
 
 

Delft University of Technology

A DEVS library for rail operations simulation

Huang, Y; Seck, MD; Verbraeck, A

Publication date
2011
Document Version
Accepted author manuscript
Published in
Proceedings of the 2011 Spring simulation Multiconference, Emerging M&S Applications in Industry and
Academia Symposium

Citation (APA)
Huang, Y., Seck, MD., & Verbraeck, A. (2011). A DEVS library for rail operations simulation. In A. Tolk
(Ed.), Proceedings of the 2011 Spring simulation Multiconference, Emerging M&S Applications in Industry
and Academia Symposium (pp. 76-83). ACM.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



A DEVS Library for Rail Operations Simulation
Yilin Huang, Mamadou D. Seck and Alexander Verbraeck

Systems Engineering Group
Faculty of Technology, Policy and Management

Delft University of Technology
PO Box 5015, NL-2600GA Delft

The Netherlands
{y.huang,m.d.seck,a.verbraeck}@tudelft.nl

Keywords: simulation library, DEVS, rail transportation

Abstract

Detailed yet computationally efficient simulation models
are needed to support the design and operation of modern rail
infrastructure systems. LIBROS-II is a model component li-
brary for microscopic rail operations simulation. Basic rail el-
ements are modeled as atomic DEVS models which are fur-
ther aggregated into more elaborate rail component models.
The latter can in turn be used modularly for the composition
of rail network systems of arbitrary complexity in a detailed,
efficient, and rigorous way. This paper explains the commu-
nication principles in the model and gives an overview of ve-
hicle detection and control system simulation. To enhance its
usability, LIBROS-II is augmented with CRMB, a model gen-
erator capable of inferring structural and behavioral features
of a rail network from standard CAD data.

1. INTRODUCTION
Modeling and Simulation (M&S) of transport systems have

had important developments since the mid 1970s and are now
better recognized by transport designers as an effective deci-
sion support instrument [Ortúzar and Willumsen, 2001]. As
working with complex infrastructure networks increasingly
becomes a standard approach, in order to successfully sup-
port design and operation, a microscopic rail network model
is often deemed not only suitable but also mandatory [Hansen
and Pachl, 2008]. Due to the long life span of the infrastruc-
ture and services, changes often take place, leading to new is-
sues to study, which can require the construction or alteration
of simulation models. Therefore, model construction of rail-
based networks particularly requires malleable model compo-
sition and configuration to enhance flexibility and reusabil-
ity. A powerful approach is to exploit model modularity,
and to hierarchically construct large and complex models by
means of simpler model components. In this respect, Hu et al.
[2005] discussed the suitability of the DEVS (Discrete Event
Systems Specification) formalism [Zeigler et al., 2000] for
component-based M&S.

LIBROS (LIBrary for Rail Operations Simulation) is a rail

model component library. Its models describe the railway op-
eration at a microscopic level [Hansen and Pachl, 2008]. Fol-
lowing the DEVS formalism, LIBROS-II defines Rail Ele-
ments, such as rail vehicles, sensors, signals and tracks, as
atomic models. They can constitute more complex (coupled)
Rail Components, such as stations and block sections, which
in turn can be composed, and so forth recursively. The mo-
tivation of developing a rail simulation library based on the
DEVS formalism is discussed in Huang et al. [2010b]. Huang
et al. [2010a] compared microscopic rail simulation models in
which train movements are represented by differential equa-
tions and by discrete-event abstraction. The results show that,
with comparable model detail and accuracy, the LIBROS-II
model yields a higher performance than the model using dif-
ferential equations. In this paper, the design of LIBROS-II
is discussed. The next section briefly reviews the underlying
simulation environment of the LIBROS-II library. Section 3
presents the communication mechanism used in the library.
Vehicle detection and control are very important for railway
safety. The modeling of this part is discussed in section 4.
Section 5 shows the model generation process.

