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Abstract

Motivation: Genome-wide association studies (GWAS) aim to uncover the genetic basis of traits and
common diseases. Due to the large number of common variants, most studies use a single-locus ap-
proach. However, those fail to explain most of the heritability, especially for complex diseases. Epi-
static interactions, where two or more loci have a synergistic effect on the phenotype, are worth in-
vestigating to improve our understanding of the genetic architecture of human disease. Most studies
that have investigated epistatic association in GWAS focus on gene-gene interactions only. However,
regulatory elements such as enhancers have the power of increasing and decreasing the expression
level of their target genes, playing a fundamental role in determining their effects, also in relation to
diseases. Thus, enhancer-promoter, or enhancer-enhancer interactions should be included in the
search for GWAS epistasis. More and more studies show that the control of gene expression can oc-
cur over large genomic distances. Enhancers loop over to get in physical contact with their target
genes. In vivo, enhancers and promoters are therefore found in close 3D spatial proximity. Chromatin
loops can be detected using the chromosome conformation capture (3C) technique and its deriva-
tives. Particularly, Hi-C combines 3C with next generation sequencing (NGS), identifying all contacts
between all pairs of genomic regions.

Results: In this study, we investigate GWAS epistatic effects of single nucleotide polymorphisms
pairs (SNPs) engaging in long-range chromatin interactions. To this end, we overlay GWAS hits, us-
ing the T2D (type 2 diabetes) dataset from the WTCCC (Wellcome Trust Case-Control Consortium),
with high resolution Hi-C maps. We show that chromatin loops are enriched for common variants,
particularly when highly associated with the phenotype. Moreover, looping regions are associated
with enhancer activity. We find three sets of SNP pairs engaging in epistatic interactions, on chromo-
somes 2, 3 and 12. The SNPs are found in either regions with high enhancer activity or in genes in-
volved in metabolic pathways, which supports their potential role in type 2 diabetes (T2D).

Availability: An electronic version of this thesis is available at http://repository.tudelft.nl/

Supplementary information: Supplementary data are attached separately and also available at http://repository.tudelft.nl/

Genome-wide association studies (GWAS) have bedeplysuccessful
1 Introduction in discovering association between genomic variantsthe risk of hav-
ing diseases, or presenting specific traits (MdGeet al. 2008, Pulit
2016). (See Box D.1, in the Supplementary Inforamgtfor an illustra-
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tion of GWAS). Since the first successful GWAS 808, more than
15,000 single nucleotide polymorphisms (SNPs) Hzeen found to be
associated with over 1,200 diseases and traitef(lal, 2016). Under-
standing the genetic basis of disease has thet@tEntruly revolution-
ize medicine by uncovering biochemical pathwaysdnrg targets and
by enabling personalized risk assessments (Waed 2012). However,
a full understanding of the molecular mechanisnas link common se-
quence variation to disease predisposition is fstilfrom being accom-
plished, especially since the majority (~93%) afrfid GWAS hits sit on
poorly characterized non-coding regions of the gemqViselet al
2009, Maurancet al, 2012, Wardet al, 2012, Schierdingt al, 2014).
Moreover, single SNPs often only have a rather kafitdct on the phe-
notype (Liet al 2011, Stringeet al, 2011) and only a small portion of
the heritability of complex diseases can be explhity individual
GWAS hits. This phenomenon has been referred tmiasing heritabil-
ity’ (Maher, 2008). Complex traits and diseaseshaieved to be caused
by multiple genetic loci and their interaction,hat than by one leading
variant, as it is for very rare diseases. Thuglietuhave looked for the
effect of multiple variants at a time (Diret al 2012, Gruberet al,
2015, Jamshidet al 2015). Epistatic interactions, where two or more
loci have a synergistic influence on the phenotgpe)d help explain the
‘missing heritability’. Epistatic interactions awdten called gene-gene
interactions, since most studies have only invagtd such effects for
coding genomic regions (Turnet al 2011, Ritchieet al, 2011, Weiet
al, 2014). However, similar effects could occur bewether functional
regions. Regulatory elements such as enhancersxémnple, can actual-
ly increase or decrease the level of expressicm ggne. A mutation on

such an element would have the power to dysregthatectivity of that
gene exerting a similar effect to if the mutationsnon the gene itself.
Furthermore, regulatory elements occupy a muchetapgrtion of the
genome (~40%) than genes (<2%), thus their inatusan perhaps con-
tribute to the interpretation of non-coding SNPs.

From a technical point of view, it is unfeasibletést all possible pair-
wise combinations of the several million known coomvariants. An
exhaustive evaluation of all possible scenarioslevoequire too much
computational time and power, and it would sevetehjt statistical
power (Brinzaet al 2006, Bustet al 2009, Scet al, 2011, Piriyapongsa
et al 2012, Ayatiet al, 2014, Goudewt al, 2015). This is mostly due to
our limited sample size (Evans & Purcell, 2012, #lat al, 2012).
Clearly, a smart way of selecting testable pairseisessary.

In this work, we propose to use the three-dimeraiorganization of the
genome and the consequent physical contact betgez@mic regions in
the 3D space to prioritize SNP-SNP interactiongair

The genome in 3D

If we were to stretch our genome, we would reastrizcture of nearly 2
metres in length. To fit in the ~fM-diameter nucleus of a cell, the
DNA is wrapped around proteins called histonesotonfthe chromatin
fibre and then even further compacted. This geasraktensive contact
between genomic regions that are very far apatterinearized unfold-
ed sequence. More and more studies have recerdlynskhat the 3D
organization of the genome is not random, and dcisially believed to
play a role in key cellular functions. Particularitywould act as an addi-
tional layer to the nucleus regulatory mechanisdss \(Vit et al 2013,
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Fig. 1. Overview: integration of GWAS and Hi-C. A, schematic overview of GWAS. In GWAmany individuals (samples), here indicated by tifer@nt colours (blue, gree
orange) are genotyped at a number of genomic mta{SNPs, sites that are commonly mutated in dpeilation). Samples are divided into healthy (colstror unaffected) and
diseased (cases, or affected). The aim is to findssociation between exhibiting a certain genogtpEne specific position, and having the diseAsesketched iB, sometimes the
association of individual SNPs with the phenotypiel(healthy) is hard to find. One reason mighttme it is actually the synergistic effect of twdls, that has an effect on the
disease predisposition. As evaluating all posgiblewise combinations of SNPs is unfeasible, paépairs must be prioritizedC, we use the three-dimensional organization of the
genome, measured with Hi-C, to prioritize SNP-SNi#sp Candidate pairs are therefore defined, digine, as two sites sitting on two genomic regidight blue and yellow) en-
gaging in a long-range chromatin interaction, iffestt as a peak in the Hi-C contact heat-map ($Keto this way, we hope to identify epistatic irtetions between SNPs on two
enhancers targeting the same gene, or one ondhefer and one on the enhancer of a gen®, lve show how out of the many GWAS hits, we setey the ones sitting on re-
gions engaging in a loop (hey P, andSNP;). In E, including both those two SNPs at the same tifevalus to find an association with the phenotypeving both a G at position

1 and a C at position 3 has a very high associatitin having the disease}, example of epistatic interaction detected with HikCthis scenario two enhancers (yellow and green)
loop over to help the transcription of their targete (red). When only one of the two enhancemsuiated (1),(2), the other is enough to maintaimegexpression at an almost nor-
mal level (in pink, gene expression when no enhaisceutated). However, when both enhancers agbltid, almost no transcription happens. This sdoaB) shows an epistatic
effect of the two SNPs on the two enhancers, onasr¢her G, overview of the Hi-C technique. In one experimehousands of pairs of regions get glued togethéneir original

