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Executive Summary

The objective of the present work has been to develop a computational design tool for
calculation of wave loads on ships and implement it into a comprehensive program system.
The program system, named I-ship, has been developed at the department and is used for
conceptual design.

Based on a survey of available theoretical methods for determining wave loads on a ship,
three have been selected. The criteria are

Robustness of the method in as wide a range of applications as possible.

Reasonable computational time on a state-of-the-art PC.

Accuracy within engineering practice.

Linear as well as non-linear predictions should be available.

The methods are a linear strip theory according to Salvesen, Tuck and Faltinsen [49] for
calculations in five degrees of freedom, a quadratic strip theory based on Jensen and Pedersen
[24] and, finally, a non-linear time-domain strip theory according to Petersen [44]. As all
of these methods have the determination of the two-dimensional flow around the ship hull
in common, a library of methods has been developed to include different types of effects.
The structure of the program consists of three submodules, which is a preprocessor, a strip
theory solver and a postprocessor.

Implementation of all the above-mentioned methods has proved to be too ambitious. The
library of routines for determination of the two-dimensional flow around the hull consists
of two mapping and three boundary element methods. However, due to a too simple grid
generator, only the mapping methods and a single boundary element method have proved
to be sufficiently robust for general use.

The linear strip theory has with respect to functionality been shown to require a more
advanced method for including roll damping.



The quadratic strip theory has the full functionality with the possibility of including flexibil-
ity of the ship hull and determining fatigue damage. It has been shown to be a very robust
method for determination of vertical wave loads on ships including second order effects.

The present implementation of the non-linear time-domain strip theory has the functionality
of determining responses in regular waves.

The implemented theoretical methods have been verified and validated against results from
model tests and other programs. The task of verifying and validating a complete applica-
tion including hydroelasticity and fatigue damage prediction has been too ambitious. The
emphasis has therefore been on a robust well tested application, including the linear strip
theory and the rigid body part of the quadratic strip theory with the statistical facilities to
perform short- and long-term predictions.

Generally, a fairly good agreement has been found. However, as been shown by reference to
the work by the ITTC78 [17] and the ITTC81 [18] committee differences can be expected,
which has also been the case in the present work.

The results from the linear strip theory have been shown generally to agree well with other
programs and the agreement with model tests has been acceptable. However, disagreements
have also been found for the roll motion in beam sea and for the vertical bending moment
on a fast ferry.

Also the results from the quadratic strip theory have been shown generally to agree well
with both other programs and model tests. The strip theory on which the quadratic strip
theory is based and the methods for determining added mass and damping can be combined
in a number of ways. One has been shown to deviate from the remaining. However, this is
only a small part of the available combinations. For the second order part of the response,
a comparison with the design values based on the IACS unified rules for classification [40]
shows good agreement with the hogging bending moment but a 30% larger sagging bending
moment.

The results from the present implementation of the non-linear time-domain strip theory
have been shown to give heave motion in good agreement with other programs, but the
pitch motion and vertical bending moment deviate from results from other programs. This
method has therefore, in the present implementation, not been judged useful for analyses.

In general, the developed system has been shown to be a useful tool for determination of
wave loads on ships. The included facilities have been more limited than first intented,
however, suggestions for improving and extending the present version have been made.
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Synopsis

Denne afhandling 'omhandler bestemmelsen al globale bolgelaste pa et skibsskrog. Formalet
har vret at lave et designvrktoj i form af et computer program til bestemmelse af de-
signlaste pa et skib og integrere dette i et omfattende programsystem. Programsystemet,
benawnt I-ship,, er udviklet pa instituttet og kan benyttes tiI konceptuelt design al skibe.

Der er udfort et litteraturstudie,, af hvilket resultatet er en kort gennemgang af mulige
teoretiske metoder. Baseret pa denne gennemgang er der valgt tre metoder ud fra folgende
kriterier:

Metoderne skal I sa vidt et orafang vre robuste.

Beregninger skal kunne udfores indenfor rimelig tid pa en state-of-the-art PC.

Metoderne skal give resultater indenfor ingeniormwssig nojagtighed.

Lineaare savel som ikke-linewre metoder skal inkluderes

De valgte raetoder er,en liner .stripteori al Salvesen,, Tuck og Faltinsen [4911 til beregninger
.fem frihedsgrader, en anden-ordens stripteori baseret pa Jensen og Pedersen [24] og endelig
en ikke-linear tidsdomwne stripteori af Petersen [4411. Disse metoder har alle bestemmelsen af
den to-dimensionale stranning om skibets skrog, i form al medsvingende vand og daempning,
til f11es. Derfor er der lavet et bibliotek af rutiner til bestemmelsen af disse, hvorved
forskellige effekter kan inkluderes. Det udviklede program bestar af en prwprocessor,, en
solver og, en postprocessor og er saledes opdelt i tre dele

implementering af ovenstiende har vist sig for ambitiost. Biblioteket af rutiner til bestem.-.
melsen af den to-dimensionale stromning om skibets skrog bestar af to "mapping-metoder'
og tre rand-element metoder. Da den implementerede metode til diskretisering af skibets
slcrog har vist sig for simpel, kan kun ',mapping-metoderhe' og en enkelt rand-element metode
benyttes generelt.

