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SUMMARY

Reducing weight and improving strength of structures have always been major design
goals in the aerospace industry since its inception. In particular, strength directly affects
the safety and serviceability of an airplane and is therefore of great importance in struc-
tural design. Improving the strength of an airframe can effectively increase its damage
tolerance in different failure modes, such as fracture, fatigue and impact damage. To
pursue these goals, optimization techniques, which aim to seek for the “best solution” in
mathematical models, can be applied in the structural design process. In addition, us-
age of lightweight carbon fiber reinforced composite laminates further serves this pur-
pose.

Hence, in-depth studies are conducted in two aspects to achieve lightweight structures
with superior strength in this research: efficient strength optimization and manufac-
turable design of variable stiffness laminate composites. For the existing strength opti-
mization, the challenge in addressing large scale problems lies in the prohibitive compu-
tational demand. This is due to the fact that the strength of a structure is a local quantity
measured with either stress or strain-based criteria. This results in the need to handle a
large number of constraints for large scale structures, which leads to a super-quadratic
growth in the computational cost. In the present work, computational efficiency is im-
proved in two distinct areas: (i) for local strength sizing optimization, a new variant of an
iterative method is developed, which streamlines the established algorithm to improve
its efficiency and (ii) a global version of strength-oriented optimization is developed for
variable stiffness laminates, which reduces the computational time compared to existing
methods by reducing the number of constraints.

In combination with the aforementioned improvements in computational efficiency,
a second aspect that is addressed in the present work is the design methodology for
lightweight structures. In particular, the manufacturable design of variable stiffness lam-
inates is further investigated to push forward the application of this novel composite
material with excellent tailoring capacity.

For the efficient iterative method with local constraints developed in this work, the ob-
jective is to minimize the weight of structures made of steel or other homogeneous ma-
terials. Computational efficiency is improved by solving the Schur complement of the
Karush-Kuhn-Tucker (KKT) condition with the preconditioned conjugate gradient method
(PCG). Simultaneously, sensitivity analysis of the stress constraints is accomplished im-
plicitly by implementing the adjoint method and the reanalysis method in the PCG to
formulate a matrix-free solver for the Schur complement. A stress approximation based
on a fully stressed design is developed to provide a diagonal preconditioner for the PCG.
The numerical results show that the proposed method is able to achieve a linear re-
lationship in the computational cost with respect to the problem size for beam struc-
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tures.

The manufacturable design of variable stiffness laminate in this work is intended to en-
hance an existing method, called the direct control method, which imposes curvature
constraints on the fiber paths in the angle retrieval step of a multi-step optimization
method. In this work, an indirect control method to constrain the curvature of fiber
paths implicitly through lamination parameters is developed for compliance minimiza-
tion problem. This allows the curvature constraint to be imposed in the first step where
the primary objective is optimized in the multi-step method. Thereafter, a hybrid con-
trol method, which combines the indirect control method and the existing direct control
method, is applied to impose the curvature constraints in both steps. A comparative
analysis of the indirect, direct and the hybrid control methods is conducted in terms of
the matching of the optimal lamination parameters obtained from the two steps, opti-
mal compliance achieved and the computational cost. The hybrid control method turns
out to be the best approach to yield a design with the lowest compliance at the expense
of a moderate increase in the computational cost.

The efficient strength optimization of variable stiffness laminate is explored with a global
aggregation method (p-norm formulation) with failure indices based on the Tsai-Wu
failure criterion in order to reduce the computational cost. The new variant of the method
is able to work using lamination parameters as the primary design variables. To sim-
plify the Tsai-Wu failure criterion with respect to the lamination parameters, an elliptical
formulation of the conservative failure envelop is applied to represent the failure crite-
rion. The p-norm formulation is then applied to aggregate the local failure indices into
a global failure index, which condenses the size of the problem. The two level approxi-
mation is then employed for this global failure index to guarantee the conservativeness
and convexity of the subproblem. The numerical results show that the computational
cost is efficiently reduced, compared to addressing local constraints. Simultaneously,
the method proposed in this part generates a mesh-convergent result and behaves ro-
bust even in the presence of a stress singularity.

In conclusion, this research has undertaken an in-depth investigation into the efficient
strength optimization and manufacturable design of variable stiffness laminate. Deep
insight into stress constrained sizing optimization is achieved. The manufacturable de-
sign of variable stiffness laminate described in this work successfully improves the exist-
ing method of enforcing curvature constraints on the fiber paths. The efficient strength
optimization of variable stiffness laminate with global failure index is shown to be promis-
ing for large scale structures. This may inspire further interesting, on-going research on
high performance stress constrained sizing optimization and its wider application for
variable stiffness laminate in the future.



SAMENVATTING

Het verminderen van gewicht en verbeteren van de sterkte van constructies zijn altijd de
hoofd ontwerpdoelen geweest van de lucht- en ruimtevaartindustrie. De sterkte heeft
met name veel invloed op de veiligheid en onderhoudbaarheid van een vliegtuigcon-
structie, en is daarom erg belangrijk voor het ontwerp van de constructie. Het verbeteren
van de sterkte van de structuren kan effectief de schade tolerantie verbeteren voor ver-
schillende faalwijzen, zoals breuk, materiaalmoeheid en schade door impact. Om deze
doelen na te streven worden optimalisatie technieken ingezet, welke gebruik maken van
wiskundige modellen voor het vinden van de “beste oplossing", voor het constructie
ontwerp proces. Tevens word er gebruik gemaakt van lichtgewicht met koolstofvezel
versterkte composiet laminaten voor het verdere nastreven van deze doelen.

Derhalve, zijn er diepgaande studies uitgevoerd in twee aspecten voor het realiseren
van lichtgewicht constructies met superieure sterkte in dit onderzoek: efficiënte sterkte
optimalisatie en produceerbaar ontwerpen van variabele stijfheid laminaat composie-
ten. Voor de bestaande sterkte optimalisatie, ligt de uitdaging van grootschalige proble-
men in de beperkende computationele vraag. Dit komt door het feit dat de sterkte van
constructies in een lokale kwantiteit gemeten worden met een criterium gebaseerd op
spanning of rek. Dit resulteert in de behoefte om een groot aantal voorwaarden te ver-
werken voor grootschalige constructies, wat leid tot een super-kwadratische groei van
computationele kosten. In het huidige werk is de computationele efficiëntie verbeterd
in twee te onderscheiden gebieden: (i) voor lokale sterkte dimensionering optimalisatie,
is een nieuwe variant van een iteratieve methode ontwikkeld, welke het vastgestelde al-
goritme stroomlijnt voor verbeterde efficiëntie en (ii) een globale versie van een sterkte-
oriënterende optimalisatie is ontwikkeld voor variabele stijfheid laminaten, welke voor
een vermindering zorgt van computationele tijd in vergelijking tot bestaande methodes
door het reduceren van het aantal voorwaarden.

In combinatie met de voorheen genoemde verbeteringen in computationele efficiëntie,
een tweede aspect dat is geadresseerd in het huidige werk is de ontwerp methodologie
voor lichtgewicht constructies. Met name het produceerbaar ontwerpen van variabele
stijfheid laminaten is verder onderzocht om vaart te zetten achter het toepassen van dit
nieuwe composiet materiaal met uitstekende ontwerp mogelijkheden.

Voor de efficiënte iteratieve methode met lokale voowaarden welke ontwikkeld is in dit
werk, is het doel het gewicht te minimaliseren van constructies gemaakt van staal of an-
dere homogene materialen. De computationele efficiëntie is verbeterd door het oplos-
sen van de stelling van Schur van de Karush-Kuhn-Tucker (KKT) conditie met de gepre-
conditioneerde geconjugeerde gradiënten methode (PCG). Tegelijkertijd is er een gevoe-
ligheidsanalyse van de spanning voorwaarden impliciet bereikt door het implementeren
van de geadjugeerde methode en de her analyse methode in de PCG om een matrix vrije
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oplosser van de stelling van Schur te formuleren. Een benadering van de spanning, ge-
baseerd op een ontwerp volledig onder spanning, is ontwikkeld om de PCG te voorzien
van een diagonale preconditionering. De numerieke resultaten laten zien dat de voorge-
stelde methode een lineaire relatie kan bereiken in de computationele kosten in relatie
tot de grootte van het probleem voor balk constructies.

Het produceerbaar ontwerpen van variabele stijfheid laminaten in dit werk is bedoeld
om een bestaande methode te verbeteren, genaamd de directe controle methode, welke
kromming voorwaardes oplegt aan de vezel paden in de hoek ophaalstap van een multi-
criteria optimalisatie methode. In dit werk is er een indirecte controle methode ontwik-
keld om de kromming van vezel paden impliciet vast te leggen met laminaat parameters
voor een compliantie optimalisatie probleem. Dit laat toe dat de kromming voorwaarde
opgelegd kan worden voor het eerste criterium waar het primaire doel is geoptimaliseerd
in de multi-criteria methode. Daarna word er een hybride controle methode toegepast,
welke een indirecte controle methode en de bestaande directe controle methode com-
bineert, om de kromming voorwaarden op te leggen in beide criteria. Een vergelijkende
analyse van de indirecte, de directe en de hybride controle methode is uitgevoerd in ter-
men van overeenkomst van de optimale laminaat parameters verkregen van de twee cri-
teria, het bereiken van optimale compliantie en de computationele kosten. De hybride
controle methode blijkt de beste methode om een ontwerp op te leveren met de laagste
compliantie ten kosten van een gematigde toename van computationele kosten.

De efficiënte sterkte optimalisatie van een variabele stijfheid laminaat is verkend met
een globale aggregatie methode (p-norm formulatie) met faal indices gebaseerd op het
Tsai-Wu faal criterium om de computationele kosten te reduceren. De nieuwe variant
van de methode maakt het mogelijk om gebruik te maken van laminaat parameters als
de primaire ontwerp variabelen. Ter vereenvoudiging van het Tsai-Wu faal criterium
in relatie tot de laminaat parameters, een elliptische formulatie van de conservatie faal
omhullende is toegepast om de faal criterium te representeren. De p-norm formulatie
is vervolgens toegepast om de lokale faal indices te aggregeren in een globale faal in-
dex, welke de probleem grootte condenseert. De benadering op twee niveaus is dan ge-
hanteerd voor de globale faal index om de conservativiteit en convexiteit van het sub
probleem te garanderen. De numerieke resultaten laten zien dat de computationele
kosten efficiënt gereduceerd zijn, vergeleken met het adresseren van lokale voorwaar-
den. Tegelijkertijd genereert de methode die in dit onderdeel is voorgesteld een mesh-
convergerend resultaat en gedraagt het zich robuust, zelfs in de aanwezigheid van een
spannings singulariteit.

Ter conclusie, dit onderzoek heeft een diepgaande studie ondernomen naar het effici-
ënt optimaliseren van de sterkte en produceerbare ontwerpen voor variabele stijfheid
laminaten. Een diep inzicht is bereikt in dimensionering optimalisatie met spannings
voorwaarden. Het produceerbaar ontwerpen van variabele stijfheid laminaten beschre-
ven in dit werk verbeterd succesvol de bestaande methoden van het opleggen van krom-
ming voorwaarden op vezel paden. Het is gepresenteerd dat het efficiënt optimaliseren
voor sterkte van variabele stijfheid laminaten met globale faal index belovend is voor
grootschalige constructies. Dit inspireert mogelijk verdere interesse van lopend onder-
zoek naar hoog presterende dimensionering optimalisatie met spannings voorwaarden
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en wijdere toepassing van variabele stijfheid laminaten in de toekomst.





1
INTRODUCTION

A journey of a thousand miles begins with a single step.
千里之行始于足下。

Laozi

1.1. BACKGROUND AND MOTIVATION

The idea of structural optimization using gradient-based programming method was ini-
tially proposed in the 1960s through the integration of mathematical programming with
finite element method (Vanderplaats [1]). Since then, a tremendous progress has been
achieved in this field due to constant ongoing research. Nowadays, it plays an essen-
tial role in the product design of high-tech industries, driven by the continuous demand
of efficient and robust structures, e.g., aerospace, automotive, offshore wind farms, mi-
croelectromechanical system and biomechanical industries etc. Its applications cover a
wide range of cases, such as: reducing the weight of aircrafts (e.g., A350, A380), improv-
ing the aerodynamic performance of racing cars, enhancing aero-structural interaction
for smart wind turbine blades, or designing bone-implants with functionally graded ma-
terials.

In particular for aircraft designers, weight reduction of airframe is a main focus, because
the fuel efficiency and CO2 emission of an aircraft are weight-based. An empirical es-
timation for airlines indicates that with 1% weight reduction, roughly 0.75% reduction
in fuel consumption can be achieved (Capehart [2]). Moreover, the fuel required is fur-
ther decreased recursively because of the less fuel carried. Such efficiency gain is larger
for long-haul aircrafts (Peeters et al. [3]). As fuel cost accounts for 40% of airline’s op-
erational cost (Duval and Emmanuelle [4]), weight reduction in structural design can
ultimately bring airlines a huge economic benefit given a constant increasing travel de-
mand.

1
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2 1. INTRODUCTION

In addition, weight reduction of aircraft also effectively alleviates the overwhelming an-
thropogenic CO2 emission issue, which causes global warming and ocean acidification.
According to the International Air Transport Association (IATA), the flights worldwide
generated 859 million tonnes of CO2 in 2017 (International Air Transport Association
[5]). In order to reduce this greenhouse gas emission, even a small reduction in weight
can lead to great achievement due to the cumulative beneficial effects. For instance, a
single Boeing 747, commuting from the UK to the US on a daily basis, can save 456.2t
CO2 a year by using lighter types of paint, taking fewer in-flight magazines and reducing
the baggage allowance rates (Civil Aviation Authority [6]). In Flightpath 2050 (European
Commission [7]), a road map for European aerospace industry, one goal regarding the
sustainable air traffic is to “achieve a 75% reduction in CO2 emissions per passenger
kilometer and a 90% reduction in NOx emissions in 2050” comparing to the standard
in 2000. In view of this ambition, the reduction of weight through optimization remains
a critical research topic.

WEIGHT MINIMIZATION WITH STRUCTURAL OPTIMIZATION

As a very powerful methodology, structural optimization has evolved into three sub-
fields based on the design variables chosen in the process, namely, sizing optimization,
shape optimization and topology optimization. Sizing and topology optimization are
often used to exploit lightweight designs. In particular, sizing optimization has been
extensively developed and applied in structural optimization (Kirsch [8], Rozvany and
Zhou [9], Barthelemy and Haftka [10], Miura and Schmit [11], Grandhi and Venkayya
[12], Vanderplaats and Salajegheh [13], Lagaros et al. [14], Rajan [15], Lingyun et al. [16]).
Hereby, the process of “sizing” typically refers to changes in a selected number of param-
eters that describe the geometry of a structure. Two key advantages of this approach are
the directness and robustness since it is intuitive and well regularized. Additionally, it is
flexible to be applied in the design process (even in the detailed design phase) due to the
fact that it only changes the size of a structure with the shape and topology intact.

As a result, sizing optimization is the most deployable tool for industrial weight min-
imization. One example in automotive industry can be found in Pedersen et al. [17],
which successfully achieves a 15% to 19% mass reduction with stiffness constraints (in-
cluding constraints on bending, torsional and axial stiffness). Another engineering ex-
ample comes from Airbus, where sizing optimization packages have been developed
for this purpose (Grihon [18]). They include trade-off studies in the preliminary design
phase of A350 fuselage, where the intension is to select several optimum designs from a
large number of backup configurations with limited computational cost. In the mean-
while, buckling, post-buckling and damage tolerance criteria can be taken into consid-
eration. Such information can be coupled to the manufacturing and cost aspects in the
design to streamline the process.

WEIGHT MINIMIZATION WITH LIGHTWEIGHT MATERIAL

Apart from the optimization approaches, using lightweight material (i.e., carbon fiber
reinforced composite material) to replace metal in weight sensitive structures also leads
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to significant weight reduction. This is due to the advantages of carbon fiber compos-
ite materials over metallic materials, including: high strength-to-weight ratio, damage
tolerance, corrosion resistance, thermal insulating and rapidly moldable for complex
shapes. In the early application stages, they were only limited to the secondary struc-
tures in airplanes (such as inspection panels, spoilers or air brakes) where failure does
not immediately lead to a catastrophic consequence. Due to the advancement on the
material and manufacture technologies, they are now applied in primary structures and
have been adopted outside the aircraft industry. Now, the record-breaking case in air-

(a) A350 (b) McLaren MP4/1

(c) GE’s Haliade-X wind turbine blade

Figure 1.1: Application of carbon fiber composite in industry (a)A350 (source:
https://www.aircraftcompare.com/aircraft/airbus-a350-xwb/), (b)McLaren MP4/1

(source:https://en.wikipedia.org/wiki/McLaren), (c) GE’s Haliade-X wind turbine blade (source:
https://www.ge.com/reports/extreme-measures-107-meters-worlds-largest-wind-turbine-blade-longer-

football-field-heres-looks-like/)

craft industry is the A350 (see Figure 1.1a), where nearly 53% of the structural weight is
composed of composite materials. In high-speed Formula 1, McLaren MP4/1 (Figure
1.1b) first applied composite materials in the chassis and cockpit in 1981 in order to re-
inforce the mechanical properties and achieve weight saving. Thereafter, it is found that
only a minor maintenance of the body is required in the race due to the high damage
tolerance of composite materials. Carbon fiber composite is also being extensively used
in the wind turbine blades, where the weight of the blade has a significant impact on
the dynamic strength. Stronger and super lightweight composite structures are under
investigation including the world’s current most powerful offshore wind turbine (GE’s
Haliade-X 12MW in Figure 1.1c), which spans up to 107m long. Bigger and more power-
ful models are likely to be developed in the future.
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According to different fabrication processes, the carbon fiber composite material has
various architectures. The most commonly used ones are the composite laminates (Fig-
ure 1.2a), the braided composite material (Figure 1.2b) and the honeycomb compos-
ite material (Figure 1.2c). Each one has its own characteristics and advantages, which
are described as follows. In particular, the composite laminate is outstanding for its
lightweightness and tailorable stiffness. Therefore, it is generally used in thin-walled
structures, such as the skin of the aircraft wing or chassis of the race-car. The braided
composite performs well for impact and high temperature resistance, which ends up
with energy absober of helicopter structures, heat shield and throat nozzle of rocket mo-
tor etc. The honeycomb composite material has high impact resistance, and outstand-
ing transverse and bending stiffness, thus, it is widely used in ailerons, fuselage, floors
of aircraft, energy absorption protective structures of racing cars or roof of railway vehi-
cle.

(a) Composite laminate

Macro-scale fabric

Meso-scale unit 

(b) Braid composite

Carbon�ber Skin Panel

Film Adhensive

Honeycomb Core

(c) Carbon fiber honeycomb [19]

Figure 1.2: Carbon fiber composite material (a) Composite laminate (source:
https://blogs.solidworks.com/tech/2018/07/solidworks-simulation-an-intro-to-composite-analysis.html),

(b)Braid composite (source: http://www.xcomposites.com)

NOVEL COMPOSITE LAMINATES

Composite laminates have traditionally been manufactured with straight fiber paths.
With the advent of new manufacturing techniques, they are now viable to produce parts
without homogeneous properties. In particular, for variable stiffness composite lami-
nates (VSL), the stiffness in the laminate can be tailored locally by redirecting the fiber
path orientation of each ply continuously. They have been demonstrated to be able to
improve the mechanical performance enormously compared with conventional straight
fiber composites (Tatting et al. [20]). Optimal design of VSLs has been studied for dif-
ferent properties such as buckling (Gürdal et al. [21], Setoodeh et al. [22], Wu et al. [23]),
vibration (Abdalla et al. [24]), compliance (Setoodeh et al. [25]) and strength (Khani et al.
[26]) etc. All these designs aim at producing efficient lightweight materials and struc-
tures.

To manufacture variable stiffness laminate structures, automated fiber placement (AFP)
machine can be used to place the fibers layer by layer. An AFP machine and a sample
of the VSL are shown in Figure 1.3. It is important to note that the capability of AFP
is limited by the minimum allowable turning radius of the fiber paths. Specifically, the
minimum allowable steering radius of an up-to-date AFP machine is 650mm for 6.35mm
wide tows (Zympeloudis et al. [28]) in order to prevent the wrinkle of the fibers. Such
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(a) Automated fiber placement machine (b) Variable stiffness laminate [27]

Figure 1.3: Novel composite laminate and its manufacturing (a) Automated fiber placement machine
(source:https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-7842/13352_read-35924/)

limitations need to be considered in the design to obtain manufacturable part (Lozano
et al. [29]). Constraints on the minimum allowable turning radius have been considered
in stacking sequence optimization of the VSL (Peeters et al. [30]) and for stress minimiza-
tion problems (Brooks and Martins [31]).

(a) Tailored fiber placement (b) Continuous tow shearing [32]

Figure 1.4: Two fiber placement methods (a) Tailored fiber placement machine (source:
https://www.tfp-tech.com/tfp-technology.html)

In terms of the manufacturing technologies, two manufacturing methods (refered to as
tailored fiber placement (TFP) (Uhlig et al. [33]) and continuous tow shearing (CTS) (Kim
et al. [34]), respectively) are developed to break through the limitation of the AFP. The
TFP (see Figure 1.4a) has no restriction on the turning radius of the fiber path. However,
the main drawback of this method lies in its low production rate, which limits its appli-
cation only to small scale components (Khaliulin et al. [35]). The minimum allowable
turning radius for the CTS (see Figure 1.4b) is 50mm for 100mm wide taps (Zympeloudis
et al. [28]), which is lower than that of the AFP machine by nearly one order of magnitude.
Although, the design space of the VSL is effectively expanded with this new technology,
imposing constraints on the minimum turning radius is still required in order to obtain
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a manufacturable design. This is due to the fact that the turning radius can cause varia-
tions in the thickness in the composite laminate.

AIM OF THIS RESEARCH

Strength, which is directly related to the safety of a structure, needs to be considered
in structural optimization. Since it is a local measurement in a structure, be it the Von
Mises stress or equivalent safety factors, it is computationally prohibitive to minimize or
constrain with tens of thousands of strength constraints for large scale structures. As a
result, it is a prerequisite to improve the computational efficiency of strength optimiza-
tion for complex engineering design. Henceforth, one aim of this research is to provide
efficient methods to solve large scale strength optimization problems for weight reduc-
tion purposes.

Furthermore, in order to guarantee that an optimal design of the variable stiffness lam-
inate can be finally manufactured with AFP, the minimum allowable turning radius of
fiber path needs to be considered in the optimization procedure. Existing methods to
impose such constraints lead to significant deviations from the theoretical optimum for
the actual design. To address this issue, a second aim of this research is to develop meth-
ods to minimize the loss in performance due to the manufacturing constraints for the
AFP.

1.2. OVERVIEW OF THE RESEARCH TOPICS

This PhD research is composed of three parts correlated with the research objective of
improving the existing optimization framework for lightweight materials both in terms
of the computational efficiency of the design process as well as the performance of the
optimal design. The first one is related to the computational efficiency of the optimiza-
tion algorithm in the context of sizing with local stress constrains. The second part per-
tains to the performance of a design when manufacturing constraints are imposed in
variable stiffness laminates and, finally, the third part addresses strength optimization
for variable stiffness laminates. A brief overview of the state of the art in these three
parts is given below.

1.2.1. EFFICIENT STRESS CONSTRAINED OPTIMIZATION

Stress constrained optimization is a topic that has been of interest in mechanical design
for long. Several methods have been proposed to resolve stress constrained optimiza-
tion (Schmit and Farshi [36], Fleury and Braibant [37], Svanberg [38], Fleury [39], Fadel
et al. [40], M.Zhou and R.W.Xia [41], Vanderplaats and Kodiyalam [42], Vanderplaats and
Thomas [43]). One practical limitation of these methods is that they are computationally
costly due to two factors. First, the computational cost is dominated by the size of the
Schur complement to be solved in the Karush-Kuhn-Tucker (KKT) condition. To deal
with a problem with tens of thousands of stress constraints, the computational work as-
sociated to solve a matrix of this size repetitively is indeed heavy in the optimization.
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Second, the sensitivity analysis for such a problem needs to be executed for every con-
straint individually due to the local nature of the constraints. Therefore, a significant
computational effort is demanded.

Hence, the aim is to accelerate the optimization by building up an efficient numerical al-
gorithm. The preconditioned conjugate gradient (PCG) method is applied as the solver
to reduce the computational cost required by the Schur complement. A new stress ap-
proximation based on the fully stressed design is proposed to provide the PCG an ef-
ficient preconditioner in order to accelerate the convergence rate. Simultaneously, a
creative approach to combine the adjoint, the reanalysis methods for sensitivity analysis
within the PCG, which is termed as implicit sensitivity analysis, is proposed to enable
the sensitivity analysis implemented in the meanwhile of the optimization is resolved.
Therefore, the repetitive calculation with the adjoint method for the sensitivity can be
removed for large scale problems. When the proposed stress approximation, implicit
sensitivity analysis and the preconditioner are connected with each other in a convex
optimization algorithm with quick convergence, the efficiency for the stress constrained
sizing optimization can be effectively improved.

1.2.2. MANUFACTURABLE OPTIMAL DESIGN OF VARIABLE STIFFNESS LAM-
INATE

Since the advent of advanced fiber placement techniques, significant research work has
been dedicated to improve the mechanical performance of the VSL by tailoring the fiber
paths (Blom et al. [44], Akbarzadeh et al. [45], Cagdas [46], Abdalla et al. [47], Lopes
et al. [48], IJsselmuiden et al. [49], Setoodeh et al. [50], Rouhi et al. [51], Jibawy et al.
[52], Kazemi and Verchery [53], Montemurro and Catapano [54]). One versatile method-
ology for the optimal design of the VSL is the three-step optimization method (Ijssel-
muiden et al. [55]), where Step 1 optimizes the mechanical performance in the lamina-
tion parameter space, Step 2 retrieves the fiber angles based on the optimal lamination
parameters and Step 3 constructs fiber paths. To constrain the minimum allowable turn-
ing radius, the existing method imposes a steering constraint to enforce the curvature in
the Step 2 (Peeters et al. [30, 56]). However, since this is a purely geometrical restriction,
the manufacturable design obtained after this step decreases the theoretical optimum
obtained in Step 1.

In order to break through this drawback, an enhanced design method based on the
three-step optimization method is developed. A partial manufacturing constraint in the
parametric space is integrated in Step 1 of the method to tailor the optimal solution from
the source based on the specific requirement on the minimum allowable turning radius
of the AFP. However, the challenge lies in the fact that the mechanical optimization in
Step 1 is implemented in the parametric space, where no detailed information about
the fiber angles is available. To achieve this goal, a mapping between the curvature con-
straints with the fiber angles in Step 2 and a manufacturing constraints in the parametric
space in Step 1 is proposed through the gradient constraints. Thereafter, an enhanced
design method is achieved by incorporating the gradient constraints on the lamination
parameters in Step 1 with the existing steering constraints in Step 2. Finally, the en-
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hanced design method provides better design in terms of the manufacturability.

1.2.3. MAXIMUM STRENGTH DESIGN OF VARIABLE STIFFNESS LAMINATE

By tailoring the fiber paths of the variable stiffness laminate, the internal load can be
efficiently reallocated to enhance the load bearing capacity of a structure. Similar to
Section 1.2.1, the main issue of this part still lies in the computational cost for this prob-
lem. Therefore, the research in this topic aims to reduce the computational cost for the
strength optimization of the VSL as well.

Existing methods on strength optimization addressing local failure measurements have
been developed for composite laminates (Ijsselmuiden et al. [55], Groenwold and Haftka
[57], Khani et al. [58], Guo et al. [59]). These methods, based on local constraints con-
nected to the Tsai-Wu failure criterion, are generally computationally costly. To reduce
the computational cost, the p-norm has been applied to aggregate the failure indices.
In discrete material optimization (DMO) (Lund [60]), it has been utilized in maximum
strain or maximum stress based criterion using fiber angles as the design variables. Mirzen-
dehdel et al. [61] expand the p-norm aggregation for failure strength constraints for
anisotropic material in additive manufacturing.

In this context, the present work explores a novel application of the p-norm approach,
namely, its incorporation within the three-step optimization method. Since the Tsai-Wu
failure criterion applied in the strength measurement is explicit to the fiber angles, a
new version of the method needs to be developed in order to link the p-norm approach
to a formulation that uses lamination parameters as primary variables. An elliptical for-
mulation of a conservative failure envelope (Khani et al. [58]) is introduced to simplify
the failure envelope of Tsai-Wu failure criterion for this purpose and a failure index is
built thereafter. The advantage of this approach is that the method can be generalized to
different types of failure criteria in the three-step optimization method. The computa-
tional efficiency of strength optimization is also improved significantly comparing with
the local min-max formulation.

1.3. THESIS LAYOUT

The structure of this thesis is as follows: an efficient stress constrained sizing optimiza-
tion method is described in Chapter 2. In this chapter, the details of the proposed nu-
merical algorithm and numerical results for the beam and plate cases are demonstrated.
The numerical results for the beam cases demonstrate that the efficiency anticipated
theoretically is indeed obtained. In contrast, the results in the plate cases indicate that
the method is approaching the efficiency expected even though not fully obtained. The
optimal Lagrange multipliers and the sensitivity of stress constraints in the plate case is
analyzed in this chapter regarding the efficiency to be obtained.

In Chapter 3, the compliance optimization of the VSL is implemented with an enhanced
curvature constraint optimization method. In this chapter, an indirect constraint to con-
trol the curvature of fiber paths through the lamination parameters is proposed. There-
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after, an enhanced curvature constraint is proposed and compared with the indirect con-
straints and the existing direct curvature constraints on the fiber angles. The results show
that the enhanced curvature constraint cost less CPU time than the average of the three
methods and also provides the best design in terms of the compliance.

In Chapter 4, the global aggregation method (p-norm formulation) is introduced to the
strength optimization of the VSL to accelerate the optimization procedure. An ellipti-
cal formulation of the conservative failure envelope is employed to ensure the Tsai-Wu
failure criterion is valid in terms of the lamination parameters. A two layer approxima-
tion is built for the global failure index to preserve the conservativeness, which provides
a robust convergence. Numerical results confirm that the global aggregation effectively
reduce the computational cost comparing with the local min-max formulation. In addi-
tion, it demonstrates that the strength can be reduced efficiently with a proper p value.
Also, the numerical results are demonstrated to be mesh independent, even with stress
singularity in L-shaped plate.

