
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Appendix 2: Co‑spectral budget (CSB) approach

In this section, we re-derive the relevant equations of the co-spectral budget (CSB) 
approach following the footsteps of Katul et al. [32]. Along the way, we point out some of 
their (implicit) assumptions and differences to our newly proposed LSR approach. During 
this exercise, we noted certain sign errors in the original derivations of [32]. D. Li [41] 
confirmed our findings and pointed out additional sign errors in [32]. Fortunately, all these 
errors cancel out and do not have any effect on the key results. We have communicated our 
findings to G. G. Katul [31] and he has kindly verified them.

The starting point of the CSB approach is vertical sensible heat and momentum flux 
budget equations in wavenumber space: 

 Here F�� is the one dimensional temperature spectrum. kx denotes wavenumber in the 
along-wind direction. Both these equations assume steady-state condition. They neglect 
turbulent transport and molecular diffusion terms. Interestingly, the momentum flux equa-
tion also neglects the buoyancy term.

The pressure-temperature and pressure-velocity interactions are parameterized as 
follows: 

 Where Fw� and Fuw are the cospectra between w–� and w–u, respectively. �(kx) is a relaxa-
tion time-scale. AT , AU , CCSB

1T
 , and CCSB

1U
 are constants which should be prescribed. Katul 

et al. [32] assumed: AT = AU = 1.8 , and cCSB
1T

= cCSB
1U

= 3∕5.
Please note that Eq.  (59a) does not include the commonly used buoyancy-turbulence 

interaction term [see Eq.  (55) in “Appendix 1”]. Instead, it includes an unorthodox term 
which is proportional to the production term.

The production terms are expressed as follows: 

 Here, the one dimensional vertical velocity spectrum is denoted by Fww . Please note that 
both these equations in [32] contain sign errors as pointed out by [41].

By combining Eqs. (58a), (59a), and (60a), we get: 

(58a)

Pw�(kx)
⏟⏟⏟
production

+ �F��(kx)
⏟⏞⏟⏞⏟
buoyancy

+ ��(kx)
⏟⏟⏟

pressure-temperature

decorrelation

= 0,

(58b)

Puw(kx)
⏟⏟⏟
production

+ �u(kx)
⏟⏟⏟

pressure-velocity

decorrelation

= 0.

(59a)��(kx) = −AT

Fw�

�(kx)
− cCSB

1T
Pw�(kx),

(59b)�u(kx) = −Au

Fuw

�(kx)
− cCSB

1U
Puw(kx).

(60a)Pw�(kx) = −�Fww(kx),

(60b)Puw(kx) = −SFww(kx).
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Similarly, by using Eqs. (58b), (59b), and (60b), we arrive at:

Next, Katul et  al. [32] assumed that Fww(kx) , F��(kx) , and �(kx) follow the iner-
tial-range scaling behavior within the range ka ≤ k ≤ ∞ as hypothesized by 
Kolmogorov-Obukhov-Corrsin: 

 Where N� is simply half of dissipation rate of temperature variance ( �� ). cCSB0
 and cCSB

T
 are 

supposed to be universal constants. Katul et al. [32] assumed cCSB
0

= 0.65 and cCSB
T

= 0.80 . 
Please note that, for simplicity, they assumed that the inertial-range scaling also holds in 
the dissipation range.

For low wavenumbers ( 0 ≤ kx ≤ ka ), the CSB approach assumes flat (i.e., white noise) 
spectra: 

 Over the decades, several competing hypotheses (e.g., [8, 9, 44, 48, 59]) have been put 
forward to characterize the low wavenumber (aka buoyancy-range) spectra. We would 
like to point out that none of these hypotheses are in line with the assumption of the CSB 
approach. Furthermore, in the surface layer, there are ample evidence in the literature (e.g., 
[26, 42]) that temperature spectra follow k−1

x
 scaling and not k0

x
 scaling as assumed by the 

CSB approach.
By integrating and summing Eqs. (62a) and (63a) we get:

Similarly, from Eqs. (62b) and (63b) we get:

(61a)Fw� = −

(
�(kx)

AT

)[(
1 − cCSB

1T

)
�Fww(kx) − �F��(kx)

]
.

(61b)Fuw = −

(
�(kx)

AU

)[(
1 − cCSB

1U

)
SFww(kx)

]
.

(62a)Fww(kx) = cCSB
0

�
2∕3

k−5∕3
x

,

(62b)F�(kx) = cCSB
T

(
�
)−1∕3

N�k
−5∕3
x

,

(62c)�(kx) =
(
�
)−1∕3

k−2∕3
x

.

(63a)Fww(kx) = cCSB
0

�
2∕3

k−5∕3
a

,

(63b)F��(kx) = cCSB
T

(
�
)−1∕3

N�k
−5∕3
a

,

(63c)�(kx) =
(
�
)−1∕3

k−2∕3
a

.

