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Motor drives are essential in many industrial applications such auto-
motive, robotics, power and energy industry. The motor drives need
the information of rotor speed to achieve speed control. Rotor speed
can be measured by sensors attached to rotor shaft which sends the
motor speed to the motor drive. However, using sensors in the rotat-
ing shaft is not always practical. A scheme which does not use shaft
sensors is required in applications were the working environment in
very hostile. This requirement led to the research in the field of sen-
sorless control schemes that estimate the speed of the rotor without
any senors attached to the rotating shaft. The use of machine model
helped in estimating the rotor speed by using the phase currents of
motor. However, such control schemes still have limitations at low
speed because of low signal strength of Back-EMF (Electro Motive
Force) in the motor at low speed. Therefore, the sensorless control
of motor can not be performed at low speeds. These controlling
schemes are useful only above a minimum speed when there is sub-
stantial back-EMF in the motor. Hence, applications which require
motor control at low speed still rely on shaft sensors to achieve motor
control.
The aim of this thesis is to find a method to lower the minimum

speed limit of sensorless control close to zero rpm (rounds per minute). Initially a brief study of the exist-
ing control schemes was carried out to understand the advantages and disadvantages of each control scheme.
Based on this study, current observer sensorless scheme was found to be ideal for developing a sensorless
control at low speed. The available current observer scheme does not work for low speeds. Therefore, this
scheme was further studied and three improvements were formulated for the scheme. The three improve-
ments suggested are current injection, current averaging and voltage compensation. The current injection
and current averaging were then implemented on the current observer scheme. The current injection is
done on the direct axis (d-axis) of rotating reference frame. Current injection together with the current
averaging are found to reduce the speed limit of existing sensorless control from 450rpm to 50rpm. The
stability and power efficiency of the changed control scheme were studied. The algorithm is found to make
the control unstable at speed ranges between 220-440rpm. Besides that, the current drawn from the 22V
power supply by the motor at speeds less than 200rpm was found to be 1.39A.
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Abstract

M
otor drives are essential in many industrial applications such automotive, robotics, power

and energy industry. The motor drives need the information of rotor speed to achieve

speed control. Rotor speed can be measured by sensors attached to rotor shaft which

sends the motor speed to the motor drive. However, using sensors in the rotating shaft is not

always practical. A scheme which does not use shaft sensors is required in applications were

the working environment in very hostile. This requirement led to the research in the field of

sensorless control schemes that estimate the speed of the rotor without any senors attached to

the rotating shaft. The use of machine model helped in estimating the rotor speed by using

the phase currents of motor. However, such control schemes still have limitations at low speed

because of low signal strength of Back-EMF (Electro Motive Force) in the motor at low speed.

Therefore, the sensorless control of motor can not be performed at low speeds. These controlling

schemes are useful only above a minimum speed when there is substantial back-EMF in the

motor. Hence, applications which require motor control at low speed still rely on shaft sensors

to achieve motor control.

The aim of this thesis is to find a method to lower the minimum speed limit of sensorless control

close to zero rpm (rounds per minute). Initially a brief study of the existing control schemes was

carried out to understand the advantages and disadvantages of each control scheme. Based on this

study, current observer sensorless scheme was found to be ideal for developing a sensorless control

at low speed. The available current observer scheme does not work for low speeds. Therefore, this

scheme was further studied and three improvements were formulated for the scheme. The three

improvements suggested are current injection, current averaging and voltage compensation. The

current injection and current averaging were then implemented on the current observer scheme.

The current injection is done on the direct axis (d-axis) of rotating reference frame. Current

injection together with the current averaging are found to reduce the speed limit of existing

sensorless control from 450rpm to 50rpm. The stability and power efficiency of the changed

control scheme were studied. The algorithm is found to make the control unstable at speed

ranges between 220-440rpm. Besides that, the current drawn from the 22V power supply by the

motor at speeds less than 200rpm was found to be 1.39A.
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Introduction 1
This chapter gives an introduction to the motor control, contribution and the outline
of the thesis. In section 1.1 the motivation for the thesis is given. In section 1.2 the
contribution of the thesis is enumerated. In the end, section 1.3 gives the organizational
outline of the thesis report.

1.1 Motivation

With the increased use of motor drives in many industries such as automobile, robotics,
power and energy industry, the study of motor control with digital signal controllers
has gained importance in the past couple of decades. The use of microprocessors for
controlling the power electronics in a motor drive system has led to a wide range of
control mechanism for different kind of motors available.

The earliest intelligent control mechanism for motors involved feedback system
in which the values from sensors at the rotation shaft were sent to the digital signal
controllers [1]. These sensors gave the position and speed of the motor. Their accuracy
and range was limited only by the analog to digital converters (ADC) used in the
controllers as well as the physical limitation of the motor itself. However, there are
many applications where the hostile working conditions of motor or the cost of sensors
makes control schemes with shaft sensors costlier than sensorless control. Thus there
were efforts made to achieve the motor control with same accuracy and range of speed
without the use of sensors. However, until the last decade the cost of sensorless control
was very high because of the lack of cheap high speed controllers. This resulted in very
few researches in the field of sensorless control.

With the recent development in the field of microprocessors and digital signal con-
trollers there has been a surge in the study of sensorless solutions which makes use of
the new high speed digital signal controllers. There have been many solutions proposed
both by researchers in academic institutions as well as by the industries. However it was
always a challenge to get the sensorless control at low speed for non-salient motors since
at low speed most algorithms either failed or where not accurate enough.[2][3]

1.2 Contribution of this thesis

The objective of the thesis is to develop and implement an algorithm which will improve
the sensorless speed control of the PMSM (Permanent Magnet Synchronous Motor) at
low speed. The developed algorithm is implemented on NXP’s LPC18A50 microcon-
troller. The contribution and results of the thesis is summarized below.

1



2 CHAPTER 1. INTRODUCTION

Contributions:

(i) The current injection was implemented on a sensorless scheme modeled on rotating
reference frame. The injection was done on the direct axis of rotating reference
frame with a motive to improve the angle estimation at low speed.

(ii) The current averaging scheme was implemented on the sensorless scheme along
with the current injection to improve the angle estimation at low speed.

(iii) The effect of current injection and current averaging was analyzed for its stability
and power for low speed range (less than 500rpm).

Results:

(i) The minimum speed that was controlled by sensorless scheme was brought down
from 450rpm to 50rpm.

(ii) Both current injection and averaging was found to improve the speed response at
low speed compared to previous sensorless scheme.

(iii) The instability in the control scheme between 220rpm and 440rpm was identified
and studied. The current drawn from the 22V power supply by the motor at speeds
less than 200rpm was found to be 1.39A.

The thesis achieved the purpose of having a low speed control of PMSM motor by
bringing done the minimum speed at which satisfactory control is achieved. But the
power and instability issues of the algorithm has restricted its application in its present
form.

1.3 Outline of the thesis

The organization of this thesis is as given below.

Chapter 1 gives the motivation for the thesis and the contribution of the the-
sis.
Chapter 2 explains the principles behind the modeling and control of Permanent Magnet
Synchronous motor.
Chapter 3 presents the classification and comparison of various sensorless control
schemes along with the conclusion of the literature survey.
Chapter 4 presents the current observer based sensorless scheme which will be adopted
in the thesis in detail along with its limitations.
Chapter 5 gives the proposed improvements to improve the sensorless scheme.
Chapter 6 explains the details of the experiments and test bench. The averaging
scheme is presented with its theory and advantages explained. The current injection is
presented with the analysis of its effect on the sensorless scheme.
Chapter 7 describes testing of the algorithm and the results of the experiments.
Chapter 8 presents the conclusions of the tests on proposed sensorless schemes along
with the scope to improve the scheme in future.



An overview of PMSM control 2
The purpose of this chapter is to explain the basic motor control used on PMSM and also
to give the model of motor used for implementing the controlling schemes. The section
2.1 is about various blocks in the motor control circuit. In section 2.2 the mathematical
models of PMSM is explained. Section 2.3 gives the working principle of PMSM and
their classification. Finally section 2.4 gives the conclusion of this chapter.

2.1 Motor Control

The basic functional units of an electric motor drive is shown in Fig. 2.1[30]. The
functions performed by motor control circuits include starting the motor, protecting the
motor from overcurrent, stopping the motor (braking), speed control etc. The motor con-
trol scheme used depends on the kind of motor to be controlled and also the application
for which it is used.

Figure 2.1: Functional blocks in a motor drive control

The speed of the motor is set in the digital controller (Fig. 2.1). The controller
generates the PWM (Pulse Width Modulated) signals for the corresponding speed. The
converter in the drive system consists of inverters and takes the PWM signals from
the controller and converts the DC power to AC power at the required frequency and
amplitude. The speed of the motor is sensed using either the shaft sensor or phase
currents and fed back to the controller. The controller processes the error in the speed

3



4 CHAPTER 2. AN OVERVIEW OF PMSM CONTROL

and adjusts the PWM signals such that the error is minimized. The controller also have
provision for detecting overcurrent and give breaking signals accordingly. The PWM
signals are generated by a gate driving circuits which is present in the controller itself.