2. DSOL, ESDEVS AND LIBROS-II
The underlying simulator of LIBROS-II is DSOL, the Dis-

tributed Simulation Object Library [Jacobs et al., 2002; Ja-
cobs, 2005]. LIBROS-II defines rail model behaviors, which
are executed by the DSOL simulator. As such, the separa-
tion of concerns between models and simulators is respected.
DSOL is a simulation environment that supports continuous
and discrete-event simulation. It consists of components in-
cluding an event-scheduler, numerical integrators, and prob-
ability distributions. The work described in Seck and Ver-
braeck [2009], i.e., the Event-Scheduling DEVS (ESDEVS)
library, implements the parallel DEVS formalism on top of
the DSOL library. ESDEVS is based on the event-scheduling
worldview, wherein executions of the internal transition func-
tion are scheduled according to the specified time advance
function and unscheduled at the reception of external events
(except for confluent transition situations). Dynamic struc-
ture DEVS [Barros, 1995] is also implemented in the ES-
DEVS library so that components and coupling relations can

76

mailto:y.huang@tudelft.nl
mailto:m.d.seck@tudelft.nl
mailto:a.verbraeck@tudelft.nl


Figure 1. Atomic and coupled models in ESDEVS.

Figure 2. SES of the rail infrastructure model.

be added and removed dynamically during simulation run-
time. On the whole, the library specifies the meta structure
of atomic and coupled DEVS models, and handles the cou-
plings, output function, transition functions at a high level, so
that ESDEVS (together with DSOL) serves as a DEVS simu-
lator. By subclassing AtomicModel and CoupledModel in the
ESDEVS library, users can specify model behaviors and cou-
pling relations1. Figure 1 shows a simplified example.

LIBROS-II is built on the basis of ESDEVS. Rail elements
are irreducible atomic models, e.g., a vehicle, a sensor, a sig-
nal or a piece of track segment. Rail components are resul-
tants of composition. In Figure 2, a rail infrastructure model
is schematized in System Entity Structure (SES) [Zeigler and
Hammonds, 2007]. A top level rail model contains one or
more sources and sinks where vehicles are generated and re-

1For more information about DSOL and ESDEVS: http://
simulation.tudelft.nl.

moved from the simulation. The rail model composition may
contain stops, intersections, block systems, etc. For instance,
an intersection has signals to control the accessibility of the
track sections; points allow vehicles to move from one track
to another; a control unit computes the signalling logic de-
pending on the occupancy of the tracks and points. Each rail
element models one functionality of the rail infrastructure,
and the aggregation of rail elements forms a rail component
that performs more complex tasks.

The rail network model, at its lowest description level, is
a directed cyclic graph of linked rail infrastructure elements
(track segments, sensors, points and signals). Many DEVS
traffic simulation models, e.g. Lee et al. [2004]; Wainer
[2006], represent vehicles as messages (or objects) being
transferred from one infrastructure model to another. We
choose to represent the vehicles as atomic models that have
autonomous behaviors. As such, the individual vehicle’s pro-
files (driving behavior, capacity, energy consumption, etc.)
could be modeled, which is an interesting asset for detailed
transportation studies.

In LIBROS-II, a vehicle model is linked (or coupled) di-
rectly with an infrastructure element. Each infrastructure el-
ement is capable of conditional message propagation, the
main object-to-object communication mechanism used by
the LIBROS-II models. Its basic concept is message-passing
through paired I/O ports in DEVS. A vehicle moves from one
place to another while driving in the rail network; this be-
havior is modeled by successively coupling the vehicle model
from one rail infrastructure element to another using dynamic
structure DEVS. A model design question is then when to
change the couplings and how the vehicles’ internal states
change accordingly. These computations depend on the ve-
hicle’s circumstances, e.g., if there is a preceding vehicle or
where the next traffic light is located. In order to model such
detailed interactions, the communication mechanism among
the rail elements is the essence of obtaining the necessary in-
formation.

