
Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft

Diffusion based temporal network
embedding for link prediction

by

Ziyu Li
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday August 30, 2019 at 10:00 AM.

Student number: 4710126
Project duration: November 1st, 2018 – August 30th, 2019
Thesis committee: dr. P. Cesar, TU Delft

Prof. dr. A. Bozzon, TU Delft
dr. H. Wang, TU Delft, Daily supervisor
X. Zhan, TU Delft, Daily supervisor

This thesis is confidential and cannot be made public until December 31, 2019.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

List of Figures vii

List of Tables ix

Symbols xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Contribution . 3
1.4 Thesis Outline . 3

2 Background 5
2.1 Definitions . 5

2.1.1 Network . 5
2.1.2 Temporal Network . 5

2.2 Network Embedding . 5
2.3 Network Embedding Methods. 7

2.3.1 Matrix Factorization . 7
2.3.2 Random Walk Based Methods . 8
2.3.3 Deep Neural Networks Based Methods . 8
2.3.4 Graph Neural Network . 9

2.4 Dynamic Network Embedding . 9
2.5 Network Embedding Based on Learned Information 10

2.5.1 Preserving Structure and Property . 10
2.5.2 Integrating Additional Information . 10

2.6 Application Tasks of Network Embedding . 10
2.6.1 Link Prediction . 11
2.6.2 Node Classification . 11
2.6.3 Community Detection . 12
2.6.4 Other Tasks . 12

2.7 Evaluation Metrics . 13

3 Methododology 15
3.1 Methodology Framework . 15
3.2 Information Spreading. 15
3.3 SIS Sampling Strategy . 16

3.3.1 Spreading Tree (ST) Construction . 17
3.3.2 Generating Trajectories . 18

3.4 Skip-gram Model . 19
3.4.1 An Analogy Model – Word2Vec . 19
3.4.2 Node Pair Generation . 19
3.4.3 Temporal Network Structure Modeling . 20

iii

iv Contents

4 BaselineModels 23
4.1 DeepWalk . 23
4.2 Node2Vec . 23
4.3 CTDNE . 24

4.3.1 Initial Temporal Edge Selection . 25
4.3.2 Temporal Random Walk . 25

5 Experimental Setup 27
5.1 Empirical Networks . 27
5.2 Network Processing . 28

6 Results and Analysis 31
6.1 Parameters Overview. 31
6.2 Model Comparison. 32

6.2.1 Degree Distribution Analysis . 33
6.3 Hyper-parameter Analysis . 34
6.4 Performance analysis of the SI model . 35

6.4.1 Parameter analysis . 35
6.4.2 Spreading Tree Analysis of SI Model. 36
6.4.3 Summary . 39

6.5 Properties of Trajectories and GS . 40
6.5.1 Trajectory Length Analysis . 40

7 Conclusion 43
7.1 Observations and Contributions . 43
7.2 Future Work. 44

Appendices 45

A Properties Analysis ofGS 47
A.1 Link Density Analysis . 47
A.2 Edge Weight Correlation . 48
A.3 Clustering Coefficient Analysis . 48
A.4 Degree Analysis. 48
A.5 Summary . 50

Bibliography 51

Preface

Three years ago, I visited Netherlands while I was an exchange student in Sweden. I was drawn by
the unique street view, bridges connecting canals with pedestrians and cyclists passing through it.
I posted on my timeline that this is a country of freedom. One year later by then, I stepped on this
land again. While this time, I am about to be a master student. Though one year has passed, the
train station and the canals brought me back to the day I visited last time, as if it was yesterday.
What was different is that I came to spend the next two years for further study. I was determined
and dedicated to extend my professional path. I hoped that this free country can provide me with a
free academic environment. As it turns out, studying in TU Delft is a treasured gift in my life, paving
the way for my professional passion and bringing cherish to my life. I have great thanks to a lot of
people.

Dr. Huijuan Wang, my supervisor, guides me through the way of the thesis project. Thank you
for your professional support, which has all the time inspired me and provided with new inspira-
tions while I was in a dead end. Your patience while listening to me reporting and answering my
questions has encouraged me to think further on my work. I thank you sincerely for showing me the
mindset to be a responsible researcher with rigorous scholarly working attitude.

Xiuxiu, thank you for being a supportive supervisor and a true friend. It wouldn’t be that smooth
for me to get on track without your progressive and critical guidance. Whenever I felt lack of con-
fidence about my work, you are the one who dragged me from the gloom and encouraged me, for
which I am sincerely grateful. We had so much fun together while dancing Zumba and playing bad-
minton with Manel and Malek. You are never too shy to introduce me to your friends. I had made
so many friends in the last year of my master, from whom I learned a lot.

I would like to thank Pablo Cesar and Alessandro Bozzon being my thesis committee members.
Also, I would like to thank all the members in MMC group. Manel, Roger, Omar, Alberto, Julian,
Cynthia, Odette, Alan, Elvin, Jay, Sandy, Harlley, Andrew, thank you for making my ‘research year’ so
much fun. I am grateful for the snacks and drinks, also birthday cakes, from time to time. :)

Wanning, Jiahui, Zequn, Felix, Kun, thank you all being the best buddies during my master study.
I become a better self because of you. We shared happiness in good times, and you were always there
when I was down. Your company made my master a unforgettable experience! Chitra, thank you for
being a ‘research partner’ during the second year. We have had so many common courses and now
we are doing thesis under the same supervisor. Wish you all the best.

The last two years has filled with ups and downs. I am grateful for the moments no matter they
are bitter or sweet, since those experiences have made me who I am today. Finishing my master
study is not the destination. Tomorrow is another day.

Ziyu Li
Delft, August 2019

v

List of Figures

2.1 Network embedding example [57] . 6
2.2 Visualization of SVD [75] . 7
2.3 Network embedding process, from sampling node sequences from a network, to learn-

ing embedding based on the input data. [14] . 8
2.4 Network Embedding v.s. Graph Neural Network [82] . 9
2.5 Network visualization of 20-NewsGroup by different network embedding algorithms[78] 12
2.6 Anomalous nodes in embedding[25] . 13
2.7 Classification of test result[1] . 13
2.8 ROC curve[1] . 14

3.1 SISNE Framework . 16
3.2 SI(S) model . 17
3.3 Temporal network snapshots and extracted spreading tree 17
3.4 Skip-gram model . 19
3.5 Extracting node pair from a walk . 20

4.1 Figure from[23] . 24
4.2 Dynamic network[52]. Edges are labeled by time. 25

5.1 Degree Distribution. 28
5.2 Network Visualization . 29

6.1 Performance evaluation with the change of X , where X determines the number of
trajectories generated from the SIS model. 32

6.2 Degree distribution of GO , SISNE and baselines on four datasets. 33

6.3 The change of AUC with β
γ , different curves correspond to different value of β. 34

6.4 The change of AUC with β for different amount of input data X for the SI model. . . . 35
6.5 Normalized average tree size < I > of the SI spreading process with the change β on

temporal networks. 36
6.6 Spreading tree size distribution with different β for SI model. When β≥ 0.01, the size

follows bimodal distribution. 37
6.7 Spreading tree depth distribution with different β for SI model. When β ≤ 0.01 in ia-

contacts_hypertext2009 and fb-forum, the size follows long-tail distribution. 38
6.8 Average degree of the first three depths in the spreading trees. Different curves corre-

spond to different value of β. 39
6.9 Average trajectory length < wl > changes with β for networks: haggle, ia-radoslaw-

email, ia-contacts_hypertext2009 and fb-forum. 40

A.1 Link Density (D) vs. β. Link density in the original network: haggle(0.0527±0.0015), ia-
radoslaw-email(0.229±0.0062), ia-contacts_hypertext2009(0.2603), fb-forum(0.0094±
0.0014 . 47

A.2 Edge Weight Correlation between GS and GO . 48
A.3 CC vs. β. CC in the original network: haggle(0.4501±0.03236), ia-radoslaw-email(0.5041±

0.0062), ia-contacts_hypertext2009(0.3971±0.0072), fb-forum(0.0231±0.0021 49

vii

A.4 Mean degree vs. β. The average degree of the original network is: haggle(12.93 ±
0.1875), ia-radoslaw-email(31.49±0.0734), ia-contacts_hypertext2009(29.15), fb-forum(7.09±
0.063) . 49

List of Tables

2.1 Notations . 6
2.2 A summary of applications of network analysis . 11
2.3 Confusion Matrix . 13

5.1 A summary of attributes of networks . 28

6.1 Performance evaluation of different network embedding methods 32
6.2 Average Degree of different models . 34

ix

List of Symbols

T Temporal window size, T ∈ R+

G Static network
GW Weighted network
GT Temporal network
GS Integrated network formed by trajectories extracted from SI(S) spreading pro-

cess.
li , j ,t Contact between node i and node j at time t
N Node set
LT Contact Set
N Number of nodes

|LT | Number of contacts
B Context size, number of nodes in walk set corpus
w s Skip-Gram model window size
d Dimension of embedding vectors (d ¿ N).
β Infection rate
γ Recovery rate

Ti (β,γ) The spreading tree records union of contacts starting from node ui under the
combination of parameters, β and γ.−→

hi Embedding vector of node ui .
f Dot product of the embedding vector between two nodes.

NS(ui) The neighboring set of node ui sampled from the SI S spreading process.
CC Clustering coefficient
<d> Mean degree

<wl> Mean trajectory length
τw Edge weight correlation
H H ∈ RN×d is the node embedding matrix

xi

Abstract

Link prediction in complex networks has attracted increasing attention. The link prediction algo-
rithms can be used to retrieve missing information, identify spurious interactions, capturing net-
work evolution, and so on. Recently, network embedding has been proposed as a new strategy to
embed network into low-dimensional vector space. By embedding nodes into vectors, the link pre-
diction problem can be converted into a similarity comparison task. Nodes with similar vectors are
more likely to connect. Some traditional network embedding methods include matrix factorization,
random walk paradigm and deep neural network models.

In this thesis, we propose SISNE, a diffusion based paradigm for node embedding, applying
Susceptible-Infected-Susceptible (SIS) model to extract node neighborhood structure. Both ran-
dom walk based algorithms and our proposed method sample node sequences as input and feed
them into a Skip-gram model, a representative language model that embeds words into vectors.
Specially, our proposed model provides flexibility to explore the network topology by operating in-
formation spreading on networks. Another contribution of the proposed model is that SISNE takes
into the account of the evolving nature of complex networks. To verify the efficacy, we conduct ex-
periments on missing link prediction task and show that our SIS diffusion based model outperforms
other state-of-the-art network embedding algorithms across all four empirical datasets, reaching a
maximal 7% improvement. Importantly, even when the input size is small, the performance remains
stable whereas other baseline models drop dramatically, which indicates that our proposed model is
less sensitive to input size and suggests that the model is applicable to large-scale networks. More-
over, we further show that as long as the infection probability β is larger than the threshold value
of the diffusion model, we can obtain a relatively high performance for link prediction task. Taken
together, our work has shown great effectiveness and efficiency in learning embeddings in temporal
networks.

xiii

1
Introduction

Networks are becoming ubiquitous across a large spectrum of fields. The critical challenge is to
represent networks effectively and efficiently so as to tackle advanced analytic tasks such as pattern
recognition[57, 67], community detection[81], prediction[37, 55] and visualization[78]. Recently,
network embedding has been proposed as a new strategy to embed network into low-dimensional
vector space, in which way, network structure is preserved[16, 45, 70]. In this thesis, I strive to in-
vestigate further to predict links in a network.

1.1. Motivation
Most of the real-world complex systems can be represented as complex networks, with nodes repre-
senting the components and links representing the connections between these individuals [50, 90].
Therefore, the study of complex networks pervades in different fields[15]. For example, with biolog-
ical or chemical networks, scientists study interactions between proteins or chemicals to facilitate
new treatments or components[20, 58]. With social networks, researchers tend to classify or cluster
users into groups or communities, which is useful for many tasks, such as advertising, search and
recommendation[28, 74]. With communication networks, learning the network structure can help
understand how the information spreads over the networks[90]. These are only a few examples of
the important role of analyzing networks.

