
 
 

Delft University of Technology

A Systems Engineering Analysis of Robot Motion for Team Delft’s APC Winner 2016

Corbato, Carlos Hernandez; Bharatheesha, Mukunda

DOI
10.1007/978-3-030-35679-8_7
Publication date
2020
Document Version
Final published version
Published in
Advances on Robotic Item Picking

Citation (APA)
Corbato, C. H., & Bharatheesha, M. (2020). A Systems Engineering Analysis of Robot Motion for Team
Delft’s APC Winner 2016. In Advances on Robotic Item Picking: Applications in Warehousing and E-
Commerce Fulfillment (pp. 73-85). Springer. https://doi.org/10.1007/978-3-030-35679-8_7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-35679-8_7
https://doi.org/10.1007/978-3-030-35679-8_7


 

 

 

 

 

 

 

 

 

Green Open Access added to TU Delft Institutional Repository 
as part of the Taverne amendment. 

 

 

 
 

More information about this copyright law amendment 
can be found at https://www.openaccess.nl. 

 
 

Otherwise as indicated in the copyright section: 
the publisher is the copyright holder of this work and the 

author uses the Dutch legislation to make this work public. 

https://repository.tudelft.nl/
https://www.openaccess.nl/en


A Systems Engineering Analysis
of Robot Motion for Team Delft’s
APC Winner 2016

Carlos Hernandez Corbato and Mukunda Bharatheesha

1 Introduction

The Amazon Picking Challenge (APC) 2016 involved two manipulation tasks,
to pick and stow products from an Amazon shelf, which addressed some of the
challenges for reliable picking in a real warehouse, such as diversity of products,
cluttered spaces, uncertain environment conditions, or full autonomy. Team Delft
robot won both competitions with a solution based on 3D cameras for deep-learning
based item detection, a planning-based solution for the motions of an industrial
manipulator, a custom gripper, and the integration of off-the-self software and
application-specific components with the Robot Operating System (ROS).

System-level integration is acknowledged as one of the key issues in the
development of autonomous robotic systems [1, 4, 5, 8], as in other modern complex
systems. Therefore, in this chapter we take a systems engineering stand to perform
a postmortem analysis of Team Delft’s solution for robot motion, understanding the
benefits and limitations of the planning approach taken. We focus on the picking
task for simplicity, because it includes all the challenges and proved to be more
demanding,1 although it is important to note that the designed solution solved both

1The structure of the problem resulting for the relative perpendicularity of gravity and the shelf’s
bins opening, together with the bins form factor with large depth/opening ratio proved still more
of a challenge for robotic manipulation than the picking from the tote required for the stow task.

C. Hernandez Corbato (�)
Delft University of Technology, Delft, The Netherlands
e-mail: c.h.corbato@tudelft.nl

M. Bharatheesha
Caspar AI B.V., Rotterdam, The Netherlands
e-mail: mukunda.bharatheesha@caspar.ai

© Springer Nature Switzerland AG 2020
A. Causo et al. (eds.), Advances on Robotic Item Picking,
https://doi.org/10.1007/978-3-030-35679-8_7

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35679-8_7&domain=pdf
mailto:c.h.corbato@tudelft.nl
mailto:mukunda.bharatheesha@caspar.ai
https://doi.org/10.1007/978-3-030-35679-8_7


74 C. Hernandez Corbato and M. Bharatheesha

tasks. For a detailed analysis of the overall solution, we refer the reader to [4].
Our analysis framework is presented in Sect. 2. Section 3 analyzes the design of
the motion subsystem, and its resulting properties and performance. Finally, Sect. 4
discusses general issues on the design of complex autonomous robots, looking into
future challenges.

2 A Framework to Analyze an Autonomous Robot Design

The development of modern robotic systems, such as those in the APC, requires
the integration of diverse technologies, e.g., 3D cameras, deep neural networks,
planning, robot arms, and involves different disciplines, such as mechanical design,
machine learning, control and software engineering. Model-based Systems Engi-
neering provides methods and tools to consistently integrate the information,
assumptions, and decisions through the development of the system, from high-level
capabilities operational needs to detailed design decisions, and is thus an appropriate
framework for the design and implementation of autonomous robots.