Den linewre stripteori har med hensyn til funktionalitet vist sig at krwve en mere avanceret
metode til inkludering af rulledaempning end den; relativt simple metode, der er imple-
menteret som en del af dette arbejde.

=
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vi Synopsis

Den anden-ordens stripteori har den fulde funktionalitet, hvilket orafatter muligheden for at
medtage effekter af skrogbjaelkens elasticitet og ligeledes beregninger af udmattelse. Denne
metode har vist sig meget robust til bestemmelse af vertikale bolgebelastninger, hvor der
medt ages anden-ordens effekter.

Den nwrvrende implementering af den ikke-linere tidsdomTne stripteori har ftmktionali-
teten til at bestemme gensvar i regelmaessige bolger

De implementerede metoder er blevet verificeret og valideret ved saramenligning med re-
sultater fra andre programmer og ligeledes med resultater fra modelforsog. 'Opgaven i at
verificere og validere det komplette program inklusive delene der omfatter hydroelasticitet
og uclmattelse har vist sig for stor. Vwgten er derfor blevet lagt pa et, gennemtestet program
der inkluderer den linewre stripteori og den anden-ordens stripteori med skibet modelleret
uden elasticitet og med de. statistiske faciliteter der muliggor kort- og langtidsforudsigelser.

Generelt er resultatet af saMmenligningerne, at der er fundet en rimelig overensstemmelse:
Der er dog .ogsa fundet resultater der ikke stemmer sa godt overens. En meget god overens-
stemmelse kan ikke aItid forventes som det ogsa er vist ved reference til arbejdet af ITTC78
[17] og ITTC81

Den linewre stripteori har generelt vist sig at give resultater i god overensstemmelse med de
sammenlignede programmer og en acceptabel overensstemmelse med modelforsog. Der er
dog fundet resultater der ikke svarer sa godt overens for rullebevwgelsen i tvwrso og ligeledes
for det vertikale bojningsmoment pa en. hurtigtsejlende fwrge_

Ogsa resultaterne fra den anden-ordens stripteori har generelt vist god overensstemmelse med
de sammenlignede programmer og ogsa med modelforsog. .Stripteorien, den andenordens
metode baseres pa, og metodeme til hestemmelse af medsvingende vand og daempning kan
kombineres. En kombination af disse metoder liar vist sig at give resultater der afviger fra
de ovrige. Dette er dog kun en af flere mulige kombinationer. Med hensyn til gensvaret af
anden orden er der lavet en sammenligning med IACS regler for klassificering [40], der giver
god overenssteramelse for hogging bojningsmoraentet (kolloftning) men 30 % storre sagging
bojningsmoment (kolswnkning).

Den nwrvaerende implementering af den ikke-linere tidsdomne stripteori liar vist at kunne
besterame swtningsbevwgelsen i god overenssteramelse med andre programmer, men for
duvning og det vertikaIe bojningsmoment er der ikke opnaet tilfredstillende resultater. Denne
indplementering af metoden er derfor ikke ftmdet egnet til praktisk brug.

,Generelt er det vist at det udviklede system er et brugbart vwrktoj til bestemmelse af
bolgelaste pa et skib. Faciliteterne, der er til radighed, er blevet lmap sâ omfangsrige som
den oprindelige intention, men forslag til forbedringer og inkludering af yderligere metoder
er givet,

[18].



Contents

Preface

Executive Summary

Synopsis (in Danish)

Contents vii

Symbols and Nomenclature xi

1 Introduction 1

1.1 Overview and Background 1

1.2 Objectives and Scope of the Work 2

1.3 Structure of the Thesis 2

2 Methods for Prediction of Wave Loads 5

2.1 Introduction 5

2.2 Strip Theory Methods 5

2.2.1 Linear Strip Theory 5

2.2.2 Non-Linear Strip Theories

2.3 Unified Slender Body Theory 7

2.4 2D Methods

2.5 3D Methods 8

.

.

. .

.7

.

.

. .

.



viii Contents

2.5.1 Green Function Methods 8

2.5.2 Rankine Source Methods 8

2.6 Summary of the Methods for Prediction of Wave Loads 9

3 Strip Theory Formulations 11

3.1 Introduction 11

3.2 Linear Strip Theories 12

3.2.1 The Five Degree of Freedom Strip Theory 13

3.3 Non-Linear Strip Theories 19

3.3.1 The Quadratic Strip Theory 19

3.3.2 The Non-Linear Time-Domain Strip Theory 26

3.4 Limitations on the Strip Theory Methods 27

3.4.1 Slenderness 28

3.4.2 Speed 28

3.4.3 Frequency Range 31

4 Hydrodynamic Coefficients 35

4.1 Mapping Technique 36

4.1.1 The Lewis-Form Method 36

4.2 2D Green Function Methods 40

4.2.1 Simple Green Function 44

4.2.2 Frank Close Fit 47

4.2.3 Discretization of the Integral Equation 48

4.3 Irregular Frequencies 52

4.4 Roll Damping 52

. . .