Finally, concluding remarks are given in Chapter 5, where the research for each chap-
ter is summarized. Moreover, some ideas for the future work to proceed are also out-
lined.
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2
EFFICIENT COMPUTATIONAL

METHOD FOR STRESS CONSTRAINTS

I succeeded because I willed it, I never hesitated.
我成功是因为我有决心，从不踌躇。

Napoleon Bonaparte

2.1. INTRODUCTION

The choice of a solution method for a structural optimization problem is usually based
on the overall computational cost and the ability of the method to converge to a use-
ful solution. Zeroth-order methods, such as evolutionary algorithms, are often used for
non-convex problems as they are most suitable for finding global solutions. However,
these methods require a large number of functional evaluations to scan the design space
and, consequently, they often become unmanageable for problems with a large num-
ber of variables and/or constraints. Gradient-based methods are attractive alternatives
for large problems where the time and resources for computation are limited (Setoodeh
et al. [1], Holmberg et al. [2], Nesterov [3]). In general, the efficiency of a method depends
directly on how it scales with the size of problem, i.e., its computational complexity. Inte-
rior Point Methods (IPM), which are gradient-based algorithms, are specifically designed
for large scale inequality constrained problems (Megiddo [4]). They have been actively
adapted to solve a wide range of problems in material and structural design optimization
(see. e.g., Maar and Schulz [5], Weldeyesus and Stolpe [6]). One of the most successful
versions is Mehrotra’s IPM (Mehrotra [7]), which from its inception was identified as be-

Part of this chapter is based on the conference paper Zhi Hong, Mostafa Abdalla, An efficient optimization
method for stress constrained sizing design, European Community on Computational Methods in Applied Sci-
ences (ECCOMAS), Crete, Greece, 2016, pp. 3436-3460.
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ing more efficient and stable compared with other gradient-based methods (Lustig et al.
[8]).

Regarding optimization problems with local stress constraints, numerous stress approx-
imations have been proposed in order to reduce the computational cost since the pio-
neering work of Schmit and Farshi [9]. Fleury and Braibant [10] combined linear and
reciprocal terms in the approximation, which leads the optimization steadily to the op-
timal solution. Svanberg [11] achieved more stable and faster convergence for weight
minimization of a bar truss with stress constraint by the Method of the Moving Asymp-
totes (MMA). Fleury [12] added a diagonal second order term in stress approximation
with ConLin, MMA and Sequential Quadratic Programming (SQP). Fadel et al. [13] pro-
posed a two-point exponential approximation method for stress constraint which re-
duced CPU time and total number of iterations for convergence. M.Zhou and R.W.Xia
[14], Vanderplaats and Kodiyalam [15], Vanderplaats and Thomas [16] introduced a two-
level approximation that improved the accuracy of the approximation in the optimiza-
tion. Since their development, these types of stress constraint approximations have been
extensively used in structural optimization.

To further accelerate the stress-constrained optimization procedure, different strategies
have been proposed. Nagy et al. [17] employed a variational formulation for stress con-
straints in isogeometric design. París et al. [18] proposed three ways to deal with stress
constraints such as a global and block constraints aggregation and parallel computing.
Duysinx and Bendsøe [19] and Holmberg et al. [20] combined local stress constraints
with a p-norm to reduce the number of constraints, while Kiyono et al. [21] introduced a
multi-p-norm for stress constraint. The main driver in all these improvements has been
to be able to solve increasingly larger scale problems.

In the spirit of the aforementioned methods, the main purpose of the present work is
to develop an improved algorithm that reduces the computational complexity of stress-
constrained optimal design problems. The proposed method is obtained by improve-
ments in existing methods within the framework of the conservative convex separable
approximations (CCSA, Svanberg [22]). There are three computational processes in the
optimization framework, namely (1) the Finite Element Method (FEM) analysis of the
structure, (2) the formulation of a sub-problem with convex approximation and the com-
putation of the gradient of the stress constraints using the adjoint method and (3) the
application of Mehrotra’s predictor-corrector IPM (Mehrotra [7]) to solve the optimiza-
tion problem where the direct method is employed to solve the Schur complement. In a
large scale optimization problem, the Schur complement in the IPM is the most compu-
tationally expensive part, followed by the adjoint method for the local stress constraints,
with the computational effort increasing exponentially with the problem size.

To alleviate the overall computational cost, three improvements are proposed in this
work. First, a new approximation for the stress constraint is developed based on the
fully-stressed design (Haftka and Gürdal [23]). The approximation is convex, conserva-
tive and separable, therefore efficiently reduces the cost to calculate the Hessian and ac-
celerates the convergence. Second, an implicit sensitivity analysis is proposed, which re-
duces the computational complexity with the adjoint method and the reanalysis method.
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Third, a preconditioner, which employs the fully stressed design, is introduced for the
Schur complement of the Karush-Kuhn-Tucker (KKT) conditions, implemented as a pre-
conditioned conjugate gradient method (PCG). When the three aforementioned modifi-
cations are embedded in Mehrotra’s IPM, the computational cost can be reduced if the
number of iterations in the PCG is sufficiently small, in which case it can be applied to
solve large scale problems efficiently.

The content of this chapter is structured as follows: In Section 2.2, the prototype prob-
lem, its associated Finite Element formulation and the framework of the optimization
are described first. Section 2.3 introduces the modified stress approximation for the
proposed method and all the formulations for the prototype method. In Section 2.4, a
preconditioner for the PCG is introduced together with an implicit sensitivity analysis to
reduce the computational cost. Three numerical cases with the proposed optimization
method are shown in Section 2.5. Concluding remarks are given in Section 2.7.

2.2. FORMULATION OF THE OPTIMIZATION PROBLEM

2.2.1. PROTOTYPICAL OPTIMIZATION PROBLEM

The objective of the sizing optimization is to minimize the volume of structures, which
corresponds to minimizing their weight assuming a homogeneous material. For beam-
based structures, a beam is discretized using the finite element method and the design
variables xi , with i = 1,2, ...,n, correspond to local values of the width or height of a
beam. For convenience, these design variables are collected in a vector,

x := [x1, x2, ..., xn] (2.1)

where n is the total number of design variables. These design variables are subjected
to side constraints (i.e., minimum and maximum allowable values denoted as xi , and
xi , respectively). In addition, the magnitude of the local stress fi (x), i = 1, ...,m, is con-
strained such that it should not exceed a maximum allowable stressσ, with m represent-
ing the total number of stress constraints.

Denoting the normalized volume of the structure as f0, the optimization problem is for-
mulated as finding a vector x which minimizes f0(x) subject to equilibrium, local stress
constraints and local upper and lower bounds, i.e.,

min
x

f0(x) =
n∑

i=1
xi ci /V0 (2.2)

subject to:

fi (x)/σ≤ 1 i = 1 . . . m (2.3)

x j ≤ x j ≤ x j j = 1 . . . n (2.4)

where the coefficients ci are geometrical parameters at each node i = 1, . . . ,n used to
calculate the volume of the structure and V0 is the initial volume. In the present work,
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the stress constraints are applied at the same locations where the design variables are
defined, hence m = n. The condition of equilibrium is not stated explicitly in the prob-
lem formulation but, rather, implicitly through the stress constraint which must be com-
puted from a finite element analysis of the structure as described in the next subsec-
tion.

2.2.2. ASSOCIATED FINITE ELEMENT ANALYSIS OF STRUCTURE

In the static case, the finite element formulation of the equation of equilibrium is

Ku = b (2.5)

where K is the global stiffness matrix obtained by assembling the stiffness matrices from
each element, u is the global displacement vector, and b represents the loading applied
on the structure.

Upon obtaining the solution u from Eq.(2.5) in global coordinates, the displacement vec-
tor ũe in the eth element in local coordinates can be obtained as

ũe =Te ue (2.6)

where Te is the transformation matrix from the global coordinates to the local element
coordinates and ue is the nodal displacement corresponding to the degrees of freedom
in the eth element. In an Euler-Bernoulli beam, the normal stress σg on the g th Gauss
point in the eth element can be computed as

σg =CBg ũe (2.7)

where, C is the material stiffness, which depends on Young’s modulus E , and Bg is the
strain-displacement matrix. Since the width or height of the cross section in a beam
is variable, the stiffness matrix in each element is a function of position. For definite-
ness, an Euler-Bernoulli beam with two Gauss point in each element is employed in the
present analysis. Further, a reciprocal interpolation is used to compute the structural
stiffness D = E I at Gauss points, where I is the moment of inertia. To demonstrate this
idea, consider the beam element shown in Figure 2.1. The structural stiffness Dg at the
g th Gauss point in the element is

D−1
g =

i ′+1∑
i=i ′

N(i ,g )D
−1
i (2.8)

where Di is the structural stiffness evaluated at node i in an element (black nodes in
Figure 2.1), and N(i ,g ) is the linear shape function of the i th node evaluated at the g th

Gauss point. The range i = i ′, i ′+1 is meant to represent two generic adjacent nodes in
a global numbering system. This type of interpolation enhances the continuity of the
stress distribution across elements (Khani et al. [24]).
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Figure 2.1: Illustration of two adjacent beam elements, each with two integration points, used for
interpolation.

2.2.3. OPTIMIZATION FRAMEWORK OF THE PROBLEM

The Lagrangian function for the problem is

L(x,ys ,yu ,yl ) = f0(x)+ (ys )T (
f(x)

σ
−e)+

(yu)T (x−x)+ (yl )T (x−x)
(2.9)

where ys is the vector of Lagrange multipliers associated to the corresponding stress con-
straints. The Lagrange multipliers for the upper and lower bound of the design variables
are denoted by yu and yl , respectively. The superscript T denotes the transpose and
e = [1,1, · · · ,1]T with n components.

To project the stress from each Gauss point into a node, the variational stress constraint
formulation (Nagy et al. [17]) is used here. To this end, observe that the second term
on the right hand side in Eq.(2.9) represents the discrete formulation of the continuous
stress constraint L σ, which is defined as

L σ :=
∫

ỹ s (
σ

σ
−1)dΩ (2.10)

where ỹ s is the Lagrange multiplier for the stress constraint at each point in the domain.
Upon discretization the Lagrange multiplier field ỹ s using linear shape functions N(i ,g ),
the term L σ can be approximated as

L σ ≈
ng∑

g=1

[(
n∑

i=1
ỹ s

i N(i ,g )

)(σg

σ
−1

)
Ωg

]

=
n∑

i=1
ỹ s

i

(
ng∑

g=1
N(i ,g )

(σg

σ
Ωg −Ωg

))
.

(2.11)

where ng is total number of Gauss points in the design domain Ω, Ωg is the domain
measured at Gauss point g related to the numerical integration rule and σg is the nor-

mal stress at the g th Gauss point. Dividing and multiplying Eq.(2.11) by
∑ng

g=1 N(i ,g )Ωg

provides the equivalent formula

L σ =
n∑

i=1
ỹ s

i

(
ng∑

g=1
N(i ,g )Ωg

)∑ng

g=1 N(i ,g )σgΩg

σ
∑ng

g=1 N(i ,g )Ωg

−1

 . (2.12)
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From Eq.(2.12), it follows that the stress at node i can be approximated by

σi =
∑ng

g=1 N(i ,g )σgΩg∑ng

g=1 N(i ,g )Ωg

. (2.13)

For a regular mesh, using the partition of unity property, expression (2.13) can be sim-
plified as

σi =
∑ng

g=1 N(i ,g )σgΩg∑n′
g

p=1Ωp

(2.14)

where n′
g is the number of Gauss points directly connected with the i th node. In this way,

both the stress and the Lagrange multiplier are continuous across elements.

2.3. FORMULATION OF MODIFIED FULLY STRESSED DESIGN

2.3.1. MODIFIED STRESS APPROXIMATION

In this section, an improved convex approximation for the stress constraints is intro-
duced in order to accelerate the computational process. As noted in Vanderplaats and
Thomas [16], Vanderplaats and Salajegheh [25], approximating the internal forces is more
accurate than approximating the stress constraints directly with local constraints. One
potential drawback, however, is that separability and convexity are not guaranteed by
force approximations. To overcome this issue, a convex and separable stress approxima-
tion is developed here. The starting point is to use the fully-stressed design (Haftka and
Gürdal [23]), which is a zeroth order force approximation, and add linear terms to for-
mulate a computationally-efficient improved approximation. The underlying idea is to
use only computationally inexpensive terms in the derivative that, nonetheless, improve
the quality of the first-order approximation.

To develop the modified stress approximation, consider first the normalized stress con-
straint, which takes the form

r −1 ≤ 0, r = |σ|
σ

(2.15)

where σ is the allowable stress and, in a fully-stressed design, the stress σ is related to an
internal force-like term F and an area-like function A such that

|σ| = |F |
A (x)

, (2.16)

where x is the design variable. In the beam case, F denotes the bending moment while
A (x) = y/Iz (x) is the geometrical term used to calculate the normal stress, y is the dis-
tance from top edge to the neutral axis and Iz (x) is the area moment of inertia.

The numerical treatment of the problem starts by discretizing the structure using finite
elements. In the CCSA, the approximations are updated at the beginning of each outer
loop and the design variables are updated inside the IPM step by step. The pair of indices
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{α, λ} will be used to indicate the outer loop in CCSA (index α) and the steps in the IPM
(index λ). The fully-stressed approximation for the i th node at the λth inner loop may
be written as a function of the internal force F (α)

i at the αth outer loop and the design

variables at the λth iteration as

r (α,λ)
i := ri (F (α)

i , x(λ)
i ) = |F (α)

i |
A (x(λ)

i )σ
≤ 1, i = 1,2, . . .n . (2.17)

Note that the internal force F (α) at any given node i is assumed to be constant (obtained
at x(α)) in the inner loop λ. The vector x(α) is referred to as the approximation point. The
approximation Eq.(2.17) would be exact only for statically determinate structures where
the internal force F (α)

i is independent of the design variables.

To improve the representation of the stress constraint Eq.(2.17), a modified approxima-
tion r̂i at the {α,λ} iteration is proposed which corresponds to a combination of two
optimization methods, namely the optimality criterion method and a gradient-based
optimization algorithm. To this end, the fully stressed optimality condition Eq.(2.17) is
modified as follows:

r̂ (α,λ)
i = |F (α)

i |
Ai (x(λ)

i )σ
+

n∑
j=1

A(α)
j i (x(λ)

j −x(α)
j ). (2.18)

The second term provides a linear correction and represents the effect of load redistribu-
tion present in statically indeterminate structures. The approximation r̂ (α,λ)

i in Eq.(2.18)

evaluated at x(λ)
i = x(α)

i should match both the value and the gradient of the term r in

Eq.(2.15) at each node i of the FEM model evaluated at x(α), i.e.,

r̂ (α,α)
i = ri

∣∣∣
x(α)

= |σ|
σ

∣∣∣
x(α)

(2.19)

∂r̂i

∂x(λ)
j

∣∣∣
x(α)

= ∂ri

∂x j

∣∣∣
x(α)

= sgn(σi )

σ
· ∂σi

∂x j

∣∣∣
x(α)

(2.20)

The condition Eq.(2.19) is automatically satisfied from Eq.(2.18). The coefficients A(α)
j i

can be obtained from Eq.(2.18) and Eq.(2.20)

− |F (α)
i |

Ai (x(λ)
i )2σ

· ∂Ai (x(λ)
i )

∂x(λ)
j

∣∣∣
x(α)

+ A(α)
j i = sgn(σi )

σ
· ∂σi

∂x j

∣∣∣
x(α)

, (2.21)

therefore

A(α)
j i = sgn(σi )

σ
· ∂σi

∂x j

∣∣∣
x(α)

+ |F (α)
i |

Ai (x(λ)
i )2σ

· ∂Ai (x(λ)
i )

∂x(λ)
j

∣∣∣
x(α)

. (2.22)

The approximation proposed here for the stress constraints provides the foundation for
the implementation of the implicit sensitivity analysis and the preconditioner for the
Schur complement in the PCG, which will be introduced in Section 2.4.
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In contrast, the ConLin and MMA require the explicit gradient matrix and the formula
is different for each design variable. Hence it prohibits the application of an implicit
sensitivity analysis. The reciprocal approximation also requires the adjoint method to
calculate the components in the preconditioner if embedded in the proposed method.
Therefore, the ConLin, MMA and reciprocal approximations are not compatible with the
method proposed in this chapter.

In order to compute the first term on the right-hand side of Eq.(2.22), it is useful to in-
troduce the design sensitivity analysis.

2.3.2. SENSITIVITY ANALYSIS

Sensitivity analysis for the objective and constraints starts before each outer loop of the
CCSA. The gradient information then guides the optimizer towards the optimal solution
step by step in each inner iteration. The adjoint method is employed to estimate the
sensitivity in the proposed method.

From Eq.(2.7) and (2.13), the sensitivity of the node-based stress σi with respect to the
design variable x j is given by

∂σi

∂x j
= zT

i
∂ui

∂x j
(2.23)

where

zi =
∑ng

g=1 N(i ,g )Ωg zg∑ng

g=1 N(i ,g )Ωg

,

and zg is obtained by

zg =TT
(e,g )B

T
g CT (2.24)

where T(e,g ) is the transformation matrix from the global to local coordinates in the eth

element for the g th Gauss point.

In accordance with the adjoint method, and assuming that the external load b does not
depend on the design variables, the sensitivity of the stress is

∂σi

∂x j
=−tT

i
∂K
∂x j

u (2.25)

where ti is obtained through

Kti = zi . (2.26)

In the adjoint method, Eq.(2.26) needs to be solved at each node i where there is a stress
constraint. These expressions will be subsequently used in the implicit sensitivity anal-
ysis.
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2.3.3. CONSERVATIVE, CONVEX AND SEPARABLE APPROXIMATION

In CCSA, the approximation should be conservative, convex and separable. From Eq.(2.18),
it can be observed that the stress approximation is separable. Consequently, the corre-
sponding Hessian matrix is diagonal and can be efficiently computed as

∂2r̂ (α,β)
i

∂(x(β)
j )2

∣∣∣
x(α)

=



2|F (α)
i |

A 3
i (xi )σ

(
∂Ai (xi )
∂xi

)2−
|F (α)

i |
A 2

i (x(β)
i )σ

· ∂2Ai (xi )
∂x2

i
> 0 if j = i

0 if j 6= i

. (2.27)

Since the second derivative of the stress approximation with respect to the design vari-
able is non-negative, the proposed stress approximation is convex as required for CCSA.
Moreover, the fully stressed part in Eq.(2.18) makes the approximation easily scalable
compared with linear constraints to find the feasible design.

To enforce the property of being conservative, the following damping function is added
to the stress approximation:

d =
n∑

i=1
qi

(
xi

x(α)
i

+ x(α)
i

xi
−2

)
(2.28)

where qi =∑ng

g=1 N(i ,g )Ωg /
(∑ng

g=1Ωg

)
is the weight factor for xi .

This damping function has two important features namely, (i) the damping function is
separable and (ii) both the damping function and its gradient are 0 at x(α). These features
guarantees that the stress approximation and its gradient match the values from the FEM
calculation. With the addition of the damping term, the complete stress approximation
ř in the optimization becomes

ři = r̂i +ρi d (2.29)

where r̂i is the stress approximation Eq.(2.18), and ρi is a damping factor for the i th

stress constraint, which can be updated iteratively.

In order to initialize the damping factor ρi , the following value is used as an initial guess
for all nodes:

ρ2
i ,0 =

1

2
(A(α)ys )T Hd (x0)−1(A(α)ys ) (2.30)

where x0 are the initial design variables, A(α) is the matrix with components A(α)
j i as de-

fined in Eq.(2.18), Hd (x0) is a diagonal matrix consisting of the second derivative of the
damping function with respect to the design variables, ys are the Lagrange multipliers
as introduced in Eq.(2.9) and n is the total number of nodes in the FE model. Although
Eq.(2.30) is somewhat arbitrarily chosen, numerical experiments show that it provides a
reasonable initial guess.

The update of ρi in the CCSA will be explained in Section 2.4.3. As a preliminary step,
the interior point method (IPM) in the CCSA is introduced next.
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2.3.4. PREDICTOR-CORRECTOR INTERIOR POINT METHOD

In this work, Mehrotra’s predictor-corrector IPM is employed due to its efficient conver-
gence (Lustig et al. [8], Zillober [26]). By introducing the slacks for the inequality con-
straints and adding logarithmic barrier functions, the Lagrangian function of Eq.(2.2)
becomes

Lµ(x,s,ys ,su ,yu ,sl ,yl ) = f0 + (ys )T (f(x)+s)

+ (yu)T (x−x+su)+ (yl )T (x−x+sl )

−µ
n∑

i=1
ln si −µ

n∑
i=1

ln su
i −µ

n∑
i=1

ln sl
i (2.31)

where s are the slacks for stress constraints, su and sl are upper and lower bounds of the
design variables, respectively, f(x) is the stress approximation ř−1 according to Eq.(2.29),
and µ is the penalty parameter. As µ→ 0, the value of Lµ in Eq.(2.31) converges to the
value of L in Eq.(2.9) evaluated at the optimal solution.

According to the Karush-Kuhn-Tucker formulation, the necessary conditions for opti-
mality are:

∂L

∂x
=∇ f0(x)+G(x)ys +yu −yl = 0 (2.32)

∂L

∂ys = f(x)+s = 0 (2.33)

∂L

∂yu = x−x+su = 0 (2.34)

∂L

∂yl
= x−x+sl = 0 (2.35)

∂L

∂s
=Ys s−µe = 0 (2.36)

∂L

∂su =Yu su −µe = 0 (2.37)

∂L

∂sl
=Yl sl −µe = 0 (2.38)

where G(x) is the gradient of the stress approximation (Eq.(2.29)), the diagonal matrix
Ys is constructed with the Lagrange multipliers associated to the stress constraints y s

i as

Ys = diag(y s
1, · · · , y s

n), and a similar definition is used for the diagonal matrices Yu and Yl

with the corresponding Lagrange multipliers of the upper and lower bounds.

Expanding the above equations with Newton’s method, the following linear subproblem
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can be obtained:

G(x)∆ys + (
(ys )T H(x)

)
∆x+∆yu −∆yl =

−∇ f0 −G(x)ys −yu +yl (2.39)

GT (x)∆x+∆s =−f(x)−s (2.40)

∆x+∆su = x−x−su (2.41)

−∆x+∆sl = x−x−sl (2.42)

S∆ys +Ys∆s =µe−Ys s−∆Ys∆s (2.43)

Su∆yu +Yu∆su =µe−Yu su −∆Yu∆su (2.44)

Sl∆yl +Yl∆sl =µe−Yl sl −∆Yl∆sl (2.45)

where S is the diagonal matrix of the form S = diag(s1, · · · , sn). The same notation ap-
plies to Su , Sl , ∆Ys , ∆Yu , ∆Yl . The n ×n ×n matrix H(x) is a collection of n Hessian
matrices for each stress constraint with respect to the design variables. The notation
(ys )T H(x) indicated in Eq.(2.39) refers to the diagonal matrix of components i , j obtained

as
∑n

k=1 Hki j y s
k =∑n

k=1
∂2 fk
∂xi ∂x j

y s
k .

For convenience, all variables are collected in a single vector χ as

χ= (x,ys ,yu ,yl ,s,su ,sl ).

The purpose of the above subproblem is to calculate ∆χ, which will be used to update
the variable χ in each inner iteration in IPM by χ(λ+1) =χ(λ) +∆χ from

Cµ∆χ= Fµ (2.46)

where

Fµ(χ) =



Fx

Fy s

Fyu

Fy l

Fs

Fsu

Fsl


=



−∇ f0 −G(x)ys −yu +yl

−f(x)−s
x−x−su

x−x−sl

µe−Ys s −γ∆Ys∆s
µe−Yu su −γ∆Yu∆su

µe−Yl sl −γ∆Yl∆sl


(2.47)

andγ is a scalar which will be changed between the predictor (γ= 0) and corrector (γ= 1)
steps. In Eq.(2.46), the matrix Cµ is given as

Cµ =



(ys )T H(x) G(x) I −I 0 0 0
GT (x) 0 0 0 I 0 0

I 0 0 0 0 I 0
−I 0 0 0 0 0 I
0 S 0 0 Ys 0 0
0 0 Su 0 0 Yu 0
0 0 0 Sl 0 0 Yl


. (2.48)
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The matrix Cµ depends implicitly on µ through its components that are updated iter-
atively. To simplify Eq.(2.46), some variables can be eliminated by substitution. From
Eq.(2.41) and Eq.(2.44), and since the matrix Su is diagonal, ∆su and ∆yu can be ex-
pressed in terms of ∆x. Similarly, from Eq.(2.42) and Eq.(2.45), ∆sl and ∆yl can be ex-
pressed in terms of ∆x. From Eq.(2.43), ∆s can be expressed in terms of ∆ys . Finally
expressing ∆x in terms of ∆ys , the Schur complement of the subproblem, which is also
called the normal equation, can be obtained as

Dµ∆ys = Fschur (2.49)

where

Dµ = [(Ys )−1S+GT (x)Q−1G(x)], (2.50)

Q= (ys )T H(x)+Yu(Su)−1 +Yl (Sl )−1, (2.51)

Fschur =−Fy s + (Ys )−1Fs +GT (x)Q−1Fsysx
, (2.52)

Fsysx
= Fx − (Su)(−1)Fsu +Yu(Su)(−1)Fyu+

(Sl )(−1)Fsl −Yl (Sl )(−1)Fy l . (2.53)

The term ∆ys can be obtained from Eq.(2.49), which can be substituted in Eq.(2.39) -
(2.45) and update the following terms: ∆x, ∆yu , ∆yl , ∆s, ∆su and ∆sl .

The initialization of the penalty parameter µ, slack (s,su ,sl ) and dual (ys ,yu ,yl ) is

µ(1) = 1

3n
s(1)

i = 1

su(1)
i = xi sl (1)

i = xi

y s(1)
i = µ

si
yu(1)

i = µ

su
i

y l (1)
i = µ

sl
i

, i = 1 · · ·n

(2.54)

where the term 3n corresponds to the sum of the number of the stress constraints, the
upper and lower bounds of the design variables. The idea for µ(1) is to choose a suffi-
ciently small number so that it monotonically decreases and converges towards the op-
timal value more quickly. The initialization of the slack and dual parameters is to scale
the Lagrangian terms for the stress constraints, the upper and lower bounds in Eq.(2.31)
close to f0.

The procedure of the algorithm is as follows: In the predictor step of the (λ+1)th iteration
in the predictor-corrector IPM, µ = 0, γ = 0 in Eq.(2.47). The penalty parameter µ(λ+1)

will be updated adaptively by

µ(λ+1) = min

max

(
d (λ+1)

gap

d (λ)
gap

)2

,ε

 ,ε

 ·µ(λ), (2.55)
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where ε and ε are the lower and upper bound of the ratio for µ(λ). Typical values, as
the ones used in the present work, are ε = 0.1 and ε = 1. Therefore the ratio is within
the region [0.1,1], which prevents the penalty parameter µ from either increasing or de-
creasing drastically. The duality gap dgap is calculated by

d (λ)
gap =sT ys + (su)T yu + (sl )T yl , (2.56)

d (λ+1)
gap =(s+δp∆s)T (ys +δd∆ys )+

(su +δp∆su)T (yu +δd∆yu)+
(sl +δp∆sl )T (yl +δd∆yl ) (2.57)

where δp , δd are the step size for the primal and dual variables respectively. They are cal-
culated based on the following rule, which is modified from Zillober [26] for convenient
implementation:

δp = (1−δstep)/max

{
max

i=1···n

{
−∆si

si

}
, max

i=1···n

{
−∆sl

i

sl
i

}
,

max
i=1···n

{
−∆su

i

su
i

}
, (1−δstep)

}
(2.58)

δd = (1−δstep)/max

{
max

i=1···n

{
−∆y s

i

y s
i

}
, max

i=1···n

{
−∆y l

i

y l
i

}
,

max
i=1···n

{
−∆yu

i

yu
i

}
, (1−δstep)

}
. (2.59)

where δstep is the control step size to provide the slacks (s, sl , su) and duals (ys , yl , yu)
some margin when they approach 0 in the updating procedure. The region for both δp

and δd is (0,1]. Further, the value of δstep is chosen as δstep = 0.05.

In the corrector step, γ= 1, andµ takes the valueµ(λ+1) from the predictor step (Eq.(2.55)).
The vector∆χ from Eq.(2.46) in the corrector step is used to update the variableχby

x(λ+1) = x(λ) +δp∆x s(λ+1) = s(λ) +δp∆s

su(λ+1) = su(λ) +δp∆su sl (λ+1) = sl (λ) +δp∆sl

ys(λ+1) = ys(λ) +δd∆ys yu(λ+1) = yu(λ) +δd∆yu

yl (λ+1) = yl (λ) +δd∆yl .

(2.60)

The algorithm of the predictor-corrector IPM is summarized below.

2.3.5. COMPUTATIONAL COMPLEXITY

The target of the work in this paper is to accelerate the computational speed of siz-
ing optimization with stress constraints. Therefore, the computational cost of the ex-
pensive parts needs to be detected first before predicting how much efficiency can be
achieved.



2

30 2. EFFICIENT COMPUTATIONAL METHOD FOR STRESS CONSTRAINTS

Algorithm 1 Algorithm of Predictor-Corrector Interior Point Method

1: Set λ = 1, initialize the parameters µ(1),χ(1) (Eq.(2.54)), and ρ (Eq.(2.30)), set toler-
ance ηgap.