Besides the integration challenge, to address the capabilities needed, the selection
of the control schemas at different levels of the solution architecture is based on
assumptions about the structure of the task and the environment, and the associated
uncertainty. For this reason, our framework also includes model of levels of robot
automation [4]. This model categorizes the different control schemas, based on the
degree to which they address uncertainty with prior assumptions or runtime data,
and the resulting quality attributes (QAs) in the robot capabilities they address.

2.1 Functional Analysis Under the ISE&PPOOA Method

Autonomous robots are complex systems that require powerful systems engineering
methods to allow teams2 to build solutions that meet the demands of industry and
society, especially QAs such as reliability and safety, and associated non-functional
requirements (NFRs).

2It is important to note that we are not directly referring here to the robots participating in the ARC,
for example. These are research prototypes whose development is only concerned with functional
requirements and some non-functional requirements, such as speed or error recovery, but only to
the extent that they directly relate to the scoring in the competition. Actually, to the knowledge of
the authors, none of the teams in the ARC competition followed an MBSE approach. In the case of
Team Delft, the leading author partially followed the ISE&PPOOA methodology during the earlier
stages of requirement analysis and conceptual design. However, to apply any MBSE methodology
for the complete development of the system, the team needs to be familiar with it, and this was not
the case.



A Systems Engineering Analysis of Robot Motion for Team Delft’s APC Winner 2016 75

The ISE&PPOOA3 process is an integrated systems and software engineering
methodology that adopts the functional paradigm for model-based systems engi-
neering. The systems engineering subprocess in ISE&PPOOA proceeds as follows:

1. Identify the operational scenarios, obtaining the needs, that are the main input
for the

2a. specification of the capabilities and functional requirements of the system, and
in parallel the

2b. specification of the relevant QAs and associated system NFRs. From this, the
solution is created by iterative refining of

3. the functional architecture, which is obtained by transforming the previous level
functional requirements into a functional hierarchy, and the

4. physical architecture, obtained by the allocation of functions to the building
blocks of the solution, refined by design heuristics and patterns to address
specific QAs.

In this chapter, we use the basic concepts in ISE&PPOOA to analyze the design
of the motion subsystem in Team Delft’s robot. The functional approach of ISE
allows to abstract the architectural properties of the solution, independently of par-
ticular implementation details. Additionally, ISE&PPOOA explicitly incorporates
QAs through the application of heuristics and design patterns to define the physical
architecture of the solution. This helps understand how the assumptions and the
design decisions impacted the architecture of the solution and the performance
obtained in the capabilities required for the robotic challenge.

2.2 Levels of Robot Automation

The control architecture of an autonomous robot is designed to automate its
runtime actions despite a certain level of uncertainty, by exploiting knowledge and
assumptions about the structure of the task and the environment. The decisions
made to select specific control schemas or patterns embed assumptions that critically
determine the resulting quality attributes for the robot’s capabilities (e.g., reliability
of the grasp, speed of pick and place, etc.). We have elaborated a characterization
of control schemas in levels of robot automation [4]. This characterization is aimed
at supporting design decisions on how to automate each function in the system, i.e.,
which control pattern to use, considering the uncertainty level and the requirements
on the QAs. Previous models, such as the one in [6], focused on which function to
automate, and which ones to allocate to a human operator.

The base criteria to differentiate our levels of robot automation is time: when
the information that decides the action is produced (at design-time or at runtime),
and how it is used to generate the action (periodically at a certain frequency in a
loop with runtime data, or in an open-loop manner based on strategies predefined at
design-time).

3http://www.ppooa.com.es.

http://www.ppooa.com.es


76 C. Hernandez Corbato and M. Bharatheesha

Level 0 corresponds to classic open-loop automation. A complete and static
model of the task and the environment is assumed and no runtime data is
used. This allows to specify a fixed sequence of motions and actions during
development, which are blindly executed by the robot to perform the task.