2.2 PMSM motor

A Permanent magnet synchronous motor has characteristics of both induction motor
and brushless DC motor. Just like the brushless DC motor, the rotor has a permanent
magnet. The stator on the other hand is like induction machine with three phase
windings that produces sinusoidal flux in the air gap. Since no current from the stator
is used for inducing rotor currents as in induction machine, the power density for a
PMSM is higher than induction machine of same size. Because of the robust control
which can be achieved using the vector control, the Permanent Magnet Synchronous
Motor (PMSM) is favored for sensorless control[12][23][27]. With the use of Digital
Signal Controllers (DSC) in vector control, the PMSM type of motors are gaining
more popularity. This has led to their use in wide range of applications. The current
application of PMSM varies from washing machines to delicate surgical application.
Taking this into consideration, this thesis explores the sensorless control of PMSM.

The PMSM is classified into two basic types based on the position of magnet-
internal permanent magnet (IPM) and surface permanent magnet (SPM)[17]. In
internal permanent type the magnet is buried inside the rotor core, while in the surface
permanent magnet the magnet is in the periphery of the rotor. Figure 2.2 shows a
surface mounted PMSM motor with a pole pair mounted on the surface of the rotor.

Figure 2.2: The permanent magnet synchronous machine (surface mounted type)

The back EMF(Electro Motive Force) of PMSM is sinusoidal in shape[1]. Therefore,
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the three phase stator windings also require sinusoidal current supply. When the three
phase windings are energized, the stator also creates a magnetic force. The interaction
between this field and the magnetic field of the permanent magnets in the rotor creates
a force that rotates the rotor.

2.3 Mathematical Models of motor

The PMSM motor can be modeled on two types of reference frames [15][19]. The stator
of PMSM has three phase windings. To represent the voltages in three phase windings,
three vectors a,b,c that have 120 degree spatial angle difference are used (Fig. 2.3).
Since these vectors represents the voltages in stationary windings, this frame is called
stationary reference frame. When the motor is modeled on the stationary reference
frame, the voltages/currents represented by the three vectors are controlled. The phase
currents are matched with the reference currents of a set speed and the error signals
are used to generate the PWM signals. Methods such as hysteresis control and ramp
control uses this principle[16].

As seen in Fig. 2.2, the width of air gap between the rotor and stator is less along
the axis of magnet compared to the air gap in the direction perpendicular to axis of
magnet. Due to this, the air gap reluctance is varying as the rotor rotates. Therefore,
the rotor experiences different magnetic fields when it is along the pole pair and when
it is perpendicular to a pole pair. Since the inductance varies with the rotor angle, a 2
phase ‘d-q’(direct - quadrature) axis (Fig. 2.3) perpendicular to each other is used to
model the rotor [23]. Since the orientation of the ‘d-q’ axis changes as the rotor rotates,
this reference frame is called rotating reference frame or synchronous reference frame.

For modeling the motor on rotating reference frame, the machine equations of
PMSM is transformed from the three phase ‘a-b-c’ frame to the 2 phase ‘d-q’ frame.
The transformation used for this purpose is called “Park Transformation”[23]. This is
done to change the sinusoidal phase inductance in the stationary frame to a constant
in the ‘d-q’ frame. Both q and d axis components are separately controlled with PI
(Proportional-Integrator) controller to achieve torque and speed control.

2.3.1 Motor model on the d-q axis

Modeling the motor on ‘d-q’ axis requires two sets of equivalent circuits which represent
the parameters in two axis one along the d axis and the other along the q axis (Fig.
2.3)[5]. While writing these equations the inductance value used for the d axis is Ld
and the inductance value used for q-axis is Lq. The difference in Ld and Lq depends
on the difference of air gap along the magnet and perpendicular to the magnet. While
transforming the values in the ‘a-b-c’ reference frame to the ‘d-q’ reference frame, the
angle θ or rotor position is required. The different inductances (Lq and Ld), creates two
different axial properties in the rotor. This is called saliency feature of motor. However
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Figure 2.3: The rotor and stator reference frames

in many of the PMSM machines, the difference in the air gap flux is not high enough to
be used for position estimation. Depending upon the saliency of the motor, the solution
for control of PMSM will differ. Only a non-salient type will be considered in the thesis
since the proposed solution aims at sensorless control of non-salient PMSM.

As shown in Fig. 2.3, the orientation of the ‘d-q’ axis depends on angle θ. This angle
is used in the Park transform to obtain the ‘d-q’ frame voltages and currents[23]. The
voltages(Vd,Vq), currents(Id,Iq), resistance(Rd,Rq) and inductances(Ld,Lq) obtained by
such transformation are represented in circuits shown in Fig. 2.4.

Figure 2.4: PMSM equivalent circuit in d-q axis

2.3.2 Motor model on the stator reference frame

The model based on the stator uses values which are directly measured from the motor’s
terminals. Each of the three stator windings can be modeled as shown in 2.5. Thus
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there are three such circuit model for a motor, each representing a phase of motor. The
time domain voltage equation of the each phase of the motor is obtained by applying
Kirchoff’s voltage law in the circuit shown in Fig. 2.5 (Eq.2.1)[30].

Figure 2.5: PMSM equivalent circuit of stator side

Vs = R.is + L.
dis
dt

+ es (2.1)

Vs, is, R, L represents voltage, current, resistance and inductance respectively for each of
the three phases of the stator windings. es is the back EMF voltage. Rearranging the
terms in the equation 2.1, equation 2.2 is obtained.

dis
dt

= (−R
L

)is +
1

L
(Vs − es) (2.2)

The above equation in digital domain of a controller which samples the current and
voltage values is given in equation 2.3 [31].

is(n+ 1)− is(n)

Ts
= (−R

L
is +

1

L
(Vs(n)− es(n)) (2.3)

Where Ts is PWM loop time.

is(n+ 1) = (1− Ts
R

L
)is(n) +

Ts
L
Vs(n)− es(n) (2.4)

= F.is(n) +G.(Vs(n)− es(n)) (2.5)

where F = (1− Ts
R

L
) and G =

Ts
L

(2.6)

The motor parameters F and G need to be calculated from the R and L values of
the motor. The stator currents are converted from three stator components (Ia, Ib, Ic)
to two rotating components (Iα, Iβ) by Clark transform[23]. With the latest high speed
digital signal controller the Clark transform can be implemented very efficiently.

2.4 Conclusions

From the modeling of the PMSM in both the stator and rotor reference frame it can be
concluded that the stationary frame model require transformation of stationary value to
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rotating frame. The process of transformation needs the angle or rotor position. The d-q
reference frame can be obtained with the use of powerful digital signal controller that
can do the transformation very fast. Since the transformation requires the angle value,
accurate estimation of the angle is a requirement for control in rotating reference frame.
In the case of sensorless control, the angle has to be estimated within a model of motor
using the current inputs and then used in the transformation step.



Sensorless Algorithms for
Motor Control 3
The chapter covers some of the algorithms proposed in the past for the motor control

with sensorless schemes. In section 3.1 the surveyed solutions were classified into dif-
ferent categories based on various criterions. Section 3.2 describes the major algorithms
for the sensorless control. A comparison between all the described schemes is then pre-
sented in section 3.3. Finally the conclusions from the survey are presented in section 3.4.

One of the earliest research papers on controlling synchronous motor without shaft
sensors was published in 1979 by Allan B Plunkett and Fred G Turnbull working in
the power electronic lab of General Electric [24]. It uses torque control based on the
estimation of the phase angle between the voltage and current. The calculation was
done with the circuit blocks available then. The calculation was divided into different
blocks with the output of each circuit block as input to next stage. In 1985, a 4-
bit single chip microcomputer was used for the sensorless speed control for controlling
brushless motor[9]. The minimum speed achieved for that solution was 2000rpm. The
unique feature of this solution was that the control was implemented in software and
it was used to get the desired PWM frequency to achieve speed control. Following this
solution many control strategies were proposed based on different features of motors.
The minimum speed for control was brought down to some extend with improved back
EMF estimation. The different schemes which were proposed by later research papers
are discussed in the coming sections.

3.1 Classifications

The solutions that were proposed previously for sensorless control varied in its applica-
tion, complexity and accuracy. They can be classified based on many criteria as given
below.

Based on the type of motor used in controlling scheme there can be two classification.

(i) Surface mounted permanent magnet motor (SMPM)[17]: In these type of control
solution the motor used for control is of surface mounted type. The variation of
inductance is less as the rotor position changes.

(ii) Interior rotor permanent magnet (IPM)[17]: In these type of control solution the
motor used for control is of interior mounted type (IPM). In case of the IPM the
inductance of stator winding varies with rotor position creating imbalance in the
phase impedances and variation in neutral voltages.

9
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Based on the requirement of rotor position in motor control, the solutions can be
classified into two [6][7].