3D conformation (here, two pairs pf regions areictep). The chromatin is crosslinked,

digesteda(id let re-ligate. The ligation products are markéth biotin, the chromatin is

shred into small pieces using sonication (2) ardhtiotin is pulled down. Finally, the ligation prezts can be PET-sequenced (3). The result of Hi-& dontact matrix, where the
brighter the colour the more contacts were deteloegdieen the corresponding regions, across maisy @élis (4) is a real data Hi-C matrisef. homer.salk,edu), unlike the simplis-

tic sketches irC andD.
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Bouwmanet al, 2015, Pombet al 2015). Regulatory elements such as tion (Martin et al, 2015). Finally, in Liet al. SNP-SNP interactions are

enhancers, for example, loop over to get in closximity with the
promoter of their target gene, to initiate transiion (Bottaet al, 2010,
Ghavi-Helmet al 2014, Matharet al, 2015) (Fig 1C, 1F. Supplemen-
tary Box D.4). Enhancers have the ability to heljiate transcription,
and thus regulate the expression of the gene trgett A mutated en-
hancer would not be able to carry out its funcaoymore, dysregulating
the level of the expression of the target gene. @, it is not the gene
that is directly mutated. In many cases, the reguiaf genes is a com-
plex mechanism that involves multiple enhancetdpaping over, form-
ing so called active chromatin hubs (ACHs)(Bouwreaal 2015, Pom-
boet al 2015). An important example is given by the hurbata-globin
locus (Tolhuiset al 2002, de Laat and Grosveld, 2003, Sargtadl,
2012, Jinet al 2013). These observations suggest that thereregsla-
tory networks of enhancers that become active tg@orscription. Thus,
we can use these regulatory circuits to detect gwedbeffects of SNPs
contained in the elements involved (promoters, robis) on the pheno-
type (Fig 1F). As those networks act by formingachatin loops be-
tween enhancers and promoters, the measure ofDttgeBome organi-
zation allows us to uncover this type of epistatteraction.

Fortunately, we are now able to measure the thireertsional DNA,
using the Chromosome Conformation Capture (‘3Ghteques. In 3C
(Dekkeret al, 2002), the chromatin is fixed in its effective,vivo, or-
ganization by crosslinking DNA-DNA contacts with romatin-
associated proteins. Next, this configuration iswith a restriction en-
zyme, and allowed to re-ligate. In this way, twageiic regions that are
close in the 3D conformation are glued togethenaly the ligation
products are de-crosslinked, quantified, sequenoedmapped to a ref-
erence genome. Then, it is possible to quantifyahmunt of contact
between the two regions (de Wit and de Laat, 2043 Supplementary
Box D.5 for a visual representation of the 3C téghe). Several other
technologies derive from 3C, the most popular bdi@g(Simoniset al,
2006), 5C (Dostiet al, 2006), ChlA-PET (Fullwooe@t al, 2009) and Hi-

searched, involving at least one non-coding SNRatRe pairs are pri-
oritized based on either mRNA overlap, or sharetbgical annotations.
The count of contacts in 3D (measured with ChlA-PETused to vali-
date found pairs (L&t al, 2016). In contrast, in our approach, the spatial
vicinity in the 3D genome conformation is the pitiaation method it-
self, the way we define potentially interacting SN the first place.

Detecting epistatic interactions among GWAS hitsnprove disease
association is a challenging task, mainly due éoléinge number of tests
to be performed. To maintain statistical powerekation of promising

candidate pairs is necessary, and only those steutdsted. The selec-
tion phase is extremely important, as it determiwbat kinds of pairs

we are to find and on the other hand what inforomative are losing.

Most existing approaches pre-select GWAS hits onegeonly, and

group genes based on shared function or lineanityicon the genome.

In this work, we aim to uncover the relation betwe3NPs on regions
that are close in the 3D space instead. In this wayare not limited to

coding regions. In fact, as we mentioned, genelagign can occur over
large genomic distance, by means of chromatin Idmpwing together

enhancers and promoters upon transcription. SNRsnbancers might
be just as deleterious as SNPs on genes, wherdthsiically decrease
their transcription levels. We hypothesize thatrgpaf SNPs in spatial

three-dimensional proximity might sit on promot&hancer pairs, or on
two enhancers targeting the same gene.

We propose a statistical framework to measure tWéAS association

improvement of SNP-SNP pairs, prioritized as vasaitting on regions

that are in contact in the 3D context. We incor@i@NP-SNP interac-
tions in GWAS using a logistic regression modehtaming an interac-

tion term. Logistic regression is a powerful stiti learning technique
that can be used to model a binary outcome (ecl. @i healthy, in a

case-control setup) using multiple factors, inahgdSNP genotypes. A
likelihood ratio test (LRT) approach is then use¢dmpare two logistic

C (Lieberman-Aideret al 2009). Using 3C, we can detect the number of regression models, with and without the interactierm, to detect epi-

contacts between two selected regions: it is cadlezhe-to-onetech-
nique. Hi-C (high throughput 3C), on the other haisdhe first of the
3C technologies to be genome-wide, and is therefalled anall-to-all
technique. At the cost of a little lower resoluti¢i-C is able to capture
all contacts between all pairwise combinations exfigmic regions. The
result of a Hi-C experiment is a contact map, amginical matrix M
where M(i,j) contains the count of contacts betwesgions i and j (Fig
1G).

Contribution

In this project, we integrate data from GWAS anddlito investigate
epistatic effects of SNPs pairs that are co-loedlim 3D (Fig 1A-E).
These two data-types have seldom been combinedebéfoGruberiet
al. the authors aim to unravel which genomic variatibase an effect
on gene expression (eQTLs) or histone modificatit@@TLs), not only
in cis, but also in trans. To find putative longrge driving SNPs, they
use Hi-C and ChIA-PET (Grubeet al 2015). The 3D genome is there-
fore used to find SNP-histone modification or SNRMA production
pairs, rather than SNP-SNP interaction pairs. @rother hand, Xet al.
use Hi-C to improve the interpretation of non-cgd®WAS hits, but is
limited to single-loci (Xuet al 2016). Similarly, in Dryderet al. Cap-
ture-C is used to find potential target genes efbt cancer susceptibil-
ity loci (Drydenet al 2014). In Martiret al the authors look at promot-
er-enhancer SNP-SNP interactions but pre-selectvknautoimmune
risk loci as candidate genes, and look for theaesible enhancer muta-

static effects (see Supplementary section A foetailtd explanation of
the logistic regression model and the likelihoaibreest).

Both the SNP-SNP pair prioritization using the 3Ehgme organization
and the genome-wide LRT approach to measure SNP&idRatic in-
teractions are novel to our method, to the bestioknowledge.

2 Approach
2.1 Data

2.1.1 GWAS

We used GWAS data from the WTCCC (Wellcome Truste@@ontrol

Consortium), as published by Burtenhal, with their permission (Burton
et al 2007). We focus on the type two diabetes (T2Daskt. Before
any further analyses, the raw data are cleanelbwiolg a number of
steps, as described in numerous articles in tHe (Rrice et al, 2006,

Burtonet al 2007, McCarthy, 2008). Detailed quality contQIQ) steps
are illustrated in the Supplementary Informaticecton B. After quality

control, which is performed with Plink (Purcelial, 2007) and informed
by the quality control steps taken by the WTCCC, hewve data for
3,343 samples and 450,242 sites. SNPs positioniftateover to build

hg19 (from hg18) using LiftOver (Kuhet al 2013).

In a classical GWAS experiment, only a number afardas (generally
between 500,000 and a 2 million) are genotypetherathan all known
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variable loci. This is done using pre-defined SMRys. The selected
positions are sampled rather uniformly along theogee, and act as
proxies for all other common variants in their eloscinity. This is re-
lated to a phenomenon called linkage disequilibriud). (See supple-
mentary Box D.2 for a visual overview of LD). Lirg& disequilibrium
is the non-random association between alleles atdifferent loci, as a
result of generations of recombination events (&ibbal, 2003). The
resulting highly correlated SNPs are said to béhésame ‘LD block'.
Thus, it is sufficient to know the genotype at doeus to be reasonably
confident in inferring the genotypes at all othesitions in the same
block. When a GWAS hit is found, in relation to soiphenotype, it is
not immediately obvious whether that particular SElPesponsible, or
another SNP is, in the same block. Thus, it is s&agy to impute all
other variants. To impute variants means to infier genotypes at loci
that are not directly sampled based on those tleasampled, using a
very large population as reference. Imputation iéhemendously in
finding the true causing SNPs in GWAS. This is ipatarly true in our
work, since we aim to find causal pairs of SNP4,giegle SNPs. Thus,
we subsequently imputed a large amount of SNPs, 126218 variants
in total, for chromosomes 1-22), using an availadnidine imputation
server (http://imputationserver.sph.umich.edu). Teeaotypes resulting
from imputation come with a measure of how confidae server was in
imputing them. R-squared¥) is a measure of the correlation between
the imputed genotypes and the true genotypes esdclibs they impute
(Howie et al, 2012, Fuchsbergat al 2015, Lohet al, 2016). We filter
out SNPs with a very low imputation quality, cha@sia not so stringent
threshold £? > 0.3). After filtering, we are left with 47,073,880 vants
in total (~40% of all imputed SNPs). Moreover, thsults of imputation
are not genotypes, but dosages. A dosage is a smtlgeen 0 and 2,
which is calculated from the probabilities of th&etent genotypes (en-
coded as 0/1/2), for one sample, at one locusSK#t i, sample j:

dosage(i,j) = 2P(geno(i,j) = 2) + P(geno(i,j) = 1)

For simplicity, we discretize such dosages bacthéoclosest genotypes
0,1, 2).

geno(i,j) = argkr:r}lirllz{dosage(i,j) —k}

Note, with the notation ‘hat’A() we indicate estimated values. As we
have already filtered on imputation quality, th&etience between dos-
ages and estimated genotypes is never large. Bedre more stringent,
however, we filter out all SNPs for which such eiffnce is larger than
0.1. Details of all the steps in the GWAS pipelare described in the
Supplementary Information, section B.