Level 1 includes sensing information at runtime to perform a binary verification
of the assumptions about the state of the system or its environment. This is the
case of a sensor to detect a correct grasp of an object, or if it is dropped. Note
that, no matter whether the sensory data comes a posteriori or prior to the action,
the latter is specified at design-time, and only a discrete selection is performed at
runtime. Level 1 mechanism overcomes some of the limitations of level 0, e.g.,
addressing uncertainty through basic error handling mechanisms. However, a
complete discrete, predefined model of the environment and task is still assumed.

Level 2 corresponds to the so-called sense-plan-act paradigm. A prior model of
the environment and the task is updated with sensory data at runtime to compute
the control action. This level accounts for more complex environments, through
perception capabilities that estimate the operational state an account for limited,
static uncertainties, and planning to produce actions sequences adapted to the
perceived situation. Still a perfect motor model is assumed to execute the planned
actions, which results in well-known limitations.

Level 3 is the classic feedback control, in which the robot actions continuously
adapt to the perceived state through closed-loop control. This level can cope
with higher levels of uncertainty in the variables considered at development-time
for the design of the control system, and can also address bounded unknown
perturbances.

Level 4 considers more advanced control schemas including prediction to com-
pute optimal control actions, considering not only current runtime sensory data
and state estimation, but future states too. Even these control schemas still
assume a prior model of the robotic system and its environment, though in this
case it can be a complex model including dynamics.

Level 54 Control architectures in this level are no longer bounded by the models
at design-time, but incorporate mechanisms to learn and improve upon those
models using runtime data, for example, exploiting machine learning techniques,
and adapt their control policies or learn new ones for new tasks, for example,
with reinforcement learning.

It is important to note that the control architecture of a complex autonomous
robot typically leverages control solutions for functions at different levels in the
functional hierarchy. For each element in the architecture a solution is chosen from
the appropriate robot automation level, based on a trade-off analysis between the
QAs (e.g., reliability, impacted by the level of uncertainty), function performance,
e.g., speed, and cost, e.g., in terms of resources and development effort, heavily
impacted by the use of off-the-shelf. Following we examine the design decisions

4This level of robot automation has been included, compared to our first model in [4], to account
for robotic systems that can adapt and learn.



A Systems Engineering Analysis of Robot Motion for Team Delft’s APC Winner 2016 77

in Team Delft’s motion subsystem, using the framework provided by ISE&PPOOA
and the levels of robot automation to analyze architected solution in terms of the
control patterns selected and the resulting measurement for its QAs.

3 Motion Subsystem Design

Pick and place systems require a generic set of robotic capabilities, regardless of the
specific application, namely: locate and identify objects, attach or grasp individual
objects, and manipulate or move them [5]. In this section, we analyze Team Delft’s
solution for the motion capabilities following the functional approach presented in
Sect. 2.1, which allows to abstract general (functional) design considerations from
the specific solution adopted.

3.1 Motion Requirements

The main operational scenarios for the motion subsystem in Team Delft solution
were: (1) move the camera attached to the robot’s end-effector to obtain images of
the bin for the next target item, and (2) plan and execute the motions to retrieve the
target item from the bin and place it in the tote. The operational needs of these two
scenarios were transformed into the detailed functional requirements, NFRs, and
design constraints in Table 1 and assumptions in Table 2, some of which come from
the design of the overall system, the competition rules and desired quality attributes
in the system.

3.2 Robot Manipulator

A typical decision in manipulation applications is the selection of the robot. It is a
core building block in the physical architecture of such systems that is allocated in
the motion functionality.

A solution based on an off-the-shelf industrial manipulator and the MoveIt!
library5 was deemed the most feasible and desirable, given the resources available
and also the skills in the team, very familiar with motion planning in industrial
manipulators.6

5The documentation for the various APIs referred in this text can be accessed via: http://moveit.
ros.org/code-api/.
6At an early stage a cartesian robot was discarded because it required extensive and specific
mechanical and software development for its control. Its potential benefits in speed and simplicity
of the kinematics were not as immediate in the shelf configuration of APC as in 2017 edition, when
such a cartesian manipulator system won [5] by using that edition’s possibility to have a custom
horizontal storage system, which made the task decomposable into a series of straight motions by
exploiting the cartesian structure in the environment.