(i) Absolute rotor position estimation: In this type of motor control the exact position
of the rotor is essential for the control scheme. The rotor positions is either directly
measured or estimated using current inputs. e.g., saliency tracking.

(ii) Relative rotor position estimation: In this type of solution the position is not needed
for motor control, instead the torque on the motor is calculated and maintained to
the achieve set speed.

Based on the dependency on the motor parameters there can be two classification
[25][3].

(i) Parameter dependent: In this type, the controlling schemes depend on the motor
parameters such as stator resistance and stator inductance. Methods such as cur-
rent observer, fish method, INFORM are parameter dependent. Similarly, methods
based on stator flux and torque control loops depend on motor parameters. They
are sensitive to stator resistance at low speeds.

(ii) Parameter independent: In the second type of classification the controlling solution
depends on the motor parameters. Methods such as Kalman filers and saliency
tracking do not depend on motor parameters [33][3].

3.2 Main sensorless schemes

Some of the best existing solutions of sensorless Field Oriented Control (FOC) were
studied in detail to get a better understanding of the challenges faced with the low speed
control. It also provided the general approach to various kinds of motors and the useful
features could be adopted for the sensorless scheme to be implemented. Some of the
studied solutions are given bellow.

1. Extended Kalman filter [33].

2. Saliency tracing [3].

3. Fish method [29].

4. Current observer [31].

5. INFORM method [25].

6. Magnetic Anisotropy [22].

7. Current observer improved [28].

A brief review of the main solutions is presented in the next section.
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3.2.1 Kalman filter solution

The solutions based on the Kalman filter are discussed in [33], [10] and [2]. The solution
essentially involves Kalman filter applied to non linear system. The systems equations
are solved for its unknown parameters by iterative operations on the system variables
using matrices. The matrices need to be tuned based on the errors and noises in the
measuring circuits.
One of the main advantages of Kalman filter is that it does not require the motor
parameters or the initial position of the motor. However the tuning of matrix values
to get a stable system was too challenging to be finished within the time frame. On a
business perspective this technique did not give the optimum returns for the time and
effort that needed to be put. Hence this method was not considered for the sensorless
solution.

3.2.2 Saliency tracking method

Salient pole AC machine have difference in inductance along the d and q axis of motor.
This is called the saliency of motor. The methods based on the saliency require super-
imposition of a high frequency signal over the fundamental stator current component.
The high frequency signal cause high frequency current in the motor whose amplitude
depends on the rotor position. The high frequency currents are filtered using a band
pass filtered and position is estimated. However these methods sometimes require a very
high PWM frequency for implementation [3][4][11]. They have the following advantages.

1. Estimation can be used for all ranges of speed. Control is possible for speeds
ranging from zero to very high speeds.

2. No additional hardware is required for voltage injection (same inverter can be used)
and signal demodulation.

However, they have the following disadvantages.

1. Rotor position is estimated from saliency, which is not present in all the motors.

2. In motors without saliency, additional steps need to be taken to create saliency
feature. This involves changing the motor design slightly to induce saliency feature.

It was decided after the study that even though the accurate way for solving sensorless
would have been saliency tracking its application will involve tampering with the motor
design. Therefore a method based on saliency was not suitable for the required sensorless
FOC solution.

3.2.3 Fish Method

In this method the current and stator flux are projected to the rotating frame [29]. The
analysis of the two curves obtained in the rotating frame is then used for speed control.
The shape of fish flux is determined by the overall effects of the higher harmonics com-
bined. The ratio between the current and flux values gives the values of the inductance.
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The distortion between the flux and current waveforms reveals the information about
the motor parameters.

This method can be applied to non salient motors as well. It has full range of
operation from zero speed onwards. Compared to Kalman filter the only disadvantage is
the requirement of stator resistance for standstill operation. Being a patented solution
this method was not chosen for further study and improvement.

3.2.4 Current observer

The current observer differs from the previous methods because of its method of esti-
mating position and speed of rotor. The angle and speed is estimated by observing the
stator current and using it in a motor model. The error in the model is corrected with
the iteration process and the back EMF values are estimated from the model. The EMF
values are further used for angle and speed estimation. However the solutions current
observer method can only be used only for speeds above a minimum limit. Below that
speed the back EMF estimated from the motor model is too small to be used for getting
the position correctly [31][14]. Another disadvantage is that torque control at low speed
was not possible because of estimation errors at low speed.

3.2.5 INFORM method

This is used on machines that show self or induced anisotropy [25][32]. This method relies
on the measurement of variation of the rotor current which is based on its inductance
value. This will give the online reactance and the position of the rotor. While the
measurement is done the main excitation has to be stopped to since in inductor the
current will continue to flow even when the excitation is zero. However this method
is suitable only for zero and low speed. At high speed the some other techniques like
current observer or Kalman filter is required.

3.2.6 Magnetic Anisotropy

The method of magnetic anisotropy is a lot similar with the saliency method described
before. However the anisotropy phenomenon is the property of the magnets inside the
motor [22]. They acquire this property during their manufacturing process. The dipole
in the magnet will align in a particular axis called easy axis. The axis perpendicular
to this is hard axis. This will affect the magnetic field in which the motor is rotating.
The anisotropy will cause a small change in the flux according to the rotor orientation.
Measuring this effect will give the position and speed estimation.

However just like the saliency tracking this technique also not feasible because of
hardware modifications required. Also it cannot be used on all kind of PMSM motors.
The rotor parameters need to be known before for estimation.

3.2.7 Current observer improved

The improved current observer has the benefits of current observer previously explained.
Apart from that at low speed the current injection will give a much better control of
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torque when the angle estimation is not very accurate [28]. The described solution is
using a stator reference frame to estimate the position and speed. If this solution can
be adapted to rotor reference frame and if speed control is achieved instead of torque
control then improved current observer is very ideal for sensorless vector control.

3.3 Combination of Solutions

Apart from the 7 solutions mentioned above some possible combinations of methods
were also analyzed. This was done to check if the combination of solutions yield any new
advantage.

• Current observer with INFORM

• Current observer improved with sampling and averaging

• Extended Kalman filter with sampling and averaging.

Each of the combination above is found to be better than their individual solution.
A comparative study of all the main solutions and combinations is done in next
section. For methods such as fish method, magnetic anisotropy and saliency tracking,
combinations were not possible because they were not compatible with other’s methods.

3.4 Comparison of the different methods

To make a comparative study of all the control schemes 11 criteria were selected. Weights
were assigned based on the positive impact of each of the criteria. These criteria are
explained below.

1. No special requirement of motor: If the saliency feature of motor is required for the
control scheme.

2. No hardware parameter required: Some of the algorithm such as Kalman require the
information about noise levels in the sensing hardware to tune the parameter in the
control algorithm .

3. Motor parameter required/used: If the parameters are required then the control
scheme has to be calibrated every time it is used for different kind of motor.

4. Propagation delay influence on accuracy: The algorithms which required a superpo-
sition of signals on the fundamental excitation had the issue of propagation delay in
their implantation.

5. Is there additional Voltage or current injection: The voltage or current injection were
given the least weight because this only meant.
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6. Efficiency: The power consumed for the control strategy is very high priority. The
efficiency should not be affected by the control strategy.

7. 20kHz PWM sufficient: The frequency of the injected voltage or current puts con-
straint on the PWM requirement. Since the PWM is a test bench hardware constraint
it was given average weight.

8. Full range of speed possible: This is the highest weight of all the criteria since the
sensorless has to work for speeds ranging from zero to high speed theoretically.

9. CPU load: This criterion is to know the CPU load that each algorithm puts on the
controller. Since the controller CPU power is very high this criteria got very less
weight.

10. Load torque estimation: Even at the low speed control to have the torque control is
an advantage for the control scheme. This is important when the load varies on the
motor.

11. Position accuracy: This is a criterion when the position of the rotor is required to be
very accurate. In the current application it is not given the high priority.

Points were given on a scale of 0 to 10 for each criteria. The average of points scored
in all criteria is used to get the final score of each method. The results of the comparisons
are shown in the figure 3.1.

3.5 Conclusions from the survey

From the comparative study one can conclude that Fish method, Kalman filter with
sampling and averaging, current observer with sampling and averaging are three best
methods. Among these, Fish Method is a patented method and could not be used for
achieving sensorless solution. The next best method of approach was Kalman filter. The
Kalman filter involved the tuning of current sensors and creation of tuning matrices.
The chances of completing this solution within a year was very slim. Thus the current
observer with sampling and averaging was chosen as the method that will be taken up
for vector control. Methods such as those based on neural network were omitted from
study because of their complexity and longer implementation time.

Methods such as DFC (Direct Flux Control) were removed from consideration be-
cause of the type of motor used. DFC required access to the neutral point of the motor
windings[21]. In the case of test motor used for this thesis access to neutral point is not
possible. Apart from DFC, the techniques which are based on the reluctance motors were
not considered since the test motor is not reluctance motor. However, motor controls
based on reluctance property are useful for future application. It is predicted that in
future magnetic materials will become costlier[18].

