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Abstract

In this thesis a cognitive multi-agent system is developed for the real-time strategy game
StarCraft: Brood War using GOAL, a language developed at the Delft University of Tech-
nology. StarCraft provides various challenges to GOAL that it has not faced before in terms
of complexity and quantity of agents. A connector is required for GOAL to interact with
StarCraft: the StarCraft-GOAL Environment Connector. In order to provide context for the
development stage, this thesis starts by explaining the basics of StarCraft, GOAL and the
connector. The development of the bot that will be created, named ForceBot, takes place
over the course of four tournaments that serve as milestones and are used to measure the
game performance of ForceBot. As the conditions and participants of these tournaments
vary, an additional setup for hosting internal test tournaments is established in order to
provide a form of testing that remains consistent over the course of the development. Based
on the results of tournaments, it can be concluded that the final game performance of
ForceBot is above average with regards to existing StarCraft bots. A total of four aspects
of GOAL, the language, tools, connector and computational performance, are analysed
based on their usage and performance during development, and suggestions for improve-
ments are made accordingly. Among these four aspects, the computational performance
is identified as the primary bottleneck for the game performance of GOAL-based StarCraft
bots.
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1
Introduction

Almost every video game features Artificial Intelligence (AI). Starting with games as old as Pac-Man (1979),
the occurrence of AI in video games steadily increased, to the point where it is difficult to find a modern game
that does not have any. Through the use of AI, games can become more interactive and engaging. However,
as with the rest of the game, it is important for AI to find a fine balance. If the game is too easy to beat,
it can become boring. If the game is too hard to beat, it may become frustrating. Achieving this balance
allows players to enter what is commonly referred to as ‘the flow’ [12]. When the player is constantly being
challenged enough to avoid boredom, while also not being pressured enough to cause frustration, the player
can stay in ‘the flow’, a state where the player is fully engaged with and immersed in the game.

Therefore, much work in game development is aimed at making sure that the game is balanced to give the
player an enjoyable experience, this includes the AI. In fact, many games exist in which AI-controlled enemies
are the main source of challenge provided to the player. It is not an exaggeration to say that, for these games,
the creation of balanced AI is critical to the success of the game. This also means, however, that AI must
exist which can beat humans of all skill levels in order to properly challenge any given player. Attempts to
solve that have led to the creation of AI such as Deep Blue by IBM, which beat the at-the-time top human
chess player Garry Kasparov 3 1

2 −2 1
2 in 1997 [4]. As well as AlphaGo, an AI for Go whose most recent version,

AlphaGo Zero, remains undefeated by human players [6].
Games like Chess and Go are known as fully observable games. This means that the complete state of the

game is known to the players at all times. In such games, AI have seen a great level of success in recent years,
often elevating themselves to the point of being unbeatable by human players. There has been less success
in partially observable games, in which the player is not aware of everything that happens in the game at all
times. One of the more successful AI in partially observable games is Deepstack in poker [30], which is able
to beat professional human players, but has not yet managed to beat the best human players.

The game of poker is able to be solved to some extent however, as being a card game, a great deal of
probability and prediction is present. There are also partially observable games in which this is not the case,
such as Dota 2, a Multiplayer Online Battle Arena (MOBA) game. OpenAI saw success in Dota 2 in August
2017, convincingly beating the top professional players. However, it did so in a simplified version of the
game, which restricted play to 1-on-1 combat, rather than the traditional 5-on-5, as well as using only a single
character in the game, instead of the 113 characters available at the time.

Another partially observable game which has seen a great deal of attention in recent years is StarCraft:
Brood War. StarCraft is a Real-Time Strategy (RTS) game developed and published by Blizzard Entertainment.
In the game the player can pick from 3 races: Terran, Protoss and Zerg. Each race features a unique set of
units, buildings and mechanics, giving rise to various different ways of playing the game. For example, one
can choose to try and win in the early-game with a single small army, in the hopes of being able to take down
the enemy before defences can be constructed. Other strategies focus on the late-game by playing defensively
until they have constructed a powerful economy and a large army with which they can overwhelm the enemy
with sheer force.

Roughly a decade ago, the Brood War Application Programming Interface (BWAPI) was released, giving
third parties the ability to write powerful, custom AI for StarCraft. This has led to the creation of a large
amount of StarCraft bots being built, capable of playing the entire game on their own. These various bots use
various different strategies to try and beat even the strongest of players. A good example of this is the Berkeley

1



2 1. Introduction

Overmind project [23], which succeeded in beating one of the top European StarCraft players [21]. But such
victories are only on occasion, the strongest human StarCraft players have yet to be defeated by bots.

1.1. Problem Statement
Traditionally, bots are written with a single program in charge of all units. Traditional StarCraft bots are no
different, with bots typically consisting of a singular process, although there are a number of bots which have
split themselves into a handful of modules that are relegated to specific tasks such as combat, economy and
exploration [32]. In this thesis, a different approach is taken to the challenge of creating StarCraft bots. Instead
of using a single program, the aim is to approach the problem from a multi-agent perspective, with each unit
being controlled by an independent cognitive agent. Although technically there is only one player in control
in StarCraft, by assigning an independent AI to every unit present in the game, a multi-agent system can be
used to tackle the problem.

An example of this is an attempt to utilise multi-agent systems for a chess bot [31]. In this chess bot, each
chess piece has its own AI which can reason for itself. It determines its best action, both in trying to capture
enemy pieces, as well as preserving itself. The bot can then decide which action is best to perform based on
the moves offered to it by each of its pieces. A multi-agent system in StarCraft works in a similar way, although
unlike in the chess bot there is no need to select a single move to perform – each unit may act independently.

However, a multi-agent approach using cognitive agents is not something which has been attempted be-
fore for games as complex as StarCraft. Although the aim of this thesis is to construct a bot that is capable of
playing StarCraft with advanced proficiency, it is also the aim to find out whether this is even possible with
the currently available knowledge and technology. In short, this thesis asks the question: What are the bene-
fits to using cognitive and multi-agent-based artificial intelligence techniques over the traditional single-agent
approach for the creation of StarCraft AI?

The environment of StarCraft provides various challenges that make it an excellent testing ground for a
large number of fundamental AI research problems. These challenges can be outlined as follows [29]:

Adversarial real-time planning
In StarCraft, decisions are made in real-time, giving a continuous time constraint to the processing of
the bot. Furthermore, opponents continuously interact with the game as well, modifying the game
state asynchronously.

Decision making under uncertainty
Units in StarCraft possess a vision range. A limited sight range in which they can perceive enemy units.
Anything outside of this range is covered by what is called the ‘Fog of War’. This makes the game very
different from a number of traditional AI research fields, such as Chess or Go, where the AI can perceive
the full game state at all times. Fog of War turns StarCraft into a partially observable game, in which
there is uncertainty as to what the state of the opponent is.

Opponent Modelling
It is important for players in StarCraft to both react to and predict actions by their opponent. Further-
more, by analysing the opponents’ actions a player can potentially spot and exploit a weakness in their
opponents strategy.

Spatial and temporal reasoning
Proper utilization of the map is an important aspect in StarCraft. For example, by placing units strate-
gically on the high ground, players gain an advantage in vision, as well as combat, as units that are on
terrain lower than the enemy are prone to missing their attacks. An example of temporal reasoning is
how Zerg players will frequently save up Larvae to use simultaneously, allowing for sudden bursts of
combat units to take the enemy by surprise.

Resource management
The management of the resources found in StarCraft, minerals, vespene gas and supply, is vital to suc-
cessful play. The player must continuously make trade-offs: deciding whether to use their resources on
building an army, upgrading their army, or increasing the power of their economy.

Collaboration
A player in StarCraft controls a large number of units. The army is often treated as a multi-agent system
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Figure 1.1: The interaction between environment and GOAL, and the structure of cycles

even in bots which are not designed as such. Units need to be able to take individual action, but must
also coordinate with one another in order to function successfully as an army.

Pathfinding
Units in StarCraft continuously move around, and players may place defensive building to ward off
enemies. This leads to path-finding in StarCraft being a task more complex than finding the shortest
route. Often times, players will want to find alternate routes to get around dangerous areas and keep
their units safe.

1.2. GOAL
For the development of a cognitive multi-agent system for StarCraft, GOAL [20] will be used. GOAL is a rule-
based programming language for programming cognitive agents that interact with an environment and with
each other. Information about the environment is received through percepts, and agents can act upon the
environment using actions. Agents are part of a multi-agent system and can exchange information between
each other through messages. Agents maintain a cognitive state that consists of knowledge, beliefs and goals
of the agent which are represented in some knowledge representation language. Agents are autonomous
decision-making agents that derive their choice of action from their beliefs and goals. Agents operate in cy-
cles. In each cycle, first new percepts and messages are received, then the actions are selected and performed,
and finally the mental state of the agent is updated.

GOAL is developed at the Technical University of Delft and has been used in various experimental and
game environments before, most notable of which being Unreal Tournament [19]. GOAL utilises the Envi-
ronment Interface Standard (EIS) [18], a Java-based interface standard for connecting agents to controllable
entities in an environment. In June 2016, Harm Griffioen and Danny Plenge created the StarCraft-GOAL Envi-
ronment Connector. This connector creates a bridge between BWAPI and EIS-enabled multi-agent systems,
allowing for the creation of GOAL-based StarCraft bots.

StarCraft can be modelled as a multi-agent system within GOAL by using a 1-on-1 mapping of agents and
units/buildings within StarCraft. Every agent will control only the unit or building that it is connected to, and
use messaging between agents in order to coordinate, forming a multi-agent system. GOAL is well-suited to
the aspect of partial observability in StarCraft, as GOAL’s percept-based design is centred around the concept
of partial observability. Previous environments of GOAL such as BW4T [22] feature this, where agents may
only perceive the blocks in the room they are currently located in. Agents in Unreal Tournament also cannot
perceive enemy players outside of their line of sight.

In order to model the game state of StarCraft as percepts, a level of abstraction is applied by the connec-
tor. Abstraction is a technique that has frequently been used to develop game AI, such as for Poker [36]. By
simplifying the game state, a problem that is easier to solve is created. However, some amount of informa-
tion is lost in abstraction, which can negatively affect the game performance of the AI. One of the tasks for
this thesis will be to determine whether the level of abstraction employed by the connector is helpful to the
development of a bot for StarCraft.

StarCraft provides a challenge to GOAL in terms of number of agents, as well as complexity. Previous
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environment in which GOAL has been used always contained either few percepts, few agents, or both. For
example, in Unreal Tournament, ignoring percept types which are perceived only upon agent startup, only
the following percept types can be received more than once per cycle:

• weapon – A player can hold a maximum of 9 weapons.

• item – It is rare for there to be more 2 items visible at once.

• bot – Typical matches involve only 8 to 16 players, of which only a few will be visible at any time.

This means that the number of percepts that a single agent is likely to receive within a single frame will
usually be below 20. In StarCraft, however, more than a hundred player-owned units can be on the field
simultaneously. Each of these units has its own agent attached, which can all perceive any friendly and enemy
units visible on the map. The quantity of agents also plays a role in the complexity, as previous environments
in which GOAL has operated would typically feature no more than 10 agents. There are also more strategic
elements in StarCraft, such as coordinating and planning the collection and spending of resources found on
the map. The increased levels of coordination and planning that are required for StarCraft will provide new
challenges to GOAL.

Finally, a multi-agent system is a type of distributed system, which are known to be difficult to debug
[2]. To assist in this process, GOAL provides a number of tools to be used for development, debugging and
profiling of GOAL bots [25]. As previous environments in which GOAL has been used use significantly fewer
agents and feature less complexity than StarCraft, another objective of this thesis is to assess the effectiveness
of the tools provided by GOAL in development for a StarCraft bot.

1.3. Research Questions
This section expands on the challenges discussed in the previous sections, and aims to split the challenges
into research questions that will be answered over the course of this thesis. The main objective of this thesis is
to determine how well GOAL is able to perform in an environment such as StarCraft. This means that the lan-
guage must be analysed in order to determine whether it is suitable for an environment such as StarCraft, and
furthermore whether it provides the computational performance to operate in a complex real-time environ-
ment. In addition to this, the StarCraft-GOAL Connector applies a layer of abstraction on StarCraft in order
to operate with GOAL. The existing level of abstraction may need to be adjusted in order for a GOAL-based
StarCraft bot to perform better. Finally, GOAL provides a number of tools to assist in the development of a
multi-agent system. These tools will need to be analysed as well in order to determine whether their current
design of these tools is useful for developing, debugging and profiling a StarCraft bot, as well as to determine
areas for improvement. Based on these concerns, the following four questions are raised:

What are the advantages and disadvantages of using GOAL for an environment such as StarCraft?
GOAL is a rule-based programming language based on cognitive perception. Traditional StarCraft bots
are programmed using object-orientated programming languages such as C++ and Java. It may be that
GOAL is not a suitable language for this task. In order to determine this, the advantages and disadvan-
tages of GOAL over languages such as C++ and Java when developing a StarCraft bot must be assessed.

How does the abstraction of the StarCraft-GOAL connector affect GOAL bots?
The connector performs abstraction both in order to interact with GOAL, as well as to simplify the
creation of a GOAL bot. However, if the connector abstracts the environment too much, a GOAL bot will
become limited in its options. What are the advantages and disadvantages of the level of abstraction
placed upon StarCraft by the connector?

How well do the tools provided for GOAL provide support for developing a StarCraft bot?
GOAL provides a number of tools to be used for development, debugging and profiling of GOAL bots.
As testing and debugging multi-agent systems is difficult, it needs to be determined whether the testing
environment for the bot is sufficient to efficiently find and remove bugs in a StarCraft GOAL bot. What
are the pros and cons of each tool? Are any new tools required? How can existing tools be improved?

How does computational performance scale with the quantity of agents and percepts in GOAL?
GOAL utilises a 1-on-1 mapping of units/buildings to agents for StarCraft, which allows for over a hun-
dred agents to be active at once. GOAL has not been used before in an environment featuring such
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a large number of agents or percepts. Is a 1-on-1 mapping a feasible approach for tackling such an
environment?

These four questions can be summarised as questions regarding the language, connector, tools and com-
putational performance respectively. These four points will be returned to over the course of this thesis in
order to assess how well each of these aspects of GOAL perform within the StarCraft environment.

Finally, in addition to these GOAL-related questions, a final question is: how does a cognitive multi-agent
system compare to traditional StarCraft bots? There are no existing cognitive multi-agent systems for Star-
Craft, although cognitive and multi-agent systems have been attempted before separately, which is explained
in more detail in Chapter 3. At the end of this thesis this question will be looked at once more in order to
determine an answer to this question.

1.4. Approach
This section discusses the setup for developing a multi-agent bot using GOAL for StarCraft: Brood War, which
has been given the name ‘ForceBot’. In order to draw any conclusions on ForceBot’s strength as a StarCraft
bot, it will need to compete against existing bots so that we may measure its game performance. In particular,
competition against non-GOAL bots is preferred, as almost all existing StarCraft bots operate using C++ or
Java. For this reason, ForceBot competed in a number of tournaments over the course of its development,
spanning from April 2017 to March 2018. These tournaments have been split into a total of four milestones:
the MAS Project, AIIDE, SSCAIT and SAIL – each of these will be briefly outline in this section.

By splitting the development up into milestones, focus can be placed on improvements for each particular
milestone, and efforts can be made in order to resolve flaws or weaknesses of the previous milestone. An
overview of all the milestones can be seen in Figure 1.2.

Figure 1.2: Timeline of the milestones

Before the development and results of the milestones are detailed, Chapter 2 will explain the basics of
StarCraft, common terms used, as well as basic strategies. Chapter 3 will review the literature of multi-agent
and cognitive AI, as well as the development of StarCraft AI thus far. Finally, Chapter 4 explains how GOAL op-
erates, the environment and tools provided by GOAL, as well as the StarCraft-GOAL Environment Connector
that it requires in order to interact with StarCraft.

1.4.1. Milestone 1: MAS Project
The first milestone in ForceBot’s development life is the Multi-Agent Systems (MAS) Project, which will be
covered in Chapter 5. The MAS Project is a course that takes place in Delft during the fourth quarter of the
study year. In this course, 36 teams of 6 first year Bachelor students work together to create a StarCraft bot
over the course of roughly 8 weeks. During this time, students can voluntarily enter periodic tournaments
hosted by the instructors, allowing the student teams to measure the game performance of their bots. Work
on ForceBot started at roughly the same time as the MAS Project. Participating in the periodic tournaments
made for an excellent means of measuring the game performance of ForceBot and testing how it held up
against the various tactics that the MAS Project teams could come up with. The last periodic tournament was
held on June 22nd, 2017.

1.4.2. Milestone 2: AIIDE
AIIDE is an annual tournament StarCraft AI tournament. In 2017 it was held during September, concluding
shortly before the actual Artificial Intelligence and Interactive Digital Entertainment (AIIDE) conference in
October. The submission deadline for this tournament is September 1st, roughly two months after the MAS
Project milestone. As AIIDE is the largest tournament of the year, attaining a high score in this tournament
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is challenging. The development leading up to AIIDE, as well as the results achieved within this tournament,
will be covered in Chapter 6.

In addition to AIIDE there is the Student StarCraft AI Tournament (SSCAIT). SSCAIT is a 24/7 stream on
Twitch where anyone can freely submit bots to participate in the continuous bot-on-bot action. Notably,
SSCAIT features a wide variety of bots, many of which are present in the annual AIIDE and CIG tournaments.
By participating in this live stream the game performance of ForceBot against non-GOAL bots was measured.
Furthermore, SSCAIT itself has a ladder system which produces an Elo rating, as well as an ICCUP Formula.
These statistics were tracked and used as means to measure ForceBot’s game performance over time. Entry
into SSCAIT has no deadline, as one is free to enter at any time. Therefore, ForceBot participated in the
SSCAIT ladder prior to AIIDE in order to help in the development towards AIIDE.

1.4.3. Milestone 3: SSCAIT
In addition to the 24/7 stream, SSCAIT holds an annual tournament, which in 2017 was held starting De-
cember 20th, the development and results of which will be covered in Chapter 7. Notably, this tournament
distinguishes between bots developed by single students and bots developed by non-students. As the SSCAIT
tournament was held further into ForceBot’s development life than AIIDE, as well as the competition within
this tournament being less fierce, SSCAIT is the tournament in which ForceBot should perform well.

Additionally, in the months between milestone 2 and 3, the SSCAIT stream provided information regard-
ing ForceBot’s game performance, as it played against other bots several times each day. However, ideally,
a larger number of matches are played in order to reduce the margin for error when measuring game per-
formance. In order to achieve this, internal test tournaments were hosted, held using local computers. In
these tournaments, ForceBot was matched against bots present in AIIDE or SSCAIT, as these bots are freely
available for use. By establishing a ‘baseline’ using nine bot opponents and periodically running these lo-
cal tournaments, it was possible to measure the effectiveness of changes and ensure that the changes did
not harm ForceBot’s game performance against certain bots. Finally, this setup allowed for testing specific
matchups. For example, by adding a bot that frequently does early rush attacks to the baseline, improve-
ments to ForceBot’s response to such tactics were measured.

1.4.4. Milestone 4: SAIL
The development and results after SSCAIT will be discussed in Chapter 8. No further tournaments were set to
take place after SSCAIT. Initially, the period after SSCAIT would only be used to address weaknesses exposed
during the SSCAIT round robin tournament, as well as assess ForceBot’s game performance using internal test
tournaments. However, the StarCraft Artificial Intelligence League (SAIL) began operating in March, 2018.
SAIL operates similarly to the SSCAIT ladder: bots are randomly matched against one another 24/7. But
games are played significantly quicker than on SSCAIT as a result of the games not being live streamed on
Twitch. Furthermore, SAIL launched after completion of the final version of ForceBot. This meant that SAIL
was ideal in order to measure the game performance of the final version and determine whether the changes
that were made as a result of findings from SSCAIT were effective.

1.4.5. Conclusions
Upon completion of the development of ForceBot, the results and development process were analysed in
order to determine answers to the questions posed in this chapter. In Chapter 9, the tools used during devel-
opment, as well as the development itself are analysed. Afterwards, the findings that were made with regards
to GOAL, the tools provided by GOAL and the StarCraft-GOAL Environment Connector are reviewed in Chap-
ter 10. Finally, we will look back at the questions asked in this chapter in order to answer them in Chapter
11.



2
StarCraft Basics

StarCraft is a Real-Time Strategy (RTS) game created by Blizzard Entertainment and released in 1998. Play-
ers in StarCraft can select 1 of 3 races: Terran, Protoss and Zerg, with each race offering a unique play-style.
The technologically advanced alien Protoss race has strong but costly units. The Zerg is a biological hive-
mind composed of many cheap but weak creatures. Finally, the human race of Terrans balances strength
and cost. The game of StarCraft has seen much success, selling over 11 million copies as of 2017. Over the
years, Blizzard Entertainment has continued to balance the game, ensuring that all of the races are equal in
strength. This chapter aims to provide an introduction and overview of StarCraft in order to provide knowl-
edge about the environment that ForceBot will be designed for. First, in Section 2.1 the mechanics of StarCraft
are explained, as well as the common terms used within the game. Section 2.2 takes a closer look at some of
the strategies that may be used within StarCraft, and how a typical match might play out.

2.1. What is StarCraft?
In StarCraft, players start with a single base building and four worker units. Using worker units, players can
collect additional resources: minerals and vespene gas. These resources can be used to construct more work-
ers, buildings and combat units as well as researching or upgrading technology. This section aims to shed
light on the common StarCraft terminology that is used in this thesis.

Map
StarCraft features different maps on which games are played. Maps vary in size and layout, which can
favour certain strategies. For example, maps with short distances to the enemy base favour aggressive
strategies, while maps with small entrances into the base favour defensive strategies. The maps most
frequently used in competitive play have been balanced over the years using the feedback of players, in
order to avoid giving major advantages to any particular race or strategy.

Base
The base building is different for each race: the Protoss base building is called Nexus, the Terran base
building is called Command Center, and the Zerg base building is called Hatchery. The main purpose
of all base buildings is the same, namely to train worker units and receive harvested resources. Base
buildings are typically only constructed at a ‘base location’, which are specific places on the map where
resources are bundled together for the player to harvest. Zerg is an exception to this, as the Zerg trains
not just workers from Hatcheries, but almost all of its units. This is done by morphing Larvae into the
desired unit. Larvae spawn periodically from any Hatchery, with a maximum of 3 Larvae per Hatchery.
This often results in Zerg players constructing multiple Hatcheries in order to be able to train more
units simultaneously. Furthermore, the Zerg may morph their Hatchery into a Lair and finally into a
Hive. These morphed buildings act the same way, but unlock additional technological options.

A typical base location is seen in Figure 2.1, with Drones collecting resources, a vespene geyser at the
top, and resources being displayed in the top-right. On every map there are a number of special base
locations known as starting locations. At the start of each game, the player will start on a random
starting location. Notably, if there are more starting locations than there are players present in a match,
then a player can only become aware of where an opponents’ base is located by exploring the map.

7
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Figure 2.1: The start of a typical StarCraft game as Zerg

Expanding
When a player expands, it means that they are constructing a new base building at an unused base
location. Although constructing a new base building is expensive, by expanding, additional resources
become available to the player, allowing for faster resource collection at a later stage of the game. Most
maps feature a so-called ‘natural expansion’, or simply ‘natural’. A natural expansion is another base
location located close to the starting location. In many maps the natural expansion serves as a ‘natural’
blockade before enemy forces can enter the main with ground forces.

Minerals
Minerals are the first of three player resources found in StarCraft. At least some amount of them is
needed in order to create any unit or building. Minerals are mined using worker units, which can then
deliver the harvested minerals to the base building. Each base location starts with a certain number of
mineral fields, which each contain a limited number of mineral resources.

Vespene Gas
Vespene gas is the second type of player resource. This resource is not immediately available: in order
to harvest it from a vespene geyser, a Protoss Assimilator, Terran Refinery or Zerg Extractor belonging to
the player must be placed on top of a vespene geyser. Once constructed, worker units are able to collect
vespene gas from it and deliver the vespene gas to the base building. Because of this requirement, the
most basic units and buildings do not require vespene gas to be created, while more advanced units
and buildings require larger amounts of vespene gas. Most base locations contain a single vespene
geyser, although there are also base locations which contain zero or two vespene geysers instead.

Supply
Supply is the third type of player resource. Unlike other resources, this is not collected by workers, but
received by construction a specific type of building or unit. Terrans must construct Supply Depots, Pro-
toss must construct Pylons, and Zerg must train Overlords. When these buildings or units are destroyed,
the supply is lost, and new ones must be created. Overlords are slow-moving flying units, rather than
buildings. Overlords cannot attack, and are used to explore the map in addition to providing supply.

All units other than Overlords have a supply cost, and cannot be created unless there is enough supply
available. When a unit is killed, its supply cost is returned to the owner of the unit. There is a maximum
of 200 supply, which limits the number of units that a player can own.

Training & Morphing
Training is the process of spending resources to create new units for Protoss and Terran. This must be
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done using a production building, and there are multiple types of production buildings that can train
different units. Training a new unit takes a pre-determined time depending on the unit being trained,
and production buildings can only train a single unit at once.

Morphing is similar to training, but is only used by the Zerg race. Zerg must morph existing units into
new ones in order to create new units or buildings. There are 3 types of morphing:

1. Drones may morph themselves into buildings.

2. Buildings may morph themselves into more advanced versions in order to unlock additional tech-
nology. A Hatchery may morph into a Lair, and a Lair may morph into a Hive.

3. Certain units may morph themselves into other units. Mutalisks may morph into a Devourer or
Guardian, while Hydralisks may morph into a Lurker. Every other Zerg unit is created by having a
Larvae morph into the desired unit.

Regions & Chokepoints
The layout of each map can be split into regions and chokepoints. Regions are wide open areas, while
chokepoints are narrow passages which connect regions. In most cases, one must pass through a
chokepoint in order to travel between regions. There are also cases where a region is not connected
to any other region, these regions are called ‘islands’ and can only be reached using flying units. Is-
lands typically contain resources that are more difficult to reach, as flying is required, but as a result
island bases are also easier to defend. A number of maps block off chokepoints using destructible ob-
jects or mineral fields, forcing players to clear them before the chokepoint can be passed through. This
is seen on the bottom chokepoint in Figure 2.2

Figure 2.2: Regions being connected by chokepoints

Workers & Construction
Worker units are responsible for harvesting resources as well as constructing buildings, with each race
performing these tasks in different manners.

• The Protoss need only to place a building, which will then fully construct itself. This allows a
single Probe to quickly construct a large number of buildings. However, Protoss buildings other
than the Nexus, Assimilator and Pylon cannot be constructed without a nearby Pylon to power
these buildings.

• The Terran Space Construction Vehicle (SCV) can only construct a single building at any time, but
is also able to repair both buildings and mechanical units.

• The Zerg Drone, rather than constructing a building, morphs itself into a building. Although this
means that the Drone is lost in the process, the Zerg are able to use their Larvae to create new
workers faster than the other races.
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Build Order
A build order is a specific sequence of actions performed at the start of a game, generally leading into
a specific strategy. For example, a more economic build order would initially focus on training workers
and gaining a resource advantage so it may build a large army. Where as an aggressive build order will
train minimal workers and quickly build a small army, aiming to end the game before the opponent
can effectively defend themselves. Build orders are only used at the start of games, as the need to adjust
actions based on the actions performed by the opponent increases as the game progresses.

Build orders are well-defined thanks to many years of competitive play by human players, with many
guides being available online for a large variety of build orders. However, it is important to adapt the
build order according to the map, enemy strategy and current situation. As a result, build orders are
primarily followed during the early stages of games, when not much is known about the opponent.

Health, Shields and Energy
These three are the resources of any given unit. When a units’ health reaches 0, it dies. Health does not
regenerate for both Terran and Protoss units. Zerg units slowly regenerate health at all times. Shields
are a layer of defence before Health, possessed by all Protoss units. Shields regenerate slowly, at around
twice the rate of the health regeneration of Zerg units. Finally, energy is used to cast abilities. The effects
of abilities vary, such as damaging units in an area or turning invisible. Not all units have abilities, and
not all abilities cost energy. Units which have energy are called ‘spell-caster’ units. Spell-caster units
primarily fight using abilities, as most spell-casters cannot attack normally.

Attacking & Attack Cooldown
Almost all units can attack other units. Each unit type has a different attack that deals a specific amount
of damage at a specific attack cooldown. The attack cooldown of a unit refers to the time it requires
between attacks. During the attack cooldown, a unit may move and act freely, but it cannot perform
another attack until the attack cooldown has completed.

Ground & Flying Units
StarCraft has both units which are grounded, and those that can fly. Flying units are able to pass over
terrain and obstacles, giving them an advantage in mobility. A number of units can attack both ground
and flying units, however many units can only attack one or the other.

Micro & Macro
In StarCraft, micro and macro are almost like opposites to each other. Micro refers to finer unit controls,
such as managing your army and individual units. Micro is making the most of out units by controlling
them as precisely as possible. With excellent micro, it is possible to win fights that you would not win
otherwise, or have more units survive.

Macro refers to the overall flow of the game and economy. Training new units, performing upgrades,
constructing buildings and expanding are all considered macro. This includes strategic choices, such
as deciding to construct defences or counters according to what the player believes the opponent is
planning. A player who is poor at macro will have excess resources, which is called ‘floating’ resources,
when these resources could be spent to train more units and other macro actions. Poor macro can also
lead to the opposite, where the player has more production buildings than the player has resources to
use, leading to idle buildings and therefore wasted resources.

A human player who is too focused on micro may forget to use his resources while managing his army,
while a player who is too focused on macro may lose some units in his army that could have been saved
with better control. It is important for StarCraft players to balance micro and macro. For bots this topic
is a little different, as bots have no problem splitting their attention between micro and macro when
disregarding computational performance constraints.

Kiting
Kiting is a form of micro. Kiting is when a unit utilises the time between its attack cooldown to run away
from enemy units. In fights between two units, kiting is almost always a good strategy for one of the two
units, typically the unit that can move faster or has a longer attack range. By running away during the
attack cooldown, the enemy unit must run after the kiting unit and be unable to attack. Using kiting,
units can reduce the damage taken during combat with other units.
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Fog of War
Every unit in StarCraft has a sight range, a limited range that they are able to observe. The parts of the
map which are not within the sight range of any of your units is called the Fog of War. Players cannot
see enemy units that are located within the Fog of War. Enemy buildings can be seen, but only if the
player has had sight of them before. The element of Fog of War adds an element of uncertainty to the
game, making StarCraft a partially observable game. The partial observability aspect of StarCraft is a
major challenge in the development of bots.

Figure 2.3: An enemy Nexus shrouded in the Fog of War

Scouting
Scouting is a common term in StarCraft used to denote when a unit travels into enemy territory in order
to gather information. Most of the time, scouting is performed either by fast or flying units which can
avoid enemy forces. Cheap units are also used in some cases, in order to minimize losses if they are
destroyed.

Scouting is a vital part of StarCraft gameplay. For example, knowing the buildings that are located in the
opponents base can tell players what strategy the opponent is using, allowing a counter strategy to be
formed. Knowing the location and size of the opposing army allows players to create suitable defences
in advance.

Burrowing, Cloaking and Detection
Certain units have the ability to cloak or burrow, turning them ‘invisible’ and making the opponent
unable to attack them. Burrowed units cannot move, and is an ability that can only be used by Zerg
units. Units with burrowing or cloaking capabilities are typically unlocked at later stages of the game.
There are strategies that aim to quickly create a number of invisible units before the opponent has a
means to counter them.

Invisible units can be countered using ‘detection’, which will reveal invisible enemy units, allowing
them to be attacked. Each race possesses one static and one flying means of detection:

• Protoss may build the flying Observers, a non-combat unit which is cloaked itself, as well as the
static defence Photon Cannon.

• Terran may train the flying Science Vessel and the static defence Missile Turret. Additionally, their
base building can be upgraded with Comsat Stations, which can periodically be used to reveal
invisible units in a chosen radius anywhere on the map.

• Zerg Overlords may detect invisible units, as well the static defence Spore Colony.

Rushing
Rushing refers early game, aggressive strategies that aim to end the game as soon as possible. In these
strategies, economic power is traded in for creating a larger or faster army. This often results in rushing
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strategies losing the match unless significant damage is dealt to the enemy. Particularly aggressive
strategies, even amongst rushing strategies, are often referred to as ‘cheese’. These cheese strategies
often try to win using unorthodox strategies, such as using worker units or static defences to fight,
rather than a more standard army.

Static Defence
A means of defending oneself in StarCraft is through the construction of static defences. Static de-
fences are cheap and cost-effective, but unable to move. This largely limits these buildings to purely
defensive tools, although strategies to use static defences offensively do exist. Static defences are de-
signed to allow players who have the weaker army a means of defending themselves. The placement of
static defences is a crucial part of playing the game effectively, as poorly placed static defences can be
circumvented by clever movement from the opposing army.

Figure 2.4 shows an expansion defended by Sunken Colonies, with additional units morphing as eggs
to the left of the Hatchery.

Figure 2.4: An expansion defended by static defenses

Runby
A runby is when enemy static defences are ignored, and the players’ army runs past them in order to
attack the base. This is possible if the opponent is relying mostly on poorly placed static defences.

Sim City
Sim City refers to the placement of buildings. By constructing buildings close together, a player can
add to the defensive capabilities of locations, or even block paths entirely. When a path is completely
blocked it is referred to as a ‘wall-in’. The importance of Sim City differs for each race. For Protoss,
building placement is a vital part of gameplay due to the need to power buildings using Pylons. For
Zerg, it is a minor part of gameplay, as Zerg constructs fewer buildings than other races.

An example of this can be seen in Figure 2.5. A static defense, a Photon Cannon, is surrounded with
buildings in order to make it difficult to attack or enter the base.
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Figure 2.5: SimCity being used to fortify a Photon Cannon

Upgrades & Researches
Upgrades and researches increase the strength of units in StarCraft. Particularly as a match reaches the
later stages, ensuring that you do not fall behind in upgrades is vital to taking the upper hand in a fight.
There are 3 different types:

1. Numeric upgrades – Numeric upgrades increase either the attack or armour of certain unit types,
e.g. 1 additional armour for all flying units. Each numeric upgrade has a total of 3 ranks, making
fully-upgraded units significantly more powerful.