http://moveit.ros.org/code-api/
http://moveit.ros.org/code-api/


78 C. Hernandez Corbato and M. Bharatheesha

Table 1 Requirements for the motion subsystem in Team Delft’s robot

ID Requirement

FReq.1.1a, b The system shall move the camera in the robot end-effector to an appropriate
pose in front of the target bin avoiding collisions

Related: From ON.1 and QA harmless

FReq.2.1 The system shall generate planned motions to reach with the gripper all
locations inside the shelf’s bins that are relevant for grasping items

PReq.5.2 The robot shall execute the trajectory to reach a target location as fast as
possible

Related: Derived from speed req., related to QA reliability, as this maximizes the
opportunities to pick items in the allotted time

FReq.5.1 The system shall find a collision free path to grasp the product, and a retreat
path to retrieve the item from the shelf

FReq.3 The system shall achieve and hold a firm grasp on all different products

Cons. 1 The robot shall move following a velocity and acceleration profile that
guarantees a reliable grasp when holding an item

Related: From QAs reliability and harmless, to prevent dropping a grasped item when
moving

Cons. 2 The robotic system shall fit inside an area of 2 × 2 m2 separated 20 cm from the
front of the shelf and the start of the task

Related: From the competition rules

These are more refined requirements based on the overall system analysis in [4]
aFR: functional requirement. NFR: non-functional requirement. Cons.: Constraint
bThe numbering is consistent to the one reported in [4]

Table 2 Assumptions for the motion subsystem, some are requirements for other subsystems in
Team Delft’s robot

Assumption 1
(from Req.4)

A suitable grasp surface is always directly accessible from the bin opening
that allows to grasp and retreat holding the product, and no complex
manipulation inside the bin or the tote is needed. This way the ‘level 2’
assumption of environment invariance holds

Assumption 2 Not all the locations inside the bins are relevant for grasping. Due to gravity
and based on the dimensions of the objects, no grasp candidates are expected
in the higher part of the bins

Assumption 3 Environment out of the shelf is known and static

Assumption 4 Environment inside the bin is unknown and static during grasp operation.
This required that the collision scene of the bin needs to be updated every
time a grasp attempt is executed

A configuration with an off-the-shelf robot manipulator and an additional axis
for enhanced reachability would render the required precision and speed. Multiple
configurations were considered (Fig. 1a and b), constrained by the robot cell
dimensions Cons. 2, and subsequently evaluated according to the requirement for
reachability (FReq.3) using the MoveIt! workspace analysis tools [7].

The configuration shown in Fig. 1a was finally chosen, as the reachability
analysis results ensured that the gripper could reach all bins with adequate maneu-



A Systems Engineering Analysis of Robot Motion for Team Delft’s APC Winner 2016 79

Fig. 1 (a) Reachability Analysis results of the selected robotic system configuration. The color of
the marker in the figure indicates the number of IK solutions available to reach the corresponding
cartesian location in the robot cell. Red markers are for locations that have very few IK solutions.
(b and c) Other configurations analyzed

verability. An important aspect that can be observed in the figure is that some of
the deep corners of the bins have no markers, indicating that those regions are
not accessible with this system configuration. This limitation was compensated by
slightly increasing the length of the suction tool (represented by the solid gray block
in the robot’s end-effector in Fig. 1a.

3.3 Motion Software Module Design

To fulfill the motion requirements of both the picking and stowing tasks, the motion
module7 was built on two fundamental motion primitives, namely, coarse motions
and fine motions, that relied on the assumptions in Table 2. Coarse motions were
offline generated trajectories between predefined start and goal positions in the
robotic cell. Fine motions involved online (cartesian) path planning for performing
object manipulation in the bins or the tote. In the following sections, these two
primitives will be explained in further detail.