The solution to be implemented for the sensorless control of PMSM in this thesis is
based on the improved current observer. As shown in the Fig. 3.1 it has the following
advantages.



3.5. CONCLUSIONS FROM THE SURVEY 15

F
ig

u
re

3
.1

:
C

om
p

ar
is

on
of

va
ri

ou
s

se
n

so
rl

es
s

co
n
tr

ol
st

ra
te

gi
es



16 CHAPTER 3. SENSORLESS ALGORITHMS FOR MOTOR CONTROL

• No special requirement of motor.

• No hardware parameters required.

• Propagation delay does not influence the accuracy.

• Efficiency is better than other methods.

• 20kHz PWM is sufficient.



Current Observer Sensorless
Scheme 4
Current observer based Sensorless Scheme was chosen as the sensorless scheme for this
thesis. This scheme uses field oriented control (FOC) for motor control [31]. This
chapter describes the current observer based sensorless scheme for motor control in detail.
The different blocks in current observer are described in the section 4.1. In Section 4.2
the observer block in the current observer scheme is explained. Section 4.3 gives the
advantages of this FOC scheme. Finally the conclusions are given in Section 4.4.

4.1 Sensorless FOC with back EMF estimation (current
observer)

The phase currents of a motor ia, ib and ic along with the rotor position(θ) are the inputs
for FOC [9]. After processing these inputs, the sensorless FOC generates the three phase
reference voltages Va, Vb and Vc. The reference voltages are then used to drive the motor.

Some of the earliest motor control were implemented with scalar motor control in
which the generated sinusoidal wave’s frequency and voltage are varied on each of the
three phases [7]. The speed of the motor was measured and fed back into the control
loop. The models used for such control had validity only in the steady state. This greatly
affected the efficiency of the motor since this resulted in transient spikes. All the controls
were working on sinusoidal variable. As the speed of motor is increased, the frequency
of system increases. This required the tuning of controllers at high speeds to have stable
outputs. In systems which worked in a wide frequency range it was not possible to have
a stable controller throughout the speed range.

Additionally, when such control mechanisms were used, technology was not advanced
enough to measure the instantaneous current in the armature windings. With the avail-
ability of faster and more precise ADCs in the digital signal controller, it was possible to
measure the line voltages and current instantaneously. Thus the motor drives were not
bulky as before and were faster and less power consuming [24].

4.1.1 Space vector for three phase circuit systems

The use of space vector in representing the current and the voltage in the synchronous
motors considerably eases the handling of three phase systems [23]. The general form of
space vector is given by the equation 4.1.

−→
X = K(PR + PS .α+ PT .α

2) (4.1)

Where α = ej
2π
3 and α2 = ej

4π
3 . PR, PS and PT represent the instantaneous variables

on three different phases. The constant K is a scalar whose value determines the final

17
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magnitude of the vector. These values are constant and real. The space vector
−→
X has a

real and imaginary part as shown in equation 4.2 and Fig. 4.1.

−→
X = Xα + jXβ (4.2)

Figure 4.1: The space vector representation of two phases in complex plain (real and
imaginary axis).

With the transfer of three phase values to two phase, the control is transferred to
a two coordinate (d and q axis) time invariant system. Therefore it is always better to
convert the star connected three phase circuit of motor to its space vector for better
control mechanism. The circuit is modeled from the stator side using the space vectors.
Fig. 4.2 shows the currents in the three phases of a stator.

−→
is is the vector sum of the

three phase currents. The three phases of the star connected synchronous motor can
be described by the equations 4.3 to 4.5 [31]. The equations are obtained by applying
Kirchoff’s voltage law to the circuit in Fig. 2.4 [31].

VSa = iSaR+ L
diSa
dt

(4.3)

VSb = iSbR+ L
diSb
dt

(4.4)

VSc = iScR+ L
diSc
dt

(4.5)

VSa, VSb and VSc are the phase voltages while iSa,iSb and iSc are the phase currents.
R and L are the phase resistance and phase inductance respectively. The three equations
can be rewritten in the vector form as equation 4.6.

−→
V Sabc =

−→
i SabcR+ L

d
−→
ψ Sabc

dt
(4.6)

Where
−→
ψ sabc = L

−→
i sabc
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Figure 4.2: Space vector representation of current vectors in three phases.

This model can be used to generate the space vector of
−→
i S123. First the input vector−→

V abc is resolved into its two components Vsα and Vsβ. Vsα and Vsβ are the two phase
representation of the stator voltages. These are then used to calculate the scalar variables
iSα and isβ. Then using two to three phase conversion module the phase currents isa,
isb and isb are obtained. Fig. 4.3 shows two phase representation of phase currents.

Figure 4.3: Three phase to two phase conversion of vectors

The Clark transform used to convert the three phase system into two phase system[1]
is given below.

isα = ia (4.7)

isβ =
1√
3
.ib +

2√
3
.ic (4.8)
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The two phase system obtained by Clark transform is still a time and speed dependent
system. This system is referenced on the stator frame. This system is transformed to
the rotor reference frame by the projection shown in Fig. 4.4. In space vector control it
is possible to model the three phase circuits in same way as single phase circuits. Thus
it is used to model the three phase synchronous motors to simplify the process.

Figure 4.4: Projection of two phase stationary frame to rotating (d-q) frame.

The projection done in Fig. 4.4 is called Park transform[1][8]. Here θ represents
the rotor position. The Park transform used to obtain isd and isq is described by the
equations 4.9 and 4.10

isd = isα cos θ + isβ sin θ (4.9)

isq = −isα sin θ + isβ cos θ (4.10)

isd and isq are the two phase rotating components of the total current applied to the
system. isd is used to coontrol the flux in motor and isq is used to control the torque
of the motor. The new two-co-ordinate system (d-q) is a time invariant system[5]. It is
possible to directly control the torque by adjusting the flux and torque components.

The estimated and actual values of isd and isq are compared to calculate the reference
voltages Vsd and Vsq to be applied in the d and q axis respectively. The two PID blocks
shown in Fig. 4.5 are used for this purpose. The output voltages of these PID blocks are
used to calculate the reference voltage Vα and Vβ in the two phase system in the stator.
The inverse Park transform used for this transformation is given in equation 4.11 and
4.12 [8].

Vsα = Vsd cos θ − Vsq sin θ (4.11)

Vsβ = Vsα sin θ + Vsq cos θ (4.12)

Thus, two reference voltages are obtained to be applied on the motor. The steps
taken to arrive at this reference voltages are summarized below.

• The phase currents Ia and Ib, (calculate Ic , Ic= -(Ia + Ib)) are obtained.
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• Clark transform is used to obtain the two phase system.

• Park transform is used to get the rotating frame currents id and iq. These are
constants at steady state value.

• Once the Isd, Isq and the reference values of each is obtained then the error signals
is generated.

• The error values are passed through PID (Proportioanl-Intergral-Differentiator)
controllers to get Vsqand Vsd

• Vsqand Vsd are transformed to the stationary frame using the inverse park trans-
form.

• Subsequently inverse Clarks transform is used to get the three phase voltages Va,Vb
and Vc.

Fig 4.5 shows the various steps of the FOC scheme explained before. The Block
SV-PWM generates the PWM signals for the voltages Va,Vb and Vc.

Figure 4.5: Basic FOC scheme. Angle theta is obtained from an observer block in a
sensorless scheme[8].

From Fig. 4.5 it is clear that, apart from the two phase currents, the FOC scheme
requires the rotor position or angle information. For a synchronous machine the rotor
flux angle theta(θ) is same as the position of the rotor and it can be calculated by
sensors which give the position of shaft. In sensorless scheme the angle theta(θ) has to
be estimated by observer block given in Fig. 4.6.
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4.2 Observer Block

The θ in Fig. 4.5 is calculated in the observer block of algorithm shown in Fig. 4.6.
The observer block takes the two phase stator current(Isα,Isβ) and voltage(Vsα,Vsβ) as
inputs. The outputs of the block are estimated shaft angle and rotor speed.

Figure 4.6: Observer block with motor model, slide mode controller, low pass fil-
ters(LPF), angle compensation.

The observer has a slide mode controller(+K/-K) that processes the error of esti-
mated and measured currents. It has a motor model which is used to calculate the
current. The estimated current i∗s is then matched with the measured current is. When
both the estimated and measured currents are the same then the EMF in the model is
used for the actual EMF. This way the EMF is estimated. The time domain equations
used in the model to represent the motor in ‘two phase coordinate system’ (α-β) are
given below.
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disα
dt

= −Risα
L

+
(Vsα + esα − zα)

L
(4.13)

disβ
dt

= −
Risβ
L

+
(Vsβ + esβ − zβ)

L
(4.14)

zα and zβ are the filtered error values where as esα and esβ are the actual back-EMF of
the two phase systems. The functional blocks inside the observer are explained in the
next section.