2: while d (λ)
gap ≥ ηgap do . stop if duality gap < ηgap

3: Using χ(λ) to compute G and (ys )T H(x), and assemble the matrices Ys , Yu , Yl ,
S, Su , Sl . Set µ(λ) = 0, γ = 0 and assemble the matrices Cµ and the vector Fµ from
Eq.(2.47),(2.48)

4: Solve for ∆ys from Eq.(2.49) and use it to get the complete vector ∆χ in the pre-
dictor step

5: Compute the gaps d (λ)
gap and d (λ+1)

gap from Eq.(2.56) and (2.57)

6: µ(λ+1) ← use Eq.(2.55) to update µ in the predictor step
7: Update Fµ in Eq.(2.47) and Fschur in Eq.(2.52) by setting µ=µ(λ+1), γ= 1
8: Solve for ∆ys from Eq.(2.49) in the corrector step with the updated vector Fµ, and

substitute to get ∆χ(λ+1)

9: χ(λ+1) ← compute δp , δd from Eq.(2.58),(2.59) using∆χ(λ+1) and computeχ from
Eq.(2.60) in the corrector step

10: Update d (λ+1)
gap with χ(λ+1) in Eq.(2.56) and check for convergence

11: end while

In sizing optimization, the costly operations are the FEM analysis, the sensitivity analysis
of the stress constraints, and the iterative optimization with the IPM. In this section, the
number of nodes in a FEM model is denoted by n. Since all the design variables and
stress constraints are defined node-wise, the complexity of these operations is a function
of n.

Assuming that the linear finite element problem is formulated with a symmetric posi-
tive definite stiffness matrix and the corresponding equilibrium equation solved using a
Cholesky decomposition, the computational cost of one FEM analysis is

Cfem =O(nb2), (2.61)

where b is the bandwidth of the system of equations. For a beam structure, b ¿ n, hence
the cost is close to a linear function of n.

For the sensitivity analysis of the stress constraints, the most expensive part is to solve
the adjoint system Eq.(2.26) since the cost for solving each adjoint system is the same as
that of one FEM analysis. Given that there is one stress constraint per node, the num-
ber of stress constraints is n and the overall computational cost for the stress sensitivity
analysis is

Csensitivity =O(n2b2). (2.62)

One advantage of Mehrotra’s IPM is that the number of iterations is not sensitive to the
size of the optimization problem. The most expensive cost of each iteration inside the
IPM is the construction and resolution of the Schur complement Eq.(2.49). The cost to
build the coefficient matrix by matrix multiplication is O(n3). Furthermore, assuming
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that Eq.(2.49) is solved using a Cholesky decomposition, the computational complexity
of the Schur complement is

Cschur =O(n3). (2.63)

Observe that for the Schur complement problem the system matrix is full hence the com-
putational cost is significantly more expensive than the cost of one FEM analysis for a
beam problem.

From the above analysis, it is clear that the overall cost of the optimization is dominated
by the Schur complement and, to a lesser extent, the sensitivity analysis. Therefore the
algorithm could be accelerated by reducing the complexity of the Schur complement
first, followed by the sensitivity analysis. The acceleration scheme is introduced in the
next section.

2.4. NUMERICAL IMPROVEMENTS

2.4.1. PRECONDITIONER FOR THE SCHUR COMPLEMENT

Conjugate gradient method is known to be a fast solver for large scale linear equations
compared with direct methods. However, an effective preconditioner is generally re-
quired to guarantee the efficient convergence for the Schur complement problem (Oliveira
and Sorensen [27], Benzi et al. [28]). Simultaneously, another requisite is to make sure
that the preconditioner may be easily inverted. In this section, a heuristic precondi-
tioner for the Schur complement Eq.(2.49) is introduced. The main guiding principle to
develop the preconditioner is to generate an easily invertible diagonal matrix that pre-
serves the main ingredients of the Schur complement.

Recall that the coefficient matrix of the Schur complement of the sub-problem Eq.(2.49)
is given by Eq.(2.50), which is repeated here for convenience, i.e.,

Dµ =
[
(Ys )−1S+GT (x)Q−1G(x)

]
.

The first term in the right-hand side and Q in the second term are diagonal matrices.
However, the gradient matrix G(x) is generally a full matrix for statically indeterminate
structures. Since the approximation (Eq.(2.18)) is a modification of the fully stressed
design, only this part is assumed to dominate the gradient matrix G(x). In more detail,
the matrix G(x) takes the form

G(x) =G f (x)+A(α) +Gd (x)R, (2.64)

where G f (x) is a diagonal matrix for the gradient of the fully stressed part in Eq.(2.18),
A(α) is the gradient matrix of the linear part representing load redistribution, Gd (x) is the
gradient matrix for the damping function in Eq.(2.29), and R= diag(ρ1, · · · ,ρn).

To achieve the goal of working with an easily invertible preconditioner, the load re-
distribution part A(α) and the damping part Gd (x)R are neglected. By taking only the
fully stressed part in the gradient matrix G(x), the diagonal preconditioner M takes the
form

M= (Ys )−1S+GT
f (x)Q−1G f (x). (2.65)
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The preconditioner is verified to work well in the numerical experiments in Section 2.5.

2.4.2. IMPLICIT SENSITIVITY ANALYSIS

One advantage of solving the Schur complement (Eq.(2.49)) with the preconditioned
conjugate gradient method (PCG) in the IPM is that the explicit form of coefficient ma-
trix is not required. Iterations in the PCG can be completed by matrix vector calculation,
i.e.,

Dµ∆ys = (Ys )−1S∆ys +GT (x)Q−1G(x)∆ys . (2.66)

Since (Ys )−1S, and Q are diagonal matrices, the related calculation is inexpensive. How-
ever, G(x)∆ys and GT (x)v ( with v = Q−1G(x)∆ys ) in the second term are expensive for
large problems because significant computational work is required to obtain G(x) first.
Recall that the gradient matrix G(x) of ř, as given in Eq.(2.64), is

G(x) =G f (x)+A(α) +Gd (x)R.

The first term G f (x) is diagonal, and Gd (x)R is inexpensive to compute because the
damping function Eq.(2.28) is the same for each stress constraint. The load redistribu-
tion part A(α) is calculated at the approximation point x(α) by Eq.(2.20)

Gfem(x(α)) =G f (x(α))+A(α), (2.67)

where Gfem(x(α)) is the gradient matrix assembled from the terms sgn(σi )
σ

· ∂σi
∂x j

∣∣∣
x(α)

at x(α)

in Eq.(2.20) for all nodes i and computed using the adjoint method. Using Eq.(2.67) to
solve for A(α), the gradient matrix G(x) can be written as

G(x) =G f (x)+Gfem(x(α))−G f (x(α))+Gd (x)R. (2.68)

As shown in Eq.(2.62), the cost to calculate Gfem(x) with the adjoint method increases
quadratically when the number of nodes n increases. Therefore, among the terms in
Eq.(2.66), Gfem(x(α))v and GT

fem(x(α))v are the most expensive parts, where v represents
any vector in the iteration of PCG.

In this part an implicit sensitivity analysis will be developed, which reduces the compu-
tational work for the calculation. The advantage of the implicit sensitivity analysis is to
calculate Gfem(x(α))v and GT

fem(x(α))v in the PCG without calculating the gradient matrix
explicitly. This not only saves the computational cost for the iterations in the PCG, it also
saves the costly computational work to calculate Gfem.

The first step is to express the term Gfem(x(α))v symbolically from Eq.(2.25),(2.26) as

Gfem(x(α))v =


−∑n

i=1 vi zT
i (K−1) ∂K

∂x1
u

−∑n
i=1 vi zT

i (K−1) ∂K
∂x2

u
...

−∑n
i=1 vi zT

i (K−1) ∂K
∂xn

u

∣∣
x(α)

. (2.69)
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Note that the first part
∑n

i=1 vi zT
i (K−1) is the same in each term of the above equation.

Since the global stiffness matrix K is symmetric, this term can be obtained by the adjoint
method, i.e.,

Kt = z, (2.70)

where z =∑
i vi zi is the dummy load.

The resultant vector becomes

Gfem(x(α))v =


−t

T ∂K
∂x1

u

−t
T ∂K
∂x2

u
...

−t
T ∂K
∂xn

u

∣∣
x(α)

. (2.71)

The size of ∂K
∂xi

is small compared with the entire stiffness matrix. Hence, ∂K
∂xi

u is in-
expensive to compute. Consequently, the dominant cost for the above calculation is
to solve the adjoint Eq.(2.70). The computational cost is O(nb2) (Eq.(2.61)) to evaluate
Gfem(x(α))v once.

Next, calculating GT
fem(x(α))v can be completed by

GT
fem(x(α))v =


−zT

1 (K−1)
∑n

i=1 vi
∂K
∂xi

u

−zT
2 (K−1)

∑n
i=1 vi

∂K
∂xi

u
...

−zT
n (K−1)

∑n
i=1 vi

∂K
∂xi

u

∣∣
x(α)

. (2.72)

The term (K−1)
∑n

i=1 vi
∂K
∂xi

u is the same in each component of the above vector. For the

term
∑n

i=1 vi
∂K
∂xi

, it can be assembled into a single matrix ∆K. Since K is symmetric,

(K−1)
∑n

i=1 vi
∂K
∂xi

u becomes (K−1)∆Ku, which can be solved with Gauss elimination, sim-
ilar to the reanalysis method (Haftka and Gürdal [23])

∆Ku+K∆u = 0. (2.73)

Consequently, Eq.(2.72) becomes

GT
fem(x(α))v =


zT

1 ∆u
zT

2 ∆u
...

zT
n∆u

∣∣
x(α)

. (2.74)

The system Eq.(2.73) is solved only once to calculate GT
fem(x(α))v, where the computa-

tional cost is O(nb2). The load redistribution part in the stress approximation (Eq.(2.18))
can also be completed with this equation. An additional advantage of this approach is
that the matrix G(x) does not need to be stored separately.
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With the implicit approach mentioned above, it is no longer required to perform an ex-
plicit sensitivity analysis. Furthermore, the FEM and the iterative optimization are not
independent of each other, but rather linked by the reanalysis and adjoint method in the
implicit sensitivity analysis. This framework is similar to the simultaneous analysis and
design (SAND) method (Haftka [29]). The optimizer updates the Lagrange multipliers
and design variables with the adjoint (Eq.(2.70)) and the reanalysis method (Eq.(2.73))
using the global stiffness matrix of the FEM. In turn, the stress approximation can update
the mechanical response σ by using the reanalysis method (Eq.(2.73)) with the updated
design. In the next section, the new algorithm will be summarized.

2.4.3. SUMMARY OF THE OPTIMIZATION ALGORITHM

In the sequel, Svanberg’s CCSA is employed as the optimization framework for the pro-
posed algorithm. The outer loop leads the feasible solution of the sub-problem towards
the optimal solution step by step. Meanwhile, inside each outer loop, a sub-loop solves
the sub-problem iteratively to get the feasible solution. The superscript (α,β) is used to
denote the index of the outer loop and sub-loop respectively.

The damping factor is updated at the end of each outer loop of the CCSA and sub-loop in
IPM. The pattern is the same as described in Svanberg [22]. At the end of each sub-loop,
where the optimal results are not accepted, the damping factors either remain the same
for those stress approximations that are conservative, or increase for those that are not
conservative according to

ρnew
i = 1+ (r∗

i − ř old)

ρold
i d old

, (2.75)

where d old is estimated with Eq.(2.28) at the optimal point. In the outer loop, where the
feasible solution is obtained, the damping factors are increased by Eq.(2.75) for those
stress approximations that are not conservative. In contrast, for the approximations that
are conservative, the damping factor is decreased by

ρnew
i = 1+ (1−δρ)arctan

(
(r∗

i − ř old)

ρold
i d old

/(1−δρ)

)
(2.76)

where r∗
i = |σi |/σ is obtained from step 9 in Algorithm 3, and δρ is the lower bound for

the decrement ratio between ρnew
i and ρold

i . The parameter δρ is chosen here equal to
0.5.

The proposed optimization framework is described in the Algorithm 3.

In step 8 of Algorithm 3, the PCG is applied to solve the Schur complement Eq.(2.49) with
the preconditioner in Section 2.4.1 in the predictor and corrector steps. The explicit sen-
sitivity analysis module is removed from the optimization procedure by deploying the
implicit sensitivity analysis (Eqs.(2.71) and (2.74)) in stress approximation and solving
the Schur complement in the IPM. In the next section, the computational complexity of
the proposed method will be demonstrated.
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Algorithm 2 Algorithm for the proposed optimization method

1: Set α= 1, initialize χ(1,1) and set the tolerances ηv , ησ
2: Start FE analysis to calculate σ (Eq.(2.5) and (2.13))
3: Initialize the damping factor ρ(1,1) with Eq.(2.30)
4: Build up the sub-problem of the optimization with Eq.(2.2), Eq.(2.29)

5: while
∣∣∣( f (α,1)

0 − f (α−1,1)
0 )/ f (1,1)

0

∣∣∣≥ ηv (α≥ 2) do . stop if the relative volume variation

is smaller than ηv

6: Set β= 1

7: while max(ř(α,β)) ≥ ησ or
(

f (α,β)
0 − f (α,β−1)

0

)
≥ ηv (β≥ 2) do . stop if both stress

constraints are satisfied and volume is decreasing
8: Update x(α,β+1) ← solve the sub-problem with predictor-corrector IPM with

Algorithm 1 . see Section 2.3.4
9: FE analysis (Eq.(2.5) and (2.13)) to calculate σ(α,β+1)

10: Update damping factor ρ(α,β+1) with Eq.(2.75)
11: end while
12: Update damping factor ρ(α+1,1) with Eq.(2.75) (2.76)
13: x(α+1,1) ← x(α,β+1) Update design variables x(α+1,1)

14: Update the sub-problem of the optimization with Eq.(2.2), Eq.(2.29)
15: end while

2.4.4. COMPUTATIONAL COMPLEXITY FOR THE IMPROVED METHOD

In this section, the computational complexity of the proposed optimization method will
be analyzed to estimate the potential efficiency that can be obtained. The most expen-
sive parts in the optimization are now the implicit sensitivity analysis and the PCG iter-
ations. In the PCG, since the full coefficient matrix for the Schur complement is not re-
quired, the computational work (O(n3)) to build the coefficient matrix by matrix-matrix
multiplication is saved. Since the preconditioner for the system is diagonal, it is also in-
expensive to be inverted. For the implicit sensitivity analysis, the most expensive cost
is for the reanalysis and the adjoint method. As indicated in Section 2.4.2, the cost of
implicit sensitivity analysis once is

C ′
sensitivity =O(nb2). (2.77)

The proposed method could successfully reduce the cost for the Schur complement from
O(n3) to O(nb2), if the number of iterations of the PCG for the Schur complement in
the IPM is small, and is independent on the size of optimization problem. If the total
number implicit analyses niter required in the IPM is niter ¿ n when n is large enough,
the computational cost for the complete IPM is

C ′
total =O(nb2). (2.78)

Here it is important to note that the proposed method can help to save the computa-
tional cost for large scale problems only if

niter ¿ n (2.79)
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is satisfied. In the next section, the efficiency of the method will be demonstrated in the
context of sizing optimization of a beam structure.

2.5. REPRESENTATIVE NUMERICAL EXAMPLES

To demonstrate the efficiency of the proposed improvements, three representative nu-
merical examples are shown in this section for the optimization of beam structures,
namely (i) a clamped solid beam subjected to a concentrated load, (ii) a clamped/simply-
supported hollow beam subjected to a distributed load and (iii) multiple-span continu-
ous beam loaded with a distributed force. In the three examples, the objective is to min-
imize the total weight subjected to local stress constraints, which corresponds to mini-
mize the total volume since the beams are assumed to be made out of a homogeneous
material. In each case, the optimization procedure is repeated with increasing number
of elements in the FEM model.

The performance is compared to that of a benchmark method, referred to as the “orig-
inal method”. The original method uses only one of the three proposed improvements,
namely the proposed stress approximation. However, instead of the implicit sensitivity
analysis and the preconditioned conjugate gradient, the original method uses the ex-
plicit version of the adjoint sensitivity analysis and a direct solver for the original Schur
complement of the KKT conditions. Other than these changes, the two methods are
implemented in the same computational environment and hardware in order to have a
meaningful comparison. Performance is measured in terms of number of iterations and
CPU time.

In addition, for the second numerical example (hollow beam), the CPU time from the
proposed method is compared with that from the method of moving asymptotes (MMA)
[22] and a representative implementation of the sequential quadratic programming ap-
proach (SQP). This alternative comparison is done mostly as an order-of-magnitude ver-
ification since a meaningful pragmatic comparison requires optimized implementations
of all methods.

2.5.1. FULLY-CLAMPED SOLID BEAM CASE

The first example is a stress-constrained, minimum weight optimization problem of a
beam structure clamped at both ends and subjected to a concentrated vertical force as
shown in Figure 2.2. This is a benchmark problem with a known analytical solution as
presented in Rozvany [30]. Hence, in addition to serve as a test case for performance,
one goal in this case is to verify that the numerical solution obtained from the proposed
method matches with the analytical solution. The beam has a solid rectangular cross
section with variable design width w and a fixed height.
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Figure 2.2: Clamped beam structure with variable width. Lengths are given in mm

The optimization problem is,

min
w

f0(w) = h
n∑

i=1
li wi /V0

subject to:

fi (w)/σ≤ 1

wl ≤ wi ≤ wu i = 1. . .n

where n is the number of nodes, V0 is the initial volume, h = 500 mm is the height of the
cross-section, li is the length of beam connected with the i th node, wi is the width at the
i th node, fi (w) is the stress approximation at the i th node, and wl and wu are the lower
and upper bound of the design variable, respectively. In this case the moment of inertia
is given by Iz (wi ) = 1

12 wi h3. The optimization starts with a uniform width distribution
w0 as indicated in Table 2.1 together with other parameters of the optimization problem.
In this case, the error tolerance of PCG is ePCG = 10−7. The stopping criteria of the IPM
is that the duality gap has to be smaller than ηgap = 10−10 (see also Zillober [26]). The
tolerance for the stress constraints is ησ = 10−3, which controls the inner loops in the
algorithm. The overall optimization stops when the variation in the volume is smaller
than ηv = 10−3.

Table 2.1: Parameters of clamped beam structure

Young’s Modulus E = 20GPa
Allowable stress σ= 172MPa

Initial design width w0 = 1000mm
Minimum width wl = 100mm
Maximum width wu = 1000mm

Concentrated load P = 4000kN

As a preliminary step, not shown here for the sake of conciseness, it was verified that
the analytical and numerical solutions of the optimization problem coincide to within
FEM tolerance (see Rozvany [30]). To test the performance of the method, the optimal
width for the stress-constrained minimum weight problem was computed for various
meshes. A typical result for a mesh with n = 1280 nodes is depicted in Figure 2.3a in
terms of the optimal width along the beam. As shown in the figure, the optimal beam is
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(a) Width along the length of the optimal clamped solid
beam
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(b) Normal stress at the top of each cross section of the
optimal clamped solid beam

Figure 2.3: Optimal width distribution in the beam and the corresponding stress on the top edge

wider closer to the supports and close to the middle point where the load is applied. The
corresponding normal stress at the top of each cross-section is shown in 2.3b.

As may be observed from Figure 2.3b, the normal stress at the top of each cross section
is equal to the maximum allowable value 172MPa (in absolute value) at all locations
along the length where the width exceeds its minimum allowable value. This result is in
accordance with the fact that the optimum solution should use the minimum amount
of material while keeping the absolute value of the stress below or at most equal to the
critical value to prevent failure (i.e., fully-stressed design).
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Figure 2.4: Computational performance of the proposed method

As shown in Figure 2.4a, the performance of the method is monitored based on the num-
ber of outer loops in the CCSA, the averaged number of iterations in the IPM and the
total averaged PCG iterations, plotted as a function of the number of nodes when the
structure is discretized with different number of elements. The procedure starts from
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n = 40 nodes and the number of elements (and hence nodes) is doubled each time up
to n = 5120 nodes. As shown in the figure, the number of steps in the outer loop and the
IPM remain relatively constant as a function of the number of nodes. The method also
converges relatively fast as it only needs two outer iterations.

The CPU time for the optimization procedure with the original method and the pro-
posed method is portrayed in a log− log form in Figure 2.4b. The dashed line for the
original method increases more than quadratically when the number of nodes increases
(average slope above 2). By contrast, the slope of the solid line, which is for the proposed
optimization method, is almost linear (average slope close to 1). Consequently, the nu-
merical results indicate that the computational complexity for the overal procedure has
been decreased from at least O(n2) to O(n). It is relevant to observe that the actual gain
is only achieved for sufficiently large n (in this case, n ≈ 1000 as shown in Figure 2.4b);
the original method remains more efficient for small values of n.

2.5.2. CLAMPED/SIMPLY SUPPORTED HOLLOW BEAM CASE

The second example is a hollow beam structure as shown in Figure 2.5. The beam is

A

A

180

120

t

4000
A - A

M+

p

Figure 2.5: Clamped/simply supported hollow beam. Lengths are given in mm

clamped on the left side and the right edge it is simply supported while a uniformly dis-
tributed load is applied on the top edge. In this case, the beam structure is optimized
with respect to its weight using the thickness t of a hollow rectangular cross-section as
the design variable. The parameters used in the problem, including material properties
and design constraints, are listed in Table 2.2. Observe that, although the total length
and the elastic limit used in the this example are similar to the values used in the first ex-
ample of a solid beam, the stiffness used here is larger and typical of metal-based hollow
beams.

The formulation of the optimization is as follows:

min
t

f0(t) = S
n∑

i=1
li ti /V0

subject to:

fi (t)/σ≤ 1

tl ≤ ti ≤ tu i = 1. . .n

where n is the number of nodes, V0 is the initial volume, S = 2(h +w) is the perimeter
of the cross-section area, h = 180 mm and w = 120 mm are the height and width of the



2

40 2. EFFICIENT COMPUTATIONAL METHOD FOR STRESS CONSTRAINTS

cross-sectional area, li is the length of beam connected with i th node, ti is the thickness
at i th node, fi (t) is the stress approximation at i th node, tl and tu are the lower and
upper bound of the design variable. Using an approximation for thin-walled sections,

the moment of inertia is Iz (ti ) = 2

(
ti h3

12 +w ti

(
h
2

)2
)
.

Table 2.2: Parameters of hollow beam structure

Young’s Modulus E = 200GPa
Allowable stress σ= 172MPa

Initial design thickness t0 = 20mm
Minimum thickness tl = 3mm
Maximum thickness tu = 20mm

Distributed load p = 40Nmm−1

The optimization starts with a uniform thickness distribution t0, which is set equal to the
maximum allowable value. The tolerances used are the same as in the previous example,
i.e., ePCG = 10−7, ηg ap = 10−10, ησ = 10−3 and ηv = 10−3.

The optimal thickness topt of the cross-sectional area along the length is shown in Figure
2.6a using a mesh with n = 1280 nodes. As shown in Figure 2.6a, the largest thickness
is reached at the clamped edge (with a maximum value of 16.7mm) while in the middle
section, the thickness reaches a local maximum of 7.2mm. Consequently, the local con-
straint for the maximum allowable thickness is not active as topt < tu at all points.
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(a) Optimal thickness along the length of the hollow
beam
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Figure 2.6: Optimal width distribution in the beam and the corresponding stress on the top edge

The normal stress on the top of each cross-section is shown in Figure 2.6b. Comparing
this figure with 2.6a, it can be verified that the minimum bound t = tl = 3mm is active at
points where the fully-stressed optimality condition is not active, i.e., enforcing the min-
imum bound of the thickness precludes the stress from reaching its maximum allowable
value.

As in the previous example, the performance of the proposed method is monitored record-
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ing the number of iterations as follows: The total number of the outer loops in the CCSA,
the averaged number of iterations in the IPM and the total averaged PCG iterations,
which are plotted in Figure 2.7a with respect to the number of nodes (from n = 40 to
n = 2560 nodes). As shown in the figure, the method converges relatively fast since it
takes only 4 outer loops in total to reach an optimal solution with the given tolerance, a
value that remains constant for all mesh sizes analyzed. Similarly, the averaged number
of iterations in the IPM remains constant as a function of the problem size. However,
the average number of iteration for the PCG increases from 24 to 42 for the range of
number of nodes analyzed with the proposed diagonal preconditioner. This increment
may be traced back to the change in the condition number of the equilibrium system,
which increases from 1.29×109 (for 40 nodes) to 1.38×1014 (for 2560 nodes). It is worth
mentioning that the number of conjugate gradient iterations in the so-called original
method (i.e., without preconditioner) scales linearly with the size of the problem, which
also confirms the efficiency of the proposed preconditioner.
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Figure 2.7: Computational performance of the proposed method

The actual performances of the proposed method and the benchmark original method
(i.e., no preconditioner, direct solver method for the Schur complement, as outlined
in 2.5.2) are shown in Figure 2.7b in terms of a log-log relation between the CPU time
for the optimization procedure and the corresponding size of the problem. As an addi-
tional performance measure, the same problem was solved using the MMA and an SQP
implementation, although it is noted that this comparison is only qualitative since the
most optimized SQP variants may perform better than the off-the-shelf (Matlab) ver-
sion.

From Figure 2.7b, it can be observed that the average slopes of the lines representing
the original method, the MMA and the SQP are more than 2 while the slope for the pro-
posed method is close to 1. Consequently, as in the previous example, the results indi-
cate that the computational complexity for the whole procedure can be decreased from
more than O(n2) to O(n). Again it is noticed that the proposed method only becomes
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more efficient than the original method for sufficiently large problems. It is necessary
to note that the CPU time for the MMA is higher than the original method, albeit both
using IPM, mainly because there is no predictor-corrector step in the implementation
of the MMA. In addition, the results indicate that the method performs better than the
MMA and a “regular" SQP implementation, although a fair cross-method comparison
would require a detailed analysis of the implementation details of both methods, which
is beyond the scope of the present analysis.

2.5.3. MULTIPLE-SPAN CONTINUOUS BEAM

As a third test case, a multiple-span continuous beam with rectangular cross section
is analyzed, as shown in Figure 2.8. In this case, the proposed method is tested in a
more complex condition, namely a non-uniform distributed load along the span, to-
gether with an additional displacement constraint.

The width w in the rectangular cross-section A−A is the design variable while the height
h = 500mm of the cross-section is fixed in the optimization problem. In this numerical
case, apart from the stress constraints, and the lower and upper bound of the design
variables, the displacement in the vertical direction at a location x0 = 7000mm mea-
sured from the left is also constrained such that the vertical displacement u should not
exceed a prescribed maximum value umax = lspanrspan, where lspan = 6000 mm is the free
span between two adjacent supports and rspan is a prescribed allowable displacement to
span ratio. The displacement at this point is approximated using the ConLin approach
without a damping function.

The optimization problem to be solved is as follows: find w such that

min
w

f0(w) = h
n∑

i=1
li wi /V0

subject to:

fi (w)/σ≤ 1

u(x0,w) ≤ umax

wl ≤ wi ≤ wu i = 1. . .n

where n is the number of nodes, V0 is the initial volume, h = 500 mm is the height of
the cross-section, li is the length of beam connected with i th node, wi is the width at
the i th node, fi (w) is the stress approximation at the i th node, wl and wu are the lower
and upper bound of the design variable. In this case the moment of inertia is given by
Iz (wi ) = 1

12 wi h3.

The parameters of the optimization problem are listed in Table 2.3. The tolerances used
in this problem are the same as in the previous examples, i.e., ePCG = 10−7, ηg ap = 10−10,
ησ = 10−3 and ηv = 10−3. In addition, the tolerance used for displacement constraint for
the sub-loop is ηu = 10−3.
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Figure 2.8: Multiple-span continuous beam

Table 2.3: Parameters of the two-span continuous beam

Young’s Modulus E = 20GPa
Allowable stress σ= 5MPa

Initial design width w0 = 1000mm
Minimum width wl = 100mm
Maximum width wu = 1000mm
Distributed load p1 = 35kNmm−1

Distributed load p2 = 25kNmm−1

Allowable span/displacement ratio rspan = 1/3500

The optimal width for the model with n = 640 nodes is shown in Figure 2.9a. The corre-
sponding normal (axial) stress on the top of the of the beam is reported in Figure 2.9b.
In contrast with the previous two examples, in the present case the normal stress, which
is derived from the optimal width and the bending moment, has a more complex distri-
bution along the beam. Furthermore, for this example, it is also relevant to analyze the
vertical displacement of the beam, which is included in Figure 2.10.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

Length of beam [mm]

W
id

th
 o

f 
b

e
a

m
 [

m
m

]

(a) Width along the length of the optimal beam
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Figure 2.9: Optimal width distribution in the beam and the corresponding stress on the top edge

As may be observed from the results, the local displacement constraint at x = x0 = 7000
mm is active (i.e., u(x0) = umax, see Figure 2.10). Some adjacent points have larger dis-
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Figure 2.10: Displacement of the beam along the length

placements since these are not constrained in terms of displacements but rather in terms
of stress. However, the displacement constraint has a significant effect on the optimal
design since the region where the stress constraint is active is relatively small (only close
to the leftmost support as shown in Figure 2.9b). Consequently, the width of the opti-
mal beam is larger than a fully-stressed design, but necessary to meet the displacement
constraint.

In terms of the optimization procedure using the proposed improved scheme, the num-
ber of iterations from the PCG, the iterations in the IPM and the number of the outer
loops in the CCSA are shown in Figure 2.11a for mesh sizes from n = 40 to n = 5120
nodes. In general, it was observed that the volume of the beam decreases rapidly in the
first two outer loops before it converges on the fourth loop. The number of iterations
for the IPM and the outer loops in the CCSA are relatively constant with respect to the
problem size. The average number of iterations for the PCG for the Schur complement
increases slightly from 18 to about 50 for the range of problem sizes analyzed.

To assess the performance of the method in this example, which is dominated by the
displacement constraint instead of the stress constraint, the CPU time of the proposed
method and the original sizing optimization method are compared in a log-log form in
Figure 2.11b. From the figure it may be observed that the slope of the CPU time for
the proposed method is close to 1. In contrast, the slope of the curve for the original
method keeps increasing to more than 2. This trends provides additional evidence of
the estimated computational speed-up as observed in the previous examples, i.e., from
more than O(n2) to O(n). Similarly, it is noted that the proposed method only becomes
more efficient for sufficiently large problems, in this case for meshes with more than
n = 103 nodes.
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Figure 2.11: Computational performance of the proposed method

2.6. EXTENSION OF THE METHOD TO PLATE STRUCTURES

In this section, the proposed method is extended to plate structures for more general
applications. Similar to the beam case, the design variable is the local thickness of the
plate. The stress constraint is expressed as

σv ≤σ, (2.80)

where σv is the Von Mises stress and σ is the maximum allowable value.