(64)

�2
w
=
∫

ka

0

Fww(kx)dkx +
∫

∞

ka

Fww(kx)dkx

=
∫

ka

0

cCSB
0

�
2∕3

k−5∕3
a

dkx +
∫

∞

ka

cCSB
0

�
2∕3

k−5∕3
x

dkx

=
5

2
cCSB
0

�
2∕3

k−2∕3
a

.
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By making use of Eq.  (61a) in conjunction with Eqs.  (62)–(63), it is straightforward to 
derive: 

where

 Both these equations in [32] contain sign errors.
In an analogous manner, we get from Eq. (61b) and Eqs. (62)–(63):

This equation in [32] contains a sign error.
From Eqs. (66a), (66b), and (67), we have:

Note that Katul et al. [32] assumed AT = AU.
The budget equations of TKE and �2

�
 can be written as: 

 Unfortunately, a sign error appears in the equation for N� in Katul et al. [32].
Dividing Eq. (69b) by Eq. (69a) and using the definition of flux Richardson number 

( Rf  ), we can write:

(65)

�2
�
=
∫

ka

0

F��(kx)dkx +
∫

∞

ka

F��(kx)dkx

=
∫

ka

0

cCSB
T

(
�
)−1∕3

N�k
−5∕3
a

dkx +
∫

∞

ka

cCSB
T

(
�
)−1∕3

N�k
−5∕3
x

dkx

=
5

2
cCSB
T

(
�
)−1∕3

N�k
−2∕3
a

.

(66a)

w��� =

[
∫

ka

0

Fw�(kx)dkx +
∫

∞

ka

Fw�(kx)dkx

]
,

= −

(
7cCSB

0
�
(
�
)1∕3

Q

10AT

)
k−4∕3
a

,

(66b)Q =

[
1 −

�cCSB
T

N�

(1 − cCSB
1T

)cCSB
0

��

]
.

(67)

u�w� =

[
∫

ka

0

Fuw(kx)dkx +
∫

∞

ka

Fuw(kx)dkx

]
,

= −

(
7cCSB

0
S
(
�
)1∕3

10AU

)
k−4∕3
a

.

(68)Prt =
−u�w�∕S

−w���∕�
=

AT

AUQ
=

1

Q
.

(69a)� = −
(
u�w�

)
S + �w���,

(69b)N� = −
(
w���

)
� ,
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Hence, 

and

Where,

 Katul et al. [32] assumed cCSB
0

 , cCSB
T

 and cCSB
1T

 to be equal to 0.65, 0.80, and 3/5, respec-
tively. As a result, �CSB ≈ 4.

From Eq. (71b), we can easily derive the following quadratic equation (not reported 
in previous CSB-related publications): 

and its roots are:

 Only the larger root is physically meaningful.
We would like to point out that Eq. (72b) is cast in a different analytical form than the 

original CSB formulation in [32] and follow-up studies. For neutral condition ( Rig = 0 ), 
according to Eq.  (72b), Prt0 equals to 1. Whereas, according Eq.  (37) of [32], Prt0 is 
undetermined for neutral condition.

Using Eqs. (64), (65), and (70), the ratio of turbulent potential and kinetic energies 
can be derived as follows:

For neutral condition, Eq. (69a) simplifies to:

(70)

(
�N�

� �

)
=

Rf

1 − Rf

.

(71a)Q = 1 −
cCSB
T(

1 − cCSB
1T

)
cCSB
0

(
Rf

1 − Rf

)
=

(
1 − �CSBRf

1 − Rf

)
,

(71b)Prt =

(
1 − Rf

1 − �CSBRf

)
.

(71c)�CSB = 1 +
cCSB
T(

1 − cCSB
1T

)
cCSB
0

.

(72a)Pr2
t
−
(
1 + �CSBRig

)
Prt + Rig = 0,

(72b)Prt =

(
1 + �CSBRig

)
±

√(
1 + �CSBRig

)2
− 4Rig

2
.

(73)

RCSB
pw

=

(
�

N

)2 �2
�

�2
w

=

(
�

�

)(
cCSB
T

N�

cCSB
0

�

)

=
cCSB
T

cCSB
0

(
Rf

1 − Rf

)
.
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Thus,

Utilizing this equation in conjunction with Eqs. (64) and (67), after a little algebraic manip-
ulation, we can derive the ratio of normalized momentum flux as:

This equation is identical to the prediction by the LSR approach [see Eq. (36)].
Using Eqs. (64), (65), (66a), (66b), and (69b), we can deduce an expression for the nor-

malized correlation between vertical velocity and potential temperature as follows:

For neutral condition, by definition Q equals to one. Thus, Prt0 is also unity.

Appendix 3: Energy‑ and flux‑budget (EFB) approach

Over the past several years, Zilitinkevich and his co-workers have proposed the so-called 
energy-and flux-budget (EFB) approach and its several modifications. In this appendix, we 
briefly discuss some of the salient features of this approach. We follow one of the latter 
versions of the EFB approach as documented by Zilitinkevich et al. [82].