Link prediction, one of the most fundamental problems among all the network analysis tasks,
has multiple applications, such as social recommendation on social platforms (e.g., Facebook or
Twitter) or recommendation applications on e-commerce systems [39, 40, 45]. Generally, the link
prediction problem can be classified into two classes, i.e., predicting the missing links by using the
observed networks or predicting future links by using the historical network structure [37]. Link
prediction has been attracting considerable amount of attention and has been successfully applied
in multiple fields. Email or communication networks, usually regarded as highly dynamic systems,
are served as popular observation targets for link prediction[46]. In addition, social media have been
working on the task to suggest unknown friends who may have strong connection with us[74, 80].
E-commerce websites recommend products that we could be interested in[30]. The prediction of
unknown interactions between proteins in biological networks is also in line with the link prediction
research [44, 58].

The aim of link prediction problem is to estimate the likelihood that two nodes connecting to
each other based on observed network structure[19]. To solve the advanced analytic tasks, e.g., link
prediction, node classification and etc, a concise learning of a network is fundamental. A typical so-
lution is to extract hand-engineered features from network based on expert knowledge[16]. Despite
the tedious effort for feature engineering, the lack of applicability across different prediction tasks

1

is also a concern[23]. Alternatively, network embedding, as a promising way to represent networks,
has attracted great interest recently[16, 81]. Network embedding, as the name suggested, embeds
nodes in a network into a low-dimensional vector space . Traditionally, a discrete adjacency matrix
is used to represent a network[88]. The elements of the matrix indicate the existence of edges in the
network: pairs of nodes connected are presented as positive values (1 in an unweighted network or
the weight of the link in a weighted network) in the corresponding positions (row or column index
indicates an unique node). Simply, a row vector or a column vector in the adjacency matrix can
be regarded as the representation for a specific node. In such a way, the representation space is N-
dimensional, where N is the number of nodes in the network. However, this kind of representation
contains a lot of zero values and the dimension in some large-scale networks can reach up to mil-
lions, which could cause high computation complexity. Thus works in the early 2000s, attempted
to achieve lower-dimensional embedding using dimension reduction techniques. Representative
works, such as Isomap [73], Locally Linear Embedding(LLE) [65] and Laplacian Eigenmap [4], are
conducted to embed graph into lower dimensions. Nonetheless, time complexity usually reaches
quadratic level with respect to node number. Extensive researches apply matrix factorization meth-
ods to learn a low-rank space for the adjacency matrices. Among a series of matrix factorization
models, Singular Value Decomposition (SVD) [21] is commonly used. However, network embedding
from adjacency matrix can only reveal a simple neighboring relationship between nodes. Complex
relationships such as high-order proximity are neglected. Let alone the adjacency matrix contains
noise or abundant information. In addition, these traditional methods have many limitations when
processing on large-scale networks.

In the field of Natural Language Processing (NLP), similar issues also occur when learning repre-
sentation of words, embedding words into lower-dimension. The development of language models
significantly improve the effectiveness of word embedding. Word2Vec, an up-to-date word embed-
ding model, has paved the way for learning dense, continuous and low-dimensional representations
for words [48]. Node embedding methods using random walk paradigms borrowed the idea from
the language model and established an analogy for networks by regarding a network as a “docu-
ment” and a node as a “word”[57, 70]. The same way as a document is an ordered sequence of words,
one could sample sequences of nodes from the underlying network to capture the neighborhood of
nodes. Models, e.g., DeepWalk[57], Node2Vec[23] are representative works to learn low-dimensional
vectors based on Word2Vec model, which will be further illustrated in the future section.

Even though a lot of works have been introduced about network embedding, they are mainly
designed for static networks. Few work has considered the evolving nature of the network [52]. In
addition, current network sampling methods are mainly based on random walk, which is a specific
type of diffusion processes on the network. In this work, we propose to apply information spread-
ing, e.g., SIS model, on networks to simulate node sequences, defined as trajectories. This brings
us to the first research question: Q1 – How to utilize the diffusion based model and temporal in-
formation to simulate trajectories on networks for node embedding? Since we are solving a link
prediction task, we aim to predict missing links on temporal networks. We concern about the ef-
ficacy, which leads to Q2 – How is the performance of the proposed model in contrast with the
other node embedding algorithms on the link prediction task in temporal networks? For a more
fine-grained research, we would also like to know the ‘why’: Q3 – How to explain the difference in
performance of different algorithms and how is the properties of the sampled information re-
lated to the performance? In the following chapters, we will answers the questions in details.

1.2. Research Questions
Recently, there has been renewed interest in network embedding. Many attempts have been made
to solve the link prediction task, including the random walk paradigm. This research strives to solve
the task by proposing a diffusion based paradigm. We aim to explore which sampling strategy can

extract more informative corpus and achieve better performance. This give rise to our main research
questions:

1. How to utilize the diffusion based model and temporal information to simulate trajectories
on networks for node embedding?

2. How is the performance of the proposed model in contrast with the other node embedding
algorithms on the link prediction task in temporal networks?

3. How to explain the difference in performance of different algorithms and how is the prop-
erties of the sampled information related to the performance?

1.3. Contribution
The contribution of this project is threefold:

1. We propose SISNE, which is an efficient scalable network embedding methods on temporal
networks.

2. We evaluate SISNE on link prediction task. We compare our algorithms with the state-of-art
static network embedding methods and show that considering temporal information of the
network can help significantly improve the accuracy of link prediction. In addition, we com-
pare SISNE with a random-walk based temporal network embedding method, i.e.,CTDNE,
and find that SISNE is able to obtain much higher accuracy for link prediction even with a
small amount of input data.

3. We explore the relationship of the extracted ‘corpus’ and the performance of the embedding
method.

1.4. Thesis Outline
The rest of the report is structured as follows. In Chapter 2 Background, definitions and background
knowledge pertaining the concepts used in this thesis will be explained. Baseline models, includ-
ing their main concepts and privileges are introduced in the following chapter, Chapter 3 Baseline
Models. In Chapter 4 Methododology, we present technical details for the proposed model, SISNE.
Following in Chapter 5 Experimental Setup, we introduce the networks applied and data process-
ing. In Chapter 6 Results and Analysis, SISNE is evaluated on link prediction task on various real-
world datasets compared with baselines. Parameter sensitivity is also involved. In the last chapter
Conclusion, we conclude with a discussion of the SISNE framework and propose some directions
for future work.

2
Background

This chapter includes background information about network embedding as well as its categories.
The current development on network embedding methods will also be introduced. These will lay
the foundation for the following chapters.

2.1. Definitions
This section includes definitions and meaning of a network and a temporal network. The main
notations that will be used in this thesis are given in Table 2.1.

2.1.1. Network
A network, represented as G = (N ,L), is defined as a set of N nodes connected by a set of L

links[68, 88]. The number of nodes is denoted by N , in which N = |N |. L = {li , j , i , j ∈N } is the link
set, where the element li , j indicates a static link between node i and node j . An weighted network
GW = (N ,LW) is consisted with links assigned with weights. Each link li , j in LW is associated with
a weight wi j , the strength of the tie between node i and node j .

2.1.2. Temporal Network
A temporal network can be denoted as GT = (N ,LT), where N denotes a set of nodes and N also
represents number of nodes. Here, LT = {li , j ,t , t ∈ T }, where T is a temporal window size with
T ∈ R+. li , j ,t indicates that node i and node j have a contact at time step t . A weighted network can
be derived from temporal network GT by aggregating all contacts over time, in which the weight of
each link represents the occurrence of contacts between the two end nodes of the link[87].

2.2. Network Embedding
The conventional approach to represent nodes and edges involves hand-crafted features, e.g., be-
tweenness centrality, degree centrality, clustering coefficient and etc. Properties of network struc-
ture are extracted by computing betweenness centrality, triangle count, and modularity[59]. These
features require extensive domain knowledge and expensive computation to obtain. To tackle this
challenge, learning latent representations for networks, a.k.a., network embedding, has been exten-
sively studied to automatically project the structural properties of a network into a latent space[16,
59, 88]. This background section focuses on the definition of network embedding and its motiva-
tion.

Network embedding, or Network Representation Learning(NRL), strives to embed the network
into a low-dimensional space by preserving the network structure. When nodes or edges are em-
bedded as points into low-dimensional space, the relationships among nodes and edges would be

5

Table (2.1) Notations

T Temporal window size, T ∈ R+

G Static network
GT Temporal network

li , j ,t Contact between node i and node j at time t
N Node set
LT Contact Set
N Number of nodes

|LT | Number of contacts
w s Skip-Gram model window size
d Dimension of embedding vectors (d ¿ N).
H H ∈ RN×d is the node embedding matrix

Figure (2.1) Network embedding example [57]

represented by distances between points in the space. The goal is to minimize the distance between
similar nodes, either close in the network topology or share similar roles [57, 89]. Figure 2.1 shows
an example of network embedding. In Figure 2.1(a), the karate network with colors representing
different communities is shown. The karate network is embedded into a two-dimensional space
in Figure 2.1(b). It can be observed that nodes with same color (i.e., within the same community)

in the original karate network have shorter distance in the two-dimensional space. After obtaining
the embedding vector of each node, we can further use them as input for tasks like link prediction,
community detection, classification, etc.

2.3. Network Embedding Methods
Generally, network embedding methods include matrix factorization, random walk based method
and deep neural networks[16]. In this section, we will give an overview study of these three cate-
gories. We will also introduce graph neural networks, which has close relation to node embedding.

2.3.1. Matrix Factorization
Unsupervised feature learning approaches typically exploit various matrix representations of net-
works. Laplacian and the adjacency matrices are commonly used to represent the topology struc-
ture of a network. A row or column vector can simply represent a node, but the vector is formed in
N-dimensional representation space. The goal of network embedding is to learn a low-dimensional
vector space for a network. Thus dimensionality reduction techniques can naturally be applied to
solve the problem. SVD is one commonly-used matrix factorization model, due to its ability for low-
rank approximation[43, 55]. The idea of SVD is to decompose a matrix into the product of UΣV T ,
as shown in Figure 2.2. In Figure 2.2, the complex matrix M can be factorized as the production
of orthonormal matrices U ,V T and a diagonal matrix Σ. GraRep[7], as one of the representatives
model, learns low-dimensional representations of nodes by performing SVD to reformulate the loss
function. The privilege of GraRep is its ability to preserve higher-order proximities (k-step proximi-
ties k ≤2) when constructing the global representations of nodes. Given A is the adjacency matrix,
the k-step probability transition matrix can be computed by Ak =∏k A, where Ak

i j refers to the tran-
sition probability between node i and node j consisting of k steps[16]. They extracted a positive
k-step log probabilistic matrix X k :

X k
i , j = max

(
log

(
Ak

i , j

Γk
j

)
− log(β),0

)
(2.1)

,where Γk
j = ∑

p Ak
p, j and β is a log shifted factor. The representations of nodes can be inferred

by applying SVD on X k
i , j .

Figure (2.2) Visualization of SVD [75]

Similar to SVD, non-negative matrix factorization[65] is another form of linear dimensionality
reduction. The difference is that NMF guarantees that the approximately reconstructed distances
are nonnegative. Other linear (e.g., PCA) and non-linear (e.g., IsoMap) dimensionality reduction
techniques have also been proposed[73, 84].