2.6.1. NODAL STRESS CONSTRAINTS

For the plate structures, the finite element discretization is carried out using a 8-node
serendipity element (Kikuchi et al. [31]) with reduced integration (i.e.,4 Gauss points).
Both the stress constraints and the design variables are defined at the vertices of each
element, which are henceforth named as design nodes. The node-wised design variables
ensure a smooth thickness distribution. To enforce the stress constraints, the Von Mises
stress are evaluated at the design nodes.

As opposed to the beam case, the discretizations used for analysis and for design are
different. In particular, the 8-node serendipity element is used for the FEM analysis to
improve the continuity of the stress field. The linear quadrilateral element is used to
interpolate the Lagrange multiplier in the variational stress constraint form (Eq.(2.10)),
which results in a continuous field across elements. The structure of the mesh is shown
in Figure 2.12. Correspondingly, the Von Mises stress at the i th design node obtained
through Eq.(2.10) is given by

σv,i =
∑ng

g=1 Ni ,gσv,gΩg∑ng

g=1 Ni ,gΩg

, (2.81)
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where ng is the total number of Gauss points in the model, Ni ,g is the shape function of
the i th design node in the design and interpolation element at the g th Gauss point, Ωg

is the domain measured at the g th Gauss point, σv,g is the Von Mises stress obtained
at Gauss point g . Observe that, since the serendipity element uses reduced integra-
tion, then it shares the same Gauss points with the linear design element (see Figure
2.12)

The σv,g for the plane stress state is calculated by

σv,g =
√
σ2

11,g −σ11,gσ22,g +σ2
22,g +3σ2

12,g , (2.82)

where σ11,g , σ22,g are the normal stresses in the 1 and 2 direction respectively, and σ12,g

is the corresponding shear stress.

Design node

Analysis element 

Design and Interpolation element 

Analysis node

Gauss point

Figure 2.12: Element for interpolation and analysis

The theoretical part of the optimization framework (CCSA), the interior point method to
solve the subproblem and the iterative solver for the Schur complement are identical to
the beam case.

2.6.2. SENSITIVITY ANALYSIS OF THE STRESS CONSTRAINTS

The calculation of the sensitivity for the stress constraints at design node i with respect
to the design variable x j in the plate is obtained from Eq.(2.81) using the chain rule as
follows:

∂σv,i

∂x j
= 1∑ng

g=1 Ni ,gΩg

(
ng∑

g=1
Ni ,g

∂σv,g

∂x j
Ωg

)
, (2.83)

where x j is the thickness of the plate at the j th design node.

The sensitivity of the Von Mises stress at Gauss point g is also obtained from Eq.(2.82)
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with the chain rule as follows:

∂σv,g

∂x j
=

(
σ11,g

σv,g
+ σ22,g

2σv,g

)
· ∂σ11,g

∂x j
+

(
σ11,g

2σv,g
+ σ22,g

σv,g

)
· ∂σ22,g

∂x j
+ 3σ12,g

σv,g
· ∂σ12,g

∂x j
. (2.84)

The calculation of
∂σ11,g

∂x j
,
∂σ22,g

∂x j
and

∂σ12,g

∂x j
is completed by using the adjoint method,

which leads to
∂σv,g

∂x j
=−zT

v,g K−1 ∂K
∂x j

u, (2.85)

where zv,g is the dummy load for the Von Mises stress at the Gauss node g , K is the
stiffness matrix of the FEM model and u is the displacement vector. The dummy load
vector zT

v,g is obtained by

zT
v,g =

(
σ11,g

σv,g
+ σ22,g

2σv,g

)
zT

1,g +
(
σ11,g

2σv,g
+ σ22,g

σv,g

)
zT

2,g +
3σ12,g

σv,g
zT

3,g , (2.86)

where zT
1,g , zT

2,g , zT
3,g are the dummy load vectors for σ11,g , σ22,g and σ12,g , respectively.

They are obtained from the row components of a matrix as follows:zT
1,g

zT
2,g

zT
3,g

=DBg , (2.87)

where D is the material stiffness matrix for the plane stress state and Bg is the strain
displacement matrix at Gauss point g .

The sensitivity of the nodal stress constraint i with respect to design variable x j can be
obtained through the adjoint method by

∂σv,i

∂x j
=−zT

v,i K
−1 ∂K
∂x j

u, (2.88)

where zT
v,i is the dummy load vector for the stress constraint at the i th design node. To

obtain zT
v,i , substituting Eq.(2.85) into Eq.(2.83) and use Eq.(2.88) provides

zv,i = 1∑ng

g=1 Ni ,gΩg

(
ng∑

g=1
Ni ,g zv,gΩg

)
. (2.89)

Since both the nodal Von Mises stress and the corresponding sensitivity can be obtained
through Eq.(2.81),(2.88), the stress approximation with modified fully stressed design (in
the form of Eq.(2.18)) for the plate structure can be obtained thereafter. Therefore, the
proposed method can be applied directly to optimize the plate structures considering
stress constraints. In the next section, results from the numerical tests will be demon-
strated and discussed.
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2.6.3. NUMERICAL TEST OF PLATE STRUCTURES

SIMPLY SUPPORTED PLATE CASE

In this test case, the model of the square plate is shown in Figure 2.13. The length L =
2400mm.

qq

f1

L

L

f2

y

x

y

Figure 2.13: plate structure to be optimised

The central points of both the left and right edge of the plate are fixed. A quadratically
distributed shear load is applied on both the left and right edge as shown in Figure 2.13
with

q = 0.15

1000
(

L2

4
− y2).

There is also a bending moment applied on both edges of the plate. Specifically, the
bending moment on the right edge of the structure is applied with

f2 = 0.45L

1000
y,

that on the left edge of the structure is applied to balance the overall moment on the
right with

f1 =−0.75L

1000
y.

Constraints of the optimization include the box constraints of the design variables and
the stress constraint (Eq.(2.83)) at each design node.

The material properties of the plate and the upper bound tu , lower bound tl of the thick-
ness is listed in Table 2.4.

In this optimization procedure (with Algorithm 3), the relative tolerance of PCG is ePCG =
10−9, the tolerance of the IPM is the duality gap to be smaller than ηg ap = 10−10, the
tolerance of the inner loops of the CCSA is stress constraints violation to be smaller than
ησ = 10−3, the tolerance of the outer loops is the volume variation to be smaller than
ηv = 10−3.
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Table 2.4: Parameters of the plate case

Young’s Modulus Poisson’s ratio Allowable stress
E = 200GPa ν= 0.3 σ= 172MPa

Initial design thickness Minimum thickness Maximum thickness
ti = 20mm tl = 7mm tu = 40mm
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(d) 80×80 mesh

Figure 2.14: Optimal thickness distribution

The optimal thickness distribution is shown in Figure 2.14 for four different meshes,
namely 20×20,40×40, 60×60 and 80×80 elements in x and y direction, respectively. As
shown in the figure, the optimal design can be interpreted similar to the I-beam, where
the thickness on the top and bottom edge is high to resist the bending moment. Mean-
while, the design also shows features of a typical cantilever plate structure since the lower
and upper corners on the left side become thicker, which is a characteristic of clamped
structures.

The convergence history of the normalized volume (with respect to the initial volume
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V0) for these four meshes are shown in Figure 2.15. According to this figure, the curves
of history of the normalized volume overlap for the four meshes, which reduce from
initial 1 to 0.386. This indicates that the optimal volume obtained at each outer loop
of the CCSA is the same regardless of the mesh size. In addition, the CCSA converges
in 3 steps, which demonstrates the fast convergence of the framework in the proposed
method.
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Figure 2.15: Convergence history for 20×20, 40×40, 60×60, 80×80 mesh
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Figure 2.16: Number of iterations records for different meshes

To estimate the computational work of the proposed method in plate case, the number
of the outer loops of the CCSA, the number of iterations of the IPM and the PCG for
the Schur complement required through the mesh refinement is demonstrated in Figure
2.16a. From the result, it can be observed that the number of iterations for the outer
loops of the CCSA and the IPM is stable. They remain at 3 and around 18, respectively,
as the mesh of the model is refined. However, regarding the number of iterations for
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the PCG, the average value of the iterations increases from 40 to 185 to solve the Schur
complement as the number of design nodes increases from 441 to 6561. Therefore, the
overall number of iterations of the PCG in the IPM ni ter is larger than the total number
of design nodes n. This breaks the condition for the method to be effective (Eq.(2.79)).
Consequently, the computational cost for the stress constrained sizing optimization of
the plate structures can not be reduced with the proposed method. To further explore
this issue, a second test is carried out.

PLATE CASE WITH TRUSS REINFORCED

In the second test case, a reinforced plate is analyzed as shown in Figure 2.17. A distin-
guished constant normal load P is applied to the flange. The right edge is subjected to a
mixed boundary condition: the displacement in x is zero and a distributed shear load q
is applied to balance the load P on the top flange in y direction. The right bottom node
is fixed to prevent rigid body motion.

In this case, the design variables are the cross-sectional area of the truss on the top edge
as well as the thickness of the plate at each design node. The material properties and the
upper and lower bounds of the design variables are listed in Table 2.5.

Table 2.5: Parameters of the reinforced plate structure

Young’s Modulus Poisson’s ratio Allowable stress Initial plate thickness
E = 69GPa ν= 0.3 σ= 200MPa ti = 12mm

Initial cross-sectional area truss Minimum plate thickness Maximum plate thickness Minimum cross sectional area truss
Ai = 398m2 tl = 2mm tu = 100mm Al = 100m2

Maximum cross sectional area truss distributed load
Au = 10000m2 P = 90Nmm−1

300mm

50mm

P

q

x

y

Figure 2.17: Plate Structure Reinforced by Truss

The tolerance for the optimization procedure (Algorithm 3) is identical to the simply
supported plate case. The mesh of the FEM model is refined in four distinct meshes,
namely, 20×5, 40×10, 60×16 and 80×20 in x and y direction, respectively. The optimal
solutions for the cross sectional areas of the truss and thickness of the plate with different
meshes are shown in Figures 2.18 and 2.19, respectively.

From Figure 2.18, it is obvious to find that the optimal cross sectional area of the truss on
the top edge converges to the same solution as the mesh is refined in the model. For the
results of 60×16 and 80×20 mesh, there are some slight trend disruptions on the optimal
cross sectional area at around 270mm in x direction. These are due to the effect of the
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(b) 40×10 mesh
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(c) 60×16 mesh
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(d) 80×20 mesh

Figure 2.18: Optimal cross sectional area of truss
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Figure 2.19: Optimal thickness distribution of plate

damping in the stress approximation (Eq.(2.29)). Specifically, the damping factors of
each stress constraint are updated by the end of every inner loop of the CCSA by Eq.(2.75)
and Eq.(2.76). However, the update for each stress constraint along x direction is not
guaranteed to be uniform. The corresponding difference results in the distrubations in
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the optimal cross sectional areas.

In Figure 2.19, the optimal thickness in the plate for different meshes are shown. From
the results, the maximum thickness of the plate on the top right corner keeps increasing
as the mesh is refined. Consequently, the optimal thickness converges to different results
with different meshes. This also happens to the previous test case. Therefore, the sizing
optimization for plate structures has a mesh dependency issue according to both plate
cases.

The convergence history of the normalized volume is shown in Figure 2.20. This figure
shows that the normalized volume eventually converges to the same solution with dif-
ferent meshes. Similar to the previous case, the number of the outer loops in the CCSA
is small in the optimization. For 20× 5, 40× 10, 60× 16 mesh, it takes 6 outer loops to
converge. The number of outer loops increases slightly to 7 for 80×20 mesh. Therefore,
the framework of the proposed method is demonstrated to preserve a fast convergence
rate.
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Figure 2.20: Convergence history for 20×5, 40×10, 60×16, 80×20 mesh

The number of the outer loops of the CCSA, the number of iterations of the IPM and the
PCG are demonstrated in Figure 2.21a. The number of iterations for the outer loops and
the IPM is stable at 6 and 15 respectively, when the number of design nodes increases.
However, as also observed in the first test case, the number of iterations for the PCG to
solve the Schur complement increases as the number of design nodes increases sharply
from 53 to 191 with the mesh refinement. Although the trend decreases slightly for the
80× 20 mesh, the condition ni ter < n, for the proposed method to be efficient is still
violated. Therefore, the proposed method does not reduce the computational cost for
the plate case.

In the next section, some investigation is implemented to study the possible reasons in
the equation of the Schur complement. Details in the optimal results and the sensitivity
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Figure 2.21: Number of iterations records for different meshes

analysis are checked. The numerical model in the simply supported plate case is used in
the investigation.

2.6.4. INVESTIGATION OF THE POSSIBLE REASONS FOR MISSION FAILURE

STUDY ON NORMALIZED LAGRANGE MULTIPLIER

In the first study, the distribution of the normalized Lagrange multipliers ỹs correlated
with the stress constraints (as in Eq.(2.10)) obtained in the optimization is investigated.
The simply supported plate case is employed in this study. Specifically, the normal-
ized Lagrange multiplier refers to the value of the Lagrange multiplier y s

i obtained for

the i th stress constraint in the optimization over the domain measured at the i th design
node.

The relation between the three variables originates from the continuous form to the dis-
crete form of the stress constraint L σ in the Lagrangian function as follows:

L σ : =
∫

ỹ s (
σ

σ
−1)dΩ

≈
n∑

i=1
ỹ s

i

(σi

σ
−1

)
|Ωi |

=
n∑

i=1
y s

i

(σi

σ
−1

)
.

(2.90)

Therefore, yi in the discrete form represents

y s
i = ỹ s

i |Ωi | (2.91)

in the continuous form. If the continuous optimization converges to an analytical solu-
tion, the discrete solution over the unit area of the domain should be identical regardless
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of the mesh.

The results of ỹ s over the different meshes are shown in Figure 2.22,2.23.
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Figure 2.22: Distribution of normalized Lagrangian multiplier (1)
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Figure 2.23: Distribution of normalized Lagrangian multiplier (2)

From the results, it can be observed that the normalized Lagrange multiplier does not
have the same distribution in different meshes. Simultaneously, it is not well distributed
in the left top and left bottom part of the plate, where the stress constraints are active.
Theoretically, the Lagrange multiplier for an active stress constraint should be a relatively
large positive value. However, the results in Figure 2.22a,2.22b,2.23a,2.23b demonstrate
that some of the normalized Lagrange multipliers drop close to zero in this region. One
possible reason is that the continuity of the constraints in the design domain should
be higher than that of the Lagrange multipliers. Since the continuity of the Lagrange
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multiplier is linear due to the linear shape function in the design and interpolation el-
ement, the continuity of the stress constraints should be at least linear in the design
domain.

STUDY ON THE SENSITIVITY OF STRESS CONSTRAINTS

Since the optimal thickness of the plate are found to be mesh dependent in the previous
test cases, the sensitivity of the stress constraint is worthy to be studied as well. The
numerical model in this case is the same as the previous study. The stress constraint
for the central design node in the plate model is taken to check the convergence of the
sensitivity of the stress approximation.

With the same ideology in the previous study, the stress approximation can be written
as

r̂ (α,λ)
i : = |F (α)

i |
x(λ)

i σ
+

∫
ã(α)(x(λ) −x(α))dΩ

≈ |F (α)
i |

x(λ)
i σ

+
n∑

j=1
ã(α)

j (x(λ)
j −x(α)

j )|Ω j |

= |F (α)
i |

x(λ)
i σ

+
n∑

j=1
a(α)

j (x(λ)
j −x(α)

j ),

(2.92)

where Fi is the internal force at design node i ,σ is the maximum allowable value, x is the
design variable (thickness of the plate), ã is the sensitivity of the stress approximation for
the load redistribution part in the continuous form, namely the normalized sensitivity,
α is the index for the outer loop, λ is the index for the inner loop.

Hence, the coefficient a(α)
j in the discrete form equals to

a(α)
j = ã(α)

j |Ω j |. (2.93)

Since the discrete approximation (Eq.(2.18)) would be mesh independent only if the nor-
malized sensitivity is mesh independent, the convergence of the fully stressed part and
the normalized sensitivity of the load redistribution part of the proposed approximation
is calculated with different mesh size. The sensitivity of the fully stressed part and the
normalized load redistribution part for the stress constraint at the central design node
for different meshes are demonstrated in Figure 2.24, 2.25, 2.26, 2.27.

From the results, it can be found that the peak of the fully stressed part converges to
around −0.9 as the mesh is refined. This is due to the fact that the internal force F (α)

i
from the FEM converges. However, the peak of the normalized load redistribution part
keeps increasing as the mesh is refined. Therefore, the sensitivity of the load redistribu-
tion part in the stress approximation is mesh dependent. Correspondingly, this results in
the mesh dependency of the Schur complement in the IPM, which relates to the gradient
matrix of the stress constraint. Therefore, the optimal solution can be mesh dependent
as well.
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(b) Load redistribution part

Figure 2.24: Normalized sensitivity distribution (20×20 mesh)
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Figure 2.25: Normalized sensitivity distribution (40×40 mesh)

From the above two studies, it can be found that the normalized Lagrange multiplier ob-
tained in the optimization and the normalized sensitivity of stress constraints need to
be improved in the plate case. Both are the output and the input of the Schur comple-
ment, respectively. Therefore, one way of improvement is to elevate the continuity of the
stress field in the numerical model. To this end, the Lagrange multiplier obtained from
the Schur complement can be well distributed in the domain. Simultaneously, the mesh
dependent issue on the sensitivity of stress approximation can be removed hopefully be-
cause of the continuous stress field. Otherwise, the sensitivity of stress field should be
calculated in the continuous form first before discretization. Further tests are required
to make the improvement. If the above approaches still do not help to reduce the com-
putational work, then another preconditioner needs to be employed in the PCG for the
Schur complement.
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Figure 2.26: Normalized sensitivity distribution (60×60 mesh)
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Figure 2.27: Normalized sensitivity distribution (80×80 mesh)

2.7. CONCLUSIONS

An improved algorithm for size optimization for structural problems with local stress
constraints is proposed in order to reduce the overall computational cost. The new
method is based on combining three ingredients. First, a new stress approximation is
proposed, which is separable, convex, scalable and conservative. It leads to a diagonal
Hessian matrix that reduces the computational work when calculating the Schur com-
plement. Second, the implicit sensitivity analysis provides an efficient way for the matrix
vector calculation with gradient matrix in the optimization. Finally, an effective pre-
conditioner for the PCG to cut the number of iterations for solving the Schur comple-
ment.

Numerical cases show that when these improvements are implemented in the Mehro-
tra’s IPM, the computational cost of the optimization decreases by one order for the
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beam case. However, the proposed method is relatively expensive to apply to problems
where the number of stress constraints and design variables is small. This is because
the computational work of the direct method for the Schur complement, such as Gauss
elimination, is comparable to the PCG for small problems. Furthermore, the total num-
ber of iterations for the PCG in the IPM niter is larger than the total number of design
variables n for small problems. This violates the condition to obtain the efficiency of the
method Eq.(2.79). Consequently, this method should only be used for sufficiently large
scale problems, which in the case of a beam is the order of n ≈ 103 nodes.

By contrast, the proposed method does not yet successfully accelerate the stress con-
strained sizing optimization with plate structures. The computational cost for the PCG
in solving the Schur complement keeps increasing as the mesh of the model is refined.
The correlated phenomenon discovered till now is that the optimal Lagrange multiplier
is not well distributed in the optimization. Besides, there is a mesh dependency issue
on the sensitivity of the stress constraints. One possible way to improve the proposed
method in plate case is to increase the continuity of the stress field in the model or to
calculate the sensitivity in the continuous form first before discretization. If these still
do not achieve the efficiency, then another preconditioner needs to be considered for
the PCG to solve the Schur complement. Otherwise, another strategy needs to be taken,
such as the p-norm stress constraint.
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3
AN ENHANCED CURVATURE

CONSTRAINED DESIGN METHOD

FOR MANUFACTURABLE VARIABLE

STIFFNESS COMPOSITE LAMINATE

I did not think; I experimented.
我不过度思考，我只专注试验。

Wilhelm Röentgen

3.1. INTRODUCTION

Robotic-driven manufacturing techniques for composite materials, such as Automated
Fiber Placement (AFP), allow to tailor layer-wise the path of fiber-reinforced laminates to
manufacture complex structural components that do not conform to simple geometries
and/or stacking sequences of layers with straight fibers. Due to their spatially-varying
fiber orientation, these laminates have non-homogeneous stiffness and are commonly
known as variable stiffness laminates (VSLs, Gürdal and Olmedo [1]). With the advent
of these advanced manufacturing techniques, VSL composites were soon recognized as
a feasible way to improve the structural response (see, e.g., Hyer and Lee [2], Setoodeh

This chapter is based on the following papers:
Zhi Hong, Daniël Peeters, Sergio Turteltaub, An enhanced curvature constrained design method for manufac-
turable variable stiffness laminate, Computers & Structures, under review.
Daniël Peeters, Zhi Hong, Mostafa Abdalla, A compliance approximation method applied to variable stiffness
composite optimization, Structural and Multidisciplinary Optimization, Vol. 58, No. 5, 2018, pp. 1981-2001.
doi:10.1007/s00158-018-2007-2.
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et al. [3]). Hence, in parallel with new improvements of the manufacturing technique,
companion design methods are also being actively developed to exploit the material
design freedom enabled by VSLs. Some examples are methods based on Genetic Al-
gorithms that have been used to optimize for buckling (Blom et al. [4]), for vibration
response (Akbarzadeh et al. [5]) and for strength (Cagdas [6]). For gradient-based meth-
ods, Stegmann and Lund [7] developed the Discrete Material Optimization Method to
maximize the buckling load of a wind turbine. Later, this method has been applied in
topology optimization with, among others, buckling, eigenfrequency or displacement
constraints (Sørensen et al. [8]). The aforementioned methods use a parametrization
of the design space based directly on the fiber paths (using either continuously varying
fiber angles or a limited set of angles).

Alternatively, other design methods start from a broader design space without specifying
or constraining a priori the number of layers in the laminate, but require post-processing
to translate the optimal designs into a specific number of layers and actual fiber paths
within the layers. Correspondingly, these design strategies can be classified as multi-
step methods. In a first step, an optimal design is identified within a broad design space
typically parametrized by homogenized properties such as lamination parameters (Ab-
dalla et al. [9], Lopes et al. [10], Setoodeh et al. [11], IJsselmuiden et al. [12], Rouhi et al.
[13]) or polar formalism (Jibawy et al. [14], Kazemi and Verchery [15], Stanford and Jutte
[16], Montemurro and Catapano [17]). Homogenization refers here to the through-the-
thickness effective properties in a relatively thin laminate as commonly encountered in
aerospace structures. Subsequently, in a second step, the optimal homogenized param-
eters are used to retrieve physical and/or geometrical information about the optimal
laminate. These multistep methods are usually efficient in terms of exploring a large
design space at a minimal computational cost.

Experimental tests confirm that VSLs can indeed improve the performance of compo-
nents. For example, a rectangular specimen with a cut-out made of a VSL was found to
have an increase in 13% of its buckling capacity over a conventional straight fiber lami-
nate (Hyer et al. [18], Jegley et al. [19]). More recently, Khani et al. [20] implemented an
experimental test to validate that the ultimate tensile failure load of a VSL wing lower-
skin with a large access hole is 35% higher than that of the composite with homogeneous
(constant) stiffness.

Despite recent progress in manufacturing techniques, AFP still has limitations in terms
of the variable path designs that can actually be produced. In particular, fiber paths
that have sharp turns result in defects such as wrinkles, which can decrease the load
carrying capacity of the composite or may become a location where delamination nu-
cleates. Similarly, depending on the width of the tow in the AFP machine, unacceptable
gaps and/or overlaps between adjacent tows may occur if the fiber path curvature ex-
ceeds a critical value. Correspondingly, manufacturing constraints need to be consid-
ered in the design process to exclude designs with inherent flaws or may otherwise be
deemed unacceptable (Blom et al. [21], Lozano et al. [22]). In order to guarantee that the
minimum turning radius of the design (reciprocal of curvature) remains above a critical
value (manufacturing limit), a constraint can be imposed on the fiber path curvature.
However, it has been challenging to impose this type of constraint in multistep meth-
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ods without a significant performance loss. This is particularly problematic in methods
where the retrieval step is carried out by matching the physical and geometrical prop-
erties of the laminate to the optimal homogenized parameters without considering the
mechanical performance. Since the net gain in the optimization process can be jeop-
ardized by these type of losses, it is important to address these issues within the overall
design process.

Two basic types of methods are considered here to impose the curvature constraint,
namely direct and indirect control methods. In the direct control methods, the curva-
ture constraint is imposed directly on the fiber angles (van Campen et al. [23], Peeters
et al. [24, 25]). In contrast, methods where a constraint is imposed on the homogenized
parameters can be called “indirect control methods” since the constraint only restricts
the curvature of the fiber angles indirectly through an implicit relation between them
and the homogenized properties (see de Quadros and Hernandes [26] for a recent exam-
ple). The drawback of the indirect method is that in general it cannot guarantee a priori
the satisfaction of the local fiber path curvature constraint.

In the present work, an indirect control method based on lamination parameters is de-
veloped and implemented in the context of the first step of a multi-step method. The
approach consists on imposing an upper bound on the spatial gradient of the lamina-
tion parameters, which indirectly imposes a constraint on the fiber path curvature that
is retrieved in subsequent steps of the multistep method (IJsselmuiden [27]). Separately,
the direct control method of Peeters et al. [24] is implemented in the retrieval step of
the multi-step approach as a reference. The direct method guarantees that the local
curvature constraint is satisfied in each layer of a laminate. Finally, an enhanced de-
sign strategy, termed the hybrid control method, is proposed as a combination of the
two aforementioned control methods. The three methods (direct, indirect and hybrid)
are tested with compliance minimization problems and a comparative analysis is carried
out to assess their performance. For simplicity, the formulation in the present work is re-
stricted to planar composite laminates (plates) but the general strategy can be extended
to a three-dimensional context (thin shells).

The structure of this work is as follows: the formulation of the optimization problem
is described in Section 3.2 and the curvature constraint on lamination parameters for
manufacturable design is introduced in Section 3.3. The three aforementioned methods
to control the steering of the fiber path are presented in Section 3.4. In Section 3.5, a ba-
sic verification problem, namely a rectangular plate with a point load, is used to assess
the numerical performance of the methods. A comparative analysis of the three different
methods to apply curvature constraints is shown in Section 3.6. A more complex numer-
ical test, namely a square plate with a circular hole, is included in Section 3.7 in order
to further assess the performance of the methods under more challenging conditions.
Finally, concluding remarks are given in Section 3.8.
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3.2. FORMULATION OF THE OPTIMIZATION PROBLEM

3.2.1. LAMINATION PARAMETERS

The current work focuses on the compliance optimization of planar structures (plate
laminates), which are described by the in-plane stiffness. One commonly-used way to
homogenize the through-the-thickness stiffness properties of a composite laminate is
by using Lamination Parameters (LPs, [28]). The in-plane stiffness A is parameterized
using four lamination parameters (V1, V2, V3, V4) as follows

A= h (Γ0 +V1Γ1 +V2Γ2 +V3Γ3 +V4Γ4) , (3.1)

where h is the thickness of the laminate, and the lamination parameters are obtained
by

(V1,V2,V3,V4) =
∫ 1

2

− 1
2

(
cos2θ(z),sin2θ(z),cos4θ(z),sin4θ(z)

)
dz. (3.2)

In Eq.(3.2), z = z/h is the normalized position in the thickness direction and θ(z) is the
in-plane fiber angle at z. The detailed expressions for the five constant matrices (Γ0, Γ1,
Γ2, Γ3, Γ4) appearing in Eq.(3.1) can be found in, for example, Abdalla et al. [9]. The
stiffness matrix can be expressed as a function of the lamination parameters and the
thickness of the layers. Assuming that the thickness is given (e.g., constant thickness
throughout the plate), then the four lamination parameters at each point may be used
as the design variables for a VSL. Consistent with Eq.(3.2), the lamination parameters are
confined within a feasible convex domain, which is given by (Hammer et al. [29])

2V 2
1 (1−V3)+2V 2

2 (1+V3)+V 2
3 +V 2

4 −4V1V2V4 ≤ 1, (3.3a)

V 2
1 +V 2

2 ≤ 1, (3.3b)

−1 ≤V3 ≤ 1. (3.3c)

For a symmetric and balanced laminate, V2 and V4 are zero, which implies that the fea-
sible domain simplifies to (Nagy [30])

2V 2
1 −V3 −1 ≤ 0, (3.4a)

V3 −1 ≤ 0. (3.4b)

For simplicity, the design space is henceforth limited to symmetric and balanced lami-
nates, however the design strategy may be extended to a more general case.

3.2.2. THREE-STEP OPTIMIZATION FOR VARIABLE STIFFNESS COMPOSITE

A multistep approach to VSL optimization, which has proven to be very versatile, is the
three-step optimization method presented in IJsselmuiden [27]. The steps, and their
connection to the manufacturing constraints, are as follows:

Step 1 Optimize a chosen objective functional, such as compliance or buckling, with the
lamination parameters as design variables. Typically, the objective functional ex-
pressed in terms of the lamination parameters is convex (IJsselmuiden et al. [12],
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Khani et al. [31], Peeters et al. [32]), which enables the use of efficient optimization
algorithms to find a global optimum. This is the primary optimization step. How-
ever, since the actual fiber angles/paths are not immediately available from the
optimal lamination parameters, manufacturability cannot be guaranteed in this
step.

Step 2 Determine the fiber angles of each ply (layer) in a specific number of plies that
closely match the optimal lamination parameters obtained in Step 1. This step, re-
ferred to as the angle retrieval step in the present work, is formally an inverse prob-
lem with an objective functional meant to minimize the difference between the
optimal homogenized properties from Step 1 and the actual homogenized proper-
ties corresponding to a finite number of plies. Alternatively, it can be implemented
to optimize the objective functional in Step 1 with respect to the fiber angles to ap-
proach the optimal solution solution obtained in Step 1. This is refered to as angle
optimization (see Peeters et al. [32]).Manufacturing constraints can be added in
this step (see Peeters et al. [24]) with an additional loss in performance compared
to unconstrained properties.