2.1.2 Hi-C loops

The Hi-C data is obtained from the up-to-date higimesolution publicly
available Hi-C maps database, published by thedrimhn-Aiden lab
(Raoet al 2014 & Sanborret al 2015). Out of the 8 different human
cell lines for which Hi-C data is available at hig¢solution (5 kb), we
select the GM18278 cell line. This is a human lyotghstoid cell line.
It is a popular cell line and is one of the oriditkapMap cell lines
(Gibbset al 2003). We argue that the 3D conformation, alttologally
quite variable, is rather well conserved acrosterfit cell types, as far
as long-range chromatin interactions are conce(bébn et al, 2012,
Meuleman 2013, Popet al 2014). This legitimates overlaying data
types obtained from different cells. Together wifte high resolution Hi-
C maps, the documentation provided by R&aal.includes a list of vali-
dated chromatin loops. Those are actual loops ttaichromatin fibre

forms within the cell nucleus to bring together tgenomic regions in
the 3D space. We are able to detect them as faiegions that form a
peak in the Hi-C contact map (Fig 2A). The two oegi that are brought
together by a loop are also referred to as theanatf the loop. A Hi-C
contact map is the result of a Hi-C experiments B symmetrical matrix
that for every pair of genomic regions, at a givesolution, counts how
often they are found together, across differeriscat measured with the
genome-wide chromosome conformation capture teaen(gig 1G. The
3C technique is also illustrated in the Supplenmgnbaformation, box
D.5). A peak is defined as a pair of regions foichtthe contact count is
significantly higher than that of neighboring (jzaaf) regions, squares in
the Hi-C matrix. Peaks are detected with HICCUPBQHComputation-
al Unbiased Peak Search), as defined in &aal. (Raoet al, 2014). An
illustration of how HICCUPS works is shown in Fi§.SNe use the list
of loops found with HICCUPS for this cell-line, psovided by Raet
al. The list includes loops obtained at 5, 10 andI2%esolution (size of
the two regions forming the loops). There are it@alt®,334 loops, all
intra-chromosomes (both regions looping to eaclerotine contained in
the same chromosome).

2.2 Definitions

To avoid confusion, we shall set some definitidmet twill be used from
now on in this text (Fig 2).

Regions:a region is a genomic portion, of given size. Tize $s deter-
mined by the resolution of the Hi-C map, and orggare is one bin of the
Hi-C matrix. One region is uniquely defined by ttieromosome it be-
longs to and its starting and ending positiondase pairs:

Region = {chr, x1, x2 | x1,x2 € chr}

Loops one loop is defined as a pair of two regions, afaégize. Loops
are defined as peaks in the Hi-C map (Fig.2A). lsoape uniquely iden-
tified by two regiongA andB, on the same chromosortier:

Loop ={chr, A,B | A,Bareregions, A,B € chr,

A=[x;,%], B=[y,y2l: (2 —y1) = (xz — x1),
A, B are bins of Hi- C map,and form a peak}

Looping Regionsa looping region is a region involved in a loopy{om,
loop as just defined).

Pairs: the term pairs will refer from now on to SNP-SN&rg. One pair
is defined as:

Pair = {chr,i,j | i,jareSNPs,
i,j €chr}

True pairs: these are pairs (as just defined) selected suthotieaSNP
sits on one genomic region, the other on anotheomé& region, and the
two regions form a loop (as just defined)(Fig 2A).

True pair = {chr,i,j | chr,i,j isapair, i € A,j€EB,
chr,A,B isaloop}

We have defined a loop to be made up of two genoegions. The size
of such regions ranges from 5kb to 25 kb. The sgwillion known
common SNPs span the entire genome, with a reliathigh frequency
(~3-4% of the human genome, on average). As we sh@®/l, moreo-
ver, common variants are particularly abundantaping regions.
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Fig. 2. Definitions: loops true and artificial pairs. A: How a loop is defined, and hctrue pairs are defined after it. Regions A and B form a looghie 3D chromatin conformatio
which is detected as a peak (in brighter red) @HiC contact map (sketch). Those two regionarthe same chromosome (chr2) and have the samgih ldhey are characterized by
a starting position (in bp, x1 and y1 respectivielyA and B) and an ending position (x2, y2). Tdimle pairs, we can look at SNPs found on the twoogeic regions. SNP1 happens to
sit on region A, SNP2 on region B. The pair SNAYP3 (on chromosome 2 in this example) is theredotreie pair. FigureB, C: Two approaches to generate artificial pairsBlanly
SNPs on looping regions are taken into consideratiere we have two loops, involving four regioasd one SNP per region for simplicity. Note thatsithere is only one SNP per
region, we extend the notation A, B, C and D to &NPs. Artificial pairs are randomly ‘shuffled’ nsaes of SNPs in loops. 18, for every region a region loops to, there is anothe
region, at the same linear distance on the otlder; sihich is not involved in a loop. A and A’ (siarito B and B’) are at same linear distance froifABand contain the same number
of SNPs. The only reason why pairs of SNPs samipted AB would perform differently than pairs of SBIBampled from A'B (and AB’) is the fact the A aBdengage in one long-

range chromatin interaction that puts them in ptaisiontact in the 3D space.

Therefore, we expect each of the two regions tdatorseveral SNPs.
This means that from one loop, we can build muétiphirs of SNPs.
Those pairs, furthermore, are not independenteifvere to take all pos-
sible combinations, multiple pairs would include tame SNP. Moreo-
ver, all SNPs in the same region are so closedb ether, that very like-
ly they will be in strong linkageisequilibrium (LD). It can be therefore
necessary to choose one pair of SNPs ‘represeritindbop. We define:

‘Representative’ pairs (per loop}he chosen pairs to represent one
loop’s behaviour. In different situations those tre pairs for which the
association with the phenotype is highest. Forloap:

argmax{assoc(geno;, geno; < phenotype)}
i€A,jeB

Wheregeno;, geno; are the genotypes of SNRg andA,B are the two
regions forming the loop.

It can also be one of the possible combinationsjoenly sampled:

i,j | i€Aj€EB

The second approach allows us not to compute tecidion for every
single pair. We believe this choice is valid, sit8¢Ps belonging to the
same region are expected to have similar assatiaith the phenotype.
We have indeed verified this is the case, as we/shd-ig S7.

Artificial pairs: throughout the rest of this work, in order to wetihat
true pairs actually improve GWAS association byagigg in epistatic
interaction, we will need to compare their assammatvith the associa-
tion that random pairs would obtain, as refererugificial pairs are
pairs, as defined earlier, but the two SNPs areonolooping regions.
The construction of artificial pairs is shown irg&ies 2B and 2C and
described in Detailed Methods.