. . ... .. .

Theory. . ...

. . . . .

..

. .

. . .



Contents ix

5

6

Response Statistics

5.1 Introduction

5.2 Short-Term Response Statistics

5.2.1 Linear Frequency Response

5.2.2 Quadratic Frequency Response

.Fatigue Analysis

5.3 Long-Term Response Statistics

Verification and Validation of the Code

6.1 Analysis of a Container Ship

6.1.1 Geometry

6.1.2 Weight Condition

6.1.3 Motions

6.1.4 Loads

6.1.5 Long-Term Predictions

6.1.6 Results from the Non-linear Time-domain Strip Theory

6.2 Analysis of a VLCC

6. 2.1 Geometry

6.2.2 Weight Condition

6.2.3 Motions

6.2.4 Loads

6.3 Analysis of a Fast Ferry

6.3.1 Weight Condition

6.3.2 Motions

6.3.3 Accelerations

6.3.4 Loads

6.4 Summary of the Verification and Validation

55

55

55

56

59

61

63

67

68

69

70

70

73

75

77

81

82

82

83

86

89

89

90

91

94

95

.

.

. . .

.

. . . .

. . . .

.

.. .

.

.

.



I

Eli

11

11:

11

Contents

7 System Design

7.1 Introduction ., .: , 4 A. . , At 4 . o . ,_ . ... .. , , /-

7.2 General , .. ,. ... ..., ,, -,,,, J,, ,I .

7.3 The Preprocessor ..

7.3.1 General Input . _ ...

7.3.2 Load Case Related Input . .. .4 .4. :t. .:..

7.3.3.. Short-Term Related Input . .. h , :

7.3.4 Long-Term Related Input ... .

7.4 The Strip Theory Solver . ._ , +., , .

7.5 The Postprocessor , .. ,. .. ,.. . . .

8 Conclusion and Recommendations

8.1 Conclusion , .

8.2 Recommendations for 'Future Work .. ,. . ... ,

Bibliography

List of Figures

List of Tables

A Additional Results on the Container Ship

B Documentation of the User Interface

B.1 The Preprocessor , ,

B.1..1 Input Ship Data

B.1.2 Input Operational Parameters ..,

B.1.3 Specify Analysis.

B.2 The Strip Theory Solver .

B.3 The Postprocessor . .

List of Ph.D. Theses Available from. the Department,

.+

,

"i

.,

..,

,

:i .

,,, -

, , .,-

4. i

, .,

.

t.

,

97

97

97

99

100

101

103,

103

104

104

107'

107

109

111

121

123

125

127

127

128

129

130

136

136

139



- Lu

Symbols a d Nomenclature

The symbols used in this thesis are explained when they are first introduced. The following
list contains the main symbols used.,

Latin Letters
A Sectional submerged area of station

Waterline breadth
C1, C2 Lewis mapping coefficients

Sectional area coefficient
Green function
Significant wave height

Lpp Length between perpendiculars
P (w) Phase function
P (x , y) Field point

Q(, 77) Singularity point
R(w) Response amplitude operator
S. Wave spectrum as a function of cor

S,!/ Wave spectrum as a function of 44,
S R(w) Response spectrum_

So, Body boundary

SF Free-surface boundary
SB Seabed boundary
SL, SR Radiation boundaries

Draught
Tz Mean zero crossing period

Taft Draught at aft perpendicular
T for e Draught at fore perpendicular

Velocity

[Ire Relative velocity between wave and ship



xii Symbols and Nomenclature

V Variance

a Amplitude
Wave amplitude
Wave phase velocity

Water depth
Acceleration of gravity

Wave elevation

Wave number
k2, k4 Lewis transformation parameters
771n nth spectral moment

Distance between two points P(y, z) and Q(e,r1)
Time

tk Sectional force referring to the kth mode

Y RI yE Horizontal position for the radiation conditions on the right and left side of the
domain

Greek Letters
Potential

(I) Potential
Wave heading direction relative to the ship
Smith correction factor
Skewness

1c4 Kurtosis
A Wave length
C. Standard deviation

Mean value
Density of fluid

Peak rate

110 Zero uperossing rate
Angular wave frequency

We Angular frequency of encounter

Eigenvalue

Structural damping
Response level in general

Complex amplitude of the jth mode of motion

,k



Symbols and Nomenclature xiii

Abbreviations
AP Aft perpendicular
COG Centre of gravity
DOF Degree of freedom

Fn Froude number, Fn = U/.
FP Fore perpendicular

FCF Frank Close Fit
FRF Frequency response function

GB Gerritsma and Beukelman
GFM Green function method
HAC Horizontal acceleration

HBM Horizontal bending moment
HSF Horizontal shear force

IACS International Association of Classification Societies

JONSWAP Joint North Sea Wave Project
LCB Longitudinal centre of buoyancy (measured positively forward of Lpp/2)