3. COMMUNICATION MECHANISM
There are two main types of communications in a LIBROS-

II model, vehicle to vehicle (V2V) and vehicle to infrastruc-
ture (V2I). As the vehicles’ positions are dynamic, the es-
tablishment of communication channels between the rail el-
ements at one instant generally requires two steps: (A) a ve-
hicle finds its preceding vehicle/infrastructure; (B) then the
coupling between the two rail elements can be created. These
two tasks may be accomplished in different ways, depending
on how the model (and its data structure) is designed.

One possibility is to set up point-to-point couplings. For
each vehicle model, step (A) can be reduced to the breadth-
first search (BFS) in the rail infrastructure graph. Constrained
by the DEVS formalism, step (B) requires first the knowledge

77

http://simulation.tudelft.nl
http://simulation.tudelft.nl


Figure 3. A coupling example.

Figure 4. A message propagation example.

of the common parent (coupled) model of the two atomic
models. This can be solved by a lowest common ancestor
(LCA) finding algorithm in the DEVS model structure tree. It
is well known that both problems have linear time and space
complexities [e.g. Cormen et al., 2001; Alstrup et al., 2004]2.
The removal and setup of couplings require the same time
complexity. Therefore, setting up (and removing) couplings
of vehicles and infrastructures in the rail network has a com-
plexity of (BFS+LCA+Coupling)×number o f vehicles×
(number o f in f rastructures + state change f requency) =
O(n+n+n)×n×n ∼ O(n3).

Another possibility is to set up indirect coupling relations.
If each vehicle is coupled with an infrastructure element, and
the infrastructure elements have been coupled corresponding
to the infrastructure layout, then the V2V and V2I commu-
nications could be achieved by conditional message propaga-
tion through the intermediary infrastructure elements. With
such an approach, finding the nearby vehicle and infras-
tructure could be naturally solved without search functions.
Only the direct couplings between each vehicle and the in-
frastructure element are dynamic. Such coupling has a com-
plexity of coupling in f rastructures+number o f vehicles×
number o f in f rastructures = O(n+n2)∼ O(n2).

Therefore, we choose to use indirect coupling with con-
ditional message propagation as the communication mecha-
nism for LIBROS-II models. Each infrastructure element is
capable of message propagation, which can be along the traf-
fic current (forward) or in the opposite direction (backward).

2There exist several fast algorithms; however the complexity can be said
to be of order O(n).

A vehicle determines its movement (acceleration, decelera-
tion or cruising) based on the information about the next in-
frastructure and/or the preceding vehicle. Lacking such in-
formation, the vehicle sends a request-message forward. The
infrastructure element that receives the message propagates
the message until the next infrastructure of interest and a pre-
ceding vehicle is found. If no preceding vehicle is found,
the message propagation stops after a predefined distance.
The found vehicle, if any, or infrastructure sends a response-
message, which is propagated backward until reaching the
original sender of the request-message. On receiving the mes-
sage, a vehicle calculates its movement. At the end of the
movement, the outdated information is cleared and a new
request-message is sent out.

A simplified coupling example is illustrated in Figure
3, and its message propagation is in Figure 4. The exam-
ple is composed of four TrackSegments (T S0 ∼ T S3)
and two RailVehicles (V0, V1). Each TrackSegment
has a length (L) and a speed limit (SL). It has dedicated
ports for input (I) and output (O) forward (F) as well as
backward (B), and a port for output to vehicles (V). A
RailVehicle has its vehicle length (V L), position (P)
relative to the track segment it is coupled to, and its cur-
rent speed limit (CSL). (The other attributes are not illus-
trated.) It also has ports for sending and receiving mes-
sages. Suppose that V0 doesn’t have information about its
next infrastructure nor about the preceding vehicle; it sends
a request-message forward. Two message sequences will be
triggered upon this action: (1) M0,M1,M2,M3,M4,M5, and
(2) (M0,M1,M2,)M3′ ,M4′ ,M5′ ,M6,M7,M8,M9.