2.3 Modeling epistatic interaction with logistic rgression
models
Using logistic regression models to measure GW/As®@ation is com-

mon practice (Wasoet al 2010, Bustet al 2012). The once very popu-
lar ‘contingency table’ methods, such as the Fishexact test and the

x’test, measure the association between genotyp@lambtype based
on a pure count: if one SNP is observed (signifigarmore often in
affected samples than in unaffected ones (for dseade of interest),
then that SNP is associated with an increasedarsthat disease. How-
ever, many confounding factors could arise and gkevfalse positives
(or hide interesting discoveries). Sex, age ancestng of the analyzed
samples can have a major impact on the resultsneed to be corrected
for. In a logistic regression model, a binary oateo(e.g. sick or healthy,
in a case-control setup) is modelled using multfpletors. Logistic re-
gression is designed to include multiple predictother covariates as
well as the SNPs genotypes. Their ability to actdon confounders,
particularly population structure, makes the regjes model the pre-
ferred association model in recent GWAS (Pulit 20T8.ie to the large
number of testable SNPs, however, the majorityuchsstudies perform
single-locus analyses only. Being able to includ@erpredictors does
not come for free: logistic regression models, cared toy? tests for
example, are much more computationally expensivetst al 2009,
Chenet al, 2011, Chahaét al 2016). Moreover, the complexity grows
as we add more predictors, since more parameterstnée estimated.
Here, we prioritize the candidate SNP-SNP pairducang drastically
the number of models to be tested. This allowsai®nly to use logistic
regression models (including covariates accourfoingonfounders), but
more importantly to include multiple SNPs at a tjiraed their interac-
tion. For one pai§NP,,SNP, , the interaction model is:

logit(P(diseased))~covar + SNP; + SNP, + SNP,SNP, ()

To measure whether this mod@l) improves the prediction compared to
models that include the two SNPs taken individuélly(2), we use an
LRT approach, described in the next paragraph.(2.4)

logit(P(diseased))~covar + SNP, (1)

logit(P(diseased))~covar + SNP, (2)

The logistic regression here acts as a classifibich predicts class 0
(unaffected) or class 1 (affected) based on sorawitfes, or predictors
(here the SNP genotypes), which can be better ogenat discriminating
between the two classes. If one SNP (&&);) was already very highly
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associated with the phenotype, then the modelitichidesSNP,, too,
would also result in a good prediction. We are int¢rested in these
kinds of pairs. Instead, we aim to identify paif<SdlPs whose individu-
al association with the phenotype is rather lowonkra classification
perspective the individual SNPs genotypes havediseriminative pow-
er. Their interaction, however, (the teBNP; x SNP, in the model) is a
good predictor. If this situation happens, we hdegected an epistatic
effect.

/ N

A AT [c a phenotype | covariates | snp, | snp, | .. | snps | .| snpy
. samplel
sam; e‘ A G |T ‘ N
P s — Sample2
c G |T| A -
ot sampleR
1

~
| gglt(phenu) ~ Bo + Bisnpy + Basnps + Basnpsnps

snpy [smps +BiPC, + + B1PCyg B sext.,
sy |snp,

Vs
snpy |snps

logit(pheno) ~ By + Bysnp; + cov

logit(pheno) ~ By + Bysnps + cov

Fig3. Overview of our methoc. Integration of GWAS (A) and -C loops (B) in ao-
gistic regression framework (C) to detect SNP-SN#tatic interactions. IA, after
cleaning the GWAS data, we build a ‘sample matrat: every sample (row), we know
the phenotype — this is encoded as 0 (controldthyeainaffected) and 1 (cases, diseased,
affected). Furthermore, we have collected some riates: the sex of the individuals and
the first 10 principal components, which account gopulation structure. Finally, we
have genotypic information for all sites (SNPs). Wald one sample matrix per chromo-
some. InB, based on the peaks called from the Hi-C map (seklie representation),
which identify the 3D genome organization into leppve define true SNP-SNP pairs.
Different colours indicate SNPs on different loo@mly the upper triangular portion of
the Hi-C matrix is coloured, to indicate that sithe matrix is symmetric looking at one
half is sufficient. To explain the rest of the pedare, we select one of the pairs,
snp,snps (highlighted in yellow)C: every time one SNP-SNP pair is selected, the corre-
sponding columns in the sample matrix are seleated used in building the logistic
regression model (s), together with the phenotype the covariates. Every model that
includes both SNPs in a pair, and their interagtiethen compared to the two individual
models of the two SNPs taken individually to asselssther there is in fact an epistatic
effect.

2.4 Modeling GWAS association improvement with LRT

To compare two logistic regression models, and lmasttistical meas-
ure of the improvement of one model over the otiveruse a likelihood
ratio test (LRT)(Neyman & Pearson, 1933). An LRTaistatistical test
designed to compare the goodness of fit of two risodehere one is a
special case of the other. The two models mustelséed: the set of pa-
rameters of one must be a subset of parametehe ather. If that is the
case, then the likelihood ratio statistic is:

sup{L(8|x),6 € 6o}

At = sup{L(8|x),6 € 6}’

6,c6
According to the Wilks' theorem (Wilks, 1938), moxer, for a suffi-
ciently large number of samples,

—2InA ~x%(k)

where the number of degrees of freedom k is giedfja— |6, |-
Likelihood ratio tests are often used in Statistiesobability and E
nomics (Yang, 1998, Bai, 1999, Moreira, 2003). Hoare they are ¢

dom used in Bioinformatics (Mariomit al 2008, Bastet al 2011, Pe-
tersenet al 2013). LRTs have been used in the context of GWAS
example in Cortest al to analyze in detail the MHC (major histocom-
patibility complex) on chromosome 6, and detecttivbieconsidering all
variants in one region improves association oveglsivariants (Cortes
et al 2015), but never truly genome-wide, to the béstuo knowledge.
For every pair of SNPSSNP, SNP, - we perform the test twice, compar-
ing the full model(0), first with (1), then with(2). This provides us
with two y? statistics, and two derived p-values. When bottalpes are
significant, we have identified a synergistic effec

2.4.1 Selecting epistatic pairs

To find SNP-SNP pairs that engage in epistaticaugons, we select all
pairs for which the interaction modg0) is better than the single SNP
models(1) and(2), as described previously. Those pairs already show
synergistic effect, as their interaction reachghéi association with the
phenotype than the two SNPs taken individually. 6futhose, we only
keep SNP-SNP pairs that show association in alesaérms as well.
This does not happen automatically everg0j is better than(1) and
(2). An LRT measures whether one model is significabéiter than the
other. As including more features naturally improwhe prediction,
larger models are punished, since they require rparameters to be
estimated and therefore increase their complekityan therefore hap-
pen, if the two SNPs are very poorly associateti wie phenotype, that
their interaction has higher association than theat, still not high
enough to pass the significance threshold. We medkis again with an
LRT. Now (0) is compared with the null model:
logit(P(diseased))~covar 3)

The pairs that have passed this selection perfetterthan the individ-
ual variants, and well overall. Furthermore, we ttanverify that we are
truly capturing a synergistic effect, on top of #miditive one. For every
pair, we compar€0) with the additive model:

logit(P(diseased))~covar + SNP; + SNP, 4)
with an LRT. To be even more stringent, we compeaeh candidate
pair SNP;, SNP, with two artificial pairs. Those pairs are builtcbuthat
SNP, is paired up witltSNP,’, which is at similar distance fro§NP; as
SNP, is, but on its other side. Similarly, the othetifemial pair is
SNP,',SNP, (See Detailed Methods and Figure 2C). We only kibep
true pair if the corresponding artificial pairs dot satisfy the other two
conditions. To sum up, we define a true [f&¥P;, SNP, to be a candi-
date epistatic pair ify( = logit(P(diseased))) :

1. y~covar +SNP; + SNP, + SNP,SNP, > y~covar + SNP;
and
y~covar + SNP; + SNP, + SNP,SNP, > y~covar + SNP,
2.  y~covar + SNP, + SNP, + SNP,SNP, > y~covar
3. y~covar + SNP; + SNP, + SNP,SNP, > y~covar +
SNP; + SNP,
4, 1.2.and 3. do not hold f&tWP,, SNP,’ andSNP,’,SNP,, ar-

tificial pairs.
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Fig 4. Manhattan plots, before and after QC. A. Bedre: here we show the results of the first GWAS expenitvee performed on the WTCCC T2D dataset. We iredudll the
variants and all the samples available, 495,4723489 respectively. We performed the associatiih & Fisher’'s exact test. The results are not simpisy, they are completely
misleading. Hundreds of variants shows an assoniatith the phenotype, above the threshold, soree aith p-values < e-200. The characteristic ligtdumns of SNPs, represent-
ing LD blocks, where close variants show the sass®@ation, so clear in the right plot, are hartiyiceable on the left. There is no simple reasworitfese results. The human ge-
netic heritage is extremely complex, and many fcpday a role. To capture one single aspectitieepredisposition to a disease of interest, wethake several measures to correct
for other factors. For example, individuals fronffefient geographic areas have several differentsSiNRlividuals that are related, on the other hdwade extremely similar ge-
nomes. All these aspects introduce biases, ths tindividuals must be removed from the study. &sSNPs, SNPs that are extremely rare might justhance only be detected in
one of the two classes, and be mistakenly fourttht@ an extremely high association. For techniasons, we might have information about one vaf@ntases, but not for con-
trols. Missingness is also an element to correctaod there are many more examples like thBséfter: after sample and site QC, we perform a better inéat experiment, with
450,242 variants and 3,433 samples. Alongside ®ditig noisy samples and sites, we calculate thecéion with a logistic regression, including #ex of the individuals and the
first 10 principal components (PCs) which accowantdopulation structure as covariates. The redwdts much better, and reproduce the results foynthe original paper. The LD
columns are easily spotted, and only very few sitake the significance threshold (plots generasiuiguthe R package qgmarurner 2014).