3.4 Offline Coarse Motions

Assumption 3 of a static environment allowed us to select an efficient ‘level 0’
solution for the robot motions outside of the shelf and the tote, using predefined joint

7The open source software repository hosting the code for the motion module and the rest of the
ARC 2016 software is available at: https://github.com/warehouse-picking-automation-challenges/
team_delft.

https://github.com/warehouse-picking-automation-challenges/team_delft
https://github.com/warehouse-picking-automation-challenges/team_delft


80 C. Hernandez Corbato and M. Bharatheesha

trajectories, or coarse motions, between configurations associated to key positions
in the workspace.

These configurations, named Master Pose Descriptors, are robot joint states set
at appropriate values in front of each bin of the shelf for the functions FReq.1.2 to
take a bin image and FReq.5.1.1 to approach target object. Our choice of having
the camera mounted on the manipulation tool entailed that we have two master
pose descriptors per bin, namely, the camera and the bin8 master poses.9 Collision
checking using 3D model (URDF) of the elements in the robot cell (enlarged to
account for known uncertainties, such as 3 cm deviations in the positioning of the
shelf) ensured safe motions (FReq.5.1).

Subsequently, a trajectory database with around 250 trajectories between differ-
ent master poses was generated using the RRT-Connect randomized path planner
via MoveIt!. Other planner options were analyzed, such as RRT* and the OMPL10

implementation KPIECE, but RRT-Connect outperformed both of them for our
planning problem (characterized by the robot kinematics chosen and the geometric
structure of the shelf and tote). The main reason for RRT-Connect outperforming
was that it maximally exploited the benefit of the linear joint (rail), because it
explores solutions starting from both the start and end nodes, using Euclidean
distance in configuration space.

3.5 Grasping and Manipulation: Fine Motions

From a motion perspective, the grasp strategy for all objects consisted of a
combination of linear segments. We call these segments as Approach, Contact, Lift,
and Retreat. The segment names are indicative of the motions that they are meant
for. This solution maximally exploited the geometry of the bins, and Assumption 2.

The idea of fine motions is an adaptation of the approach in the standard pick and
place pipeline of MoveIt!, where cartesian path planning is used during the pre-grasp
approach and the post-grasp retreat stage of the pipeline. We removed the standard
filter stage in the MoveIt! pick and place pipeline consisting on evaluation of the
reachable and valid poses. To optimize the end-to-end time performance of the plan-
ning step in the overall application flow, this filtering was divided into multiple steps.

The first one is performed during the function grasp synthesis, where impossible
grasps are eliminated heuristically, exploiting knowledge of the products and
their graspability given their relative pose inside the bin. Then second filtering is
performed by the motion subsystem, by checking the feasibility of the manipulation
plan associated with the grasping candidate. The feasibility is determined by
avoiding collisions, and obtaining a feasible joint trajectory (Inverse Kinematics
solution).

8Starting configuration to approach target object.
9Similar master pose descriptors were also defined for the tote drop-off locations.
10MoveIt!, the framework chosen to implement our motion module, uses OMPL for planning.



A Systems Engineering Analysis of Robot Motion for Team Delft’s APC Winner 2016 81

3.5.1 Collision Avoidance

During grasping and posterior manipulation to retrieve the object from the bin,
collisions need to be avoided to prevent damaging items or the shelf and to lose a
grasped item. For collision checking the following information is used: runtime data,
consisting of the occupancy octomap from the scanned point cloud, from which the
points corresponding to the target object are removed to allow for contact in the case
of suction grasping, and additional prior information, consisting of the 3D model of
the shelf in URDF, and a collision model for the specific bin (mesh), which position
is nevertheless computed online in the perception pipeline.

3.5.2 Generation of the Complete Grasp Plan

Departing from the pose of the target item, the grasp synthesizer module generates
heuristically a set of key waypoints for the start and end of each linear segment.
These waypoints are input to the motion module, which obtains the manipulation
plan proceeding as follows:

1. The key waypoints are sequentially checked for collision and feasibility.11 If
any one of them is in collision, the corresponding grasp pose is discarded and
an alternative one is requested.

2. Once all the key waypoints are collision free, each linear motion segment is
computed using cartesian planning12 with collision checking enabled. Similar
action is taken if any of these segments are in collision.