2. Ability upgrades – These unlock new abilities for units. Most spell-caster units have several ability
upgrades.

3. Passive upgrades – Passive upgrades increase a specific unit stat, such as movement speed or
energy capacity.

2.2. StarCraft Strategy
This section aims to provide an overview of how a typical StarCraft match may play out, strategies that may
be used, as well as discuss some of the strengths and weaknesses of each race.

Each StarCraft match starts with a single base building and four worker units. It is possible to immediately
begin offensive actions through strategies such as SCV rushes, the worker units for Terrans, or using a 4-pool
strategy for Zerg, which aims to create Zerglings as fast as possible. A number of bots specialise in such
strategies, however these types of extremely aggressive strategies are not frequently used. This is because the
player will be at a major disadvantage if the first attack is unsuccessful.

In most cases, both sides will continuously construct additional worker units in order to strengthen their
economy for the first part of the match. The order in which units and buildings are constructed during this
time will follow a build order. The build order selected at the start of a match determines the strategies that
are available to a player in the middle stages of the match. As such, selecting a build order that is appropriate
for your enemy is a major factor in winning a match. Many bots feature build order learning as a result, in
which the bot will learn which of its build orders are effective against specific opponents, recognised using
their names.

In order to avoid being caught off-guard by enemy forces before any defensive measures have been taken,
it is a common strategy to use one worker unit to scout the enemies base, in order to determine the level of
aggression of the opponent and react accordingly. If neither side shows signs of aggression, both sides may
opt to expand to multiple bases before any attacks are made. Once the middle and later stages of the game
have been reached, there are a number of major factors that players will be looking out for.
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Army vs Economy
Choosing the level of aggression is an important factor. Devoting all resources into producing com-
bat units while the enemy is not expecting this can win a match. On the other hand, if the enemy is
prepared, a game may be lost as a result of an economic disadvantage after devoting a large amount of
resources into training an army. Making good decisions is difficult even for professional human players,
and many bots perform poorly in this area.

Army Composition
Each unit has its own strengths and weaknesses, making it important to have a balanced army compo-
sition. Players will also want to create units that fight effectively against the opposing army, countering
the opposing army composition. To this end, a number of bots use learning systems in order to deter-
mine appropriate army compositions based on the enemy units which it has seen.

Map Control
Players will look to take control of the map, taking resources for themselves and blocking the enemy
from resources. By preventing the opponent from gaining map control, also referred to as ‘containing
(the enemy)’, a player can gain an economic advantage while preventing the enemy from gaining any. If
successful, this strategy can be used to overwhelm the opponents defences via an economic advantage
over time.

There are a number of common differences between human and bot playstyles and strategies. Profes-
sional human players play more strategically and show greater ability at predicting and responding to enemy
actions that occur within Fog of War (i.e. which cannot be observed). In order to predict enemy actions, many
bots utilise build order learning, in which the bot learns which build orders are effective against which oppo-
nents by either name or race. This reduces the need for the bot to determine the opponents strategy during
the game itself, as the opponent can be countered to an extent by using a build order that is strong against
the strategy used by the opponent. However, this approach is not very effective if the opponent uses a similar
learning behaviour or some other form of adaptation.

Many bots respond poorly to certain situations, such as being rushed before the bot was expecting an
attack, or being attacked by invisible units before having detection. As a result, there are bots which use
strategies aimed at exploiting those weaknesses in other bots.

Professional human players will often favour all-around build orders which are able to respond to a large
variety of enemy build orders. Games can be lost simply by using a build order which is countered by the
opponents’ build order. By using an all-around build order, losses as a result of build order counters can be
avoided, but this requires a high level of adaptability by the player. In comparison, many bots favour aggres-
sive strategies which are more susceptible to being countered. In recent years, however, the top StarCraft
bots have started using all-around build orders more frequently as well. This is an interesting development,
as a similar change occurred with humans, which did not begin using primarily all-around build orders until
strategies to counter common rush strategies had become well-practised.

Lastly, many bots obtain advantages, particularly over humans, from their high Actions Per Minute (APM).
The high APM of bots allows them to control a large number of individual units simultaneously, giving them
a strong micro. This makes particularly kiting-based strategies stronger for bots than for humans, which
results in some units being weaker or stronger in bot games than they are in games between humans. Current
StarCraft bots have yet to beat the best human players however, indicating that their micro advantages are for
now unable to overcome the strategy and predictive abilities of humans.

Next, we will take a look at the playstyle and frequent strategies used by bots or humans for each of the
three races in StarCraft.

2.2.1. Protoss Strategy
Protoss is a race which specialises in quality over quantity. Protoss units are expensive, but stronger than
those of other races. All Protoss units have a shield that protects them. This shield is an important part
of their playstyle, as the shield regenerates itself. This forces opposing races to commit to attacks against
Protoss, as damage that is limited to shields is quickly regenerated after the fight. To compensate for this, the
army of a Protoss player is less mobile than that of other races.

Building placement, also called ‘Sim City’, is a part of Protoss gameplay that is more important than that
of other races. With exception of their primary base building, the Nexus, every Protoss building requires a
nearby Pylon be constructed in order for the building to work. A Protoss player must avoid having a single
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Pylon powering multiple buildings, as doing so would allow the opponent to disable multiple buildings by
taking out a single Pylon.

The Protoss have various strategies at their disposal, such as early game aggression using Zealots and Dra-
goons, mid-game hit-and-run tactics using Reavers, and late-game dominance using powerful flying units.
This makes the Protoss are a flexible race which can perform any style of gameplay.

2.2.2. Terran Strategy
Terran is a balanced race with no particular focus on quantity or quality. Most Terran strategies focus on
defence initially, as Terrans have access to strong defensive options such as wall-ins and Bunkers. Unlike
other races, many Terran buildings can lift off and fly to other locations, although the building cannot produce
units or perform research during this time. This allows for Terran players to wall-in their base using buildings
that can fly, allowing them to open and close the entrance to their base at will. Terran strategies typically
belong to one of two categories: biological or mechanical strategies – referred to as ‘bio’ and ‘mech’.

Bio Terran gameplay focuses primarily on two units, Marines and Medics. Being small units, Marines can
be stacked closely together while firing from a distance, while Medics are able to heal any Marines that get
damaged. When in large numbers, they are often referred to as a ‘bioball’. As a result of the units being tightly
packed, a bioball possesses a large amount of fire power in a small area, making it difficult to approach. Bio
Terran uses a defensive playstyle until enough Marines and Medics are trained to create a large bioball, at
which point a Terran will move out to try and win the match.

Mech Terran focuses on mechanical units such as Vultures, Siege Tanks and Wraiths. Vultures, being
the fastest unit in the game, naturally excels at hit-and-run strategies. Siege Tanks can enter Siege Mode,
becoming immobile but extending their attack range beyond that of any other unit, this allows an army of
Siege Tanks to ‘crawl forward’ and destroy the enemy from a safe distance. Finally, Wraiths are flying units that
are often used to support Vultures and Siege Tanks, which cannot attack flying units themselves. However,
when produced in large numbers quickly, they can also be used to take the opponent by surprise. As such,
mech Terran can use a variety of playstyles depending on which unit they choose to focus on.

2.2.3. Zerg Strategy
Zerg is a race which specialises in quantity over quality. Zerg units are weaker, but cheap to create. One
defining feature of Zerg is Larvae. While other races must construct specific buildings in order to train units,
almost all Zerg units are created using Larvae. This allows the Zerg to direct all of their resources towards their
army or their economy at will. Utilising this flexibility is an important part of Zerg gameplay. Zerg units pos-
sess health regeneration just like the shield regeneration of Protoss units, but Zerg units have low maximum
health values, making Zerg units easy to kill individually. This, combined with the overall slower regeneration
rate compared to shields, results in health regeneration not being a major factor for Zerg playstyle.

When faced with Protoss or Terran opponents, many Zerg strategies favour early aggression. This utilises
the ability of Zerg to create large armies in short periods of time. When early aggression fails, Zerg are well-
suited to containment plays, in which the Zerg prevents the opponent from expanding. While ‘containing’
the opponent within his own base, the Zerg takes control of the map to gather large amounts of resources.
Zerg is well-suited for this strategy because it is able to train more workers simultaneously than other races,
allowing Zerg to take map control faster than other races. Once an economic advantage has been established,
the Zerg can wear down the defences of the opponent over time to win the match.

One strategy used by Terran and Protoss players against Zerg players is to quickly produce flying units.
This is because a number of popular Zerg strategies do not produce units capable of attacking flying units for
some time, making them vulnerable to flying units.

When faced with a Zerg opponent, matches are almost exclusively high-aggression. This is because in
a match against the same race, Zerg no longer possesses its advantage in map control. Furthermore, their
primary flying unit, Mutalisks, are strong against most Zerg units. This often results in the first player to create
Mutalisks winning the match. Therefore, against other Zerg players, most strategies revolve around either
creating Mutalisks as quickly as possible, or winning the match before the opponent can create Mutalisks.
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The programming of bots for StarCraft is something that has gained a lot of popularity in recent years. Since
2009, many different techniques have been created and experimented with. This chapter aims to delve into
these techniques in Section 3.1, to explore their potential effectiveness and usability, particularly with regards
to using them in a multi-agent approach. In addition, Section 3.2 looks at the existing usage of research of
agent-based artificial intelligence in games.

3.1. Tournament results
The Brood War Application Programming Interface (BWAPI) was released in 2009, and tournaments for Star-
Craft bots have been a regular occurrence since 2010. This section aims to provide a recap of the tournament
results achieved since 2010. This section is based on existing work by Michael Buro and David Churchill [3]
for results prior to 2012. Additionally, work in [11] provides a good summary of the results achieved from 2012
to 2015, and most recently by Michal Certicky and David Churchill [10]. For each year starting from 2010, the
results of the Artificial Intelligence for Interactive Digital Entertainment (AIIDE) and Computational Intelli-
gence in Games (CIG) tournaments will be explored.

3.1.1. AIIDE
The Artificial Intelligence for Interactive Digital Entertainment (AIIDE) StarCraft tournament is the longest
running StarCraft AI tournament, and generally considered as the tournament featuring the highest level
of competition. This tournament runs for one to two weeks prior to the AIIDE conference, with matches
being played out on multiple machines as quickly as the hardware allows it. The total number of games has
increased over the years, with the 2015 tournament playing a total of 20788 games. During the conference,
the results and source code of the participating bots is published. The exception to this is the first tournament
in 2010, which did not require all bots submitted to the tournament to publish their source code.

In the year 2010 and 2011, each of the bots appeared to have their own speciality. The Berkeley Overmind
won AIIDE 2010, with its speciality being to utilise potential fields for the path-finding of flying units, to keep
them safe during attacks. The 2011 winner, Skynet, used path-finding to prevent becoming surrounded. The
second place in 2011, UAlbertaBot, used heuristic search algorithms to guide its build order for an economic
advantage. Other examples are bots such as Weber, Mateas and Jhala, which used particle models for state
estimation.Finally, Synnaeve and Bessire implemented a plan recognition algorithm, as well as a Bayesian
model for unit control. Although various techniques were employed, a recurring theme for the first place
winner of 2010 and 2011 is the importance of path-finding. On the other hand, bots that chose to invest in
strategy development were met with little success. A likely reason for this is that the strategy among bots was
simplistic, and that the bots did not significantly respond to each others’ strategy. For example, professional
StarCraft player, Oriol Vinyals, found the Skynet bot to be excellent at micro and macro, but exceptionally
poor at strategy. This seems to indicate that, among bot tournaments, strategy is not a major factor, as even a
bot which excels at strategy (compared to other bots) is still poor at strategy compared to humans. By having
a strong economy and unit management, the strategy of other bots were trumped.

Starting from 2012, AIIDE allowed bots to save data between matches. In the previous years, strategic
bots had not seen significant success. However, by allowing bots to retain data on strategies employed by
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other bots, the ability to learn strategic behaviour against certain enemies became more viable. In total, 6
out of the 10 entrants to the 2012 competition saved data between matches. It is evident that the bots had
difficulties with learning, however, shown by the win rates of the top 3 bots against one: Skynet, UAlbertaBot
and AIUR. In a total of 30 matches, Skynet beat UAlbertaBot 26 times, UAlbertaBot beat AIUR 29 times, and
AIUR beat Skynet 19 times. These win-rates follow a rock-paper-scissors pattern, indicating that each of the
bots utilised a specific tactic which was effective against certain other bots, and that no bot was able to adjust
their strategy enough based on the saved data to break the rock-paper-scissors pattern.

In the AIIDE 2013 tournament, UAlbertaBot took first place with a win-rate of 84.49%, with the second
place Skynet having only a 66.26% win-rate. The key addition to UAlbertaBot that year was SparCraft, a com-
bat simulator responsible for simulating fights between UAlbertaBot’s units and the known enemy units, pro-
ducing an estimate of how the fight would end. Using this estimate, UAlbertaBot was able to intelligently pick
fights even with just a single combat unit. Although a number of bots did use combat simulators prior to this,
including UAlbertaBot itself, the accuracy of SparCraft was significantly greater than the combat simulators
of the years prior. As a result, UAlbertaBot was able to make better decisions with its army and act aggressively
from the start. Primarily, the lesson that can be learned from this is the importance of a combat simulator.
Since the addition of SparCraft to UAlbertaBot, combat simulators have become a standard in StarCraft bots,
with many bots incorporating the open source SparCraft in their design.

Prior to AIIDE 2014, the most successful StarCraft bots had been bots using the Protoss race, winning first
place every year. In 2013 in particular, the top 4 bots were all Protoss. However, in AIIDE 2014, a number
of new Terran entrants succeeded in taking over the top spots. The most successful bots employed various
different strategies. In first place, ICELab utilised Bunkers for an early defensive, working up to a mid-game
strategy relying on Siege Tanks. In second place, XIMP constructed a large number of static defences while
it quickly advanced its technology in order to produce Carriers, the strongest Protoss unit. In third place,
LetaBot used early game Bunker rushes, in which it would construct Bunkers within the opponents base.
Overall, both aggressive and defensive strategies saw success.

In 2015, AIIDE featured more competitors than ever before. Additionally, this was the first year that Zerg
bots saw success, taking the first, second and third place in the tournament. The winner of the tournament,
Tscmoo, implemented a total of 15 different strategies and used the saving of data in between matches to
select its strategy based on the opposing bot. However, in second place, ZZZKBot achieved a win-rate only
0.68% lower than Tscmoo by using only a single strategy, namely the extremely aggressive 4-pool strategy.
UAlbertaBot, which had previously played exclusively Protoss, had been updated to play as Random, playing
a different race each match, making it the first Random bot to compete in a major StarCraft tournament.
Another notable result was the performance of AIUR, which increased its win-rate from 63% to 73% over the
course of the tournament through learning, clearly showing the effect that learning behaviours can have on
the game performance of a StarCraft bot.

Finally, in 2016 a new Terran bot won the tournament: IronBot. This was followed by the Zerg bots ZZZK-
Bot and Tscmoo. Of note is that in the top 10 out of the 21 participants, there was an equal representation
of all 3 races, excluding UAlbertaBot which played Random. ZZZKBot had continued to use only the 4-pool
strategy. Although it only used a single strategy, the level of execution at which it performed this strategy
resulted in the majority of bots being unable to deal with the strategy regardless.

3.1.2. CIG
The Computational Intelligence in Games (CIG) tournament has been held annually starting from 2011. Un-
like AIIDE, the maps that will be played on in CIG are not announced in advance, meaning that developers
should be prepared to play on a wide variety of maps and utilise map-independent strategies. CIG is typically
held around 3 months before AIIDE, and in many years the participants have largely been similar to those of
AIIDE in that same year. As such, each year of CIG will be discussed in lesser detail than AIIDE.

In CIG 2011, only four bots were submitted to CIG that were not submitted to AIIDE. Among these four
bots, ‘Xelnaga’ placed third by using a Dark Templar rush strategy. Dark Templars are permanently invisible,
requiring detection to reveal them. Many bots were unprepared for this and frequently lost to the strategy.
However, Xelnaga’s win rate was half that of the second place bot, UAlbertaBot, indicating that there was still
a significant gap between the it and the top two bots.

Identical to AIIDE, in 2012 CIG supported the use of saving data. However, due to technical problems,
data was not shared among the 6 PC’s responsible for running the matches, significantly reducing the ability
of the bots to learn. However, the win-rates showed did not differ greatly from AIIDE, which indicates that
there had been no bot to implement a learning behaviour which significantly impacted game performance.
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An additional observation is the game performance of BTHAI, a Terran bot. BTHAI was nearly unchanged
from its 2011 submission, but had dropped from a win-rate of 57.5% to only 19.9%. Based on this it is safe to
conclude that the majority of the participating bots had significantly improved.

The CIG 2013 competition faced technical difficulties, resulting in the data saving function being dis-
abled. In spite of this, the results resembled that of AIIDE, with exception of UAlbertaBot having a win-rate of
only 67.4%. This may imply that UAlbertaBot was the bot that utilised the data saving function the most, or
alternatively that UAlbertaBot’s base strategy was poor.

The maps used in CIG 2014 was increased to 20 different maps, significantly more than AIIDE’s 10 maps.
However, the win-rates of the bots, as well as the eventual winners of the tournament, remained similar to
AIIDE, with ICEBot, XIMP and LetaBot taking first, second and third place respectively.

In 2015, the main difference with the results from AIIDE was the convincing tournament victory by ZZZK-
Bot, as opposed to Tscmoo, the winner of AIIDE. The main reason for this is the difference in the number
of matches played, with 20788 matches played in AIIDE and 2730 matches played in CIG. Consequently, Tc-
smoo had significantly less time to benefit from being able to learn which strategy among its 15 strategies it
should use against each specific opponent.

Finally, in the CIG 2016 tournament a different format was used. First, the 16 participants played a total
of 1500 games each in a Round Robin format. After this, the learning data of each bot from the first phase was
erased, and the top 8 bots played an additional 700 games each. Of note was that Tscmoo used the Terran
race for this tournament, as opposed to Zerg which it used in AIIDE 2015 and 2016. Iron won the first phase
of the tournament, but in the second phase of the tournament Tscmoo, Iron and LetaBot placed first, second
and third respectively.

3.1.3. SSCAIT
The Student StarCraft AI Tournament (SSCAIT) features the highest number of participants among the three
major StarCraft AI competitions, with a total of 45 participants in the 2016 tournament. Unlike CIG and
AIIDE, which take place for a few weeks each year, SSCAIT runs throughout the entire year. During this time,
bots continuously play games against each other on in a ladder system, where their performance is measured
using Elo [16]. Unlike AIIDE and CIG, all games are live streamed to online streaming services such as Twitch
and SmashCast at speeds which humans can watch. As a result, significantly fewer matches are played in
the same span of time. However, viewers are able to vote on bots that they are interested in seeing, which
provides the opportunity for developers to test their bot against specific enemy bots. Game replays can also
be downloaded right away, allowing for the games to be analysed in greater detail.

Once per year, SSCAIT replaces the ladder with a Round Robin tournament, in which each bot plays an
equal number of games against each other bot. Bots are separated into two categories: student division and
mixed division. Only bots developed by students can enter the student division, while any bot is allowed to
participate in the mixed division. The student bot with the highest win-rate in the Round Robin is considered
the winner of the student division. After the Round Robin tournament has completed, the highest ranking
bots 16 bots proceed to an elimination bracket, and the winner of this elimination bracket is the final winner
of SSCAIT and the winner of the mixed division.

In the majority of years since SSCAIT launched in 2011, the results of SSCAIT have been similar to that
of AIIDE and CIG, with two major exceptions. In SSCAIT 2013, Krasi0 won the mixed division, as opposed to
UAbertaBot which won AIIDE in that year. Krasi0 has thus far remained closed-source, and as such has never
competed in AIIDE or CIG. Krasi0 also placed second in SSCAIT 2016 and has held the highest Elo on SSCAIT
for a large portion of 2016 and 2017.

In addition to this, the SSCAIT 2016 tournament was won by LetaBot, making it the only time that a bot
belonging to the student category won the mixed division. In that year, LetaBot featured a number of hard-
coded strategies against specific opponents. In particular, it used an SCV rush in the finals against Krasi0,
which attacks using the Terran worker units right at the start of the match. Krasi0 was not prepared for this
strategy, allowing LetaBot to win 3-1.

3.2. Agent-Based Artificial Intelligence in Games
Video games is a medium which frequently lends itself well to artificial intelligence. In single player games,
the player is frequently matched against a variety of computer-controlled opponents. For example, in the
First-Person Shooter (FPS) game ‘DOOM’, developed by ‘id Software’, the player is assaulted by various ene-
mies which it must defeat. Each enemy has its own behavioural patterns, and acts as an individual agent. A
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number of games capitalise on this even further, such as the ‘Monster Hunter’ game franchise, developed by
‘Capcom’. In Monster Hunter games, players roam the world to find and defeat large monsters. Each of these
monsters possesses its own territory, and will even fight other monsters in order to defend it. These agents
interact not just with the player, but also the world and other agents.

Artificial intelligence in StarCraft is different, however. Unlike DOOM and Monster Hunter, artificial in-
telligence in StarCraft is capable of the same actions that humans are, and are therefore expected to play
similarly. In recent times, a popular genre in which this same situation holds is the Multi-player Online Battle
Arena (MOBA) genre. In these games, players are part of a team, and must pick from a pool of characters to
play a match with. Most commonly, teams consist of five players. The development of bots for MOBA’s is
similar to the development of bots for a Real-Time Strategy (RTS) game such as StarCraft. This is because the
MOBA genre originates from a custom map in WarCraft III called ‘Defense of the Ancients’. WarCraft III is
another RTS game developed by Blizzard Entertainment, and as such many of the controls in modern MOBA
games are similar to that of RTS games. Unlike RTS games, however, there is no base building aspect, and
the player typically only controls a single character instead of an entire army. Other challenges are added to
MOBA’s however, such as item building (players generally use resources earned to purchase items to enhance
their character), laning (the map is typically split into 3 sections which the team must use to accrue resources)
and team fights between up to ten players [37].

MOBA games such as Dota 2 and Heroes of the Storm allow players to play matches against bots, and
even with bot team-mates. Many players play matches against bots in order to become comfortable with the
game, as many MOBA games feature steep learning curves. Further research into this has been performed in
[38], in which a bot was used to specifically tutor the player during gameplay in League of Legends, another
MOBA game. The presence of a helpful team-mate that provides tips and advice for the player was shown to
have a positive effect on the performance of players. In addition, MOBA games tend to attract social problems
such as cyberbullying [28], in which higher skilled players will bully newcomers or lesser skilled players. This
is another factor which increases the demand for playing the game with computer-controlled opponents, as
many players use this in order to escape the cyberbullying and play in a stress-free environment.

A team in a MOBA game may be composed of a mix of human and computer-controlled characters, and
as such MOBA bots lend itself well to agent-based design [15]. All bots should not act as a single entity, as
they should be able to acting normally even when there are humans present on the team. For example, in
[27] an agent-based design is used to create bots for Heroes of Newerth, another MOBA game. In this work
a case-based reasoning design is used to replace the traditional rule-based design. Cooperation between the
individual agents was achieved by using a ‘coalition’ protocol, where the agents would decide on a group-
effort to focus on, such as attacking a particular building on the map.

For MOBA’s, the best performing bot is developed by OpenAI. In 2017, a bot developed by OpenAI man-
aged to beat professional players in 1v1 matches in Dota 2. However, these 1-on-1 matches used exclusively 1
of the 113 heroes available at the time, and typical Dota 2 matches are played in a 5v5 format. For 2018, Ope-
nAI has moved its focus to playing 5v5 games instead [33]. Using reinforcement learning and neural networks,
OpenAI has created a team of bots capable of beating semi-professional teams. Each hero is controlled by a
separate bot, and there are no communication channels between the bots. Instead, the bots use a parameter
nicknamed “team spirit”, which varies from 0 to 1, in order to determine how much each bot should focus on
its individual reward versus the average of the team’s reward.

RTS games have seen a great deal of previous research as well. However, the majority of this research has
been limited to StarCraft. In August 2017, Blizzard Entertainment released the StarCraft II API, allowing for
the creation of bots for StarCraft II, but at this time the results attained in StarCraft II are less than those in
StarCraft.

Among multi-agent or cognitive bots, there are however no comparisons to GOAL. One cognitive bot that
has been created for StarCraft is Soar-SC [40], which uses the Soar Cognitive Architecture developed at the
University of Michigan. However, Soar-SC does not use a multi-agent design, and instead perceives and plays
as a single entity. Soar-SC is also unable to defeat the built-in AI for StarCraft on its highest difficulty setting. A
number of bots use a design similar to a multi-agent system, such as Iron [14], which utilises a hybrid system
that combines multi-agent paradigms with global strategies and algorithms. Unlike GOAL, agents are not
completely independent. OpprimoBot [17], formerly known as BTHAI, uses a complete multi-agent system,
but it has not achieved major results. In the 2016/2017 SSCAIT Round Robin, it placed 37th out of the 45
contestants.



4
GOAL and Connector Basics

Over the course of this thesis a cognitive multi-agent system, ForceBot, was developed using GOAL. How-
ever, GOAL on its own is not able to interact with StarCraft using the Brood War Application Layer Interface
(BWAPI). To do so it requires a connector to link it. To this end, a StarCraft-GOAL Connector, usually referred
to as just ‘connector’, has been developed by Harm Griffioen, Danny Plenge and Vincent Koeman of the Delft
University of Technology. Over the course of this thesis this connector will be utilised in order to develop a
GOAL bot for StarCraft. Furthermore, one of the aims of this thesis is to evaluate the effectiveness of GOAL
in the complex and agent-rich environment of StarCraft. Observations, improvements and suggestions will
be made on the features of GOAL or the connector over the course of the thesis. Therefore, this chapter aims
to explore GOAL and the connector in order to provide context for the work that will be performed over the
course of this thesis. In Section 4.1 the GOAL programming language is explained, followed by an overview of
the StarCraft-GOAL Connector in Section 4.2.

4.1. GOAL
GOAL is a rule-based programming language for programming cognitive agents that interact with an envi-
ronment and with each other. Information about the environment is received through percepts, and agents
can act upon the environment using actions. Agents are part of a multi-agent system and can exchange infor-
mation between each other through messages. Agents maintain a cognitive state that consists of knowledge,
beliefs and goals of the agent which are represented in some knowledge representation (KR) language, this
cognitive state is displayed in Figure 4.1. Agents are autonomous decision-making agents that derive their
choice of action from their beliefs and goals.

Figure 4.1: Cognitive State

Agents operate via cycles. At the start of each cycle, agents receive percepts from the environment, as well
as any messages directed towards them by agents. The agent will then process its ‘event module’, in which the
programmer should handle the agents’ percept and message handling. Afterwards, the agent will process its
‘main module’, in which actions (if any) should be taken to advance towards some goal.
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GOAL has been used in various environments prior to StarCraft. For example, the team-based Blocks
World environment, called Blocks World 4 Teams (BW4T) [22]. In this environment, coloured blocks are
spread out across numerous rooms, and a team of agents must hand in a specific sequence of coloured blocks
at a designated drop-off location. In order to complete the task as fast as possible, the agents must commu-
nicate with one another. By sharing information, they can quickly discover the contents of each room. By
sharing intentions, they can avoid getting in each others way.

Other environments which GOAL supports include environments applicable to real-life, such as an ele-
vator simulation, in which agent-controlled elevators must transport passengers across numerous floors as
quickly as possible. Additional GOAL environments for real-life games such as the Hanoi Tower Game and
Tic-Tac-Toe also exist.

Of particular interest is the Unreal Tournament 2004 environment. Unreal Tournament 2004, commonly
referred to as simply UT2004, is a First-Person Shooter (FPS) game developed by Epic Games. Thus far, it is
the only other video game environment supported by GOAL. However, this video game environment failed
to show the capabilities of GOAL. This is because the implementation does not support more than 10 agents
[19] and offers a very restricted set of actions that agents can perform [26], limited mostly to actions like “go
to”. This is the result of middleware software handling actions such as shooting and path planning, which
limits the degree of complexity of the game.

In comparison, StarCraft does not suffer from these problems. The challenges presented by aspects of the
game such as micro and macro, building planning and resource management are not lost in abstraction. Star-
Craft also presents itself as an environment with a potential for more than a hundred agents. Consequently,
StarCraft challenges GOAL both in in computational performance and complexity.

4.1.1. GOAL Project Structure
There are four different files types used in GOAL projects:

• mas2g – The project file, which contains agent definitions, the environment to use, etc.

• pl – Knowledge files, which are Prolog files containing knowledge speicifications for an agent.

• act2g – Action specification files, used to define the actions that an agent is able to perform.

• mod2g – Module files, in which the decision making of your bot will primarily occur in.

In this section all four file types will be discussed in detail in order to provide a foundation for understand-
ing how GOAL operates.

Multi-Agent System file (.mas2g)
A multi-agent system file is the main project file. It includes information such as which environment to use,
arguments for the environment to use, as well as the agent definitions and agent launch policies.

The environment connector is used by GOAL to retrieve and act upon the environment which the agent
is designed to operate within. In the case of StarCraft, this is the StarCraft-GOAL Connector [24], which is
explored in detail in Section 4.2. The arguments supplied to the environment are different for each envi-
ronment. In the case of the StarCraft connector, they consist of options to setup the automatic startup of
StarCraft matches, as well as enabling certain in-game cheat commands for testing purposes. These cheat
commands are disabled in standard matches.

use "starcraft-connector.jar" as environment with ...

define drone as agent {
use DroneInit as init module.
use DroneEvent as event module.
use Drone as main module.

}

launchpolicy {
when type = zergDrone launch drone.

}

The main files that are to be used by agents are also specified within the .mas2g file. Each agent may
have an init, event and main module. All modules, including the main module, are optional.
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Init Module
Will run upon creation of the agent, before any other modules. The init module should be used for
sections of the code which only need to run once, such as processing percepts which are only received
once.

Event Module
Will run before the main module. The event module should handle the processing of information such
as percepts and messages.

Main Module
Will run last. Decisions should be placed within this module.

Finally, the launchpolicy dictates which agent type is launched. Whenever a new entity is added to the en-
vironment, the connector will attempt to bind an agent to that entity. It uses the launch policies to determine
which agent type to bind. If no policy is declared for the entity type, no new agent is launched.

Knowledge file (.pl)
Knowledge files, indicated by the .pl extension, are Prolog files containing knowledge specifications for an
agent. Prolog is a logic programming language [41] often used for artificial intelligence [39]. It is primarily a
declarative language, in which the program logic is expressed in terms of facts and rules. A typical knowledge
file will start by declaring the dynamic knowledge by means of the :- dynamic directive. Any number of
dynamic predicates may be specified, and all dynamic predicates used by the agent must be declared in one
of its knowledge files for the program to compile.

:- dynamic
self/2,
status/6,
enemy/7

.

Each predicate is assigned an arity, indicated by the /N component at the end, where N is a natural num-
ber. The arity denotes the number of arguments which the predicate contains. For example, self/2 con-
tains the <Id> and <Type> of a unit, making it a 2-arity predicate. The variable type of each argument does
not matter, only that the arity matches that of the predicate declaration. It is also possible to define rules
or facts within the knowledge file. The example below can be called using distance(0, 0, 10, 0,
Distance) which will return true with Distance = 10.

% Calculate distance between two points
distance(X1, Y1, X2, Y2, Distance) :- Distance is sqrt( (X2 - X1)**2 + (Y2 -
Y1)**2 ).

Prolog is well-suited for recursive functions in particular. It does this via the use of Prolog’s rule ordering
and backtracking. Prolog will always attempt to apply the rules in the same order that they are defined in
within the knowledge file. If a rule fails (i.e., does not return true), it will attempt to backtrack and find another
rule that it can fulfil. For example, the code below will traverse a list and return true if it finds an instance of
‘Zergling’ before it finds an instance of ’Hydralisk’.

% True if we find ’Zergling’
findZergling([’Zergling’ | _]).
% False if we find ’Hydralisk’
findZergling([’Hydralisk’ | _]) :- !, false.
% Continue the recursive call
findZergling([_ | Tail]) :- findZergling(Tail).

The first element of a list is retrieved using the [Head | Tail] notation. If one of these parts is not
of importance, the value can be ignored by replacing it with an underscore ( _ ). In the first rule, if ‘Zergling’
is encountered, then the rule will return true as there are no other conditions to fulfil. If the first rule can
not be fulfilled, i.e. the head element is not ‘Zergling’, then it will backtrack out of this rule and attempt to
find another rule to unify with, leading it to the second rule. The second rule applies if ‘Hydralisk’ is the
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head element. In this case, the rule will return false. However, it will not backtrack out of this rule, as the
exclamation mark (!) is called a ‘cut’ and prevents backtracking. If neither of the first two rules can be
fulfilled, it will move on to the third rule, which recursively calls the function on the tail of the list. This will
continue until one of the first two rules can be fulfilled, or until the list is empty. If the list is empty, the third
rule can no longer be applied. As there are no other rules which it can attempt to apply, the call will fail and
return false.

Action Specification file (.act2g)
The action specification file is used to define the actions that an agent is able to perform, and the pre-
conditions and post-condition updates that will be used. For example, the below code sample can be used to
begin gathering minerals within StarCraft.

define gather(Id) with
pre { mineralField(Id), idle }
post { not(idle), gathering }

For the action to be allowed to be performed, the agent must believe that a mineralField/5 with the
given Id exists, and that the agent believes itself to be currently idle. If these pre-conditions are met, the
environment will attempt to execute the action, and the post-condition updates will be applied. In this case,
the idle belief is deleted as a result of not(idle) being inserted into the belief base. Furthermore, the
gathering belief is inserted.

Module file (.mod2g)
Module files are where the decision making of your bot will primarily occur in. A module file starts by import-
ing any required GOAL files, as well as specifying the ordering and exit logic of the module if required.

use SomeActionFile as actionspec.
use SomeKnowledgeFile as knowledge.
use AnotherModule as module.
order = linear.
exit = never.

module Module { ... }

The ‘order’ of the module dictates the order in which the rules within the module is traversed. A linear
order will traverse the module from start to finish, and terminate once a rule has been found that it is able to
make true. A linearall order will traverse the module in the same order, except it will not terminate after one
successful rule. Aside from linear and linearall, random, randomall, linearrandom and linearallrandom also
exist. By default, modules specified as ‘main module’ in the .mas2g file will use linear ordering (as you can
not perform more than one action), while ‘event module’ files will use linearall ordering.