In sequence (1), it is assumed that SL1 =CSL0 and SL2 6=

78



Table 1. Message initiators
Message Initiator Message Type Direction Trigger Event/Condition
vehicle request-message forward when the vehicle has no information about its next infrastructure

and/or the preceding vehicle
vehicle response-message backward when the vehicle receives a request-message
vehicle update-message backward when the vehicle changes its acceleration/deceleration rate
track segment response-message backward (1) when the track segment receives a request-message and the ve-

hicle’s next infrastructure of interest is not yet found
(2) when the track segment has a different speed limit or the message
propagation distance exceeds a predefined value

sensor/point/signal response-message backward when the sensor/point/signal receives a request-message and the ve-
hicle’s next infrastructure of interest is not yet found

signal update-message backward when the signal changes its state (e.g. a traffic light turns from red
to green)

CSL0. A TrackSegment replies to a request-message when
there is a speed limit change, and it also delivers a request-
message to a vehicle closest to its start node if there is any
vehicle linked to it, otherwise it propagates a message to the
next infrastructure element. Thus in the example, T S0 and
T S1 propagates the message and T S2 replies to the message.
T S2 also propagates the message to T S3, because V0’s pre-
ceding vehicle is not yet found. T S3 has V1 linked to it, so it
delivers the message to V1. The message propagation at the
forward direction ends at this moment. V1 receives a request-
message, and sends a response-message backward to V0. A
message contains information of the sender, the contemplated
receiver (if necessary), and the distance between the sender
and the receiver. The distance of M9 in sequence (2), e.g., is
M9.D =−V L1+P1+L2+L1+L0−P0. It is accumulated (or
deducted) by TrackSegments during the message prop-
agation. Message propagation involving sensors, points and
signals follows the same principle. The only difference is that
they always reply to request-messages.

As mentioned earlier, a vehicle can be a message initiator,
i.e. it can initiate message propagations according to the cir-
cumstances. The infrastructure elements can play the similar
roles. Table 1 summarizes the possible message types, direc-
tions and the triggering events and conditions. The infrastruc-
ture elements are the message propagator and deliverers. The
propagation and delivering rules (ordered with priority) are
as following. Request-Message: (1) deliver to the closest ve-
hicle, if the infrastructure element has any vehicle coupled
to it and the preceding vehicle was not found; (2) propagate
when an infrastructure of interest is not found; (3) propagate
when an preceding vehicle was not found and the propagation
distance is less than a predefined value; (4) stop propagation
when the message propagation distance exceeds a predefined
value. Response-Message: deliver when the infrastructure el-
ement has the contemplated receiver vehicle coupled to it,
otherwise propagate. Update-Message: (1) stop propagation
when the message propagation distance exceeds a predefined

value; (2) deliver to the closest vehicle when the infrastruc-
ture element has any vehicle coupled to it, otherwise propa-
gate. The conditional message propagation (and delivery) are
performed with zero time advance, i.e. when a vehicle sends
a request-message, it receives one or two response-messages
in zero simulation time.

4. VEHICLE DETECTION AND CONTROL
In this section, the (atomic) sensor, point, signal, and con-

trol unit models are presented. Compared to the track segment
models, the sensor, point and signal models have more inter-
action with the vehicle models. Besides the message propa-
gation capability, they also can be triggered and released by
the vehicle models. In combination with control units, they
can specify sophisticated railway operation and control rules.

The occupation and clearance detection of tracks is fun-
damental to railway block control and interlocking [Pachl,
2002]. There are different technologies for many types of de-
tection devices [Theeg and Vlasenko, 2009]. To generalize
detectors’ functionalities, three types of atomic models are
designed that have detection capacity (referred to hereinafter
as the detector models or detectors): the sensor model (detec-
tion), the point model (detection and switching), and the sig-
nal model (detection and signalling). The three most impor-
tant detection purposes are (1) detecting vehicles reaching a
certain point with its front end, (2) detecting vehicles passing
a certain point with its rear end, and (3) track occupancy de-
tection [Theeg and Vlasenko, 2009]. In the detector models,
purpose (1) is fulfilled by triggering the detectors, purpose
(2) by releasing the detectors, and purpose (3) by placing two
detectors at the two ends of a track.