4.2.1 Slide Mode Controller (+K/-K)

The Slide Mode Controller (SMC) takes the input from the output of the comparison
of the measured and estimated currents. +1 or -1 is generated first based on the
comparison and it is multiplied with a factor k to get the output correction factor Z[31].
The gain is added to the voltage term of the digitized model and the process repeats
until the measured and the estimates currents are the same. The correction factor
that is obtained from the slide mode controller is then passed through the low pass
filter (LPF) to get the EMF estimation. This is fed back to the model which gets up-
dated every control cycle. The flow diagram of the observer is given in the appendix A.1.

Implementation of the low pass digital filter for the filtering the correction factor to
get the Back-EMF is as follows[31]. If the input to the filter at sample number n is
represented by x and the output by Y, then

Y (n) = Y (n− 1) + k.x(n)− c.Y (n− 1) (4.15)

Y (n) = Y (n− 1)(1− c) + k.x(n) (4.16)

Y (n)− Y (n− 1)(1− c) = k.x(n) (4.17)

Applying z transform on equation 4.17 the following equation is obtained

Y (z)− Y (z)z−1(1− c) = kX(z) (4.18)

Y (z)

X(z)
=

k

(1− z−1(1− c))
(4.19)

First order digital filter can be represented in the form of equation 4.20 [31].

Y (n) = Y (n− 1) + 2π.Fc.T (X(n)− Y (n)) (4.20)

Correction factor z is the input X here and the filtered output e* is obtained at Y(n).
Therefore, substituting the input and output in equation 4.20 the following equation is
obtained.

e∗(n) = e∗(n− 1) +
1

Fpwm
2π.Fc.T.(z(n)− e∗(n)) (4.21)
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where e = estimated EMF, Fpwm is PWM frequency at which the digital filter is
being calculated. Fc = cutoff frequency of the filter, Z(n) is unfiltered EMF from the
output of the slide mode controller or correction factor.

The estimated EMF is used at two places.

1. In the model to calculate the current and match with the measured current.

2. In the calculation of the angle of rotation.

The angle is calculated by the following equation [17].

θ = arctan
eα
eβ

(4.22)

Arc tan is calculated using CORDIC algorithm which is less expensive on the com-
putation time. Once the angle is calculated, speed(ω) is derived from angle. Speed is
calculated by adding the θ over m samples and then multiplying by a constant Kspeed

[23].

Speed(ω) =
m∑
n=1

(θ(n)− θ(n− 1)).Kspeed

Where Speed(ω) = angular velocity, θ(n) = current theta value, θ(n − 1) = previous
theta value, Kspeed = amplification factor, m = number of theta values added.

However, the angle calculated needs to be phase compensated because the filtering
functions (LPFs) applied before its calculation create a phase lag. This compensation
varies with the speed. Thus, angle compensation is a function of speed. New theta is
calculated as

θcompensated = θ + θoffset

where θoffset is determined by the motor speed.

The space vector PWM block with inverters to supply the voltage to the three phases
is implemented as shown in Figure 4.7. The ON-time of switches 1,2 and 3 in the figure
are calculated based on the PWM signals from the controller. These switches are used
to provide the calculated current from the power source VDC .

4.3 Advantages of FOC

Vector control or FOC control gives a much improved performance compared to other
controls. This control is characterized by smooth control over wide speed range, fast
acceleration and zero speed torque control. The stator current is converted to two com-
ponents magnetic field generating and torque generating. There will be two controlling
loops for each of the components. The signals from the voltage and current sensors are
used for the feedback into the loop. It requires the rotor position information which is
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Figure 4.7: Space Vector PWM block

estimated. The rotor speed is calculated based on the rotor position captured at different
time.

The three phase signals are converted to 2 phase by Clark transform to get rotating
reference frame. The new calculated voltages are converted to stationary reference
again by inverse park transform. After this it is converted to 3 phase components to be
applied on the motor. Two separate PID (Proportional-Integral-Differential) feedback
loops control the two components of the current Isq and Isd.

Limitation of FOC scheme is as follows

• It is cannot be used for zero and low speed estimation,

• Back EMF is very small at low speed and therefore the model is not accurate at
low speed.

• Motor parameter variation affects the model accuracy.

Observer stability can be analyzed using rigorous control theory (Lyapunov stability)
[6].The observer can have different options while making the choice of model. The first
choice is to make the estimations in stator or rotor frames. Both have its advantages
and disadvantages. If the stationary frame is used then there will be little effect due to
error of transformation angle on the speed estimation. At the same time this method of
stationary frame reference has its own difficulties. In stationary reference frame the AC
(Alternating current) signals need to be regulated by the controller. Most of the speed
control solutions implement the use of slide mode controller. It has the advantage of
effective regulation of AC and good robustness. However it also introduced ripples in
the estimated speed.

If the observer is based on the rotor then it can be used for both salient and non
salient motor since the inductance of stator is not varying when compared to the rotor
inductance. So it is better to have the equation in rotor side while making the model.
Also with rotor side, the d-q components can be separately controlled using PID control
loops.
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4.4 Conclusions

This chapter explored the working of a FOC based current observer scheme used for
the sensorless speed control. The current observer based controlling scheme available
in market do not work for low speed. At low speed, the back EMF is not significant
enough and the observer cannot get the accurate estimation of the current. This leads
to unstable and often wrong speed being estimated. If the shortcomings of the current
observer can be overcome then this scheme with FOC can be used for low speed control.



Improvement in the sensorless
scheme 5
In this chapter the current observer is analyzed further to look for the possibility of im-
provements at low speed. Sections 5.2 to 5.4 explain the different improvements suggested
for current observer scheme. The conclusions from the chapter are presented in section
5.6.

5.1 Methods to improve current observer

It is found that the sensorless scheme in its current form was not efficient for the motor
control at low speed. The lowest speed that the sensorless control was able to achieve
was 450rpm. The ways to improve the sensorless at low speed were further explored. The
main restriction with the current observer in its present form is lack of sufficient Back-
EMF at low speed for the current observer to estimate the speed correctly. Therefore,
improvements such as current injection, current averaging and voltage compensation
were formulated to improve the low speed motor control. These improvements will be
explained in the following sections.

5.2 Current injection

A method with the current injection for an observer based solution on a stator reference
frame model was earlier attempted in a research [28]. However, in that research the
motive was to compensate for the torque error by adding more current to field. In this
thesis the speed control is achieved from the rotor reference frame. Therefore, a different
scheme is necessary. The current injection applied for low speed is inspired from the field
weakening method. Field weakening is one of the ways to make the sensorless control
work for higher rated speed [13]. Using field weakening method, the motor could be
rotated at speed larger than the rated speed with the same field excitation. In the field
weakening method a negative current is injected into the d- axis to reduce the flux along
the d-axis. This made sure that for the same speed the field excitation required would
be less. The same concept can be used for achieving low speed control. However, the
current injection will be done for the purpose of getting a measurable back-EMF signal at
low speed. Thus, instead of injecting negative current, as in the case of field weakening,
a positive current can be injected to d-axis. Table 5.1 gives the basic difference between
field weakening and current injection.

• Flux along the d-axis is increased.

• The back-EMF for the same speed is now increased.

Applying Kirchhoffs voltage law on the stator side [17]
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Table 5.1: Comparison between the field weakening and current injection

Field Weakening Current injection

The negative Id is injected Injecting positive Id current

Flus along the d-axis is reduced Flux along the d-axis is increased

Used for high speed operations Used for low speed operations

Figure 5.1: Synchronous frame of PMSM showing the currents causing the flux in the
two axes.

Vs = IsRs +
dψs
dt

(5.1)

Where

ψs = IsLs + ψm (5.2)

Similarly for the Rotor side

ψd = LsId + ψm, ψq = LsIq (5.3)

For simplification assume steady state, Ls = 0

ψs = ψm, ψd = ψm (5.4)

The back EMF dψs
dt is then dψd

dt

Therefore increasing flux along d-axis will increase the back-EMF. A higher and
measurable back-EMF is necessary for the correct estimation of the angle and speed.
Figure 5.1 shows the d-q axis with the magnet aligned along the d axis. The flux along
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the two axes are cause by the currents shown. The currents which affect the flux ψd
are if and id. If in the present solution cannot be changed because permanent magnet
is used for field excitation. Therefore changing id remains the only way to increase the
back-EMF. This is done in software by setting the id to the necessary value. The total
current drawn by motor is given by equation 5.5.

Im =
√
I2q + I2d (5.5)

Because the estimated speed will give a larger speed than actual speed by a factor
proportional to the injected Id, this new speed and angle has to be scaled down by a
factor before using in feedback loop.

Thus current injection was one of the proposed ways to improve the sensorless scheme
at low speed. The expression for the electromagnetic torque is given by the equation
5.6[30][8].

Te =
3

2
P (ψdIq − ψqId) =

3

2
P (ψfIq + (Ld − Lq)IqId) (5.6)

Beside the problem of very less or no back-EMF at low speed, the phase currents are
sampled at a constant rate throughout the speed range of motor. This means that at
low speed the controller is not optimally used. The controller can get a more accurate
and noise free value if it processes the sampled value. This processing will not affect the
speed control since the update rate will be less at low speed.