The ‘exit’ of the module dictates when the module will be exited from. If the ‘main module’ is exited from,
the agent will terminate. The available exit conditions are always, noaction, nogoals and never. By default all
modules use always as the exit condition, with exception of the main module, which uses never.

The module itself consists of rules which use percepts, beliefs and goals. In the below example of a mod-
ule, the module first inserts any mineralField/5 percepts which it receives as a belief in its knowledge
base. After that, it will gather minerals if it has the goal gatherMinals.

module GatherModule {
forall percept(mineralField(Id, _, _, _, _)) do insert(mineralField(Id)).
if goal(gatherMinerals), bel(mineralField(Id)) then gather(Id).

}

4.1.2. Messaging
Agents in GOAL can communicate with one another via sending messages. By doing so, agents are able to
coordinate and organise themselves. Communication is done via the send action, which receivers can then
process using the sent operator. An example of this shown below.
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if true then allother.send(helloWorld).
if (SomeAgent).sent(helloWorld) then (SomeAgent).send(hello).

When sending messages you can specify the receiver. There are the basic targets of all and allother,
the latter of which will send it to all agents except itself. Additionally, an agents name can be given as well,
for example: (manager).send(...). Finally, communication channels can be used to spread messages
to a group of agents. These communication channels follow a subscription model, where individual agents
may subscribe or unsubscribe to a communication channel at will. This is done using the subscribe and
unsubscribe actions respectively.

Finally, messages can be given a context by supplying a ‘mood’. There are three different moods that
can be given, indicative (:), declarative (?) and interrogative (!). In order to apply a mood to a message,
the respective symbol must be appended to the send action, as well as the receiving sent operator. In
this manner, it is possible to distinguish the intent of messages using the mood, which also allows for the
distinguishing of identical messages based on the mood with which it was sent. If no mood is supplied, the
mood will default to an indicative mood.

if true then subscribe(drones).
if true then (drones).send?(hello).
if (SomeAgent).sent?(helloWorld) then (SomeAgent).send:(hello).

When messages are received, they are inserted into the mailbox of the receiver. The message will remain
within the mailbox for a single cycle, and is removed automatically afterwards. If multiple identical messages
are received at the same time by the same sender, any duplicate messages will automatically be filtered out.

4.1.3. IDE & Tools
This section introduces the IDE and tools offered by GOAL. Over the course of this thesis these will be evalu-
ated. The GOAL IDE comes in the form of a plug-in for Eclipse. This plug-in provides the basics of modern
IDE’s such as creating, renaming, moving and deleting files or projects, as well as syntax highlighting, auto-
matic code completion and automatic building.

Tools for debugging are provided by the plug-in. Standard for this are error and warning messages gen-
erated by the automatic building. Projects may also be ran in ‘debug mode’ which can be used to inspect
the state of individual agents. This is done by allowing the user to observe the beliefs, goals, percepts and
messages received by agents during runtime, interact with the agent through an interactive console, and use
a source-level (stepping) debugger to inspect an agents behaviour in detail. The interactive console can be
used to, for example, delete a belief during runtime in order to observe the reaction of the agent. Breakpoints
can be set in the code of an agent, in order to observe an agents state at a specific code execution point.

Additionally, logging can be enabled within the plug-in preferences, with options for the type of informa-
tion that is logged. This log is then written to file in an XML format. Finally, the IDE provides a profiling tool,
which will record the execution time on activities such as executing individual modules, rules, actions, etc.
Using the information generated by the profiling tool, it is possible to identify bottlenecks within the code.

4.2. StarCraft-GOAL Connector
In order for GOAL to interact with the StarCraft game, a connector which links the data from BWAPI with the
Environment Interface Standard (EIS) utilised by GOAL is required. EIS is a Java-based interface standard
for connecting agents within GOAL to entities in an environment. EIS allows for GOAL to be used in any
environment that is compliant with EIS. This creates a structure for connecting GOAL to StarCraft that is
represented in Figure 4.2.

EIS

GOAL Connector StarCraft

BWAPI

Figure 4.2: GOAL-Connector-StarCraft structure
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In order for GOAL to interact with StarCraft, Harm Griffioen, Danny Plenge and Vincent Koeman of the
Delft University of Technology have developed the StarCraft-GOAL Connector. This connector is responsi-
ble for the communication between GOAL and BWAPI. This is done by mapping the units and buildings in
StarCraft to entities in the connector. These entities are EIS-compliant, thus allowing GOAL to interact with
the StarCraft environment via the StarCraft-GOAL Connector. This relationship between units, agents and
entities is shown in Figure 4.3.

Figure 4.3: Diagram of the relationships between units, entities and agents

The connector was developed a year before the start of ForceBot’s development, and before then had
only been used in small testing setups. Therefore, the connector was still immature when development on
ForceBot began. As a result, over the course of ForceBot’s development the connector saw many changes,
ranging from adding/removing information to percepts, adding new functionality, or simply fixing bugs. In
this section the initial state of the connector will be outlined. The later development chapters will then outline
any notable changes that were made to the connector from this state onward.

The role of the StarCraft connector is to abstract the environment of StarCraft into one which GOAL can
effectively interact with. This means that units in the game must be automatically assigned agents to control
them. These agents must then receive percepts which tell them what is happening within the game, as well
as be able to perform actions with which they can influence the unit to which they are connected (and thus,
the game). The design of this environment was guided by two conflicting objectives [26]:

1. The environment should facilitate multi-agent systems that operate at a level of abstraction that is as
high as possible.

2. The environment should facilitate multi-agent system implementations with as many different strate-
gies as possible.

This design ideology does not intend to be as precise as C++ or Java agents, however should be sufficient
to play the game effectively. Primarily, the abstraction aims to automatically handle the low-level operations,
namely the life-cycle of each agent:

• Assign each unit an agent based on the mas2g file definitions.

• Retrieve information from BWAPI and convert them to percepts.

• Convert actions performed by agents into command calls in BWAPI.

• Upon the death of a unit, terminate the agent connected to that unit.

These low-level operations are not important to the design of individual bots and are therefore performed
automatically by the connector. High-level decision making such as where to place buildings, when to ex-
pand, or what to attack, is still in the hands of the programmer.

The environment is designed to support the large number of units that can be present during StarCraft
games. It is not uncommon for this number to exceed 100 units. This, too, is a task which is made more
manageable by abstraction. By simplifying the information which the agents receive it becomes possible to
increase computational performance. Care must be taken, however, to ensure that vital information is not
lost in this process. The exact importance of information is often difficult to define, however a programmer
should not feel limited in the strategies, responses or actions that it can perform as a result of information
that was lost due to abstraction.
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Finally, GOAL provides the ability to launch independent agents that are not connected to the environ-
ment. These agents follow a different life-cycle to that of normal agents: since they are not connected to a
unit within StarCraft like normal agents, they will not receive percepts. However, these agents can still com-
municate with other agents. Furthermore, while normal agents are terminated when the unit which they
are connected to no longer exists, agents that are not connected to any unit will never be terminated. This
makes these agents well-suited for performing the role of a manager, as they can act as a central point for
communication that is guaranteed to exist.

4.2.1. Connector Outline
In order to clearly explain the changes made to the connector over the course of this thesis, a brief overview
of all percept types present in the connector during the start of the thesis is provided in this section. For each
percept type, its purpose is explained and its parameters are listed. All percept types belong to one of four
categories: global static percepts, global dynamic percepts, generic unit percepts and unit-specific percepts.
Global percepts are the same for all units on a single frame, while generic unit percepts and unit-specific
percepts are unique to each agent.

4.2.2. Global Static Percepts
Global static percept types are received by all agents. Percepts of this type are perceived only once, generally
during the agents’ first cycle. Global static percepts typically contain information regarding the map or other
information that will not change over the course of the match.

base(<X>, <Y>, <IsStart>, <RegionID>)
This percept type is used to inform agents of all base locations on the map. The <IsStart> parameter is
used to indicate whether the base location is a starting location.

chokepoint(<X>, <Y>)
This percept type is used to indicate where on the map a chokepoint is located.

enemyRace(<Race>)
This percept type informs the agent what the race is of the enemy player. The <Race> parameter may
be ‘unknown’ if the player started as a random race and has not been seen yet.

map(<Width>, <Height>)
This percept type provides the height and width of the map on which the match is being played on.

winner
This percept type is received at the end of the match, indicating that the player has won the match.

4.2.3. Global Dynamic Percepts
Global dynamic percepts are perceived by all agents. These percepts provide information about other units
or the game state, meaning that they are identical for every agent in a certain frame.

attacking(<AttackerID>, <TargetID>)
This percept type is used to indicate which enemy units are attacking which friendly units.

enemy(<Type>, <ID>, <Health>, <Shield>, <Conditions>, <X>, <Y>)
This percept type provides information such as unit type, health and location of all visible enemy units
on the map.

friendly(<Type>, <ID>, <Conditions>)
This percept type provides information regarding all friendly units. This percept does not contain as
much information as the enemy percept – the <Health>, <Shield>, <X> and <Y> parameters are not
included. Units instead receive the omitted information using the status percept. It is assumed that
the omitted information is not necessarily of value to all other agents, making it more efficient to share
this information on-demand through messaging between agents.

gamespeed(<Speed>)
This percept type indicates the speed at which the game is currently running.
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resources(<Minerals>, <Gas>, <UsedSupply>, <TotalSupply>)
This percept type indicates the current number of minerals and vespene gas, as well as both the current
and maximum supply.

4.2.4. Generic Unit Percepts
Generic unit percepts are received by all agents. However, the information received through these percepts is
specific to the agent that received it, meaning that generic unit percepts are not identical for every agent in a
certain frame.

self(<ID>, <Type>, <MaxHealth>, <MaxShields>, <MaxEnergy>)
This percept type tells the agent what its unit type and ID is, as well as its maximum stats. Perceived
only when the agent is created.

status(<Health>, <ShielD>, <Energy>, <ConD>, <X>, <Y>)
This percept type is used to inform the agent of its current stats, condition and location.

4.2.5. Unit-Specific Percepts
Unit-specific percepts are similar to generic unit percepts, in that they are received on a per-agent basis.
However, instead of being perceived by every agent, they are only perceived by agents connected to certain
unit types or under certain circumstances.

constructionSite(<X>, <Y>, <InPylonRange>)
Perceived only by workers. This percept type indicates all explored and non-obstructed locations on
which new buildings may be placed. The <InPylonRange> parameter is only used by Protoss, as their
buildings must be powered by nearby Pylons before placement of most of their buildings is allowed.

defensiveMatrix(<Health>)
Perceived only by a unit which has a Defensive Matrix placed on it. This percept type tells an agent how
much health the Defensive Matrix placed on the unit has left.

mineralField(<ID>, <Resources>, <ResourceGroup>, <X>, <Y>)
Perceived only by workers. This percept type gives the agent information about all mineral fields cur-
rently visible on the map.

queueSize(<Size>)
Perceived only by buildings which are able to train units. This percept type indicates how many units
are in queue for training.

rallyPoint(<X>, <Y>)
Perceived only by a building that has placed a rally point. This percept type indicates where the rally
point belonging to this unit is located. Newly trained units will automatically move to the rally point of
the building that trained them.

rallyUnit(<UnitID>)
Perceived only by a building that has placed a rally point. Similar to the rallyPoint percept type,
this percept type instead indicates to which unit the rally point belonging to this unit is bound. Newly
trained units will automatically move towards that units location.

researching(<TechType>)
Perceived only by a building that is researching a tech type. This percept type indicates which tech type
is currently being researched by this unit.

spaceProvided(<CurrentSpace, MaximumSpace>)
Perceived only by units which may hold other units. This percept type gives the amount of space cur-
rently being occupied, as well as the maximum amount of space that this unit can hold.

unitLoaded(<UnitID>)
Perceived only by units which may hold other units. This percept type provides the ID’s of any units
being held by the unit in question.
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upgrading(<Upgrade>)
Perceived only by a building which is perform an upgrades. Similar to the upgrading percept, this
percept type indicates the upgrade which is currently being performed by this unit.

vespeneGeyser(<GeyserID>, <Resources>, <X>, <Y>, <RegionID>)
Perceived only by workers. This percept type gives the agent information about all vespene geysers
currently visible on the map.

workerActivity(<Activity>)
Perceived only by workers. This percept type displays the current activity of the agent. These activities
are one of ‘gatheringGas’, ‘gatheringMinerals’, ‘constructing’ and ‘idling’.

In addition to percept types, the StarCraft-GOAL Connector also features various actions. However, ac-
tions did not undergo significant changes over the course of ForceBot’s development, and as such have been
left out of the connector outline. A complete list of actions can be found in the StarCraft Environment Manual
for the connector [24]. The reason for the relatively few changes to actions is that there are a limited number
of commands that can be performed in the game, making it simple to include an action for each command.
Therefore, no new actions needed to be made, as every command already had a corresponding action. In-
stead, most changes to actions were in order to resolve bugs or improve debugging.
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Milestone 1: MAS Project

The first milestone covers the duration of the Multi-Agent Systems (MAS) Project 2017, spanning from April
until the end of June. The MAS Project is a course hosted by the University of Delft in which teams of bache-
lor students compete to develop bots using GOAL. This was the first year in which student teams developed
StarCraft bots, in previous years the teams developed Unreal Tournament bots. As development on ForceBot
started at almost the same time, the MAS Project was a good means of comparing ForceBot’s game perfor-
mance to other, similar bots.

This chapter will first discuss the changes that occurred to the StarCraft-GOAL connector over the course
of this milestone in Section 5.1. The MAS Project was the first time that the connector was used by users other
than the developers. Therefore, many of the changes are focused on usability and missing information, as the
developers have not yet had an opportunity to see ordinary users interact with the system. The development
of ForceBot has been split into 3 versions, covered in Section 5.2, 5.3 and 5.4. For each section, the focus will
be on the improvements made to ForceBot in order to best the other GOAL bots while moving to the next
version. The game performance of ForceBot was measured using 3 tournaments that took place over the
course of the MAS Project, which are analysed in Section 5.3.4 and 5.4.1. Finally, in Section 5.5 the lessons
learned and progress made on ForceBot over the course of this milestone is summarised.

5.1. StarCraft-GOAL Connector Development
As a result of the MAS Project being active, changes to the connector during the course of this milestone
time were made with backwards compatibility in mind. In particular, this holds for all 2.X versions of the
connector, which were the versions that will be used by the student teams. For example, when it was decided
to add information regarding which region a unit is located in, a new unitRegion/2 percept type was
added, rather than adding that information to existing percept types. This is because adding or removing a
parameter in a GOAL percept type will require all code using that percept type to be adjusted. By adding the
information as a new percept type instead, backwards compatibility is maintained, making it easier to update
to newer versions of the connector for student teams.

Once the MAS Project concluded, there was no longer a need for backwards compatability. At that point
the existing percept types were changed instead, producing version 3.0 of the connector, which is no longer
backwards compatible with 2.X versions. The changes to percept types which will be discussed in this chapter
are the non-backwards compatible changes.

Furthermore, in version 3.0 of the connector, the parameters of many percept types were adjusted to be
more logical and consistent across the different percepts types. The primary purpose of these changes is to
streamline and simplify the connector for use by users. A number of examples of these changes are:

• The self percept type began with <ID>, followed by <Type>, where as the enemy percept type used
the reverse order.

• The connector distinguished between <ResourceGroup> and <RegionId> for a number of percept types,
namely base, region, mineralField and vespeneGeyser. As all maps used only have a single
<ResourceGroup> for every <RegionId>, the distinction serves no purpose.

29
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• For some percept types a <RegionId> is given along with an (<X>,<Y>) location, while others do not.

These sort of changes that do not affect the actual information being made available, but only the manner
in which they are presented, will not be discussed in detail in this chapter.

5.1.1. Global Static Percepts
chokepoint(<X1>, <Y1>, <X2>, <Y2>, <RegionID1>, <RegionID2>)

Initially only possessing the centre (<X>, <Y>) positions, chokepoints have been altered in order
to indicate both endpoints of the chokepoint. These points can be used to determine properties such
as the size, centre and orientation of the chokepoint. Additionally, it now gives the regions which it
connects via the <RegionID1> and <RegionID2> parameters.

region(<RegionId>, <CenterX>, <CenterY>, <Height>, <ConnectedRegionsList>)
This percept type has been added to provide agents with more information about the layout of the map.
The height of a region is given as well, as it was impossible to exploit terrain height advantages with the
amount of information available previously.

5.1.2. Global Dynamic Percepts
enemy(<UnitID>, <Type>, <Health>, <Shields>, <Energy>, <Conditions>, <X>, <Y>, <RegionID>)

The enemy percept type was missing the <Energy> parameter, one of the three resources used by units.
By including information about the enemy energy, judgements can be made on how threatening sup-
port units which require energy are.
Furthermore, the <RegionId> parameter has been added as it is important be aware of which region
enemies are located in. This is particularly important due to terrain features. Units which have (<X>,
<Y>) locations that are close to each other, may still be far away in terms of path distance, as non-flying
units can only move between regions using chokepoints.

gameframe(<Frame>)
The gameframe percept type has been added in order to replace the gamespeed percept type. Every
50 frames an agent receives this percept, indicating that 50 frames have passed.
The intent was to use gamespeed in combination with the real-time runtime to determine the in-
game time. However, this approach does not work when the gamespeed is set to 0, which means the
gamespeed becomes as fast as the computer is able to manage, making the actual speed unknown.
The gameframe percept type will provide the current frame according to BWAPI, making it always
accurate to the actual elapsed game time.

nuke(<X>, <Y>)
This percept type was added shortly after the start of the MAS Project, as there was no way to spot nukes
before the inclusion of this percept type.

winner(<IsWinner>)
As this percept was only received when the game was won, it was not possible to determine when you
had lost the game. This is problematic when using automated testing or learning behaviour, as you
cannot detect losses. In order to correct this, the percept has been changed to always be sent when the
game ends and instead use a boolean <IsWinner> parameter to indicate the winner.

5.1.3. Generic Unit Percepts
self(<UnitID>, <Type>)

The parameters <MaxHealth>, <MaxShields> and <MaxEnergy> were removed. These are in fact static
values that can be determined using the <Type> parameter. Rather than including this information in
the connector, a user is able to include this information directly into the agent’s knowledge base when
desired.

status(<Health>, <Shield>, <Energy>, <Conditions>, <X>, <Y>, <RegionId>)
The <RegionId> parameter has been added as it is important for agents to be aware of which region
it is located in. This is particularly important due to terrain features. Units which have (<X>, <Y>)
locations that are close to each other, may still be far away in terms of path distance, as non-flying units
can only move between regions using chokepoints.
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5.1.4. Unit-Specific Percepts
constructionSite(<X>, <Y>, <RegionId>, <InPylonRange/OnCreep>)

This percept type has been altered to include a <RegionId> parameter in which the given construction
site is located. Without this information an agent can not know for certain whether a construction site
was located inside or outside the base.
Furthermore, the <OnCreep> variable was added for Zerg bots, which require creep to construct most
buildings on. This requirement is similar to Protoss requiring a nearby Pylon, and this information not
being available from the start was an oversight.

mineralField(<MineralId>, <Resources>, <X>, <Y>, <RegionID>)
The mineralField percept type was changed to include a <RegionID> parameter rather than a <Re-
sourceGroup> parameter. This is because all maps used only have a single <ResourceGroup> for every
<RegionId>.

queueSize(<Size>)
This percept type has been expanded so that the <Size> parameter will give the number of Larvae for
Hatcheries, Lairs and Hives. Knowing how many Larvae these buildings possessed was impossible be-
fore this change.

rallyPoint(<X>, <Y>)
This percept type has been removed. Generally speaking, any rally point order which a new unit may
have is almost instantly cleared once the agent for that unit becomes active. Furthermore, if need be,
the rally point can be tracked by the agents themselves, rather than having StarCraft ‘enforce’ this.

rallyUnit(<UnitId>)
This percept has been removed for the same reason as the rallyPoint percept type.

spaceProvided(<CurrentSpace, MaximumSpace>)
This percept type has been removed. The maximum space is known in advance depending on the unit
type, and the current space can be kept track of through the unitLoaded percept.

unitLoaded(<UnitId>)
The <Type> parameter of this percept type has been removed. The <Type> of the loaded unit can be
determined using the friendly percept type, making the inclusion of this parameter redundant.

upgrading(<Upgrade>)
This percept type has been removed. The distinction between researches and upgrades is unclear to
players and bot developers, as it is only clearly present within the internal code of StarCraft itself. To
make things simpler for users, these two percept types were unified into a single researching per-
cept type.

vespeneGeyser(<GeyserId>, <Resources>, <X>, <Y>, <RegionID>)
The vespeneGeyser percept type was changed to include a <RegionID> parameter rather than a
<ResourceGroup> parameter. This is because all maps used only have a single <ResourceGroup> for
every <RegionId>.

workerActivity(<Activity>)
This percept has been removed. It was used to display activities such as ‘gatheringMinerals’ or ‘idling’.
However, these activities were added as flags to the <Conditions> parameter in the status percept
type. As such, this percept type is no longer needed in order to determine the activity of a worker.

5.1.5. Action Changes
Overall, connector actions saw few changes over the course of the MAS Project. Almost all required func-
tionality was already present in the existing actions. However, two changes did occur as a result of the MAS
Project, these two are outlined below.

cancel
The cancel action can now be called with an optional <ID> argument. The cancel action is used
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to interrupt an in-progress morph or construction. However, units which are morphing or under con-
struction have no agent attached to them. Therefore, they can not be cancelled. This issue has been
resolved by letting the cancel action be executed by other agents instead. By having other agents use
the cancel action with an additional <ID> argument, they are able to perform the cancel action for
other units.

setRallyPoint
This action has been removed. As discussed for the rallyPoint percept type, rally points have been
found to have no real use for GOAL agents, as on start-up they will immediately override the rally point
move order with their own actions.

5.1.6. Connector Change Overview
The changes that have been made to the connector over the course of the MAS Project primarily belong
to two categories. The first category is changes to address information that was missing. For example, the
<OnCreep> parameter in the constructionSite percept type or the missing nuke percept type.

Secondly, the level of abstraction has been adjusted to be simpler for the programmer in a number of ar-
eas. For example, the constructionSite percept type did not have a <RegionId> parameter previously,
as it was assumed that the programmer could determine this information through other available informa-
tion. However, in practice this was found to be more difficult than anticipated. Instead, this information will
now be provided directly.

Lastly, redundant information was condensed or removed. For example, the workerActivity percept
type provided the same information as the <Conditions> parameter included in the status percept type.
All in all, the changes are aimed towards usability, as this is the first time that the connector has been used by
people besides the developers of the connector.

5.2. Design and Development of ForceBot: V1 - Prototype
The first version of ForceBot was a prototype version, developed in order to determine approaches to a num-
ber of basic steps such as worker management, building construction and attacking. Being a prototype ver-
sion, ForceBot V1’s code was not extended upon in order to create later versions of ForceBot.

ForceBot V1 uses a strategy, known as ‘4-pool’, which is the most aggressive strategy in StarCraft. This
strategy was chosen as it is a simple yet powerful strategy, which aims to end the game in a single attack. This
reduces the complexity of the game, allowing for the bot to be fairly simple in design: the starting building
of the Zerg, the Hatchery, would decide when and which buildings to construct or unit to train, effectively
serving as a manager. The reason that a dedicated manager agent was not used for this task is that these do not
receive percepts from StarCraft. It is possible to have other agents send the manager agent the information,
however for the scope of this version, using the Hatchery as a manager instead was a simpler approach. Each
agent determines on its own how to achieve this task. Drones, the worker unit for Zerg, decide independently
where to harvest minerals and construct buildings. Collection of vespene gas is not needed for a 4-pool
strategy, so this aspect was left out. Combat units, in this case limited to Zerglings, attacked as soon as they
were created, but decided independently what to attack.

ForceBot V1 tried to use something called the ‘Extractor trick’. This trick involves starting construction on
a building (specifically, an Extractor) in order to reduce the current supply. By freeing up supply, you can then
train additional units. Once these units begin training, you may cancel the building being constructed, which
will push the player over the supply limit, thus allowing for more units to be trained than normally possible.
However, it was not possible to successfully perform this trick at the time due to limitations involving the
connector. Since agents are attached to units or buildings upon their completion, it is not possible to perform
the cancel action during construction. This functionality has since been added via the cancel(<ID>)
action, detailed in Section 5.1.5.

Although the strategy that this version used is simple, it was capable of beating the default bots that were
included in StarCraft: Brood War, which were not designed to be able to handle such early attacks. However,
there are numerous drawbacks to the 4-pool strategy. Precisely because this strategy aims to end games with
a single attack, it will often lose otherwise as a result of falling behind in economy. Furthermore, the simple
strategy fails to show off the capabilities of the connector or the language. Because of that, this strategy will
not be relied upon in future versions of ForceBot.
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5.3. Design and Development of ForceBot: V2 - Beginning
The second version of ForceBot was developed in order to compete in the MAS Project tournaments and play
against the bots developed by the Bachelor student teams. As strategies that aim to end the game early can
result in one-dimensional bots, one design goal of ForceBot V2 was to utilise strategies that focus on the later
stages of the game. For this reason, focus was placed on ensuring that an economic advantage is gained on
the opponent.

5.3.1. Designing a Manager
One problem that had already shown itself in ForceBot V1 is the difficulty of managing resources: many agents
in the game can spend resources, but all of them share the same resource pool. If each individual agent were
to try and spend resources independently, they will only get in each others’ way. Organisation is required in
order to avoid problems like these. In ForceBot V1, the starting building was assigned to this task. However,
using the starting building is not feasible for a bot with a scope greater than that of ForceBot V1. This is be-
cause the manager would be lost when the starting building is destroyed. Therefore, the task of manager was
moved to a dedicated manager agent. As this manager agent is not connected to any unit, it will never be ter-
minated. This manager agent is responsible for managing resources, determining which units and building
to construct and ensuring that the build order is correctly executed. The approach of using a manager agent
did create some problems of its own, however, as manager agents do not receive percepts like agents do.

Within GOAL, managers are agents operating outside of the environment and are not connected to any
unit. Since they operate outside of the environment, these manager agents do not receive percepts from the
environment. In order for managers to be aware of the state of the game, other agents must send messages
containing this information to the manager agents. Initially this task was assigned to the starting building, the
Hatchery. The first Hatchery is present at the start of each game and is your most important building, making
it suitable for the task. This solution comes with the same problems, albeit less severe, as using the Hatchery
itself as a manager, however. The Hatchery may be destroyed, which will cause its agent to terminate. The
Hatchery may also be morphed into a Lair or a Hive. When a unit is morphed, the existing agent is replaced
with a new agent corresponding to the new unit type. If for any reason the first Hatchery’s agent ceases to
function, the manager would no longer receive information.

An obvious solution to this problem is to assign a different agent to the task of forwarding information
when the agent currently tasked with it dies. However, gaps in data will appear as a result of the time it takes
to assign a new agent this task. For this version of ForceBot, this problem was circumvented by ensuring that
the main Hatchery does not morph into a Lair or Hive. Furthermore, if the first Hatchery is destroyed, the
match is often already lost, making this situation relatively unimportant. Regardless, this approach is less
than ideal, as it reduces the flexibility of the available build orders by enforcing the construction of a second
Hatchery before a Lair can be constructed, and although difficult, there are matches which can be won even
after losing the first Hatchery. For future versions of ForceBot, a better solution is thus required.

5.3.2. Spending Resources
When the manager decides that it wants to spend resources on, for example, training a new unit, it first needs
to send a message to an agent capable of training that unit, and that agent must then perform the train
action. This means that resources are not spent instaneously. Therefore, it is necessary for the manager to
account for resources that it is planning to spend. In order to address this problem a belief was added that
is used to store the amount of resources that are slated to be spent. Whenever the manager wants to spend
resources, it ‘reserves’ the required resources. Resources are ‘freed’ when it receives a message for one of the
following events:

• A new building begins construction

• A Hatchery, Lair or Hive trains a new unit

• A building starts a research

This version of ForceBot is, however, prone to reserving resources for training new units while it has no
Larvae available. New units are trained by Larvae, which are periodically spawned at Hatcheries, Lairs and
Hives. New units cannot be trained while there are no Larvae available. Because ForceBot V2 is not aware
of the amount of Larvae available at each Hatchery, it frequently plans for new units to be trained while no
Larvae are available. This can cause resources to go unused for long periods of time. A goal for the next version
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is to integrate the queueSize percept type into the decision making of the manager. The queueSize
percept type, which Hatcheries receive, indicates the number of Larvae which they possess. By taking the
number of Larvae available into account, ForceBot will instead be able to use its excess resources on other
tasks.

5.3.3. Unit Deaths
When a unit dies while it is assigned to a certain task, that task should be given to another agent, or alter-
natively it should notify the manager that it cannot complete the task. However, when a unit dies, its agent
is immediately terminated. It cannot inform other agents. Additionally, there is no way to know in advance
when an agent will be terminated.

In order to tackle this problem, a ‘shutdown module’ would be a solution. A shutdown module would be
executed when an agent is terminated. However, such a solution required significant changes in the GOAL
language and was thus not a feasible solution in the short term. Instead, this problem was solved through
the use of the friendly percept type, which can be used to determine when a friendly unit dies. This is
not a perfect solution, however, due to the unstable nature of the communication with the manager that was
explained previously. The death of a unit will not be forwarded to the manager correctly when it occurs while
the agent tasked with forwarding this information has recently disappeared and has not yet been re-assigned.

5.3.4. Tournament Results
During the MAS Project, periodic tournaments took place. For each tournament, student teams were free
to submit their bots. The tournaments followed a round robin format, in which every bot plays one game
against every other bot on each available map. For the first tournament, only the map ‘Circuit Breaker’ was
used. The results of this tournament can be seen in Table 5.1.

ForceBot’s game performance in the first tournament was good, ranking 3rd place with a 73% winrate.
ForceBot followed a simple strategy of constructing static defences in order to protect itself from early-game
threats while amassing a large army inside of its base. Upon reaching a pre-determined army size, it attacked
the enemy base. Although the strategy performed well within the tournament, there are many points for
improvement. The games which ForceBot lost were most frequently caused by three issues.

Name Games Wins Losses Winrate
Group8 14 11 3 79%
NothingVenturedNothingGained 13 10 3 77%
ForceBot 15 11 4 73%
WeJustSpamSiegeTanks 13 9 4 69%
ATLEASTYOUTRIED 14 9 5 64%
WeJustSpamScouts 14 9 5 64%
AyyyLmaoSmallHope 13 8 5 62%
UndefinedBehaviour 14 8 6 57%
ProtossFTW 14 8 6 57%
iliketrains 15 7 8 47%
lllllllllIl 12 5 7 42%
GekkeBoys63 10 4 6 40%
ninejas 12 3 9 25%
TrolololoV3 11 2 9 18%
CoolMinecraftMod 11 0 11 0%
WifiParticileReceiver 13 0 13 0%

Table 5.1: Results of the first MAS tournament

First, this version of ForceBot critically fails if its build order is interrupted. This happens when a tech
building such as a Spawning Pool is destroyed, or when a Drone responsible for constructing a building is
killed. This will cause production to stop, leading to certain defeat. In particular, the deaths of Drones re-
sponsible for constructing a building were often the result of the Drone attempting to place the building
towards the exit of the base, away from its defences. Future versions of ForceBot will need to assign these
tasks to other Drones, as well as give preference to constructing non-defensive buildings away from the en-
trance to the base. Second, this version of Forcebot does not scout in advance. When it decides to attack, it
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first needs to find the enemy base. This leads to its army becoming spread out and disorganised when the
scouting takes some time. Third, due to a bug in the attack code, there were a number of games in which
ForceBot did not attack at all. Such cases may result in a loss by time-out, despite possessing a superior army.

The next tournament was 3 days after the first. The map used for this tournament was ‘Destination’, and
the results can be seen in Table 5.2. As there was not much time between the tournaments, many changes
were not yet ready. Because of this, the same version was submitted once more. The results were significantly
worse than the first tournament, with a winrate of 49%. Two reasons can be primarily attributed to this: first,
the version submitted to this tournament was identical to the last, while most other bots had adjusted their
strategies. Secondly, the first tournament was played only on a large map, where as the second was played
on both a large and a small map. Early rushing bots gain an advantage on smaller maps. This meant that
ForceBot, which did not use such a strategy at this time, was at a disadvantage compared to the previous
tournament. In particular, its defensive buildings often completed too late to deal with highly aggressive
enemies on the smaller map.

Name Games Wins Losses Winrate
DebuggingProbeLame 46 41 5 89%
WeGainedAndWeWantMore 45 39 6 87%
42 42 34 8 81%
Group8 42 31 11 74%
LagIRL 42 29 13 69%
NULL 43 28 15 65%
ThoMAS2G 41 26 15 63%
andyforpreezy 43 27 16 63%
AyyyLmaoChoking 42 25 17 60%
httpgooglMPVVkw 46 25 21 54%
CheesyMarines 45 24 21 53%
ForceBot 45 22 23 49%
Emmentaler 46 22 24 48%
TobysApprentices69 45 21 24 47%
mAkEtErRaNgReAtAgAiN 43 19 24 44%
MarineNotGoodToGO 39 17 22 44%
Kruidenkaas 37 15 22 41%
GratisBier 43 17 26 40%
HydraArmy 40 13 27 33%
TerranItUpANewHope 39 9 30 23%
Ninejas 44 10 34 23%
Snor 43 9 34 21%
TobySnippers 45 9 36 20%
ProtossOP 38 0 38 0%

Table 5.2: Results of the second MAS tournament

Based on the findings in this version of ForceBot, the following points for improvements need to be ad-
dressed for the following version of ForceBot, as their underlying issues were responsibile for a number of
losses:

• Ensure that ForceBot always attacks once the required conditions are met.

• Ensure that the build order is always correctly executed.

• Transfer the tasks of a dead unit to another unit.

• Utilise queueSize when training new units.

• Improve defence, primarily on smaller maps.

• Scout the enemy’s base in advance.
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5.4. Design and Development of ForceBot: V3 - MAS Project

The primary goal of the third version was to address the findings of the second version, and generally improve
ForceBot’s game performance in the last MAS Project tournament as much as possible by prioritising minor
changes that were expected to yield good results.

The first issue to be resolved was the issue where if units that were important to the build order were killed,
the build order would halt. This was resolved by having the main Hatchery notify the manager of any friendly
unit or building which is destroyed. The manager will then determine if the destroyed unit or building was
important for the build order and act accordingly. If the destroyed unit was in the process of performing a
task, that task is given to another unit.