When a vehicle is approaching a detector, the latter replies
the former’s request-message. The vehicle then calculates its
movement from its current location until reaching the detec-
tor. Upon ending the movement, the vehicle’s couplings to
the former infrastructure element are removed, and the new

79



couplings to the detector are created. At this moment, the
vehicle initiates another request-message in order to calcu-
late its movement to the next infrastructure element. The de-
tector will receive the message and propagates it. Addition-
ally the detector is triggered and it will schedule the release
time (based on the vehicle’s length, speed and acceleration)
for the next internal transition. Before the scheduled release
time expires, if the vehicle changes its acceleration, it sends
an update-message backward to inform the succeeding vehi-
cle (if any). The triggered detector will get the (backward)
message during message propagation, and it reschedules the
release time for the next internal transition.

Block control and interlocking safeguard the railway by
protecting the following and opposing movements. The de-
tectors gain the information about vehicle positions, and
transmit it to the control unit. The latter evaluates the in-
formation and permits vehicle movements via the signals
[Theeg and Vlasenko, 2009]. The control unit model repre-
sents the control logic of block systems and interlocking, each
of whose entrances is guarded by the signals.

Control unit models are not coupled with track segments,
i.e. they do not participate in message propagation. They re-
ceive input events only from detectors and send outputs to
signals. A simple example is shown in Figure 5 (the traffic
current is from left to right). Such an arrangement in railway
operation is called a block section. The permission of entering
the block section is granted by the control unit and indicated
by the signal. A vehicle that is moving towards the block sec-
tion would send a request-message forward. The signal will
receive the message eventually and send back a response-
message by which the vehicle would know if it is allowed to
enter. If not the vehicle has to stop. Otherwise by entering the
block section the vehicle will trigger the signal (as a detec-
tor) which transmits this information to the control unit. The
signal then turns red to block the entrance. When the vehicle
leaves the block section, it releases the sensor who notifies
the control unit about this event. On receiving the informa-
tion, the control unit clears the block section by instructing
the signal to turn green, so that the next vehicle could enter.

Safety issues render the interlocking control very complex.
The information evaluation involves routes, points, sensors,
signals, vehicle priorities, etc. Its principles are extensively
discussed in the literature, e.g. Pachl [2002]; Hansen and
Pachl [2008]; Theeg and Vlasenko [2009], and many works
deal with algorithms and methods of interlocking control and

Figure 5. A coupled model with control unit.

Figure 6. The light-rail infrastructure at a T-intersection.

route searching, e.g. She et al. [2007]; Mirabadi and Yazdi
[2008]; Roanes-Lozano et al. [2010]. Therefore we will not
delve into the matter. However, we will demonstrate how the
control logic can be modeled in DEVS with an example.

Figure 6 shows the infrastructure arrangement for light-
rails at a T-intersection with directions A, B and C. The dots
on the tracks are the detectors that are coupled to the con-
trol unit. The control unit is coupled to the signals and the
points (to instruct how they shall switch, i.e. left or right).
A route starts always at a signal (the entrance signal of the
route) [Pachl, 2002]. It is permitted for access when there is a
route request and if all tracks on the route are cleared and all
points are properly set. For example, at direction B in Figure
6, B→C and B→A are the two possible routes; route B→C
can be used if point b is set to left and the three succeed-
ing detectors are unoccupied. The point position and track
clearance are checked upon route request. The requests are
processed according to vehicle priorities (if any) and on a
first-come first-served (FCFS) basis. Based on these rules, the
model of interlocking control unit is specified. The model has
one input port and one output port. In principle, it processes
and buffers incoming (detector) messages, sends out (control)
messages if necessary, and then stays in passivity until receiv-
ing another message. InterlockingControlUnit =
(X ,Y,S,δext ,δint ,λ, ta) where