LGTM Long-term response statistics

LIST Linear strip theory
LT Lewis transformation
NSM New strip method

NLST Non-linear time-domain strip theory
OS Order statistics
OSM Ordinary strip method
PM Pierson Moskowitz

PU Poisson uperossing

RINA Registro Italian° Navale
RMS Root mean square
RSM Rankine source method
SHTM Short-term response statistics
SO ST Second order strip theory
STF Salvesen, Tuck and Faltinsen

TM Torsional moment
VAC Vertical acceleration

VLCC Very large crude carrier
VBM Vertical bending moment
VSF Vertical shear force
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lapter 1

Introduction

-

1.1 ,Overview and. Background

The prediction of wave loads on ships is a broad field as regards methods and type of
results. The latter because the definition of wave loads covers a wide range of more 'specific,
definitions.

In a structural analysis of a ship, the initial steps are to determine the still-water and we-
induced loads, on the hull. Both the extreme loads, the hull will be exposed to during its
lifetime and load sequences, which can lead to fatigue damages are of interest. The wave
..loads are in general considered in terms of the global loads and the local loads. The global
loads act on the ship considered as a beam. Local loads are dealt with, when a more detailed
analysis is in question, such as pressure on a plate panel or stresses in a stiffener. These
loads have previously been taken mainly from Classification rules but, recently, novel designs
have been made using direct calculations_

The rigid body motions experienced by the ship on the sea are denoted surge, sway, heave,
roll, pitch and yaw. From these motions the derived wave loads become horizontal and
vertical shear forces, bending moments and a torsional moment.

Design loads on a ship are defined as levels accepted to be exceeded with a certain proba-
bility during the lifetime of the ship. To obtain these design loads the wave environment is
discretized into stationary sea states.. Stationary in the sense that the statistical properties,
of the ship speed, the heading and the wave kinematics are constant. Usually, this can be
achieved in durations of three hours, and it is in this context denoted short-term statistics.

For frequency-domain methods the load prediction involves the determination of a response
amplitude operator. With a given wave spectrum, the response can be determined as a
response spectrum. As regards the alternative time-domain methods, the response is deter-
mined by means of a transformation of the wave spectrum into a wave signal in time and to

4 tLII



2 Chapter 1. Introduction

perform a simulation of the behaviour of the ship. For both methods the response are usually
described statistically by the average value, the variance, the skewness, and the kurtosis.

The wave environment the ship will encounter during its lifetime can now be compiled as
combinations of the short-term durations, and the sum of these will add up to the entire
lifetime of the ship at sea. The result in terms of extreme values becomes a distribution of
the peak values of the response. For fatigue, the result will be an accumulated damage based
on the number of load cycles and associated stress amplitudes the ship will be exposed to.

For light and moderate sea states linear methods in general predict the wave loads fairly
well but the prediction becomes less good for the severe sea states as the loads then show
some non-linearities with respect to the wave height. Non-linear methods should be applied
to these sea states as the effects they capture can be pronounced. The drawback is that
the non-linear methods are far more time-consuming with respect to computer time. This
implies, a combination of the methods to evaluate the ship responses in all the sea states
would be favourable from a practical point of view. In ISSC '94 [15] the recommendations for
the long-term prediction of the wave loads state that it should be based on a combination of
linear and non-linear methods. Linear methods are appropriate to describe low or moderate
sea conditions and non-linear methods are needed to describe severe sea conditions.

1.2 Objectives and Scope of the Work

The objective of this work is to develop a rational software system to determine design wave
loads on ships and integrate it into a design package for conceptual design.

On the basis of a survey of available methods for determining wave loads on ships, some will
be selected and implemented in the system.

Simple methods are usually fast and can give preliminary estimates of the response levels
in question. More advanced methods require more skilled users and often also take longer
time for the computations. This should be taken into account. It implies in this context
the possibility of making linear calculations as a basic analysis and of including non-linear
effects by more advanced methods.

The load modelling analysis will be performed in the frequency as well as in the time-domain.
The ship types of interest are monohull, displacement vessels with the emphasis on the low
to moderate Froude number range. The system will be structured as modules using routines
from a library to be implemented.

1.3 Structure of the Thesis

The contents of the thesis are presented in eight chapters composed as follows. In Chapter 2
an overview is given of the available theories for the prediction of wave loads. The overview
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includes advantages and drawbacks of the different methods. This is followed by a description
of which methods are selected and the motivation for the choices.

Chapter 3 and Chapter 4 contain the theoretical background to the hydrodynamic methods
implemented to determine the wave loads. Chapter 3 outlines the hydrodynamic approach
without going into details about the hydrodynamics used to determine the hydrodynamic
coefficients. In Chapter 4 a more detailed description of the methods for determination of
the hydrodynamic coefficients is given. Next, in Chapter 5, a description of the implemented
statistical methods is given. It is general for the three chapters that the principles of the
procedures and the main assumptions are described. The more detailed derivations are
referred to in references.