3. If all the linear motion segments are collision free, a final planning in joint
space is done, using RRT-Connect because of its fast solution times.13 This
is required because, the final joint configuration at the end of the Retreat
segment resulting from the cartesian planning need not necessarily match the
starting joint configuration in front of the bin or tote from where the coarse
motions start. This is natural because of the redundancy in the system’s degrees
of freedom. The final planning ensures that such a mismatch does not exist
which would otherwise lead to a motion safety violation.14 To obtain last
joint configuration in the cartesian trajectory, the inverse kinematics solver is
configured to minimize the steady state error,15 which yields the closes joint
solution to the configuration goal, minimizing configuration changes.

11Using the getPositionIK service call.
12 computeCartesianPath in the MoveGroup API.
13plan the MoveGroup API.
14A motion safety violation is triggered whenever the starting configuration of the robot does not
match the starting configuration in the trajectory that is about to be executed.
15Distance setting in the Trac-IK solver used.



82 C. Hernandez Corbato and M. Bharatheesha

These steps ensure that all the desired motion segments for manipulating the
object of interest are generated as required and are collision free. These segments
were then stitched together before being executed on the robot, as explained in the
following section.

3.6 Trajectory Execution

After obtaining a feasible grasp plan (complete joint trajectory to retrieve the target
item), it had to be executed. To address requirements PReq.3.2 and Cons. 1, two
solutions were designed that prepared the trajectory for execution16: trajectory
stitching and I/O synchronization.

3.6.1 Trajectory Stitching

The motion stitching module accepts all the motion segments that are generated
as explained in the previous section, plus the coarse motion trajectories from the
corresponding bin to the tote drop-off location. The stitching process combines the
joint state configurations from each segment into one single motion plan and time
parameterizes17 it so that it results in a executable trajectory for the robot.

With respect to PReq3.2 on the end-to-end speed of the robot motions, by
stitching multiple motion segments we get rid of overheads such as goal tolerance
checks at the end of each segment execution. This indeed provided us quite a
significant time gain while executing the motions. In relation to Cons. 1 to prevent
dropping items, the stitching performed object specific velocity scaling for the
trajectory to adapt the motion to the product, for instance, moving at low speeds
when carrying heavy objects such as the dumbbell, socks, and kitchen paper roll.

3.6.2 Input/Output Synchronization

The final and a critical component of the motion module is the I/O handling,
designed to ensure the end-effector (suction or pinch) is actuated at the right times
along the trajectory, to guarantee successful grasps in relation to Cons. 1. The timely
activation of the suction gripper was critical. For instance, the vacuum pump needed
a couple of seconds before full suction power was realized, which meant it had to
be switched on before the suction cup reached the contact point. However, turning
the suction on too early could also pose problems. For example, the items with a
loose plastic covering could get suctioned before the contact point was reaching,

16The time parameterized trajectory was finally executed in the robot controller through the
MoveGroup API, execute.
17computeTimeStamps from the TrajectoryProcessing API was used for this purpose.



A Systems Engineering Analysis of Robot Motion for Team Delft’s APC Winner 2016 83

leading to either an unstable or a failed grasp (Req.3). In order to address this, a
custom trajectory tracking module18 was developed that provided continuous joint
state information.

The trajectory tracking module used an event based approach. The events
correspond to reaching the key waypoints along the trajectory, and the tracking
module used a gradient descent based approach based on the distance to those points
(level 3 based on runtime data from the encoders). These events were used not only
to trigger the suction, but also to trigger the pressure sensor feedback, for example,
to evaluate the success or failure of a grasp at the end of the retreat segment. This
runtime data allows to cancel the open-loop execution of the trajectory if an error
is detected at certain points, and take appropriate actions (level 1 mechanism), for
example, re-try the grasp if the pressure sensor detects no vacuum seal after retreat
(i.e., the item is not attached).19

4 Discussion and Concluding Remarks

Team Delft’s robot was based on an overall sense-plan-act (level 2) solution, that
relied on detailed solutions for specific motion functions that ranged from level 0 to
level 3, as discussed along Sect. 3 and summarized in Table 3.