The second issue was that of defence construction. The second tournament had shown that the con-
struction was too late for the small map. To resolve this, ForceBot was changed to construct defences earlier
depending on the size of the map. Additionally, ForceBot was adjusted to construct defensive buildings to-
wards the entrance of the base, while tech buildings are placed away from it. This is to prevent enemy units
from being able to circumvent ForceBot’s defences.

Finally, the use of Overlords was improved. Previously, the location of the enemy base was not scouted in
advance. In this version, Overlords are used to scout the map, as well as keep watch over base locations to
spot enemy expansions. When attacking, expansions are prioritised over the main enemy base, as these are
typically less defended. In order to keep the army from spreading out or becoming disorganised, the manager
will inform all combat units which base they should attack, so that they will all attack together.

With these changes, all findings from the previous version were addressed with exception of utilising
queueSize percepts when training new units, as this issue was difficult to resolve. Similar to the prob-
lem of spending resources, Larvae do not begin morphing immediately. The manager would need to take
into account how many Larvae are slated to be used by each Hatchery, which made the issue difficult to solve.
Therefore, the issue was not addressed, and other changes which were expected to yield a greater benefit were
prioritsed instead. One of these changes involved the agent types used by each building type. In this version
of ForceBot, each building type received its own unique agent type. Previously, a generic ‘building’ agent type
was used for all buildings other than the Hatchery, but this was expanded in order to allow the buildings to
perform more detailed reasoning about their new, specific tasks. For example, Extractors will now tell nearby
Drones to harvest gas from it, while the Spawning Pool will determine when to start performing its researches.

5.4.1. Tournament Results

The third tournament was played using both maps previously used, ‘Circuit Breaker’ and ‘Destination’, mean-
ing that each bot played twice against every other bot. The results of this tournament can be seen in Table
5.3. ForceBot finished the third MAS tournament with a win-rate of 83%, making it the best bot participat-
ing in the tournament. In particular, its heavy defences managed to prevent almost all losses to aggressive
strategies, even on the smaller maps. The majority of the bots in the tournament were not designed to han-
dle a situation in which they were not able to break through a defensive line. These bots would continually
use small armies to attack ForceBot’s defences, rather than assemble a larger army capable of destroying the
defences.
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Name Games Wins Losses Winrate
ForceBot 41 34 7 83%
100KGCOCAINE 41 33 8 80%
ZergRushIsForLosers 40 28 12 70%
ThoMAS2G 39 26 13 67%
TheSenate 41 27 14 66%
jaedong 42 27 15 64%
HappyWithOneWin 42 25 17 60%
life 42 24 18 57%
Group8 41 23 18 56%
WeJustTryMore 41 22 19 54%
ClickBait 38 19 19 50%
JamesBot 42 21 21 50%
AyyyLmaoFinalCountdown 40 19 21 48%
JeroenNietDown 41 19 22 46%
TobyIsBack 40 15 25 38%
EarthLings 38 13 25 34%
PerfecteKrul 39 13 26 33%
Munt 41 13 28 32%
TerranKillerSquad 39 12 27 31%
ZergCheese 40 12 28 30%
KAPOWRUSH 41 11 30 27%
zergminators 41 9 32 22%

Table 5.3: Results of the third MAS tournament

The games did reveal one weakness of the defence with regards to the placement of defensive buildings.
The StarCraft-GOAL connector utilises construction sites in order to provide the worker units with places to
construct buildings. However, these construction sites were difficult to work with. Construction sites utilised
a 3x4 tile size, equivalent to the largest building in StarCraft. However, most buildings are smaller, such as
2x2 or 3x2. The large tile size of construction sites leads to a large amount of wasted space, where a small
2x2 building will be considered as block a large 3x4 tile. In particular, Vespene Geysers end up blocking
construction sites in a large radius around it, even though there are valid locations for buildings. Furthermore,
as a Zerg there is the added problem of requiring creep to be present. The connector, however, regarded the
entire construction site invalid even if only a small corner is not covered in creep. As such, despite attempts to
improve ForceBot’s building placement, there were still many problems that need to be resolved in this area
in order to account for the large construction sites.

This issue with placing constructions had a significant impact during two matches in the third tourna-
ment. In these games, ForceBot played against a Protoss bot which utilised an early Zealot rush. The Protoss
bot would send out Zealots to attack the enemy base until it wins. ForceBot is weaker against rushes on
smaller maps, as the enemy can reach its base faster. In spite of this, it lost on the larger map, but won on
the smaller map. This was due to the problems surrounding construction sites. On the larger map, ForceBot’s
starting location was positioned in such a way that a Vespene Geyser blocked a large portion of the construc-
tion sites towards the entrance of the base. As such, ForceBot could not place its defensive buildings at ideal
locations, and instead placed them to the side of the base, away from the entrance of the base. As a result of
this, the poorly placed defences were not in range to attack the Zealots while they destroyed ForceBot’s base.
The small map did not have such a problem, however. ForceBot successfully constructed a wall of defences
near the entrance of its base and survived the Zealot rush without problems.

Another problem that revealed itself in the tournament was that ForceBot had issues dealing with other
defensive bots. As ForceBot did not expand, nor attack the enemy until it had created a large army, other
bots were able to freely expand and gain a much stronger economy than ForceBot. Additionally, as Over-
lords stopped scouting in the later stages of the game, ForceBot frequently had troubles with locating enemy
bases that are constructed at later stages of the game. As a result, the majority of ForceBot’s losses in this
tournament were against defensive bots.

These defensive bots also showcase a bigger problem: ForceBot is unable to assess when it is able to win.
ForceBot lacks a means of comparing the strength of its own army to that of the opponent. As a result, it does
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not immediately attack when it is able to beat the enemy, and does not retreat when it is in a losing position.
This is a major problem which traditional bots address via the use of a combat simulator, which is able to
estimate the winner of a fight between two armies.

Based on the findings in this version of ForceBot, the following points for improvements need to be ad-
dressed for the following version of ForceBot, as their underlying issues were responsibile for a number of
losses:

• Addition of a combat simulator.

• Address the messaging problems of managers.

• Addition of expansion behaviour to avoid losing the economic advantage against defensive bots.

• Further improve defensive building placement to handle obstructions such as Vespene Geyesers.

• Scout bases at all stages of the game.

• Utilise queueSize/1 when training new units.

Additionally, although the problems related to messaging percepts to the manager did not cause any
losses in this tournament, it is an issue that should be addressed in a future version.

5.5. Conclusion
Over the course of this milestone, the development on the StarCraft-GOAL Connector had been directed
primarily towards usability, as this was the first time that the connector was used by users outside of the
developers of the connector. Furthermore, a number of percept types received additional parameters in order
to provide agents with more information. The missing information was primarily oversights or information
that had not seemed useful at earlier points in time.

A great deal of the development on ForceBot in this chapter lies in the fundamental design. ForceBot
V2 added a manager agent which operates outside of the StarCraft environment. As such, it cannot be termi-
nated, but it also does not receive percepts from the environment. This poses a problem, as other agents must
message the manager with information instead. However, this results in either the risk of information being
lost, or creating additional overhead by having multiple agents send information to the manager. During
this milestone this issue has been resolved by using the starting building, a Hatchery, as the unit responsi-
ble for this task. However, this risks information being lost when the Hatchery is killed. As such, in the next
milestone, a better solution should be created to deal with this problem.

In the MAS Project, ForceBot ranked #1 in the final periodic tournament. Although this was a good re-
sult, with the completion of the MAS Project, ForceBot’s goal changed to competing in AIIDE. As the level of
competition is much higher in AIIDE, there was still a need to improve upon ForceBot’s design in subsequent
versions. A major point for improvement lies in the addition of a combat simulator. As ForceBot lacked the
means to estimate the winner of a fight, the behaviour of its army lacked decision making as a result. Force-
Bot attacks when a pre-determined amount of supply has been reached instead of when it believes that it can
win a fight. One of the goals of the next milestone was to add a combat simulator to ForceBot to allow it to
perform decision making while controlling its army.

Moving forward, a number of the issues that appeared are ideally addressed using improvements to the
connector. For example, the placement of buildings, particularly static defenses, was poor as a result of the
3x4 tile size that the connector uses for the constructionSite percept type. Ideally, this tile size is made
smaller in future versions of the connector. Additionally, the problem of a manager can be addressed by
adding a dedicated manager entity within the connector, which is not connected to a unit but still allows for
the agent connected to that entity to receive percepts like normal agents. Issues such as these are more easily
resolved by using the connector, as these problems are caused by the level of abstraction being less than ideal
in these areas.
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In the previous chapter, ForceBot was successful at besting the GOAL bots created by the teams for the MAS
Project. In this chapter, the improvements made to ForceBot in order to successfully compete in the AIIDE
tournament are discussed. The AIIDE StarCraft tournament is the largest StarCraft: Brood War AI tournament
of the year, held over the course of September and October 2018. The strongest bots are present in this tour-
nament. In the last chapter, it was concluded that the tactic which ForceBot uses does not work well against
opponents that do not strictly use rush strategies. The bots that are competing in AIIDE use a variety of tac-
tics, with many of them being able to learn which tactic is effective against which opponent. Hence, ForceBot
needed to be improved in order to be able to deal with the level of opponents that are found in AIIDE. As
such, one of the objectives was to improve the strategic components by being able to not only deal with a
larger variety of tactics but also to be able to employ multiple tactics. If ForceBot only uses a single tactic, a
learning bot will be able to easily determine a counter-strategy.

This chapter will discuss the development to the StarCraft-GOAL connector and ForceBot leading up to
AIIDE, as well as the results of AIIDE. First, the changes that were made to the connector will be discussed
in Section 6.1. These changes primarily alter the way in which percepts are received, and how managers
are handled. Next, the further development of ForceBot is detailed in Sections 6.2 to 6.4. In addition to
strategic improvements, a major part of ForceBot’s development over the course of this milestone will be
aimed towards developing a combat simulator which ForceBot now uses to predict the outcome of battles in
order to be able to make an informed decision on whether it should or should not fight. A dedicated manager
entity was also be added in order to resolve the manager-related problems discussed in the previous chapter
related to the manager. Next, the results of AIIDE will be analysed in Section 6.6. Finally, Section 6.7 will
summarise the progress and lessons learned during this milestone.

6.1. StarCraft-GOAL Connector Development
In the previous milestone, the connector was updated with backwards compatibility in mind as a result of the
ongoing MAS Project. From this milestone onward, the MAS Project has ended, making ForceBot the only
user of the connector. As such, the changes that have been made to the connector after the first milestone
are based on ForceBot’s development. For ForceBot, the most important aspect of the connector that must
be improved is the handling of managers. As a result, the connectors development over the course of this
milestone will focus on improving the way in which managers are supported by the connector.

6.1.1. Managers
Prior to version 3.0 of the connector, the creation of manager entities was not supported by the connector.
It was possible to launch agents separate from the environment, which can act as managers, however this
is a standard feature of GOAL, and not part of the connector. These agents are launched separate from the
StarCraft environment, and as a result they launch immediately, before the StarCraft game has started. Ad-
ditionally, these managers will not receive any percepts, as they are not connected to a unit. In order for
managers to be aware of the state of the game, other agents must send it this information. However, this
creates a number of issues.

39
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First, not all unit types are privy to all information. For example, non-worker units do not receive infor-
mation regarding resource locations. In order for a manager to receive all information, multiple agents must
forward information. Second, if all agents forward all their information, a considerable overhead would be
placed on GOAL. Ideally, only a single agent is responsible for this task in order to minimize the overhead.
However, with only a single agent tasked with forwarding percepts, then in the event that the agent tasked
with forwarding information is terminated, then a new agent must be assigned that task. In the time it takes
to assign a new agent to this task, information may be lost. The way in which this can occur can be seen in
Figure 6.1, in which the information that occurred between agent A’s last cycle and the cycle before agent B
registers agent A’s death is lost. This loss of information can be avoided by having the newly assigned agent
send all of its knowledge, but this creates the problem of ensuring that information isn’t erroneously pro-
cessed twice.

Agent A’s last cycle Agent B cycle Agent A killed Agent B cycle

Frame 1 Frame 10

Information loss

Figure 6.1: Loss of information if only a single agent is used for forwarding

The third issue is that, as the agents run in different threads, the manager agent will also frequently receive
information about the same thing in different points in time (e.g. varying different states of the same enemy
unit). Only the most recent state is relevant, however. Determining the most recent state would require a
gameframe to be included with each message and stored with each percept so that they may be compared.
The final issue is that agents and managers run in separate threads, meaning that they can start cycles inde-
pendently from one another. As a result, the manager agent will occasionally start a new cycle while messages
are still being sent, giving an incomplete or inconsistent picture of the current state.

The majority of the student teams participating in the MAS Project resolved the issue of the ‘messaging
unit’ dying by utilising the main base building as the messenger. This building is among your starting units,
meaning it is present from the start of any game. Although having this building destroyed will result in the
manager no longer receiving any information, a game in which this building is lost is frequently already lost.
Within the scope of the MAS Project, most teams accepted this pitfall for the sake of simplicity. This solution
does create a problem for Zerg players, however, as morphing your main base from a Hatchery to a Lair will
‘kill’ the existing agent, replacing the Hatchery agent with a new Lair agent. Being unable to morph the main
base into a Lair will hamper the build order for Zerg players. This situation was partially resolved by at least
one of the MAS Project teams, who created a system of multiple ‘messaging units’ that will automatically take
over when one died. However, this creates the problem of information loss which was explained by Figure
6.1, making the solution less than perfect.

In order to address all of the above issues, a new, optional manager entity was added to the connector
in version 3.0. This manager entity receives all global percept types and is able to function independently
without requiring other agents to inform it of the game state. This new entity simplifies the problem of creat-
ing a reliable manager agent within GOAL-based StarCraft bots, and ensures that the manager agent always
possesses the most recent and fully complete game state.

When the manager entity is enabled, all agents will stop receiving all global static and global dynamic
percepts. This is because agents do not necessarily use all percepts. Instead, the manager will serve as a
filter, only providing information to agents that are actually interested in it. In this way, the total amount of
information that is received by all agents is reduced, improving the computational performance of both the
connector as well as the agents. However, this solution is not ideal. This is because agents in GOAL run all of
their code each cycle, and only receive new messages/percepts in between cycles. As the manager becomes
larger and more complex, cycles take a longer amount of time to process. In the case of ForceBot, manager
cycles in the later stages of a game will often take more than 2 seconds as a result of the increasing number
of agents and percepts. As a result, the manager entity will be working with outdated information towards
the end of its cycle. To avoid the responsiveness of the manager becoming a bottleneck for the bot, the con-
nector has been expanded in version 3.2 to allow for the creation of multiple of these dedicated manager
entities. This change allows bots to split the load between multiple managers by having multiple managers
making short cycles instead of a single manager making long cycles. This ensures that each manager main-
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tains proper responsiveness for the tasks which it is responsible for.
Version 3.2 also added a new action which allows for managers to be started on-the-fly. This is a feature

suggested during the MAS Project, as it allows for the dynamic creation of managers responsible for, for exam-
ple, managing a group of units. Overall, the manager entities are an important milestone in the connector’s
development, they prevent the issues that occur when requiring other agents to transmit the game state to
managers.

6.1.2. Subscribing to Percepts
Up to version 3.1 of the connector, the percept types that agents receive were fixed based on the unit-type of
the unit to which the agent is connected. This lead to situations where, if a percept type has any conceivable
purpose for a unit-type, it had to be included in the percept types which agents for such a unit-type received
– regardless of whether they were actually used or not. As this is a costly process, the idea of a manager entity
was introduced, as discussed in Section 6.1.1.

However, this approach turned out to be less than ideal. Though the manager was indeed able to intel-
ligently decide what information to share and in an efficient manner, receiving and processing all percepts
also placed a great load on the manager itself. This is problematic, because in this setup the agents are reliant
on the manager in order to perceive the state of the game. Therefore, if the manager runs slowly, the agents
will also be slow to receive the state of the game.

In order to address this problem, the feature to ‘subscribe’ to percept types was added. Instead of the
received percept types being fixed within the connector, the bot may provide a list in the mas2g file of the
bot on start-up. This list dictates which unit-types/managers receive which global percepts types – generic
unit and unit-specific percepts are always received. This approach allows developers to only enable those
percepts that they will actually use in their agents and thus reduce the load on the system, without requiring
the manager to act as a filter. To illustrate this feature, the code snippet below shows the list of percept types
that are used for Drones and Overlords by ForceBot. At the start of the list the unit-type is indicated, followed
by each percept type that this unit-type wants to receive.

...
[zergDrone, chokepoint, gameframe],
[zergOverlord, enemyPlayer, map, region, enemy, gameframe],
...

For ForceBot, Drones use 1 out of the 5 global static percepts, and 1 out of the 11 global dynamic percepts
that a Drone receives by default. Overlords use 3 out of 5 global static percepts, and 2 out of 7 global dynamic
percepts that an Overlord receives by default. The new subscription model also allows agents to subscribe
to percepts that they did not receive by default, such as receiving mineralField percepts as a non-worker
agent. The need to subscribe to percepts that were not received by default is unlikely to be needed, however,
as agents received every percept type that had a conceivable use for them.

To test the impact of this new subscription model, a number of games were played with identical setups.
In each game, ForceBot played against the standard StarCraft Protoss AI, utilising the same strategy. Ten
games were played with all percepts enabled, and ten using subscriptions. From the results in Table 6.1 it can
be seen that number of percepts received each cycle is reduced by 30% to over 90% for each agent.

Unit Type Total P/C Required P/C Reduction
Building 10.06 0.28 97.2%
Drone 29.04 0.77 97.3%
Hydralisk 10.21 6.13 40.0%
Larva 10.08 0.53 94.7%
Lurker 13.14 6.83 48.0%
Overlord 17.7 9.88 44.2%
Zergling 30.85 20.4 33.9%
Average 18.42 4.87 73.6%

Table 6.1: Number of percepts received per cycle

Furthermore, in order to remove the opponent from the measurement, Table 6.2 shows the number of
percepts received per cycle when the enemy percept type is ignored. In this case, an even larger decrease



42 6. Milestone 2: AIIDE

is visible. The difference between these tables also indicates that enemy percepts are the majority of all
percepts received. Due to the number of units alive at once in a StarCraft match increasing as the game
progresses, this difference will become larger over time. Therefore, the reduction in percepts received for
units that do not need to receive enemy percepts, such as Larva and buildings, can be expected to become
even greater over time.

Unit Type Total P/C Required P/C Reduction
Building 1.31 0.28 78.6%
Drone 18.03 0.77 95.7%
Hydralisk 2.99 1.6 46.5%
Larva 3.68 0.53 85.6%
Lurker 1.73 0.83 52.0%
Overlord 5.03 0.82 83.7%
Zergling 7.95 0.84 89.4%
Average 8.59 1.13 86.8%

Table 6.2: Number of percepts received per cycle, ignoring enemy percepts

Additionally, agents in GOAL are only active as long as they are receiving percepts or messages, and will
automatically sleep otherwise. By disabling almost all percepts for agents attached to buildings, the total
number of cycles for these agents was reduced by roughly 98%, as the agents were able to sleep for long
periods of time.

6.1.3. Percept Changes
The changes made to the connector are primarily aimed at how percepts are received by agents. Through the
addition of built-in dedicated manager agents, as well as percept subscriptions, the managing of receiving
percepts becomes easier to work with as well as more efficient and intuitive. Every agent can now receive the
percepts that it is interested in directly from the connector, rather than needing to receive them from another
agent.

The most important changes that were made to percepts revolved around the change of percepts to a
subscription-based model. Notably, this led to a number of unit-specific percepts becoming global dynamic
percepts. This involved the following percepts: constructionSite,mineralField andvespeneGeyser.
All of these percepts were previously only available to worker units, however with the subscription-based
model the choice of limiting this to only workers is left to the developer of the bot in question.

Finally, two new percepts were added: order and underConstruction. The information that these
new percepts provide was previously difficult and imprecise to track. By providing direct percepts, this be-
came simpler and always precise.

6.1.4. Global Static Percepts
base(<IsStart>, <Minerals>, <Gas>, <X>, <Y>, <RegionId>)

The <Minerals> and <Gas> parameters have been added to the base percept type, which show the
total number of resources available at a base at the start of the game. Using this information, a bot can
determine optimal bases to expand to.

enemyPlayer(<Name>, <Race>)
This percept types replaces enemyRace. In addition to providing the enemy’s race, this percept type
also provides the enemy’s name. The enemy name can be used to allow the bot to learn effective strate-
gies against a specific opponent.

map(<Name>, <Width>, <Height>)
The <Name> parameter has been added to the map percept type. As with the enemyPlayer percept
type, this can also be used for learning. It can also be used to define behaviour specific to specific maps.

6.1.5. Global Dynamic Percepts
enemy(<UnitId>, <Type>, <Health>, <Shields>, <Energy>, <Conditions>, <Orientation>, <X>, <Y>, <RegionId>)
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The <Orientation> parameter has been added to this percept type, indicating which direction the en-
emy is currently facing. For computational performance optimisations, <Orientation> is given in steps
of 45 degrees. Orientation can be used to determine, for example, whether the enemy is currently flee-
ing or chasing.

friendly(<UnitId>, <Type>)
The <Conditions> parameter has been removed from the friendly percept type. The <Conditions>
parameter was a list of status flags, such as ‘idle’ and ‘underAttack’. The information that this parameter
provided was rarely used, and as <UnitId> does not change, and <Type> rarely changes, its removal
means that the friendly percept for a friendly unit will typically remain the same until that units
death. As percepts which remain the same are more efficient to update, the removal of the <Condition>
parameter makes this percept more efficient.

In the event that an agent is interested in more than just the type of a friendly unit, this can be transmit-
ted through a message instead. The exception to this is while a unit is still under construction, as that
unit will not yet have an agent attached to it in such a situation. In order to be able to receive important
information about a friendly unit under these conditions, a new underConstruction percept was
added. In all other situations, any important information about friendly units can be transmitted using
messages instead.

gameframe(<Frame>)
The values associated with the <Frame> parameter of thegameframepercept type have been changed.
Previously, this percept was received once every 50 frames. However, usage of the percept showed that
a higher update rate is preferable. As such, gameframe has been changed to update every frame. Al-
though this does have an impact on computational performance, as any agent will only receive a single
gameframe percept per cycle, the impact on computational performance is negligible.

mineralField(<MineralId>, <Resources>, <X>, <Y>, <RegionId>)
The values associated with the <Resources> parameter of the mineralField percept type have been
changed. The <Resources> parameter will now be rounded to multiples of 100. This is to prevent su-
perfluous updates to mineralField percepts, as the precision of the <Resources> parameter is not
that important.

underConstruction(<UnitId>, <Vitality>, <X>, <Y>, <RegionId>)
This new percept type provides information about units or buildings that are under construction. As
units or buildings which are under construction do not have an agent attached to them, and thus can-
not send messages to other agents, the information contained in this percept type was not previously
available.

vespeneGeyser(<GeyserId>, <Resources>, <X>, <Y>, <RegionId>)
The values associated with the <Resources> parameter of the vespeneGeyser percept type have
been changed. As with the mineralField percept type, the <Resource> parameter will now be
rounded to multiples of 100.

6.1.6. Generic Unit Percepts
status(<Health>, <Shield>, <Energy>, <Conditions>, <Orientation>, <X>, <Y>, <RegionId>)

The <Orientation> parameter has been added to this percept type, indicating which direction the in
which the unit is currently facing. The primary usage for this is in hit-and-run strategies, where a unit
will attempt to run away while their weapons are cooling down. In this event, the <Orientation> param-
eter may be used to determine in which direction the unit should run away. As with the <Orientation>
parameter in the enemy percept type, the angle is split into steps of 45 degrees.

order(<Primary>, <TargetUnit>, <TargetX>, <TargetY>, <Secondary>)
The order percept type has been added to address the difficulty of not always being certain whether
an action was, and still is, being executed correctly. As StarCraft can cancel the current order on a unit
(e.g. in case sight of the target is lost or the path to the target is blocked), this percept type can be used
to detect when this happens so that the agent may act accordingly. Alternatively, it may be used to
determine when the current order has been successfully completed.



44 6. Milestone 2: AIIDE

6.1.7. Action Changes
debugdraw

Debugdraw is an action that has been added to assist in debugging. When an agent performs this
action, text is drawn either above themselves (for units) or at the top-left of the screen (for managers).
An optional <UnitID> argument can also be supplied to draw the text above another unit instead. The
programmer can use this action in order to display debug information in real-time, as an alternative to
logging. This feature is particularly useful when debugging issues or analysing behaviour on non-local
environments such as SSCAIT, where logging is not available.

6.2. Design and Development of ForceBot: V4 - Manager
This version of ForceBot was developed using version 3.0 of the connector. Therefore, the primary objective of
ForceBot V4 is to utilise the manager entity which was added to version 3.0 of the connector. In this version of
the connector, the manager will receive all global percepts, while agents stop receiving global percepts. This
means that the flow of global information between agents and manager has reversed, with now the manager
being in charge of sending information to the units. This change in design structure called for changes in all
agents, a number of which will be outlined below.

This version also marks a notable change in the design philosophy of ForceBot. Previously, it utilised a
swarm-based control structure in all parts of its code. Agents would receive a task to complete, such as con-
structing a particular building or attacking a certain location, and each agent would determine an optimal
approach to achieve that task according to its own beliefs and knowledge. However, this design created prob-
lems when managing the economic parts of ForceBot, in which agents will occasionally obstruct one another
if not properly coordinated. For example, workers may decide to construct a building at the same location.
This results in a deadlock, with neither worker being able to place the building, as both agents are blocking
each other from placing the building. This also applies to resources, where uncoordinated resource man-
agement will lead to multiple agents attempting to use the same resources. Although there are swarm-based
solutions to this problem, it is easier to utilise a central approach when possible. Furthermore, as the man-
ager is privy to more information, it is able to make a better choice than individual units are able to. This is
particularly important for major decisions such as the placement of buildings, where a poorly placed defen-
sive structure can lead to a loss. Based on these observations, it was concluded that a swarm-based control
structure is not desirable for these parts of StarCraft.

This is not true for all parts of StarCraft. Decisions related to combat (e.g. deciding which unit to attack)
remain decentralised within ForceBot. This is because combat units must deal with a large number of en-
emies that are all moving around constantly, in addition to itself. It is an environment that requires quick
response and highly unit-specific code. Coordinating this from the manager slows down the response time of
the units, as agents will need to send their own status to the manager before it can make a decision. Therefore,
the swarm-based control structure is still in use for combat related decisions.

Buildings
Buildings were an agent that was able to be assigned the role of forwarding information to the manager.
The introduction of the manager entity meant that this task was no longer needed. Furthermore, up
to this point, buildings themselves were tasked with determining when to begin performing a research.
However, as upgrades are costly, the decision of when to spend resources on them is not a simple deci-
sion. Although it would be possible to transfer the information required to make an informed decision
from the manager to building agents, it is simpler and more direct to let the manager make such de-
cisions. Furthermore, as the manager was already in charge of all other means of spending resources
as well, this means that the manager now has complete control and overview of economic decision
making. This allows it to make the most informed decisions. These changes combined led to the agent
code for buildings becoming very minimal, only needing to research and morph when told so by the
manager, as all decision-making had been moved to the manager.

Unit training
Another objective for V4 of ForceBot relates unit training. As Zerg, all units are trained using Larvae,
which periodically spawn at Hatcheries, Lairs and Hives. Previously, these buildings used the ‘train’
action to morph Larvae into the desired unit. Other races also train units exclusively using the ‘train’
action, making the approach intuitive at a glance. However, the approach has a number of problems.

First, Hatcheries cannot train units while it is morphing to a Lair or Hive, as units that are morphing
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do not have an agent attached to them. This means that morphing to Lair is a fairly costly move that
will hamper the build order, as its Larvae become temporarily unusable. Second, Hatcheries cannot
train more than 1 unit per cycle/frame, while they may have up to 3 Larvae. For each Larvae, it needs
to receive the order, execute it, and detect the successful start of training, before it can receive a new
order. In the later stages of the game, this need for multiple cycles per order slows down the training
process.

In order to address, this the manager has been changed to not send train orders to Hatcheries, but
to the Larvae themselves. As Larvae are available even while Hatcheries are morphing, and a training
order can be sent to any number of Larvae, both issues present when using Hatcheries are resolved.
Furthermore, it simplifies the code as Hatcheries are removed from the training process.

Drones
In previous versions, Drones made many decisions on their own, such as where to place buildings.
However, this leads to coordination issues when two Drones decide on the same place. In order to
resolve such conflicts, the manager will now be tasked with determining where to place buildings. As
building placement is important, the manager uses various information, such as the locations of choke-
points and enemy bases. By using a central approach, the information required to make such decisions
does not need to be shared, making the approach more efficient.

This version also introduces a number of mineral gathering optimisations. The first optimisation is
mineral locking, where workers are forced to stay at a specific mineral field. By default, workers will
automatically move to another mineral field when another worker is already harvesting from the min-
eral field that they are trying to harvest from. However, moving to a different mineral field wastes a
greater amount of time than waiting for the current mineral field to become available once more. The
mineral locking technique requires an inhuman amount of actions per second for even just a handful
of workers, making this technique is only available to bots. In order to reduce the CPU load, mineral
locking is disabled after 7 minutes of in-game time. In addition to mineral locking, Drones are now
also automatically assigned to the closest mineral patches first. Furthermore, the manager will assign
Drones to specific mineral fields, ensuring that the Drones are split evenly across the mineral fields.
These changes allow Drones to gather minerals faster than if the Drones are left unattended.

Combat units
In this version of ForceBot, combat units no longer receive enemy percepts. This is because in this
version of the connector, percept subscription has not yet been implemented, and all global percepts
are received solely by the manager entity. This resulted in a refactor to make the units receive this
information through messages instead. Communication channels have been opened in order to allow
a large number of agents to receive the information they desire from the manager. Separate channels
exist for enemy air and enemy ground units. This approach allows each agent to decide which channel
it is interested in and only receive information important to it. For example, Zerglings, who cannot
attack air, will only subscribe to the enemy ground unit channel. This means that combat units do not
need to check if they are able to attack the enemy – any enemy which they receive is a valid target.

Strategy
The use of multiple strategies is another addition to this version of ForceBot. Earlier versions would
always construct a large amount of static defences, and then train an army of Mutalisks from behind
the safety of its defences. While this tactic is effective against bots that only try to rush down ForceBot,
it is a poor strategy otherwise. Any bot that focuses on its own economy will frequently overwhelm
ForceBot, as ForceBot made no attempts to disrupt the opponent.

Instead of the overly defensive play, ForceBot V4 will use different tactics depending on the enemy
race. Against Zerg, it builds only a few early defences to counter enemy rush attempts, while quickly
assembling an army of Mutalisks to win the game with itself. Against Protoss and Terran, it builds
almost no defences, instead opting for a fast expansion and building an army of Hydralisks and Lurkers.

This selection of strategies mimics the popular strategies in high-level human play, in which Zerg versus
Zerg games are often won by whichever player trains Mutalisks first. This is due to Zerg lacking the
means of fighting back against Mutalisks outside of training Mutalisks itself, making it important for
players to be the first to train Mutalisks. Finally, in Zerg versus Protoss/Terran games, the Zerg player
frequently wins by taking control of numerous bases in order to establish an economic advantage. Once
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an economic lead has been established, the Zerg uses its wealth of resources to wear down and outlast
the opponent.

Finally, a small tournament of ForceBot against the final MAS project bots was held. Overall, the game
performance of ForceBot was notably worse compared to results of the third MAS tournament. This is pri-
marily because ForceBot’s tactic against Terran/Protoss was now to assume that they will not use rush tactics.
However, the vast majority of MAS project bots are highly rush bots, as such the win rate against MAS project
bots dropped from 83% to around 50%.

Overall, this result is not unexpected. This version of ForceBot has been designed to compete against
SSCAIT/AIIDE bots. Unlike MAS project bots, SSCAIT/AIIDE bots are less likely to solely use rush tactics.
These results make it clear that for future versions, ForceBot has to be capable of adapting to the enemy’s
strategy and dynamically determine how aggressive or defensive it should play.

6.3. Design and Development of ForceBot: V5 - Combat Simulator
This version of ForceBot was developed using version 3.1 of the connector. Previous versions of ForceBot
use a simple strategy of building a single, large army. Once a certain fixed size is reached, it attacks with
everything it has. However, since it is unable to predict which players has the stronger army, it does not know
whether it will win this. Predicting the outcome of a fight between armies is the task of a combat simulator.
This information can then be used to determine when a bot should fight and when it should retreat. Without
a combat simulator, a bot is unable to make effective use of its army. For this reason, in order to further
improve the attacking strategy of ForceBot, the next objective in ForceBot’s development is to add a combat
simulator.

There are a number of combat simulation libraries available, such as SparCraft [9]. However, these existing
libraries are typically written in C++. It is possible to use these in GOAL, this would have to be done via actions
within the connector, using arguments to tell the combat simulator the condition of the units. The result of
this simulation would then be returned through a percept on the next cycle. This is not how actions within
GOAL are typically used, as actions should perform commands on the environment, not mimic a function
call. For this reason, as well as in order to further challenge GOAL, I decided to design and create a combat
simulator within GOAL. If the performance of this combat simulator is insufficient, an external library for this
task can be added to GOAL at a later stage.

6.3.1. Combat Simulator: Goals and Challenges
A combat simulator implementation has to be both fast and accurate. Speed is required, because a slow
simulator will result in slow reactions to the constantly changing conditions of a fight. A combat simulator
which lacks accuracy will either try to take a fight it cannot win, or refuse to attack when it is able to win. This
creates a balancing act, in which an algorithm is required which balances speed and accuracy. Accurately
simulating combat in a real game is complicated by many factors, determining the outcome is not straight
forward. In order to perform a simulation accurately, a number of aspects are to be taken into account:

(a) The distinction between ground and air units, and the inability of certain units to attack one or the other.

(b) Attack cooldowns.

(c) Unit abilities. In StarCraft, certain units may deal damage through spells, heal other units or even act as
suicide bombers.

(d) Upgrades which will affect the fight. Particularly, armour/attack upgrades will affect the damage taken/dealt
by units.

(e) The time it takes for a unit to get in range to attack

(f) Targeting priorities such as ‘nearest first’, or ‘lowest health first’.