In Chapter 6 a validation and a verification of the developed software system are given on
the basis of the results from calculations of three types of ships. Chapter 7 describes the
system developed and, finally, Chapter 8 contains the conclusions and recommendations for
further work.

The present work focuses on practical methods for estimating wave loads and much effort has
been made as regards the implementation in a comprehensive integrated rational ship design
package. Therefore, a part of the thesis is devoted to the description of the implementation
philosophy. The more detailed documentation is divided into two parts. One is the comments
in the code, which is too extensive to be included in this thesis. The other part is the
documentation of the user interface, which is included in Appendix A.
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Chapter 2

Methods for Prediction of Wave Loads

2.1 Introduction

Seakeeping computations have advanced significantly since the fundamental paper by Wein-
blum and St. Denis [65]. A few years later St. Denis and Pierson [55], inspired from the
electromagnetic field, introduced the superposition principle to the seakeeping problem and
the use of spectral technique opened the door to the determination of responses to random
waves. The development of the seakeeping theory has taken several directions. One is ex-
tension of linear 2D strip theories to include non-linear effects. These have been applied to
some extent to methods derived in the frequency domain and even more for methods in the
time domain. Another direction has been the development of three-dimensional theories.
The non-linearities in seakeeping problems become significant in severe sea states, mainly
because of the immersion dependence on the restoring and hydrodynamic forces. A short
overview of the commonest methods available will be given in the following sections.

2.2 Strip Theory Methods

2.2.1 Linear Strip Theory

Linear strip theories have been developed both from intuitive and theoretical viewpoints.
An example of the first is the theory by Gerritsma and Beukelman [6], which uses the
relative motion between the ship and the waves to determine the vertical motions and loads.
An example of the latter is the theory developed by Salvesen, Tuck and Faltinsen (STF)
[49]. They determine the excitation force from the sum of the incoming wave potential and
the diffracted wave potential. This theory is normally called the classical strip theory. A
variant of this method generally using the same approach but deviating at some points is e.g.
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ordinary strip theory denoted (OSM) [59]. The linear strip theories is simple to implement
and although they are based on the linear slender body assumption, they predict with good
accuracy most of the linear wave loads, which comprise a major portion of the wave load
encountered by a ship. This can be attributed to the fact that strip theory provides a
good estimate of the Froude-Krylov force, the restoring force and the inertial force, which
dominate the wave loads for most sea conditions. Due to the generally good accuracy of the
predictions obtained by linear strip theory and the simplicity in the procedure, it is widely
used. These linear strip theory results are, however, questionable at a low frequency of
encounter, for full-form ships as tankers and for ships with large Froude numbers. Moreover,
the pressure distribution on the hull is not well predicted. Nevertheless, it is stated in ITTC
94 [15] that the strip theories, which provide simple expressions for the transfer functions,
still dominate in practice.

2.2.2 Non-Linear Strip Theories

For Froude numbers below 0.4 and light sea states, the classical linear strip theory usually
gives satisfactory results. However, for severer sea states this is not always the case. Here
non-linearities become significant. The non-linearities taken into account in the non-linear
strip theories are mainly the variation of the section shape with respect to the instantaneous
immersion. These effects lead to different absolute values of negative and positive responses,
which are particularly significant for the vertical shear forces and bending moments. Elastic
vibrations resulting from hydrodynamic impacts can increase this effect further. The ex-
tension of the linear strip theory to include non-linear effects has mainly been applied to
time-simulation methods. An exception is the quadratic strip theory developed by Jensen
and Pedersen [24]. Their theory is based on a perturbation procedure introducing second
order terms in the linear strip theory formulation of Gerritsma and Beukelman [7]. Due to
the quadratic terms, the theory is able to predict differences between sagging and hogging
bending moments and it has the advantage of being formulated in the frequency-domain
yielding an easy determination of statistical values of the response. The alternative to the
frequency-domain approach is time-domain formulations. An example is the theory proposed
by Meyerhoff and Schlachter [31] based on the relative motion concept. In this theory no
memory effects are included. The memory effects are due to the continuous excitation by
the waves and lead to dependence on the past history in the force terms. By use of time
convolution as discussed by Cummins [5] memory effects can be included, but time-domain
simulations for irregular sea states then become very time-consuming. An alternative to the
time convolution has been developed by Siiding [54] by describing the fluid force by a higher
order differential equation as introduced by Tick [60]. This procedure has been used among
others by Xia et al. [67], who reported good comparison with experimental values for the
prediction of vertical wave loads on a container vessel.