X = Mi is the set of input messages;
Y = Mo is the set of output messages;
S = R ×P×R×R× R̂; R (v.id,s) = R is the map of

routes3, R = {s,P ,S}, s is the entrance signal of the route,
P = {(p, p̄)|p∈ P, p̄∈ {LEFT,RIGHT}}, P and S are the sets
of points and sensors in the route; P(v.id,s) = p is the map of
priorities; the waiting request (or requester) map R is indexed
by entrance signals: R(s) = (v0,v1, · · · ,vk)∪∅,k ∈N, so that
s = R (v j.id,s).s, v j is sorted by request time, j ∈ N, j ≤ k;
R= (v0,v1, · · · ,vn)∪∅,n∈N is the list of waiting requesters
ordered so that P(v j−1.id,s) ≥ P(v j.id,s′), v j is sorted by
request time, j ∈ N, j ≤ n; R̂ ∈ R is the active route;

δext(R ,P,R,R, R̂,mi ∈Mi,mo ∈Mo) :=

3v stands for vehicle.
We denote a map and its mapping function with the same symbol, e.g.

R (v.id,s) = R also means R ∈ R .

80



if mi.approachingVehicle 6=∅ then
if mi.approachingVehicle ∈R then
<request already saved, do nothing>

else
v← mi.approachingVehicle
s← mi.sender
requested route R← R (v.id,s)
if R(R.s) =∅∧R.isCleared then

R̂← R
R̂.reserve
σ← 0
createMessage

end if
saveRequest(v, s)

end if
else if mi.sender is Signal then

if mi.detectorAction = T RIGGER then
s← mi.sender
v←R(s).getFirst
R(s).remove(v)
R.remove(v)

end if
else if mi.detectorAction = RELEASE then

point p← mi.sender
p.releaseReservation
if p.notReserved then

processWaitingRequests
if requestGranted then

R̂.reserve
σ← 0
createMessage

end if
end if

end if;
δint(σ) := σ← ∞;
λ(mo) := send(mo),mo.receivers←∅;
ta = σ;
createMessage :=
mo.receivers.add(R̂.s)
for ∀e ∈ R̂.elements do

if e ∈ R̂.P .P∧ e.position 6= p̄ then
mo.receivers.add(e)

end if
end for;
saveRequest(v, s) :=
R(s).add(v)
if R=∅ then
R.add(v)

else
p←P(v.id,s)
for i = 0 to R.size do

v′←R.get(i)

if p>P(v′.id,s′) then
R.insert(v) at position i

end if
end for

end if;
processWaitingRequests :=
if R 6=∅ then

requestOrderBuffer ROB =∅
for ∀R(s) ∈R do

if R(s) 6=∅ then
ROB.add(position o f R(s).vo in R)
<the first request at each route entrance>

end if
end for
ROB.sort <the smaller the position of R(s).vo in R, the
higher the priority and the earlier the request time>
for i = 0 to ROB.size do

v←R.get(ROB.get(i))
R← R (v.id,s)
if R.isCleared then

R̂← R
requestGranted← T RUE
return

end if
end for

end if.
An interlocking block is a closed block. This means its en-

trance signal is by default red. When a vehicle is approach-
ing the entrance signal, the latter replies the former’s request-
message and sends the route request to the interlocking con-
trol unit. If the requested route is not cleared, the request will
be queued by priority and request time. The requests are also
queued per entrance signal, because only the first request at
each entrance signal can be processed. If the requested route
is cleared, the route will be reserved. Consequently, the con-
trol unit sends a message to the points that are not on the
correct position and to the entrance signal. On receiving the
message, the points toggle their positions and the signal turns
from red to green, so that the vehicle can enter the route
safely. When the vehicle enters the route, it triggers the signal
which turns back to red. The control unit will receive the trig-
ger message from the signal and removes the request from the
queue. Each time when the vehicle releases a detector while
moving along the route, the control unit processes the waiting
requests and send out a message if a route is cleared.