2.3.2. Random Walk Based Methods

The above-mentioned methods depend on matrices to capture the neighborhood of a node. Al-
though the local neighborhood of a node is encoded, usually a sparse and discrete vector is learned
in large-scale networks. In NLP field, same concerns also occur when learning word representation.
Nevertheless, Word2Vec[48], a word embedding model, significantly improves the effectiveness of
word representation by learning dense, continuous and low-dimensional vectors from sparse, dis-
crete and high-dimensional space. Inspired by the model, researches established an analogy be-
tween a network and a document. Figure 2.3 can well present the network embedding process
based on random walk paradigm. One can sample random walks (sequences of nodes) from the
underlying network, as the same way a document is formed with sequences of words. Thus walks
are generated from the original network and later can be fed into a skip-gram model. The skip-gram
model aims to predict the words based on a target word within context. Details will be given in
Chapter 3 Methododology.

Figure (2.3) Network embedding process, from sampling node sequences from a network, to learning embedding
based on the input data. [14]

However, there is no fixed sample strategy that is determined to be superior. Different sample
strategies lead to various learned feature representations. Random walk based methods lie in one
of the different sampling strategies on network. DeepWalk simply samples node sequences under a
uniform distribution on static network. While, Node2Vec[23] defines flexible notions and capable to
capture both homophily and structural equivalence attributes of networks by manipulating param-
eters. In this work, we tend to explore different sampling strategies based on information spreading
process and their effect on preserving network information. Details would be introduced in future
chapters.

2.3.3. Deep Neural Networks Based Methods

Deep Neural Networks have been used as nonlinear function learning models in many cases and
have received huge successes in other fields, e.g., computer vision, NLP, information retrieval[17].
Unlike the aforementioned methods, deep neural networks based network embedding methods
adopt deep models to learn representatives. Specifically, SDNE[78] uses deep autoencoder to pre-
serve neighborhood of nodes. The input adjacency nodes xi of node i are first fed into multiple
non-linear layers in the encoder part. Then the output representation x̂i is obtained by reversing the
calculation process of encoder, which is the decoder part. The loss function takes into the account of
first-order and second-order proximity simultaneously. Some other representative methods, such
as SDAE[8] and SiNe[80] also propose deep learning models for network embedding. These models
strive to work on high non-linearity, structure-preserving and sparsity issues.

2.3.4. Graph Neural Network
The research of graph neural networks is closely related to node embedding, whose relation is
shown in Figure 2.4. As shown in the figure, both node embedding and graph neural networks in-
volve deep learning approaches. The overlap models include graph autoencoder-based algorithms
(e.g., SDNE[78] and DNGR[8] and graph convolution neural networks with unsupervised learning
(e.g., GraphSage[24]). The learning paradigms of graph neural network include graph convolution
networks[31], graph attention networks[76], graph generative networks[35, 85] and graph spatial-
temporal networks[86].

Figure (2.4) Network Embedding v.s. Graph Neural Network [82]

2.4. Dynamic Network Embedding
Most of the models introduced above lie in this category, in which the learned networks are static.
However, in real world, networks are dynamic and evolve continuously over time. Many researches
in network representation learning has focused on static network while neglecting the rich informa-
tion on network development throughout time. Recently, a surge of works have been done focusing
on these dynamic information. And this will also be our main focus in this research.

CTDNE[52] proposed a general framework for learning temporal representations based on walks
that respect time. Temporally valid sequences of node connections are represented and thus issues
and information loss is avoided when time is ignored[51]. The process is two-fold, selecting initial
node and proceeding random walk. The neighbor selection process is under different distribution,
either uniform or linear. Walks follow a chronological patterns, aligning with ascending order in
time on each step, representing the order of events. Zhou et al. proposed DynamicTriad[91]. They
applied the concept of triad, a group of three vertices, and employed a triadic closure process, from
open triad to closed triad, to model the formation and evolution of networks. They also employed
social homophily and temporal smoothness in the model. The hypothesis is that two vertices tend
to have closer embedding if they are connected to each other and embedding vectors tend to be
close in adjacent time steps. Compared to LANE, DANE[34] takes dynamic information into con-
sideration. On every time step, changes in topology structure and attribute values are recorded.
Embeddings of network structure and attribute information are then updated by leveraging matrix

perturbation theory. This online model is scalable to large-scale networks.

2.5. Network Embedding Based on Learned Information
Based on the information preserved in the network representation, Cui et al.[16] has categorized
network embedding models into three types: 1. preserving network structure and properties 2. pre-
serving side information 3. preserving advanced information. Most of the embedding models lie
in the first category and strive to preserve the structure of network, which is also the case in this
work. We will give some overview on network embedding methods capturing versatile information.
Given the fact that a lot of information are aligned with nodes and edges in the network, additional
approaches dealing with these information is necessary.

2.5.1. Preserving Structure and Property
The first category preserve structure and property information such as neighborhood structure[57],
high-order proximity of vertices[7, 78] and network communities[81]. DeepWalk[57] was proposed
to preserve network structure. It embraces the idea that node can be represented in a network as
word in a document. By extracting random walks from a network and feeding it to Skip-gram, a com-
monly used word embedding model, DeepWalk learns node representations by maximizing the sim-
ilarity between neighbors in the walk sequences. Node2Vec[23] was later on inspired by the idea and
broadened the connectivity patterns in a network. By tuning the hyperparameter, Node2Vec is able
to manipulate the random walk sampling strategy on a network, between breadth-first search(BFS)
or depth-first search(DFS). It is also able to capture second order proximity of nodes. Line[70] was
proposed for analyzing large-scale network, and able to preserve first and second order of prox-
imity. The first order indicates the directly connected nodes and the second order preserves the
contexts(neighbors) of nodes.

SDNE[78] applied auto-encoder to capture first-order and second-order of proximity jointly to
preserve the network structure. The first order proximity is regarded as a supervised learning pro-
cess, since the edges in the network is provided. The second order proximity is captured in the
reconstruction process and is nonetheless unsupervised.

2.5.2. Integrating Additional Information
Side information includes node content or labels, as well as node types. Researches on informa-
tion network[70], attributed network[36] and heterogeneous network[12] are within the range of
this category. LANE[27], proposed by Huang et al., incorporated label information into embedding
while maintaining their correlations. They first constructed two latent matrices preserving network
structure and attribute information, which were then incorporated and mapped into another latent
representation and finally unified. To tackle the challenges in scalability problem in network em-
bedding, AANE[26] was proposed, which decomposed the modeling and optimization during joint
learning process.

As for deep neural models, HNE[12] aims at heterogeneous network embedding, utilizing rich
content and linkage information. The difference of HNE compared to the above-mentioned model
is that it aggregates different deep architecture, Deep Neural Networks(DNN) and Convolutional
Neural Networks(CNN), to handle additional information, such as texts or multimedia objects.

2.6. Application Tasks of Network Embedding
Network embedding is capable of supporting subsequent network processing and analysis tasks
such as link prediction[9, 13, 79], node classification[5, 31, 49], as well as node clustering (commu-
nity detection)[10, 41, 81]. Though the goal is to preserve as much information in the network, slight
preference on the type of information extracted is different when dealing with different tasks. Table
2.2 shows the application tasks that have been analyzed in different models.

Table (2.2) A summary of applications of network analysis

Model
Missing

Link
Prediction

Future Link
Prediction

Node Clas-
sification

Community
Detection

Network Vi-
sualization

DeepWalk[57] X
Node2Vec[23] X X X

LINE[70] X X
LANE[27] X
AANE[26] X
ComE[10] X X X
HNE[12] X X X

SDNE[78] X X X X

CTDNE[52] X
DynamicTriad[91] X X X X

Sajjad et al.[66] X
DANE[34] X X

2.6.1. Link Prediction
Among all the tasks in network analysis, link prediction is the most fundamental problems and has
received a great amount of attention[9, 13, 18, 37, 39, 79]. The goal is to predict the likelihood of
connection between two nodes given the existing topology structure and the attributes of nodes[39]
in a network. Since the network embedding tends to learn the vector based feature of each node,
similarity between nodes can be easily measured, by computing inner product or cosine similar-
ity of two node vectors. A higher value of similarity indicates a higher probability that two nodes
may be linked. The evaluation metrics include precision@k, Mean Average Percision (MAP)[78].
Node2Vec[23] tends to learn edge representations to predict missing links by comparing link predic-
tion heuristic scores for node pair with immediate neighbor sets respectively.

In real-world scenarios, link prediction techniques are widely applied to predict unknown con-
nections among people in social networks , which can be used to recommend friends to users. In
biological networks, link prediction methods have been developed to predict relationships and in-
teractions between proteins, which greatly reduces the expenses of empirical approaches.

2.6.2. Node Classification
Another application of network embedding is node classification. Given that nodes are assigned
with one or more labels in some networks. The challenge is to predict the labels of a node and
classify them to different classes. Many works have been proposed to deal with this application[7,
27, 57, 70]. The classification process is similar to the common machine learning pipeline. First a
network embedding algorithm is applied to learn representations of each node, thus every node is
represented by a low-dimensional vector. Then these learned features are fed into a classifier and
the classifier is trained on the training set where the labels of nodes are known. With the trained
classifier, we are able to infer missing or unknown labels. Usually, Micro-F1 and Macro-F1 are used
as evaluation metrics for multi-label classification problem[16, 72].

Node classification task have been testing on a variety of networks. Social networks, usually
extracted from communication networks among users on online platforms, are commonly used as
datasets, e.g. BLOGCATALOG, FLICRK[57, 70, 72, 78]. A citation network is a type of network that
represents the citation relationships between papers and authors. [56, 70] evaluate the classification
performance on DBLP network[71].

2.6.3. Community Detection
As regards to community detection, the goal is to identify which community a node belonging to.
Communities consist of dense connections within themselves while sparser connections between
them[20]. It is well recognized that community structure reveals the organizational structures and
functional components of networks and is one of the most fundamental features of networks[81].
The idea is that nodes within the same cluster are more similar[16] to each other. Community detec-
tion requires exploitation of rich node interactions, such as nodes with content and attributes[10].
Cavallari et al.[10] constructed a framework, where community embedding, community detection
and node embedding mutually improved in a closed loop. Community detection techniques can
be categorized based on the network applied, either static or temporal. In the static network, the
topology structure do not change over time, while some communities will evolve over time in tem-
poral networks. The most intuitive method to detect community is to cluster nodes based on their
learned representations using typical clustering methods, such as Kmeans[42]. Other algorithms,
such as graph partitioning[29, 77], diffusion-based algorithms[61] and modularity optimization[22]
are also applied to detect communities on static networks. When taking into the account of time
effect, different aspects of techniques should be incorporated. There are several strategies to de-
tect temporal communities, instant-optimal based[3], temporal trade-off based[63] and cross-time
based[2]. More information can be referred in [62]

Community detection algorithms have been widely applied to uncover the underlying commu-
nity structure of various networks. For instance, in biological networks, community detection meth-
ods are used to detect functionally homogeneous proteins[33]. Lin et al.[38] identified location-
concerned patterns of traffic accidents using community detection algorithms.

2.6.4. Other Tasks
There are many other tasks researched apart from the ones introduced above. Another important
application of network embedding is network visualization[56, 83]. Networks are usually presented
on a two dimensional space, such that users can easily get an overview on the community structure
or node centrality of a sophisticated network, as shown in Figure 2.5. Anomaly detection is also
widely investigated. Anomaly detection in networks attempts to infer the structural inconsisten-
cies, aiming to find out anomalous nodes that connect to various influential communities[6, 25].
Figure 2.6 shows the anomalous node in a network, in which the red nodes A,B,C connect to a set of
different communities.

Figure (2.5) Network visualization of 20-NewsGroup by different network embedding algorithms[78]

Figure (2.6) Anomalous nodes in embedding[25]

2.7. Evaluation Metrics
In the experiment, I adopt AUC as evaluation metrics.

AUC : AUC is the area under the Receiver Operating Characteristic(ROC) curve, which is one of
the most fundamental evaluation metrics on link prediction task. ROC curve is a fundamental tool
for diagnostic test evaluation. Before illustrating the ROC curve, I will first introduce the confusion
matrix of binary classification, shown in Table 2.3.