3 Results

Data preparation

The WTCCC dataset is perhaps the most used GW/Aetain subse-
quent GWAS analysis studies, for many differentues) including epi-
static analysis (Waat al, 2009, Huet al, 2010, Waret al, 2010, Yunget
al, 2011, Lippertet al 2013). To utilize the data, which come as raw
genotypes, a great cleaning effort is requiredpiiaauce a manageable
dataset the raw genotypes must undergo an extepigigéne. The QC
steps (described in detail in the Supplementargrination, section B)
are extensive, non-trivial and truly needed. WitB,Qve filtered out a
rather small but not negligible portion of both S\#hd samples (~10%
in both cases). Moreover, it is very importantrtolide population struc-
ture confounders in the association model. FigutesBows the slight
improvements as we performed the QC steps, andiggest jump in
quality occurred when we added the first ten ppaticomponents
(PCs), as covariates to the logistic regressioneindche first two prin-
cipal components alone are able to identify thgdat ethnicity clusters
(Fig S2). To emphasize the importance of QC, in4-ige show the dif-
ference between the results of the GWAS experintaatsve performed
on the T2D dataset, before and after QC. We reptéise GWAS results
with a Manhattan plot, as is customary. In a Matatmaplot every SNP is
represented by a dot measuring its —log10(p-vainedssociation with

the phenotype. Variants on all chromosomes are shaith the differ-
ent chromosomes indicated by the alternating cslo&ig 4 clearly
shows that without performing a thorough qualityitrol the results of
GWAS are biased, and can be misleading. As eveseais different,
the steps should be flexible and data-driven. TRE<sSthat appear to be
highly associated in Fig 4A are either extremehgyar are contained in
very variable regions, and should not be includethe experiment. Im-
portantly, if we do not correct for biases introdddy the various ances-
tries, we are likely to capture ethnic differeneesoss the samples, ra-
ther than the case-control discrimination we aterésted in. Such cor-
rection can be done by including the first printipamponents (PCs) as
covariates in the logistic regression. We descrialtdhe QC steps in
detail in the Supplementary Information, and hemmee to contribute an
easily accessible GWAS QC guide for non-geneticists

3.1 Genomic regions that engage in long-range chratin
interactions are enriched for common variants

The existence and formation of chromatin loops destrated that the
chromatin fibre can be extremely flexible, at snsatiles, as described in
Sanbornet al. (Sanbornet al, 2015). Observations have shown that in
order to form loops, the chromatin is often foundan open state. Chro-
matin loops are believed to form for regulatorygmses. Thus, we ex-
plored whether the loops we have collected do at feequently host
enhancers.
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3.1.1 Chromatin loops are associated with enhancectivity

To investigate the relation between the chromatinfarmation and its
regulatory function we overlaid our chromatin loopgh validated en-
hancers from the Epigenome Roadmap, derived frenséime cell as the
Hi-C loops, GM17828 (Roadmagt al, 2015). We found that a large
portion of enhancers are contained in loops, coegp&r how little cov-
erage the same loops have (see Detailed Methotig).difference in
percentage is striking (Fig 5A), and the enrichnisrdtignificant for all
chromosomes (Binomial test, worst p-value is 5e-Mthough perhaps
not surprising, this finding is encouraging, andtifies our quest for
epistatic interactions driven by enhancer-promokgomatin loops.
Chromatin loops are enriched for enhancers, as ave Ishown. Alt-
hough to a lesser extent than for genes, we exmeincers to be partic-
ularly prone to common sequence variation, everersorsince they are
regions of open, and therefore accessible, chramati

3.1.2 Loops are enriched for SNPs

To study the relation between the SNPs distribudiod the chromatin
loops, we collected an extensive list of positiofigll known common
variants from the UCSC repository (University of liGania, Santa
Cruz) and overlaid them with our loops, collecteshf Sanborret al.

As we show in Fig 5B, SNPs are more often in loopsipared to non-
variable base pairs. The portion of SNPs in lodight(blue bars, out of
the total number of SNPs) is consistently largantthe loop coverage
(light red bars, base pairs in loops) as calcul&ieah the Hi-C map, for
all chromosomes but one. The enrichment is sigaitidor most chro-
mosomes (Fig 5B). Specifically, 18/23 (78.3%) usBanferroni multi-
ple testing correction, and 19/23 (82.6%) using jB@mi-Hochberg.
The significance is calculated using a Binomiat {see Detailed Meth-
ods).

We have shown that there is a bias toward regiogggng in long-
range interactions, which are more prone to coimgioommon variants.
First of all, this confirms the validity of overleng GWAS and Hi-C
data-types, even though they are obtained fronerdifft cell-types. Sec-
ondly, this can have an impact on genomic analysesving SNPs. For
example, this finding implies that common variaate not uniformly
distributed along the genome. Genomic methods itidiide random
sampling of SNPs, among others, should take thiegrnmation into ac-

A

* Significant before multiple testing correctioR<Q.05)
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3.1.3 Looping regions are more enriched for sitehét are associated
with diseases

To determine whether looping regions are parti¢ykanriched for SNPs
that are associated with the disease (T2D), we ltaded at the associa-
tion of the SNPs with the phenotype, alongsider thesitions. To do so,
we performed a one-sided rank-sum test on the yegabf the SNPs in
loops, versus those sitting on non-looping regi®is. found that when
we consider all variants, this is not the case (M#@fhitney U test, p-

value = 0.48). However, it is not all variants we mterested in. We are
investigating whether loops are enriched for higigociated variants,
thus it makes sense to only look at the ‘lower t&ithe p-values distri-

bution, at those SNPs that do have an effect, @ithaninor, on the dis-
ease of interest. Indeed, when we perform theatgain, this time only
for SNPs with an association measure of P<0.5,imgppegions are en-
riched for SNPs (Mann-Whitney U test, p-value =0893), and they are
even more so when we reduce the threshold furtRe0.@) (Mann-

Whitney U test, p-value = 0.00386) (Fig 6). Theigmment is true ge-
nome-wide, and at the single-chromosome level ta@gst p-value =

0.0099, Fig S6C). Hence, chromatin loops are ndy enriched for

common variants, but particularly so for those tlae disease-
associated.

We conclude that disease-associated SNPs prefghgmccur in loop-
ing chromatin, and that loops are associated wither enhancer activi-
ty, as we have shown, and as it has been obsepfecel(Dixonet al,
2012, Babaekt al 2015). These two findings combined represent a
promising starting point for the rest of this woNkoreover, the results
found in the last paragraph (3.1.3) suggest theilpitity to leave out
variants that show no association at all, as tleeyrsnot to carry any
signal and no potential for epistatic interactidnsfact, by definition, an
epistatic interaction implies that the effect okorariant influences the
effect that another variant has on the phenotyiigereby silencing it or
enhancing it, for instance. If there is no initddect on the phenotype in
the first place, there cannot be an epistatic etfiher.