Although all these non-linear procedures are based on the strip theory assumption, they are
still subject to certain requirements of computers in order to calculate design values within
reasonable time.
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2.3 Unified Slender Body Theory

The unified slender body theory was developed by Newman [37] and later improved by
Newman and Sclavounos [39] and by Kashiwagi [26]. The theory is unified in the sense that
it does not have the limitation in the frequency range as the strip theory has. This is due
to a different radiation condition. The complete solution of the seakeeping problem consists
of a homogeneous and a particular solution and only the latter is considered in ordinary
strip theory. The concept of dividing the domain into a near and a far field characterises
the unified slender body theory. The principle is that the potential in the fluid domain
surrounding the ship is divided into two terms, a near-field solution and a far-field solution.
In the near field the details of the ship geometry are important and solved similarly to
the strip theory problem. The solution for the potential 0 consists of a particular and a
homogeneous solution:

02( , y, z) = (1),,F(x, y, + C2(x)02,H(x,y, z) (2.1)

where j = 1, 2, ..6 signifies the mode of motion. The far-field velocity potential is influenced
by the ship as a line distribution of three-dimensional sources. The method uses matched
asymptotic expansions by matching the far-field behaviour of the near field and the near-
field behaviour in the far field in a region, and relations are established to determine the
homogeneous solution to the near-field problem. Although the solution is more consistent in
a physical sense, it is not widely used. This might be due to the more complicated scheme for
the determination of the 3D correction in terms of the homogeneous part of the solution. It
should be noted that Sclavounos [52], [51] reported results from calculations on two realistic
ship hulls at the Froude numbers 0.2 and 0.35. The conclusion was that the exciting force
was predicted more accurately, but not to an extent which made the prediction of the motion
better than that of the linear strip theory. In ITTC 1987 [20] it is concluded that the slender
body theory does not seem to possess overall advantages over strip theories for the vertical
motions of a ship at forward speed, whereas it seems to provide better predictions for sway
and yaw motions.

2.4 2.11) Methods

The 2pD method is also called the high-speed slender-body theory becaus it treats high
forward speeds in a more correct way than the strip theory. In the classical strip theory, the
velocity potential satisfies a linearised 2D free-surface condition while the velocity potential in
the high-speed slender-body theory satisfies a linear 3D free-surface condition. The difference
can be explained in a physical way, as the waves generated from the motions of the ship in
strip theory will travel away from the ship parallel to a longitudinal axis. This is not the case
for the 2.1D method where the 3D free surface condition is applied. The 3D effect taken into
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account leads to a downstream interaction between the steady and the unsteady flow around
the ship, which is neglected in the 2D strip theory. The theory is slightly more complicated
than the 2D strip theory and cannot be used for low to moderate Froude numbers due to
the neglect of the transverse wave pattern.

2.5 3D Methods

The three-dimensional methods can be divided into two groups: Green function methods
(GFM) and Rankine source methods (RSM).

2.5.1 Green Function Methods

The Green function method (GFM) determines the velocity potential by distributing sources
over the hull surface. It is based on an integral formulation with a Green's function, which
satisfies all boundary conditions, except for the body boundary condition. From Green's
second identity, the potential can be detelmined from a surface integral over the submerged
body and a line integral over the intersection between the hull and the water surface. LAMP-
1 is an example of an application using this approach in a linear version and LAMP-2 and
LAMP-4 [53] are non-linear versions.

2.5.2 Rankine Source Methods

The Rankine source methods (RSM) have been used both in frequency-domain and in time-
domain. The perhaps most well known applications of this type of method are SWAN-1 [34]
in frequency-domain and SWAN-2 [35] in time-domain.

In frequency domain the velocity potential is determined by distributing Rankine sources
(1/r) over the body. As the Rankine source does not satisfy the free surface condition a
source distribution on the free surface is needed as well. A difficulty using this approach [3]
is to ensure the proper physics of the radiated and diffracted waves in the ranges below and
above T = = 0.25 where different wave patterns occur. In the time domain the method is
even less mature than in the frequency domain. Some results have been reported on real ship
types but the major part of the computations has been carried out with well-behaved hull
forms. Bertram et al. [3] state in an evaluation that the RSM and the GFM do not yet seem
mature for practical applications both in terms of robustness and in terms of computational
time. Moreover, the ISSC 1997 [16] states at the time of the work by the committee that the
situation was so that significant work needed to be done to establish practically dependable
three-dimensional computation methods.



2.6. Summary of the Methods for Prediction of Wave Loads 9

2.6 Summary of the Methods for Prediction of Wave
Loads

From the previous description of the methods available a number of methods need to be
selected for this work. The criteria for the selection are

Robustness of the method in as wide a range of applications as possible.

Reasonable computational time on a state-of-the-art PC.

Accuracy within engineering practice.

Linear as well as non-linear predictions should be available.

The strip theory is in general the most robust method available. Compared to 3D methods,
which must be considered less robust and more time-consuming, the robustness is achieved
at the expense of accuracy in particular cases and at the expense of the local pressure distri-
bution. The latter, can however, be estimated from strip theory results using approximate
methods.