Table (2.3) Confusion Matrix

Positive Prediction Negative Prediction
Positive Label True Positive(TP) False Negative(FN)
Negative Label False Positive(FP) True Negative(TN)

The goal of classification is to discriminate populations, as shown in Figure 2.7. If the popula-
tions overlap, the criterion value selected to divide the populations will result in some false classifi-
cations, hence false positive and false negative would exist. The goal is to find the optimal criterion
value so as to achieve the best classification result.

Figure (2.7) Classification of test result[1]

In ROC curve is intuitive, different criterion values available are taken into account. It keeps
track on the true positive and true negative rate, illustration graph is shown in Figure 2.8. The ex-
treme cases are either predicting all the labels correctly or wrongly. The first case will results in the
curve passing through the upper left corner. While the latter case would be the populations overlap
completely, thus the line would be a diagonal line.

Figure (2.8) ROC curve[1]

3
Methododology

In this chapter, detailed illustration of the proposed model, SISNE, is presented. We will introduce
the model by parts, each achieving one of the specific functions.

3.1. Methodology Framework
Figure 3.1 shows the methodology framework of the proposed model, SISNE. We aim to solve a link
prediction problem by modeling our model on temporal networks. To verify our model, we first
split the dataset into trainset and testset. We tend to train our model on trainset and verify the
performance on the other. After we obtain the trainset, we simulate a SIS spreading process on
the network and generate spreading trees. We then extract trajectories from the trees and feed the
input into skip-gram model to learn embeddings of nodes. The following sections will explain each
procedure in details.

3.2. Information Spreading
Information spreading (also known as information spreading) has yielded wide attention through-
out years and abundant empirical analysis has been obtained. The application field is various[90],
from different network platforms and applications, such as instant messaging, social network inter-
actions, email and mobile communication, to information spreading phenomenon, like broadcast-
ing, information sharing, crowdsourcing and etc. Epidemic models are the most widely used among
all mathematical models for information spreading, which is also the focus of this paper.

Consider the information spread in a group of people. Based on whether information has reached
a person and whether the information is spread through by an ’awared’ person, models can be re-
sulted into SI, SIS, and SIR. SI and SIS are applied in this paper and the model is shown in Figure
3.2. As referred from the name of the models, people can be labeled as different compartments:
1. S: the susceptible state, indicating people unaware of the information yet; 2. I : the infected state,
indicating information has reached this person; 3. R: the recovered state, people who aware of the
information make no response to it and thus will not transmit it to others. Among the three models,
SI is the simplest case, in which only state S and I are considered. SI model can be illustrated by
differential equations:

d s(t)
d t =−βs(t)i (t)

di (t)
d t =βs(t)i (t)

(3.1)

, where β indicates the infection rate(the probability an infected person infect others), s(t) and
i (t) denotes the proportion of susceptible and infected people at time t .

15

Data Processing

Spreading Tree
Construction

Trajectory
Generation

Learning
Embeddings

Dataset

Trainset Testset

Temporal Graph
Construction

Information
Diffusion

2 23

2 43

Word2Vec

2 […0.2, 0.003, 0.1…]

3 […0.2, 0.003, 0.1…]

Evaluation

Evaluation 2 3 […0.04, 0.1, 0.02…]

Figure (3.1) SISNE Framework

SIS model involves a recover process. Individuals who have already known about the informa-
tion will ignore it and become susceptible again. The differential equations for SIS model is :

d s(t)

d t =−βs(t)i (t)+γi (t)

di (t)
d t =βs(t)i (t)−γi (t)

(3.2)

, where γ is recover rate (the probability an individual in I state recover and become S state).

3.3. SIS Sampling Strategy
Many network embedding models focusing on random walk has been proposed in recent years.
In this thesis report, information diffusion strategy is applied on networks to generate node pair
corpus. Under the diffusion spreading process, nodes can be in either susceptible or infectious
state. Every susceptible node would have a certain probability, infectious rate β, to be infected and
thus convert to an infectious state. In SI model, once infected, nodes would remain as infectious
permanently. While in the case of SIS, nodes could return to susceptible state after infection and
thus may have repeated infections.

Figure (3.2) SI(S) model

The process can be described into two steps: 1. spreading tree (ST) construction; 2. trajectory
generation.

3.3.1. Spreading Tree (ST) Construction
First, we randomly select a node ui as the seed and a time step ti ∈ [0,T] as the starting time of
the spreading process. Node ui is infected and the other nodes are in the susceptible state at time
step ti . The spreading follows the time step of the temporal network. At every time step, the in-
fected node can infect its susceptible neighbor with probability β and can recover with probability
γ. Therefore,we can construct the spreading tree starts from node ui as Ti (β,γ), which records the
union of contacts that the spreading passes. As the infected node can recover to the susceptible
state after a period, therefore a node can appear in the spreading tree Ti (β,γ) more than once. This
process continues till the last time step or all the nodes in the network are in suspected state, indi-
cating no infected node exists in the network. Noted that, these temporal interactions can only be
traversed in ascending time slots.

Figure (3.3) Temporal network snapshots and extracted spreading tree

Figure 3.3 shows an example of temporal network and the node state along time steps. Noted
that the infection or the susceptible sates are all presumed and may not the the same in real-time
processing. In t2, node u2 is randomly selected. We can assign u2 as the root node in the spreading
tree T2(β,γ). In the following time step t3, node u3 is infected by u2 through l2,3 and afterward u2

recovered and became susceptible again. Thus u3 is added into the spreading tree as the child node
of u2. Similar process continues along the time order. When a susceptible node u j is infected by
infected node ui , a corresponding contact is generated in the spreading tree. It is noticeable that
u2 appears twice in the hypothetical spreading tree. That is due to the fact that u2 has altered the

infection state twice, from infectious to susceptible and vice versa. As long as there is an change
in infection state, the update will be recorded in the spreading tree. In order to generate enough
corpus, a certain number of spreading trees are extracted from the dynamic networks. Some nodes
may serve as root node in different spreading trees. Due to the randomness of SIS process, two
trees with the same root node may result in various structures. In this stage, length and depth of the
spreading tree is not restricted. It only depends on the time interval, from the moment initialing the
starting time step till the last recorded event.

Algorithm 1 ST_Construction

Input: G = (N ,L),[0,T], β, γ
Output: Ti (β,γ)

1: Randomly choose node ui , ti as the seed and the starting time
2: ui is set as root of ST Ti (β,γ)
3: t = ti

4: while no infected node or t = T do
5: Operate the SI S spreading process following time stamp t ∈ [ti +1,T]
6: When temporal neighbors are infected, add nodes to ST
7: end while
8: return Ti (β,γ)

3.3.2. Generating Trajectories
For each spreading tree Ti (β,γ), we randomly select mi different trajectories from Ti (β,γ), where
mi ∝ d(i) with the assumption that the higher the degree of a node, more trajectories will be ex-
tracted from a spreading tree. All the trajectories will be gathered and serve as input data and we
define the corpus set as D . We define the size of input data as B, which defines the total number of
node in the extracted corpus set D . B is the multiplication of |N | and X , where X determines how
large is the input size.

In a spreading tree, the root node is regarded as the start of the trajectory. The following node
step is sampled under a uniform distribution among the children. And the selection strategy goes
on until it reaches the leaf node or exceed the length of the trajectory. Also in the same example
in Figure 3.3, two trajectories are possible to be extracted, {2,3,2} and {2,3,4}. Later on, these tra-
jectories will be gathered and fed into the Skip-gram model, which is illustrated in the following
session.

Algorithm 2 Generating Trajectories

Input: G = (N ,L),[0,T], B, Lmi n , Lmax , β, γ, mi

Output: a set of node corpus D

1: Initialize number of context windows C = 0
2: Initialize node corpora set D =∅
3: while B−C > 0 do
4: Ti (β,γ) = ST_Construction
5: Randomly choose trajectory Dg (g = 1, . . . ,mi) from Ti (β,γ), s.t . Lmi n < |Dg | < Lmax

6: Add the temporal trajectory Dg to D , g = 1, . . . ,mi

7: C =C + (|Dg |−ω+1), g = 1, . . . ,mi

8: end while
9: return D

3.4. Skip-gram Model
As mentioned, Skip-gram aims to predict many context words based on a target word. The goal is
to maximize the probability of context words based on target word. Since it is a deep learning ar-
chitecture, the neural structure contains hidden layers, as well as output layer. The weight matrix
contains in hidden layer is the embedding we would like to train, the embedding for words. Simi-
larly, if our input are nodes then we can train embedding for nodes. In such a way, we achieve node
representation.

3.4.1. An Analogy Model – Word2Vec
In order to obtain embedding for nodes, a language model, Word2Vec[47], is applied. Word embed-
ding has been widely analyzed in the field of NLP(Natural Language Processing) and many up-to-
date models have achieved great performance. The reason why scientist link word representation
and node representation together is that word and node share similar context. Consider a sentence
is a sequence of words and a random walk is a sequence of nodes. In order to train a language
model, we may need a large amount of texts so as to obtain enough contexts, which is also the case
in network embedding. We may also need to extract a good number of random walks from the
network so as to capture the network structure. CBOW and Skip-gram are two model architectures
within Word2Vec model. CBOW aims to predict a word based on context while Skip-gram works in
the opposite way, predicting context given a target word. Skip-gram is the model applied in node
embedding, as shown in Figure 3.4.

Figure (3.4) Skip-gram model

3.4.2. Node Pair Generation
After we extract walks from the temporal networks, one step is needed before applying Word2Vec
model to generate embedding vectors, which is node pair generation. The goal of Word2Vec is to
minimizes the distance of embedding vectors of nodes in a node pair. In this session, how to obtain
node pairs is illustrated. The parameter, window size w s makes an influence on retrieving node pair
corpus set. Below in Figure 3.5 shows the example of the noe pair retrieved from a walk with window
size 2. Each node in the walk is regarded as target word once. Then we will look at its neighbors
within the window size. The nodes within two hops are considered as the neighbors. If n1 is target
node, then its neighbors are n2 and n3. Then node pairs are generated with every combination of
the target node and its neighbors. The node pair corpus is determined by parameter w s. With a

larger w s, a larger node pair corpus is generated and perhaps more diverse, due to more neighbors
are assigned to the target node.

Figure (3.5) Extracting node pair from a walk

The parameter settings used for generating embedding vectors are in line with typical values
used for DeepWalk and Node2Vec. Specifically, d = 128, w s = 10.

3.4.3. Temporal Network Structure Modeling
In this subsection, we give mathematical illustration on the modeling of temporal network struc-
ture. We model the local pairwise proximity between node ui and node u j by a conditional proba-
bility

p(u j |ui) = exp(f (ui ,u j))∑
uk∈N exp(f (ui ,uk))

(3.3)

We set f as the dot product of the embedding vector of ui ,u j [23, 57], which can be viewed as
shallow model for modeling node pairs proximity, i.e.,

f (ui ,u j) = −→
hi ·

−→
h j (3.4)

We define NS(ui) ∈ N as the neighboring set of node ui sampled from the SI S spreading pro-
cess. We use the conditional independence assumption that the proximity between node ui and any
one neighbor is independent of all the other neighbors. Given a center node ui and its neighboring
node u j ∈ NS(ui), the proximity between node ui and all its neighbors is defined as

p(NS(ui)|ui) = ∏
u j∈NS (ui)

p(u j |ui) (3.5)

To model the parameters of the framework, the objective function is given as follows:

maxi mi ze O = ∏
ui∈N

∏
u j∈NS (ui)

p(u j |ui)

= ∑
ui∈N

∑
u j∈NS (ui)

l og p(u j |ui)

= ∑
ui∈N

∑
u j∈NS (ui)

l og
exp(f (ui ,u j))∑N

k=1 exp(f (ui ,uk))

= ∑
ui∈N

∑
u j∈NS (ui)

l og
exp(

−→
hi ·

−→
h j)∑

uk∈N exp(
−→
hi ·

−→
hk)

= ∑
ui∈N

[−log Zui +
∑

u j∈NS (ui)

−→
hi ·

−→
h j)] (3.6)

where Zui =
∑

uk∈N exp(
−→
hi ·

−→
hk). To compute Zui for each node ui , we need to traverse the entire

node set N , which is of high computational complexity. To solve this problem, we approximate
Zui by using negative sampling [48]. The idea is for node pair (ui ,u j), we sample multiple nega-
tive edges according to some noisy distribution. Therefore, the objective function Eq. (3.6) can be
approximated by

maxi mi ze O = ∑
ui∈N

[
∑

u j∈NS (ui)
l ogσ(

−→
hi ·

−→
h j)+ ∑

uk∈N ns
S (ui)

logσ(−−→hi ·
−→
hk)] (3.7)

The number of negative samples is ns for each node and the sampling distribution is F (v) ∝
d(v)3/4, in which node with high degree has higher probability to be sampled as negative nodes.
Therefore, the objective function O is maximized to produce neighboring nodes ui , node u j to be
close and node ui , node uk to be distant in the embedding space as node k is a negative sample.