Step 3 Construct the actual fiber paths using the optimal fiber angles obtained in Step
2. This is essentially a post processing step that uses methods similar to those
employed to construct streamlines in computational fluid mechanics (Blom et al.
[33]). The final design to be manufactured by AFP is obtained after this step. In
this step it is typically not required to impose a curvature constraint since this has
already been enforced in the previous steps. Correspondingly, emphasis is placed
on the first two steps of the method.

3.2.3. COMPLIANCE APPROXIMATION OF 2D COMPOSITE PLATES

u = 0

f

Ω

Γ

Figure 3.1: Example of a two-dimensional plate.

The compliance approximation applied in this work is presented in this section. For a
general 2D plate with design domain Ω, and boundary Γ, as shown in Figure 3.1, three
equations need to be satisfied in a balanced state:
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1. equilibrium:
∑2

i=1
∂Nij
∂xi

+ fj = 0, for j= 1,2

2. strain-displacement: εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, for i, j= 1,2

3. material law: Nij =Aijkl ·εkl, for i, j,k, l= 1,2,

where fj is the external force in j-direction, the signal Ni,j is the internal force in the
structure, u denotes the displacement, ε refers to the associated strain, x is the in-plane
coordinate in the design domain and A is the elastic in-plane stiffness matrix.

The compliance of a plate equals the minimum of complementary energy of the struc-
ture. Using the material law, the density of complementary energy u∗ can be rewritten
as

u∗ = 1

2
NT A−1N, (3.5)

where N is the vector for the internal force. The minimal compliance C∗(A) can be writ-
ten as:

C∗(A) = min
A

min
N

∫
Ω

u∗(N,A)dΩ. (3.6)

Using the matrix contraction (:), the approximation of the compliance f (I )(A) is rewritten
to

f (I )(A) = 1

2

∫
Ω

(
N ·NT )

: A−1dΩ=
∫
Ω
Φ : A−1dΩ, (3.7)

where Φ is the coefficient matrix with respect to A−1. Observing the structure of this
equation, the following approximation may be used in the finite element method (FEM):

f (I )(A) ≈
m∑

e=1
Φe : A−1

e , (3.8)

where e denotes the element number and m denotes the total number of elements. Us-
ing this equation, the expression forΦe is found as

Φe =Ne ·NT
e ·Ωe , (3.9)

whereΩe denotes the area of element e.

However, the design variables chosen in our case are not at the elements, but at the de-
sign nodes. Simply using

f (I )(A) ≈
n∑

i=1
Φi : A−1

i , (3.10)

where n denotes the total number of design nodes in the finite element model of the
plate, Ai is the in-plane stiffness matrix at the i th design node and definingΦi as

Φi =Ni ·NT
i ·Ωi (3.11)

does not work well: the forces at the nodes are a function of multiple elements. Hence,
finding an appropriate expression for Φi from the continuous model Eq. (3.7) is not
straightforward. To implement the calculation with FEM easily, the derivation of an ap-
proximation will be done for a discretised plate below.
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The strain energy of the plate U is defined as

U =
∫
Ω

1

2
εT AεdΩ. (3.12)

Discretising the plate to be used in the finite element method, the strain energy of the
plate can be expressed as a summation at every Gauss point using the Gauss integration
scheme.

Thus the strain energy can be obtained,

U = 1

2

ng∑
g=1

wg ε
T
g Ag εg , (3.13)

where wg is the weight coefficient times the determinate of Jacobian matrix of Gauss
point g . The subscript g denotes the variables at the Gauss point, ng is the total number
of Gauss points in the structure. The total potential energy of the plateΠ is

Π=U − fT u. (3.14)

The principle of total potential energy leads to

min
εg ,u

Π

s.t. εg −Bg u = 0,

where Bg is the strain-displacement matrix at the Gauss point. The Lagrangian is found
to be

L = min
εg ,u

(
1

2

ng∑
g=1

wg ε
T
g Ag εg − fT u

)
+max

λ

(
ng∑

g=1
λT

g

(
εg −Bg u

))
, (3.15)

whereλ is the Lagrangian multiplier. The optimality condition with respect to εg gives

λg = wg Ag εg .

Hence,
λg = wgNg , (3.16)

where Ng is the stress resultant vector at Gauss point g . Substituting Eq. (3.16) into the
Lagrangian Eq. (3.15), and replacing εg with A−1

g Ng , Eq. (3.15) is rewritten as

L =min
u

max
Ng

(
ng∑

g=1

(
1

2
wgN

T
g A−1

g Ng −wgN
T
g A−1

g Ng

)
+uT

(
ng∑

g=1
wg BT

g Ng − f

))
. (3.17)

Inverting the order of min and max leads to

L =max
Ng

min
u

(
ng∑

g=1

(
1

2
wgN

T
g A−1

g Ng −wgN
T
g A−1

g Ng

)
+uT

(
ng∑

g=1
wg BT

g Ng − f

))
. (3.18)
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Rearranging terms leads to

L = max
Ng

(
ng∑

g=1

(
−1

2
wgN

T
g A−1

g Ng

)
+min

u
uT

(
ng∑

g=1
wg BT

g Ng − f

))
. (3.19)

Thus the optimisation problem can be written as

min
Ng

∑ng

g=1
1
2 wgN

T
g A−1

g Ng

s.t .
∑ng

g=1 wg BT
g Ng − f= 0. (3.20)

where the objective of this optimisation problem is the complementary energy of the
structure U∗:

U∗ =
ng∑

g=1

1

2
wgN

T
g A−1

g Ng . (3.21)

By definition, the compliance of the plate C (A) can be written as

C (A) = min
Ng

U∗, (3.22)

where A is the constitutive matrix of each Gauss point. The interpolation for Ag is de-
fined to be reciprocal as

A−1
g =

n∑
i=1

Ni ,g A−1
i , (3.23)

where Ni ,g is the shape function of design node i at the g th Gauss point in the FEM. Using
Eq. (3.23), the complementary energy of the plate is

U∗ =
ng∑

g=1

1

2
wgN

T
g

(
n∑

i=1
Ni ,g A−1

i

)
Ng . (3.24)

By changing the order of summation and employing the Frobenius product, this is rewrit-
ten to

U∗ =
n∑

i=1

(
ng∑

g=1

1

2
wgN

T
g ·Ni ,g ·Ng

)
: A−1

i . (3.25)

The minimization of the compliance Cmin is formulated as

Cmin(A) = min
A

(
min
Ng

U∗
)

, (3.26)

where A is the constitutive matrix of each design node.

Based on Eq. (3.25), the approximation of compliance of a plate in discrete form is

f (I )(A) =
n∑

i=1

(
ng∑

g=1

1

2
wgN

(k)
g

T ·Ni ,g ·N(k)
g

)
: A−1

i , (3.27)
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where N(k)
g is the internal force that is both statically and kinematically admissible at the

kth approximation point, when this is iteration k +1. Comparing this approximation to
the one found starting from the continuous formula, Eq. (3.10), it can be seen that the
form is exactly the same. Hence, the correct expression forΦi is

Φi =
ng∑

g=1

1

2
wgNg ·Ni ,g ·NT

g . (3.28)

3.2.4. TWO-LEVEL APPROXIMATION FOR THE VSL

The objective functionals of the optimization problems in Step 1 (primary performance
objective such as structural compliance) and Step 2 (objective functional for error mini-
mization) can be both formally expressed using the same approach based on a two-level
approximation. Correspondingly, a common general form of the two-level approxima-
tion for the VSL is introduced in this section in anticipation of the optimization strategy.
Since the problem is solved numerically using a finite element discretization, it is also
convenient to introduce a discretized version of the two-level approximation for VSLs.
To this end, consider a finite element discretization of a laminate which is characterized
by a collection of nodes associated to the finite elements.

The first level approximation f (I ) for an objective function f (for either Step 1 or 2) with
respect to the in-plane global stiffness A is expressed as

f (I )(A1,A2, · · · ,An) =
n∑

i=1
Φi : A−1

i +
n∑

i=1
Ψi : Ai , (3.29)

where Φi and Ψi are 3×3 coefficient matrices of the objective functional and : denotes
the Frobenius product (inner product). The in-plane stiffness depends on the laminate
layout (e.g. material elastic properties, number of layers, thicknesses, orientation), all
or some of which can be viewed as design variables. In the present work, attention
is focused on the fiber orientations as design variables for fixed thickness and elastic
properties. Symbolically, all the necessary data required to specify a given design can
be collected in a vector x, the so-called design variable, and the in-plane stiffness at
every node i can be expressed as a function of the design, i.e., Ai = Ai (x). Similarly,
an objective functional f can also be viewed as a function of the design variable x, i.e.,
f = f (x).

For the second level approximation f (I I ), the first level approximation f (I ), viewed as
a function of the design variable x, is expanded about a design point x0 using a Taylor
series expansion with respect to x up to the second-order, i.e.,

f (I I )(x) = f (I )(x0)+g|Tx0
·∆x+ 1

2
∆xT ·H|x0 ·∆x, (3.30)

where f (I )(x0) = f (I )(A1(x0), · · · ,An(x0)) is the value of first level approximation f (I ) at x0.
In the previous equation, the vector g|x0 is the gradient of f (I ) with respect to x evalu-
ated at x0, H|x0 is the Gauss-Newton part of the Hessian matrix at x0 to ensure the posi-
tive semi-definiteness of the approximation, ∆x = x−x0, the superscript T indicates the
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Figure 3.2: Three-step optimization framework: both Step 1 (e.g., minimization of structural compliance) and
Step 2 (matching parameters) are solved using the same method, namely the conservative convex separable

approximations (CCSA) with Mehrotra’s predictor-corrector interior point method (IPM). The third step
(construction of fibers paths) is solved using a streamline analogy.

transpose and the single dot indicates composition. More details can be found in Peeters
et al. [24].

3.2.5. OPTIMIZATION STRATEGY

The strategy regarding Step 1 and Step 2 of the three-step method is as follows: the over-
all framework employed to solve the optimization problem is Svanberg’s conservative
convex separable approximations (CCSA, Svanberg [34]). The approach is illustrated in
Figure 3.2, which shows the sub-problems used in the iterative method. Mehrotra’s in-
terior point method (IPM) is used in combination with the Karush-Kuhn-Tucker (KKT)
conditions of the sub-problems (Mehrotra [35]). Details of these methods can be found
in the above mentioned references. The element used in the FEM model in Step 1 of the
optimization is an 8-noded serendipity element (Kikuchi et al. [36]), where the lamina-
tion parameters are defined on the vertices. In the remainder of the text, the nodal value
correlated to the design variables refers to the value at the vertices. Since Step 2 does not
require FEM for analysis, the discretization is carried out using triangular elements (see
e.g., Felippa [37]). Formally, the sub-problem to be solved in both Step 1 and Step 2 is as
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follows:

min
x

f (I I )(x) (3.31a)

subject to x ∈ Feasible domain. (3.31b)

For Step 1, for the minimum compliance problem using symmetric and balanced lam-
inates, the design variables are collected in a vector x = [V1;V3], where the local values
of the lamination parameters V1 and V3 at a node i are collected in the vectors V1 and
V3, i.e., V1 = [V1,1,V1,2, · · · ,V1,n] and V3 = [V3,1,V3,2, · · · ,V3,n]. The global feasible domain
for x is defined upon applying Eq.(3.4) at each node i . The objective f (I I )(x) in Step 1 is
the second level approximation of the compliance. Further details can also be found in
Peeters et al. [32].

For Step 2, the objective functional is formulated in accordance with an inverse problem
to retrieve the fiber angles. The corresponding first level approximation is computed
from Eq.(3.29) usingΦi =A∗

i andΨi = (A∗
i )−1, and A∗

i is the optimal in-plane stiffness at
node i obtained during Step 1. In this step, the design variable x represents the fiber an-
gles at layer l associated to node i , i.e., x = [θ(i )

l ](i=1,··· ,n)(l=1,··· ,nd ), where nd is the number
of design layers. Since the final laminate is to be symmetric and balanced, each design
layer represents four layers in the actual laminate: a negative of the design layer is right
next to the layer, and the complete stack is symmetric. For example, if two design lay-
ers are expressed as [θ1/θ2], the actual physical laminate is [θ1/−θ1/θ2/−θ2]s , with the
subscript s indicating symmetry. Therefore, the number of design layers nd is a quar-
ter of the total layers nl . The feasible domain for each fiber angle at each location is
[−π,π]. The objective function f (I I )(x) for the sub-problem in Step 2 is the second level
approximation of the error between the optimized properties from Step 1 and the actual
properties of a finite number of layers. For implementation purposes, the vector x in
Step 2 (and also in Step 1) can be vectorized with a single index.

Additional manufacturing constraints, which affect the actual feasible domain, will be
specified in more detail in Section 3.4.2. Details about the streamline analogy in Step 3,
which pertains to the continuous fiber paths, can be found in Blom et al. [33] and will not
be discussed here. In the next section, gradient constraints on the lamination parame-
ters, which aim to indirectly impose a curvature constraint, will be described.

3.3. CURVATURE CONSTRAINT IN TERMS OF THE LAMINATION

PARAMETERS

3.3.1. RELATIONSHIP BETWEEN CURVATURE CONSTRAINTS AND GRADIENT

CONSTRAINT ON THE LAMINATION PARAMETERS

The curvature of a fiber path in the l th layer of a VSL can be expressed in terms of the
norm of the gradient of the corresponding fiber angle, i.e.,

∥∥∇θl (x, y)
∥∥, where ∇ is the

gradient with respect to the in-plane coordinates x and y on the surface of the model. In
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order to control the minimum turning radius in the l th layer of a VSL, the direct imple-
mentation of the curvature constraints on the fiber angles is as follows:

∥∥∇θl (x, y)
∥∥≤ 1

rmin
, l = 1, . . . ,nd , ∀x, y (3.32)

where rmin is the minimum allowable turning radius. However, this constraint requires
a layer-by-layer approach, which is computationally expensive for complex structures
with a relatively large number of layers. Alternatively, one can implement the gradient
constraints on the lamination parameters to implicitly constrain the gradient of the fiber
angle. One way to achieve this is to link the constraints on the lamination parameters
with that on the fiber angles through the chain rule. Consider for example the lamination
parameter V1, which in view of Eq.(3.2) can be expressed as

V1(x, y) =
nl∑

l=1
cos(2θl (x, y))hl , (3.33)

where hl = z(l+1) − z l is the normalized thickness of the l th layer. From this relation, the
gradient of V1(x, y) can be obtained as

∇V1(x, y) =−2
nl∑

l=1
sin

(
2θl (x, y)

)∇θl (x, y)hl . (3.34)

Taking the norm of the vectors in Eq.(3.34) and using the Cauchy-Schwarz inequality, it
follows that ∥∥∇V1(x, y)

∥∥≤ 2
nl∑

l=1

∣∣sin(2θl (x, y))
∣∣∥∥∇θl (x, y)

∥∥hl . (3.35)

Inequality (3.35) indicates that
∥∥∇V1(x, y)

∥∥ can act as a lower bound for the sum of
∥∥∇θl (x, y)

∥∥.
To directly control the curvature in each layer, an upper bound needs to be imposed
on

∥∥∇θl (x, y)
∥∥ as indicated in Eq.(3.32). However, a method to indirectly control the

minimum turning radius is to impose a sufficiently stringent constraint on the sum of∥∥∇θl (x, y)
∥∥ in order to limit the layer-wise contributions to the sum. To avoid using ex-

plicitly a parametrization that requires the fiber angles during this step, an upper bound
constraint is imposed on

∥∥∇V1(x, y)
∥∥. To this end, the condition Eq.(3.32) can be used in

Eq.(3.35), i.e., ∥∥∇V1(x, y)
∥∥≤ 2

nl∑
l=1

∣∣sin(2θl (x, y))
∣∣ hl

rmin
. (3.36)

Since ∣∣sin
(
2θl (x, y)

)∣∣≤ 1, (3.37)

an artificially stringent upper bound on
∥∥∇V1(x, y)

∥∥ can be imposed with the purpose of
constraining

∥∥∇θl (x, y)
∥∥ as follows:

∥∥∇V1(x, y)
∥∥≤ 2

p
δ

h

rmin
, (3.38)
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where h =∑nl
l=1 hl = 1 and δ> 0 being an adjustable parameter, called the upper bound

factor. The upper bound factor δ is a scalar to smear the effect of
∣∣sin(2θl (x, y))

∣∣ in each
layer in Eq.(3.36) into one parameter. The parameter δ is chosen such that it allows to
indirectly impose an upper bound on

∥∥∇θl (x, y)
∥∥ at all points and all layers through a

bound on the gradient of the lamination parameters.

The same upper bound factorδ is used for
∥∥∇V3(x, y)

∥∥ to simulate the effect of
∣∣sin(4θl (x, y))

∣∣
in each layer. Correspondingly, the following constraint is imposed on the gradient of
V3(x, y) (with h = 1) ∥∥∇V3(x, y)

∥∥≤ 4
p
δ

h

rmin
. (3.39)

In general, it is not possible to choose a priori a value of δ such that Eq.(3.32) is au-
tomatically satisfied during Step 1. However, a suitable value of δ can be identified a
posteriori as shown in A.1. A discussion on the choice of δ will be provided in the sequel
but for the foregoing analysis it is sufficient to remark that it is feasible to find a suitable
value.

3.3.2. NUMERICAL IMPLEMENTATION OF GRADIENT CONSTRAINTS ON THE

LAMINATION PARAMETERS

As indicated in the previous section, the indirect control of the steering of the fiber path
in Step 1 of the three-step optimization method requires the gradients of the lamination
parameters (i.e., ∇V1(x, y) and ∇V3(x, y)). In the present implementation, a four-noded
quadrilateral element with four Gauss points is used. For subsequent use, the basic no-
tation and interpolations are recorded here. In particular, the value of the lamination
parameters Vα, α= 1,3, at a Gauss point g is calculated by

Vα,g =
4∑

i=1
Ni ,g Vα,i , (3.40)

where Ni ,g is the shape function of the i th node evaluated at Gauss point g , and Vα,i

is the value of Vα at the i th node. Consequently, the gradient of Vα at Gauss point g is
calculated by

∇Vα,g =
4∑

i=1
∇Ni ,g Vα,i , (3.41)

where ∇Ni ,g = [
∂Ni ,g

∂x ,
∂Ni ,g

∂y ]T. Finally, the calculation of the norm of the gradient at each
Gauss point in an element is given by

‖∇Vα‖2 =
∑4

g=1 wg ‖∇Vα,g ‖2∑4
g=1 wg

, (3.42)

where wg = detJ is the determinant of the Jacobian matrix J of the mapping between
the physical domain and the master element at the g th Gauss point. The constraints
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Eqs.(3.38) and (3.39) are imposed element-wise using Eq.(3.42) with the corresponding
bound. Three different methods to apply curvature constraints will be described in the
next section.

3.4. METHODS TO APPLY CURVATURE CONSTRAINTS

The curvature constraint has been implemented in previous works directly in Step 2 in
an element-wise fashion in the form of steering constraints (see e.g., van Campen et al.
[23], Peeters et al. [24, 25]). This approach will be henceforth called the direct control
method. The method has the advantage to guarantee that the curvature constraint is
satisfied locally at each point of each layer in a VSL composite plate. However, since the
constraint is imposed during the angle retrieval step (Step 2 of the three-step method),
it is uncoupled from the primary objective functional of the first step. Consequently,
one drawback of this approach is that it may lead to a significant loss in performance
between Step 1 and Step 2 in terms of the primary objective functional.

To address this loss in performance using the direct control method, two new strategies
to apply the curvature constraints are proposed in this section. The first strategy is called
the indirect control method, where the gradient constraints are imposed on the lamina-
tion parameters in Step 1 only. The second strategy, referred to as the hybrid control
method, combines the use of the gradient constraints on the lamination parameters in
Step 1 and the steering constraints on the fiber angles in Step 2.

3.4.1. GENERAL THREE-STEP FRAMEWORK WITH CURVATURE CONSTRAINTS

Formally, the three methods (direct, indirect and hybrid) may be expressed in a general
three-step framework with curvature constraints. Each method corresponds to a dis-
tinct and characteristic set of parameters. In this framework, the Step 1 corresponds to
the primary objective functional, with or without gradient constraints on the lamination
parameters depending on the method. For definiteness, the primary objective in Step 1
is chosen as the compliance C of a VSL, normalized by a referential compliance C0 that
may correspond to an initial or a benchmark design. In principle the methods used here
may be applied to other types of objective functionals as long as they are parametrized
with lamination parameters as design variables. In Step 2 (angle retrieval step) the objec-
tive function D represents the sum over all nodes i of the difference between the optimal
stiffness matrix A∗

i obtained in Step 1 and the stiffness matrix Ai for a VSL with a finite
number of layers and a given set of fiber angles at the same node i , i.e.,

D =
n∑

i=1
A∗

i : A−1
i +

n∑
i=1

(A∗
i )−1 : Ai . (3.43)

The optimization problem in Step 2 is to minimize D with respect to the fiber angles on
each layer and for all nodes with or without steering constraints. If the steering con-
straints are taken into account, these may be imposed locally in each element and each
design layer as ζ2

e,l ≤ ζ2
max, where the value of ζe,l is the fiber path curvature in the eth

element and the l th design layer, and ζmax = 1/rmin being the upper bound based on the
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minimum turning radius rmin of the AFP (more details can be found in Peeters et al. [24]).
Hence, for all methods, Step 1 and 2 are formally expressed as follows:

1. The minimum compliance problem (primary optimization problem) is expressed
as

min
V1,V3

C (V1,V3)/C0 (3.44)

subject to 2V 2
1,i −V3,i −1 ≤ 0 (3.45)

V3,i −1 ≤ 0 i = 1. . .n (3.46)

‖(∇V1)e‖2 ≤ δ (2/rmin)2 (3.47)

‖(∇V3)e‖2 ≤ δ (4/rmin)2 e = 1. . .m (3.48)

2. The angle retrieval step

min
θ(i )

l

D(θ(i )
l ) (3.49)

subject to θ(i )
l ∈ [−π,π] i = 1. . .n (3.50)

ζ2
e,l ≤ ζ2

max e = 1. . .m, l = 1. . .nd (3.51)

The distinction between the methods is through the choice of the key parameters δ and
ζmax as indicated below. In order to distinguish the different types of constraints, the
term “gradient constraint” is primarily used for a gradient constraint on the lamination
parameters in Step 1, the term “steering constraint” refers to a constraint on the gradient
of the fiber angles per layer in Step 2 and the expression “curvature constraint” is used
interchangeably for both types of constraints.

3.4.2. DIRECT CONTROL METHOD

In Step 1 of the direct control method, the normalized compliance C /C0 is minimized
with respect to the lamination parameters without constraints on their local gradients.
However, rather than suppressing the constraints, it is formally equivalent to relax the
gradient constraints on the lamination parameters by setting δ→ 8 so that they will not
be active, hence the direct control method is characterized by a sufficiently large value
of δ. This approach has the advantage of employing the same code as other strategies
at an acceptable computational cost since the constraints do not become active. In Step
2 (angle retrieval step) the objective function D as given in Eq.(3.43) is minimized with
the parameter ζmax = 1/rmin chosen as an upper bound on the steering constraints, i.e.,
based on the actual minimum turning radius rmin.

3.4.3. INDIRECT CONTROL METHOD

In the proposed indirect control method, the normalized compliance C /C0 is minimized
in Step 1 with respect to the lamination parameters with constraints on their local gra-
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Table 3.1: Parameters for three different manufacturing constraint schemes

Method Gradient constraints in Step 1 Steering constraints in Step 2
Direct control δ→ 8 ζmax = 1/rmin

Indirect control δ ∈ [0,δ∗] ζmax →∞
Hybrid control δ ∈ (δ∗,∞) ζmax = 1/rmin

dients. In this case, it is not possible to guarantee a priori that the actual fiber path cur-
vature ζ remains below a critical value ζmax (or, equivalently, that the radius of curva-
ture r remains above a critical value rmin). Hence, it is necessary to choose a stringent
upper bound factor δ ∈ [0,δ∗] where the limit value δ∗ is the largest upper bound that
indirectly restricts the curvatures for a manufacturable design in Step 1 without steering
constraints in Step 2. This value δ∗ is not known a priori hence the actual upper bound
factor δ used requires calibration. In Step 2, the angle retrieval step, the difference D is
minimized without a steering constraint, which formally can be seen as taking a suffi-
ciently large upper bound ζmax →∞. In this case, the steering constraints in Step 2 are
not active.

3.4.4. HYBRID CONTROL METHOD

The proposed hybrid control method consists of minimizing the normalized compliance
C /C0 of the VSL using the gradient constraints on the lamination parameters in Step
1 but with a relaxed upper bound factor δ ∈ [δ∗, 8) and, subsequently, minimizing the
difference D with local steering constraints on the fiber angles in Step 2 using ζmax =
1/rmin. Observe that the upper bound factor δ in the hybrid control method is chosen in
a different range than for the indirect control method, hence in general the intermediate
design obtained after Step 1 (primary optimization) will in general be different for the
indirect and hybrid methods. Furthermore, because of this relaxed value for the upper
bound factor, the hybrid control method requires that the steering constraints in Step
2 should be based on the actual minimum turning radius (just like the direct control
method) in order to guarantee that the manufacturing requirements are satisfied.

For clarity, the formulations of the three different curvature constraint methods are sum-
marized in Table 3.1. The three methods are applied to a benchmark case with the pur-
pose of assessing the relative loss in performance associated to each method.

3.5. TEST CASE 1: RECTANGULAR PLATE WITH POINT LOAD

To study the distinct methodologies to impose curvature constraints, a simple test case
of a cantilever rectangular plate is considered. The dimensions of the plate are a = 1.2 m,
b = 0.4 m. The left edge is clamped and a unit point load F is applied at the right bottom
corner. The linear elastic properties of each ply are taken as E1 = 148 GPa, E2 = 9.65 GPa,
G12 = 4.55 GPa, ν12 = 0.3 with 1 denoting the local fiber direction. The quasi-isotropic
layout is used as a reference to compare the performance of the non-homogeneous op-
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timal design, hence the objective is to minimize C /CQI with C being the compliance of
a non-homogeneous design and CQI being the compliance of the quasi-isotropic lay-
out.

It is worth pointing out that, due to a lack of an analytical solution for the optimization
problem, a verification of the finite element implementation and the (unconstrained)
optimization algorithm was done by comparing the results of the current work with
those presented in Nagy [30], which were obtained from an independently-developed
code and algorithm. It was found that the results obtained from the current code for the
unconstrained minimum compliance problem had a relative difference of less than 3%
compared to the results found in Nagy [30]) using the same geometrical, material and
design data. Both solutions provided similar distributions of V1 and V3 and small differ-
ences may be attributed to the fact that the work of Nagy [30] uses isogeometric analysis
whereas the present code uses a more traditional finite element implementation. This
comparison provides (indirect) evidence for verification of the finite element and opti-
mization code used in the present analysis.

3.5.1. PRIMARY TEST ON DIRECT, INDIRECT AND HYBRID CONTROL METHOD

To illustrate in detail the effect of the curvature constraints with the direct, indirect and
hybrid control methods, one specific case for each method is presented in this section
(i.e., for a fixed pair of values δ and ζmax and a fixed number of design layers nd ). In
particular, for the purposes of the angle retrieval step (Step 2), all cases presented in this
section are solved with nd = 6 design layers using a symmetric and balanced laminate,
hence with nl = 24 layers. The thickness of each layer is 0.6 mm and hence the total
thickness is 14.4 mm. The initial lamination parameters at each node in Step 1 are ob-
tained with design layers oriented as [40°,70°,40°,10°,70°,70°], the initial fiber angles in
Step 2 are 10° for each layer at each node. The actual minimum allowable turning radius
of an AFP machine is chosen in this test case as rmin = 0.8 m.

DIRECT CONTROL METHOD WITH REPRESENTATIVE MINIMUM TURNING RADIUS

In the direct control method, the value of δ is chosen sufficiently large so that the gradi-
ent constraints are not active during Step 1 (i.e., δ→∞). As indicated above, the steering
constraints are enforced in this case with ζmax = 1/rmin = 1/0.8m−1. The distributions of
V1 and V3 of the optimal solution from Step 1 and Step 2 are shown in Figure 3.3. From
the figure, it can be observed that the distributions of both V1 and V3 after Step 1 have
relatively steep gradients with values changing from −1 to 1 throughout a small region,
which reflect the fact that no gradient constraints are active in Step 1. After retrieving
the fiber angles (i.e., Step 2 of the method) for a given number of design layers (nd = 6 in
this case), the corresponding lamination parameters vary more gradually as may be ob-
served in the figure. Furthermore, comparing the optimal lamination parameters from
Steps 1 and 2, it can be seen that there is a significant difference, which implies that
there is a loss in performance of the primary objective functional since the design space
in Step 1 is larger (unconstrained) than the design space in Step 2 (constrained). In-
deed, in this example the optimal normalized compliance from Step 1 is 0.482 whereas
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fiber paths in the first layer and its balanced counterpart are also shown (Step 3)

the compliance for the “manufacturable” design obtained after Step 2 is 0.593, which
implies a relative loss of performance of 23% (i.e., increase of compliance to achieve a
manufacturable design).

The fiber paths of the first design layer (i.e., the outer layer) are also shown in Figure 3.3
(Step 3). In general, the resulting design follows the general pattern that is expected for
a minimum compliance laminate whereby the fibers optimally oppose the deformation
by transmitting the applied load on the right to the clamped edge on the left following
a classical arch-like layout. The key aspect in the present case pertains to the curvature.
The resulting design complies with the manufacturing constraint of a minimum turning
radius, which is in fact attained locally in this design after Step 2.

INDIRECT CONTROL METHOD WITH IMPLICIT REPRESENTATIVE MINIMUM TURNING RA-
DIUS

In the indirect control method, the gradient constraints on the lamination parameters
in Step 1 need to be sufficiently stringent to control the actual minimum turning radius
locally in each layer. It was found through numerical experimentation, as shown in A.1.1,
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that the value of δ= 0.08 allows to satisfy the curvature constraints at every layer without
explicitly imposing a steering constraint (i.e., using formally zero as minimum radius of
curvature or, equivalently, infinity as a maximum curvature, i.e., ζmax →∞).