It is possible that, as the 3D methods become more developed in the sense of robustness
and the computers become faster, these methods will show superiority over strip theory
methods. Presently, the time for this seems some years ahead so strip theory methods will
be applied. Another argument is the simplicity of the input for the strip theory, especially the
description of the hull form. Strip theory requires the offset data on the longitudinal cross-
sections, so-called stations, while the three-dimensional panel codes need three-dimensional
surface data. Most ship types have complicated surfaces at the bow and at the stern and
the cliscretization into three-dimensional panels is a complicated task. This discretization
can be done after the hull has been defined in a CAD code. Therefore, concerning analysis
of wave loads on ships, strip theory is an appropriate tool at the initial stage of ship design,
while three-dimensional panel codes seem more suitable in the detailed design phase. Three
methods are left, 2D strip theory, the 4D method and the unified slender body theory. As
this work is focused on traditional ship types and not high-speed crafts, which is the area
of application of the 4D, this theory is omitted here. Finally, unified slender body theory
is in a sense an extension to the strip theory, which justifies the selection of a strip theory
method with the possibility of extending it to slender body theory.

Regarding non-linear effects, the computational time becomes a very clear matter where the
non-linear strip theories show superiority over 3D codes. As the non-linear strip theories are
formulated as extensions to linear strip theories, the basic tool will be linear strip theory.
A non-linear, frequency-domain theory which is fast and includes the most important non-
linear effects is the quadratic strip theory by Jensen and Pedersen [24]. As an additional
feature, it also predicts the hydroelastic behaviour of the ship hull. For the moderate sea
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states, the quadratic strip theory appears to be the best method. First of all because it is
formulated in the frequency domain, which makes the calculation of the statistical values of
the response much faster as for time-domain methods.

In severe sea states time-domain strip theories appear to be superior for practical applica-
tions. In this project only a simple time-domain strip theory neglecting memory effects will
be implemented.

A drawback of the selected non-linear methods is the fact that they only include the vertical
motions and loads. However, as these degrees of freedom in a lot of cases are also the most
important considering wave loads, it is accepted here that the horizontal motions and loads
only can be predicted by linear strip theory. Thus, the following theories are to be a part of
the present wave load module: the linear strip theory by Gerritsma and Beukelman [6] and
the linear strip theory by Salvesen, Tuck and Faltinsen [49], the quadratic strip theory by
Jensen and Pedersen [24] and, finally, a time-domain strip theory according to the theory
by Petersen [44]. However, it should be emphasized that the system architecture of the
developed software system is such that other strip theories can be implemented, e.g. 4D
and non-linear asymmetric strip theories, Pereira [43] and Wang [62].



Chapter 3

Strip Theory Formulations

3.1 Introduction

The idea of applying a strip theory approach to a sailing ship was first published by Krylov
[27] in 1896 to calculate the heave and pitch motions in regular head waves. Basically, the
concept is to approximate the three-dimensional hydrodynamic coefficients by an integration
over the length of the ship of two-dimensional coefficients, each valid for a cross-section of
an infinitely long cylinder. In the following, a brief description will be given of various strip
theory formulations.

A general feature of the strip theory methods described in this chapter is the right-hand
Cartesian coordinate system with a positive z-axis upwards and origo placed in the water
surface above the centre of gravity of the ship as shown in Figure 3.1. The coordinate
system is fixed with respect to the mean position of the ship. This is in agreement with
the recommendation of ITTC [21], although it might sometimes be more favourable to use
a geometrically defined point, such as midship, rather than the mass centre, as origo.

z

111M11111.11%IftLIW2M11
Figure 3.1: Sign convention for translatory and angular displacements.
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The coordinate system, (x, y, z), is fixed with respect to the mean position of the ship. The
sway and heave motions of the centre of gravity are denoted 172 and 773, and roll, pitch and
yaw 774, 775 and 776, respectively. The vertical distance from the origo of the coordinate system
to the centre of gravity is denoted zg. Moreover, an inertial coordinate system, (X, Y, Z),
is used. The incoming wave refers to this coordinate system. The relation between the two
coordinate systems is x = X Ut, where U is the forward speed of the ship. Finally, the
definition of the heading angle 3 is shown, indicating 0 degrees as following sea and 180
degrees as head sea.

The generalised surface normal to the submerged hull n is defined by

(ni , n2, n3) = n and (n4, n5, n6) =rxn (3.1)

with n being the outward unit normal vector on the hull surface and r the position vector
with respect to the origin of the coordinate system. The wetted surface of the hull is denoted
Sw. The sign convention for the loads on the ship is shown in Figure 3.2. Here HSF and

Figure 3.2: Sign convention for loads on the hull

HBM refer to loads acting horizontally on the hull and are therefore denoted horizontal shear
force and bending moment. Similarly, for the vertical loads, VSF and VBM denote vertical
shear force and bending moment. Finally, the torsional moment is referred to by TSM. In
the following, two degrees of freedom are referred to as the motions and loads in the vertical
plane. Not to be mistaken by two-dimensional (2D) described in the previous chapter. Five
degrees of freedom consist of motions and loads in the horizontal and vertical planes, which
also comprise the torsional moment.

3.2 Linear Strip Theories

The linear strip theories exist in approaches developed from both intuitive and theoretical
points of departure. The quadratic strip theory described in Section 3.3.1 is extended from
the linear strip theory by Gerritsma and Beukelman [6] and represents an example of the
former. The following section presents an example of the latter.