4
Baseline Models

In this chapter, we will introduce the details of the baseline models, including static network em-
bedding methods, as well as temporal embedding models.

4.1. DeepWalk
DeepWalk[57] is one of the first network embedding models that applies random walk to learn net-
work structure. It is able to preserve the neighboring structures of nodes. The concept is inspired
by a language model, Word2Vec, that learns word embedding. DeepWalk proposed an analogy be-
tween nodes in a network and words in a document. Motivated by this analogy, skip-gram model is
adopted by DeepWalk to learn node representations. The goal is to maximize the probability of the
neighbors of a target node ui in a walk sequence. The formula is as follows:

max Pr({ui−w s , · · · ,ui+w s}\ui |Φ (ui)) =
i+w s∏
j=i−w s

j 6=i

Pr
(
u j |Φ (ui)

)
(4.1)

, where w s is the window size, φ(ui) is the representation of node ui and {ui−w , ...,ui+w } is the
local context nodes of node ui . Hierarchical soft-max[57] is used to efficiently retrieve the embed-
dings.

DeepWalk consists of two components: random walk generator, and second, an update proce-
dure. When generating random walks, a random node ui is uniformly sampled as the root of the
random walk Wvi . A walk extends by sampling uniformly from the neighbors of the last node visited
until the maximum length is reached. Here the walk length (wl) is fixed, while there is no restriction
for the random walks to be of the same length. In practice, the implementation specifies a number
of random walks of a fixed length to start at each node.

4.2. Node2Vec
Node2Vec[23] is served as a static baseline. It follows the idea of extracting random walks from
the network and at the same time smoothly interpolates between BFS(Breath First Search) and
DFS(Depth First Search). This is achieved by a biased neighbor selection process, compared to
DeepWalk[57], where unbiased sampling strategy is applied. Let ni denote the ith node in a walk,
starting from n0. The sampling probability of ni follows the distribution:

P (ni = x|ni−1 = v) =
{ πv x

Z if (v, x) ∈ E
0 otherwise

(4.2)

, where πv x is the transition probability from v to x, and Z is the normalizing constant.

23

Two parameters Return parameter p and In-out parameter q are designed to define a second
order random walk, where q is responsible for the interpolation between BFS and DFS. A second
order proximity indicates the neighborhood information of nodes and first order proximity reveals
the direct connection between nodes. Figure 4.1 shows the case when a random walk just traversed
edge(t ,v) and node v was deciding on its the next step.

Figure (4.1) Figure from[23]

The transition probability between node v and its neighbors followsπv x =αpq (t , x)∗wv x , where:

αpq (t , x) =

1
p if dt x = 0

1 if dt x = 1
1
q if dt x = 2

(4.3)

dt x indicates the shortest distance between node t and node x. These relations reveal the ability
of p and q in deciding on the next step to take. p controls the probability of the recurrence of a node
in a random walk. q interpolates between BFS and DFS. By tuning these parameters, node2vec is
able to capture the neighbor structure of nodes with both first-order proximity and second-order
proximity.

4.3. CTDNE
CTDNE[52] takes the time information into consideration when taking the next step during random
walk sampling. A contact indicates an edge in the network along with a unique timestamp. What
is worthwhile to mention is that the random walk extracted from the temporal network follows a
time-ascending order. Example is revealed in Figure 4.2. A random walk is possible in the sequence
of v1, v2, v3 instead of v4, v1, v2 due to the fact that events between v1, v4 appears later compared
to v1, v2 node pair link.

CTDNE consists of two steps: 1. Initial Temporal Edge Selection: an edge is first selected and
an initial node is chosen to be the start of a walk. 2. Temporal Random Walk Generation: a walk
is generated by sampling a sequence of neighbors starting from the node, following the time step.
The idea is similar to Node2vec. Node2vec considers the shortest distance between nodes while
CTDNE only samples the contacts with a larger timestamp (contacts exists later in time) compared
to the initial status and apply either unbiased or biased sampling strategy in both stages. Unbiased
sampling strategy indicates that all the contacts are sampled under uniform distribution. A biased
selection process tends to select the contacts that happened later. The biased sampling strategy is
under a softmax function. Below presents the sampling strategies by listing the formula equations.

Figure (4.2) Dynamic network[52]. Edges are labeled by time.

4.3.1. Initial Temporal Edge Selection
In this stage, an initial contact along with its associated time is sampled from an arbitrary distribution[52].
The distribution used to select the initial temporal contact can either be uniform in which case there
is no bias or the selection can be temporally biased using an arbitrary weighted (non-uniform) dis-
tribution. For biased sampling, more temporal walks from contacts closer to the current time point
are chosen, as the contacts in the distant past may be less predictive or indicative of the state of the
system now.

1. Unbiased Sampling: In this case, uniform distribution is applied. Each contact li , j ,t = (ui ,u j , t) ∈
LT has the same probability of being chosen as an initial edge.

Pr(l) = 1/ |LT | (4.4)

2. Biased Sampling: Two techniques are introduced in the original paper, weighted distribution
on exponential or linear functions. In this project, only linear function is applied.

Pr(l) = η(l)∑
l ′∈LT

η (l ′)
(4.5)

, where η maps each contact to an index with η(l) = 1 for the earliest contact.

4.3.2. Temporal Random Walk
The next node in a temporal random walk can be chosen from the set Nt (ui). We define Nt (ui) as
the temporal neighbor set of ui at time t , given contact li , j ,t = (ui ,u j , t) ∈LT . Again, either uniform
or biased distribution is applied in the neighbor selection.

1. Unbiased Sampling: Node uk has the following probability of being selected:

Pr(uk) = 1/ |Nt (ui)| (4.6)

2. Biased Sampling: Biased distribution on linear function is applied. Different from the pre-
vious contact biased sampling strategy, neighbors are chosen with time closer to the current
node.

Pr(uk) = δ(uk)∑
uk

′∈Nt (ui)δ
(
u′

k

) (4.7)

,where δ sorts temporal neighbors in descending order time-wise.

5
Experimental Setup

The proposed model is evaluated on five real-world dataset. In this chapter, details and attributes
of data is presented as well as the experimental results.

5.1. Empirical Networks
In order to evaluate the effectiveness of the proposed model, five real-world networks are included,
x social networks, y rating networks. A link prediction task is performed on all these data.

Details about each dataset are presented below:

• ia-contacts_hypertext2009[64, 69]: It is a dynamic contact social network, collected during
ACM Hypertext 2009 conference. Attendees were asked to wear radio badges that captured
the face-to-face proximity. The data last for 2.5 days. Users in contact were recorded with the
form <useri , user j , t>

• ia-radoslaw-email[46, 64]: It’s a social network extracted from an internal email communi-
cation. The activities are sending and receiving emails between employees from a mid-sized
company. The network is directed, with the first node indicating the sender and the other the
receiver.

• haggle[11, 32]: The undirected network capture interactions between people measured by
wearable wireless device. Contacts were recorded along with time. A node represents a per-
son; an edge indicates a contact between two people.

• fb-forum[53, 64]: This dataset is collected from Facebook-like online community of students.
In the community, users could create groups and post messages to groups where they are a
member. The dataset record more than 33k user activities in the forum in 2004. The original
purpose of generating this dataset is to redefine the clustering coefficients for two-mode net-
works. It was later applied in [52] for link prediction. That is also the task I strive to solve in
this project.

Summary of datasets are shown in Table 5.1, with number of edges, number of nodes, maximum
degree and average degree presented. In addition, degree distribution is presented in Figure 5.1.
Experiments are conducted on these five directed or undirected networks. All the networks will be
considered as undirected in the experiments.

27

Dataset N T |C | |E | E den. Deg. avg W avg CC wCC
ia-hypertext2009 113 5246 20818 2196 0.3470 38.87 9.48 0.5348 0.0059

ia-radoslaw-email 167 57842 82927 3251 0.2345 38.93 25.51 0.5919 0.0023
haggle 274 15662 28244 2124 0.568 15.5 13.298 0.6327 0.0312

fb-forum 899 33515 33720 7046 0.0175 15.68 4.79 0.0637 0.0012

Table (5.1) A summary of attributes of networks

(a) haggle (b) ia-radoslaw-email

(c) ia-contacts_hypertext2009 (d) fb-forum

Figure (5.1) Degree Distribution.

5.2. Network Processing
In this project, I conduct link prediction on five datasets. Link prediction is to predict links or edges
that have never existed in the train dataset. Thus, a certain proportion of edges should be removed
from the original dataset when data is processed. First, convert the original dataset as a static net-
work. 75% of edges are randomly chosen. Alongside with the corresponding timestamps from the
original network, trainset is constructed. The remaining 25% of edges remain to be testset. I have
also considered negative sampling, which was also applied in [23, 52]. The idea of negative sam-
pling is to generate links between nodes where links do not exist in original dataset. The number
of negative sampling links remains the same as positive links in the above-mentioned test samples.
The real links are labeled positive while the manufactural ones are labeled negative.

In order to make the results solid, the original data is split five times. The trainset is randomly
selected in every split. In order to increase efficiency, all the spreading trees retrieved are stored in
json files. Walks are extracted from the stored tree files, in which way it is not necessary to rerun
the code when some hyper-parameters change, for example, context size B. In addition, it is also
possible to extract different walks under the same parameters. Under every split files, walks would

(a) haggle (b) ia-radoslaw-email

(c) ia-contacts_hypertext2009 (d) fb-forum

Figure (5.2) Network Visualization

be extracted from the spreading tree file for 10 times. Thus every combination of hyper-parameters
could generate 50 results. The reason to repeat these procedure is to verify whether different split of
dataset would results in various performance and to compensate the randomness of the extraction
of walks.

6
Results and Analysis

This chapter presents the experiment results, including performance against baseline models, as
well as hyper-parameter sensitivity analysis. In the end, we will show how the properties of retrieved
networks would change by applying different spreading processes.

6.1. Parameters Overview
We first introduce the parameters considered in this model, some of which adopt the value in line
with default setting used for other baselines. The detailed information of the hyper-parameters are
shown below:

• B: input context size, which is the multiplication of N and X, B = N ∗ X . X is a tunable pa-
rameter. The values tested in the experiment are {1,2,5,10,25,50,100,150,200,250,300,350}.

• β: infection rate, probability that an infected node influence an susceptible node in informa-
tion diffusion process. The values tested in the experiments are {0.001,0.01,0.1,0.2,0.3,0.4,0.5,
0.6,0.7,0.8,0.9,1.0}. (For further fine-grained analysis below, we also tried out values such as
0.005 and 0.05)

• γ: recovery rate, probability that an infected node recoveries to susceptible state again.

• β
γ : the ratio between β and γ. Combined with β, it manipulates the SI(S) process. The selec-
tion range lies in {2,5,10,25,50,100,200,∞}. When the ratio is infinite (γ= 0), the SIS spread-
ing model degenerates to SI model.