It is important to note that intuitively, neglecting uncertainty, performance and
simplicity (a desired property when building a system) are better for lower levels of
robot automation. Although they are brittle to uncertainty, in a partially structured
and known environment such as the one in APC16, simple solutions error-detection
and handling at level 1 seem sufficient. However, our planning and collision
avoidance solution is based on the assumptions that an unobstructed grasp is directly
accessible for the target item and the environment is static during the operation,
which simplifies the manipulation problem. This does not scale in general for more
complex manipulation scenarios, for example, inside a densely packed bin. Reactive

Table 3 Levels of robot automation of the different elements in the design of Team Delft’s motion
module

Level Design element

Level 0 Coarse motions (predefined) to move the camera to take images and to move the
picked object from the shelf to the tote

Level 1 Velocity scaling of the trajectories according to the product grasped, during the
stitching process

Level 1 Detect suction grasp failure using a pressure sensor in the nozzle

Level 2 Fine motions (online cartesian planning) to grasp and retrieve the items

Level 3 Trajectory tracking to synchronize actions along the trajectory

18Based on the /joint_states topic.
19More details on this finite state machine approach to error handling can be found in [4].



84 C. Hernandez Corbato and M. Bharatheesha

grasping that allows and even exploits contact (level 3) is more general and robust
approach. To account for handling novel objects, level 5 methods are needed, such
as deep learning, to recognize them and adapt the control actions, as reported by
successful entries in 2017 edition.

The functional-level analysis provided by the ISE&PPOOA methodology allows
to identify useful patterns that we intuitively applied to design our solution. For
example, we use a service-based blocking architecture for the motion module, which
renders a deterministic behavior, e.g., preventing race conditions. This is a well-
known pattern for safety and reliability [2]. However, this impacted negatively on
the complexity of the implementation tracking module, which required a dedicated
thread of execution. An asynchronous ROS action based architecture is more
scalable for systems that require level 3 closed-loop solutions (multiple control
threads).

In relation to the synchronization of actions along the trajectories, we must note
that MoveIt! allows for I/O handling to be synchronized with trajectory execution
by incorporating the external devices as joints in the planning. However, this poses
some problems for binary joints like our suction pump. A decision was made
to create our trajectory tracking module, which creates a more reusable solution,
independent of MoveIt!, that also allows to synchronize sensors in addition to
actuators (modularity and integration vs. reuse an existing solution).

Other design strategies were intuitively applied to the functional architecture
of our solution. The function to generate grasp candidate(s) relied on heuristics
based on the product type and the current pose in the planning scene, as well as
a looped interaction with the function to generate the associated waypoints, which
relies on the same information. Therefore, both functions were allocated to the same
module, the grasp synthesizer, in an example of the systems engineering strategy
that advocates for jointly allocate functions that are closely related. This decision
primed the benefits of integration, in terms of simplicity and efficiency, over the
re-usability of a more modular design.

The functional architecting of our solution also presented some oversights in
our functional design resulting in some limitations. For example, in our functional
design we did not considered explicitly the function “move item,” and the associated
requirement was implicitly allocated to the gripper and the suction system. This
neglect resulted in problems with the grasp when moving heavy items, only partially
mitigated by the velocity scaling. If this would have been addressed explicitly
earlier by the functional architecture, the motions could have been better designed
to address this, e.g., maintain alignment of the nozzle with gravity to minimize
detaching torque forces.

4.1 Concluding Remarks

Most teams participating in the Amazon challenge acknowledge that a development
methodology focused on system-level integration and testing for early validation
of design solutions that maximize their performance are key to develop such



A Systems Engineering Analysis of Robot Motion for Team Delft’s APC Winner 2016 85

autonomous robots [5]. In this chapter, we have used the ISE&PPOOA for a system-
level analysis of Team Delft’s robot. This method allows to track the allocation of the
different requirements in the system to the design decisions in the architecture of the
solution. Besides, we propose a series of levels of robot automation to understand
the fundamental properties of the different control patterns as design solutions to
address uncertainty in the robot’s operational scenarios. Furthermore, the use of
MBSE approaches in the development of autonomous robots, when extended with
formalisms to allow capturing these design decisions and its underlying rationale,
result in formal models that capture the functional relation between the architecture
of the system and its mission requirements, and which can be exploited by the
systems at runtime, providing for new levels of self-awareness [3].