The distributions of the optimal V1 and V3 from Steps 1 and 2 are shown in Figure 3.3.
Clearly, the effect of a small value δ can be seen in the figures since the lamination pa-
rameters after Step 1 change slowly from point to point. Correspondingly, the design
itself is nearly homogeneous and, as anticipated, the design after Step 2 is rather simi-
lar to the design of Step 1 since the (constrained) design space of Step 1 can be relatively
well approximated with the (unconstrained) design space of Step 2 with six design layers.
Indeed, the normalized optimal compliance in Step 1 is 0.636 whereas the normalized
compliance of the “manufacturable” design after Step 2 is 0.647, which implies a small
increase of 1.7%. This small difference, which may be also observed in the contour plots
of V3 between Step 1 and 2, can be ascribed to the fact that not all lamination parameters
can be matched exactly with only 6 design layers (see Setoodeh et al. [38]).

This example illustrates that the indirect control method can achieve a manufacturable
design (e.g., if one would have used rmin = 0.8 m as a minimum turning radius for AFP),
but it is in general inefficient in terms of exploiting the local curvature. Indeed, the fiber
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paths of the first layer (and also in other layers) are relatively straight and the smallest
turning radius in the design is 1.34 m, which implies that the steering capability is not
being used to its fullest extent.

HYBRID CONTROL METHOD WITH REPRESENTATIVE MINIMUM TURNING RADIUS

The third method used is the hybrid control method, which combines the direct con-
trol method with the indirect control method but using a distinct set of parameters. As
mentioned above, the gradient constraints in Step 1 are relaxed since, as opposed to the
indirect control method, it is not the intention to fully enforce the curvature constraint
in Step 1. The rationale of this method is to partially enforce the curvature constraint
in Step 1 and use the steering constraints in Step 2 to guarantee that the manufacturing
constraints are satisfied. Partially enforcing the curvature constraints has the advantage
of coupling geometrical requirements to the primary objective functional but leaving
sufficient flexibility in the design space to prevent the negative effects of the indirect
control method. This pre-conditioning in the design mollifies the negative effect of the
direct control method, which imposes a geometrical curvature constraint in an uncou-
pled fashion in Step 2.

The optimal V1 and V3 in Step 1 of the hybrid control method, with relaxed gradient
constraints on the lamination parameters by δ = 0.8 and local steering constraints with
maximum curvature ζmax = 1/rmin = 1/0.8m−1 is shown in Figure 3.5.

In this case, the local steering constraints in Step 2 only induce relatively small changes
during the angle retrieval step as can be observed comparing the lamination parame-
ters from Steps 1 and 2. Indeed, the normalized optimal compliance from Step 1 is 0.523
whereas the normalized compliance from Step 2 is 0.549, indicating a relatively small in-
crease of about 5%. From the fiber paths of the first layer (outer layer) shown in Figure 3.5
(Step 3), it can be seen that the design obtained from the hybrid method also follows a
classical arch-like approach for minimum compliance. In this case the design complies
with the local curvature constraint with a combination of active gradient constraints in
Step 1 and active steering constraints in Step 2.

3.5.2. COMPARISON OF THE OPTIMAL DESIGNS FOR ONE REPRESENTATIVE

MINIMUM TURNING RADIUS

The numerical results of the primary test in Section 3.5.1 using the representative value
of the minimum turning radius rmin = 0.8 m are summarized in Table 3.2. From the ta-
ble, it can be observed that at the end of Step 1 the best design (smallest compliance)
is obtained from the direct control method, followed by the hybrid control method and
finally the worst design is the one obtained from the indirect control method. This out-
come was anticipated since it follows the size of the corresponding design spaces (i.e.,
unconstrained for the direct control method, partially constrained for the hybrid control
method and fully-constrained for the indirect control method). However, the order of
performance changes for the final design obtained after Step 2, where the hybrid control
method provides the best design, followed by the design obtained from the direct con-
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using the hybrid control method with δ= 0.08, ζmax = 1/rmin = 1/0.8m−1 and 6 design layers. For illustration

purposes, the fiber paths in the first layer and its balanced counterpart are also shown (Step 3)

trol and finally the worst design corresponds to the one associated to the indirect control
method.

The fact that the hybrid control method delivers the best design among the three meth-
ods can be ascribed to the coupling between the curvature constraints (via the gradient
of the lamination parameters) and the primary objective functional. Indeed, the partial
loss in performance in the intermediate design obtained from the hybrid method after
Step 1 is compensated by a less significant loss in performance in Step 2 compared to the
direct control method, which enforces the geometrical curvature constraint in an un-
coupled fashion, thus locally increasing the radius of curvature without accounting for
changes in the structural stiffness. Observe that the indirect control method also couples
the curvature constraint to the primary objective, however the constraints are too strict
in the sense that, as shown in the table, the smallest turning radius in the design remains
significantly above the allowed minimum turning radius. From this perspective, the hy-
brid control method may be interpreted as a “pre-conditioner” of the design in Step 1
that mollifies the loss of performance in Step 2 while it still takes full advantage of the
steering of the fiber path since it pushes the local steering radius towards its minimum
value locally.
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Table 3.2: Numerical results of test case 1 (rectangular plate) for rmin = 0.8 m.

Direct Indirect Hybrid
δ→∞ δ= 0.08 δ= 0.8

Normalized optimal compliance after Step 1 0.482 0.636 0.523
Normalized compliance after Step 2 0.593 0.647 0.549

Smallest turning radius after Step 2 (m) 0.8003 1.34 0.8002

3.6. COMPARATIVE ANALYSIS OF TEST CASE 1 FOR DISTINCT VAL-
UES OF MODEL PARAMETERS AND MINIMUM TURNING RA-
DIUS

In the previous section, it is shown that the hybrid control method provides the best
design considering a curvature constraint for a selected value of the minimum turn-
ing radius, namely rmin = 0.8 m. In this section, the comparative analysis is extended
to a wide range of values with rmin = {0.4,0.8,1.2,1.6,2.0} m and δ = {0.05,0.08,0.8} to
have an overall assessment of the performance of the direct, indirect and hybrid control
methods. The comparative analysis is done both in terms of the compliance and compu-
tational efficiency. The number of design layers used for all calculations in this section
is taken as nd = 6 design layers.

3.6.1. COMPARISON OF THE OPTIMAL COMPLIANCE IN STEP 2 OF THE THREE

METHODS

The optimal normalized compliance for different values of the minimum turning radius
rmin obtained from the direct, indirect and hybrid control methods which satisfies the
curvature constraint at the end of Step 2 is shown in Figure 3.6. As a reference, the opti-
mum unconstrained compliance obtained from the lamination parameters is indicated
in the figure as a dashed line. This reference value corresponds formally to a zero mini-
mum turning radius and an unspecified (infinite) number of design layers of arbitrarily
small thickness. As expected, the normalized optimal compliance increases for all meth-
ods as the minimum allowable turning radius rmin increases. This is due to the reduced
capacity to steer the fibers as the minimum allowable turning radius rmin increases,
which prevents the fibers to optimally transmit the loads throughout the structure to
increase its structural stiffness and hence reduce its structural compliance.

Since the reference dashed line without curvature constraint also coincides with the per-
formance of the intermediate design obtained after Step 1 of the direct control method
(δ→∞), it can be seen from Figure 3.6 that there is a significant loss in performance be-
tween Step 1 and Step 2 for the direct control method. Indeed, imposing the curvature
constraint only via steering constraints results in increases of compliance ranging from
about 14% for rmin = 0.4 m to about 35% for rmin = 2 m. This indicates that the optimal
stiffness distribution obtained in Step 1 of the direct control method can not be closely
matched when the curvature of the fiber angles is constrained in Step 2.
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Moreover, as may be inferred from Figure 3.6, the indirect control method provides the
worst design of the three methods (highest optimal compliance) for the whole range of
minimum allowable turning radius rmin. This is due to the fact that the gradient con-
straints on the lamination parameters with δ = 0.05 and δ = 0.08 are so stringent that
the design domain is reduced severely (i.e., limited steering). Higher values of δ are not
acceptable in the indirect control method because the curvature constraints will be vio-
lated as shown in A.1.

The hybrid control method generates the best design of the three methods provided that
the value of the upper bound factorδ is appropriately chosen. Indeed, as shown in Figure
3.6, the compliance of the designs obtained from the hybrid control method are the low-
est for all values considered for the minimum allowable turning radius rmin with δ= 0.8.
However, if the value of δ is taken too low, namely δ< δ∗, then the hybrid method actu-
ally becomes the indirect method and the steering constraints in Step 2 become inactive.
Consequently, the improvements from the hybrid control method require a value of δ
that is neither too low (where it coincides with the indirect control method) nor too high
(where it coincides with the direct control method). A proper choice of δ is therefore crit-
ical for the implementation of the hybrid control method which typically requires some
calibration, namely a test to check that both the gradient constraints in Step 1 and the
steering constraints in Step 2 are active. More details on the choice of δ are provided in
A.1.
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3.6.2. COMPARISON OF THE COMPUTATIONAL COST FOR THE CURVATURE

CONSTRAINT METHODS

In general, multistep methods that use homogenized parameters such as lamination pa-
rameters tend to outperform design formulations that explicitly use layer-by-layer an-
gles as design variables in a primary optimization problem (single step formulation).
A comparison between single step and multistep methods is beyond the scope of the
present work, partly because the results of the comparative analysis may strongly de-
pend on the numerical implementation and the hardware used. However, imposing
curvature constraints in a multistep method increases the computational cost, hence
it is relevant to quantify this effect within the same computational framework. The per-
formance indicators reported here are only meant to provide values for a comparative
analysis and should not be taken as representative of a highly optimized code and/or
hardware.

The CPU time of each design sample analyzed in Section 3.6.1 is shown in Figure 3.7.
From the figure it can observed that the indirect control method with δ = 0.05 requires
the least amount of time to converge, followed by the case of δ = 0.08 with the same
method. The reason is that the number of active constraints is relatively small, i.e., only
the gradient constraints on the lamination parameters are active. It is also worth point-
ing out that in practice the sensitivities of the local steering constraints, which can be
computationally costly, are not computed in the implementation of the indirect control
method.
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Indeed, the CPU time for the hybrid control method with δ= 0.8 increases further com-
pared to the indirect control method due to the sensitivity analysis for the local steering
constraints in Step 2. Similarly, The CPU time required for the direct control method is
the highest among the three methods in general because more steering constraints be-
come active in Step 2. In addition, although not reported here in detail for reasons of
conciseness, it was found that the number of iterations in Step 1 for the direct control
method is actually larger than for the other methods, which implies that the imposing
gradient constraints in Step 1 actually helps to reduce the computational time.

From the results shown in Figure 3.5 and Figure 3.6, it can be seen that the hybrid control
method not only provides the best optimal compliance and but it is also more efficient
in terms of computational cost compared to the direct control method.

3.6.3. OPTIMAL UPPER BOUND FACTOR δ IN THE HYBRID CONTROL METHOD

As indicated above, the enhanced performance of the hybrid control method depends
on the choice of the upper bound factor δ which should be large enough to avoid the
excessive constraints in Step 1 (as in the indirect control method) but it should be small
enough to provide a useful coupling between the primary objective and the curvature
constraints and avoid an uncoupled formulation (as in the direct control method). This
compromise implies that there should be an optimum value for the upper bound fac-
tor δ. In view of this, five sets of numerical tests are implemented to detect the optimal
range of the upper bound factor δ for the hybrid control method. The minimum allow-
able turning radius rmin is chosen among {0.4,0.8,1.2,1.6,2.0} m and the value of δ is
uniformly varied from 0.4 to 1.6 for each set.

The normalized compliance obtained in Step 2 of the hybrid control method is shown
in Figure 3.8. From the figure, it can be observed that for the larger values of the min-
imum allowable turning radius considered (namely rmin = 1.6m,2.0m), the compliance
obtained from the hybrid control method only changes slightly, indicating a weak de-
pendency on the exact value of the upper bound factor δ for the range of values consid-
ered in the parametric analysis. The compliance decreases slightly for increasing values
of δ, suggesting that the optimal value may be larger than the largest value analyzed.
Nonetheless, the conclusion is also that for large values of the minimum allowable turn-
ing radius, there is only a limited amount of optimization that can be performed with
fiber steering and most of the optimization comes simply from choosing a stacking se-
quence with nearly straight fibers, in which case the influence of the factor δ becomes
less important. However, if there is more freedom for the steering of fiber path, which
corresponds to smaller values of rmin such as 0.4 m and 0.8 m, the results shown in Fig-
ure 3.8 indicate an increased sensitivity with respect to the upper bound factor δ, with
an optimum value around δ= 0.8 for rmin = 0.4 m and around δ= 1 for rmin = 0.8 m. In
general, the results suggest that the optimal value of δ increases with increasing values
of rmin, which would mean that the increase in δ has to compensate the increase in rmin

to limit the changes in the upper bounds in Eqs. (3.38) and (3.39). However, an analyti-
cal expression cannot be easily determined and the optimal value of δ currently requires
numerical calibration.
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3.7. TEST CASE 2: SQUARE PLATE WITH A HOLE UNDER DIS-
TRIBUTED LOAD

To further explore the performance of the three optimization strategies, a second design
case is analyzed, namely a minimum compliance problem for a square plate with a cir-
cular hole clamped on one edge and subjected to a uniformly distributed tangential load
t = 20 kNm−1 on the opposite edge. The intention is to study a more complex geometry
that is also prototypical of a cut-out as commonly encountered in aerospace structures.
The side length of the square plate is a = 0.4 m and the radius of the cut-out is R = 0.1
m. As in the previous example, The quasi-isotropic layout is used as a reference to com-
pare the performance of the non-homogeneous optimal design. For the angle retrieval
step, nd = 6 design layers are used and, where applicable, the minimum allowable turn-
ing radius in this case is rmin = 0.2 m. The chosen value of rmin is relatively low in terms
of current AFP technology but it is chosen in accordance with the panel’s dimension to
allow for a more complex design with more fiber steering. The material properties of the
laminate are the same as in test case 1.

3.7.1. DIRECT CONTROL METHOD

With the direct control method, the optimal values for the lamination parameters V1 and
V3 from the unconstrained Step 1 and the constrained Step 2 are shown in Figure 3.9.
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fiber paths in the first layer and its balanced counterpart are also shown (Step 3)

Similar to the previous test case, the values of the lamination parameters after Step 1
have relatively steep gradients as they vary from 1 to -1 throughout a small region; the
values are then forced to have a more gradual change after imposing the steering con-
straints in Step 2.

For illustration purposes, the fiber path orientations of the first layer are also shown in
Figure 3.9 as part of Step 3 of the three-step method. In this design, the local steering
constraint was found to be active in all design layers, i.e., the smallest turning radius in
each layer coincided with the minimum allowable turning radius rmin = 0.2 m. From the
fiber paths, it is possible to recognize that the fiber steering design recovered from Step
2 contains classical aspects of maximum stiffness layouts, namely that the load is opti-
mally transmitted from the edge where it is applied to the rigid support on the opposite
side, adapting the path to the traction-free surfaces on the cut-out and the correspond-
ing areas of stress concentrations along the cut-out. The effect of the steering constraints
in Step 2 is that the performance of the design is reduced since the normalized com-
pliance increases from 0.613 in Step 1 to 0.698 in Step 2, which represents a change of
nearly 14 %. This is a relatively important loss in performance in optimization problems
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in which the margin of improvement is often in the same order of magnitude. Indeed,
compared to the quasi-isotropic design, a significant part of the improvement is lost due
to the curvature constraint imposed by manufacturing limitations.

3.7.2. INDIRECT CONTROL METHOD

Through numerical tests (not shown here for conciseness), it was determined that choos-
ing an upper bound factor δ = 0.12 in test case 2 guarantees that the design obtained
from the indirect control method satisfies the curvature constraints with rmin = 0.2 m.
The corresponding optimal V1 and V3 after Steps 1 and 2 are shown in Figure 3.10, to-
gether with the fibers paths of the second layer of the design (Step 3).

In this case, the second layer is selected for illustration purposes since it contains the
smallest turning radius of all layers. From Figure 3.10, it can be observed that the design
consists of nearly straight paths due to the stringent constraints in Step 1. Since the lam-
ination parameters are nearly homogeneous, they can be easily matched with straight
paths and nd = 6 design layers is sufficient for a good approximation where the steer-
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Figure 3.11: Optimal lamination parameters V1 and V3 for minimum compliance after Steps 1 and 2 obtained
using the hybrid control method with δ= 0.08, ζmax = 1/rmin = 1/0.8m−1 and 6 design layers. For illustration

purposes, the fiber paths in the first layer and its balanced counterpart are also shown (Step 3)

ing constraints are not active. Indeed, the values of the lamination parameters in Step 2
are nearly identical as those in Step 1. Consistent with the strong limitations in steering
imposed by the indirect control method, the optimal compliance between Step 1 (equal
to 0.796) and Step 2 (equal to 0.802) does not change significantly. The smallest turning
radius in the second design layer is 0.3509 m (located around the left bottom part of the
hole) which is significantly larger than the minimum allowable turning radius rmin = 0.2
m.

3.7.3. HYBRID CONTROL METHOD

In the hybrid control method, the upper bound factor is chosen in this test case as δ= 1.0
in Step 1. This value was found based on a simple scan of various values of δ using a
similar approach as the one discussed for test case 1. The corresponding optimal values
of V1 and V3 in Steps 1 and 2 are shown in Figure 3.11 with the first design layer as a visual
reference of the optimal design.

In this case, the normalized optimal compliance from Step 1 is 0.632, and the compli-
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Table 3.3: Numerical results of test case 2 (square plate with a central hole) for rmin = 0.2 m.

Direct Indirect Hybrid
δ→∞ δ= 0.12 δ= 1.0

Normalized optimal compliance Step 1 0.613 0.796 0.632
Normalized optimal compliance Step 2 0.698 0.802 0.679

Smallest turning radius [m] 0.20003 0.3509 0.2002

ance corresponding to the retrieved angles in Step 2 is 0.679, hence the performance
loss between the two steps is relatively moderate (increase of 7.4% in compliance). The
smallest turning radius found in all layers coincides with the allowable minimum value
0.2 m.

3.7.4. COMPARISON OF THE OPTIMAL DESIGNS FOR ONE REPRESENTATIVE

MINIMUM TURNING RADIUS

In this section, a comparison is made between the designs for the square plate with a
central hole using the direct, indirect and hybrid control methods. The results are sum-
marized in Table 3.3 for the specific case of rmin = 0.2 m.

For the manufacturable designs obtained at the end of Step 2 for test case 2, the hybrid
control method generates the design with the best performance, which is similar to the
results for the rectangular plate analyzed in Section 3.5.2. As previously indicated, the
improved performance of the design obtained from the hybrid control method can be
ascribed to the suitable combination of a partial enforcement of the curvature constraint
during Step 1, which couples manufacturing constraint to the mechanical performance.
Although in this case the differences between the direct and hybrid control method are
smaller, the design obtained from the hybrid control method is superior in terms of per-
formance, which again indicates that the hybrid control method is the best option for
imposing curvature constraints in the three-step optimization method. For the sake of
conciseness, no parametric analysis is reported here for test case 2 (i.e., only the results
for the minimum turning radius rmin = 0.2 m are shown), but the results for other values
of rmin indicate a similar ranking in terms of the performance of the designs obtained
from the three methods.

3.8. CONCLUSION

In this chapter, the three-step optimization design method is modified to reduce the
performance loss between Step 1 (optimization with respect to lamination parameters)
and Step 2 (angle retrieval step) when curvature constraints are considered. A simple
indirect control method is proposed to constrain the fiber path curvature through the
use of gradient constraints on the lamination parameters in the first step while carrying
out an angle retrieval step without steering constraints on the fiber curvature. A sec-
ond method, which combines a relaxed version of the indirect method with an existing
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method (the direct control method), is also proposed to satisfy curvature constraints in
designs of composite structures for AFP technology.

Through numerical experimentation in two representative examples, it is shown that
the indirect control method can indeed produce feasible designs but it severely limits
the design space and prevents taking full advantage of the fiber steering capacity of AFP
machines. Due to its detrimental effect on the optimization capacity, the indirect con-
trol method is not recommended as a stand-alone strategy. However, and more impor-
tantly, numerical results demonstrate that designs obtained from the new hybrid con-
trol method outperform individual designs obtained from the direct and indirect control
methods and, in addition, tend to converge faster to a solution compared to the existing
direct control method.

The improved performance of the designs obtained from the hybrid control method can
be ascribed to a couple of factors, namely (1) the global coupling between curvature con-
straints and primary objective in the first step allows to partially increase the curvature
throughout the structure while accounting for the transmission of loads (global redis-
tribution of loads) and (2) the relaxation of the constraints in Step 1 provides sufficient
flexibility to locally adjust the fiber path in Step 2 up to the minimum allowable turning
radius, hence fully employing the fiber steering capacity.

The partial enforcement of the curvature constraints in the hybrid control method via
the gradient constraints in Step 1 also proves to be beneficial in terms of computational
time compared to the direct control method. In view of these findings, the hybrid control
method becomes the recommended strategy to enforce curvature constraints, at least in
the context of the minimum compliance problem. Applications of this method to other
commonly-used objectives, such as buckling or strength, are to be implemented in the
future work.
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4
EFFICIENT STRENGTH

OPTIMIZATION OF VARIABLE

STIFFNESS LAMINATE

When we see men of virtue, we should think of equaling them
见贤思齐

Confucius

4.1. INTRODUCTION

In structural design, it is necessary to verify that the internal loads during operation do
not exceed an allowable limit, also named as failure strength, in order to guarantee the
integrity of a structure. This process typically requires the computation of a stress or
strain-based scalar measured at every point in the structure under design loads and,
subsequently, a verification that it does not exceed the critical value. Correspondingly,
the formulation of a strength-oriented optimal design problem requires this local mea-
surement (i.e., either element or point wise) to be constrained. One way to formulate
such a problem is using the min-max format in which the maximum local failure stress
is minimized with respect to the design (Khani et al. [1]). However, a significant draw-
back of this format is that an extreme computational cost is demanded in order to deal
with a large scale problem. Two principal sources of the computational cost are the sen-
sitivity analysis executed for every individual failure index and the massive size of the
sub-problem to be solved in the optimization.

In order to reduce the computational cost of structural optimization with local con-
straints, p-norm formulation can be applied to aggregate the local constraints into a
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single global constraint in the design domain. In contrast to the min-max formulation,
the computational work of the sensitivity analysis using the p-norm failure index can
be reduced dramatically with the adjoint method, since the local failure indices are con-
densed into a global one. Simultaneously, the size of the subproblem is reduced effec-
tively, which makes the optimization efficient to be solved. This approach was used by
Duysinx and Sigmund [2] to reduce the computational cost of stress constrained topol-
ogy optimization for an isotropic material. Le et al. [3] proposed an adaptive normal-
ization scheme as well as an interlacing regional stress measure for the p-norm stress
constraint, which together provide direct control on the local stresses. Holmberg et al.
[4] proposed two different ways of clustering the stress constraints in the p-norm formu-
lation, which effectively reduced the stress concentration in topology optimization. The
p-norm aggregation has also been applied in a multi-constrained and multi-load topol-
ogy optimization by Deng and Suresh [5]. In order to successfully constrain the maxi-
mum stress, a correction for the upper bound p-norm stress constraint was proposed by
Lee et al. [6] in topology optimization with the phase-field method. It was achieved by
scaling the upper bound p-norm formulation with a scalar computed from the ratio be-
tween the lower bound p-norm formulation and its upper bound counter-part. Kiyono
et al. [7] used a multi-p-norm to maximize the safety factor in topology optimization.
Moreover, Verbart et al. [8] demonstrated that the lower bound p-norm function also
has a relaxation effect on the stress constraint in topology optimization.

The aforementioned research has focused on isotropic materials. Whereas, relevant re-
search on efficient strength-oriented optimization of novel composite laminate is rela-
tively rare due to the increasing complexity in addressing the failure criteria. Based on
the discrete material optimization (DMO) method developed by Lund and Stegmann
[9], the p-norm was applied to aggregate the failure indices based on maximum strain or
maximum stress criterion (Lund [10]). It was utilized as both objective and constraints
in the numerical tests which were solved by sequential linear programming (SLP). In a
follow-up research (Sjølund and Lund [11]), the p-norm for strength constraints consid-
ering fiber failure and inter-fiber failure separately were applied in the design of wind
turbine blades made of composite material. Another relevant work recently available
was from Mirzendehdel et al. [12], who employed the p-norm aggregation on failure
constraints based on the Tsai-Wu failure criterion in topology optimization for additive
manufacturing using an anisotropic material.

One commonly-used method for optimal design of variable stiffness laminate (VSL) is
the three-step optimization method (Khani et al. [1], IJsselmuiden [13], Setoodeh et al.
[14], IJsselmuiden et al. [15], Dillinger et al. [16], Abdalla et al. [17], Hao et al. [18]), which
relies on the lamination parameters as a primary set of design variables. In the first step
of the method, the optimal lamination parameters are identified. Subsequently, in the
second step, the fiber angles in each ply of a composite laminate are retrieved from the
optimal lamination parameters. Finally, in the third step, the fiber paths of the VSL are
constructed based on the fiber angles obtained.

The aim of this chapter is two-fold: (i ) to develop and implement a p-norm approach
for strength optimization of the VSL using the lamination parameters as primary de-
sign variables, and (i i ) to compare the performance of the p-norm approach with an
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existing min-max bound formulation (Khani et al. [1]) within the same three-step op-
timization framework. Till now, the p-norm approach has not been investigated with
the lamination parameters as design variables in the three-step optimization framework
for strength optimization. Moreover, the advantage of the current work is that it can
be generalized to the DMO or to address different failure criteria in strength optimiza-
tion.

In order to validate and simplify the Tsai-Wu failure criterion in terms of the lamination
parameters in this work, an elliptical formulation of the conservative failure envelope (
Khani et al. [1]) is employed. The p-norm failure index is then obtained with the up-
per bound p-norm function. To set up the sub-problem, a two level approximation for
the p-norm failure index is employed. Finally, the strength optimization is resolved with
Mehrotra’s predictor-corrector interior point method (Mehrotra [19]) within the frame-
work of conservative convex separable approximation (CCSA) by Svanberg [20]. In the
numerical results, the effect of the p value on the optimal result, the mesh convergence
of the numerical results and the CPU time are checked in detail.

The structure of this chapter is as follows: Section 4.2 describes the structural analysis
of the VSL, the p-norm failure index and its two level approximation. The formulation
of the strength optimization and the corresponding methods to solve the problem are
discussed in Section 4.3. In Section 4.4, numerical results on the effect of p and the
mesh convergence of the optimal solutions and comparison with min-max bound for-
mulation are demonstrated for a square plate with a cut-out. Another numerical case of
the L-shaped plate is tested in Section 4.5 to examine the performance of the proposed
strength optimization under a extreme condition. Finally, concluding remarks are pro-
vided in Section 4.6.

4.2. STRENGTH ANALYSIS FOR VARIABLE STIFFNESS LAMINATE

AND THE GLOBAL FAILURE INDEX

The structural analysis of the VSL is undertaken using the well-established finite element
method, which aims to compute the stress or strain in a model for strength estimation.
The strength of the VSL is represented locally by a failure index based on the Tsai-Wu
failure criterion in this work. In order to reduce the computational cost of the strength
optimization, a global aggregation is introduced with the upper bound p-norm formu-
lation to aggregate the local failure indices into a global one, also referred to as “p-norm
failure index”. Subsequently, a two level approximation is employed for the global failure
index to ensure both the convexity and conservativeness of the sub-problem required
by the convex optimization framework. Details about the structural analysis of the VSL,
p-norm failure index, its two level approximation are described in this section.

4.2.1. STRUCTURAL ANALYSIS FOR THE VSL

The structural analysis for the VSL in Step 1 of the three-step optimization method is
implemented with the finite element method (FEM) in this work, where the standard
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procedure remains but the material stiffness is defined node-wise in the model. In par-
ticular, the 8-node serendipity element (Kikuchi et al. [21]) is applied in this work, which
aims to enhance the continuity of the stress field. This is necessary based on the pre-
vious experience of sizing optimization with stress constraints (discussed in Chapter 2).
The material stiffness is defined on the vertices of the element, which are also named as
design nodes in the following text. The calculation of the material stiffness of the VSL is
based on the classical lamination theory.

To evaluate the stiffness matrix in one element, the material stiffness at a Gauss point
is obtained using a reciprocal interpolation. Taking the in-plane stiffness matrix Ag at
Gauss point g as an example

A−1
g =

n∑
i=1

Ri ,g A−1
i , (4.1)

where Ai is the stiffness matrix at the i th design node in the element, Ri ,g is the shape
function of the i th design node estimated at the g th Gauss point, and n is the total num-
ber of design nodes. In the remainder of the text, the subscript g refers to the value at
the g th Gauss point, and the subscript i indicates the value at the i th design node con-
sistently.

Once the stiffness matrix is obtained for each element, the global stiffness matrix K can
be obtained following the standard assembling procedure. The displacement u for each
degree of freedom can be obtained through

Ku = f, (4.2)

where f is the external force applied on the model. Thereafter, the strain or stress of the
VSL can be obtained for strength calculation.

4.2.2. p-NORM FAILURE INDEX

First of all, an elliptical formulation of the conservative failure envelope (Khani et al.
[1]) is applied in this study to approximate the safe region given by the Tsai-Wu failure
criterion. The motivation is to simplify the conservative failure envelope and to ensure
its effectiveness with respect to the lamination parameters. Since the explicit fiber angles
are unknown a priori from the lamination parameters in the optimization, the elliptical
formulation aims to approximate the Tsai-Wu failure criterion in the strain space using
a quadratic function for the most critical fiber angles. Thereafter, the failure index r can
be calculated as the strength measurement of the VSL from

a0r 2 +a1r +a2 = 0, (4.3)

where the coefficients a0, a1 and a2 are given as follows:

a0 =C0, (4.4)

a1 =C I e I +C I I e I I , (4.5)

a2 =C I ,I e2
I +C I I ,I I e2

I I +2C I ,I I e I e I I . (4.6)
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The values of e I and e I I are the principal strains, with the subscripts refer to the max-
imum and minimum strain directions, respectively. The coefficients C0, C I , C I I , C I ,I ,
C I I ,I I and C I ,I I are obtained from material strength and material stiffness matrix. De-
tails associated with the calculation are discussed in Khani [22]. To estimate the local
failure index, Eq.(4.3) is first solved at each Gauss point in the FEM model. The criti-
cal envelope is defined by r = 1. The safe region, where no strength failure occurs, is
bounded by r ≤ 1.