(g) Collision amongst units, preventing some units from effectively attacking due to being blocked by allies.

(h) Micro management such as retreating with low health units and hit-and-run tactics.
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Existing combat simulators typically function by simulating the next few seconds worth of game frames
in a simulation that abstracts the actual game. These abstracted fights take many of the above aspects into
account. However, not all of these factors are equally important. For example, SparCraft does not take into
account unit collision (g) or micro management (h), as these are features that are computationally expensive
to support. For the same reason, these features will also be excluded from the combat simulator for ForceBot.

Since Prolog, the language in which the combat simulator for GOAL will be programmed in, does not op-
erate as fast as C++, a greater level of abstraction will be applied than that is used for C++ combat simulators.
The combat simulator will include factors (a) and (c). This allows for a simple approach that sums the stats
of all friendly and enemy units and determine the outcome assuming both sides continued to attack without
stopping. In this approach, both armies are abstracted into a single ‘unit’ with the combined stats of each
unit within that army.

The abstraction results in a number of factors becoming difficult to implement. As the armies are ab-
stracted to act as a single ‘unit’, the notions of individual unit movement, attack cooldowns and targeting
priorities are lost within the abstraction and cannot be accurately modelled. For this reason, factors (b), (e)
and (f) will not be included. Finally, factor (d) will not be included as the connector does not provide a means
of determining the upgrade levels of enemy units. The reason for this is that JNIBWAPI, the interface which
the StarCraft-GOAL Connector uses to interact with BWAPI, does not support this correctly. ForceBot is able
to track its own upgrade levels, however if only its own upgrade levels are taken into account then the simu-
lation may determine a victory based on an upgrade advantage that it does not possess. For this reason, the
combat simulator will simply assume that no player has performed and upgrades.

6.3.2. Combat Simulator: Version 1
In the first version of the combat simulator, each agent performs its own simulation. In order to make an
accurate simulation, a number of changes needed to be made:

• Agents must inform other agents of each others location and health. This also means that the manager
must inform agents when a friendly unit has died, so that they can delete the knowledge for that unit.

• The manager needed to send all information regarding enemy units to combat units, instead of only
those that it can attack. For example, Zerglings cannot make accurate combat simulations if they do
not know of nearby enemy flying units, even if they cannot attack them.

• Out-of-sight enemies must be remembered, so as to not run back towards a stronger enemy army the
moment sight of it is lost.

Each agent will sum up the stats of nearby enemy and friendly units to predict the outcome of the fight.
The simulation makes a number of distinctions, such as between units that can damage flying units and
those that cannot. In total, the simulation has 24 parameters: both the health and damage for both friendly
and enemy units for Ground-to-Ground, Ground-to-Air, Ground-to-Both, Air-to-Air, Air-to-Ground and Air-
to-Both units. ‘Both’ refers to units which can attack both ground and flying units. This means that the
simulation accurately accounts for targeting priorities so that flying units will not be intimidated by units that
cannot threaten it. Note that the simulation does not account for unit locations (beyond the initial ‘nearby’
check) nor mid-simulation deaths.

This approach aimed to create a highly accurate simulation, however that aim resulted in a number of
problems. For one, the definition of ‘nearby enemy and friendly units’ is complex. Some units are able to
attack from very long range (e.g. Siege Tanks), while others need to be right next to the enemy (e.g. Zerglings).
This can lead to erroneous judgements, such as a single Zergling believing it can win against a Zealot, when
the Zerglings allies are still a significant distance away. This particular problem can be improved over time,
but the real problem of this approach was the computational performance requirements. The approach re-
quires every agent to run its own combat simulation, and every agent to be kept up-to-date of the state of
every other friendly unit. In this way, the cost of messaging increases quadratically as more agents are added
to the game. This problematic nature led to the idea of individual simulations being discarded, as the ap-
proach becomes too costly when the number of units exceeds a certain threshold as a result of the quadratic
scaling.

6.3.3. Combat Simulator: Version 2
As the approach of individual combat simulations proved to scale too poorly, in version 2 the simulation
has been moved to the manager. Instead of having each unit simulate its own fight, the manager will now
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simulate a fight for all units on the map. However, if all units on the map are considered as being part of the
same fight, the combat simulation will predict that it will win a fight inside the opponents base thanks to the
help of friendly units still located in its own base. In order to address this problem, a combat simulation will
be performed for each region on the map separately. This is more efficient than centring a simulation around
a unit, as each map only features around 15 to 25 regions.

By using a region-based approach, units near the opponents base will be scared and back-off, as the
combat simulation for that region will conclude that they will lose if they try to advance on the enemy base.
On the other hand, units in ForceBot’s base will advance towards the front-lines, as combat simulations in
those regions will tell them they are safe. This will lead to the army naturally converging towards the same
location, i.e. near the enemy’s forces. In addition, by making the simulator region-based, the frequently-
changing(X, Y) coordinates of units are no longer needed, as only the less-frequently changingRegionId
is required, reducing the number of updates that are required for the combat simulator.

The simulation itself has also changed. The number of parameters in the simulation has been reduced
from 24 to 10 – namely friendly and enemy values for Ground Health, Air Health, Ground Damage, Air Dam-
age and Both Damage (i.e. units which may attack both ground and air units). The combat simulation will
simulate a fight between the chosen region and the region that leads to the enemy’s base. If the simulation
determines a loss, it will order a retreat towards its own base. If the simulation determines a win, it will ad-
vance towards the enemy’s base. This approach means that the number of combat simulations per cycle is at
most equal to the number of regions found on the map. By limiting the maximum number of simulations per
cycle, the problem of exponential scaling that was present in the previous version is removed.

6.3.4. Combat Simulator: Version 3
With the basic functionality of the combat simulator operational, the next step was to improve the accuracy
of its predictions, as well as improve the way in which the outcome was handled. To this end, a ‘commitment’
threshold was introduced in order to improve the decision making ability of the combat simulator. A com-
mitment threshold serves to ensure that the bot sticks to its current decision for longer. This is important,
because disengaging from a fight can be a costly manoeuvre. While running away, the enemy can freely at-
tack your units. Without a commitment threshold, ForceBot would choose to attack based on a 1% advantage,
and then retreat based on a 1% disadvantage. Each time this happens, a costly retreat is initiated. By using a
commitment threshold, the bot will be more reluctant to retreat once it has initiated a fight.

ForceBot will consider a simulated fight to be a win if it is won while keeping at least 30% of its own units
alive. Once the fight starts, the combat manager will not call for retreat until the combat simulation indicates
that at least 30% of the enemy units will survive. When the combat simulation believes a fight in the current
region will be won, but a fight in the next region (towards the enemy base) will not be won, it will hold and
defend its current region.

Furthermore, the simulation was changed so that, instead of using only the stats of units in the current
region and the next in the path, it will account for all adjacent regions. This helps address for units that are not
in a straight path towards the enemy base, but are still in close proximity of the combat area. Furthermore,
there was an issue with units located in ‘region 0’. Not all positions on the map belong to a specific region,
causing units to occasionally belong to region 0. This is most prominently the case for air units that are flying
over otherwise unwalkable ground terrain. This has been changed so that region 0 acts as if it is adjacent to
every region. This is because air units will otherwise confuse the simulator by moving between regions not
connected by ground and therefore not adjacent to one another. Friendly units circumvent this issue by using
the last non-zero region they were in. This solution was not used for enemy units as it is possible that the first
time they are seen is in region 0.

Finally, a number of changes have been made to address some finer unit balances within the combat
simulator. Initially, all units used their exact in-game stats within the simulation. A 5 Damage Per Second
(DPS) Zergling does exactly 5 DPS in the simulator. However, this leads to inaccuracies for a number of units.
For example, Siege Tanks are often underestimated, as the simulation does not account for splash damage
or their very long range. Units with such traits have had their DPS manually increased in order to more
accurately simulate their actual contribution in a fight.

Terran Siege Tank
The damage of Siege Tanks has been roughly tripled in order to account for its massive range and splash
damage.

Terran Firebat
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The damage of Firebats has been doubled in order to account for its splash damage.

Terran Bunker
Bunkers do not actually attack themselves. Instead, units may enter a bunker. Units inside bunkers can
then attack freely while being safe from harm until the bunker is destroyed. As the combat simulator
only accounts for units that can attack, a bunker is ignored. To remedy this, Bunkers have been changed
to deal damage as if it is fully loaded. This may mean that an empty bunker is considered as dangerous,
but as GOAL does not provide a means of determining how full an enemy bunker is, it is the safest
option.

Zerg Zergling
The damage of Zerglings has been halved in order to make for more accurate simulations. Although
Zerglings have high DPS, they require melee range and will often times block each other when in large
numbers. Especially in large numbers, Zerglings under-perform compared to their stats.

Zerg Lurker
The damage of Lurkers has been doubled in order to account for its splash damage.

Zerg Scourge
As Scourges attack via a high-damage suicide attack, their attack damage is many times higher than
any other unit. As the simulator does not account for the fact that they will die after attacking once,
their high damage causes the simulation to become highly inaccurate. In order to make their threat
assessment more accurate, their damage has been lowered greatly.

Workers
Workers have been removed from the combat simulation. This change means that a small army of
Zerglings will not be intimidated by an army of workers. Even though the workers may retaliate and kill
the Zerglings, the economic damage dealt to the opponent by killing a number of its workers will often
outweigh the loss of units.

Spell Casters
There are a number of spell caster units in the game which cannot attack. Most commonly used among
such units are Medics and High Templars, but also Queens, Defilers and Science Vessels. These units
have been given damage values estimated to be proportional to the threat posed by their abilities.

The approach to a number of these problems differs from other combat simulators:

• The splash damage of a Siege Tank, Firebat and Lurker is typically simulated by increasing the damage
based on the opposing army size. Due to abstracting all units as a single entity, this approach is difficult
to use for Forcebot.

• Bunkers face the same issues in other combat simulators, with similar solutions of assuming it is loaded
with units. This is because determining the amount of units inside a bunker can only be done by count-
ing the number of attacks being fired from it. This is not done by any bots with exception of less than a
handful, as the benefit is not that big compared to simply assuming that it is full at all times.

• Melee range units such as Zerglings are partially addressed by simulating movement. Since all units are
abstracted into a single entity in ForceBot’s combat simulator, this approach is not usable for ForceBot.
Additionally, there is presently no combat simulator which simulates collision due to the computa-
tional performance requirements of doing so. As unit collision is a major factor to the effectiveness of
melee units such as Zerglings, other combat simulators instead decrease the damage of melee units
based on the amount of melee units present, as larger numbers of melee units are more prone to ob-
struct one another.

• Suicide units such as Scourges are accurately simulated, with the unit being removed from the simula-
tion upon completing its attack.

• Worker units are typically only included when they are attacking, and are otherwise ignored. This would
be ideal for ForceBot as well, but the benefit is minor compared to the difficulty of implementing this
behaviour. As such, this feature can be implemented at a later date.
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• The approach to spell casters differ depending on the unit. Defensive spell casters such as Medics are
typically simulated exactly as they behave, however for offensive spell casters such as High Templars,
similar estimated damage values are used to determine their value in a fight.

6.4. Design and Development of ForceBot: V6 - Subscribe
The sixth version marks another major update to the functionality of the connector. This version uses ver-
sion 3.2 of the connector, allowing for the specification of which agent types receive which types of percepts
through percept subscriptions. This provides a simple and efficient means of receiving only the percept types
that are needed for every agent, as any other percepts are simply turned off. All agents will now receive only
the global percepts types that are required by their implementation, instead of it being pre-determined which
percept types they will receive and requiring the use of messaging to ‘receive’ percepts types outside of that.
As a result of this change, the manager no longer need to supply agents with percepts. Each agent will receive
the percepts it requires directly from the connector.

In addition, version 3.2 of the connector allows for the specification of the number of manager entities.
Each manager can be set up to receive different percepts. Using this feature, another issue is addressed in this
version. With a single manager, each component of the manager can only run sequentially. If this manager
starts to slow down as a result of being put under a heavy load, every component of the manager will slow
down. This is problematic, as it is important for the manager to maintain responsiveness, especially for tasks
such as combat-related decision making.

To address this, the existing manager will be split into multiple, separate managers. Each manager will be
in charge of separate tasks and operate independently as much as possible. The objective is that the managers
should not need to communicate much with one another. These objectives resulted in the creation of the
following three managers:

Construction Manager
The construction manager, nicknamed ‘BuildMind’, is responsible for placing buildings. This manager
has been created because the
constructionSite percept type is the most costly percept type to update due to how many per-
cepts of this type are perceived every cycle. However, although this percept type is costly to update due
to the quantity, the information is not often required. Therefore, this manager will only become active
when a building needs to be placed, and will otherwise sleep.

Combat Manager
The combat manager, nicknamed ‘BattleMind’, is responsible for tracking both friendly and enemy
combat units, running the combat simulation, and determining where and when to attack or retreat. As
managing the army is a critical task, this manager exists in order to prioritise combat-related decisions
above other tasks.

General Manager
The general manager, nicknamed ‘OverMind’, is responsible for all tasks not covered by other managers.
This includes tasks such as managing worker units, training new units, determining when and which
buildings to construct (but not where), determining which upgrades to research, etc.

These three managers are similar to the way in which many existing bots are split. In [32], 5 out of the 7
bots analysed perform decision making for economy and combat separately. Furthermore, 6 out of the 7 bots
also have a separate construction planner or manager.

6.5. Design and Development of ForceBot: V7 - AIIDE
The seventh version is the version submitted to the AIIDE tournament. The main focus points of this version
were computational performance improvements, robustness and fixing bugs. As many different scenarios
will be encountered within a tournament setting, it is important that the bot is robust enough to handle these
without problems, and that no bugs occur, which could lead to losses. For this reason, major changes will
be avoided, as these may add unexpected behaviours. However, the handling of enemy percepts will receive
major changes in order to address a major computational performance pitfall.
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6.5.1. Enemy Targeting
In earlier versions of ForceBot, enemy percepts were stored in the belief base. Once stored, agents utilise
the stored beliefs to find the closest enemy unit according to its targeting priorities. For example, a Mutalisk
prioritises units that can attack air units over units that cannot.

In the new version, enemy percepts are not stored in the belief base. Instead, agents iterate over all enemy
percepts. Upon finding a valid target, it stores that target as a belief. It will then continue to iterate over all
enemy percepts, and whenever it finds an enemy which is closer than the existing target or of higher priority,
it will replace the earlier stored belief with this newly found target. This new approach means that only as
many inserts/deletes are required as it takes until it iterates over the closest enemy. Additionally, as long as
the existing target remains closest, no further insert/deletes are required in future cycles.

As the old approach inserts every enemy percept as a belief, the new approach is equally performant in
the worst case, which is when the iteration order results in every subsequent enemy in the iteration being of
higher priority. Typically, however, the new approach will result in fewer inserts/deletes. Although this new
approach did result in computational performance improvements, the design is not optimal due to deficien-
cies in the language features of GOAL. This issue is explained and discussed in detail in Section 9.4.1.

6.5.2. Robustness
Regarding robustness, the primary focus is to ensure that tactics are executed correctly and consistently.
ForceBot’s actions should remain consistent and stable even in the various situations that might occur within
tournament games. In order to test how ForceBot responds to strange situations, ForceBot was submitted
to the Student StarCraft Artificial Intelligence Tournament (SSCAIT). SSCAIT is a stream which runs all day
and features a large number of opponents that will also participate in AIIDE. The games that play out there
provide a clear image of how games in AIIDE will play out and what sort of situations ForceBot will encounter.

For example, one game showed ForceBot losing its main base. In this game, ForceBot still controlled other
bases, however it was unable to reconstruct its lost buildings correctly as a result of there being no fall-back
when a construction site in the main base is not available. Upon discovering this behaviour, a fall-back was
added where buildings are placed outside of the main base in case no valid construction sites can be found
within the main base. As a result of this, ForceBot has become able to reconstruct itself from any location.
The addition of this fall-back also revealed that there had been another issue with building placement, as
ForceBot began placing buildings outside of its main base even while it still controlled the main base. This
indicates that are cases in which ForceBot runs out of space to place buildings within the main base. The
addition of the fall-back ended up solving multiple issues at once.

SSCAIT results also showed ForceBot to have difficulties at later stages of the game as a result of the com-
putational load increasing due to the number of units, and therefore the number of agents, increasing. Al-
though attempts were made to improve computational performance, the issue was not resolved before the
AIIDE deadline. Instead, the build orders and strategies that ForceBot uses have been adjusted to make its
playstyle more aggressive. ForceBot will aim to end games before the computational load becomes a major
burden and a liability.

Finally, responses to certain enemy unit types has been added. For example, ForceBot will now switch to
Mutalisks upon encountering enemy Siege Tanks, as Mutalisks can deal with Siege Tanks effectively. Through
such responses, the responsiveness of ForceBot towards the actions of the opponent has been improved.

6.6. AIIDE Results
ForceBot placed 27th on AIIDE, out of 28th competitors. The complete results can be found in Table 6.3. The
poor results of ForceBot are not unexpected, previous AIIDE competitions frequently saw new competitors
performing poorly in the first year of their entry. It is difficult for new competitors to be versatile and efficient
enough to deal with the large variety of strategies employed by other bots. However, estimations based on its
game performance in SSCAIT gave a higher expected ranking. Upon inspection of the replays made available
after the completion of the tournament, it was found that the primary cause for its unexpectedly low game
performance was due to a critical bug that prevented it from gathering vespene gas. This meant that for
the entirety of AIIDE, ForceBot was restricted to only creating Zerglings, the only combat unit which did not
cost any vespene gas. As all of ForceBot’s strategies involve the eventual use of units which require vespene
gas, this bug greatly obstructed its ability to function as intended within AIIDE. In spite of this, ForceBot did
adjust to its abundance of minerals and lack of vespene gas correctly by producing large amounts of Zerglings,
allowing it to achieve its final winrate of 17.97%.
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Bot Games Win Loss Win% AvgTime Game Timeout Crash Frame Timeout
ZZZKBot 2966 2465 501 83.11 8:00 3 4 0

PurpleWave 2963 2440 523 82.35 13:27 15 25 0
Iron 2965 2417 548 81.52 14:19 117 83 0
cpac 2963 2104 859 71.01 9:45 5 3 0

Microwave 2962 2099 863 70.86 11:34 14 22 0
CherryPi 2966 2049 917 69.08 9:50 7 12 27
McRave 2964 1988 976 67.07 14:35 32 14 0

Arrakhammer 2963 1954 1009 65.95 11:37 11 14 1
Tyr 2966 1955 1011 65.91 13:09 18 13 0

Steamhammer 2964 1901 1063 64.14 10:32 11 4 0
AILien 2966 1729 1237 58.29 13:04 13 216 34

LetaBot 2955 1682 1273 56.92 16:48 119 34 0
Ximp 2962 1605 1357 54.19 18:46 42 205 14

UAlbertaBot 2968 1585 1383 53.40 10:54 59 74 0
Aiur 2965 1496 1469 50.46 13:51 68 53 0

IceBot 2955 1348 1607 45.62 17:16 134 24 0
Skynet 2958 1295 1663 43.78 11:40 29 4 0
KillAll 2965 1276 1689 43.04 10:56 22 4 120

MegaBot 2802 1200 1602 42.83 12:21 52 413 25
Xelnaga 2962 1099 1863 37.10 15:19 121 147 0
Overkill 2958 967 1991 32.69 18:00 128 18 1

Juno 2962 876 2086 29.57 14:07 174 16 0
GarmBot 2961 802 2159 27.09 15:21 40 8 0
Myscbot 2964 769 2195 25.94 13:41 75 4 6

HannesBredberg 2964 630 2334 21.26 14:09 62 8 1
Sling 2963 625 2338 21.09 16:21 147 64 0

ForceBot 2960 532 2428 17.97 15:10 167 9 0
Ziabot 2964 510 2454 17.21 10:08 25 67 0
Total 41398 41398 41398 N/A 13:23 855 1562 229

Table 6.3: AIIDE 2017 results

In order to properly explain the cause of this bug, prior context for the versioning of the Brood War Appli-
cation Programming Interface (BWAPI) is required. In recent years, the stable versions of BWAPI have been
3.7.4, 3.7.5, 4.1.2 and 4.2.0, all of which are supported on SSCAIT. However, AIIDE does not support BWAPI
3.7.5, which is the version used by the GOAL environment. A few days prior to the submission deadline, the
StarCraft-GOAL connector was adjusted to also function with BWAPI 3.7.4. Afterwards, each map that would
be played on in AIIDE was tested to ensure that there were no problems with using BWAPI 3.7.4. At this stage
of the bots development, however, it typically ended the games rather quickly against the built-in AI. As a
result of this, a critical bug which did not reveal itself until later the stages of the game was not discovered.
Upon completion of the Extractor, the general manager is meant to assign Drones to harvest vespene gas.
However, when using BWAPI 3.7.4 the morphing of a Drone to an Extractor is handled differently, leading
to the Extractor not being connected to an agent. As a result, the general manager is not notified about the
location of the Extractor and no Drones are tasked with collecting vespene gas. Due to this bug, the results of
AIIDE cannot be used as an accurate indicator for ForceBot’s game performance against other bots.

6.7. Conclusion
During this milestone the flow of information within the connector has changed a great deal. Prior to version
3.0 of the connector, agents did not receive percepts, which complicated their usage as a result of agents
being required to send this. However, since agents can be killed, this communication is inherently unstable.
In order to address this problem, version 3.0 of the connector allowed for the creation of a manager entity that
was able to receive percepts. However, when enabled, the agents no longer received global percept types. This
meant that the flow of information between managers and agents had reversed, with managers forwarding
percepts to the agents. This approach was less than ideal, as it meant that the manager was a limiting factor
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on the speed at which agents could perceive the game state. This problem was solved by allowing agents and
managers to ‘subscribe’ to percepts, allowing them to dictate which percept types they wanted to receive.
This solution meant that the flow of information could now be removed, as both the agents and managers
were able to receive exactly the percept types they were interested in. Furthermore, unused percept types
could be disabled in order to improve computational performance.

In ForceBot V4 there was a movement away from a swarm-based control structure. The decision making
regarding when to perform researches was moved to the general manager. As a result, structures no longer
performed any decision making, and would only act as told to by the manager. Drones were also changed
to perform fewer decision making, primarily in order to prevent Drones from making decisions that conflict
with those of other Drones. Finally, this is also the first version of ForceBot to feature the use of multiple
strategies.

A combat simulator was added in ForceBot V5. This combat simulator will simulate fights between all
units in a region and any regions adjacent to it. Using the combat simulator, ForceBot can predict the out-
come of battles in order to intelligently decide whether units in a specific region should attack, hold position
or retreat.

In ForceBot V6 the manager was split into three in order to improve responsiveness of the manager by al-
lowing the three separate managers to make shorter cycles, as well as run parallel to one another. In addition,
the subscription model for percepts was first used in this version.

Finally, ForceBot V7 focused on the computational performance and robustness of ForceBot, in order to
improve its consistency within AIIDE. However, as a result of a major bug that was not noticed in advance,
the results of AIIDE do not allow for a conclusion to be made regarding the game performance of ForceBot.
This also makes it difficult to draw any conclusions regarding what areas of ForceBot should be worked on
next, as the games played in AIIDE do not properly showcase ForceBot’s capabilities. Moving forward, a more
reliable source of data for ForceBot’s game performance will need to be established.

One of the research questions raised at the beginning of this thesis is with regards to the computational
performance demands of GOAL. In particular, the question was raised as to whether the 1-on-1 mapping of
agents to buildings and units was feasible and useful for an environment such as StarCraft. A preliminary
answer to this question can be made based on the work performed during this milestone. As of ForceBot V4,
structures no longer perform any decision making, as this has been centralised to occur within the general
manager. Based on this it can be concluded that, at this time, a complete 1-on-1 mapping of agents to units
and buildings is not useful. Buildings which are only able to perform researches and upgrades, as well as train
units, do not perform any decision making and therefore have no need for an agent.
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The third milestone is the annual Student StarCraft Artificial Intelligence Tournament (SSCAIT) tournament,
held starting from December 20th, 2017. In addition to the 24/7 stream, SSCAIT also hosts a tournament once
a year. This tournament has a special student category, in which bots created by single students are ranked in
order to determine the best student bot. ForceBot will be competing in the SSCAIT tournament and qualifies
for the student category.

The previous milestone did not yield good results. Due to a critical bug affecting ForceBot, it was not able
to perform to the best of its capabilities in AIIDE. As a result, the games that were played in AIIDE do not
provide a good indication on what areas of ForceBot should be improved upon next. In order to determine
ForceBot’s actual game performance, Section 7.1 introduces a local setup for testing ForceBot against existing
StarCraft bots of various ratings. Next, the changes made to the StarCraft-GOAL Connector over the course of
this milestone are discussed in Section 7.3. The changes to the connector are primarily aimed at improving
the computational performance of ForceBot, as well as resolving ambiguity between losing sight of enemy
units, and enemy units dying. Section 7.4 discusses the changes made to ForceBot over the course of this
milestone, using the local testing environment in order to determine the effectiveness of changes made. Fol-
lowing this, the results of SSCAIT and the game performance of ForceBot are analysed in Section 7.5. Finally,
Section 7.6 will summarise the progress made and lessons learned during the third milestone.

7.1. Internal Testing
At this stage of ForceBot’s development, besting the default bots included in StarCraft itself has become a
simple task. In order to continue to improve ForceBot, a means of measuring its game performance in a local
environment is required. The best means of doing so is by observing ForceBot play against bots that are better
than the default AI.

7.2. Internal Testing Setup
In order to measure ForceBot’s game performance more accurately between tournament milestones, a selec-
tion of other StarCraft bots will be assembled in order to play against ForceBot. These bots can be acquired
in three ways. First, a number of StarCraft bots are open-source, allowing easy access to these bots. Sec-
ondly, all bots who enter into AIIDE are required to release the source code for the version submitted to
AIIDE [7], meaning that any of the AIIDE contestants are available as well, even if these bots are otherwise
closed-source. Lastly, the binary files of any bot present on SSCAIT may be freely downloaded from the SS-
CAIT website [42]. Tournaments between the selected bots would take place using a fork of the StarCraft AI
Tournament Manager created by Dave Churchill, which is used in AIIDE 2017. The fork itself was modified by
Vincent Koeman for use in the MAS Project 2017 [8]. The same maps that were used in AIIDE 2017 will also
be used:

• Benzene

• Heartbreak Ridge

• Destination

54



7.2. Internal Testing Setup 55

• Aztec

• Tau Cross

• Empire of the Sun

• Andromeda

• Circuit Breaker

• Fortress

• Python

One game will be played on each map, for a total of 10 games against each opponent. Finally, the selection
of bots has been assembled with a number of objectives in mind:

1. Each of the three races should be equally represented.

2. Three ‘tiers’ of bots will be selected, roughly equivalent to easy, medium and hard opponents. The in-
tent of this is to ensure that any changes made for the sake of beating more difficult bots does not result
in a negative effect on easier opponents. Furthermore, it gives a clear target to aim for, e.g. obtaining a
win-rate of over 50% against all medium opponents.

3. The bots should each perform different strategies. By ensuring that the opponents employ a variety
of strategies. This is to best avoid the problem of ‘overfitting’ on the chosen bots and losing game
performance against bots using strategies that are not present in this internal testing.

4. Bots with extremely niche strategies will be avoided, also called ‘cheese’ strategies by StarCraft players.
A select few bots employ only cheesy strategies. Beating these bots will often require a specific type of
counter play. Although it is important for ForceBot to be capable of handling such strategies, these bots
do not serve as a good baseline for game performance measurement, as they provide little challenge
once a counter strategy has been learned.

Using these criteria, a total of 9 bots were selected in order to test ForceBot’s game performance. These
bots will be used throughout the remainder of this thesis. Furthermore, they will not be updated, in order
to provide a static point for comparison between the different versions of ForceBot. The following bots have
been selected:

Easy Opponents
The ‘easy’ opponents were selected based on previous games on SSCAIT. ForceBot was known to perform
well against the selected bots. This meant that these bots would serve as a good baseline to determine that
changes made did not negatively impact its game performance against existing bots.

• Lukas Moravec – This Protoss bot can select from both early-game tactics to overwhelm the opponent,
as well as more late-game oriented approaches of using Reavers to strengthen its army.

• KaonBot – A basic Terran bot that only uses Marines. It is fairly aggressive with expansions, often giving
it an economic advantage over its opponents to outweigh its simple attack force.

• Aurelien Lermant – A macro-orientated Zerg bot that will quickly try to expand across the map. This
bot also participated in AIIDE under the name ‘GarmBot’, ranking 23rd out of the 28 participants.

Medium Opponents
These opponents were selected based on ForceBot having a number of difficulties with them. Although far
from impossible to defeat, these bots generally held the upper hand, improving to the point that these bots
can be reliably beat is one of the main goals of these internal tests.

• Gaoyuan Chen – A Protoss bot that specializes in early and mid-game strategies, primarily using Zealots
and Dragoons.
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• Sparks – Unlike most Terran bots, which focus on biological units such as Marines, Sparks focuses
on mechanical units. By using Sparks as a testing bot the effectiveness against a less commonly used
archetype can be measured.

• zLyfe – A highly aggressive Zerg bot that only uses Zerglings, a fairly common strategy among Zerg bots.

Hard Opponents
‘Hard’ opponents were selected based on their excellent execution of their respective strategies. These bots
will be challenging for ForceBot to beat reliably, however, a great deal of information can be learned from
these difficult opponents.

• Antiga – A Protoss bot that uses a variety of strategies and is frequently seen using a number of the
less commonly used Protoss units. In order to best Antiga, dealing with and responding to unorthodox
units is important.

• Simon Prins – A defensive Terran bot that focuses on Marines & Medics. In order to beat this bot,
ForceBot will need to learn to break strong defensive lines.

• NLPRBot – A strong and versatile Zerg bot that can utilize both early and mid game strategies. NLPRBot
uses many of the same tactics as ForceBot itself does, but currently performs both its macro and micro
better. As NLPRBot uses the same race, it is a bot from which ForceBot may learn a great deal.

7.2.1. Internal Testing Results
The first internal test tournament was held using the version submitted to AIIDE. This is both to establish a
baseline for performance moving forward, but also to measure the game performance of the AIIDE version
of ForceBot without the Extractor bug that prevented it from functioning as intended. The results of this
tournament can be seen in Table 7.1, with the race of the opponent indicated before the name of each bot.

Opponent
Test #1
AIIDE

(P) Lukas Moravec 60%
(T) KaonBot 50%
(Z) Aurelien Lermant 100%
(P) Gaoyuan Chen 20%
(T) Sparks 40%
(Z) zLyfe 40%
(P) Antiga 10%
(T) Simon Prins 0%
(Z) NLPRBot 50%
Average 41.1%

Table 7.1: Win-rate against internal test bots

ForceBot’s win-rate against Aurelien Lermant is an impressive 100%. This is impressive, as the win-rate of
ForceBot against Aurelien Lermant in AIIDE is only 22.7%, in which it participated under the name ‘GarmBot’
and ranked 23rd out of the 28 participants. However, no other bot selected for the internal tests was present
in AIIDE. Therefore, this is not enough data to estimate ForceBot’s actual ranking in AIIDE if it had functioned
as intended, but this does clearly demonstrate the extent to which ForceBot’s game performance suffered in
AIIDE.

The high win-rate against NLPRBot, relative to the other ‘hard’ bots, is an interesting result. The main
cause for this is that NLPRBot primarily uses two different strategies: an early offence using Zerglings, or
defensive play leading into quick Mutalisks. The AIIDE version of ForceBot only uses a single strategy: defen-
sive play leading into quick Mutalisks. The outcome of each game was decided by the strategy that NLPRBot
used: ForceBot would beat the early offence using Zerglings, but lost whenever NLPRBot utilised the same
Mutalisk-based strategy as ForceBot itself used. The primary reason ForceBot would lose when both bots
used the same strategy is that ForceBot played more defensively, spending a significant amount of resources
on defences, despite NLPRBot showing no signs of aggression. This allowed NLPRBot to be the first to train
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Mutalisks. Moving forward, ForceBot should be able to estimate the number of defences required based on
the enemies combat potential.

The other problem is that NLPRBot’s Mutalisk micro was superior to that of ForceBot. High-level Mutalisk
micro requires a significant amount of actions per minute, however. ForceBot’s computational performance
does not currently allow such levels of micro. This makes it difficult to compete against the Mutalisks of other
Zerg bots. To resolve this problem, either the computational performance will need to be improved, or a
different strategy is required.

Additionally, the low win-rate against most Protoss bots was the result of ForceBot frequently being unable
to defend itself from the first Zealot rush of the opponents. ForceBot will need to become better at defending
itself from Zealot rushes moving forward. Finally, ForceBot could not break the defence of Simon Prins, losing
every game. Against highly defensive opponents, a Zerg player should take control of the map to gain a
resource advantage. In the future, ForceBot will need to become capable of responding in such a manner to
defensive play by the opponent.

7.3. StarCraft-GOAL Connector Development
At this point in time, the connector had grown stable, with most of the work being directed towards computa-
tional performance improvements that did not affect users of the connector. One major change did happen
to the connector, however. Previously, the enemy percept type would only give the position of all visible en-
emies on the map. If the bot wanted to store information regarding units that have disappeared from sight,
this had to be explicitly stored as beliefs. Storing information from units that are out of sight is important for
a number of things, such as accurate combat simulations. If enemy units are not remembered, the combat
simulation will determine that the enemy has no defences as soon as the enemy units enter the Fog of War.

However, leaving the task of remembering enemies that have been lost sight of to the programmer was
problematic in several aspects. If all enemy units ever seen are remembered, the combat simulation remem-
ber units that have already died, which would lead to erroneous combat predictions. This means that a
mechanism for detecting when a unit has died is required. The simplest approach for this is by determin-
ing whether a unit should be visible, but is not. If this is the case, that unit must have died or disappeared.
However, this approach is costly, as it means line-of-sight checks are required for every friendly unit to every
enemy unit. Furthermore, this has a potential for false positives, as the unit may have simply moved to a
different location while within the Fog of War.

Traditional bots utilise native events within BWAPI for this: UnitHide andUnitDestroy. These events
allow for an enemy unit dying and disappearing to be distinguished from one another, as well as not requiring
line-of-sight checks. In order for GOAL to provide the same level of detail and performance, the enemy per-
cept type was extended with an an additional <Gameframe> parameter. This parameter contains the frame
that the enemy was last seen, which is the current frame for visible enemies. Instead of the enemy percept
being removed upon sight of the enemy unit being lost, it is only removed when BWAPI fires aUnitDestroy
event for that unit. This means that an enemy unit disappearing and an enemy unit dying can not be distin-
guished from one another, as well as no longer requiring line of sight checks.