Acknowledgements This work has received funding from the European Union’s Seventh Frame-
work Programme under grant agreement no. 609206, and Horizon 2020 research and innovation
programme under grant agreement no. 732287. The authors are very grateful to all their team
members, and supporting sponsors and colleagues. Special thanks to G. van der Hoorn for his
help during the development of the robotic system, and to Prof. J.L. Fernandez-Sanchez for the
discussions on the design of robotic applications from a systems engineering perspective.

References

1. Eppner, C., Höfer, S., Jonschkowski, R., Martín-Martín, R., Sieverling, A., Wall, V., Brock,
O.: Lessons from the Amazon Picking Challenge: four aspects of building robotic systems. In:
Robotics: Science and Systems XII (2016)

2. Hernandez, C., Fernandez-Sanchez, J.L.: Model-based systems engineering to design collabora-
tive robotics applications. In: 2017 IEEE International Systems Engineering Symposium (ISSE),
pp. 1–6 (2017). https://doi.org/10.1109/SysEng.2017.8088258

3. Hernández, C., Bermejo-Alonso, J., Sanz, R.: A self-adaptation framework based on functional
knowledge for augmented autonomy in robots. Integr. Comput. Aided Eng. 25(2), 157–172
(2018)

4. Hernandez Corbato, C., Bharatheesha, M., van Egmond, J., Ju, J., Wisse, M.: Integrating
different levels of automation: lessons from winning the Amazon robotics challenge 2016. IEEE
Trans. Ind. Inf. 14, 4916–4926 (2018). https://doi.org/10.1109/TII.2018.2800744

5. Morrison, D., Tow, A.W., McTaggart, M., Smith, R., Kelly-Boxall, N., Wade-McCue, S.,
Erskine, J., Grinover, R., Gurman, A., Hunn, T., Lee, D., Milan, A., Pham, T., Rallos, G.,
Razjigaev, A., Rowntree, T., Vijay, K., Zhuang, Z., Lehnert, C., Reid, I., Corke, P., Leitner, J.:
Cartman: the low-cost cartesian manipulator that won the Amazon robotics challenge. In: 2018
IEEE International Conference on Robotics and Automation (ICRA), pp. 7757–7764 (2018).
https://doi.org/10.1109/ICRA.2018.8463191

6. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human
interaction with automation. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 30(3), 286–297
(2000). https://doi.org/10.1109/3468.844354

7. Prats, M., Şucan, I., Chitta, S., Ciocarlie, M., Pooley, A.: Moveit! workspace analysis tools
(2013). http://moveit.ros.org/assets/pdfs/2013/icra2013tutorial/ICRATutorial-Workspace.pdf

8. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J.,
Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband,
S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,
E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.:
Winning the DARPA grand challenge. J. Field Robot. (2006).

https://doi.org/10.1109/SysEng.2017.8088258
https://doi.org/10.1109/TII.2018.2800744
https://doi.org/10.1109/ICRA.2018.8463191
https://doi.org/10.1109/3468.844354
http://moveit.ros.org/assets/pdfs/2013/icra2013tutorial/ICRATutorial-Workspace.pdf

	A Systems Engineering Analysis of Robot Motion for Team Delft's APC Winner 2016
	1 Introduction
	2 A Framework to Analyze an Autonomous Robot Design
	2.1 Functional Analysis Under the ISE&PPOOA Method
	2.2 Levels of Robot Automation

	3 Motion Subsystem Design
	3.1 Motion Requirements
	3.2 Robot Manipulator
	3.3 Motion Software Module Design
	3.4 Offline Coarse Motions
	3.5 Grasping and Manipulation: Fine Motions
	3.5.1 Collision Avoidance
	3.5.2 Generation of the Complete Grasp Plan

	3.6 Trajectory Execution
	3.6.1 Trajectory Stitching
	3.6.2 Input/Output Synchronization


	4 Discussion and Concluding Remarks
	4.1 Concluding Remarks

	References