The nodal failure indices at the design nodes are then interpolated from the values at
each Gauss point. This is for the convenience to have both the failure indices and the
design variables (the lamination parameters) defined at the design nodes in the two level
approximation (see Section 3.2.4). The failure index at the i th design node is recovered
using the variational formulation described in Nagy et al. [23], which results in

ri =
∫

r Ri dΩ∫
Ri dΩ

, (4.7)

where Ri is the linear shape function of quadrilateral element for the interpolation of
the Lagrange multiplier in the variational stress constraint formulation Eq.(2.10), Ω is
the entire design domain.

Once the nodal failure index is obtained, the upper bound p-norm failure index r P N can
be estimated by

r P N =
(∫

Ω r p dΩ∫
ΩdΩ

) 1
p

=
(

1

|Ω|
n∑

i=1
|Ωi |r p

i

) 1
p

, (4.8)

where Ωi is the domain measured at the i th design node and p is the coefficient of the
p-norm formulation.

4.2.3. TWO LEVEL APPROXIMATION FOR p-NORM FAILURE INDEX

The calculation of a convex two level approximation for the p-norm failure index r P N

is discussed in this section. Through a linear expansion of local failure index based on
the conservative failure envelope (Eq.(4.3)) with respect to the local strain eg , rg can be
locally approximated at Gauss point g by

rg ≈Φg : A−1
g . (4.9)

The coefficient matrixΦg is a symmetric matrix calculated by

Φg = 1

2

(
Ng qT

g +qg NT
g

)
, (4.10)

with qg = ∂rg

∂eg
being the sensitivity of rg with respect to eg , and Ng is the resultant inter-

nal force. Note that the approximation in Eq.(4.9) is called “locally approximated” as it
only considers the variation of the stiffness matrix Ag . Whereas, the load redistribution
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associated with Ng in Φg (Eq.(4.10)) due to the variation of Ag still needs to be calcu-
lated through the adjoint method. More details about Eq.(4.9) can be found in Khani
et al. [1].

The nodal failure index can be obtained by substituting Eq.(4.9) into Eq.(4.7) and using
the Gauss quadrature, resulting in

ri =
∑ng

g=1

(
Φg : A−1

g

)
Ri ,g wg

∥∥Jg
∥∥∑ng

g=1 Ri ,g wg
∥∥Jg

∥∥ , (4.11)

where ng is the total number of Gauss points in the model,
∥∥Jg

∥∥ is the determinant of
the Jacobian matrix in the element, and wg is the weight of the Gauss points. After sub-
stituting the interpolation of Ag (Eq.(4.1)) into Eq.(4.11), the following expression is ob-
tained

ri =
∑ng

g=1

(
Ri ,g wg

∥∥Jg
∥∥Φg :

(∑n
j=1 R j ,g A−1

j

))
∑ng

g=1 Ri ,g wg
∥∥Jg

∥∥ . (4.12)

By rearranging the terms, the formulation for the nodal failure index is given by

ri =
n∑

j=1
Φi , j : A−1

j , (4.13)

where the coefficient matrixΦi , j of ri with respect to A−1
j is

Φi , j =
∑ng

g=1 Ri ,g wg
∥∥Jg

∥∥R j ,gΦg∑ng

g=1 Ri ,g wg
∥∥Jg

∥∥ . (4.14)

Thereafter, the expression for the global failure index can be obtained by substituting
Eq.(4.13) into the global failure index Eq.(4.8), which leads to

r P N (A−1) =
n∑

j=1
ΦP N

j : A−1
j , (4.15)

whereΦP N
j is obtained through the chain rule as follows:

ΦP N
j = ∂r P N

∂A−1
j

=
n∑

i=1

∂r P N

∂ri

∂ri

∂A−1
j

. (4.16)

Hence, combining Eq.(4.8) and Eq.(4.13), the complete formulation ofΦP N
j is given by

ΦP N
j =

n∑
i=1

(
1

|Ω|
n∑

i=1
|Ωi |r p

i

)( 1
p −1) ( |Ωi |

|Ω| r (p−1)
i

)
Φi , j . (4.17)

Since ΦP N
j is not guaranteed to be a positive semi-definite matrix, spectral decomposi-

tion is applied to convexify Eq.(4.15), which leads to

r P N (A,A−1) ≈
n∑

j=1

(
ΨP N

j

)−
: A j +

n∑
j=1

(
ΦP N

j

)+
: A−1

j , (4.18)
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where
(
ΦP N

j

)+
is the positive definite part of ΦP N

j obtained from the spectral decompo-

sition, and
∑n

j=1

(
ΨP N

j

)−
: A j is the linear expansion of the corresponding non-definite

part. Details on the implementation of this spectral decomposition can be found in
Khani et al. [1].

Finally, the complete first level approximation of the p-norm failure index, taking the lin-
ear expansion and load redistribution part obtained through adjoint method into con-
sideration, is

r P N (I )(A,A−1) =
n∑

j=1
ΨP N

j : A j +
n∑

j=1

(
ΦP N

j

)+
: A−1

j , (4.19)

where ΨP N
j includes

(
ΨP N

j

)−
, the linear expansion of r P N (I )(A,A−1) and the load redis-

tribution part calculated by solving the adjoint method (IJsselmuiden et al. [15]).

The second level approximation for the p-norm failure index r P N (I I )(x) is

r P N (I I )(x) ≈ r P N (I )
0 (x0)+ (gP N |x0 )T ·∆x+ 1

2
∆xT ·HP N |x0 ·∆x, (4.20)

where r P N (I )
0 (x0) is the value of r P N (I ) at the approximation point x0, x refers to the lam-

ination parameters in this case, gP N |x0 is the gradient of r P N (I ) with respect to the lam-
ination parameters at x0, and HP N |x0 is the Gauss-Newton part of Hessian matrix. The
calculation of the i th component of gP N |x0 and the corresponding diagonal component
of HP N |x0 is as follows:

g P N
i =ΨP N

i :
∂Ai

∂xi
+ (
ΦP N

i

)+
:
∂A−1

i

∂xi
, (4.21)

and

H P N
i ,i = (

ΦP N
i

)+
:
∂2A−1

i

∂x2
i

. (4.22)

4.3. EFFICIENT STRENGTH OPTIMIZATION WITH p-NORM FAIL-
URE INDEX

The formulation and the algorithm to resolve the strength optimization with p-norm
failure index are described in this section. The p-norm failure index is the objective and
the feasible domain of the lamination parameters at each design node is the constraint.
Since the current work focuses on the symmetric and balanced laminate, V2 = V4 = 0 at
each design node. Therefore, the formulation of the optimization is as follows:

min
V1,V3

r P N (4.23a)

subject to 2V 2
1,i −V3,i −1 ≤ 0, (4.23b)

V3,i −1 ≤ 0 i = 1. . .n. (4.23c)
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The aforementioned two level approximation for r P N is employed to set up the sub-
problem. The Karush-Kuhn-Tucker (KKT) condition of the sub-problem is addressed
using Mehrotra’s predictor-corrector interior point method (Mehrotra [19]) due to its fast
convergence rate. The detailed process to deal with the sub-problem follows the proce-
dure in Section 2.3.4, which is omitted here for conciseness. The conservative convex
separable approximation (CCSA) (Svanberg [20]) is chosen as the optimization frame-
work to control the convergence in different levels.

The conservativeness of the approximation ensures the value obtained from the approx-
imation is higher than that from the physical analysis model in the convex optimization
setup. To guarantee this character in the two level approximation for r P N required in the
CCSA, extra damping functions, featured to be convex and separable, are added to both
the first and the second level in the framework. To this end, the first level approximation
together with damping is denoted as

ř P N (I )(A,A−1) = r P N (I )(A,A−1)+ρ(I )d (I )(A,A−1), (4.24)

where ρ(I ) ∈ R+ is the damping factor in the first level to scale the effect of the damping
function d (I ). This ensures that the approximation Eq.(4.24) is conservative, but not over
conservative. It is updated in the iterative procedure. The function d (I )(A,A−1) is given
by

d (I )(A,A−1) =
n∑

i=1
wi

(
Ai : A−1

0,i +A0,i : A−1
i −2I : I

)
, (4.25)

where I is the identity matrix, A0,i is the in-plane stiffness at the approximation point,

wi is the weight factor for the terms at each design node with wi = |Ωi |
|Ω| . The value of

d (I )(A,A−1) and its first derivative at the approximation point are zero, which ensures
Eq.(4.24) is still valid at the approximation point.

The corresponding second level approximation with damping added is expressed as

ř P N (I I )(V1,V3) = r P N (I I )(V1,V3)+ρ(I I )d (I I )(V1,V3), (4.26)

where ρ(I I ) ∈R+ is the damping factor in the second level to scale the effect of the damp-
ing function d (I I ). The function d (I I )(V1,V3) in this level is formulated as follows:

d (I I )(V1,V3) =
n∑

i=1
wi

(
V1,i −V 0

1,i

)2 +
n∑

i=1
wi

(
V3,i −V 0

3,i

)2
, (4.27)

where V 0
1,i and V 0

3,i are the lamination parameters at the approximation point.

The flowchart of the strength optimization in the CCSA is illustrated in Figure 4.1. The as-
sociated procedure is summarized in Algorithm 3. The optimization loop connected to
the first level approximation is named as the “Level 1 optimization”, which is in essence
the outer loop of the CCSA. Similar rule applies to the “Level 2 optimization”, which cor-
relates with the inner loop of the CCSA. The sensitivity analysis and the convergence
check using FEM analysis is called “Level FEM”.
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Initial lamination parameters

Level FEM: sensitivity analysis

   ( (ΦPN)+, ΨPN )

Level 1 approximation:

             r( I ) + ρ( I )d( I )

Level 2 approximation:

             r( II ) + ρ( II )d( II )

interior 

point 

method

Update damping factor ρ( II )

Improvement in Level 1

Level 1 converged

Update damping factor ρ( I )

Level FEM converged

Optimal solution

Initial damping factors:  ρ( I ), ρ( II )

Yes

No

Yes

No

No

Yes

Improvement in Level FEM
No Yes

Figure 4.1: Flowchart of the strength optimization for the VSL

Algorithm 3 Strength optimization with p-norm failure index

1: Initialize x0, ρ(I ), ρ(I I ) and set the tolerance of stopping criterion in Level 1, Level 2
and Level FEM optimization η(I ), η(I I ), η(0), respectively.

2: Start FE analysis to calculate r P N and its sensitivity
(
ΦP N

j

)+
,ΨP N

j .

3: Set up the Level 1 approximation ř P N (I ).
4: Set up the Level 2 approximation ř P N (I I ).
5: Build up the subproblem with ř P N (I I ) and solve it with Mehrotra’s predictor-corrector

interior point method.
6: Update damping factor ρ(I I ).
7: Check if ř P N (I ) improves. If∆ř P N (I ) ≤ η(I ), solution accepted and update ř P N (I ). Oth-

erwise go back to step 4.
8: Check the convergence of ř P N (I ). If |∆ř P N (I )| ≤ η(I ), update ρ(I ). Otherwise, go back

to step 4.
9: Check if r P N from the Level FEM gets improved. If ∆r P N ≤ η(0), solution accepted.

Otherwise, go back to step 3.
10: Check the convergence of r P N from the Level FEM. If |∆r P N | ≤ η(0), optimal result x∗

is obtained, Otherwise, go back to step 2.

In this work, the tolerance for the Level 2 optimization is η(I I ) = 10−10. The tolerance
for the Level 1 optimization is η(I ) = 10−3 and the variation in the Level 1 approximation
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∆ř P N (I ) is given by

∆ř P N (I ) = r P N (I )
(
(xk+1)∗

)
− r P N (I )

(
(xk )∗

)
, (4.28)

where (xk )∗ is the optimal solution obtained in the kth Level 1 iteration. Once the (k+1)th

Level 1 optimization converges, the in-plane stiffness A and its inverse A−1 in r P N (I )

(Eq.(4.19)) are updated.

The tolerance for the convergence of the Level FEM optimization is η0 = 10−3 and the
variation in this level ∆ř P N is

∆ř P N = r P N
(
(xl+1)∗

)
− r P N

(
(xl )∗

)
, (4.29)

where (xl )∗ is the optimal solution obtained at the l th Level FEM iteration.

The damping factor ρ(I ) and ρ(I I ) are updated as follows:

ρ(α),t+1 = δρ(α),t , (4.30)

where α= I , I I and t is the number of iterations in the αth level optimization. To calcu-
late δ, a parameter δ is computed first at an optimal solution x∗ in the αth level

δ= r P N (α−1)(x∗)− ř P N (α)(x∗)

ρ(α),t d (α)(x∗)
+1. (4.31)

Then δ in the αth level is obtained using:

δ=


δ̌ δ> δ̌
δ δ̂< δ≤ δ̌
δ̂ 1 < δ≤ δ̂
1+0.5tanh(2δ−2) δ≤ 1.

(4.32)

The function for the δ≤ 1 case constrains the damping factor ρ(α) to decrease no further
than to half of the current value when the accepted optimum ř P N (α)(x∗) is more than
r P N (α−1)(x∗).

In this work, the value of δ̌ and δ̂ are chosen to be 3 and 1.02, respectively. More details
about the optimization procedure can also be found in Peeters et al. [24, 25].

4.4. STRENGTH OPTIMIZATION ON A SQUARE PLATE WITH A CUT-
OUT

To demonstrate the effectiveness and efficiency of the strength optimization with p-
norm failure index, a typical numerical test is implemented. In this test case, a square
plate with a circular cut-out is used to test the effect of p value on the optimal results.
At the same time, the mesh convergence study of the optimal solution and the efficiency
comparison with the min-max bound formulation are studied in this test.
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Figure 4.2: Square plate with a central hole

Figure 4.2 depicts the model in this numerical case. The central points of the top and
bottom edges in the plate are fixed in the x direction. Meanwhile, the central points
of the left and right edges are fixed in the y direction to prevent the rigid body motion.
Multipoint constraints are applied on both the left and right edges to ensure an identi-
cal deformation in the x direction. A load of 500kN is applied on both the left and right
edges. The material properties of the laminate are as follows: E1 = 148GPa, E2 = 9.65GPa,
G12 = 4.55GPa and ν12 = 0.3, with 1 indicating the fiber direction, 2 referring to the direc-
tion transverse to the fiber (see Nagy et al. [26]). The strength properties are chosen as
those in Khani et al. [27]. The tensional and compressional strength along the fiber are
X t = 2.28GPa and X c = 1.44GPa, respectively. The tensional and compresional strength
transverse to the fiber are Y t = 0.057GPa and Y c = 0.228GPa, respectively. The pure
shear strength is S = 0.071GPa.

The thickness of each ply is 0.6mm and the number of design layers is 6 in a symmetric
and balanced stacking sequence (i.e., 24 layers in total). The initial design is a quasi-
isotropic laminate, where both V1,V3 = 0 at each design node. In order to have a broad
view of the strength optimization with global failure index, the effect of p value is stud-
ied systematically on a reference FEM model, a refined model and half of the reference
model with symmetric boundary condition. Finally, the numerical results from the local
min-max bound formulation are illustrated for comparison.

4.4.1. EFFECT OF p ON THE ON THE OPTIMAL RESULT

In this test, the topology in Figure 4.2 is discretized using 512 elements and 576 design
nodes, which also serves as a reference model in the subsequent sections. The maxi-
mum local failure index associated with the initial design is rmax = 1.033, slightly over
the strength tolerance (which is r = 1). This intends to demonstrate that the maximum
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failure index in the model can be reduced below the critical value with the strength
optimization. The strength optimization with global failure index is conducted with
p = 1,2, · · · ,11. To clarify the trend of the results, the distribution of the optimal V1, V3

and the corresponding local failure index (FI) are shown for four representative cases
(i.e., p = 1,4,6,8) in Figure 4.3.
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Figure 4.3: Effect of p on the optimal results in the reference model

From the contour plots of the optimal local failure index, all the figures feature a highly
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stressed region located at the top and bottom half of the plate. Especially, a stress con-
centration can be observed around the edge of the cut-out with p = 1, which is to mini-
mize the average of the local failure indices. When the p value increases to 4 and 6, the
stress concentration region reduces in magnitude. This indicates that a higher p value,
which elevates the effect of the highest local failure indices in the p-norm failure index,
helps to reduce the maximum local failure index more effectively. In particular, for the
results of p = 6, the maximum value is more uniform towards the highly stressed region
of the plate (0.346 to 0.2 respectively). However, when the p value further increases to
8, the failure indices in the highly stressed region increase to roughly 0.3, which is un-
desirable. The stress concentration around the top and bottom edge of the central hole
reappears. This indicates that a proper value of p in the p-norm failure index is required
in order to effectively improve the load distribution in the plate.
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Figure 4.4: History of the failure index in the reference model (a) p = 1 (b) p = 4 (c) p = 6 (d) p = 8

The optimal V1 and V3 for the aforementioned p values are presented in the second and
third column of Figure 4.3. For all of the cases, both V1 and V3 in the top and bottom of
the plate are close to 1. The associated fiber paths are aligned with the x direction in order
to carry the tension in the model. When p = 4,6, this region is reshaped linking to the top
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and bottom edge of the cut-out to reduce the stress concentration. The remaining parts
of both V1 and V3 are close to 0 when p = 1,4, indicating that the layup of fiber paths are
still quasi-isotropic. Nevertheless for p = 6, on the edges next to the stress concentration
region, V1 appears to be around −0.5 and V3 is approximately 0.5. This means that the
fiber angles are oriented between 60° and 90° to transfer the internal force. The overall
design results in an efficient reduction of the stress concentration. However, when p = 8,
the contour plots of V1 and V3 exhibit obvious fluctuations, which reflects that numerical
issues occur in this case. The lamination parameters around the top and bottom edges
of the cut-out appear to be around −0.5 for V1 and 0.6 for V3. The orientation of the fiber
paths become around 70°. Hence, the load carrying capacity for tension is reduced in
this section.

The convergence history of both the p-norm failure index and the maximum local failure
index for p = 1,4,6,8 is shown in Figure 4.4. Regarding the p-norm failure index, which
is the objective of the strength optimization, it decreases consistently in each accepted
iteration (outer loop in the CCSA) for all the p values. This demonstrates that the setup
of the strength optimization with global failure index is stable. From the curves of the
maximum local failure index, it can be observed that a reduction from 1.033 to below
0.6 is achieved for all cases. Therefore, at least a 42% improvement in strength has been
achieved through the strength optimization with p-norm failure index. According to Fig-
ure 4.4 (a) and (b), the strength optimization converges steadily within 7 accepted outer
loops when p = 1,4. When p = 6 as shown in Figure 4.4 (c), a slight increment appears for
the maximum local failure index in the third accepted outer loops. In contrast, as p = 8,
the convergence history fluctuates and the total number of iterations also increases to
8 (see Figure 4.4 (d)). Numerical test for p = 10 indicates that the number of accepted
iterations further increasing to 13, which is not shown here for brevity.

The fluctuation in the maximum local failure index is a drawback of the p-norm failure
index. Since it does not control the maximum local failure index precisely, it may re-
sult in a slight increment of the maximum local value while the optimizer reduces the
p-norm failure index. Together with the optimal V1 and V3 for p = 8 in Figure 4.3, it
demonstrates that numerical issues occur using a high value of p. This is due to the fact
that the p-norm failure index amplifies the large local failure indices in the global aggre-
gation with a high value of p. Correspondingly, the noises in the numerical computation
of the p-norm failure index and its sensitivity are amplified as well. Also as discussed in
the previous work (Le et al. [3], Lee et al. [6], Verbart et al. [8], Duysinx and Bendsøe [28]),
numerical instability and high nonlinearity occur as p increases over a certain range (i.e.,
which is 6 in Lee et al. [6]). Therefore, a proper p value should be chosen for the p-norm
aggregation formulation.

NUMERICAL RESULTS ON A REFINED MODEL

In the refined model, there are 2048 elements and 2176 design nodes (nearly fourfold as
those in the reference model). The intention of the test is to check the effect of mesh size
on the results. Particularly, the mesh dependency of the optimal solutions and effect of
mesh size on the proper value of p value are investigated. As in the reference model, the
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p values also range from 1 to 11. Figure 4.5 illustrates the optimal V1, V3 as well as the
optimal local failure indices (FI) for p = 1,4,6,8.
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Figure 4.5: Effect of p on the optimal results with the refined mesh

First of all, the optimal solutions for each p value in the refined model (Figure 4.5) are
compared with those in the reference model (Figure 4.3) to investigate the mesh con-
vergence of the strength optimization. The contour plots of V1 and V3 between the two
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models are similar for each listed p value, which indicates mesh convergence for the op-
timal design. Specifically, the V1 and V3 are close to 1 on the top and bottom of the plate.
As the p value increases to 4 and 6, the red regions of V1 and V3 become sharper towards
the top and bottom edge of the central hole, which reduces the stress concentration in
this part. Similar to the reference model for p = 6, the distributions of V1 and V3 next
to the red regions around the cut-out appear to be approximately −0.5 and 0.5, respec-
tively. When p = 8, the red regions in both V1 and V3 shift away from the top and bottom
edge of the central hole. Hence, both quantitatively and qualitatively, the results con-
firm that the method developed in this work leads to mesh convergence in the optimal
solutions.

The proper range of the p value can be recognized from the contour plots of the optimal
failure indices in the fourth column of Figure 4.5. The optimal local failure indices are in
the same trend to the reference model for each p value in Figure 4.3. The stress concen-
tration still locates at the top and bottom edge of the central hole, when p = 1. For p = 4,
the maximum local failure index is effectively reduced due to the power increasing in the
p-norm failure index. Such effect becomes more obvious again when p = 6, which fur-
ther reduces the failure indices in the stress concentration region. Whereas, as the value
of p increases to 8, the local failure indices apparently increases in the top and bottom
half of the plate as in the reference model. Thus, despite the increase in accuracy, the
refinement of the mesh does not increase the maximum value of p that can be used for
optimization.

4.4.2. NUMERICAL RESULTS ON HALF OF THE REFERENCE MODEL

Both the reference model and the refined model are symmetric along the central line
in x direction, which leads to a repetition of failure indices in the top and bottom sec-
tions. In addition, the mesh is not perfectly symmetric in the top and bottom of the
plate. Therefore, there are two locations that simultaneously reach the maximum value.
The presence of multiple local maximums could affect the proper range of p value in the
p-norm failure index. In view of this hypothesis, numerical results on a half of the refer-
ence model is exploited with a corresponding symmetry boundary condition (with the
movement in y direction fixed to zero for the nodes on the symmetric axis). The mesh
for the half model is essentially the same as for the reference model.

The optimal lamination parameters V1, V3 as well as the distribution of the correspond-
ing local failure indices are shown in Figure 4.6. Comparing Figure 4.3 and 4.6, it can be
observed that the results for p = 1,4,6 in the half model are similar to those in the ref-
erence model. The local failure indices decrease as p increases from 1 to 6 and the red
regions in V1, V3 are linking to the top edge of the cut-out. However, the optimal lami-
nation parameters for p = 8 are different between the two models. In particular, the half
model shows further improvement in terms of decreasing the maximum local failure in-
dex as p increases from 6 to 8 as shown in the contour plot (the fourth column in Figure
4.6). This result indicates that the maximum value of p that can be used in an actual
numerical implementation is sensitive to details of the FEM solution (i.e., reference and
half models)
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Figure 4.6: Effect of p on the optimal results in the half model

The convergence history of the four test cases in Figure 4.6 is shown in Figure 4.7. Also
similar to the tests with the reference model and the refined model, the curves for the p-
norm failure index are decreasing monotonically. In terms of the maximum local failure
index, the trend for the cases of p = 1,4 is stable (see Figure 4.7 (a), (b)). Simultaneously,
the history of the maximum local failure index fluctuates slightly in the third accepted
iteration for p = 6. All these features are in common with those in the reference model
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and the refined model. Whereas, for p = 8 in the half model, the optimal local failure
index obtained (0.314) is lower than that for p = 6 (0.345). The history of the maximum
local failure index does not only fluctuate in this case, but the number of the accepted
iterations (i.e., the outer loop of the CCSA) also increases to 18 (Figure 4.4 (d)). Thus, the
results of the half model indicates that a higher value p in the p-norm failure index can
help to reduce the maximum local failure index for the model with only one maximum
failure index.
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Figure 4.7: History of the failure index in the half model (a) p = 1 (b) p = 4 (c) p = 6 (d) p = 8

4.4.3. OPTIMAL RESULTS WITH MIN-MAX BOUND FORMULATION

In order to execute the strength optimization using local failure indices, the bound for-
mulation of multicriterion problem (Olhoff [29]) is applied in Khani et al. [1], which is
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called min-max bound formulation in this section. The formulation is written as

min
V1,V3

β (4.33a)

subject to ri −β≤ 0, (4.33b)

2V 2
1,i −V3,i −1 ≤ 0, (4.33c)

V3,i −1 ≤ 0 i = 1. . .n. (4.33d)

The variableβ= max{ri (i=1...n)} is the upper bound parameter for all of the failure indices
in a structure. In essence, this formulation, which aims to minimize the maximum of the
failure indices in a structure, is a local version alternative to minimize ‖ri‖∞ (i.e., r P N

with p → ∞) in Eq.(4.23). In order to have a global view of the strength optimization
with both the global failure index and its local version alternative, the results from min-
max bound formulation are provided in Figure 4.8.
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Figure 4.8: Numerical results with min-max bound formulation

From the local failure indices obtained in the optimal design, the highly stressed region
is large and in the same level in both the reference model and the refined model, lo-
cated next to the blue region. This is due to the fact that the failure indices reaching the
upper bound in Eq.(4.33) are minimized simultaneously bounded by the parameter β.
From the optimal V1 and V3, it can be observed that the red regions, which are crucial
to reduce the stress concentration region, converge to those with p = 6 in the strength
optimization using the p-norm failure index (See Figure 4.3 and 4.5). Thus, these are
the optimum patterns to enhance the strength of this model effectively. Although some
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discrepancy can be observed in the optimal V1 and V3 between the reference model and
the refined model, the main features are similar. The CPU time for the two test cases is
also depicted in the figure, which is 14950s for the reference model and 812070s for the
refined model, respectively.
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Figure 4.9: History of the failure index for the min-max bound formulation

The convergence of the history with the min-max bound formulation is shown in Fig-
ure 4.9. From both figures, the maximum local failure index is reducing consistently.
The result for the reference model converges in 12 accepted iterations (outer loop in the
CCSA). The maximum failure index drops from 1.033 to 0.264, with a 74.4% improvement
in strength. In the refined model, maximum local failure index decrease from 1.083 to
0.291, achieving a 73.1% improvement. In both figures, the p-norm failure index with
p = 6 obtained in each iteration is also plotted with the dashed lines. It is found that
with the min-max bound formulation, the p-norm failure index is not decreasing mono-
tonically as the maximum local failure index. This is due to the fact that a large number
of failure indices reach the upper bound during optimization in the min-max bound
formulation. Therefore, the p-norm failure index increases slightly in the end of the it-
erations.

4.4.4. COMPARATIVE ANALYSIS FOR STRENGTH OPTIMIZATION

In accordance with the p-norm approach, the goal is to take advantage of the simplicity
of a global norm (i.e., integral over the whole domain) and increase the value of p as
much as possible to approximate a local norm (i.e., maximum local value in the whole
structure). To assess the suitability of the p-norm approach, the maximum local value
of the failure index is shown in Figure 4.10a for each design obtained for a given value of
p and the min-max bound formulation. The corresponding CPU time cost for various p
values in the reference model, the refined model and the half models are shown in Figure
4.10b.

From Figure 4.10a, it is shown that, as expected, the maximum local failure index is de-
creasing as the p value increases from 1 to 6 in all the models (from 0.467 to 0.346 in the
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Figure 4.10: Comparison of the maximum local failure index and CPU time cost for various p values in the
reference model, refined model and the half model for p-norm strength optimization

reference and the half model, and from 0.530 to 0.367 in the refined model). Observe that
for the initial values of p, the reference and the half models have the same maximum lo-
cal failure index since the meshes are essentially the same. The maximum local failure
index for the refined mesh is higher, which reflects the increased capacity of the refined
mesh to capture stress concentration in the FEM model. In the refined model, the max-
imum local failure index starts to increase directly to 0.539 when p = 7. Thereafter, it
starts to fluctuate when p further increases. Whereas, in the reference model, the curve
for the maximum local failure index drops to the lowest at 0.321 when p = 7. Later on,
it starts to fluctuate from p = 8. In contrast, for the half model, the optimal failure index
obtained overlaps with that in the reference model for p ranging from 1 to 7. When p is
higher than 7, the maximum local failure index still decreases further until p = 9 before
the fluctuation starts.

In contrast, the maximum failure index obtained from the min-max bound formulation
is much lower than those achieved with p-norm failure index. In particular, the value ob-
tained in the reference model with min-max bound formulation is 0.264, which is 15.4%
lower than 0.312 obtained in the half model with p-norm failure index of p = 9. Cor-
respondingly, the value achieved in the refined model with the bound formulation is
0.291, which is 20.7% lower than 0.367 with p-norm failure index of p = 6. Therefore, the
min-max bound formulation can enhance the strength of the VSL further than using the
p-norm failure index.