5.3 Current Averaging

For the speed estimation, the Back EMF at low speed is not accurate in current observer.
The sampled current values are too small or inaccurate to estimate any derived values.
To overcome this, the sampled values are added many times and averaged. Assuming
the average noises cancel each other, the result will be a value that can be used in the
back EMF estimation.

The sampling rate can be adjusted with the speed of the motor as shown in the
equation below.

Sr = Sm −
Sm − 1

800
ω (5.7)

where Sm is the maximum sampling at the lowest speed. ω is the speed below which
averaging the active. This scheme is expected to reduce the lower limit of the speed
range. The limit up to which the sampling rate can be raised without affecting the
speed estimation stability needs to be identified.

5.4 Voltage Drop Compensation

For the back EMF estimation the actual voltage across the stator is not used instead
the calculated Vs in the previous step is used for the EMF estimation. The assumption
here is that the voltage estimated Vs and the actual voltage applied on the motor is the
same. Using the previous calculated Vs is favorable to eliminate the errors due to offsets
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caused by the sensing hardware. However, the actual voltage and calculated Vs is not
the same because of the inverter. Due to the drop across the inverter, the actual voltage
on the stator is not the same as the calculated Vs which is the output of controller.
The difference in this voltage will cause error in the speed control. To compensate this
error, the output of the controller and the actual voltage on the stator is compared and
an offset is added to the generated reference voltage.

The voltage drop across the inverters will reduce the actual voltage seen by the
motor. At speeds closer to zero this voltage drop will be comparable to the voltage
reference generated by the PWM signals. The MOSFETs used in the motor control
(PSMN2R6-40YS) have a forward resistance of 3m which will cause the actual voltage
across the motor to be slightly less. Schotky diode (PRLL5819) used in the inverter
stage has a forward voltage 340mV at .1A current rating. For 3A the drop across the
diode is 900mV. These voltage drops need to be accounted for while generating PWM
signals for the inverter stage. The compensation can be implemented in software with
no additional hardware requirements.

This compensation scheme is not specific to low speed control. It could be used in
general to improve the control scheme since the drop across the inverter is not restricted
at low speed alone. The scheme is expected to remove the error from the estimation due
to the inverter hardware and get more accurate speed estimation.

5.5 Integration of improvements into current observer

Based on the analysis given in the previous section the following three improvements
were proposed.

• Injecting the voltage at low speed to improve the torque control at low speed.

• Having a variable sampling rate for the EMF estimation which will improve the
accuracy at low speed.

• Having a voltage compensation to make sure the error in voltage at the stator does
not affect the motor control at low speed.

The proposed improvements will be implemented in the existing current observer scheme.
Topology of the new solution is given in the Fig. 5.2. In Fig. 5.2 the current injection
scheme is implemented at 1. The block for current injection takes set speed as input and
injects current into the d-axis. The averaging scheme is implemented at 2. The current
averaging block changes the sampling size used for sensing the phase currents. The
sampling size is determined by the speed input. The voltage compensation implemented
at 3 will compensate the voltages based on the feedback of actual voltages.

5.6 Conclusion

Based on the study of the sensorless scheme three improvements were proposed. The
current injection scheme which was inspired from the field weakening method used was
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Figure 5.2: Improved Sensorless control block diagram

expected to achieve the maximum effect to achieve low speed control. The current
averaging scheme is expected to filter the noise at low speed. The third proposed scheme
of voltage compensation was found to be the least effective in achieving low speed control.
Thus, the two schemes to be implemented on the sensorless scheme are current injection
and current averaging.



32 CHAPTER 5. IMPROVEMENT IN THE SENSORLESS SCHEME



Experimental setup and the
implementation of proposed
schemes 6
This chapter describes the experimental setup used for the design, testing and implemen-
tation of improvements in current observer. NXP’s LPC 4350 microcontroller was used
for the implementing the control algorithm. In section 6.1, the details of the LPC motor
control board, tools used for the experiments, the motor used as well as the software tools
is explained. Section 6.2 of this chapter describes the implementation of the current in-
jection on the sensorless scheme at low speed. In this section the type of current injection
and method to the arrive at injected current value is given. Section 6.3 of the chapter
explains the implementation of current averaging scheme. In section 6.4 the conclusions
of the chapter are given.

6.1 Experimental Setup

The experimental setup for the thesis includes the motor control board, power supply
unit, programing tools, motor and the software for running and testing the algorithm.
The experimental setup is shown in appendix A.2.

6.1.1 LPCXpresso motor control board

The LPCXpresso motor control kit is a platform for low voltage motor control based on
NXP’s controllers. It is possible to test different versions of the code and evaluate its
performance. The board has following functionalities which makes the testing process
easier.

• Phase voltage measurement: The terminal voltages of the motor (Va, Vb and Vc)
can be measured by the board.

• Phase current measurement: The phase currents (Ia, Ib and Ic) can be measured
by the board.

• Over-current trip and break functionality: In the case of any over current the
interrupt mechanism will send a break command to the motor. This will protect
the board from over-current damage.

• Hall sensor and QEI (Quadrature Encoder Interface) sensor inputs: The correctness
of the tested algorithm is verified by the QEI sensors.

The LPCXpresso controller board consists of the following functional blocks.

• Power supply: The board is supplied with a 24V, 2A power supply. There is
15W power supply on the board (+11V, +5V, +3.3V).
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• Controller: The current is conditioned in the motor control board before being
sampled by the ADC of microcontroller. The algorithm of sensorless control is
executed in this controller. NXPs LPC1800 microcontroller is used for implement-
ing the sensorless algorithm. The LPC1800 is a ARM Cortex-M3 based micro-
controller. The ARM Cortex-M3 core offer many advantages such as low power
consumption, enhanced debugging features. This series of microcontrollers operate
at CPU frequencies of up to 150 MHz. The LPC18xx series includes up to 200kB of
on-chip SRAM data memory multiple digital and analog peripherals. Two 10-bit
ADCs with DMA support and a data conversion rate of 400 k Samples/s. Be-
sides that it has UART ports which can be used for the debugging of the control
algorithm and for testing.

• ADC: For the purpose of motor control the 10bit ADC of the LPC4350 is used
for measuring the phase currents and Voltages. The ADC has a band width of 420
kHz. This means that it can be used to sample signals whose frequency are less
than 210KHz. However if the ADC is oversampled then this frequency range can
be further increased with some loss of precision. The accuracy of the sensorless
speed is limited by the inputs precision. Thus it is essential to have an accurate
phase current before processing it in software. The NXPs microcontroller used for
the thesis has 10 bit ADC.

• Memory: The motor control board has an external flash which could be used for
the program as well as internal RAM for debugging. For most part of the thesis
the internal RAM itself was used for the testing.

• PWM frequency: The PWM is run at 20KHz frequency to generate the pulse
which generated the sinusoidal voltage in the three phases.

• Debug facility: For the debugging of program a JLINK debugger tool is used.
This was connected via JTAG to the motor control board.

• Communication ports: UART1,UART2 and serial ports are used for communi-
cation between the micrcontroller on the board and computer.

• Sensors: The board can be configured for sensor inputs of Hall sensor or/and
quadrature sensors. In the current project the quadrature encoder is utilized for
running the motor during the development and testing stages of the thesis.

• Data type and range: The Data format of variable in the software is assigned
according to their range of use and the accuracy required. The fixed point tool
present in the motor control GUI is used for assigning the correct data type based
on the range and precision of the variables.

6.1.2 Motor used for testing

For the purpose of testing the algorithm, a brushless DC motor which has sinusoidal
back EMF is used. Table 6.1 gives the specification of the tested motor. It is a single
pole pair motor which behaves just like a PMSM motor. Thus, it can be used for testing
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Table 6.1: Specification of the motor.[20]

Power 80W

Nominal voltage 36V

Nominal Speed 132000RPM

Nominal current 2.06A

Starting current 19.7A

Terminal inductance 285.0uH

Terminal resistance 1.83ohm

the PMSM control algorithm. The motor has a quadrature sensor attached to it which
can be interfaced to the controller for testing the algorithm’s correctness.

Figure 6.1: A brushless DC motor

For a star connected load, the phase resistance and inductance is half of its termi-
nal value. The phase inductances and resistances are calculated as 142µH and .91Ω
respectively. These values are the motor parameter of the software in the controllers.

The power supply used for testing is a 24V supply. The rated nominal voltage of
motor is 36V. Therefore, with the experimental setup the motor cannot be run at speeds
greater than 80,000rpm. Since the motor is being tested for low speed this problem can
be overlooked.

6.1.3 Software tools

Keil software was used for the writing the program and along with JLink was used for
debug purpose. The UART connector was used to relay information back to the computer
for viewing the program variable in motor control GUI(graphical User Interface) tool.

The motor control tool which was available in the NXP repositories was changed
for the purpose of adding a new option of sensorless control. With the new option of
sensorless control it was possible to test the algorithm from Motor control GUI. Besides
that, additional variables in the algorithm were added to GUI for observation.
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Figure 6.2: Motor control software tool.