There does exist one problem to this change, however. That is, the UnitDestroy event within BWAPI
does not fire when a unit dies within Fog of War. However, this issue is largely circumvented by ensuring
that units do not try to attack units which are not currently visible. Furthermore, this problem also exists for
traditional bots.

7.4. Design and Development of ForceBot: V8 - SSCAIT
The first task for this development cycle was integrating the changes to theenemypercept type into ForceBot.
Primarily, this means that there is no longer a need to perform out-of-sight checks. Up till now, the combat
simulator would store the (X, Y locations of every enemy unit, as well as a boolean indicating whether the
unit was visible or not. Units which were not visible would have their (X, Y) locations compared against
the sight range of ForceBot’s units. As removing dead units was now a task of the connector, both these checks
as well as the (X, Y) information was no longer needed for the combat simulator, resulting in a significant
computational performance increase.

Afterwards, work on ForceBot’s development primarily aimed at making ForceBot more flexible in its be-
haviour. For example, the number of static defences were previously a hard-coded amount. Instead of this,
it would now use the results of the combat simulator to estimate an appropriate number. In order to have
this process be more accurate, Overlords will now position themselves above the enemy main, as well as near
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the entrance to ForceBot’s natural. This will allow the Overlords to see the number of enemy units, so that
the combat simulator can provide better estimates. When the enemy becomes able to attack flying units, the
Overlords will stop this behaviour and retreat, so as to avoid dying.

In previous versions, vespene geysers would always have the maximum number of Drones assigned to
it. As this would frequently lead to excessive amounts of vespene gas compared to Minerals, the allocation
of Drones to vespene geysers became dynamically determined based on whether vespene gas is currently
in demand. The change to vespene gas collection behaviour also allowed for new strategies: strategies that
intentionally did not collect much vespene gas in favour of more minerals.

Finally, existing build orders suffered from problems in specificity. For example, if a build order was cre-
ated which told ForceBot to construct a Spawning Pool and an Extractor once a total of 9 Drones have been
created, it would always create an Extractor first, as it is cheaper to construct. The build order system was
therefore altered so that ForceBot would use the exact order specified.

After these changes were made, the second internal test tournament was held on November 3, 2017. The
results of this tournament can be seen in Table 7.2. The game performance of ForceBot is overall worse,
primarily as a result of changes to build order and behaviour that had not yet been thoroughly tested. For
example, ForceBot would now estimate an appropriate number of static defences based on the enemy army
that it has seen. However, the estimate was not always safe enough, leading to losses against NLPRBot’s
Zergling rush. The AIIDE version did not lose to this, as it would always place the same number of static
defences.

Opponent
Test #1
AIIDE

Test #2
Nov. 3

(P) Lukas Moravec 60% 40%
(T) KaonBot 50% 80%
(Z) Aurelien Lermant 100% 90%
(P) Gaoyuan Chen 20% 30%
(T) Sparks 40% 20%
(Z) zLyfe 40% 10%
(P) Antiga 10% 10%
(T) Simon Prins 0% 0%
(Z) NLPRBot 50% 30%
Average 41.1% 34.4%

Table 7.2: Win-rate against internal test bots

A number of the new build orders did not perform as well as expected. When ForceBot ignored vespene
gas collection to prioritise minerals, it would often ignore vespene gas for too long, resulting it in falling
behind significantly on technology. Furthermore, it did not produce enough Hatcheries using the additional
mineral income, causing it to be unable to spend all of its resources. In order to address this, Hatcheries,
as well as a number of other decisions to spend resources, would now be based on the amount of workers
available. These decisions are as follows:

• When to construct additional Hatcheries for more Larvae. The previous version of ForceBot would do
this only when ForceBot had a surplus of resources, however in this case the Hatchery will be completed
late, causing it to float a surplus of resources for some time before. By taking into account the number of
Drones and the resource demands of the current strategy, the required number of Hatcheries to needed
to continuously train units can be constructed before ForceBot begins to float resources.

• When to expand. The previous version did this periodically based on its current strategy. ForceBot V8
will attempt to expand if it wants to construct an additional Hatchery and ForceBot believes it is safe to
expand.

• When to switch to a different strategy. This is important, as switching to an expensive strategy when
there are insufficient workers will lead to a shortage of resources.

• The amount of Overlords, Lurkers and Ultralisks to train simultaneously. As sufficient supply is needed
to train additional units, Overlords should be trained in advance based on the current income. Addi-
tionally, Lurkers and Ultralisks are expensive and strong units, but it is not desirable for the entire army
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to consist of them. As such, the amount trained is now based on the current economical strength and
existing number of these units.

7.4.1. Lurker Behaviour
Zerg is able to produce Lurkers, a unit which can burrow, making it immobile and invisible. While burrowed, it
is able to attack enemy units. Lurkers are a powerful unit against Terran and Protoss when they do not yet have
detection, particularly against bots which often respond poorly to invisible units. A number of ForceBots’
strategies are focused on Lurkers as a result.

ForceBot used Lurkers aggressively, sending them out alone. The reason for this behaviour is because
they are difficult to kill when burrowed unless the opponent has mobile detection. Furthermore, many Terran
bots rely on Comsat stations, which have a limited amount of energy that they can use to detect Lurkers. By
sending out individual Lurkers, the aim is to exhaust their energy in a cost-efficient way. This strategy saw
success, but primarily in bots which responded poorly to Lurkers. Many stronger bots did not have a problem
dealing with Lurkers without the support of ForceBots’ main army.

In order to improve behaviour against stronger bots, Lurkers were changed to stay with the main army
instead. This change led to improved game performance against bots capable of dealing with the previous
behaviour, but reduced game performance against those who did not respond well. As both approaches have
their own advantages, ForceBot was changed once more to send out Lurkers alone as long as the opponent
does not possess mobile detection. Once the opponent possesses mobile detection, the Lurkers will stay with
the army. Furthermore, as the effectiveness of Lurkers decreases at this stage, ForceBot will train less Lurkers
once this happens.

7.4.2. Start-Up Difficulties
Stability is an important factor in tournament settings. Any time a bot crashes or fails to start, the result is
a loss for that bot. Therefore, stability is once more a focus in the lead-up to the tournament. ForceBot had
been suffering from inconsistencies in its start-up process, with sometimes not all initial agents becoming
active due to ordering conflicts. The cause for this has been difficult to track down, as behaviour varied from
machine to machine due to the parallel nature of the agents. However, this bug occurred most frequently on
the SSCAIT server. In order to not negatively affect the results of the tournament, solving the issue became a
priority. This bug was discovered to have two different causes:

The first cause was an inconsistency in start-up sequence. Sometimes, all managers started before agents,
other times they did not. In order to address this problem, agents were made to send out their start-up
messages continuously until the second gameframe is reached. The connector will pause StarCraft until a
total of four actions have been made, corresponding to the first four gather commands of each of the four
starting workers. Therefore, so long as each Drone continually sends out start-up messages, and does not
perform more than one command each, the start-up process is guaranteed to succeed.

The second cause of the bug was the communication channels: on start-up, all manager agents will sub-
scribe to the ‘managers’ channel. However, messages appeared to be getting stuck in the system. When this
happens, the message will be sent, but not received. This problem has been resolved by having the agents
send their messages not towards the ‘managers’ channel, but towards each manager directly. The problem
was that if a communication channel is created by two agents or managers simultaneously, only one would
succeed in creating and subscribing to the channel. This prevented the start-up messages from arriving at
the agent or manager that failed, leading to the start-up problem. This problem has since been resolved in
GOAL, so that units correctly subscribe when the action is performed simultaneously.

7.5. SSCAIT Results
For the SSCAIT 2017/18 tournament, a total of 78 bots competed against each other over the course of 25
days, starting on December 20th, 2017. The tournament was split into two phases. In phase one, each bot
played twice against each other bot, for a total of 154 games each. In phase two, the top 16 ranked bots from
phase one would face off against each other in an elimination bracket. The top 16 ranked bots from this round
robin phase would then enter into a further elimination tournament [5]. The results of phase one can be seen
in Table 7.3. As ForceBot placed 33rd in the first phase of the tournament, it did not participate in the second
phase of the tournament.

SSCAIT further distinguishes participants as either ‘mixed’ or ‘student’ bots, indicating whether the bot
has been created by students or not. Among the 78 participants, a total of 25 qualified as student bots. Out of
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these 25, ForceBot ranked 7th. Overall, the results are satisfactory. While ForceBot might not have qualified
within the top 16, it scored an above average result and was one of the stronger student bots. Furthermore,
the cross-table results against each other bot [1], show that ForceBot was capable of beating a number of the
top competitors on at least one occasion. ForceBot successfully took games from Bereaver, Steamhammer,
CherryPi and Microwave, ranked #5, #6, #8 and #9 respectively.

Results also showed that ForceBot performed poorly against highly aggressive opponents, with ForceBot
losing before it can create an army of its own. In some cases this occurred against bots ranked significantly
lower than itself. This primarily occurred on larger maps, where ForceBot was more prone to use strategies
that could not deal with early aggression. This is an area for improvement in the future.

Name Wins Losses Winrate
Iron bot 144 10 93.5%
tscmoor 140 14 90.9%
McRave 139 15 90.3%
Marian Devecka 135 19 87.7%
Bereaver 132 22 85.7%
Steamhammer 128 26 83.1%
WuliBot 124 30 80.5%
CherryPi 124 30 80.5%
Microwave 123 31 79.9%
TyrProtoss 123 31 79.9%
Neo Edmund Zerg 123 31 79.9%
Tomas Vajda 118 36 76.6%
Andrew Smith 115 39 74.7%
Arrakhammer 115 39 74.7%
AILien 109 45 70.8%
Martin Rooijackers 109 45 70.8%
Andrey Kurdiumov 109 45 70.8%
ZurZurZur 108 46 70.1%
Black Crow 108 46 70.1%
Dave Churchill 107 47 69.5%
Sijia Xu 106 48 68.8%
KillAlll 105 49 68.2%
ICELab 105 49 68.2%
Flash 103 51 66.9%
NLPRbot 102 52 66.2%
Carsten Nielsen 102 53 65.8%
NiteKatT 100 54 64.9%
Zia bot 98 56 63.6%
CasiaBot 97 57 63.0%
Hannes Bredberg 93 61 60.4%
PurpleCheese 90 64 58.4%
Soeren Klett 89 65 57.8%
ForceBot 88 66 57.1%
Florian Richoux 87 67 56.5%
Dawid Loranc 83 71 53.9%
MadMixP 83 71 53.9%
Jakub Trancik 83 72 53.5%
PeregrineBot 81 74 52.3%
UPStarCraftAI 2016 79 75 51.3%

Name Wins Losses Winrate
Yuanheng Zhu 77 77 50.0%
WillBot 77 77 50.0%
Gaoyuan Chen 77 77 50.0%
MegaBot2017 76 78 49.4%
Lukas Moravec 72 82 46.8%
Tomas Cere 71 84 45.8%
Ecgberht 70 84 45.5%
Aurelien Lermant 69 85 44.8%
Matej Istenik 69 85 44.8%
KaonBot 67 87 43.5%
Pineapple Cactus 66 88 42.9%
Roman Danielis 66 88 42.9%
Niels Justesen 61 93 39.6%
Bryan Weber 60 94 39.0%
HOLD Z 60 94 39.0%
AyyyLmao 54 100 35.1%
NUS Bot 50 104 32.5%
DAIDOES 50 104 32.5%
Marek Kadek 49 105 31.8%
OpprimoBot 49 106 31.6%
Oleg Ostroumov 48 107 31.0%
Marine Hell 47 107 30.5%
igjbot 45 110 29.0%
Travis Shelton 44 110 28.6%
Kruecke 43 111 27.9%
auxanic 40 114 26.0%
Korean 39 115 25.3%
Goliat 31 123 20.1%
Bjorn P Mattsson 26 128 16.9%
FTTankTER 21 133 13.6%
Hao Pan 19 135 12.3%
JEMMET 19 135 12.3%
Blonws31 17 137 11.0%
UC3ManoloBot 17 137 11.0%
100382319 17 137 11.0%
Lluvatar 12 142 7.8%
Guillermo Agitaperas 11 143 7.1%
Laura Martin Gallardo 10 144 6.5%
MorglozBot 7 148 4.5%

Table 7.3: Results of the SSCAIT Round Robin

7.5.1. Internal Test Results
The third test tournament was held using the version of ForceBot submitted to the SSCAIT 2017/18 tourna-
ment in order to compare them to previous versions in an identical environment. The results of this tourna-
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ment can be seen in Table 7.4. The version showed significant improvements over the previous version. In
particular, it was now able to beat Simon Prins, the only bot that had been undefeated prior to this.

Opponent
Test #1
AIIDE

Test #2
Nov. 3

Test #3
SSCAIT

(P) Lukas Moravec 60% 40% 60%
(T) KaonBot 50% 80% 80%
(Z) Aurelien Lermant 100% 90% 80%
(P) Gaoyuan Chen 20% 30% 50%
(T) Sparks 40% 20% 60%
(Z) zLyfe 40% 10% 70%
(P) Antiga 10% 10% 30%
(T) Simon Prins 0% 0% 20%
(Z) NLPRBot 50% 30% 20%
Average 41.1% 34.4% 52.2%

Table 7.4: Win-rate against internal test bots

The biggest issue that occurred during this tournament was that ForceBot failed to start in 11 out of 90
games, resulting in losses by default. For example, all losses against Aurelien Lermant were due to start-up
failures. When the games that were lost as a result of a crash are not counted, ForceBot’s average win-rate
was 59.5%. The cause of this is due to a change in the start-up code performed in Section 7.4.2. In previous
versions, agents would execute their start-up code while the gameframe percept was lower than 100. In
this version, the start-up code was only executed when gameframe was exactly 1. However, in some games
during the internal test tournament, the gameframe on start-up was 0. This problem did not occur in SSCAIT,
likely due to the difference in computer specifications.

Aside from the start-up problems, the performance against each bot was good, with a win-rate of 50%
or greater against all but the ‘hard’ bots. Most of ForceBot’s losses were due to a poor choice of build order
against the build order of the opponent. This was particularly frequent against Protoss, where ForceBot would
not have enough defences to protect itself from a Zealot rush. This problem has been noted before, and the
SSCAIT version of ForceBot has strategies that can effectively deal with this. However, not all build orders are
capable of defending against it. Another example is the games in which ForceBot beat Simon Prins. In all
games where ForceBot won, it did so as a result of choosing its most economy-heavy build order, allowing it
to gain an economic lead over Simon Prins’ highly defensive strategy.

Moving forward, there are two approaches that can be used to improve ForceBot in these situations. First,
learning behaviour can be utilised to improve the selection of build order. By using past games as reference,
ForceBot can make an informed decision on which strategy it should use against its current opponent. Sec-
ond, ForceBot’s ability to adjust its strategy based on information about the enemy can be improved, by for
example focusing heavily on economy when detecting defensive behaviour from the opponent.

7.6. Conclusion
In this milestone, test tournaments were held using a local computer setup to serve as an additional source of
game performance data for ForceBot. In these internal test tournaments, ForceBot competes against 9 bots of
various ratings. The first tournament was held using the AIIDE version. This gave an indication of the extent
to which it affected ForceBot’s game performance within AIIDE. Additionally, the internal test tournament
provided for a good source of information for further development, as the games played at AIIDE were not
representative of its actual capabilities. Another test tournament was held using a version in the middle of
this milestone. The second test tournament showed a decrease in the game performance of ForceBot as a
result of a number of new build orders and strategies that were not present before. According to these results,
they were improved upon or removed for the final SSCAIT version.

The connector was updated so that enemy percepts did not disappear until the enemy died, rather than
as long as there is vision of the enemy unit. This addressed a problem with the death of an enemy unit and
an enemy unit moving into the Fog of War being indistinguishable from one another. Prior to this change, a
performance-intensive and unreliable approach had to be used within GOAL, while the connector is able to
perform this task efficiently by using built-in BWAPI events.
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ForceBot V8 performed well in the SSCAIT 2017/18 tournament. It was able to rank in the upper half of
bots, and 7th place amongst student bots. The results of the internal test tournament using the same version
of ForceBot also showed a significant increase in game performance over the AIIDE version, with the win-
rate increasing from 41.1% to 59.5%. Both the results of the SSCAIT tournament, as well as the internal test
tournament using the same version, showed that a large part of the outcome of games was decided by the
build order selected by ForceBot at the start of the game. Moving forward, future versions of ForceBot will
need better responses to the opponents strategy in order to reduce the extent to which this is a limiting factor
on ForceBot’s game performance. Another approach is to utilise learning behaviour: by storing the outcome,
build order and strategies used, ForceBot could utilise this data to make an informed decision on which build
order and strategy it should use the next time it encounters the same opponent.
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The previous chapter covered the development over the course of the last milestone in the development plan
of ForceBot, as well as the results from the SSCAIT 2017/2018 Round Robin tournament. In SSCAIT, Force-
Bot lost against a number of bots ranked significantly lower, generally as a result of poor strategic responses
or opening build orders that could not defend themselves sufficiently. In this chapter, the development of
ForceBot after the SSCAIT Round Robin is detailed, which for a large part focuses on reducing the number
of losses to lower ranked bots. Initially, only internal testing and SSCAIT ladder games was planned to take
place during this time, however a new ladder, the StarCraft Artificial Intelligence League (SAIL) launched on
March 20th, 2018, providing an additional source for testing the game performance of ForceBot.

Over the course of this final development stage, which took place primarily between January and March
2018, no changes have been made to the StarCraft-GOAL Connector, as there were no parts that required
changes in order to improve the performance of ForceBot. This chapter begins with discussing the changes
that occurred in Section 8.1, as well as the internal testing results of these changes. Afterwards, the results of
SAIL are discussed in Section 8.2. Finally, the lessons learned and progress made on ForceBot over the course
of this milestone is summarised in Section 8.3.

8.1. Design and Development of ForceBot: V9 - Final
Development of ForceBot V9 focused on the results of the SSCAIT 2017/2018 Round Robin tournament. In
this tournament, a number of games against significantly lower ranked bots were lost as a result of ForceBot
selecting strategies that were not safe against highly aggressive play. In particular, ForceBot would neglect
defences on larger maps, on the assumption that the enemy is less likely to choose an aggressive strategy. In
this final version, changes were made to reduce the number of losses to such strategies by utilising more safe
strategies that are not as easily taken by surprise.

To this end, the build order against Protoss, which closely resembled the build orders used against Terran,
has been changed to a new ‘10-Hatchery’ strategy, which is a safe strategy against common early aggression
strategies by Protoss. Additionally, ForceBot will only utilise strategies which are safe from ‘4-Pool’ strategies
against other Zerg players. Finally, a number of strategies which found little success against Terran within
the SSCAIT Round Robin were removed entirely. Terran strategies will still often neglect defence, however, as
highly aggressive Terran strategies are rarely encountered.

In order to streamline the execution of the build orders, ‘predictive building’ has also been added. What
this means is that ForceBot will send Drones towards the location at which a new building should be con-
structed, even before all resources for that building have been collected. Using the current number of Drones
and the distance to the construction site, it sends out Drones so that they will arrive at the destination around
when the required resources will have been collected. This is particularly important when expanding, as
Hatcheries can often be constructed 10 to 20 seconds earlier using predictive building, allowing early natural
expansions to be better defended.

Finally, ForceBot will now utilise Guardians, a previously unused unit type. Guardians are late-game fly-
ing units which are particularly strong against Terran and in some cases Protoss. Although it is preferable
for ForceBot to win its games before it reaches this stage, Guardians allow for ForceBot to break long-term
stalemates, particularly against Terran bots which rely on Marines, which is the case for many Terran bots.

63
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8.1.1. Enemy Strategy Detection

In StarCraft, players will continually attempt to counter each others strategy in order to gain an advantage. If
players do not respond to the opponents strategy, they will quickly start to fall behind. This is less of a factor
in games between bots, as many bots respond poorly to changes in strategy. As a result, ForceBot’s responses
to enemy strategies has thus far remained simplistic: it can adjust the combat units it produces depending on
which enemy unit types it has spotted. It also estimates how many defences it should construct depending
on how its own army compares to that of the opponent.

In this final version, one of the goals was to expand upon these responses to the opponent. In addition
to responding to the enemy units it can see, it should also respond to the strategy used by the opponent.
For example, as a Zerg player against an opposing Protoss player, the Protoss may choose to do a Fast Forge
Expand (FFE), a strategy in which a Protoss quickly takes its natural expansion while defending itself with
Photon Cannons. In such a case, the Zerg should respond either by playing very aggressively to defeat the
opponent before the opponent can benefit from the resource advantages of its fast expansion, or rapidly
expand itself to avoid falling behind in economic power. In the case of ForceBot, its strategy would always
gravitate towards a ‘balanced’ playstyle, one which does not focus heavily on aggression nor economy. In
many games a balanced playstyle is a good strategy, however against a Protoss FFE, a balanced playstyle will
lead to a loss, as specific counter strategies are required.

Based on the games in SSCAIT, as well as those from internal testing games, ForceBot was made to recog-
nise a number of strategies that the opponent may use:

• Protoss – Cannon rush

• Protoss – Carrier rush

• Protoss – Fast Forge Expansion

• Terran – Bio strategy

• Terran – Mech strategy

• Zerg – Mutalisk strategy

• All races – Defensive ‘turtle’ strategies

Upon detecting one of these strategies, ForceBot will respond by prioritising aggressive or economic play,
as well as building counter units in advance. Additionally, when detecting a FFE or Carrier rush, ForceBot will
also perform a ‘runby’, where it will ignore static defenses in order to deal economic damage by killing enemy
workers. This is an effective strategy, as the Protoss player is unlikely to have Zealots to protect itself with. If
the static defences can be circumvented, the Zerglings can freely attack the Probes. Additionally, in order to
better detect certain strategies, particularly against Protoss players, ForceBot will now use Overlords to scout
the enemies natural expansion, as well as keep watch on the entrance to ForceBot’s main in order to detect
cannon rushes. Finally, ForceBot will now utilise Scourge and Defiler units in order to combat enemy Carriers
when the enemy is found to be using a Carrier rush strategy. These units were previously unused by ForceBot.

A fourth internal testing tournament was held on January 7th 2018, after enemy strategy detection was
implemented. The results of this tournament can be seen in Table 8.1. Notably, ForceBot achieved an average
win-rate of 50% against the ‘hard’ testing bots, clearly showcasing its improvement.
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Opponent
Test #1
AIIDE

Test #2
Nov. 3

Test #3
SSCAIT

Test #4
Jan. 7

(P) Lukas Moravec 60% 40% 60% 80%
(T) KaonBot 50% 80% 80% 80%
(Z) Aurelien Lermant 100% 90% 80% 90%
(P) Gaoyuan Chen 20% 30% 50% 70%
(T) Sparks 40% 20% 60% 40%
(Z) zLyfe 40% 10% 70% 60%
(P) Antiga 10% 10% 30% 50%
(T) Simon Prins 0% 0% 20% 60%
(Z) NLPRBot 50% 30% 20% 40%
Average 41% 34% 52% 63%

Table 8.1: Winrates against internal testing bots

The strategy responses were highly effective, with the win-rate against Simon Prins increasing from 20%
to 60% as a result of being able to detect its defensive playstyle. The strategy response to the Mech-based
strategy of Sparks did not seem effective, however. Upon seeing the Mech-based strategy, ForceBot starts
producing Mutalisks, as Vultures and Siege Tanks are unable to attack Mutalisks. However, Sparks responded
in turn by producing large amounts of Goliaths, which are capable of effectively fighting against Mutalisks. In
order to address this, an additional response to Goliaths was added to ForceBot.

8.1.2. Profiling
GOAL provides the option of profiling code. Enabling the option within the settings will make GOAL log the
time it spends on each piece of code. This option has been frequently used over the course of ForceBot’s
development in order to ensure that all code is running efficiently and that no bottleneck forms within the
bot as a result of poorly optimised code.

Through the use of profiling, it was shown that the manager code responsible for detecting certain ‘events’
has consistently been one of the slowest modules. This problem exists for both the general manager and the
combat manager, although it is a bigger problem for the general manager. Between 8% to 10% of ForceBot’s
total CPU usage is used by the event detection of the general manager. This event module is responsible for
detecting when a unit is created, morphed or killed. The reason for the high CPU usage is because the code
needed to detect the death of a unit is as follows:

forall bel(friendly(Id, Type)), not(percept(friendly(Id, Type)) then {...}

The code must iterate over every friendly belief, and confirm whether it no longer perceives a percept
for that friendly unit. Internally, GOAL separately queries the belief and percept base, meaning that this code
will generate a query for every individual friendly unit, which frequently exceeds a hundred. The code to
detect the creation of friendly units operates in a similar matter, making the detection of these events a costly
process. Other bots are able to detect these events through native event handlers within BWAPI. However,
as a result of the abstraction performed by GOAL and the connector, these events are inaccessible to GOAL
users.

Part of this process can be simplified. GOAL agents have an initialisation module, which will run when
the agent starts. Within this module, the agent is able to notify the relevant managers about its creation.
Processing such messages is significantly faster than tracking the friendly percepts, as this only requires
the manager to wait for individual messages.

The initialisation module can be used to efficiently track the creation of units, but a ‘shutdown’ module
which executes when an agent is terminated did not exist. This problem is similar to the problem discussed
in Section 5.3.3, where the problem of forwarding unit deaths to the manager was raised. Because agents may
be terminated, the communication between agents and managers is unstable, and cannot be used to reliable
inform the manager of events within the game. At the time, there was no solution to this problem that did
not come with flaws. The proposed solution to this was a shutdown module that could be used to inform
the manager of this event. However, the problem was instead resolved in a later version of the connector by
allowing managers to receive percepts. This removed the need for communication between the manager and
agents in order to detect the event.

Although this solution has worked successfuly, the computational demands of this solution are high, as
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shown earlier. For this reason, following the completion of SSCAIT, the option to use a shutdown module
was added to GOAL. Any agent can now have a shutdown module by adding it to the agent definition lo-
cated within the mas2g file. With this new module, the example definition given in Section 4.1.1 can now be
extended as follows:

define drone as agent {
use DroneInit as init module.
use DroneEvent as event module.
use Drone as main module.
use DroneShutdown as shutdown module.

}

Using the shutdown module, each agent automatically sends a message to the managers, informing them
that the agent has shut down. This means that, just like detecting the creation of friendly units using messages
within the initialisation module, the managers can now detect deaths by waiting for death messages sent by
agents which are in the process of terminating. The shutdown module can be used in the same manner in
order to detect other events such as unit morphing.

The new design of event detection uses an event-driven design, as the managers only need to wait for
event notification messages instead of actively detecting events. This allowed the code to run significantly
faster, reducing the total CPU usage of the event detection of the general manager to less than 1% of ForceBot’s
total CPU usage. The average cycle time of the general manager was reduced by 54.4% as a result.

8.1.3. Drone Defence
The last major change to ForceBot over the course of the final version involves the drone defence. ForceBot
has had problems with this in the past, as there is no organisation between the Drones, meaning that each
Drone will only defend itself, and not each other. In order to resolve this, a fourth manager was added, the
Drone defense manager, nicknamed ‘DDMind’.

The Drone defense manager will communicate with all Drones and call for the assistance of nearby Drones
when one of them is attacked. It can also call all Drones into action if need be. For example, if it finds that the
opponent is attempting to do a cannon rush or other attempts to construct enemy buildings within ForceBot’s
base, the Drone defense manager will order all Drones to attack those buildings before they can complete
construction, as it is difficult to destroy them after the buildings have completed construction.

Because Drones are not useful for defending beyond the earliest portion of the game, because of their low
health and damage, the Drone defense manager will shut down after 5 minutes of in-game time, given that
it is not currently defending. This is because ForceBot will have trained Zerglings or built static defences to
protect itself with instead by that point in time. As the CPU load is low during the first 5 minutes, the Drone
defense manager makes quick cycles, making the Drone defence highly responsive. Finally, the addition of
the Drone defense manager means that the Drones themselves no longer need to receive the enemy percept
type, as they are instead informed of any enemies to attack by the Drone defense manager. This means that
Drones now only receive the status, order and gameframe percept types, for a maximum of 3 percepts
per cycle, where as previously Drones could receive over a hundred enemy percepts in a single cycle during
the later stages of the game. As ForceBot will have up to a maximum of 75 Drones, this reduction in percepts
results in a significant performance increase.

The changes to the defensive behaviour of the Drones will also help in cases where ForceBot does not yet
have defences available when the enemy attacks, further addressing the issue of dealing with highly aggres-
sive bots encountered in the SSCAIT Round Robin.

8.2. SAIL
The StarCraft Artificial Intelligence League (SAIL) is a new StarCraft ladder which began operating on March
20th, 2018. The main goal of SAIL is to to encourage competitiveness and the increase of maximum bot
strength. SAIL uses a ladder structure similar to SSCAIT, with games being continuously played all year round
and ranking them using Elo ratings. Unlike SSCAIT, the games will not be streamed, meaning the games need
not be limited to speeds at which a human is able to watch them. Therefore, many more games play out daily
at SAIL than at SSCAIT, allowing for more data to be collected to improve the bots.
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8.2.1. SAIL Startup Problems

When ForceBot was added to SAIL a problem was revealed, as SAIL could not start ForceBot successfully.
The problem was revealed to be the number of files which it uses. Most StarCraft bots are only composed
of a single DLL or JAR file alongside a configuration file in some cases. GOAL bots come packaged in a
JAR file with GOAL, Prolog, the connector, and any other necessities. Upon launch, these required files are
unpackaged so that the bot can run. Previously, the JAR would be unpackaged before being uploaded to
SSCAIT, as we had presumed this to improve startup time. However, this caused problems with SAIL, which
would transfer the bot directory between games. This issue has therefore been resolved by not unpackaging
the JAR file in advance to reduce the total number of files that needs to be transferred.

Although the issue has been resolved, ideally the StarCraft GOAL packaging pipeline may be improved in
the future so that the bot can be contained within a single JAR file without requiring any unpackaging like
purely Java-based bots.

8.2.2. SAIL Results

ForceBot participated in SAIL for roughly a month, playing a total of 403 games. After a month, the computer
responsible for running the ladder suffered technical issues and SAIL has remained inactive since. The results
of SAIL are a good source of information as to ForceBot’s game performance, as all of the games played within
it use its final version. The results can be seen in Table 8.2. These results do not include bots with less than
200 games played. ForceBot ended ranked 42nd, with a win-rate of 48.88%, placing it in the middle of all bots
competing.
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Name # Games Elo
krasi0 495 2492
Ironbot 485 2470
MarianDevecka 463 2345
Bereaver 501 2307
PurpleWave 456 2277
Steamhammer 466 2270
tscmoop 468 2243
NeoEdmundZerg 475 2237
CherryPi 482 2232
Microwave 466 2231
Locutus 321 2226
WuliBot 486 2219
TyrProtoss 477 2214
SimonPrins 446 2212
MartinRooijackers 455 2212
TomasVajda 459 2210
Antiga 472 2203
tscmoo 489 2197
Arrakhammer 467 2184
tscmoor 485 2180
AndreyKurdiumov 464 2175
AndrewSmith 479 2162
BlackCrow 459 2155
ChrisCoxe 476 2153
AILien 484 2140
Ecgberht 472 2134
Flash 492 2131
PurpleSwarm 451 2130
Randomhammer 496 2130
NLPRbot 460 2125
ZurZurZur 483 2109
KillAlll 481 2093
SijiaXu 479 2088
DaveChurchill 474 2085
CasiaBot 458 2067
tscmooz 446 2047
ICELab 481 2041
NiteKatT 458 2041
CarstenNielsen 467 2026
SoerenKlett 455 2019
PurpleSpirit 441 2014
ForceBot 403 2014
Ziabot 478 2007

Name # Games Elo
DawidLoranc 458 2005
Stone 481 1997
WillBot 521 1987
MegaBot2017 442 1982
BananaBrain 469 1981
MiddleSchoolStrats 288 1981
PeregrineBot 471 1970
FlorianRichoux 462 1953
MadMixP 484 1950
GaoyuanChen 481 1950
PineappleCactus 490 1933
UPStarCraftAI2016 451 1931
AurelienLermant 472 1909
YuanhengZhu 488 1907
Xelnaga 456 1879
HannesBredberg 443 1876
SunggukCha 463 1875
LukasMoravec 472 1872
Zercgberht 471 1862
RomanDanielis 489 1850
MatejIstenik 465 1847
MadMixT 452 1846
Sling 509 1845
Sparks 474 1839
MadMixZ 471 1839
NielsJustesen 315 1837
TomasCere 485 1834
JakubTrancik 481 1826
NiteKatP 458 1810
KaonBot 460 1801
NUSBot 500 1798
Myscbot 473 1796
CruzBot 476 1783
MarineHell 483 1728
MarekKadek 472 1728
Alice 233 1718
DAIDOES 477 1717
HOLDZ 340 1687
JohanKayser 486 1670
Korean 478 1668
BryanWeber 460 1636
OpprimoBot 308 1599
TravisShelton 536 1573

Table 8.2: Results of the SAIL ladder

The ranking of ForceBot is worse than its ranking in the SSCAIT Round Robin. There are a primarily two
reasons for this. First, SSCAIT restricted bots participating in the Round Robin to one per author. Many
authors responsible for some of the strongest bots have created multiple, meaning there is a larger number
of strong bots participating in SAIL. In total, 12 bots participated in SAIL which ranked higher than ForceBot
and did not participate in SSCAIT. Conversely, only 2 bots ranked higher than ForceBot in SSCAIT did not
participate in SAIL. Secondly, the total number of games played in SAIL is higher. As ForceBot is not a learning
bot, its win-rate gradually decreased as more games were played, giving an advantage to learning bots.