As indicated in Section 4.4.1 and 4.4.2, the maximum value of p that can be used in prac-
tice depends on the model size as well as on qualitative aspects of the solution, such as
preserving symmetry. The CPU time for the three test cases is shown in Figure 4.10b.
The curves for all these cases show that the computational time is not sensitive to p as
p changes from 1 to 6. In the reference model, the CPU time is constant at around 800s.
Whereas, it is around 8500s in the refined model, the increment of the computational
cost is close to quadratic with respect to the size of the problem (the number of design
variables). In the half model, where the number of the design variables is reduced to
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almost half of the reference problem, the computational cost is reduced to roughly 200s.
It becomes almost a quarter of the original cost. This is due to the fact that the compu-
tational cost is dominated by the computational complexity to resolve the Schur Com-
plement in the interior point method with direct solver. When the value of p is higher
than 6, all the curves start to raise. The reason is that the number of inner loops taken
within every outer loop increases evidently in the CCSA. This is another evidence to il-
lustrate that the numerical nonlinearity becomes significant when p = 7 or more, along
with the contour plots of the optimal solutions (Figure 4.3, 4.5, 4.6) and the history of the
maximum local failure index (Figure 4.4, 4.7).

However, the computational cost of the min-max bound formulation is indeed prohibitive
comparing with that from the p-norm failure index. The CPU time for the reference
model resolved with the min-max bound formulation is 14950s. Whereas, the CPU time
for the best test case in the p-norm failure index, which is p = 7 in the reference model, is
1512s. The CPU time for the min-max bound formulation is almost ten-fold of that with
the well posed p-norm failure index. The CPU time for the refined model with the min-
max bound formulation is 812070s. The corresponding value of p-norm failure index
with p = 6 in the refined model is 10908s. The CPU time with the min-max bound formu-
lation is 74.4 times comparing to that of the p-norm failure index. The increment of the
computational cost is almost quadratic with respect to the size of the problem.
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Figure 4.11: ‖r‖∞ vs ‖r‖p in three different models (a) the reference model, (b) the refined model, (c) the half
model

The gaps between ‖r‖∞ (the maximum local failure index) and ‖r‖p (p = 1,2, · · · ,11)
for the optimal designs in all of the three test cases are presented in Figure 4.11. From
the three sub-figures, it can be observed that the value of ‖r‖p tends to increase con-
sistently when the p value increases. This is due to the fact that ‖r‖p increases to the
physical maximum of the local failure index (which is ‖r‖p , p → ∞) with a higher p
value taken. It can also be observed that ‖r‖∞ obtained in the optimal design keeps de-
creasing desirably when the p value increases in a certain region (referred to as the well-
conditioned region) before the aforementioned numerical issues occur. Therefore, the
highest p value in this well-conditioned region should be chosen to effectively reduce
the maximum local failure index (‖r‖∞) in strength optimization. Outside this region,
the value of ‖r‖∞ obtained in the strength optimization starts to fluctuate due to the
increased non-linearity.
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As a result, the results in Figure 4.11 indicate that a mesh refinement actually decreases
the well-conditioned range of p value while preserving symmetry with multiple loca-
tions of stress concentration allows to use higher values of p. According to the compara-
tive analysis in Figure 4.10, the min-max bound formulation can improve the strength
of the structure better than using the p-norm failure index. However, the computa-
tional cost is also more demanding comparing with the p-norm failure index for the
large scale problems. Therefore, to achieve a good compromise between the strength
improvement and the computational cost required, the well posed p-norm failure index
is recommended to implement the strength optimization of the VSL.

4.5. STRENGTH OPTIMIZATION ON A L-SHAPED PLATE
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Figure 4.12: L-shaped plate

In the second numerical case, the strength optimization is implemented on an L-shaped
plate subjected to a vertical load on the right edge (See Figure 4.12), which is a challeng-
ing problem due to the stress singularity at the sharp corner. The intention is to exploit
the performance of the proposed method under such an extreme condition. In this case,
the optimal solutions with various p values in the p-norm failure index are discussed.
The mesh convergence of the optimal results for this problem with singularity issue is
also studied. In addition, the optimal designs from the p-norm failure index and the
min-max bound formulation are compared in terms of the maximum local failure index
obtained and the CPU time cost.

The boundary condition of the model is as follows: the top edge of the plate is fixed
and a distributed load of 500kNm−1 is applied on the lower half of the right edge of the
plate. The material properties of the composite laminate are the same as those in the first
example in Section 4.4. The thickness of each ply is 0.6mm and the number of design
layers is 6. The initial stacking sequence of the laminate of the optimization is quasi-
isotropic.
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4.5.1. MESH-CONVERGENCE STUDY ON THE L-SHAPED PLATE
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Figure 4.13: Study of the mesh convergence of the optimal results using p-norm failure index (p = 1)

In the mesh-convergence study, the numerical model is first discretized with 8 elements
for the 0.4m edge, and 12 elements for the 0.6m edge. Subsequently, it is refined using
12×18, 16×24 and 20×30 elements for the two edges, respectively. The distribution of
the optimal V1, V3 and the corresponding failure indices for p = 1,4,6 are computed and
illustrated in Figure 4.13,4.14,4.15, respectively.
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Figure 4.14: Study of the mesh convergence of the optimal results using p-norm failure index (p = 4)

As shown in the second and third columns of Figure 4.13, the distributions of V1 and
V3 converge to a unique solution as the mesh of the model is refined for p = 1. The
distributions of the local failure indices associated with the optimal designs also ex-
hibit the same trend as depicted in this figure, with the maximum local failure index
located at the corner of the L-shaped plate consistently. As anticipated, the maximum
local value of the failure index keeps increasing in the finer mesh due to the singularity
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issue. Thus, the setup for the strength optimization with p-norm failure index is demon-
strated to be mesh-independent for p = 1 in the L-shaped plate with stress singularity
on the sharp corner, with the exception of the element where the singularity occurs (i.e.,
mesh-independence in the p-norm, but not in the p →∞ case).

The numerical results for p = 4 are presented in Figure 4.14. As before, the optimal dis-
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Figure 4.15: Study of the mesh convergence of the optimal results using p-norm failure index (p = 6)
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tributions of V1 and V3 converge to a unique solution in models of different mesh sizes.
The lamination parameters around the corner and the right bottom part of the L shape
for p = 4 are different from those with p = 1. At the corner of the plate, the V1 is around
0 and V3 is close to −1, which indicate that the fiber angles should lie in the [±45°]s with
respect to the x axis to reduce the highest stress in this region. Simultaneously, both V1

and V3 are nearly 0 on the right bottom part of the plate. The corresponding stacking se-
quence of the laminate is quasi-isotropic in order to carry the shear load on the edge. To
this end, the maximum failure index in this case is obviously lower than that with p = 1
for each mesh case. As a result, mesh-independence is observed again in this case and
p = 4 is still within the well-conditioned range, which improves the optimal design in
terms of the maximum local failure index comparing with p = 1.

Figure 4.15 shows the resulting designs from p = 6. From this figure, the main features
of the optimal V1 and V3 are in common among different mesh cases. However, discrep-
ancy in different mesh cases can indeed be noticed as well. For instance, the distribution
of V1 at the corner in the 12×18 mesh case is different from that of the other ones. Obvi-
ously, the blue region of V1 and the red region of V3 in the vertical section of 20×30 case
are shrinked in area comparing with the other cases. These features indicate that numer-
ical instability already occurs when p = 6 within the model including a stress singularity.
In contrast to the local failure indices of p = 1 and p = 4, the highest level rendered in red
has completely disappeared in this case.

From the numerical results of p = 1,4,6 in this section, the distributions of the optimal V1

and V3 are confirmed to converge to a unique solution with different mesh sizes. There-
fore, the main conclusion of the mesh-convergence study is that the proposed method
generates mesh-independent solutions desirably even in a model with singularity on
stress. However, it is important to note that p = 6 already leads to numerical problems
in this case.

4.5.2. THE OPTIMAL DESIGN FROM MIN-MAX BOUND FORMULATION

The optimal designs from the min-max bound formulation are also exploited for the
L-shaped plate. The optimal V1, V3 and the corresponding distribution of local failure
indices for different mesh sizes are presented in Figure 4.16. The main features of the
optimal design are generally preserved as the mesh becomes denser and are similar to
the design obtained from the p-norm (comparing Figure 4.15 and 4.16)

Interestingly, from the contour plots of the local failure indices in Figure 4.16, the max-
imum local failure index, being approximately 0.6 in the four mesh cases, is lower than
those from the best designs (p = 6) with p-norm failure index, which is around 0.8 (see
Figure 4.15). Comparing the local distribution of failure indices for the min-max bound
formulation with those in the p-norm cases, a noticeable feature in the local failure in-
dices obtained in this case is that the region to reach the maximum value is larger (i.e.,
larger light blue region in min-max bound formulation). This indicates that the design
based on the min-max bound formulation can generate a more efficient design where
the internal loads are more uniformly distributed.
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Figure 4.16: Study of the mesh convergence of the optimal results using local min-max formulation

4.5.3. COMPARATIVE ANALYSIS OF THE OPTIMAL RESULTS FROM THE p-NORM

FAILURE INDEX AND MIN-MAX BOUND FORMULATION

In this section, the maximum local failure index and the CPU time cost obtained from
the strength optimization with p-norm failure index and the min-max bound formula-
tion are compared as depicted in Figure 4.17. The maximum local failure indices ob-
tained with four meshes when p = 1,4,6,8,10 and that from the local min-max bound
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Figure 4.17: Comparison of the maximum local failure index and CPU time cost for various p value in p-norm
failure index and min-max bound formulation

formulation are shown in Figure 4.17a. First of all for the initial quasi-isotropic lami-
nate, with the mesh refinement, the maximum local failure index at the corner of the
L-shaped plate keeps increasing from 0.856 to 1.336 because of the singularity issue. Af-
ter the strength optimization with p-norm failure index, the maximum local failure in-
dex reduces in all of the cases to a different degree with different p value. In particular,
with a higher p value, the maximum local failure index reduces further consistently as
shown in the figure. With only one exception for p = 10 with 637 design nodes in this
figure, which overlaps with that of p = 8 due to the numerical issue of p-norm failure
index. However, the curve for the min-max bound formulation is decreasing from 0.648
to 0.555, as the mesh is refined from 297 design nodes to 1105 design nodes. It increases
slightly to 0.578 when the number of design nodes is 1701. The remark of the results in
this figure is two-fold: the min-max bound formulation is superior to the p-norm failure
index in minimizing the maximum local failure index in the L-shaped plate; The p-norm
formulation provides a converged design in the representative p-norm despite a lack of
convergence when p →∞.

Eventually, the CPU time representative of the p-norm failure index and the min-max
bound formulation is presented in Figure 4.17b. The slope of all these curves are roughly
quadratic, identical to the conclusion in the square plate with cut-out case. In this figure,
the curve for p = 6 represents the relatively well-conditioned case. The curve for p = 10
represents the case with a numerical issue. Clearly, the data for p = 6 in the model with
1105 and 1701 design nodes is approaching that for p = 10, which indicates that numeri-
cal issues already appear slightly in the finer mesh cases. Regarding the min-max bound
formulation, the computational cost is one order higher than the badly conditioned case
of p-norm failure index (p = 10). It demonstrates that the computational cost becomes
a limiting factor for the min-max bound formulation applied to large-scale strength op-
timization of the VSL, although the min-max formulation has the potential to reduce the
failure index further than the p-norm formulation.
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4.6. CONCLUSION

In the current work, the p-norm formulation is applied in the strength optimization of
the variable stiffness laminate to improve the computational efficiency. An elliptical for-
mulation of the conservative failure envelope based on the Tsai-Wu failure criterion is
employed to measure the strength of the VSL. This simplifies the Tsai-Wu failure crite-
rion in the strength optimization. Moreover, it enables the lamination parameters to be
used as the design variables in the strength optimization as the Tsai-Wu failure crite-
rion is explicit with respect to the fiber angles, which are unknown a priori during the
optimization. Thus the proposed method fits the Step 1 of the three-step optimization
method for the optimal design of the variable stiffness laminate.

The two level approximation is applied for the p-norm failure index in this work. One
important advantage of this approximation is that a firm convergence is guaranteed in
every step of the inner and outer loop of the CCSA. Therefore, the number of outer loops
in the CCSA can be reduced in the optimization. Hence, the computational cost to up-
date the sensitivity of the p-norm failure index in each outer loop can also be reduced
and the overall computational work can be reduced. In addition, this also contributes
to the mesh-independence of the optimal results together with the 8-node serendipity
element, which enhances the continuity of the stress field.

In the numerical test of a square plate with a cut-out, the effect of the p value on the op-
timal results in strength optimization with the p-norm failure index is studied on a ref-
erence model, a refined model and a half model. The numerical results show that p = 6
is the optimum value for the p-norm failure index to reduce the maximum failure index.
When p increases over 7, numerical instability and nonlinearity of the p-norm failure
index are amplified. For instance, there are fluctuations in the local maximum failure
index in the convergence history, the optimum local maximum failure index oscillates
among different p value, the number of the outer and inner loops in the CCSA as well as
the CPU time increase significantly. For each p value, the optimal lamination parame-
ters are mesh independent. By comparing the optimal solution from the local min-max
bound formulation, it confirms that the computational cost gets improved dramatically
with the global aggregation method. However, a drawback of the global aggregation is
that the optimal solution obtained is higher than that from the local min-max bound
formulation.

In the L-shaped case, the numerical results illustrate that the strength optimization with
p-norm formulation can efficiently solve numerical problems even with a stress singu-
larity. In contrast, the computational cost for strength optimization with local min-max
formulation is one order higher in this case. The optimal results confirm that the designs
are essentially mesh-independent for p lower than 6. A p value higher than 6 still reduces
the maximum local failure index consistently, however numerical instabilities have a
detrimental effect on the smoothness of the solution. Therefore p is recommended to
be lower than 6 in the extreme cases using p-norm failure index.

In future work, the formulation of the p-norm failure index can be updated to match
it with the maximum local value or to make it more conservative. Consequently, it can
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be used in topology optimization as objective or constraints to minimize the weight or
compliance of the VSL.
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5
CONCLUSION AND FUTURE WORK

Logic will get you from A to B. Imagination will take you everywhere.
逻辑会带你从A点到达B点，想象力将把你带到任何地方。

Albert Einstein

5.1. CONCLUSION

This research undertakes an in-depth investigation into strength optimization for light-
weight structural design in two aspects: efficient strength optimization and manufac-
turable design of variable stiffness laminate. The first aspect intends to break through
the bottleneck of computational cost required for large scale structural optimization.
Two variants, in particular a local version and a global version, are developed to ad-
dress the heavy computational cost from two perspectives: the local version resolves
the expensive problem by developing an efficient iterative solver; whereas, the global
version reformulates a massive problem into a condensed strength-oriented problem
before solving it with a standard approach. Two types of material are considered in each
of the two variants. The local version focuses on conventional metallic materials and the
global version deals with innovative variable stiffness laminate (VSL), respectively. With
regard to the optimal design of the VSL, the aim is to better enforce a manufacturing con-
straint on the curvature (inverse of the minimum allowable turning radius) of the fiber
paths required by the automated fiber placement (AFP) in the existing three-step design
procedure. This will push the novel composite laminate from the design phase forward
to engineering applications, where lightweight structures with superior strength are in
great demand. In this chapter, the overall research documented in this thesis is summa-
rized.

133



5

134 5. CONCLUSION AND FUTURE WORK

EFFICIENT COMPUTATIONAL METHOD FOR STRESS CONSTRAINTS

The research in Chapter 2 targets the efficiency of large scale stress constrained opti-
mization using the previously mentioned local optimization version. An efficient itera-
tive method is developed in order to achieve a linear relationship of computational cost
with respect to the size of the problem. The conservative convex separate approximation
(CCSA) framework used, as well as Mehrotra’s predictor-corrector interior point method
provide an efficient and robust convergence in the iterative procedure. In addition,
a stress approximation modified on the basis of the fully-stressed design is proposed,
which enhances the existing approximation and enables a diagonal preconditioner for
the preconditioned conjugate gradient method (PCG) to solve the Schur complement
of the Karush-Kuhn-Tucker (KKT) condition. In order to reduce the computational cost
due to the sensitivity analysis of local stress constraints using the adjoint method repet-
itively, an implicit sensitivity analysis, which integrates the adjoint method and the re-
analysis method together with the PCG, is developed. Thus, the sensitivity analysis is
done while solving the Schur complement with the PCG. Numerical tests are conducted
to verify the proposed method systematically for models composed of beam and plate
elements. From the results of the optimal design, the number of iterations for the PCG,
the interior point method and outer loops in the CCSA, as well as the CPU time cost for
the optimization, the main findings for the newly designed method are as follows:

• In the beam cases, the computational cost of the proposed iterative system in-
creases only linearly with repect to the size of the design problems, which is con-
sistent with the estimation in the computational complexity analysis.

• The proposed iterative method is efficient compared with the standard approach
only for large scale problems. Based on the CPU time obtained in the beam cases,
the performance of the proposed iterative method is superior to the standard method
only when the number of stress constraints is more than the order of 1000. Thus,
the proposed iterative method is desirable only for sufficiently large scale prob-
lems.

• In the plate cases, the Lagrange multiplier obtained in the optimal solution fluc-
tuates, which may be due to the fact that the continuity of the stress field is less
than that of the Lagrange multiplier in the discrete model of the Lagrange func-
tion. Thus, a higher order element in the FEM model may be necessary in stress
optimization.

AN ENHANCED CURVATURE CONSTRAINED DESIGN METHOD FOR MANUFACTURABLE VARI-
ABLE STIFFNESS COMPOSITE LAMINATE

In Chapter 3 a novel method is presented to enhance the enforcement of curvature con-
straints on fiber paths in the three-step optimization method as an extension of the ex-
isting design methodology. An inverse problem is explored to retrieve the fiber angles in
Step 2 of the three-step optimization method using the optimal lamination parameters
obtained in Step 1. In terms of the curvature constraints on the fiber paths, an indirect
control method, which controls the curvature of fiber path through the gradient con-
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straints on the lamination parameters in Step 1, is developed. Next to this, a hybrid con-
trol method, which ultimately enhances the enforcement of the curvature constraint, is
developed through combining the indirect control method with the existing direct con-
trol method. The enhancement is obtained by tuning the upper bound factor of the
gradient constraints in Step 1 to allow the optimal stiffness obtained with the lamination
parameters to be more achievable in the inverse problem in Step 2. A parametric study is
implemented systematically to validate the indirect control method, and a comparison
is made in terms of the optimal compliance and the CPU time cost for the optimization
between the direct, indirect and hybrid control methods. The main conclusions of this
part are summarized below:

• The indirect control method is confirmed to be capable of constraining the cur-
vature of the fiber paths, given a stringent upper bound factor δ on the gradient
constraints on the lamination parameters in Step 1.

• The optimum compliance obtained in the hybrid control method is the best out
of the three methods, since the curvature constraint is properly considered in Step
1 and firmly enforced in Step 2. The optimal compliance obtained from the di-
rect control method, which constrains the curvature of fiber paths geometrically in
Step 2, is intermediate. The optimal compliance obtained with the indirect control
method is the worst out of the three methods due to an over-constrained effect.

• Regarding the CPU time of the three methods, the indirect control method is the
most efficient, since the number of gradient constraints on the lamination param-
eters is only one per element regardless of the number of the design layers. The
CPU time for the hybrid control method is moderately higher than that of the indi-
rect control method due to the steering constraints imposed for each layer of each
element in Step 2. The computational cost for the direct control method is the
most expensive out of the three methods for two reasons: (i) optimization in Step
1 takes more iterations in the absence of gradient constraints on the lamination
parameters; (ii) the inverse problem in Step 2 takes more iterations to converge as
the lamination parameters obtained in Step 1 are more difficult to match with the
steering constraints.

• The hybrid control method is to be prefered when the curvature of fiber paths is
constrained in the three-step optimization method, i.e., the minimum compliance
can be obtained at an intermediate computational cost.

EFFICIENT STRENGTH OPTIMIZATION OF VARIABLE STIFFNESS LAMINATE

In Chapter 4, a global failure index, which is also called the p-norm failure index based
on the p-norm aggregation, is applied in the strength optimization of the VSL to set up
the previously mentioned global version method. The main focus of this part is to accel-
erate strength optimization with the lamination parameters in Step 1 of the three-step
optimization method. In order to ensure the validity of the Tsai-Wu failure criterion with
respect to the lamination parameters, an elliptical formulation of the conservative failure
envelope is employed. The two level approximation, formulated in terms of the in-plane
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stiffness matrix and the lamination parameters respectively, is applied for the p-norm
failure index to guarantee a strict conservativeness and convexity of the sub-problem.
The algorithms to address the KKT condition and the optimization framework are iden-
tical to those in Chapter 2. With the setup as such, a robust and efficient method to
solve the strength optimization of the VSL is achieved in three ways. First, the size of
the optimization problem, i.e., the number of constraints for the KKT condition, is con-
densed effectively by aggregating the local failure indices into a single p-norm failure
index. Second, the computational cost of the sensitivity analysis is decreased signifi-
cantly by solving the adjoint system for the p-norm failure index only once. Third, an
efficient and robust convergence is achieved in every step of the inner and outer loop
of the CCSA due to the two layer approximation, the predictor-corrector interior point
method and the optimization framework.

The local version of the strength optimization using the min-max bound formulation
is also implemented and compared with the results obtained from the p-norm failure
index. The concluding remarks for this chapter are as follows:

• The p value needs to be properly chosen for the p-norm failure index. From the
numerical tests, numerical instability and nonlinearity of the p-norm failure index
disturbs the convergence of the optimization as the p value is beyond the well-
conditioned range. For the cases analyzed in the present work, the best value of p
is 6 for a good compromise between the achievable optimal design and numerical
issues.

• The proposed method is robust, which provides mesh-convergent optimum de-
sign in a model even with stress singularity, such as the L-shaped plate. One reason
is due to the fact that the p-norm failure index is discretized consistently with the
FEM discretization. In addition, a higher order element (i.e., the 8-node serendip-
ity element) is employed in this work, based on the experience in Chapter 2 to
increase the continuity of the stress field.

• The min-max bound formulation can optimize the strength of the VSL better than
the p-norm failure index. Whereas, the latter is far less costly comparing with the
min-max bound formulation. As a result, the p-norm failure index is more suited
to large-scale strength-oriented optimization.

5.2. FUTURE WORK

The current research can lead to various interesting studies in structural optimization in
the future. Four specific points are brought forward in the section for future work. First
of all, further improvement in the efficient iterative method presented in Chapter 2 is
necessary for the plate cases, in order to achieve the linear relationship in the compu-
tational cost with respect to the size of the problem. Currently, the Lagrange multipliers
obtained in the optimal solution are slightly fluctuating and not reaching the high val-
ues associated with active stress constraints. This is due to the fact that the order of the
continuity of the stress constraint is lower than that of the Lagrange multiplier in the
discrete form of the Lagrange function. To improve the continuity of stress constraint,
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elements with a higher order polynomial in the FEM model (Tessler [1]) should be cho-
sen for the stress and its sensitivity calculation. Another option is to use isogeometric
analysis (IGA), where the order of the basis function from the non-uniform rational basis
spline (NURBS) is easier to elevate through p refinement (Da Veiga et al. [2]). Addition-
ally, in order to avoid the mesh dependency in the stress sensitivity, this is recommended
to be implemented in the continuous form consistently in the governing equation (Wang
et al. [3]) before discretization in the FEM. Once the issues on the Lagrange multiplier
and the mesh dependency of the stress sensitivity are addressed, the proposed iterative
method may achieve the efficiency expected in the plate cases.

Another promising possibility to boost the efficiency of large scale stress constrained
optimization problems is to build an efficient iterative solver based on the multigrid
method. Not only can this be used as an efficient solver for the partial differential equa-
tion (Notay [4]), but also acts as an efficient preconditioner for the PCG (Liu et al. [5]).
The fundamental idea of the multigrid method, as an efficient solver, is to reduce the
computational cost through correcting the short-wavelength errors of iterative solvers,
such as Jacobi and Gauss-Seidel method, in coarser meshes. To this end, it can be ap-
plied in the sensitivity analysis with the adjoint method for a large number of constraints
or to solve the Schur complement in the optimization (Kočvara and Mohammed [6]).
Whereas, for the multigrid preconditioner, this is developed to accelerate the conver-
gence rate of the congugate gradient method through combining the paradigm of the
multigrid method in the iteration (Tatebe [7]). It has been demonstrated as a promising
preconditioner in topology optimization (Amir et al. [8]). Hence, relevant research can
lead to an efficient solver for large scale stress constrained optimization as well.

For constraining the curvature of the fiber paths of the VSL, a valuable research to be
carried out is to account for this factor in Step 3 of the current three-step optimization
method, namely the fiber paths reconstruction step with the streamline analogy. As this
is not considered in the current method, the risk is that the fiber paths achieved at the
end of Step 3 may still violate the curvature limitation albeit it is controlled in both Step
1 and Step 2. Additionally, the proposed method in this research need to be extended to
the general 3D cases using shell elements, where bending is also involved. In that case, at
least two more out-of-plane lamination parameters are to be constrained at each design
point for a symmetric and balanced laminate. Corresponding numerical tests need to
be implemented thereafter for different applications, such as optimization of strength,
buckling, vibration, aeroelasticity or more complex nonlinear behaviours etc.

Finally, regarding the strength optimization of the VSL with p-norm failure index, this
can be further enhanced by combining scaling and clustering techniques, which allows
the p-norm failure index to match the maximum of the local failure indices. In that
case, the enhanced p-norm failure index can be imposed either as the objective or the
constraint in the optimization of the VSL, which is more suited to engineering practice.
Not only the stiffness of the VSL can be tailored, but also the optimum topology can be
obtained through topology optimization for various purposes, with strength considered
concisely in the setup. In addition, as the failure mechanisms of composite laminates
are diverse due to the associated complex fabrication, different failure criteria should be
explored, and in the meanwhile validated with respect to the lamination parameters for
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the VSL, in order to allow more failure mechanisms to be considered for different cases
in the optimization.

With the above research successfully completed in the future, strength optimization or
optimization in general will be accomplished efficiently for large scale structural de-
sign.
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A
APPENDIX

A.1. FEASIBILITY OF THE INDIRECT CONTROL METHOD

In this appendix, the feasibility of the indirect control method is tested systematically by
changing the value of the upper bound factor δ, the minimum allowable turning radius
rmin and the number of design layers in the angle retrieval step nd . Discrete values in
the following ranges are used: rmin ∈ [0.4,2.0] m, δ ∈ [0.04,0.14] and nd = 1, . . . ,6. The
problem solved is the same as the one described in test case 1 with the same material
properties and thicknesses; the only difference are the values of δ, rmin and nd . Hence,
the upper bound used in Step 1 for each case is according to Eqs. (3.38) and (3.39).

To determine whether a design obtained from the indirect control method is actually
feasible or not, the curvature constraint is verified a posteriori, i.e., the smallest curva-
ture found by searching all local values of the curvature of the design obtained after Step
2 and the corresponding Step 3 are compared to the minimum allowable turning radius.
The upper bounds in Eqs.(3.38) and (3.39) depend on both rmin and δ (for a given thick-
ness), hence it is convenient to present the results in two distinct formats, namely feasi-
ble/infeasible regions as a function of δ for one fixed value of rmin and feasible/infeasible
regions as a function of rmin for one fixed value of δ. In both formats the results are given
for various values of nd .

A.1.1. FEASIBLE/INFEASIBLE RANGE FOR DISTINCT UPPER BOUND FACTORS

δ IN INDIRECT CONTROL METHOD

The range of the upper bound factor δ, where the minimum turning radius can be con-
strained with the indirect control method is illustrated in Figure A.1 for rmin = 0.8 m
for distinct values of the number of design layers nd . From the figure, it can be observed
that, for example, for nd = 6 design layers and for a minimum turning radius of rmin = 0.8
m, the smallest turning radius is below the critical value when δ = 0.1 (infeasible) but
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Figure A.1: Smallest layer-wise turning radius found in designs for test case 1 obtained using the indirect
control method as a function of the upper bound factor δ and for distinct numbers of design layers nd . The
feasible and infeasible designs are separated by the line corresponding to the minimum allowable turning

radius rmin = 0.8 m.

it is above when δ = 0.08 (feasible). As expected, the results indicate that the smallest
turning radius decreases as δ increases since the curvature constraint is progressively
relaxed. However, the smallest turning radius in a design does not vary monotonically
as a function of the number of design layers, which reflects the non-uniqueness of the
angle retrieval process (inverse problem).

It can be observed from the figure that the designs obtained with only 1 or 2 design layers
(nd = 1,2) are clearly within the admissible design region, although the corresponding
designs tend to have relatively small curvatures (large radius of curvature). As the num-
ber of design layers increases, so does the curvature (i.e., the smallest radius of curvature
decreases) and eventually the design may become infeasible.

A.1.2. FEASIBLE/INFEASIBLE RANGE FOR DISTINCT MINIMUM TURNING RA-
DIUS rMIN IN INDIRECT CONTROL METHOD

The range of values of the minimum turning radius rmin such that the design can be
constrained with the indirect control method is illustrated in Figure A.2 for δ = 0.05 m



A.1. FEASIBILITY OF THE INDIRECT CONTROL METHOD

A

145

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

20

Minimum allowable turning radius of the fiber path (m)

1

2

3

4

5

6

S
m

a
ll

e
st

 t
u

rn
in

g
 r

a
d

iu
s 

o
f 

th
e

 fi
b

e
r 

p
a

th
 (

 m
 )

Number of design 

layers:

δ = 0.05

Feasible 

Infeasible 

Upper bound factor

Figure A.2: Indirect control method: Feasible and infeasible designs for a given upper bound factor δ= 0.05
for test case 1 as a function of the minimum allowable turning radius rmin for distinct values of the number of

design layer during the angle retrieval step. The optimal lamination parameters are obtained in Step 1 with
gradient constraints scaled by δ= 0.05 and the smallest turning radius is the one recovered from Step 2 in at

least one of the layers without steering constraints. The straight line separating the feasible and infeasible
domains corresponds to points where the smallest turning radius in a design coincides with the minimum

allowable turning radius.

for distinct values of the number of design layers nd . As may be observed from the figure,
it turns out that, for all values considered, a feasible design can be obtained. This reflects
that the value δ= 0.05 is sufficiently small to generate feasible designs. The correspond-
ing design, however, has relatively small curvature (i.e., limited steering), which indicates
that imposing the curvature constraint indirectly via the gradient of the lamination pa-
rameters is plausible but at the expense of severely limiting the design capacity.
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