The EFB approach makes use of the steady-state budget equations for both sensible heat 
and momentum fluxes. As a reminder to the readers, our proposed LSR approach does not 
utilize the momentum flux equation. In the case of the sensible heat flux equation, [82] 
parameterizes the pressure-temperature interaction term as follows: 

where cEFB
�

 is an unknown coefficient. In the LSR approach, we use the term ap to denote 
(1 − cEFB

�
) . Interestingly, Zilitinkevich et al. [82] neglects the commonly used turbulence-

turbulence interactions [i.e., Eq. (53)] in the pressure-temperature interaction term. How-
ever, they use this exact term to parameterize the dissipation term (commonly neglected in 
the literature) of the sensible heat flux equation as follows:

Where, �� is the dissipation time scale and cEFB
F

 is an unknown coefficient, assumed to be 
equal to 0.25. Effectively, both the EFB and the LSR approaches use the same form of 

(74)�0 = −
(
u�w�

0

)
S0

(75)
u�w�

u�w�
0

=

(
�S0

�0S

)(
1

1 − Rf

)
.

(76)
�

Ruw

Ruw0

�CSB

=
1√

1 − Rf

.

(77)
�

Rw�

Rw�0

�CSB

=

�
Q

Q0

=

�
Prt0

Prt
=

1√
Prt

.

(78a)1

�0
��
�p�

�z
=
(
1 − cEFB

�

)
��2

�
,

(78b)�(F)
z

=
w���

cEFB
F

��
.
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parameterized sensible heat flux equation. From this equation, with minor algebraic manip-
ulations, [82] derived: 

or,

 Please refer to Eqs. (33a) and (33b) for the definitions of ep and ew , respectively.
In the case of the momentum flux equation, Zilitinkevich et  al. [82] makes several 

approximations. They neglect the dissipation term. In addition, they combine the buoyancy 
and pressure-velocity interaction terms and call it an ‘effective dissipation rate’. This com-
bined term is parameterized like a return-to-isotropy term. The resultant momentum flux 
equation is written as follows: 

where, cEFB
�

 is an unknown coefficient, assumed to be equal to 0.2. Thus, the eddy diffusiv-
ity can be represented as:

 Based on Eqs. (79b) and (80b), one can write:

Zilitinkevich et al. [82] argued that if Prt → ∞ as Rig → ∞ , then in the limiting case:

Even though this equation is only valid for Rig → ∞ , the EFB approach uses cEFB
�

 as a con-
stant, being equal to 0.105, for all stability conditions. In our proposed LSR approach, the 
related coefficient is (1 − ap) and we have also assumed it to be a constant in lieu of a reli-
able stability-dependent parameterization.

From the budget equations of TKE and variance of potential temperature, along with the 
definition of flux Richardson number ( Rf  ), [82] derived the following ratios: 

and,

(79a)w��� = −KH� = −2cEFB
F

��
(
ew − cEFB

�
ep
)
� ,

(79b)KH = 2cEFB
F

��
(
ew − cEFB

�
ep
)
.

(80a)u�w� = −KMS = −2cEFB
�

��ewS,

(80b)KM = 2cEFB
�

��ew.

(81)Prt =
KM

KH

=

(
cEFB
�

cEFB
F

)
(
1 − cEFB

�

ep

ew

) .

(82)cEFB
�

=

(
ew

ep

)

Rig→∞

.

(83a)
e

e + ep
=

1 − Rf

1 −
(
1 − cEFB

P

)
Rf

,

(83b)
ep

e + ep
=

cEFB
P

Rf

1 −
(
1 − cEFB

P

)
Rf

.
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where cEFB
P

 is an unknown coefficient. Based on available data, [82] assumed it to be equal 
to 0.86.

By plugging in Eq. (83b) in Eq. (81) and using the definition Az =
ew

e
 , one gets the fol-

lowing equation after simplification:

For neutral condition (i.e., Rf = 0 ), with the chosen values of cEFB
�

 and cEFB
F

 , the EFB 
approach predicts Prt0 = 0.8.

Please note that Eq. (84) requires a parameterization for Az . Zilitinkevich et al. [82] pro-
posed heuristic equations for the redistribution of TKE among various velocity compo-
nents due to the effects of stratification. Those equations lead to a specific formulation for 
Az ; please refer to Eq. (50c) of [82]. Using limited data, they further assumed A(Rig=0)

z = 0.2 
and A(Rig→∞)

z = 0.03 . In Sect. 6.1 we have provided more information on Az.
It is straightforward to derive the following normalized variances and fluxes from the 

EFB approach (see [43]): 

 In Sect. 5.2.4, we have compared these equations against the predictions from the LSR and 
the CSB approaches.
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