Therefore, the worse ranking is not indicative of a worse game performance. Instead, we look at the rank-
ing of all of the bots present in both SSCAIT and SAIL, and analyse how they changed between SSCAIT and
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SAIL. Among the 59 bots that were present in both SSCAIT and SAIL, ForceBot ranked 31st in SSCAIT and 30th
in SAIL. Based on this it does not seem that the final version is significantly stronger than the version used
in the SSCAIT Round Robin, even though the internal testing results would indicate otherwise. This may in-
dicate that the internal testing was subject to a degree of over-fitting, reducing game performance against
other bots. However, it seems more likely that this is a problem of sample size and learning bots gaining an
advantage from a larger quantity of games being played. This can be seen in Figure 8.1a, which shows that the
win-rate of ForceBot gradually decreased over time. In SSCAIT, 2 games were played against each opponent,
while an average of 4.7 games were played against each opponent in SAIL.

(a) Win-rate (b) Elo

Figure 8.1: Win-rate and Elo of ForceBot over time in SAIL

The Elo of ForceBot on SAIL was consistent. In Figure 8.1b we can see that, following the first 60 games,
the Elo rating of ForceBot remained mostly stationairy, hovering between 2010 and 2030 rating. With the
average Elo on SAIL being 2000, the lowest rating being 1573 and the highest being 2492, this firmly places
ForceBot slightly above average in the ranking.

Additionally, analyses were performed on ForceBot’s game performance against different races and on
different maps. These analyses used data collected by Jay Scott on map performance [34] and race matchups
[35]. In the race matchup data, the game performance of each bot against each other race was measured. The
results for ForceBot can be seen in Table 8.3. The win-rates against each race do not differ a great deal. The
win-rate deviation of each race matchup compared to the average for that bot was calculated for each bot.
ForceBot ranked as the 9th most consistent bot out of the 80 bots with more than 200 games present in SAIL.
Based on this we can conclude that ForceBot is a highly consistent bot against each of the races.

ForceBot’s poor performance against Terran, relative to the other matchups, is a notable result. The aver-
age Zerg bot in SAIL was found to have an advantage against Terran, with a win-rate of 55%. From this we can
conclude that ForceBot’s strategies against Terran has a lot of room for improvement.

Versus Win-rate Avg. deviation
Protoss 52% 3.12%
Terran 44% 4.88%
Zerg 50% 1.12%
Random 46% 2.88%
Average 48.88% 3.00%

Table 8.3: ForceBot’s win-rate and average deviation against each race on SAIL

The win-rates of ForceBot on each map were also measured, the results for these are shown in Table 8.4.
Again, the consistency of ForceBot was compared to that of other bots. This time, ForceBot ranked as the
45th most consistent bot out of 80 bots. This result is not significantly worse than average, however it can be
concluded that ForceBot is not very consistent across all maps.
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Map Win-rate Avg. deviation
Jade 58% 9.12%
Destination 57% 8.12%
Empire of the Sun 56% 7.12%
Benzene 55% 6.12%
La Manche 55% 6.12%
Roadrunner 55% 6.12%
Andromeda 52% 3.12%
Fighting Spirit 49% 0.12%
Circuit Breaker 45% 3.88%
Tau Cross 43% 5.88%
Python 42% 6.88%
Neo Moon Glaive 41% 7.88%
Heartbreak Ridge 40% 8.88%
Icarus 37% 11.88%
Average 48.88% 6.52%

Table 8.4: ForceBot’s win-rates on each map on SAIL

The reason for this low consistency across maps is likely the result of how the combat simulator operates.
In the case of Circuit Breaker, Python and Neo Moon Glaive, the center of the map is composed of a single,
large region. The large center regions result in the combat simulator regarding units which are far distances
apart as being in close proximity to one another, causing it to make poor predictions. The cause of this is
that the combat simulator simulates battles for each region individually. For each region, a fight is simulated
between all friendly and enemy units within that region and any regions adjacent to it. This is based on the
assumption that units in adjacent regions are close to each other, however this is not always the case for these
maps. Conversely, a map such as Jade splits the center of the map into multiple smaller regions, increasing
the accuracy of the combat simulator.

The poor performance on Tau Cross, Heartbreak Ridge and Icarus is likely explained by the multiple
routes that can be used to cross the center of the map. This means that ForceBot’s and its opponents army can
sometimes pass by each other without seeing one another. When the enemy army attacks is found, ForceBot
often retreats through the opponents army, causing ForceBot to lose most of its army.

In both cases, the fault lies in the combat manager. In order to improve map consistensy, the combat
manager will need to become more capable at handling differences in region sizes. It should also take into
account the possibility of armies passing each other without seeing each other and avoid retreating through
the opponents army.

8.2.3. Internal Testing Results

A fifth and sixth internal testing tournament were held in July 2018. The results of these tournaments can
be seen in Table 8.5. The fifth tournament uses the same version of ForceBot as was used on SAIL. The sixth
tournament uses an updated version with the bugs that were noted between March to July addressed, as well
as addressing strategies and behaviour that were not performing well. One example of this is that ForceBot
would prioritise Ultralisks and Guardians too much in the late game, leading to it not producing enough
Hydralisks, causing an unbalanced army composition.
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Opponent
Test #1
AIIDE

Test #2
Nov. 3

Test #3
SSCAIT

Test #4
Jan. 7

Test #5
SAIL

Test #6
Jul. 25

(P) Lukas Moravec 60% 40% 60% 80% 70% 100%
(T) KaonBot 50% 80% 80% 80% 90% 90%
(Z) Aurelien Lermant 100% 90% 80% 90% 90% 100%
(P) Gaoyuan Chen 20% 30% 50% 70% 60% 90%
(T) Sparks 40% 20% 60% 40% 70% 90%
(Z) zLyfe 40% 10% 70% 60% 90% 90%
(P) Antiga 10% 10% 30% 50% 80% 80%
(T) Simon Prins 0% 0% 20% 60% 80% 70%
(Z) NLPRBot 50% 30% 20% 40% 30% 50%
Average 41.1% 34.4% 52.2% 63.3% 73.3% 84.4%

Table 8.5: Win-rates against test bots over the course of all tests

The final performance is excellent, with ForceBot achieving a win-rate of 70% or greater over all bots
except NLPRBot.

The most major bug to be addressed is related to the construction of Extractors in order to collect vespene
gas, and occurred in 7 of the 24 losses by ForceBot in the fifth tournament. This bug ocurred if the construc-
tion of an Extractor, in addition to another building, were planned simultaneously when there were insuffi-
cient resources. This was intended behaviour from ForceBot’s predictive building that was added to ForceBot
V9. However, this could lead to the Drone attempting to start construction, but right before placement oc-
curs, the amount of resources drops below the cost of constructing an Extractor due to the other building
being placed. Normally, this will not cause a problem, as the building will simply be constructed once there
are enough resources again. However, in some cases where this ocurred, the Drone in charge of constructing
the Extractor did not attempt restart construction. When this happened, the Drone would idle for the rest of
the game. Although the agent of the Drone was still active, as it continued writing to its log files, its actions
were not performed. The exact cause and solution for this behaviour is still unknown – the bug was instead
circumvented by ensuring that building construction does not plan the construction of Extractors ahead of
time, so that the required amount of resources are always available.

8.3. Conclusion
The development of ForceBot over the course of this milestone primarily aimed at improving its ability to
respond to the opponents strategy, as the results from SSCAIT showed that ForceBot lost a large number of
its matches by selecting a build order and strategy at the start of the match that was ineffective against the
enemy. As ForceBot is now more capable at responding to the opponents strategies, the choices made by
ForceBot at the start of the match are now less of a deciding factor on the outcome of the match.

Another focus in this milestone was on addressing computational performance through profiling and
using the new ‘Shutdown module’ feature. This feature has been added to GOAL in order to allow ForceBot to
efficiently detect the deaths of friendly units. Prior to this, a query needed to be used which profiling showed
to be highly inefficient. As a result of the shutdown module, the cost of detecting the deaths of friendly units
was reduced from around 8 to 10% of ForceBot’s total CPU usage, to less than 1%.

Over the course of this milestone, significant game performance improvements have been made to Force-
Bot. In internal test tournaments, ForceBot’s win-rate increased from 52.2% during SSCAIT to 73.3% in the
SAIL version. This increase in game performance was not clearly visible in the results of SAIL, however. The
cause for this is likely the greater number of matches that were played, resulting in learning bots gaining
an advantage. After SAIL, a number of further bugfixes and minor adjustments were made according to the
results, leading to a final win-rate of 84.4% in internal test tournaments.



9
Development, Tools and Language

It is desirable for modern programming environments to provide features that assist in tasks such as writing
code, refactoring, debugging and optimisation in order to produce a more efficient working environment.
The aim of this chapter is to discuss the tools available to programmers utilising GOAL to develop multi-
agent systems, particularly with regards to environments that feature a large number of agents, which GOAL
has not been used in before. The effectiveness and ease of use of the tools provided will be analysed, to
see whether they can be improved or expanded upon. Section 9.1 will discuss the capabilities of the IDE,
particularly with regards to writing and modifying code, as well as refactoring. Section 9.2 will discuss the
debugging capabilities, while Section 9.3 focuses on profiling and optimisation tools. Finally, Section 9.4
discusses GOAL as a programming language.

9.1. IDE
The GOAL Integrated Development Environment (IDE) functions as a plug-in to an existing IDE: Eclipse.
Eclipse is an IDE primarily used for programming in Java, although support exists for many more languages.
In particular, it has an extendible plug-in system that allows for plug-ins to be created that allow Eclipse
to support any desired language. GOAL has made use of this feature through the creation of a plug-in that
allows Eclipse to support GOAL. By utilising an existing IDE, many features are available for any programmer
working with GOAL, such as syntax highlighting, on-the-fly building and error reporting. As a result, GOAL
has few shortcomings in this department. Three issues of note were found: variable highlighting, refactoring
and automatic building.

The GOAL plug-in has no support for variable highlighting, preventing one from seeing all uses of a vari-
able in a section of code at a glance. This is typically not a major issue, most variables are only bound for a
single statement. However, when nested statements are used, variables may be bound for several statements.
In this case, it becomes difficult to keep track of variables.

The second issue found is the lack of refactoring support. Many modern IDE’s can help in speeding up
refactoring. When a variable, class or file is renamed or moved, every other reference to that object in all files
is adjusted appropriately. In GOAL, this primarily concerns importing other modules. For example, importing
a module within the same folder is done as follows:

use ModuleA as module.

However, if this module is moved to the parent directory, the line needs to be adjusted as follows:

use "../ModuleA.mod2g" as module.

Updating imports in numerous files is a tedious process, and the GOAL plug-in does not support au-
tomated refactoring. This is a particular problem in ForceBot, as it is composed of a much larger number
of files than previous GOAL projects. In ForceBot there are a total of 722 imports. The most imported file,
OverMind.pl, is imported in a total of 78 files. With such a large number of imports, a need for automation
is created.

The third issue is related to the automatic building of the Eclipse plug-in. The plug-in performs an au-
tomatic build whenever a file is saved, allowing it to quickly report compilation errors and warnings. There

72
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Figure 9.1: An example run of Debug Mode for ForceBot

is some room for improvement in this process: when a large number of files are saved simultaneously, the
project is rebuilt once for every file saved. As Eclipse will block the use of the IDE when multiple builds jobs
are in the queue, this will result in wasted time. In the case of ForceBot, each build requires 5-6 seconds,
meaning the IDE will be unusable for roughly a minute if more than 10 files are saved at once. This is not a
major issue, as it can be circumvented by temporarily disabling the automatic build or always saving imme-
diately, but the problem should be easy to fix.

9.2. Debugging
The GOAL plug-in for Eclipse provides support for several types of debugging: debug mode, logging and
profiling. In this section each of these three types will be analysed to determine their advantages and disad-
vantages. Suggestions for improvements will be made where possible, based on the usefulness of the debug
type during ForceBot’s development.

9.2.1. Debug Mode
A dedicated debugging mode is available when running agents [25]. When used, a large amount of real-time
information and options are made available to the user, seen in Figure 9.1. The user can view and modify
the running state of agents, and can use a stepping mode which allows for a detailed inspection of the agent
state at a specific point in execution. When an agent is paused, its goals, beliefs, percepts and mails can
be viewed. Breakpoints can be set at specific points in the code, allowing agents to be paused automatically
upon reaching a certain line of code, or when a specific condition holds. An interactive console can be used to
modify or interact with the knowledge and beliefs of an agent in real-time. Watch Expressions can be used in
order to continuously evaluate specific expressions for all agents. Finally, every agent receives its own console
which will log information according to the logging options specified within Eclipse’s settings.

Using debug mode, the execution of agents can be precisely controlled, allowing developers to identify
problematic code and observe behaviour surrounding lines of code. However, within the context of StarCraft,
debug mode was found to be less useful. The large number of agents makes it difficult to extract useful
information from debug mode. The list of agents becomes uninformative, as there can be over a dozen agents
of the same type, each with the same name. It is impossible to tell which agent in the list corresponds to which
unit within StarCraft. The individual agent consoles also work against the user when the number of agents
is high: a tabbed list of agent consoles is generated which is difficult to navigate. For example, in the bottom
of Figure 9.1, the agent consoles have shrunk to the extent that only the first letter of each agent is visible on
each tab. Finally, although StarCraft can be paused, it does not do so automatically when agents are paused,
which makes pausing agents more bothersome than it needs to be.

The issues present in debug mode are the result of the large number of agents present in StarCraft. The
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design does not account for the possibility of potentially hundreds of agents being active at once. Although
this issue may be resolved by creating a new design which allows for better navigation of a large number
of concurrent agents, it can be questioned whether this will create an adequate solution. The debug mode
provides a large amount of information for each agent, however in ForceBot’s testing only a single agent
was often times of interest. For example, when debugging Drone construction behaviour, only the Drone
receiving the task is of interest. Another example is when you see a unit behaving strangely, only that unit is
of interest.

Another issue associated with debug mode is that it is resource intensive. As debug mode is the only
debugging approach which can be interacted with, and provides output in real-time, it is therefore also the
most costly. Because of this, it may be necessary to look more towards other means of debugging when
dealing with environments with large numbers of concurrent agents such as StarCraft. One of these other
means is via logging to files.

Taking these problems into account, as well as how often times only a single agent is of interest, I will sug-
gest a different approach from the existing debug mode. I believe that a debug tool which displays additional
information depending on the currently selected unit(s) within StarCraft is a good approach. This could be
done by either printing the information within StarCraft itself, or by having the Eclipse console automatically
switch to display the logging of the currently selected unit(s). This approach allows developers to use the
graphical environment of StarCraft to indicate to GOAL which agent they are interested in at that moment.

9.2.2. Logging
The GOAL plug-in provides the option to log desired information to files, allowing for post-match analysis of
agents. This logging can be easily customised, allowing developers to change how, where and what is logged.
Each agent will write its own log file. Logging to file is a feature that has been used extensively over the course
of ForceBot’s development, as it was the best source of insight for determining exactly what was going on
inside the agent. Furthermore, this debug option does not use up many resources, making it appealing to
keep the logging to files option enabled even when not aware of any bugs. If a bug is encountered during a
match, the log can be used to try and determine the cause of the bug.

The log files themselves are formatted as an XML file, with several elements such as date and message
(event). An example entry in the log file is shown below.

<record>
<date>2017-12-08T16:00:51</date>
<millis>1512745251609</millis>
<sequence>81467</sequence>
<logger>hydralisk_14_17-12-08_15.56.40.txt</logger>
<level>WARNING</level>
<class>goal.tools.logging.GOALLogger</class>
<method>log</method>
<thread>104</thread>
<message>‘region(5,32,12)’ has been inserted into the belief base ‘this’.

</message>
</record>

These log entries have proven themselves useful, however there is room for improvement. One of the pri-
mary issues encountered is bloat in the entries. Within the above example, only the message and millis
element were typically of use, as they tell what the agent is doing and when. The only other useful element is
the date element is occasionally useful when attempting to find roughly the same point in time in multiple
log files, but otherwise merely a less precise millis element. The other element suffer from the following
issues:

1. Thesequence element can be used to determine the number of sequences that have taken place since
the last logged entry. Although it is possible this can have some practical applications, such a situation
never occurred during ForceBot’s development.

2. The logger element more or less states the current file name. This can be used to distinguish agents
when all agents log to a single file, but is otherwise useless.

3. The level, class and method element are always the values indicated in the above example and
serve no purpose.
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4. The thread element frequently changes, but does not seem to serve a purpose.

5. Although minor, the closing tag of the message element could be placed behind the message in order
to save space.

Taking all of the above comments into account, ideally options can be added to determine which ele-
ments are logged. If such options were added, one could create the following entry format which, for the
development of ForceBot, would be functionally near-identical, while demanding much less space:

<record>
<millis>1512745251609</millis>
<message>‘region(5,32,12)’ has been inserted into the belief base

‘this’.</message>
</record>

A Comma-Separated Value (CSV) format option could also be given, in order to further reduce entries
to a single line. These formats would make the log files more compact and readable, allowing developers to
analyse the log files more quickly.

Finally, one more debugging option exists, although a little more difficult to find. By using the ‘Run Con-
figurations’ native to any Eclipse execution, the console output can be logged to file. The majority of the
messages found in the console are less-detailed versions of the entries found in the previous log files, for
example:

[hydralisk_14] ‘region(5,32,12)’ has been inserted into the belief base ‘this’.

Although this log file has the benefit of being much more compact than the previous, this default console
contains the entries of all agents, making it difficult to track events from a single agent. Instead, this console
is primarily useful because it logs the environment as well as the agents. For example, if an agent crashes,
it is only logged to the default console, not to the log file of that specific agent. As agent logging is the vast
majority of all logging within the default console, it can be difficult to find the desired log entry. With that in
mind, a potential improvement to this log would be to remove the agent logging, or allocate a separate log file
for the environment through the GOAL options, rather than the Eclipse options. Finally, the example below
shows an error that occurred when an agent attempted to divide by zero. With the environment information
from this log file, all information needed to debug successfully is available to developers.

WARNING: agent ‘overmind’ was forcefully terminated. GOALActionFailedException
failed to evaluate condition of ‘if bel(X is 1 / 0) then sleep(X)’: failed
to query ‘X is 1 / 0’ on ‘overmind:overmind:belief base’.: swi prolog says
the query failed because computation failed:zero_divisor: PrologException:
error(evaluation_error(zero_divisor), context(‘/’(‘/’, 2), _202))

9.3. Profiling & Optimisation
Optimising code is an important task when developing a bot, particularly in a real-time game such as Star-
Craft. As computational power is limited, any optimisations to improve the speed of the program can play a
big role in the overall effectiveness of the bot. To that end, GOAL provides profiling options, allowing devel-
opers to determine how much time agents spend on a module, condition or action. An example of the output
is given below in Figure 9.1. Each profiling log is a tab-separated text file, in which the ‘source’ is the module,
line or action being profiled. The output tells how many times each module, condition or action is executed
and the amount of time spent on execution.

source number of calls total time source info this parent
Module:DroneEvent 277 0.312002 line 7, position 7 in <Path> <Path> –
Module:DefendEvents 277 0.2496016 line 5, position 7 in <Path> <Path> <Path>
Module:UpdateStatus 19 0.0312002 line 4, position 7 in <Path> <Path> <Path>

Table 9.1: Example profiler output
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The profiling output does perform its intended role, and has been used over the course of ForceBot’s de-
velopment to improve performance and identify bottlenecks within the code. However, I believe that there
is room for improvement to the output format of the profiler. Currently, the output is written unordered to a
txt file. In order to make sense of the output, it needs to be moved to spreadsheet software such as Microsoft
Excel, which will place the tab-separated text lines into separate cells and allow for sorting on data such as
‘number of calls’ or ‘total time’. To speed up this process, the file can be saved as a csv file with a delim-
iter specified at the start of the file. Additionally, the columns should be re-organised. The ‘number of calls’
and ‘total time’ columns should be at the front, as their fields are always the same length. On the other hand,
‘source’ and ‘source info’ columns have large individual differences in field length. Furthermore, the data pro-
vided by the ‘this’ and ‘parent’ columns are paths in the form of ‘goal.tools.profiler.ProfileStatistic@1cb3aa3‘.
Similar to the debug logging, this data is not important and can be left out of the output. Combining all of
these changes results in the output presented in Figure 9.2. By performing these changes there will be less
need for the user to process the data before it can be analysed.

Figure 9.2: Suggested new layout for profiler output

Further improvements to the way in which the data is presented could be done by separating the data in
advance. Currently, there are numerous sources, such as ‘Module’, ‘IfThenRule’, ‘ForallDoRule’ and more. If
many or all sources are enabled then much of the information is listed twice, for example when the data is
sorted by ‘total time’, the ‘IfThenRule’ with the highest ‘total time’ is likely positioned just below the module
which it is located in. I believe that separating the module and rule information into separate sheets could
make the data easier to process, as each spreadsheet will contain less repeated information.

Finally, a further improvement could be made by providing options to merge the results of identical agent
types. Currently the profiler will create a separate profile results file for each agent. In StarCraft this results in a
large number of files for each agent type. Depending on the activities performed by an agent, its environment,
and the length of time it remained alive, the individual profile results can vary greatly. By merging the results
of agents of the same type, the profile results will become more accurate.

9.4. GOAL Language
One of the goals of this thesis is to analyse the performance of GOAL in an environment with complexity on
the level of StarCraft. ForceBot is the largest GOAL bot created to date, in an environment with significantly
more agents than GOAL has been used for in the past. This section discusses difficulties encountered with
GOAL as a language and makes suggestions on how these areas may be improved in the future. In addition,
this section will cover features of the language which were not used throughout ForceBot’s development.

9.4.1. Nesting of not
In Section 6.5.1 it is mentioned that the enemy targeting was redesigned. Rather than storing knowledge of
enemies, the approach was changed to find the closest enemy directly from percepts. Whenever an enemy
percept which is closer, or of higher priority, is found, it will store the new targets distance and priority. After
iterating over all enemy percepts, the stored target is guaranteed to be the closest enemy with the highest
priority.
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However, the step of storing the distance and priority is one that should not be necessary. After all, the
approach used before, of storing all enemy knowledge, skipped the step of storing the target separately. The
reason that the new approach does require this step is due to a limitation of the GOAL language. Below is
pseudo-code, with simplified beliefs, for making a unit target enemy ground units, used by the approach
utilised before Section 6.5.1.

if bel(status(SelfX, SelfY)),
bel(enemy(Type1, EnemyX1, EnemyY1), isGroundUnit(Type1),
distance(SelfX, SelfY, EnemyX1, EnemyY1, Distance1)),
not(bel(enemy(Type2, EnemyX2, EnemyY2), isGroundUnit(Type2),
distance(SelfX, SelfY, EnemyX2, EnemyY2, Distance2),
Distance2 < Distance1)) then

attack(EnemyX1, EnemyY1).

This pseudo-code first determines its own position. Once it has done so, it selects an enemy and sees if
it fulfils the targeting requirement of isGroundUnit. If it does, it determines the distance to this enemy.
Afterwards it iterates over all other enemies and ensures that no enemy which fulfils the targeting requirement
is closer than the already selected enemy. Once it has confirmed this to be true, the unit is ordered to attack
and move towards the location of the selected enemy. This code ensures the closest valid target is selected to
attack and does not require the inserting or deleting of any distance/priority beliefs.

In Section 6.5.1 this code was altered. The enemy percepts would no longer be stored as beliefs. This
results in bel(enemy) being replaced with percept(enemy). If we do so, then the pseudo-code would
have to be changed to the following:

if bel(status(SelfX, SelfY)), percept(enemy(Type1, EnemyX1, EnemyY1)),
bel(isGroundUnit(Type1), distance(SelfX, SelfY, EnemyX1, EnemyY1, Distance1)),
not(percept(enemy(Type2, EnemyX2, EnemyY2)),
bel(isGroundUnit(Type2), distance(SelfX, SelfY, EnemyX2, EnemyY2, Distance2),
Distance2 < Distance1)) then

attack(EnemyX1, EnemyY1).

However, this pseudo-code does not function in GOAL. A not statement can only nest a single percept
or bel statement, not multiple. Instead of that, the code was changed to store the distance and priority in a
separate belief which is kept updated, as we need this belief to act as a ‘variable’ to ensure that we are targeting
the closest enemy. However, inserting and deleting beliefs is an operation that is preferably avoided in order
to maximise performance. I believe a future version of GOAL should aim to have the functionality required
for this pseudo-code to function, as it should allow for an increase in performance. Furthermore, it is also the
type of code that one would expect to work, but currently it does not.

9.4.2. Unused Features
Over the course of ForceBot’s development, the majority of GOAL’s language features saw some degree of use.
In this section, the lesser used or unused features of GOAL’s language are discussed.

Goals
GOAL separates the mental state of an agent into knowledge, beliefs and goals. The use of knowledge
is clear, for example storing a rule to calculate the distance between two points. However, the dif-
ference between beliefs and goals is less clear, particularly in an environment such as StarCraft. For
example, if the combat manager gives an order to a Zergling to destroy an enemy base, ForceBot will
adopt atask(‘attack’, (<X>, <Y>, <RegionId>)) goal. The Zergling will inform the com-
bat manager with acleared(<X>, <Y>, <RegionId>)message, indicating the enemy base that
was destroyed. However, there is no meaningful distinction between this task being adopted as a goal,
or inserted as a belief. You can either say that the Zerglings goal is to attack, or that it believes its order
to be attack. The distinction is fairly arbitrary.

One of the main uses of goals is the use of the additional goal-a and a-goal statements, which
function as a combination of goal and bel statements, shown in Equation 9.1 and 9.2.

a−goal(qr y) = goal(qr y),not(bel(qr y)) (9.1)
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goal−a(qr y) = goal(qr y),bel(qr y) (9.2)

However, in the StarCraft environment, these statements are rarely useful. For example, you cannot
make adopt a goal for there to be “no enemies in <RegionId>”. Another example is when you give a
worker a task to construct a building, you cannot adopt a goal such as friendly(<ID>, <Type>),
as the <ID> will only be known after the building is placed. Finally, in order to improve performance,
many percepts are not stored in the belief base by agents. As such, while the goal statement was used,
primarily to indicate tasks, the goal-a and a-goal statements were never used.

Focus
The focus option can be used to set the ‘focus of attention’ of a module on a particular goal. This
feature is designed to be used when there are conflicts in the goals of an agent. The reason why this
functionality was never used is simply because goals themselves were not frequently used. Goals were
primarily used to store the current task, however upon being given a new task, the old task would be
removed. As such, no conflicts between goals can occur in ForceBot.

Exit
In modules it is possible to add an exit condition to the module, namely: always, never, nogoals, noac-
tions. By default, all modules use the always option, while the main module will use the never option.
In the case of ForceBot, this feature was never used, as there was simply no need to change from these
values.

Order
The order setting of a module allows for developers to specify the order in which the rules of the module
are traversed. The following options are available: linear, linearall, linearrandom, linearallrandom,
random and randomall. In the case of ForceBot, only the linear and linearall options were used. These
were primarily used in order to optimise the code in cases where only only the first applicable rule of
the module needs to be performed. One of the examples of this is the code which decides whether to
build a Hatchery as an expansion or in the base. This module contains 13 different rules to determine
whether it should expand or not, of which only the first applicable rule needs to be performed. These
rules are listed according to priority, and as such using a random order is undesirable. In the case of
ForceBot, I found that there was always a priority to things, and as such a random order was never
desirable.

Macros
Macros can be used to define a combination of queries, an example of this can be seen in the pseudo-
code below. The defined macro determines whether the unit has a goal to morph into something, and
whether it has the resources required to do so. In the module, this macro is used to trigger a morph
action.

define shouldMorph(Type) as goal(morph(Type)),
bel(costs(Type, MineralCost, GasCost, SupplyCost),
resources(Minerals, Gas, CurrentSupply, MaximumSupply),
Minerals >= MineralCost, Gas >= GasCost,
MaximumSupply - CurrentSupply >= SupplyCost)

module Larvae {
if shouldMorph(Type) then morph(Type).

}

However, in order for a macro to be useful, it must be used multiple times within a single module.
Furthermore, they can often be replaced by knowledge rules. For example, the below pseudo-code
would work can be used by moving thebelportion of the macro into the knowledge file of an agent and
naming the knowledge rule hasResourcesFor. The benefit to this approach is that this knowledge
rule is then re-usable across all modules which use that module file.

if goal(morph(Type), bel(hasResourcesFor(Type)) then morph(Type).
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Consequently, macros are primarily useful when there are multiple rules within a single module that
perform the same queries on bases other than the belief base. This situation did not occur for ForceBot.

Listall
listall is one of the three rules that can be used in GOAL, in addition to if and forall. This rule
can be used in order to create a list of all results of a query, in a way that is similar to forall. However,
while forall handles each result separately, the forall query allows for all results to be compared
by placing them in a list. There are a number of times where this can be useful, such as when finding a
result in a list with the highest value. However, finding the highest value in such a list can also be done
using a forall statement that compares the result. An example of this is the targeting priorities for
combat units. The approach that ForceBot uses currently has been explained in Section 9.4.1.

Another solution to finding the closest enemy can be made by using the listall rule. By placing all
results in a list and iterating over the list to return the closest enemy. Using this approach, no inserts or
deletes are required in order to determine the closest enemy. However, upon performing profiling while
using this approach, the computational performance was found to be worse. As a result, the listall
rule has not been used in ForceBot.

Although there are a number of features that were not frequently used in the development of ForceBot,
I do not believe that there is a problem. A number of these features do address missing functionality, for
example the listall rule can be used to retrieve the sum of a list of values efficiently. Using forall this
would be inefficient, as unlike the targeting priorities this would require an equal number of inserts/deletes
as there are results. Furthermore, the built-in Prolog predicate findall can be used, but only when finding
single beliefs, not percepts, goals or queries involving multiple beliefs. Based on this, I believe that the ma-
jority of the unused features simply require conditions that are not frequently encountered in the StarCraft
environment.

9.5. Conclusion
In this section the various tools offered by GOAL were analysed. Among these tools, debug mode was shown
to not be useful as a result of providing information in a way that is difficult to parse when dealing with large
numbers of agents, in addition to slowing down as a result of the number of agents. In order to address this,
a suggestion was made to have debug mode only display the currently selected unit within StarCraft, in order
to indicate to GOAL which agent the developer is interested in.

Both the logging and profiling tool have been useful assets during development, and no major difficulties
were encountered in using them for developing a GOAL-based StarCraft bot. However, suggestions have been
made to improve the ease of use by adjusting the output format of these files to one that can be parsed more
easily and does not contain data entries that are not relevant for debugging.

Finally, the language features of GOAL were analysed. The only problem that was noted was that the
syntax of the language does not allow for multiplebel,goal andpercept statements to be included within
a single not. However, this does not limit the functionality of the language, as the problem can be solved
using different approaches, although these approaches are less than ideal.
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Lessons Learned

In this chapter the results of the previous sections will be analysed in order to provide answers to the research
questions posed in Section 1.3. The research questions that were posed correspond to four aspects of the
development of a GOAL-based StarCraft bot: language, connector, tools and computational performance.
These questions will be answered in Section 10.1, 10.2, 10.3 and 10.4 respectively.

10.1. Language
During the development of ForceBot, no major issues arose with the language aspects of GOAL. One issue
was found in Section 9.4.1, although it is not major as there is a workaround for the issue, albeit less than
ideal.

However, there are problems with the computational performance of GOAL. One particular case that was
noted is the computational performance cost of detecting events such as a unit being created, dying, mor-
phing, and more. As there are no events in GOAL, these must instead be detected by tracking changes to
percepts. This problem was addressed for the friendly percept type in Section 8.1.2 through the addition
of the shutdown module. However, I believe that this problem demonstrates a missing feature in GOAL’s de-
sign: there are no events. Although the shutdown module addressed the problem for the friendly percept
type, the problem persists for the enemy percept type which ForceBot’s combat manager tracks. For bots
utilising BWAPI itself, there are event handlers available for events such as a unit dying, however these events
are not available in GOAL.

Considering the benefits gained from utilising an event-driven paradigm for the friendly percept type
in Section 8.1.2, I believe that GOAL should aim to include explicit support for events. One approach to solve
this problem would be to add percept types for most, if not all, of the events available in BWAPI. This approach
would only solve the problem for StarCraft, however. Another approach is for GOAL to provide a way to ‘hook’
a percept, so that changes to it will trigger a notification of some kind. This could be used for any percept type
that includes a ‘key’ parameter, such as the <UnitId> parameter of the friendly or enemy percept types.
An example of this can be seen in the pseudo-code below.

if true then hook(enemy, [insert, modify, delete]).
if percept(hook(enemy(UnitId)) then ...

In the first line, the enemy percept type is hooked for event triggering, with the desired event types sup-
plied with the list. The three options for event types are:

• insert – A enemy percept with a new <UnitId> is added to the percepts.

• modify – A enemy percept with the same <UnitId> changed in the new cycle.

• delete – A enemy percept is removed from the percepts.

Whenever one of these events trigger, a hook percept is received containing the changed percept and its
key, in this case the <UnitId>. An optional third parameter can be added which allows for the event to only
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trigger for a specific key value. For example, the blow psuedo-code will only trigger if an enemy percept with
the given <UnitId> value is removed from the percepts.

if bel(enemy(UnitId, ...) then hook(enemy, [delete], UnitId).

Using this approach, notifications can be sent out for events such as a new key appearing, parameters
changing, or an existing key disappearing. Although this solution is more complex, it can be used in any en-
vironment.

At the start of this thesis, the following research question was raised: What are the advantages and dis-
advantages of using GOAL for an environment such as StarCraft? In order to answer this question, we must
compare GOAL to languages traditionally used to program StarCraft bots: C++ and Java. C++ is used primarily
for its speed, as well as BWAPI itself being programmed in C++. Although Java is slower than C++, this is not
a factor that greatly limits the performance of the bot, evidenced by PurpleWave ranking 2nd in AIIDE. While
C++ and Java are object-orientated languages, GOAL is a language designed for use in cognitive multi-agent
systems, which StarCraft can be represented as by mapping agents to units and buildings within StarCraft.

In my opinion, GOAL possesses advantages over C++ and Java in its information density and abstraction.
GOAL handles a large number of tasks for developers, such as starting and terminating agents and processing
BWAPI data into compact percepts. Furthermore, the increased information density of GOAL code allows for
small amounts of code to perform a great deal of work. As a result of these factors, a competent GOAL bot
can be created in a short amount of time. However, GOAL currently suffers from problems with computa-
tional performance and synchronisation with StarCraft, which will be discussed in Section 10.4. This results
in ForceBot possessing poor micro skills relative to other bots. At present, these problems are the primary
bottleneck in improving ForceBot’s game performance. Until these problems are resolved, GOAL bots are
unlikely to be able to match the game performance of traditional bots.