• wl : trajectory length, which defines the length of each extracted trajectories from networks.
In this work, the default value is 20, indicating the maximum length of a trajectory is 20. The
average trajectory length is denoted as < wl >

• w s: window size, which determines the hop distance range from center node to its context
nodes when generating node pairs from trajectories. Default value is 10.

• d : embedding dimension size, which indicates the dimension of the learned embedding of
nodes. Default value is set as 128.

The most important parameters taken into consideration are the manipulation factors of SI(S)
model, β and β

γ . We conducted the experiments using 5-fold cross-validation and each fold repeat-
ing 10 times in order to even the randomness from the spreading process. We tested on 25% labeled
data from the network combined with negative samples with the same amount. Hyper-parameters

were tested with a grid search over β, βγ , X .

31

6.2. Model Comparison
For link prediction task, we use AUC to evaluate our model as well as the baseline models, which
is shown in Table 6.2. The proposed embedding method is named as SISNE. We consider both the
static network embedding methods, i.e., DeepWalk and Node2Vec, as well as temporal network em-
bedding method, i.e., CTDNE, as the baseline models. The detailed description of the models have
been given in Chapter 3. In all cases, all the parameters are kept consistent among models, includ-
ing X , d , w s and wl . The parameter, X , is set to be the optimal value when SISNE achieves the best
results (haggle: 150, ia-radoslaw-email:200, ia-contacts_hypertext2009: 250, fb-forum: 50).

Table (6.1) Performance evaluation of different network embedding methods

Dataset DeepWalk Node2vec CTDNE SISNE
haggle 0.3823 0.7807 0.7796 0.8051

ia-radoslaw-email 0.6439 0.6619 0.6575 0.7329
ia-contacts_hypertext2009 0.5209 0.5572 0.6038 0.6740

fb-forum 0.5392 0.6882 0.6942 0.7125

A
U
C

 SISNE CTDNE

x

Figure (6.1) Performance evaluation with the change of X , where X determines the number of trajectories generated
from the SIS model.

As shown in Table 6.2, applying information spreading model on network allows SISNE to out-
perform the other baseline algorithms on all four datasets under the same parameter settings. Com-
pared to the most competitive baseline model, CTDNE, the gain can be up to 7.54% in ia-radoslaw-
email and 7.01% in ia-contacts_hypertext2009. The convincing performance of SISNE and CTDNE

strongly show that we need to consider the temporal aspect of the evolving networks. As expected,
Node2Vec outperformed DeepWalk in all four datasets, due to its more flexible strategy to learn the
attributes of network, balancing between homophily and structural equivalence [23].

The advantage of SISNE also lies in its consistent performance varying the amount of input data,
which is determined by X . The result is shown in Figure 6.1. Here we compare the result of the pro-
posed model with the most competitive baseline, CTDNE. SISNE achieves large improvements over
the CTDNE model across different amount of input data. Even with small amount of data, for exam-
ple, the first points given in the figure X = 2, SISNE shows very high performance. In addition, the
performance stays relatively stable within the change of X . However, for the CTDNE model, there
is an optimal value of X , which varies across different networks. When X is small, the performance
drops dramatically.

6.2.1. Degree Distribution Analysis

(a) haggle (b) ia-radoslaw-email

(c) ia-contacts_hypertext2009 (d) fb-forum

Figure (6.2) Degree distribution of GO , SISNE and baselines on four datasets.

To further investigate the attributes of the learned information using different models, we com-
pare the degree distribution of different models compared with GO , which is shown in Figure 6.2.
We observe that static network embedding tend to have nodes with higher degree, points showing
in the right panel of the plot, indicating that DeepWalk and Node2Vec prefer to capture nodes with
high degree. On contrary, temporal embedding models, e.g., SISNE and CTDNE, are possible to
capture nodes with all possible degree, showing a great ability to capture the structure of a network.

Table (6.2) Average Degree of different models

Dataset GO SISNE CTDNE DeepWalk Node2Vec
haggle 13.17±19.83 62.62±49.84 41.71±40.49 79.60±65.64 81.01±66.03

ia-radoslaw-email 31.55±20.16 109.46±25.57 90.25±31.76 115.22±24.40 115.20±24.11
ia-contacts_hypertext2009 29.15±13.77 42.60±22.56 80.20±25.84 108.96±7.42 109.63±6.77

fb-forum 7.08±7.43 66.32±64.42 70.28±74.62 160.29±126.76 160.36±126.45

6.3. Hyper-parameter Analysis
The SISNE involves a variety of hyper-parameters as listed earlier in this Chapter. The following
part investigates how different choices of parameters affect the performance on link prediction task
across different datasets. Specifically, we examine what kind of parameters we should choose in the
information diffusion process in order to get better performance.

Figure (6.3) The change of AUC with
β
γ , different curves correspond to different value of β.

Figure 6.3 shows the performance when choosing different combinations of β
γ and β. When

β< 0.5 (β= 0.001,0.01,0.1,0.2,0.3,0.4), only SI spreading process (e.g., βγ =∞) has been conducted,
shown as dots in the right part of figures. When β ≥ 0.5, experiments with grid search over β

and β
γ are conducted. When β

γ = ∞ (e.g., an SI model), the best results are obtained almost in all
cases (expect when β is extremely small, such as β = 0.001). The best AUC value of the first three

datasets (Figure 6.3(a-c)) is given by β = 0.01,0.4,0.3 when we use the SI model respectively. For

the dataset fb-forum, the best result is obtained when applying either SIS model (β = 0.7, βγ = 100)
or SI model(β = 0.1). Compared to the other three datasets, the performance of SI S or SI model

stays relatively stable with the change of βγ or β in fb-forum. It can be concluded from the above ob-
servations that applying SI model on networks is a better option considering its good performance
and less parameter consumption. Therefore, we will focus on the analysis of the SI model in the
following sections.

6.4. Performance analysis of the SI model
According to Figure 6.3, SI model can trigger better performance compared to the SIS model. The
subsequent analysis will mainly focus on SI model. We aim to probe what sampling strategy can
yield a better performance and explore what kind of attributes are extracted using different sam-
pling strategies. In addition, we also study the properties of the information generated by the SI
spreading process.

A
U
C

 x=2 x=5 x=10 x=25
 x=50 x=100 x=150 x=200
 x=250 x=300 x=350

Figure (6.4) The change of AUC with β for different amount of input data X for the SI model.

6.4.1. Parameter analysis
To further investigate the influence of the amount of input data, performances are compared under
different combinations between β and X in Figure 6.4. In the figure, each curve represents the
performance with the same amount of input, X , with the change of the infection rate β. We observe
that more input data cannot necessarily guarantee good performance. The best AUC scores are

obtained or the performance gets stable when β is small (β ≤ 0.5). But there is a big increase of
AUC scores when β is in [0.001,0.01] for datasets haggle and ia-radoslaw-email or in [0.01,0.1] for
the datasets ia-contacts_hypertext2009 and fb-forum. Therefore, we can conclude from this figure
that, we can get relatively good performance for all the datasets tested in this work when choosing
β≥ 0.1 and a small value of X .

6.4.2. Spreading Tree Analysis of SI Model

Our method applies a diffusion-based paradigm by applying SIS spreading on networks to simu-
late trajectories. We construct spreading tree T , which represents the spreading of the SIS model
starting from each node on the networks[87]. In another word, a Ti records a spreading tree started
from node i via information diffusion. Trajectories can then be extracted from the trees by uni-
formly sampling nodes along the branches. In this section, we try to analyze the properties of the
spreading trees retrieved by setting different β. The analysis of the trajectory can provide a more
general understanding of the input data for the learning algorithm considering that the input data
we generated is extracted from the trees.

10-4 10-3 10-2 10-1 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6
 haggle
 ia-radoslaw-email
 ia-contacts-hypertext2009
 fb-forum

<I
>

Figure (6.5) Normalized average tree size < I > of the SI spreading process with the change β on temporal networks.

(a) haggle

(b) ia-radoslaw-email

(c) ia-contacts_hypertext2009

(d) fb-forum

Figure (6.6) Spreading tree size distribution with different β for SI model. When β≥ 0.01, the size follows bimodal
distribution.

In Figure 6.5, we plot the normalized average size of the spreading trees (denoted as < I >)
started from every node in the network. We show that the normalized average tree size < I > is
quite small when β is small and we can get a large infected population when β > 0.1 for all the
datasets. This corresponds to the good performance we obtained in Figure 6.4 when β > 0.1 for all
the datasets. Another observation that can be linked to Figure 6.4 is that the big increase of the infec-
tion population from almost zero to a non-zero value stays whenβ ∈ [0.001,0.01] for datasets haggle
and ia-radoslaw-email and β ∈ [0.01,0.1] for datasets ia-contacts_hypertext2009 and fb-forum. This
phenomenon corresponds to the big increase of the performance we claimed in the above section
in the corresponding range of β.

0 3 6 9 12

0.0

0.2

0.4

0.6

0.8

0 5 10 15
0.0

0.2

0.4

0.6

0.8

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

0 6 12 18 24

0.0

0.2

0.4

0.6

0.8

1.0

0 3 6 9 12
0.00

0.08

0.16

0.24

P(
M

ax
 D

ep
th

)

0 5 10 15
0.0

0.1

0.2

0.3

P(
M

ax
 D

ep
th

)

0 5 10 15
0.00

0.08

0.16

0.24

p(
M

ax
 D

ep
th

)

 =0.001 =0.01 =0.1 =0.3 =0.5
=0.005 =0.05 =0.2 =0.4

p(
M

ax
 D

ep
th

)

0 6 12 18 24
0.00

0.05

0.10

0.15

P(
M

ax
 D

ep
th

)

Max Depth

Figure (6.7) Spreading tree depth distribution with different β for SI model. When β≤ 0.01 in
ia-contacts_hypertext2009 and fb-forum, the size follows long-tail distribution.

We further give the tree size distribution in Figure 6.6, with the left panel showing the results of
semi-logarithmic plots for β ∈ [0.001,0.5] (only the ordinate is scaled logarithmically) for β and right
panel showing results of log-log plots for smallβ in the range of [0.001, 0.1]. For smallβ, the tree size
distribution stays only in the left side of figures in the left panel. If we check the log-log plots, we
find that the tree size follows long-tail distribution as shown in the figures in the right panel. When
β> 0.01, the tree size follows bimodal distribution with larger tree size compared to small β.

The depth of node i in a tree is defined as the length of the path from the root node to node i .
Therefore, the maximum depth of the spreading tree is defined as the longest path from the root
node to all the other nodes in the tree. We investigate the maximum depth distribution for different
values of β, as it is related to the trajectory length of the trajectory set (also called corpus) we need

for the Skip-gram model. The maximum depth distribution for different β is given in Figure 6.7,
with the inset of the figures showing the distribution of large β. The figures show that the maximum
depth distribution is more heterogeneous with small β and homogeneous with large β. In addition,
the max depth tends to be small with small value of β and vice versa.

We study the spreading tree structure over different β by looking at the the average degree of
the nodes in the first three depths of the tree. For example, depth 0 corresponds to the root node,
depth 1 corresponds to the nodes that are directly connected to the root node and so on. The re-
sults are shown in Figure 6.8. In the four datasets, the average degree is increasing with the depth
when β> 0.01. This implies the spreading trees are growing and further explained why we get larger
average tree size with larger β (shown in Figure 6.5). In Figure 6.8(a, b), the average degree starts
to increase when β = 0.01. However, the average degree starts to increase when when β = 0.05
in Figure 6.8(c, d). The results from Figure 6.5 to 6.8 in total show that the SI spreading thresh-
old value of haggle and ia-radoslaw-email stays approximately in the range of β ∈ [0.005,0.01]. For
ia-contacts_hypertext2009 and fb-forum, the threshold value stays in the range of β ∈ [0.01,0.05].
Taking Figure 6.4 into account, we can conclude that the good performance (AUC score) can be
obtained when β is larger than the threshold value.