The repositories in the NXP had the sensorless observer implemented for a different
motor on a LPC2900 microcontroller. The sensorless code was first calibrated and
rewritten for the motor under test. Then the improvements in the algorithm were
implemented in the LPC1800/4500 microcontroller.

The quadrature sensors in the motor are used for getting the sensed speed value,
which is compared with the test algorithm‘s speed estimation.The current observer was
previously present in the software solution in the NXP repositories. However, the speed
which was estimated by the current observer was not matching with the actual speed
of the motor given by the quadrature sensors. Therefore the sensorless code required
changes before it was used for testing. Once it was ready for testing, the proposed
improvements in the scheme were added on it.

Figure 6.3 shows the software control flow. The inputs to the software such as D-
axis reference current, Speed reference are set by user before the algorithm starts. Inputs
such as phase currents and quadrature sensors are sampled during run time of algorithm.
The software function has a main routine which contains a FOC loop that is executed
when ADC is triggered. The current observer function is called in the FOC loop. The
observer calculates θ and ω. These two outputs are further used to control Id and Iq
current variables. The output from the FOC loop is the three phase voltages Va, Vb and
Vc. The timing diagram for the execution of the algorithm is shown in Fig. 6.4. The
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Figure 6.3: Software control diagram with input, functions and outputs shown.

ADC is triggered once in every PWM cycle. The time period for control loop is 50µs.
The algorithm should execute once and produce the outputs within this period.
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Figure 6.4: Timing diagram.

6.2 Current injection

The current injection scheme is expected to achieve the low speed control in the senserless
algorithm. The scheme has to be implemented on top of the senserless solution. This
integration requires testing and calibration which will be discussed in this section.

6.2.1 Steps for the implementation

The proposed current injection is to be implemented in the daxis of the rotating frame.
The value of current to be injected and the mode of injection need to be determined by
experimentation as shown in Fig. 6.5. The procedure for arriving at the optimum value
of the current injection as shown in Fig. 6.5 is described by the steps given below.

1. First, the effect of current injection on the back-EMF is quantified. This was done
by injecting current into the d-axis by setting the PI controller of Isd to a non-zero
value in the software and measuring the voltage.

2. Compare the back-EMF (alpha and beta components) values with and without
the injection. Find the function f1 relating the current injected and the back-EMF
change.

3. While calculating the estimated theta, offset compensation is added to get the
correct value.

4. The d-axis current is injected when the motor speed is at low levels. The current is
injected when the speed is less than w0(set during testing). Use EMF compensation
while injecting current at various speeds. Find the function for which the injected
current gives the control at various speeds. Plot the function F = I (w) to be used
for injecting current at different speeds.

5. Now create a new function for the change in back-EMF during current injection.
Substitute this function in the compensation the block in the flow chart (Fig. 6.5).
Use the compensation whenever the current is injected (w < w0). After testing
adjust the injection of current at various speeds.
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6. Test the current injection along with back-EMF compensation.

The above procedure was carried out for the current injection and it was found that
the back-EMF compensation scheme was a constant. There was no error in the back-
EMF estimation caused by the current injection. The back-EMF compensation block
was therefore not necessary. Hence, the procedure was done for a fixed current injection
and was applied only for speed control below 800rpm.

Figure 6.5: Testing scheme of Current injection.

6.2.2 Variation of current injection

The current injection should be done after knowing its relation function with the speed
and the angle error. Once the error is identified and quantified in the algorithm the
parameters of the current injection can be set either statically (before the start of motor)
or dynamically (during run time). The standstill conditions need to be tested and
incorporated to the algorithm to enable a startup routine. The startup routine should
be having the ability to cover wide range of speed. The current injection method should



40 CHAPTER 6. EXPERIMENTAL SETUP AND THE IMPLEMENTATION OF
PROPOSED SCHEMES

be stopped gradually as the speed increases and need to be completely stopped at the
point where the back EMF estimation is sufficiently accurate for smooth operation of
the motor. The equation of the injected current can be of two different type. In first
type, the current injection will be varied as a function of speed as given in equation. In
the second type, the function injects a constant current for speeds less than w0 (w0 is
determined during testing stage) . The current injection of varying magnitude will have
the following form.

f(n) =

{
i0 − i0

w0
|w| if |w| < w0

0 if |w| > w0

It was found that the variation of current in the injection scheme was leading to more
instability in the speed control. Thus, the use of fixed current injection was preferred for
the scheme. Eventually, a constant i0 is injected for speeds less than w0(800rpm) and no
current injected for speeds above w0. After testing the current injection for various fixed
values, the software variable of the scheme which injected the current was set to .00115.
When the current variable was set to 0.00115 the speed response showed improvements
at low speed. The PID values for the speed control was adjusted using ad-hoc method
to minimize the speed error.

6.3 Current Averaging Scheme

This scheme is expected to improve the performance of the current injection at low speed
because of the filtering feature of the averaging scheme.

6.3.1 The averaging scheme in signal processing

Averaging works like a low pass filter that removes the noises in the signal as shown
in Fig. 6.6. The method of averaging can be used in combination with oversampling
to have a higher resolution ADC. However, the ADC in the experimental setup is not
oversampled in the time domain.

Figure 6.6: Averaging as a low pass filter. The output signal is smooth compared to
input.

Here the purpose of the averaging method is to add small signals such as back-EMF
to obtain a large signal. The large signal is noise free compared to the original signal. In
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other words, the signal strength relative to the noise will be higher after averaging. The
advantage of this will be noticed in the estimation scheme were the signal strength at
low rpm is very small relative to the noise. This low signal strength can lead to an error
in the angle and speed estimation.So improving the signal strength is very essential for
the low speed sensorless motor control. The assumption here is that the noise signal is
random and has a mean value of zero.
If the actual signal strength is denoted by S, the noise in the signal is represented by the
standard deviation σ then after averaging n samples the new signal to noise ratio will be
given by the equation 6.1 [26].

Signal strength =
√
n
S

σ
(6.1)

As the number of samples(n) averaged increases, the signal strength also increases.
An example of the averaging signals in the presence of noise is shown in Fig. 6.7.

Figure 6.7: Low voltage signal with white noise averaged with 4 samples (n=4)

After the summation the sum is scaled to make sure that the unwanted bits are
removed to get the correct result.

6.3.2 Implementation and results

The averaging was done as a function of speed. The averaging size n was chosen to
be a power of 2. This was done so to make the division less time consuming for the
controller. The division involved in averaging could be achieved by shifting bits by one
position to the right. The size of averaging for various speed range was then found by
experimentation. With the sampling size high at low speed it was expected to improve
the estimation precision. The results of testing the averaging size is tabulated in Table
6.2.
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Table 6.2: Speed range and averaging size used

Speed Range Averaging size

0-200 64

200-250 32

250-325 16

325-400 8

400-450 4

450-475 2

above 475 1

6.4 Conclusions

The software control flow diagram for implementing the improvements was derived. A
single value current injection scheme that is active below a specific speed w0 was used
for the current injection. The averaging scheme was implemented as a function of speed.
The appropriate sample size for different speed ranges were determined and tabulated.
The noise in the measurements at low speed is removed by the averaging and is therefore
helpful in getting a more accurate back-EMF estimation.
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This chapter describes the testing of the algorithm to different speeds inputs at various
current injections. It studies the robustness of the solutions at various conditions and
its suitability for different application. Section 7.1 describes how the algorithm’s perfor-
mance was analyzed. Section 7.2 and Section 7.3 describe the stability and power issues
of the control scheme respectively. Finally, Section 7.4 gives the conclusions from the
test results.

7.1 Algorithm testing

The first step involves testing the implementation of the sensorless algorithm without
any improvement schemes added to it. The current software was calibrated and
modified to work on the LPC1800 and for the chosen motor. At each stage the program
was run in debug mode to check the values of variables in the program. Once the
angle estimation was reached, the graphical user interface was used to test if the angle
estimated was equal or within the error limit.

7.1.1 Angle Estimation testing

The sensorless algorithm’s accuracy and overall stability can be studied by how close
the estimated angle is to the actual angle measured using the quadrature sensors. The
comparison between the estimated and actual angle is done using the motor control GUI’s
scope tool. The quadrature encoder value is in the range 0 to .99 which corresponds to
the angle 0 to 360 degrees.

Figure 7.1: Scope result from GUI comparing the estimated and sensored angle

From the Figure 7.1 it can be observed that the estimated and the encoder reading
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is slightly out of phase. The filters used in the model creates a phase lag and makes the
estimated angle out of phase with the actual angle. This error is tabulated for different
speeds and compensated by adding an offset in the estimated angle.

Figure 7.2: Angle compensation as a function of speed

Figure 7.2 shows the angle compensation as a function of speed. From Fig. 7.1 the er-
ror in the estimated angle is found to have three maximums in one rotation. The possible
reason for this is the error due on the alignment of rotor along the three supply phases.
The angle compensation scheme implemented in this thesis is only a function of speed
and hence it is two dimensional as shown in Fig. 7.2. However, if the error caused due to
positional variation needs to be compensated, then a second variable needs to be added
to the compensation function. This variable is be the uncompensated angle itself. Thus,
the final compensation scheme will have a lookup table that is three dimensional. This
thesis presents only the two dimensional method of compensation to simplify the scheme.