The algorithm for the interlocking control logic described
is applicable for different interlocking topologies. The routes
can be obtained by automated route searching. However, the
mapping of routes R (v.id,s) = R, i.e. which vehicle takes
which route, needs to be configured according to the routing
plan. In the following section, the model generation process
is presented.

81



5. MODEL GENERATION
Rail infrastructure networks are often very complex. To fa-

cilitate the model construction and configuration for infras-
tructure designers and operators, a CAD Rail Model Builder
(CRMB) is developed as one of the possible approaches to
interface with the LIBROS-II library. Figure 7 shows the rail
model generation process. Many railway companies and au-
thorities use CAD and GIS applications for infrastructure de-
sign. The resulting design data can be used to generate the in-
frastructure model. However, CAD data only contain a list of
geometric primitives describing each object [Flynn and Jain,
1991]. Therefore, geometric inference is needed to identify
the objects and represent them in a relational graph which
contains orientation and connectivity relations among others.
Additionally, these relations are transformed into a hierarchi-
cal structure in order to generate DEVS models. For example,
the track segments shall be oriented in accord with the traf-
fic current (bi-directional is also possible); the point locations
are detected where more than two track segments connect;
then the point type is determined (whether it is converging or
diverging). After these steps pattern recognition techniques
are applied to identify the rail (infrastructure) components,
e.g. stops, blocks, etc. The identified track segments and
points that belong to different rail components are grouped
for model generation. The rail infrastructure model is gen-
erated and coupled according to the components groups and
the relational graph. Other data sources than the CAD data
provide the routing information and the timetables. Based on
the routing data, the route mapping of intersections and junc-
tions in the rail infrastructure model is configured. And the
timetable data are used to configure the vehicle generators.

Figure 8 shows the light rail network model of The Hague
and the surrounding area generated by CRMB. The area cov-
ers over 150 km2 with 14 lines, 135 km tracks, and 539 stops.
Figure 6 is a representation of the amount of model details
which are automatically generated. According to our expe-
rience, the manual construction of a microscopic rail model

Figure 7. The rail model generation process of CRMB.

Figure 8. The light rail network model of The Hague.

of 10 km can take 5∼6 weeks. The generation of The Hague
model by CRMB takes a few seconds.

6. CONCLUSIONS AND FUTURE WORK
This paper discussed the design of LIBROS-II library,

where the DEVS formalism is used for the railway model
specification. The models in the library describe the railway
operation at a microscopic level. The rail vehicles and infras-
tructure elements (e.g. track segments and signals) are de-
fined as atomic models, and the composites of rail infrastruc-
ture elements form rail components, which in turn can com-
pose more complex rail components, and so recursively. The
vehicle movement is modeled by dynamically coupling the
vehicle model from one infrastructure element to another. In-
stead of direct transmission, V2V and V2I communications
use conditional message propagation along the infrastructure
elements. The sensor, signal and point models are coupled
with the control units, so that signaling can be simulated
based on the route request and track clearance. Additionally, a
rail model generator is developed where the rail infrastructure
definition is obtained through inferencing the geometric prim-
itives in the CAD data. Future research will focus on automa-
tion of model calibration using measurement data from rail
operations. Different data analysis methods and techniques
will be investigated to estimate the model parameters.

82



REFERENCES
Alstrup, S., Gavoille, C., Kaplan, H., and Rauhe, T. 2004.

Nearest common ancestors: A survey and a new algorithm
for a distributed environment. Theory of Computing Sys-
tems, 37:441–456.

Barros, F. J. 1995. Dynamic structure discrete event system
specification: A new formalism for dynamic structure mod-
eling and simulation. In Proceedings of The 1995 Winter
Simulation Conference, pages 781–785.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
2001. Introduction to Algorithms. MIT Press and McGraw-
Hill, 3rd edition.

Flynn, P. J. and Jain, A. K. 1991. CAD-Based Computer
Vision: From CAD Models to Relational Graphs. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 13(2):114–132.

Hansen, I. A. and Pachl, J., editors 2008. Railway Timetable
& Traffic: Analysis-Modelling-Simulation. Eurailpress.