1 2 3

0

10

20

1 2 3

0

10

20

1 2 3

0

8

16

1 2 3

0

10

20

 0.001 =0.005 =0.01 =0.05 =0.1
 =0.3 =0.5 =0.7 =0.9 =1

depth

<d
>

Figure (6.8) Average degree of the first three depths in the spreading trees. Different curves correspond to different
value of β.

6.4.3. Summary
We analyze the performance of SI spreading model as well as the properties of the spreading trees.
We find out that choosing a higher β tend to infect more nodes in networks, resulting in generating
spreading trees with bigger size and larger depth. We observe that the shape of trees is expanding
with a larger β while it remains thin when β is smaller than 0.01. Considering the results in link

prediction task, we can conclude that neither too much (large β) or too few information extracted
can lead to good performance. A good balance is of significance. We also notice that there is a gap
or threshold in performance, which is worthy of further investigation and figure out how it affects
the result.

6.5. Properties of Trajectories and GS
After obtaining the spreading trees, we generate the trajectories from the trees according to Section
3.4.2. Subsequently, GS can be formed by the node pairs generated from the trajectories, where
edges correspond to node pairs. In this section, we will focus on the properties of the extracted
trajectories as well as basic properties of network GS .

6.5.1. Trajectory Length Analysis

1E-3 0.01 0.1 1

2.0

2.4

2.8

3.2

3.6

4.0

<w
l>

 haggle
 ia-radoslaw-email
 ia-contacts_hypertext2009
 fb-forum

Figure (6.9) Average trajectory length < wl > changes with β for networks: haggle, ia-radoslaw-email,
ia-contacts_hypertext2009 and fb-forum.

The length of the trajectories actually can reflect the choice of neighboring nodes of the center
node in the node pair generation procedure. For example, for a fix window size w s we choose, if
the length of a trajectory is two, we can only generate node pairs with the first-order neighbors. The
longer the length, the more hops we can consider as neighbors. We show how the average trajec-
tory length changes with infection probability β in Figure 6.9. The larger β is, the larger the value
of average trajectory length. This can be explained by the maximum depth distribution we give in
Figure 6.7, which shows that larger β can result in larger maximum depth. In the static network em-
bedding methods, like Node2Vec and DeepWalk, the trajectory length is set as a default value (i.e.,
80). Since it is operated on static integrated network, the trajectory length is fixed in every extracted
trajectory. However, the average trajectory length for different β here is less than 4. Taking the per-

formance we get in the previous sections (Table 6.2), we find that for temporal networks, the best
performance of link prediction can be obtained by only considering short trajectories. We can con-
clude that a long trajectory extracted from networks may not necessary lead to good performance.

7
Conclusion

This chapter concludes the thesis work regarding the results and observations. Following up, the
future work in this field will also be discussed.

7.1. Observations and Contributions
This section will be organized by answering the research question proposed in the first chapter,
Introduction.

1. How to utilize the diffusion based model and temporal information to simulate trajectories
on networks for node embedding?

We introduce our framework in details in Chapter 3 Methododology. In short, we initialize
the process by starting from a random node at random timestamp. In every time step, we
sample newly infected nodes by applying SIS model on a temporal network. Those sampling
trajectories follow the ascending time sequence and are later fed into a Skip-gram model.

2. How is the performance of the proposed model in contrast with the other node embedding
algorithms on the link prediction task in temporal networks?

Compared to the state-of-art techniques, SISNE has achieved outstanding performance, re-
vealed by significant gains across all datasets. It has shown great privileges compared to mod-
els operating on static networks, e.g. DeepWalk and Node2vec (We aggregated the temporal
network into static network when conducting the experiments). Specially, one of our contri-
bution is that only a small amount of input is needed to achieve a relatively good result, given
the same experimental setting compared to CTDNE. Experiments are conducted choosing
different combinations of parameters. Based on the link prediction performance, we observe
that using SI spreading process on networks can yield a better results. This can be explained
by the fact that nodes can only be infected once throughout the whole process, which reduces
the noise when preserving the structure of networks.

3. How to explain the difference in performance of different algorithms and how is the prop-
erties of the sampled information related to the performance?

In chapter 6, Results and Analysis, performance of SISNE under different parameter settings
are presented. Results from all steps in the model are gathered and recorded. Based on the
node pairs retrieved in the model, we can generate simulated networks. We tend to explore
what properties of the generated network can lead to the corresponding results.

A well-rounded analysis is conducted to explore the intrinsic relationship, e.g., walk length
analysis, link density analysis, edge weight correlation analysis, trajectories analysis and etc

43

(Properties analysis is presented in Appendix). We reveal some interesting insights. It is ob-
served that there is a dramatic change in performance when β is small and the trend becomes
stable when β is larger, indicating a threshold of β leading to the gap. We also observe that
the threshold of β varies in different datasets, where the threshold of β is pair-wise similar,
haggle & ia-radoslaw-emmail (β ∈ [0.001,0.01]) and fb-forum & ia-contacts_hypertext2009
(β ∈ [0.01,0.1]). These thresholds in results also accords with the observations when exploring
the properties of the generated networks. These thresholds lie in the observed range in link
prediction performance across datasets.

In addition, we observe some attributes of the retrieved networks as expected to the rules of
different SIS spreading process. For example, a larger β leads to more nodes being infected
during the information spreading process, resulting in trajectories with larger size and larger
depth. However, a larger trajectories, indicating more information preserved, does not neces-
sarily guarantee a good performance. Similar observation is obtained in Walk length analysis,
where a larger β in SI spreading process retrieves longer walk length. A longer walk length is
not a essential condition for good performance.

7.2. Future Work
We propose a novel node embedding model under the paradigm of random walk by operating SIS
spreading process of networks. Results are analyzed and some interesting insights are discovered.
In this section, future work will be discussed.

It is mentioned previously that there is a threshold of β in link prediction performance as well as
the properties analysis of generated networks. However, these thresholds are not the same in differ-
ent datasets. In addition, though the thresholds lie in the similar range observed in link prediction
result and properties analysis, the threshold values vary in different experiments. Further investi-
gation is necessary on the correlation of the threshold of β between the network properties and the
task performance, which is not covered in this work.

Further more, networks with different attributes, e.g., density, domain, scale, can be involved.
In this work, we tested on four different datasets and a pair-wise similarity is observed. However,
we did not make the analysis on what attributes have led to the similar performance. More compre-
hensive analysis can be conducted to explore how the attributes of the network can influence the
results.

Appendices

45

A
Properties Analysis of GS

We give some analysis on the properties of GS in this appendix, serving as a support to Chapter 6
Results. Link density analysis, edge weight correlation analysis as well as degree analysis will be
covered. We tend to provide a well-rounded observation on the properties of GS .

A.1. Link Density Analysis
Link density is one of the fundamental network property, which reflects the density of a network. It
follows the fomula:

link density = 2∗|LG |
N ∗ (N −1)

(A.1)

We compute the link density of GSample by choosing different β, shown in Figure A.1. It can be
observed that a larger β generate a denser network. All four datasets obtain a denser generated
network than the original network. We also observe that when β is larger than 0.1, the generated
network tends to have consistent density across datasets. Specially, the link density remains stable
in haggle and fb-forum when β varies.

1E-3 0.01 0.1 1

0.0

0.5

1.0

1.5

lin
k

de
ns

ity

 haggle
 ia-radoslaw-email
 ia-contacts_hypertext2009
 fb-forum

Figure (A.1) Link Density (D) vs. β. Link density in the original network: haggle(0.0527±0.0015),
ia-radoslaw-email(0.229±0.0062), ia-contacts_hypertext2009(0.2603), fb-forum(0.0094±0.0014

47

A.2. Edge Weight Correlation
In this subsection, we explore the correlation between the mean edge weight of different GS and
the mean edge weight of the original network. We compute the correlation using Kendall correla-
tion coefficient, denoted as τ[60]. Given (x1, y1), (x2, y2), ..., (xn , yn) as the observations of two joint
random variables X and Y . Then, Kendall ranking correlation coefficient τ ∈ [1,1] is computed as:

τ= 1

n(n −1)

∑
i 6= j

sgn
(
xi −x j

)
sgn

(
yi − y j

)
(A.2)

We compute the edge weight correlation between GS and GO , denoted as τw . We surprisingly
find out that, as shown in Figure A.2, the peak of each line, denoting a dataset, lies around the thresh-
old of β, which also accords with our observations above. We further conduct other experiments to
analysis the properties of the extracted networks GS .

1E-3 0.01 0.1 1

0.15

0.30

0.45

0.60

w

 haggle
 ia-radoslaw-email
 ia-contacts_hypertext2009
 fb-forum

Figure (A.2) Edge Weight Correlation between GS and GO .

A.3. Clustering Coefficient Analysis
Clustering Coefficient (CC), concerned with the density of triplets of nodes in a network[54], mea-
sures the degree to which nodes in a network tend to cluster together. A higher value indicates a
tightly knit groups among nodes. It can be observed from Figure A.3 that the unweighted Cluster-
ing Coefficient change dramatically when β is small and becomes steady when β becomes larger.
Whenβ is 0.001, all four datasets obtain the lowest value. The results on fb-forum are consistent and
remain low given differentβ. Interestingly, our proposed model generate networks with a higher un-
weighted CC compared to the original network, indicating the proposed model can well capture the
informative part of the network.

A.4. Degree Analysis
In the final analysis, we compute the average degree of nodes. The average degree increases when
β is getting larger, which applies to all four datasets. When β is larger than 0.1, the average degree

1E-3 0.01 0.1 1

0.0

0.3

0.6

0.9

 C
C

 haggle
 ia-radoslaw-email
 ia-contacts_hypertext2009
 fb-forum

Figure (A.3) CC vs. β. CC in the original network: haggle(0.4501±0.03236), ia-radoslaw-email(0.5041±0.0062),
ia-contacts_hypertext2009(0.3971±0.0072), fb-forum(0.0231±0.0021

1E-3 0.01 0.1 1

0

40

80

120

<d
>

 haggle
 ia-radoslaw-email
 ia-contacts_hypertext2009
 fb-forum

Figure (A.4) Mean degree vs. β. The average degree of the original network is: haggle(12.93±0.1875),
ia-radoslaw-email(31.49±0.0734), ia-contacts_hypertext2009(29.15), fb-forum(7.09±0.063)

becomes relatively stable. This show similar trend with the average trajectory length.

A.5. Summary
In this section, we analyze the property of the extracted trajectories from the networks and compute
some basic centralities of the generated network based on the trajectories. We observe some similar
trends in all these experiments, where the performance tends to be steady when β is getting larger
(β≥ 0.1). This trend is in line with the performance in Figure 6.4, where the results for link prediction
task remain relatively stable when β≥ 0.1, especially in the case of haggle and ia-radoslaw-email.

Bibliography

[1] Roc curve analysis.

[2] Thomas Aynaud and Jean-Loup Guillaume. Multi-step community detection and hierarchical
time segmentation in evolving networks. In Proceedings of the 5th SNA-KDD workshop, 2011.

[3] Thomas Aynaud, Eric Fleury, Jean-Loup Guillaume, and Qinna Wang. Communities in evolving
networks: definitions, detection, and analysis techniques. In Dynamics On and Of Complex
Networks, Volume 2, pages 159–200. Springer, 2013.

[4] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering. In Advances in neural information processing systems, pages 585–591,
2002.

[5] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks.
In Social network data analytics, pages 115–148. Springer, 2011.

[6] Ronald S Burt. Structural holes and good ideas. American journal of sociology, 110(2):349–399,
2004.

[7] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on infor-
mation and knowledge management, pages 891–900. ACM, 2015.