Portion in loops

* Significant before multiple testing correction (P@5) ® SNPsinloops

% % Significant after multiple testing correction (Serroni) (enjamini-Hochberg) Loop coverage

* % % Very significant (P<e-16)

.
24 1 Teo. b,
o L O I G-I S B I A
> * * * *

3 thndbnneiddnlladobiy
= 1 2 3 45 6 7 8 9 101m 13 14 15 16 17 18 19 20 21 22 X

chromosomes

Fig. 5. Loops are enriched for common variants, eggially when associated with the phenotype, and f@nhancer activity.In A compared bar-plots: the portion of enhancers ipdoo
ing regions (blue bars) is much higher than theecage that those loop have (red bars). We testédaMBinomial test how significant the differense $tars indicate the level of signifi-
cance, as indicated. No star means the test wasigroficant. The enhancers’ positions are dowdéshfrom Roadmapt al. X axis, chromosomes, y axis portion in looBssimilar to A,
but for SNPs. The portion of SNPs in loops is systtcally (with the exception of chromosome 8) &rthan the loop coverage of the chromosomes, se pairs and based on the Hi-C
maps. The stars show how significant the differesc@er chromosome, as obtained with a Binomistl. t¢/ith the Binomial test, we test if the numb&common variants found in the
loops is larger than expected by chance, and eanspto be so in the majority of the experimentgo Btars indicate significance after multiple tegtcorrection, using a Bonferroni correc-
tion. We also used Benjamini-Hochberg. The redfstachromosome 3 means that the test is only fiegmit for Benjamini-Hochberg, and not for Bonfarro
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Fig. 6. Loops are enriched for vaiants that are associated with the phenotyp Loops
are enriched for highly associated SNPs, when Wectsenly SNPs that show a little
association with the phenotype on their own. Resaie illustrated for chromosome 1.
The distributions of p-values of SNPs in loops @land not in loops (red) are compared
using boxplots. We furthermore compare such distidims when we reduce the initial set
of p-values, by considering all SNPs with P<0.5tfiand then P<0.2. On the y axis are
the p-values, on the x axis the three experimdatglifferent P thresholds. We can see
that the difference between the two distributioB&Rs in loops, SNPs not in loops)
grows larger, the more we reduce the p-value tiotdsh

3.2 Detecting epistatic interactions

By only selecting pairs in loops, we dramaticakyluce the number of
SNP-SNP pairs to be tested. If we were to takpaiilvise combinations
of our (450,242) variants, we would have to testroi00,000,000,000
hypotheses. Even if we were to start with only SMiRRe some associa-
tion with the phenotype (P<0.5), the number ofstest be performed

would remain huge (>20,000,000,000). By selectspairloops, instead,
we only need to test 35,425 pairs, and have therefmich more statisti-
cal power. The number of pairs varies from chrommsdo chromo-
some, but not in a surprising fashion, rather atiogrto the chromo-
some’s length (Pearson’s correlation = 0.8152).

3.2.1 SNP-SNP pairs engage in epistatic interactisimore often than
expected by chance

We found that, genome-wide, epistatic effects oaoare often in true
pairs than we would expect by chance. As refereweebuilt artificial
pairs. The artificial pairs are built as a re-shdf of the true ones, in
such a way that only SNPs that are on some loajgigipn are used, but
the true matches are disrupted (Fig 2B). When nfiadethe artificial
pairs, we want to keep the structure similar ta tfathe true pairs as
much as possible, to capture the role played bythhee-dimensional
chromatin conformation only. As we have shown, geicaregions that
engage in long-range chromatin interactions arecésted with enhancer
activity, and are hotspots for common single nudeopolymorphisms.
By shuffling the pairs, therefore, we take SNP4 #ibbelong to one of
those hotspots, but we disrupt the loop structbyecombining SNPs
sitting on two regions that do not loop over eatteo (Fig.2B). In this
way, we aim to detect the effect that real chroméiops have on the
interaction between variants (see Detailed Methods)

We define an epistatic interaction between two Sh¥described in the
approach section (2.4, 2.5). Thus, we counted fov many pairs the
full interaction model(0) significantly improves the association with the
phenotype compared to the models with the two iddad SNPs only
(1) and(2), as measured with an LRT. We then shuffled the SiN®
the same total number of artificial pairs, and d¢edrthe same number
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Fig. 7. True pairs engage in epistatic interactionsnore often than expected by chanc&oxplots for all chromosomes. For every chromosereecounted how many true pairs engage
in epistatic interactions (red dot). Then, we raffiéd the pairs 1000 times and at each permutatiercounted the number of epistatic pairs. Theltiegudistributions, one per chromo-

some, are shown as boxplots. We observe that dveeta pairs engage in epistatic interactions naften than random. The difference is obvious fame chromosomes, such as 2, 5, 8,
10, 19 and 23. For others, it is less evident.enegal, we observe great variation across the absomes. Extremely puzzling, furthermore, are chisontes 9, 11, 17 and 18, which show

an exactly opposite trend.
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for the resulting artificial pairs. For every chrosome, we used 1000
permutations and built the null distribution onthigh we compared the
number for the true pairs (Fig 7 and Fig S8). Asrali chromosomes,
the number of pairs that show GWAS association awpment is rather
low compared to the total number of pairs (~3%)wieeer, overall, it is
larger than the same number for the artificial pafs the null distribu-
tion obtained with the shuffled pairs was not GarsgShapiro-Wilk
test, largest p-value 0.0024), we calculated aimattd p-value, for all
chromosomes, as:

a+1
b+1

p=

Wherea is the number of values more extreme than the tcfourtrue
pairs (red dot in the plots) ardis the number of permutations (10000).
By definition, this p-value cannot be smaller tHa@01 (1/1000). Over
all chromosomes, P = 0.01 (average p-value, sepl&upntary Figure
S8).

3.2.2 Epistasis occurs with great diversity from ctomosome to
chromosome

Although genome-wide epistasis occurs overall nicrguently for true
pairs than for shuffled pairs, which supports oypdthesis that chroma-
tin loops could drive SNP-SNP epistatic interactiothe results are ex-
tremely variable when we look at individual chromwes (Fig 7, Fig
S8). While for some chromosomes artificial pairsereperform better

than the true ones: (= 0) and for some other chromosomes the differ-

ence is not as striking. Finally, four chromosortgeecifically 9, 11, 17
and 18) show a radically opposite behaviour. Unfuately, we are not
able to explain this extremely unexpected resoitnbw.

3.2.3 Synergistic pairs often show phenotype assation

We next established which epistatic pairs are laigbly associated with
the phenotype, as described in 2.4.1. To this aedcollected all pairs
for which the interaction modé¢D) performs better than the two single-
loci models(1) and(2), and checked whether it also performs signifi-
cantly better than the null modé3). We found that this was true for
more than 70% of the pairs, averaged over the absomes (Likelihood
ratio test, P<0.05, see Supplementary Figure S@Bjrder to demon-
strate that the improvement in association is tdie to the epistatic
interaction between the variants, rather than siroplised by their sum,
we compared the interaction mod@)) with the additive modgl4), as
described in the approach section (2.4.1). We fahat for 96% of the
pairs the interaction model explained the phenosigaificantly better
than the additive (Fig S9C). Moreover, for 71% hé rest, the associa-
tion of the interaction model with the phenotypesviidgher than that of
the additive, although not significantly. Among tleenaining 9 pairs, no
additive model passed the significance threshagt(p-value = 0.0013).
These findings confirmed our hypothesis that efist&ffects between
SNPs, rather than just additive effects can agtyadild large effects on
the phenotype.