To measure the improvements on the algorithm due to the improvement schemes,
first the error limit of the speed estimation was defined as +/-80rpm. Further at low
speed the error limit was set as 15% of the set motor speed. Four different cases are
studied to compare the effects of each improvement scheme. These cases are as follows.

1. Sensorless without any improvement added

2. Sensorless with current injection alone

3. Sensorless with averaging

4. Sensorless with both the improvements

The error in the estimated and the actual speed for four different cases is shown in
the figures below.
Case 1 : Sensorless algorithm without any improvements.
The sensorless solution without any suggested improvements was tested on the motor
for quantifying the speed limits. The response of the motor to the sensorless is given in
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the Fig. 7.3. The speed error is plotted against the set speed in Fig. 7.4.

Figure 7.3: The actual rotor speed vs set rotor speed(case 1)

Figure 7.4: The speed error plotted against the set speed(case 1)

It can be seen from Fig.7.3 that the performance of the control is not good for
speeds below 450rpm(error greater than 80rpm). The proposed improvements were
made in the algorithm through the software changes and were run again at the same
speed range with all remaining parameters constant.

Case 2 : Sensorless with current injection.

The effect of adding current injection to the sensorless scheme is shown in Figure 7.5
and 7.6. At low speed, the effect of current injection can be seen in the figure 7.5. As
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Figure 7.5: The actual rotor speed vs set rotor speed(case 2)

Figure 7.6: The speed error plotted against the set speed(case 2)

expected, the presence of back-EMF signal is making it possible to control the motor
at low speed. However, the error analysis in Fig. 7.6 shows that below the speed of
400rpm the error limit exceeds the allowable limit (80rpm). The cause of error is due to
the noise and the accumulation of angle estimation error over the numerous PID loops.
At low speed, the loops per rotation is large compared to higher speed. Thus, in the
absence of accurate angle estimation this error will persist.

Case 3 : Sensorless scheme with averaging method added.
To analyze the effect of averaging the senserless scheme was tested in the presence of
current averaging without the application of current injection. The figure 7.7 and 7.8
shows the results of this test.

As expected, the averaging scheme has very little effect on determining the lower
limit of speed control. Thus, this method is not useful if used without any other
additional schemes. The purpose of averaging is to filter out the noise and give a
measurable value of back-EMF. From the figures 7.7 and 7.8, it can be seen that
the averaging scheme gives a measurable speed even below 200rpm. This aspect
could be beneficial when used along with the current injection scheme. The speed
response in Fig. 7.7 is much smoother compared to the speed response in Fig. 7.3. Thus,
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Figure 7.7: The actual rotor speed vs set rotor speed(case 3)

Figure 7.8: The speed error plotted against the set speed(case 3)

averaging scheme acts as a low pass filter and helps in achieving a smoother speed control.

Case 4 : Sensorless with both the improvements.

The results of tests on case 4 are shown in Fig. 7.9 and 7.10. When both the
improvements were applied, the lowest stable speed obtained was 50rpm. However, the
control had instabilities in the range 220rpm to 440rpm (Fig. 7.10). The instabilities
in the speed control were suspected to be due to the PID alone. To check if PID was
the cause of the instabilities, the PID loops were disabled and the sensorless solutions
were tested for the current injection and averaging methods. This resulted in same
test result for case 4. Hence, it was concluded that PID was not the cause for the
instabilities. The angle estimation was directly checked for the speed range 220rpm to
400rpm. The estimated angle was found to deviate from actual angle by large values in
this range. Hence, the cause for the instability is the incorrect angle estimation for the
range 220rpm-440rpm.
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Figure 7.9: The actual rotor speed vs set rotor speed(case 4)

Figure 7.10: The speed error plotted against the set speed(case 4)

7.2 Motor Control stability

The motor speed response was compared with the 15% set speed value to check the range
of speed for which the error is within allowable range. From Figure 7.11, the region of
stability can be identified as the region in which the error signal (green) is within the
V shape of the 15% set speed lines (red and blue). This region is identified as between
220rpm and 440rpm. From Table 7.1, the effect of current injection and averaging is not
impressive with a maximum error of 270rpm and maximum % error of 100 within its full
range of operation. However, if one excludes the unstable range from 200rpm to 400rpm,
the control performance is better. In its stable range the maximum error is 80rpm and
the maximum percentage error is 15%.

7.3 Power efficiency

The motor algorithm needs to be tested for its power efficiency at low speeds. The
current drawn from the supply before starting the motor is .11A. This current is used
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Figure 7.11: The speed error, +/- 15% of set speed plotted against the set speed

Table 7.1: Comparison of control performance achieved in different cases

Cases Sensorless Current injection Averaging Current Inj. & Avg.

lowest RPM 450 450 450 50

Maximum error(RPM) 440 350 400 270

Maximum % error(RPM) 180 250 270 100

in the controller board. When the motor is running, the current drawn from the power
source increases. The maximum current drawn from the supply at low speed range is
1.5A. Therefore, 1.39A is drawn by the motor at 22V input voltage. Thus 33W of power
is used in motor control at low speed. This is leading to problems of power dissipation.
There are two causes of this high current at the low speed range. First the current
injected into the d-axis is not completely isolated from the q-axis. Therefore, indirectly
there is current injection into the q-axis as well. Secondly, the angle estimation
error is significant at low speed. If the supplied voltage and the current is not in
phase, then there is loss of power in the control system. Thus, after a few minutes
(5 minutes) of rotating the motor at speeds less than 200rpm, the motor gets overheated.

7.4 Conclusions

The process of testing and implementation of algorithm has shown some advantages
and disadvantages of the proposed improvement schemes. They are summarized here.

Advantages

1. The sensorless scheme is now able to work at speeds as low as 50rpm with less than
15% error.
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2. Both the schemes can be applied to the existing solution without any hardware
modification.

3. The control scheme does not depend on the saliency of the motor.

Disadvantages

1. The current averaging scheme affects the efficiency of the motor adversely.

2. The motor parameters are required for calibrating the schemes.

3. The angle estimation in the current form is not accurate enough at low speed.
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The purpose of the thesis was to develop and implement a sensorless algorithm for low
speed and test it on a PMSM motor. In this chapter the conclusions drawn from the
various tests on the motor using the algorithm with different compensation schemes are
given. Section 8.1 gives the conclusion of the thesis work. In section 8.2 the future
improvements to the solution is proposed.

8.1 Conclusions

The objective of low speed control of PMSM was achieved in the thesis. PMSM was
controlled at low speed range of 50rpm to 220rpm. The conclusions from the thesis can
be summarized as given below.

1. The two proposed schemes: current injection and current averaging were imple-
mented on a rotating frame of FOC based sensorless solution. The current injection
was carried out in the d-axis of the rotating frame. For speed less than 800rpm
the current injection was applied. The current averaging with dynamic sampling
rate was done to further improve the low speed control. Both the schemes were
implemented in NXP microcontroller.

2. The lowest speed control achieved for the new scheme is between 45-50rpm. This is
a significant improvement from the previous sensorless solution which had a lower
limit of 400-450rpm.

3. The stability and power issues of the new control were also studied. The d-axis and
q axis current loops were found to be coupled at low speeds. This means whenever
current is injected to d-axis, q-axis also draws current. At low speed this leads to
significant current(.5A-1.5A) being drawn from the power source. This leads to
power wastage in the form of motor heat dissipation.

4. The angle error compensation was achieved using two dimensional compensation.
However this scheme still produces errors because angle offset was found to be a
function of rotor position. The error in angle estimation affects the speed estima-
tion directly. Hence, there is an instability in the speed control for speeds between
220rpm and 450rpm.

8.2 Possible improvements in the future

A better feedback topology which compensates the effect of coupling between the two
axes (d-q) will lead to a more stable and power efficient low speed control solution. It

51
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was assumed in the thesis that current injected into the d-axis will not affect the q-
axis current due to the separate feedback loops for the two currents. However during
the testing, the current in the q-axis was found to be coupled with d-axis currents.
Therefore, improvements in the decoupling scheme will lead to better performance of
the algorithm. As explained in Section 7.1 this thesis uses a two dimensional angle
compensation method to offset the error in angle estimation. The angle estimation can
be improved if a three dimensional position based compensation scheme is used instead
of speed based compensation. Hence, the topics that can be explored for improvements
of this scheme are given below.

• Decoupling control of d and q axis currents.

• Improved feedback topology for PID loops.

• Position based angle correction (3-dimensional angle correction).
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Appendix A
A.1 The observer block flow diagram

Figure A.1: Flow digram of the observer block
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A.2 The Testbench setup

. The figure shows the testbench setup which was used for testing and debugging the
algorithm.

Figure A.2: Experimental setup