Hu, X., Zeigler, B., and Mittal, S. 2005. Variable structure in
DEVS component-based modeling and simulation. Simu-
lation, 81(2):91–102.

Huang, Y., Seck, M. D., and Verbraeck, A. 2010a. LIBROS-
II: Railway Modelling with DEVS. In Johansson, B., Jain,
S., Montoya-Torres, J., Hugan, J., and Yücesan, E., editors,
Proceedings of The 2010 Winter Simulation Conference,
Baltimore, MD, USA. IEEE.

Huang, Y., Seck, M. D., and Verbraeck, A. 2010b. The Ar-
chitecture and Components of LIBROS: Strengths, Limi-
tations, and Plans. In Janssen, G. K., Ramaekers, K., and
Caris, A., editors, Proceedings of The 2010 European Sim-
ulation and Modelling Conference, pages 80–87, Hasselt,
Belgium. Eurosis-ETI.

Jacobs, P. H. M. 2005. The DSOL simulation suite - Enabling
multi-formalism simulation in a distributed context. PhD
thesis, Delft University of Technology, the Netherlands.

Jacobs, P. H. M., Lang, N. A., and Verbraeck, A. 2002. D-
SOL: A distributed java based discrete event simulation ar-
chitecture. In Proceedings of the 2002 Winter Simulation
Conference, pages 793–800. IEEE.

Lee, J.-K., Lim, Y.-H., and Chi, S.-D. 2004. Hierarchical
modeling and simulation environment for intelligent trans-
portation systems. Simulation, 80(2):61–76.

Mirabadi, A. and Yazdi, M. 2008. Automatic generation
and verification of railway interlocking control tables using
FSM and NuSMV. International Journal for Engineering
Modelling, 21(1-4):57–63.

Ortúzar, J. and Willumsen, L. 2001. Modelling Transport.
John Wiley & Sons, 3rd edition.

Pachl, J. 2002. Railway Operation and Control. VTD Rail
Publishing.

Roanes-Lozano, E., Hernando, A., Alonso, J. A., and Laita,
L. M. 2010. A logic approach to decision taking in a rail-
way interlocking system using maple. Mathematics and
Computers in Simulation, In Press.

Seck, M. D. and Verbraeck, A. 2009. DEVS in DSOL:
Adding DEVS operational semantics to a generic event-
scheduling simulation environment. In Proceedings of the
2009 Summer Computer Simulation Conference.

She, X., Sha, Y., Chen, Q., and Yang, J. 2007. The applica-
tion of graphic theory on railway yard interlocking control
system. In Proceedings of the IEEE Intelligent Vehicles
Symposium, pages 883–887. IEEE.

Theeg, G. and Vlasenko, S., editors 2009. Railway Signalling
& Interlocking: International Compendium. Eurailpress.

Wainer, G. 2006. ATLAS: A language to specify traffic mod-
els using Cell-DEVS. Simulation Modelling Practice and
Theory, 14(3):313–337.

Zeigler, B. and Hammonds, P. 2007. Modeling and
Simulation-Based Data Engineering: Introducing Prog-
matics into Ontologies for Net-Centric Information Ex-
change. Elsevier/Academic Press.

Zeigler, B. P., Praehofer, H., and Kim, T. G. 2000. The-
ory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. Else-
vier/Academic Press, 2nd edition.

BIOGRAPHY
YILIN HUANG is a Ph.D. Candidate at Delft University
of Technology. Her research interests include dynamic
data-driven simulation, automation of model calibration, and
transportation systems simulation.

MAMADOU D. SECK is an Assistant Professor at Delft
University of Technology. His research interests include
M&S formalisms, dynamic data-driven simulation, human
behavior simulation, and agent directed simulation.

ALEXANDER VERBRAECK is a Full Professor at Delft
University of Technology. His current research focuses on de-
velopment of object-oriented simulation building blocks, par-
ticipative modeling, serious gaming using virtual reality, and
agent technology in simulation.

83