Next, in order to demonstrate that the associadfotine selected syner-
gistic pairs is higher than what we would expectdmance, we per-
formed the same tests for artificial pairs. To #msl, we first grouped all
pairs based on the loop they were built from. EMepp connects two
regions, at a given linear distance. For each e$e¢htwo regions we se-
lected another portion of the genome, on the odfd®, but at the same
linear distance (Fig 2C). We can now sample SN&w fthese two new
regions, and build artificial pairs (see Detaileéthbds). We filtered out

loops for which more than one artificial pair pakbeth tests (LRT be-
tween interaction model and both individual modaisl LRT between
interaction model and null model), and the derivpairs, which only
made up for 7% of the total (Fig S9D). In Figures& show the Manhat-
tan plot of the remaining 607 pairs, built from 3tiromatin loops, over
all chromosomes. Every dot in the figure represenpsir of SNPs, ra-
ther than one single SNP. The p-values are obtasetie result of the
likelihood ratio test between the interaction mo@gl and the null mod-
el (3). This is a measure of how well the epistatic intbom between
those SNPs can predict the phenotype.
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Fig 8. Manhattan plot of candidate epistatic pairs Manhattan plot showing the asi-
ation with the phenotype of SNP-SNP pairs, rattntindividual SNPs. In this plot
every dot is one pair. Other than that, the resinislar to other Manhattan plots. As usu-
al, the y axis indicates the —log10(p-values),xtexis the alternating chromosomes. As
all pairs are within the same chromosome, we Keiptdistinction. As for genomic posi-
tion in base pairs, we use the mean position otwleSNPs, as a default. The blue line
represents the significance threshold, after mieltipsting correction. We here show only
the 607 candidate pairs, thus the Manhattan plotush more sparse than usual, and all
dots are above y=2, as we previously selected ‘gpaiis. Note that the little columns
here do not indicate LD, but rather pairs from ¢laene loops. Three sets of pairs, from
chromosome 2, 3 and 12 pass the threshold.

Fig 8 shows a few pairs for which the interactioadel (0) passed the
significance threshold. These 7 pairs derive frofto@s on chromo-
somes 2, 3 and 12. All those pairs show a strikipigtatic effect on the
phenotype (Fig 9).
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Fig 9. Synergistic pairs, compared association be&en single-variant models and
interaction model. In A, 4 out of the best 7 pairs derive from the sarog l@en chromo-
some 3. To show the increased performance of tirs pampared to the single-SNP
models, we compare the —log10(P) of the modelsd@aton with the phenotype. The
epistatic improvement is evident (around 4X improeat). Moreover, we observe that
different pairs deriving from the same loop perfartremely similarlyB andC indicate
similar behaviours to the two pairs on chromosomari the pair on chromosome 12.
SNP IDs and chromatin loops coordinates are inditaX axis: SNPs or pairs of SNPs of
the model tests. Y axis: —log10(p-values), p-valoiesined as an LRT of the correspond-
ing model vs the null model.
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3.2.4 The identified top seven synergistic pairs wolve SNPs on en-
hancer active regions or genes involved in metabolpathways

The top seven identified epistatic pairs (Figureané 9) are built from
chromatin loops on chromosomes 2, 3 and 12. Wdl\yiievestigated
known annotation of the involved variants and theainding genomic
regions. First of all, we found no overlap between selected SNPs and
a list of known T2D-associated variants from the &8\tatalogue (see
Detailed Methods). Moreover, none of the selecteeela CADD score
higher than 8. CADD scores give an indication ofvhaeleterious one
variant is, based on a number of features (Kiretiel, 2014). These two
observations confirm our hypothesis that SNPs eingag epistatic in-
teractions are not known or predicted disease-asdcvariants, when
taken individually.

The two SNP pairs on chromosome 2 both involve 381694459,
contained in one of the looping regions, or anchofsa loop
(chr2:46,400,000-46,425,000). This SNP shows systrgffects on the
phenotype when interacting with rs12470532 and 14885 which are
found very close to each other, at the other anblar2:46,725,000-
46,750,000). The first SNP (rs11694459) sits a Ease pairs down-
stream of gene PRKCE, which is found in the typdidbetes mellitus
pathway (Fig S10). The other two SNPs (rs1247058Pra3814045) are
just upstream of gene ATP6V1E2. ATP6V1E2 is ..., anthvolved in
multiple pathways, including the rheumatoid arterfRA) pathway (Fig
S10). It is known that complex diseases often shiskegenomic loci, so
this could be an example of this phenomenon. Howewe make anoth-
er observation. Only a few base pairs downstreatWT6{6VV1E2 is an-
other gene, RHOQ. This gene belongs to the insiginaling pathway
(Fig S10), which is one pathway that is disruptediabetes. Although

the SNPs do not sit directly on either of the tvemes, the entire area is

highly enriched with H3K4me1, which is a known mdok enhancers
(Fig 10).

The four epistatic pairs we detected on chromos8nadl involve SNP
rs1488135, interacting with rs4859269, rs485927&l,3066020 and
rs7632904. The first is found upstream of a long-ooding RNA
(FLJ46066), highly enriched for H3K4mel. The otheit on the
MCCC1 gene, which hosts numerous other common naridhis gene
is involved in multiple metabolic pathways andritalfunction causes a
number of congenital disorders of metabolism (Fy 1

Finally, the SNP pair we discovered on chromosothéslcomposed of
SNPs rs2717418 and rs1877529. The first sits onPIRERB gene,
whose function is in blood vessel remodeling andi@enesis, and is
enriched for H3K4mel. The second is downstreanh®fRTPRR gene,
which is part of the MAPQ signaling pathway, andwsh high levels of
H3K4mel and H3K27ac, both marks for enhancers1B)g Interesting-
ly, both genes also play a role in cancer.

We observed that both pairs on chromosome 2 anébaill pairs on
chromosome 3 derive in fact from two loops onlyofder to investigate
whether those loops considered as a whole would havigher associa-
tion score than their deriving pairs, we measuhed gerformance of a
logistic regression model including all involvedrizats, with an LRT.
For both loops, however, the models per pair ofpered the model
per loop. Moreover, pairs built out of the sameplbave extremely simi-
lar association with the phenotype. This resultficois and extends an
earlier observation: SNPs in close vicinity shownikr association
measures not only when considered individually, &gb when paired
with other SNPs (Fig 9 and Fig S7). Thus, includimgre than one SNP
from one region is redundant, and does not imptbheenodel.

A

RHOQ

GM12878
H3K4mel

1512470532

Insulin signalling

Type Il diabetes mellitus pathway

pathway
Rheumatoid

Hi-Cloo
P arthritis pathway

GM12878 open chromatin and

H3K4me3 B

Valine, leucine and
isoleucine degradation,
methabolic congenital
disorders

151488135 Hi-Cloop

Mcccl

e -::.';

rs13066020 15632904

=

' S
rs2717418

151977529
Hi-Cloop

Neuro-degenerative
diseases and leukemia

MAPQ pathway

Fig 10. Sketches of our best pairsThe three different ceoons represent three differe
chromatin loops, on chromosomes 2 (A), 3(B) andC)2espectively. The images are
taken from the Genome Browser. Circled highliglet itmportant features of the two loop-
ing regions. The variants for which the epistatiteiaction is significant are circled and
indicated in red. For every gene we further indicatpathway the gene belongs to. In
both the first two figures there are little gagsshow other close by genes.

4 Discussion

In this article, we present an analysis to exptbee contribution of the
three-dimensional genome organization to GWAS asist To this end,
we overlay the WTCCC type 2 diabetes GWAS dataght lang-range
chromatin loops measured with Hi-C. We find thatochatin loops
show a significant enrichment for common SNPs, esfig for SNPs
that are associated with the disease, and thatafeegxtremely enriched
for enhancer activity. These results indicate thag-range chromatin
interactions form for regulatory purposes and gateehotspots of dis-
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ease-associated common variants, in the 3D coriflid. suggests that
the 3D genome organization plays a role in drivBMyAS epistasishy
yielding the co-occurrence of SNPs on promoter-anb@apairs, or pairs
of enhancers targeting the same gene.

We propose a statistical framework to detect efistateractions, where
we model GWAS association with a logistic regressiod measure the
improvement of the synergistic model over the siFigti models with a
likelihood ratio test. We identify a handful of paishowing epistatic
interaction, which are built from three differeabps on chromosomes 2,
3 and 12. All variants involved in these pairs weo previously known
to be related to T2D, nor known as deleteriousavesi according to the
CADD score. This supports our hypothesis that apiiseffects occur as
synergistic interactions of variants that are righly enough associated
with the phenotype on their own. Moreover, thes®SHre either sitting
on regions enriched for histone modification maaksociated with en-
hancers (H3K4mel and H3K27ac), or are found omaradse vicinity
with genes involved in metabolic pathways, inclggihe type 2 diabetes
mellitus pathway and the insulin signaling pathwirst of all, these
findings confirm that analyzing chromatin loopsgseidentify enhancer-
promoter pairs, and that those indeed are ableite GWAS epistatic
interactions. Moreover, our proposed statisticgrapch is able to suc-
cessfully to capture true epistatic interactionkjclv involve genes that
appear to be related to the disease of interes. gxeliminary biological
validation those findings are very promising, anel expect interesting
future results after further and thorough genetialyses.