[8] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph represen-
tations. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[9] Zhu Cao, Linlin Wang, and Gerard de Melo. Link prediction via subgraph embedding-based
convex matrix completion. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[10] Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang, and Erik Cam-
bria. Learning community embedding with community detection and node embedding on
graphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment, pages 377–386. ACM, 2017.

[11] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and James Scott.
Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mo-
bile Computing, (6):606–620, 2007.

[12] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and Thomas S Huang.
Heterogeneous network embedding via deep architectures. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 119–128.
ACM, 2015.

[13] Hongxu Chen, Hongzhi Yin, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen, and Xue Li.
Pme: projected metric embedding on heterogeneous networks for link prediction. In Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1177–1186. ACM, 2018.

51

[14] Elior Cohen. node2vec: Embeddings for graph data, 2018. URL https://
towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef.

[15] Luciano da Fontoura Costa, Osvaldo N Oliveira Jr, Gonzalo Travieso, Francisco Aparecido Ro-
drigues, Paulino Ribeiro Villas Boas, Lucas Antiqueira, Matheus Palhares Viana, and Luis En-
rique Correa Rocha. Analyzing and modeling real-world phenomena with complex networks:
a survey of applications. Advances in Physics, 60(3):329–412, 2011.

[16] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding. IEEE Trans-
actions on Knowledge and Data Engineering, 2018.

[17] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and Trends®
in Signal Processing, 7(3–4):197–387, 2014.

[18] Sheng Gao, Ludovic Denoyer, and Patrick Gallinari. Temporal link prediction by integrating
content and structure information. In Proceedings of the 20th ACM international conference on
Information and knowledge management, pages 1169–1174. ACM, 2011.

[19] Lise Getoor and Christopher P Diehl. Link mining: a survey. Acm Sigkdd Explorations Newslet-
ter, 7(2):3–12, 2005.

[20] Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[21] Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solu-
tions. In Linear Algebra, pages 134–151. Springer, 1971.

[22] Benjamin H Good, Yves-Alexandre De Montjoye, and Aaron Clauset. Performance of modular-
ity maximization in practical contexts. Physical Review E, 81(4):046106, 2010.

[23] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 855–864. ACM, 2016.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[25] Renjun Hu, Charu C Aggarwal, Shuai Ma, and Jinpeng Huai. An embedding approach to
anomaly detection. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE),
pages 385–396. IEEE, 2016.

[26] Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network embedding. In Proceed-
ings of the 2017 SIAM international conference on data mining, pages 633–641. SIAM, 2017.

[27] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network embedding. In Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data Mining, pages
731–739. ACM, 2017.

[28] Yann Jacob, Ludovic Denoyer, and Patrick Gallinari. Learning latent representations of nodes
for classifying in heterogeneous social networks. In Proceedings of the 7th ACM international
conference on Web search and data mining, pages 373–382. ACM, 2014.

[29] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs. Bell
system technical journal, 49(2):291–307, 1970.

https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef
https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef

[30] Young Kim and Jaideep Srivastava. Impact of social influence in e-commerce decision making.
In Proceedings of the ninth international conference on Electronic commerce, pages 293–302.
ACM, 2007.

[31] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

[32] KONECT. Haggle network dataset. http://konect.uni-koblenz.de/networks/contact. April
2017.

[33] Anna CF Lewis, Nick S Jones, Mason A Porter, and Charlotte M Deane. The function of commu-
nities in protein interaction networks at multiple scales. BMC systems biology, 4(1):100, 2010.

[34] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. Attributed network em-
bedding for learning in a dynamic environment. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pages 387–396. ACM, 2017.

[35] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep gener-
ative models of graphs. arXiv preprint arXiv:1803.03324, 2018.

[36] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. Attributed social network em-
bedding. IEEE Transactions on Knowledge and Data Engineering, 30(12):2257–2270, 2018.

[37] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Jour-
nal of the American society for information science and technology, 58(7):1019–1031, 2007.

[38] Lei Lin, Qian Wang, and Adel W Sadek. Data mining and complex network algorithms for traffic
accident analysis. Transportation Research Record, 2460(1):128–136, 2014.

[39] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150–1170, 2011.

[40] Yuping Lu. Recommender systems. In Physics Reports. Citeseer, 2012.

[41] Guixiang Ma, Lifang He, Chun-Ta Lu, Weixiang Shao, Philip S Yu, Alex D Leow, and Ann B Ragin.
Multi-view clustering with graph embedding for connectome analysis. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, pages 127–136. ACM,
2017.

[42] James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA, 1967.

[43] Yun Mao and Lawrence K Saul. Modeling distances in large-scale networks by matrix factor-
ization. In Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, pages
278–287. ACM, 2004.

[44] Víctor Martínez, Carlos Cano, and Armando Blanco. Prophnet: a generic prioritization method
through propagation of information. BMC bioinformatics, 15(1):S5, 2014.

[45] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link prediction in com-
plex networks. ACM Computing Surveys (CSUR), 49(4):69, 2017.

[46] Radosław Michalski, Sebastian Palus, and Przemysław Kazienko. Matching organizational
structure and social network extracted from email communication. In International Confer-
ence on Business Information Systems, pages 197–206. Springer, 2011.

[47] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[49] Sharad Nandanwar and M Narasimha Murty. Structural neighborhood based classification
of nodes in a network. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1085–1094. ACM, 2016.

[50] Mark EJ Newman. The structure and function of complex networks. SIAM review, 45(2):167–
256, 2003.

[51] Giang H Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul
Kim. Dynamic network embeddings: From random walks to temporal random walks. In 2018
IEEE International Conference on Big Data (Big Data), pages 1085–1092. IEEE, 2018.

[52] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion of the The
Web Conference 2018 on The Web Conference 2018, pages 969–976. International World Wide
Web Conferences Steering Committee, 2018.

[53] Tore Opsahl. Triadic closure in two-mode networks: Redefining the global and local clustering
coefficients. Social Networks, 35(2):159–167, 2013.

[54] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social networks, 31(2):
155–163, 2009.

[55] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity pre-
serving graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1105–1114. ACM, 2016.

[56] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network
representation. Network, 11(9):12, 2016.

[57] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM, 2014.

[58] Yanjun Qi, Ziv Bar-Joseph, and Judith Klein-Seetharaman. Evaluation of different biological
data and computational classification methods for use in protein interaction prediction. Pro-
teins: Structure, Function, and Bioinformatics, 63(3):490–500, 2006.

[59] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embed-
ding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, pages 459–467. ACM,
2018.

[60] Cunquan Qu, Xiuxiu Zhan, Guanghui Wang, Jianliang Wu, and Zi-ke Zhang. Temporal informa-
tion gathering process for node ranking in time-varying networks. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 29(3):033116, 2019.

[61] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to
detect community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

[62] Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: a survey. ACM
Computing Surveys (CSUR), 51(2):35, 2018.

[63] Giulio Rossetti, Luca Pappalardo, Dino Pedreschi, and Fosca Giannotti. Tiles: an online algo-
rithm for community discovery in dynamic social networks. Machine Learning, 106(8):1213–
1241, 2017.

[64] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph ana-
lytics and visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, 2015. URL http://networkrepository.com.

[65] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. science, 290(5500):2323–2326, 2000.

[66] Hooman Peiro Sajjad, Andrew Docherty, and Yuriy Tyshetskiy. Efficient representation learning
using random walks for dynamic graphs. arXiv preprint arXiv:1901.01346, 2019.

[67] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[68] Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over temporal graphs. arXiv preprint
arXiv:1903.08889, 2019.

[69] SocioPatterns. Infectious contact networks. http://www.sociopatterns.org/datasets/. Accessed
09/12/12.

[70] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pages 1067–1077. International World Wide Web Conferences Steering Committee,
2015.

[71] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 990–998. ACM, 2008.

[72] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
817–826. ACM, 2009.

[73] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[74] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

[75] Kerem Turgutlu. Tensor decomposition: Fast cnn in your
pocket, 2018. URL https://medium.com/@keremturgutlu/
tensor-decomposition-fast-cnn-in-your-pocket-f03e9b2a6788.

[76] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[77] Cuijuan Wang, Wenzhong Tang, Bo Sun, Jing Fang, and Yanyang Wang. Review on community
detection algorithms in social networks. In 2015 IEEE International Conference on Progress in
Informatics and Computing (PIC), pages 551–555. IEEE, 2015.

http://networkrepository.com
https://medium.com/@keremturgutlu/tensor-decomposition-fast-cnn-in-your-pocket-f03e9b2a6788
https://medium.com/@keremturgutlu/tensor-decomposition-fast-cnn-in-your-pocket-f03e9b2a6788

[78] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1225–1234. ACM, 2016.

[79] Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie, Minyi Guo, and Qi Liu. Shine: Signed
heterogeneous information network embedding for sentiment link prediction. In Proceedings
of the Eleventh ACM International Conference on Web Search and Data Mining, pages 592–600.
ACM, 2018.

[80] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. Signed network embed-
ding in social media. In Proceedings of the 2017 SIAM international conference on data mining,
pages 327–335. SIAM, 2017.

[81] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community pre-
serving network embedding. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[82] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[83] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. Embedding of embedding (eoe):
Joint embedding for coupled heterogeneous networks. In Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining, pages 741–749. ACM, 2017.

[84] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and Stephen Lin.
Graph embedding and extensions: A general framework for dimensionality reduction. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (1):40–51, 2007.

[85] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec. Graphrnn: A deep
generative model for graphs. arXiv preprint arXiv:1802.08773, 2018.

[86] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

[87] Xiu-Xiu Zhan, Alan Hanjalic, and Huijuan Wang. Information diffusion backbones in temporal
networks. Scientific reports, 9(1):6798, 2019.

[88] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network representation learning:
A survey. IEEE transactions on Big Data, 2018.

[89] Yunyi Zhang, Zhan Shi, Dan Feng, and Xiu-Xiu Zhan. Degree-biased random walk for large-
scale network embedding. Future Generation Computer Systems, 100:198–209, 2019.

[90] Zi-Ke Zhang, Chuang Liu, Xiu-Xiu Zhan, Xin Lu, Chu-Xu Zhang, and Yi-Cheng Zhang. Dynam-
ics of information diffusion and its applications on complex networks. Physics Reports, 651:
1–34, 2016.

[91] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

	List of Figures
	List of Tables
	Symbols
	Introduction
	Motivation
	Research Questions
	Contribution
	Thesis Outline

	Background
	Definitions
	Network
	Temporal Network

	Network Embedding
	Network Embedding Methods
	Matrix Factorization
	Random Walk Based Methods
	Deep Neural Networks Based Methods
	Graph Neural Network

	Dynamic Network Embedding
	Network Embedding Based on Learned Information
	Preserving Structure and Property
	Integrating Additional Information

	Application Tasks of Network Embedding
	Link Prediction
	Node Classification
	Community Detection
	Other Tasks

	Evaluation Metrics

	Methododology
	Methodology Framework
	Information Spreading
	SIS Sampling Strategy
	Spreading Tree (ST) Construction
	Generating Trajectories

	Skip-gram Model
	An Analogy Model – Word2Vec
	Node Pair Generation
	Temporal Network Structure Modeling

	Baseline Models
	DeepWalk
	Node2Vec
	CTDNE
	Initial Temporal Edge Selection
	Temporal Random Walk

	Experimental Setup
	Empirical Networks
	Network Processing

	Results and Analysis
	Parameters Overview
	Model Comparison
	Degree Distribution Analysis

	Hyper-parameter Analysis
	Performance analysis of the SI model
	Parameter analysis
	Spreading Tree Analysis of SI Model
	Summary

	Properties of Trajectories and GS
	Trajectory Length Analysis

	Conclusion
	Observations and Contributions
	Future Work

	Appendices
	Properties Analysis of GS
	Link Density Analysis
	Edge Weight Correlation
	Clustering Coefficient Analysis
	Degree Analysis
	Summary

	Bibliography