10.2. Connector
The StarCraft-GOAL Connector is one of the main components of creating a GOAL bot for StarCraft. It is
responsible for establishing a link between GOAL and BWAPI by converting the in-game information retrieved
by BWAPI into percepts for the agents to process in GOAL, and converting the actions from agents in GOAL to
in-game commands through BWAPI. This section aims to analyse the state of the connector, asks if and how
it limits the potential of a GOAL bot, and discusses the lessons that can be learned from its development.

10.2.1. MAS Project 2018
The MAS Project was held again in 2018, from April to June, with a total of 49 teams of Bachelor students
participating. Since the 2017 MAS Project the connector has seen a great number of changes, making the
2018 MAS Project a good opportunity to determine the effectiveness of these changes and the maturity of the
connector. For this reason the changes that the connector went through over the course of this project will be
outlined.

First is a small number of general changes that were made. Both StarCraft and ChaosLauncher, a tool
used to utilise BWAPI, are now automatically started and closed along with the connector so that this task
does not need to be done by the user. Furthermore, in order to assist with testing, the connector was changed
to provide a number of additional game cheats that can be toggled easily using the connector, namely:

• Instant construction of buildings

• Removal of technology restrictions

• Removal of supply limit

Additionally, in order to simplify the startup sequence of GOAL bots, manager entities are now started
one second before any other agent is started. As the connector pauses StarCraft until four actions have been
performed by agents, this only results in StarCraft being paused for one second longer before the match is
started. This is also a change made to simplify working with GOAL, as in the case of ForceBot a number of
fail-safes are in place to address cases where a manager is started after an agent. By placing a delay between
the launch of managers and agents, this problem is removed.
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Lastly, a small number of percepts were changed as well, which will be outlined over the following sec-
tions.

10.2.2. Global Dynamic Percepts
enemy/11

The enemy percept type has been altered to also provide information regarding neutral units. Neutral
units most frequently come in the form of buildings which obstruct part of the map. In some cases,
neutral buildings are positioned in such a way that destroying them will open a new path. Prior to this
change, GOAL agents could not perceive neutral units and therefore not clear these blockades.

nuke(<X>, <Y>, <RegionId>)
The <RegionId> parameter was added to this percept type. This change was made for consistency, as
providing the <RegionId> whenever an (X,Y) location is given is standard.

researched(<CompletedList>)
This is a new percept type that has been added to simplify researching, as well as provide a guaran-
teed way of determining the completion of researches. <CompletedList> is a list of all researches that
have been completed over the course of the match. Before the addition of this percept type, detect-
ing the completion of a research was done by detecting when a researching agent stopped receiving
the researching/1 percept. However, in the event that the researching agent attempts to cancel its
currently active research while it is near completion, you cannot be certain whether the research was
completed or cancelled. This new percept solves this problem and provides information regarding the
completion of researches directly.

underConstruction(<Id>, <BuilderId>, <Vitality> , <X>, <Y>, <RegionId>)
The <BuilderId> parameter was added, which gives the worker responsible for constructing the build-
ing. This is primarily important for Terran, as it tells which SCV is constructing a building.

10.2.3. Generic Unit Percepts
order(<Primary>, <TargetUnit>, <TargetX>, <TargetY>, <TargetRegionId>, <Secondary>)

The <TargetRegionId> parameter was added to this percept type. This change was made to address an
inconsistency, as all other percept types which provide an(X,Y) location also provide the <RegionId>.

10.2.4. Unit-Specific Percepts
researching(<Type>)

The <Type> parameter of this percept type has been changed. This parameter now also provides the
level of the research being performed, if applicable.

10.2.5. Connector Overview
The changes made to the connector over the course of the 2018 MAS Project are primarily aimed at ease of use
and consistency. Although ForceBot has been updated to operate with these changes, no changes were made
to ForceBot in terms of behaviour. Out of all changes, the only change that addresses missing functionality
concerns the change to the enemy percept. However, on all maps used within SSCAIT and AIIDE, any region
which has a neutral-blocked path leading into it also has an unblocked path leading to that same region. The
neutral-blocked path is typically shorter, but requires the destruction of the neutral building before it can be
used. In many cases, it is preferable to have a worker unit walk the long way, instead of opening a path by
destroying a neutral blockade using combat units. Therefore, although the changes to the enemy percept did
serve to address a missing functionality, no important functionality was lacking.

Major problems which were encountered with the connector over the course of ForceBot’s development,
have all been resolved over the course of the thesis. The main lessons learned from this were the changes
to the connector with regards to manager handling and percept delivery. At the start of this thesis, the con-
nector did not support manager entities receiving percepts. Over the course of development this proved to
be a major obstacle, as the solution of having agents forward percepts to the manager was prone to errors if
the agent responsible for that task is killed. Therefore, managers became better supported, with dedicated
manager entities being added to address the problem. The important lesson to take from this is that there
should always be a ‘stable’ entity present, as there exist many tasks which require a single, persistent agent in
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order to properly handle them. Agents are not capable of performing such a task in an environment such as
StarCraft, as units may die at any time.

Secondly is the change to percept delivery. Prior to the start of the thesis, the percept types delivered
to each agent were pre-determined based on their unit type. However, as the percept types that an agent is
interested in changes depending on the implementation, there was no choice but to have agents receive any
percept type which could be of use to them. As a result, agents received many percept types which they did
not use. This problem was solved by allowing developers to specify the percept types that each agent type is
interested in. The lesson to learn from this is that in a game such as StarCraft, the relevance of percept types
to specific units is implementation-specific and the decision to receive them or not is one that should be left
to the developer, rather than the connector.

By addressing these major issues in the functionality, the connector became easier to work with, as the
connector now performed tasks such as sending percepts to managers. The connector became more flexible
and efficient by allowing developers to specify which percepts should be received by which unit types.

The biggest changes that have occurred to the connector over the course of this thesis are all related to
the flow of information: changes to manager handling and percept subscription. As the usage of information
differs based on the implementation of agents, the best choice is to allow the developers to control the flow
of information.

At the start of this thesis, the following research question was raised: What does the abstraction of the
StarCraft-GOAL connector mean for GOAL bots? In order to answer this question, we have looked at the
changes that have occurred to the connector over the course of the 2018 MAS Project. The connector was
used by a total of 49 groups of Bachelor students during this project. Over the course of the 2018 MAS Project,
no major changes were found to be needed. Additionally, all major obstacles that have appeared during the
development of ForceBot that were related to the connector have been addressed over the course of this the-
sis. Based on this, I believe that connector has significantly matured and can be used to support any strategy
in StarCraft. However, the level of abstraction may need to be further adjusted in order to improve the com-
putational performance problems that GOAL-based StarCraft bots suffer. This is discussed in detail in Section
10.4.5.

10.3. Tools
GOAL provides several tools to be used when programming with GOAL. These come in the form of an IDE
using a plug-in for Eclipse. This plug-in provides many of the basic features of modern IDE’s such as syn-
tax highlighting, code completion, automatic building and error reporting. The IDE also provides additional
options for debugging, logging and profiling. In this section, the usage of these tools over the course of Force-
Bot’s development is noted and areas for improvement are explored.

IDE
The IDE itself is well-functional and I did not experience many difficulties while using it. The only point
for improvement noted in Section 9.1 is that the IDE does not fully support the refactoring of files and
modules.

Debug Mode
The debug mode offerred by the IDE could not be effectively used. The information provided by debug
mode is primarily real-time, in-depth information about all active agents. In StarCraft, the number of
agents is very high, and it isn’t clear which agent corresponds to which unit. Additionally, the amount
of agents also results in the amount of information being provided by debug mode is overwhelming.
As a result, the user is unable to make effective use of the information. The quantity of information,
combined with the number of agents, also leads to the IDE slowing down, which includes the bot. Con-
sequently, it is a hindering factor in the ‘debug matches’. Lastly, the StarCraft environment continues
running even when an agent is paused, making it difficult to make use of breakpoints.

For these reasons debug mode does not serve as an effective tool when it comes to debugging a Star-
Craft GOAL bot. In order to be more effective, debug mode will need to display information in a way
that can scale to potentially more than a hundred agents. A suggestion to assist in this was proposed in
Section 9.2.1. It was suggested to have the debug mode display information only about the units that
are currently selected within StarCraft. By doing so, the user is able to easily indicate which agents they
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are interested in to GOAL. Nevertheless, debug mode is known to be an effective tool in GOAL environ-
ments in which the number of agents can fit on the screen and the environment is more controlled.
Additionally, other tools already provide effective means of debugging. As such, I do not believe that
improving the debug mode for use with StarCraft is a high priority issue.

Logging
Logging is the most frequently used debugging tool throughout the development of ForceBot. Whereas
debug mode is a real-time debugging tool, logging instead is a post-execution debugging tool. After ex-
ecution has completed, the log files can be analysed to determine the cause of the bug. As it is possible
to specify the type of information that is logged, the log can be made to be as verbose as is required. It
is a tool which does not place a significant strain on the bot during runtime, meaning that the logging
option can remain enabled at all times. If any strange behaviour is noted during a test, the logs can be
analysed to determine the cause.

The logging tool has been an effective tool at assisting in debugging, for any bug whose cause is not
immediately obvious, logging is the standard tool to determine the cause. There are two notable issues
with logging, however. First, while the log settings can be modified to be as verbose as needed, the
one thing that it does not log is when an agent crashes. This information can still be obtained, but
this requires the default console log of Eclipse to be written to file and analysed afterwards instead, as
detailed in Section 9.2.2.

Secondly, currently the log is difficult to navigate as a result of each log entry spanning a total of 12 lines.
The XML format currently being used provides information which is not important, leading to larger
log files than is needed. To resolve this problem, changes to the logging format have been suggested in
Section 9.2.2. If these changes are made, the current 12 lines per log entry can be reduced to a single
line.

Profiling
Profiling is a tool used to measure the amount of processing time spent on segments of the code. Writ-
ing faster code will allow for more cycles to be made, making the bot faster to respond to its environ-
ments. As is the case with logging, it is a post-execution tool and has the benefit of not significantly
burdening the agent during runtime.

This tool has frequently been used over the course of ForceBot’s development in order to determine
current bottlenecks and analyse the performance improvements of changes. It is typically a good idea
to profile the bot every few weeks to see whether any improvements can be made. A simple approach is
to only profile individual rules, and sort the rules based on total execution time. A complicating aspect
of profiling is that the results can greatly differ based on how the match plays out. As a result of this,
when testing with ForceBot, I would typically always have ForceBot play against the same race and
with the same strategy. Ideally however, using the same seed in each game would be better, to further
improve consistency. However, this functionality requires BWAPI 4.1.2 or higher, and therefore cannot
currently be used with GOAL, which uses BWAPI 3.7.5.

I believe that the existing profiling tool provides the necessary features to make use of the data, however
the data is not presented in an easy to parse way. Suggestions for adjustments have been made in
Section 9.3, in which the output is suggested to be changed to a format which can immediately be
opened by commonly used spreadsheet software. Additionally, unimportant information should be
removed from the output format. Furthermore, by adding an option to combine the collected data for
the same agent types into a single file, the results of many different agents can be analysed at once.

At the start of this thesis, the following research question was raised: How well do the tools provided for
GOAL provide support for developing a StarCraft bot? In order to answer this question the use of these tools
over the course of this thesis were analysed. The logging and profiling tools provided for GOAL performed
well, and saw extensive use over the course of ForceBot’s development. However, the output of this data is
not presented in a convenient manner. This is a problem which the debug mode, logging and profiling all
possess. In order for these tools to be used to their full capability, the data must be presented in a cleaner and
more compact form.

The debug mode performed poorly, and did not see use during development. This is a result of the large
number of agents present in StarCraft, combined with the high level of detail that debug mode provides. In its
current form, the amount of information made available to GOAL developers in StarCraft is too high, causing
the debug mode to become difficult to make use of.
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10.4. Computational Performance
At the start of this thesis, the following research question was raised: How good is computational performance
of GOAL in the StarCraft environment? Based on the results of this thesis, my conclusion is that the compu-
tational performance of GOAL bots forms a bottleneck for the development of GOAL-based StarCraft bots.
For example, the level of abstraction on which the combat simulator used by ForceBot operates, described
in Section 6.3.1, is greater than that of comparable combat simulators written in languages traditionally used
for StarCraft bots, such as C++ and Java. This is the result of performance limitations.

The computational performance limitations have served to shape a number of other aspects of ForceBot.
Unlike most Zerg bots, ForceBot does not make frequent use of Mutalisks, as they require a high number of
Actions Per Minute (APM) to make effective use of. Many of ForceBot’s strategies also revolve around ending
the match earlier rather than later, as ForceBot is poor at competing with traditional bots during later stages
of a match as a result of the increasing number of units. Consequently, much of ForceBot’s development has
been aimed towards improving its strategic play, rather than its unit control. This is quite different from many
existing bots, which utilise superhuman APM to gain advantages over their opponents.

In this section a number of underlying issues of GOAL and the connector that play a factor in causing
the computational performance bottlenecks are discussed. Before these issues can be discussed, the system
specifications of the computers running the StarCraft games should first be discussed. However, the only
tournaments that has disclosed their computer specifications is SAIL, making the information rather limited:

• Internal test tournaments – Intel(R) Core(TM) i7-3820 CPU @ 3.6GHz with 32GB of RAM. However,
this PC was also running the opposing bot, meaning only half of that can be expected to be used.

• SAIL – 1 CPU core of an Intel(R) Core(TM) i7 CPU @ 2.60GHz and up to 256MB of RAM.

• AIIDE – Unknown, but presumed similar or better than SAIL.

• SSCAIT – Unknown, but worse than SAIL.

The RAM requirements for SAIL are not a problem, as ForceBot will typically use around 180-220MB of
RAM. Problems with SSCAIT were encountered some months into development, however, when ForceBot
began slowing down StarCraft during play. In order to address this problem, a single-thread mode was added.
By enabling this mode, all agents would run in a cycle thread in sequence, instead of multi-threaded, which
solved the problem. Although this mode does reduce ForceBot’s computational performance, due to the low
computer specifications that SSCAIT is known to have, the reduction did not seem significant to ForceBot’s
performance prior to the single-thread mode on SSCAIT. The single-thread mode was also used on SAIL.

I believe that it is unlikely that the computer specifications of the internal test tournament significantly
affect the outcome of these in comparison to SAIL. ForceBot has been designed to use less CPU by ensuring
that the agents sleep frequently. As a result, in internal test tournaments ForceBot rarely exceeded 30% CPU,
and usually staying below 20%. When these sleeps are removed, I have encountered ForceBot using over 60%
CPU, however. Due to the multi-threaded nature of agents, GOAL-based StarCraft bots scale well with CPU,
making a better CPU another solution to the computational performance problems. Nevertheless, current
StarCraft AI tournaments do not provide such powerful CPU’s, and as such ForceBot should ideally operate
on the CPU’s provided.

10.4.1. Prolog
Prolog is the language that is used by an agent to reason about its knowledge, beliefs and goals. There are
two reasons that cause Prolog to serve as a computational performance bottleneck. The first reason is GOAL’s
bases, meaning the bel, percept and goal statements. These statements are internally abstracted in a
way that does not allow them to be queried simultaneously. As a result, the below code will result in Prolog
performing a separate percept query for each enemy in its belief base.

forall bel(enemy(Id)), not(percept(enemy(Id))) do ...

This is particularly problematic when there are a large number of percepts of that type being received.
But any statement which queries multiple bases would become faster if this internal design were improved.
In ForceBot there are over 250 statements which query multiple bases.

The second reason is the sharing of information between agents in GOAL. This aspect is problematic as
a result of no information being inherently shared between agents. Each agent is its own process, with its
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own beliefs, knowledge and goals. This means that if information must be held by all agents, the steps are
repeated for every active agent.

One example of this is that during the startup procedure a large number of knowledge and beliefs must be
inserted. Most of the information being inserted have already been inserted in other agents, however, but this
information cannot be accessed by the new agent. Another example for this is the orders sent out towards
all combat units by the combat manager. Whenever an order for one of the regions on the map is changed,
this change must be sent to all agents, the old order deleted and the new order inserted. In a StarCraft match,
the number of combat units will frequently be between 50 and 100. All of these repeated steps add to the
overhead of Prolog.

Based on these reasons I believe that the existing abstraction of GOAL’s bases within Prolog should be
improved in the future, as the existing implementation produces too much overhead for a game with the
complexity and number of agents that StarCraft possesses.

10.4.2. Agent Scheduling
One of the problems of having independent agents running asynchronous to the environment is that the
difficulty of scheduling agents in a way that performs well. A good example of this can be seen in the start-up
sequence of GOAL agents. When a new unit such as a Zergling is created, the agent for this unit is started by
GOAL. This process takes around 5-10 milliseconds. Zerglings perform around 30 to 45 belief insertions in
their init module, which can be performed at a rate of about 10-12 per milisecond. Therefore, this process is
relatively fast.

However, the time between the start of an agent and its first movement can still be considerable. The
reason for this is the scheduling in GOAL, particularly when the GOAL is running in the single-thread mode
which was used for SSCAIT and SAIL. After starting the new agent, it is added to the list of agents, and will not
run its first cycle until it receives its turn. In a 20 minute run of ForceBot, an average delay of 177 milliseconds
between the start and the first cycle was found over a total of 670 agents. Combat units and Drones then send
a task request to the managers, to which they receive a response in an average of 1434 milliseconds. Once
they have a task, the agents will begin acting. In SSCAIT, the response times have often been found to be
significantly longer, with agents not acting anywhere between 1 to 8 seconds depending on the state of the
game.

This problem is not as significant once a task has been received – the agent will simply be slower to switch
its current task. However, in the case of combat units this can result in the army being slow to retreat and suf-
fering losses that could have been avoided. Using the multi-thread mode significantly alleviates the schedul-
ing issue, however the problem that the agents are reliant on the cycle time of the managers persists.

These delays are a natural consequence of using independent agents, consequently there is not a clear
solution to this problem. However, this is a problem that is common to distributed systems, and a solution
may be found by looking at how distributed systems approach this problem. For example, distributed systems
feature remote method invocation, which will handle messages the moment that they are received. This
solution could also be used in GOAL through the addition of ‘response’ modules, responsible for responding
to certain messages. This approach presents a problem if the agent agent receives a message requesting
information that it is currently processing, however, resulting in concurrency issues.

10.4.3. Synchronisation
Traditional StarCraft bots operate in languages such as C++ or Java. These bots run synchronous to Star-
Craft: on each frame, BWAPI calls the OnFrame function of the bot, and StarCraft remains paused until code
execution returns from this function. This means that BWAPI will not run faster than the bot is able to han-
dle. GOAL instead runs asynchronous to the StarCraft environment, meaning that agent cycles do not match
game frames. This does not mean that traditional bots no longer operates in real-time, however, as there are
limits to how much this feature can be used. Tournaments such as AIIDE impose limits to how much time can
be spent on individual frames. As GOAL operates asynchronously, these limits are not a concern, as GOAL
will not pause StarCraft game frames.

However, the frames allows traditional bots to plan their time for each frame. One example of this is
PurpleWave [13], ranked #2 in AIIDE 2017. PurpleWave sorts its various tasks such as micro management,
economy planning and construction planning according to their individual priority and the time since the
task were last performed. Using the previous execution lengths of those tasks it executes as many tasks as
it has time for, and skips those that it does not have time for. Using this approach PurpleWave is able to
accurately utilise its allotted time while prioritising tasks which have greater priority.
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Currently, GOAL only offers agents to sleep for a chosen number of milliseconds, which is independent
of the speed at which the StarCraft environment is running. It is therefore not possible to plan agent exe-
cution according to StarCraft game frames using GOAL. One way to improve this for StarCraft would be to
allow agents to sleep for a number of game frames. An alternative approach, that would work in any environ-
ment, is to allow agents to sleep until a condition is met. This would allow agents to sleep until the desired
gameframe(<Frame>) percept is received. This solution can also be used in other areas, such as having
Drones which are gathering minerals sleep until there are either no more mineral fields, or it receives a new
task.

10.4.4. Agent to Unit Mapping
GOAL utilises a 1-on-1 mapping of agents to units and buildings within StarCraft. This has been done in order
to allow each unit and building to perform its own autonomous decision making. However, I believe that a
1-on-1 mapping is not ideal for StarCraft.

The reason for this is that a number of units and buildings do not require autonomous decision making,
but rather centralised decision making. This is particularly the case for production and research buildings.
This is related to a change that occurred to ForceBot V4 in Section 6.2, in which the decision making aspect
of research buildings was removed. This was done because the general manager was capable of making a
better decision on when research should be performed, as it is better aware of the overall state of the game.
This meant that these agents no longer made decisions, instead performing the commands they received
without thinking. In the same manner, the training and morphing of units was also controlled by the general
manager. As these agents do not perform any decision making, there is currently no argument for having
agents for buildings and Larvae. This holds for the majority of buildings which are only able to train units
and perform researches. It is greatly preferred that any decision which results in resources being spent is
controlled by a manager.

One of the solutions for this is to allow other agents to perform commands for other units that do not
have an agent attached. Currently, the cancel command allows for an optional <ID> argument in order to
cancel buildings that are under construction, as buildings do not possess agents until their construction is
complete. If actions such as train and research also featured an optional <ID> argument, these agents
can be safely removed. In most cases, allowing buildings and Larvae to be controlled by other agents only
requires an additional <ID> argument to specify which building or Larvae should perform the command.
Various buildings are capable of additional actions, however, and a number of distinctions must be made
between buildings for this change in design to occur:

General
The information contained within thestatuspercept must be made available through another means
for units or buildings which are not connected to an agent. This information could be included in the
friendly percept type, or a new percept type could be added. Often times the additional information
is not needed, as such I believe that a new percept type is the best option for this.

Static defences
Static defences are able to perform decision making by deciding which target to attack. Static defences
can already operate without agents if the default targeting priorities are not considered a problem. For
this reason, I believe that developers should continue to be able to assign agents to static defences. The
following buildings are considered static defences: Missile Turret, Photon Cannon, Sunken Colony and
Spore Colony.

Bunkers
The Terran Bunker is also a static defence, but cannot attack itself. Instead, Marines, Firebats, Medics
and Ghosts can enter the Bunker and safely attack from within it. Bunkers can be controlled by other
agents by changing the unitLoaded(<ID>) percept type from unit-specific percepts to global dy-
namic percepts and including an additional <ID> parameter. Note that the existing unitLoaded
percept type is still required, as it is used by transport units. In addition, the unload(<ID>) and
unloadAll actions must be expanded with an optional <ID> argument.

Terran buildings
A number of Terran buildings are capable of using ‘lift off’ to fly. At this point, these units can fly around
freely, and therefore perform decision making. Considering this, developers should continue to be able
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to assign agents to the following Terran buildings: Command Center, Barracks, Engineering Bay, Fac-
tory, Starport and Science Facility. However, if these buildings are changed to allow for other agents
to control them, the following actions will require an optional <ID> argument: ability(<ID>),
ability(<X>, <Y>), buildAddon, land(<X>, <Y>), lift and move(<X>, <Y>).

Nydus Canals
Nydus Canals allow for instantaneous transportation between two fixed locations. A Nydus Canal must
place its exit using the build(<Type>, <X>, <Y>) action. This process requires decision making,
but it is likely that a developer will want this decision to be made by its combat manager, so that it can
coordinate the army to utilise the Nydus Canal correctly. Bunkers can all be controlled by other agents
by including an optional <ID> argument in the build action.

Remainder
All other buildings, including Larvae, do not perform any special behaviour. These can all be con-
trolled by other agents by changing the researching(<Type>) and queueSize(<Size>) per-
cept types from unit-specific percepts to global dynamic percepts and including an additional <ID>
parameter that specifies which building is performing the research. Note that the existing queueSize
percept type is still required, as it is used by Carriers and Reavers. Additionally, the morph(<Type>),
research(<Type>) and train(<Type>) actions must be expanded with an optional <ID> argu-
ment.

All of these distinctions make it difficult to generalise a change having all buildings and Larvae be con-
trolled by other agents. For this reason, I believe that a number of them, namely Terran buildings capable of
flight as well as Nydus Canals, should retain agents. However, for all other buildings and Larvae, this change
is simple to make.

10.4.5. Connector Abstraction
One of the ways that has not yet been explored in order to improve the computational performance of GOAL is
by utilising the StarCraft-GOAL Connector. At present, the connector provides actions for all of the commands
available in StarCraft: move, attack, stop, patrol, etc. However, the connector could be updated to include
‘action sequences’, abstracted as standard actions. For example, an action could be included to perform
kiting on a unit. An action such as kite(<ID>, <X>, <Y>)would command the unit to attack the target
with the given ID, and upon the attack completing, the connector can immediately follow up with a move
command to the given (X, Y) location.

These action sequences can be quite complex, and sometimes unique depending on the unit. Another
example of this can be seen in Figure 10.1. In this image we can see that in order for a Vulture to kite enemies,
3 commands must be performed in sequence. Furthermore, the position of the patrol command is important,
as a mis-positioned patrol command can lead to the Vulture losing speed while kiting, or failing to attack.

Figure 10.1: Vulture kiting commands – (1) Move (2) Patrol (3) Move

In addition to the micro techniques already mentioned, there are a number of other micro techniques
which are relatively simple sequences of commands, such as:

• Ability kiting – Similar to basic attack kiting, but using abilities instead.
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• Air kiting/chasing – Flying units will slow down upon approaching close to their target. To avoid this, a
movement command can be used and cancelled into an attack command when already in attack range.

• Mutalisk micro – Essentially mixes the air kiting technique with the Vulture kiting to quickly approach
and avoid slowing down after the attack.

• Carrier hit and run – Retreating the moment a Carrier begins ejecting Interceptors.

• Unload-Load – Units capable of transporting other units can quickly unload and load a unit to allow
the transported unit to attack while making it difficult for the enemy to attack the transported unit.

Furthermore, there are a number of micro techniques which would be more difficult to precisely imple-
ment using actions. Examples include things such as burrowing a Lurker the moment an attackable enemy is
in attack range, surrounding enemies with melee units such as Zerglings, and retreating with low health units.
All of these micro techniques are currently difficult to perform as a result of the computational performance
limitations of GOAL.

A large number of additional actions are needed in order to include all the micro techniques that are
available to players in StarCraft as action sequences. However, by utilising the connector for this task these
micro techniques can be successfully performed. The connector operates faster than the GOAL agents, and
while GOAL runs asynchronous to StarCraft, the connector runs synchronous. Therefore, the connector is
able to perform these micro actions with greater precision. I believe that the addition of action sequences
into the StarCraft-GOAL Connector can greatly alleviate the computational performance problems of GOAL,
as these action sequences would allow for precise micro without requiring agents to be able to run a cycle
every frame of StarCraft.

10.5. Conclusion
In this section, the language, connector, tools and computational performance of GOAL-based StarCraft bots
were all analysed. Out of these topics, I believe that the language and the tools do not pose major problems,
although suggestions have been made for further improvements in these areas.

The main problem that GOAL-based StarCraft bots suffer is with regards to the computational perfor-
mance. This restricts the micro of ForceBot, making it difficult to make the most with its individual units.
Instead of this, ForceBot has to rely on strategy more than other bots. Considering the game performance of
ForceBot, which I believe are for a large part the result of its strategic playstyle, I believe that it has therefore
been proven that GOAL is capable of handling the complex strategies that arise in StarCraft and that the level
of abstraction of the connector does not impose limits on strategies.

However, the problem of the computational performance of GOAL-based StarCraft bots is an issue which
must be resolved in order for ForceBot to significantly improve its current game performance. In order to
address this, a number of issues were discussed that contribute to this problem: Prolog, agent scheduling,
synchronisation, agent to unit mapping and connector abstraction. Out of these issues, I believe that ad-
dressing the level of abstraction in the connector is the issue which should be addressed first, as the other
issues are more difficult to address. Furthermore, I believe that it is the approach that is most likely to show
success. While resolving the other issues would allow agents to make faster cycles, adjusting the level of ab-
straction by adding ‘action sequences’ instead reduces the need for agents to make fast cycles. Therefore,
it becomes easier to further solve the computational performance problem by first addressing the level of
abstraction of the connector.
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Over the course of this thesis, ForceBot has become a capable bot. During the first milestone, ForceBot
achieved the highest win-rate among the bots present in the 2017 MAS Project. A combat simulator was
added in the second milestone, allowing ForceBot to make intelligent combat predictions. Unfortunately,
the second milestone saw poor performance in AIIDE as a result of a critical bug. In the third milestone an
internal testing environment was established, allowing more data regarding ForceBot’s game performance to
be collected. Using the results of these tests ForceBot was improved, in particular with regards to its strategic
elements. This allowed it to achieve an above average score in SSCAIT, ranking 32nd among the 78 com-
peting bots, and 7th among the 25 student bots. The internal testing was continued throughout the fourth
milestone, notably adding various strategic responses to enemy behaviours. In SAIL, ForceBot ranked 42nd
among the 88 competing bots. Finally, ForceBot improved its win-rate in the internal test environment from
41.1% during AIIDE to 84.4% with the final version on July 2018. Based on these achievements, ForceBot has
shown the capability of performing at above average levels relative to existing StarCraft bots.

In this thesis, I set out to analyse the language, connector, tools and computational performance of GOAL-
based StarCraft bots. Starting at the language, I did not encounter any major issues in this area over the course
of ForceBot’s development. The problems that were encountered were minor, and suggestions to address
these problems were made.

The StarCraft-GOAL Environment Connector saw a great deal of changes over the course of this thesis.
These changes have allowed it to mature, which is made clear by the lack of significant changes that occurred
to it during the 2018 MAS Project which took place at the end of this thesis. The biggest change to occur to the
connector during this thesis has been with regard to the flow of information. By allowing manager entities to
receive percepts, and allowing agents and entities to subscribe to the percept types they were interested in,
the flow of information can now be controlled by developers.

The tools provided by GOAL for development saw mixed usage. The debug mode performed poorly, and
was not used throughout development. However, the logging and profiling tools provided sufficient infor-
mation in order to successfully develop, debug and test a GOAL-based StarCraft bot. The output format of
the logging and profiling tools was less than ideal. Suggestions were made to improve their output format in
order to make their results easier to parse and navigate.

Finally, the computational performance of GOAL was established as the primary bottleneck with regards
to the game performance of ForceBot. This problem results in ForceBot possessing poor micro, which affects
its game performance. A number of underlying issues that lead to this problem were identified: Prolog, agent
scheduling, synchronisation, agent to unit mapping and connector abstraction. Out of these, I believe that
addressing the level of abstraction of the connector is likely to yield the best results. This is because resolving
the other issues will allow agents to perform faster cycles, but by adjusting the level of abstraction reduces the
need for agents to make fast cycles is reduced instead. As such, moving forward I believe that addressing the
level of abstraction of the connector is the first issue that should be addressed.

My overall conclusion from these analyses is that the tools do not pose themselves as a problem in the
development or game performance of GOAL-based StarCraft bots. However, the language and the connec-
tor are two areas in which adjustments can be made in order to improve the main issue of computational
performance.
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Furthermore, a significant portion of ForceBot’s development has been aimed towards improving its strate-
gic strength, particularly in order to make up for its poor micro skills as a result of the computational perfor-
mance problems. In doing so, I did not encounter any problems in the implementation of strategies within
ForceBot. Moreover, the higher information density of the GOAL language allows for such strategic decision
making to be easily implemented. My conclusion is therefore that no aspect of GOAL poses a problem for
the strategic capabilities of GOAL-based StarCraft bots. However, the poor micro does result in a number of
strategies being less effective. This is because strategies that rely on units such as Mutalisks require good mi-
cro. These strategies can still be used, and ForceBot successfully uses them depending on the situation, but
improving the micro capabilities of GOAL-based StarCraft bots would result in these strategies becoming sig-
nificantly stronger. At present, I believe that until the computational performance problems are addressed,
a GOAL-based StarCraft bot will be unable to match the game performance of StarCraft bots written in tradi-
tional programming languages.

The final research question to be posed in this thesis was the following: how does a cognitive multi-agent
system compare to traditional StarCraft bots? Throughout the course of this thesis I did not encounter any
difficulties in implementing the complex strategies and decision making that is present in StarCraft, and I
believe that, on a strategic level, cognitive multi-agent systems can perform on the same level as traditional
C++ or Java bots. The primary bottleneck encountered within this thesis is caused by computational perfor-
mance problems originating from GOAL. This problem may not be present in cognitive multi-agent systems
besides GOAL, and can be improved over time for GOAL itself. The problem of computational performance
is one that other cognitive multi-agent systems should be aware of however, as the difficulty of running over
a hundred independent cognitive agents concurrently is evidenced by this thesis.

11.1. Recommendation for Future Research
There are a number of areas in which ForceBot can be improved upon in the future, as well as further research
that can be performed for GOAL-based StarCraft bots. The following is a list of recommendations for future
research:

1. The issues underlying the computational performance problems can be resolved in the future using the
work performed in this thesis. If ForceBot becomes able to perform micro with skill close to or equal to
that of existing C++ and Java bots, a significant game performance increase is to be expected, and the
effectiveness of GOAL-based StarCraft bots should then be re-evaluated.

2. All of the top performing bots in StarCraft feature learning behaviour, allowing them to learn strategies
that have been effective or ineffective against certain opponents in the past. All of the functionalities
required to add learning behaviour into ForceBot are present in GOAL, but the addition of learning
behaviour has been left for future research. In order to implement this, the effectiveness of strategies
and build orders against specific opponents or races must be stored using Prolog’s write functions. In
subsequent games, these files can be read and parsed in order to determine the strategy that ForceBot
should. Learning can also be used in other areas, such as determining effective army compositions,
defence quantities and economic behaviour.

3. This thesis has focused purely on the game performance of StarCraft bots and the aspects that accom-
pany that. However, the challenge of developing a StarCraft bot can also be approached with the aim
of designing a human-like bot. Professional human players average around 300 Actions Per Minute
(APM). Most existing bots frequently perform over 10,000 APM, making them distinctly inhuman and
mechanical. ForceBot’s APM varies from 200 to 1500 depending on the state of the game, with an aver-
age of around 500. Although this exceeds that of human players, there are differences in APM between
humans and bots. This is because bots control units on a per-unit level, while humans will often com-
mand multiple units at a time using groups. As a result, ForceBot’s APM is fairly human-like despite
being higher than that of humans. As there is a demand for human-like bots, a future research could
look into the human-like properties of GOAL-based StarCraft bots.
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