5 Future work

This work can be improved and extended in a numbevays. First of
all, we only considered chromatin loops called fritra Hi-C map with
very high confidence. With a slightly less stringémeshold we could
have examined more loops and potentially found mafermation,
maintaining still a reasonably small number of getst be performed.
Moreover, the three-dimensional genome organizatmnd have been
further investigated at other scales as well, feaneple looking at
whether we find epistatic interactions within TAQepological associa-
tion domains), more often than between TADs. Selgonet were very
strict in the detection of our final epistatic gaiwhich had to pass many
tests and therefore needed to be very highly aswatio pass the signif-
icance threshold after multiple testing correctidain, more lenient
thresholds might have led to further discoveridthoagh we could not
be as confident about them. Thirdly, further biadadj interpretation of
our findings would help validate and interpret oesults. A thorough
integration of the Hi-C chromatin loops with epigéin states from
Roadmayet al, for example, could yield interesting results, whilethis
work, we only looked at enhancers.

Extension to more GWAS phenotypes and Hi-C cell lies

In this study, we focused on one single phenotyme 2 diabetes. There
are many other GWAS datasets, starting with therodlix diseases of
the WTCCC study (bipolar disorder, coronary artdisease, Crohn’s
disease, hypertension, rheumatoid arthritis and tiygliabetes). The in-
vestigation of similarities and differences amoiféecent diseases could
shed new light on the specific diseases etiology e@mmon mecha-
nisms. Promising findings in other datasets, moeeowould provide a
nice validation for our method. Furthermore, inéhgdmultiple diseases
could be combined with collecting Hi-C maps fronffefient cell-lines,

and investigating the association of different dgpes with different

diseases. However, those analyses would still itleeirsame limitation

that we encountered, due to the difference in #ielines that two data
types (GWAS and Hi-C) are obtained from.

While we showed that the integration of the twaadspes allowed us to
find interesting results, we cannot imply a direohnection unless the
data was collected from the same cells. A substiintprovement in the
interpretation of the results and their quality Wboccur if we could
integrate GWAS data and Hi-C maps from the samecsou

Correlation between SNPs that are linearly distal bt spatial-
ly co-localized

Another possible direction for investigation is #isloration of a poten-
tial correlation between the genotypes of vari@otéocalizing in the 3D
context. Similar to how linearly close variants aighly correlated due
to LD, we wonder whether there is something analsdgor variants in
close 3D proximity, a sort of a map of conserveredhdimensional
blocks. Calculating a correlation measure betweieslddic loci with
unknown phase is hardly a trivial task (Rogers Hndf, 2009). We at-
tempted a simple approach, usingZtest to compare expected and ob-
served co-occurrence of different alleles at twai. Ié&lthough we did
find some mild correlations, the results were natirely convincing.
Perhaps more informed and integrated methods,wioatd take into
account nucleotide frequencies and genotype phasingxample, could
provide better outcomes.

Extension from SNP pairs to SNP groups

Finally, larger sets of SNPs should be includedwasbriefly mentioned
in the introduction, the regulatory mechanisms wfan genes are not
always understood, and are often extremely complexhe example of
the human beta-globin locus illustrates, they camlve multiple play-
ers. If we are to capture regulatory epistaticraxtéons between SNPs
on these elements, we should consider all of theartiane, not just two.
Thus, we must go beyond pairs of SNPs, toward 188> groups. As it
happens, one of the major advantages of logistiessions compared to
other association measures is that they are pbrieetl suited to in-
clude multiple predictors. Nevertheless, Hi-C idyoable to measure
contacts between two regions at a time. We camassifi one regiorA
forms a loop with regiof as found across some cells, and a loop with
regionC in other cells, thaf, BandC are actually all in the same place
and it is the technology that can only see two &tr@. On the other
hand, the fact that there is no obvious loop betvigandC might sug-
gest that on the contranp either interacts with one or the other, in a
mutually exclusive fashion. Unfortunately, we ar@ @able to answer
these questions with the existing experimental ieghres. This makes
the task of extending the search for epistaticrauitons from pairs to
larger groups a non-trivial one. An interesting i@yisualize and inter-
pret Hi-C results was proposed by Sanbetral the network of loops.
One could imagine genomic regions as nodes, coathéateach other by
an edge, if engaging in a chromatin loop. Grapmsecwith nice mathe-
matical properties and one could for example fikidlasters of looping
regions as connected components within the graplsté®s of variants
engaging in epistatic interactions might be fourydalssigning one or
more variants to a node. Then starting from a niadmuld be possible
to progressively add other nodes as long as theehiocluding the new
variants keeps improving association, as measuithdaw LRT (a repre-
sentation of this proposed approach can be foufibi$11).
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Detailed Methods

Enhancers’ positions

A list of enhancers is collected from the Epigenddeadmap (Roadmap
et al 2015). The data is derived from the same cethasHi-C loops
(GM17828, ENCODE ID: E116). In Roadmapal,genomic bins of 200
bp are assigned to one of 15 states, based on @ @iden Markov
Model) that takes into account various featuretuiting histone modifi-
cation markers, conservation rates and chromaéte,samong others.
We select those bins that are confidently assidoestate 7 (state: En-
hancer), and see how many of those are containgtt@matin loops.

Common SNPs’ positions

Common variants are downloaded from the UCSC repgsiUniversity

of California, Santa Cruz, http://hgdownload.sosaedu). A list of
loops is collected from Sanboet al (accession number = GSE74072 on
http://www.ncbi.nim.nih.go}.  The portion of SNPs in loops is calculat-
ed as the ratio between the number of SNPs in Jaops the total num-
ber of SNPs, per chromosome. The loop coverage (beiss in loops) is
calculated from the Hi-C map. It is the ratio betwehe overall size of
chromosome bins forming a loop, over the sum ofsien of all chro-
mosome bins. If for some portions of the chromosereenave no Hi-C
information, then we do not include those.

Binomial test

In 3.1.1 and 3.1.2, the significance of the enriehtris calculated using
a Binomial test:
Hy:
Hy:

x~Bi(n,p)
x + Bi(n,p)

Wherex is the number of enhancers/SNPs in looping regioris, the
total number of enhancers/SNPs, gnd the ratio of base pairs in loops
out of the total number of base pairs we have tda€ from.

Artificial Pairs: SNPs in loops

The first set of artificial pairs used in 3.2.1 &h@.2 are built as follows.
Only SNPs that are on a region that engages iopadoe considered, but
the pairs are shuffled around. If we have two ledpinging together
two independent genomic regions each: the firsp lmcomposed of
regionsA and B, the second loop of regior® and D. For simplicity,
each region only hosts one SNP. We call the S\Bs candd. The true
pairs in this scenario aeb, cd The artificial pairs we build, instead, are
ac, ad, bc, bdin 3.2.1 we want to keep the number of pairsdixehus,
we would select only two out of the four (sagyandbc). This approach
is depicted in Fig 2B.

Artificial Pairs: similar linear distance

For the second strategy to build artificial painge start from a loop.
Every loop is made up of two regions, that we chA and B. A comes
‘before’ B on the chromosome, if we consider iastraight line. A and
B are at a certain linear distandemeasured in bp, midpoint to mid-
point. We consider two other regions, at the twpagite sides: B’, at
distanced from region A, but on its left hand side (upstreaamd A’, at
distanced from B, to its right (downstream). As we expect#deB to be
rich in SNPs, we take A’ and B’ twice as large faB), symmetrically
from the midpoint, and only later shrink them uttiéy contain the same
number of SNPs as their counterpart (Fig 2C):

#{SNPs in A} = #{SNPs in A’}

#{SNPs in B} = #{SNPs in B'}
T2D-associated SNPs

The list of SNPs known to be associated with tymkabetes are collect-
ed from the NHGRI (National Human Genome Researdtitlite)
GWAS Catalog (Welter, MacArthwet al2014). Diabetes mellitus type
Il (or simply type 2 diabetes) is a metabolic disar characterized by
high blood sugar and insulin resistance. Type betes is only partly
genetic. Similar to most common complex diseasesynfiactors play a
role. For type 2 diabetes, the main cause is gbe&dt for genetic caus-
es, most known common SNPs related to T2D sit aregénvolved in
beta cells function (insulin storage and release).
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