Hk = f

3.2, Linear Strip Theories 13

3.2.1. 'T :he Five -Degree of Freedom Strip Theory

The implemented linear strip theory in five degrees of freedom is based on the theory by
Salvesen, Tuck and Faltinsen {49]. In the following, it is denoted (LIST). It deviates from
the theory by Gerritsma and Beukelman [6] described in Section 3.3.1 by the determination.
of the wave-excitation force in a theoretically more consistent way as a sum of a radiation
and a diffraction solution. Also, the inclusion of forward speed is different and is addressed
further in this section. The hydrodynamic force on a ship travelling in waves can generally
be determined by integrating the pressure over the hull. By use of the Bernoulli equation
and. integration over the hull the following is obtained:

t tail 1

Pnkds su, + -174:112 gz nkds (3.2)

where Ifk is the hydrodynamic force in the direction k = 2, 3, 6, referring to sway, heave,
roll, pitch and yaw. The potential (I) is the total velocity potential in the fluid. The integra-
tion is over the wetted surface Sill of the hull at rest with the normal Ilk oriented positively
in the direction into the fluid domain. The velocity potential can be decomposed into the
potentials

4)(x, y, zit) = +.0s(x,y,.4 + T(x, y, z)etwet (3.3)

which can, be interpreted as a time-independent steady velocity potential Ux + Os, due to
the forward motion of the ship in calm water and a time-dependent velocity potential OTeiwet
Here we is the frequency of encounter experienced on the ship and different from the wave
frequency due to forward speed and heading. The potentials must each satisfy the Laplace
equation and appropriate conditions at infinity. In addition to these general requirements,
each of the potentials must satisfy the .hull boundary condition and the linearised free-surface
condition. The steady potential contributes with a steady force component, which may be
used to determine the dynamic sinkage and trim. As only the unsteady wave-induced force
is of interest in a linear formulation, the steady potential can be neglected by assuming that
there is no interaction between the two. The time-dependent velocity potential is associated
with two problems. An incoming and a diffracted wave potential around the constrained
ship and a radiated wave potential due to a forced oscillation of the ship in calm water. The
procedure is then to decompose the amplitude of the time-dependent potential OT as

6

± (JO' (3.4)
3=2,

where 0/ is the incident wave potential, OD the diffracted wave potential and 03, is the
contribution to the velocity potential from the jth mode of motion, denoted the radiation

= +

..,

+
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potential. Finally, (-3 is the complex amplitude of the jth mode of motion, related to the
displacements 77, (t) = Re[(ewt].

The incident wave potential, 0/, and the diffraction potential, OD, must satisfy the free
surface condition and the hull boundary condition on the mean position of the hull, given
by

ao, + aop =0 on Swan an

The diffraction potential OD can be eliminated by using a relation proposed by Haskind
[13] and Hanaoka [11] and later extended to include forward speed by Newman [36]. The
procedure is to use Green's second identity and the boundary condition on the hull to express
the diffraction potential from the radiation and the incident wave potential. The expense of
using this relation is that the pressure distribution on the hull is lost. Only the total force
becomes known. However, the pressure distribution can be recovered in an approximate way
as described by Tanizawa [57].

The oscillatory potential components 03 (.1 = 2, ..6) must satisfy the free-surface condition
and the condition that the fluid on the hull surface must move identically to the hull surface.

i .

a \ 2 a
cbi - F gaz(k; = 0ax

aoi
an nven; +Urni on St,

(3.5)

on z = 0 (3.6)

(3.7)

In Eq. (3.7) rn, =0 for j = 2, 3, 4 and m5 =n3 and m6 = n2.
By dividing the oscillatory potential into two parts, a speed-indendent part qk(7), still depen-
dent on the frequency of encounter though, and a speed-dependent011, as

0 U UOj = Oj
ZWe

the hull boundary condition in Eq. (3.7) can be rewritten to the two conditions

a 01
= 2C4)71.j and = ZWeinj

an an

which shows the potentials for j = 2, 3, 4 to be speed-independent, denoted 0?:

1,2,3,4 (3.10)

(3.8)

(3.9)

= ji =
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Using the boundary condition for the speed dependent part of the two potentials gives
=g5 "'"`- W6

Ao ALT
, and thus

`P5 2

05 = + g
w

U 0
06 = (P6

tWe

+2
alwe giTz = 0

101.
+ 1-1v,(1.12+gz\P P at 2

/. a \P=P uve OTe't pg (c3 ± co - (ax) e'wet
ax

f -H3 = ps,713 zwe
\

oTds = 2,3, ..6
Ox

(3.11)

(3.12)

This limits the speed dependence to the free-surface condition. By assuming that the fre-
quencies of encounter are high, we U0 /ax, this dependence is eliminated by rewriting the
free-surface condition in Eq. (3.6) to

on z = 0 (3.13)

This is one of the critical assumptions, which limits the theory to short waves and relatively
low to moderate Froude numbers. For heave and pitch, the restoring force is the dominant
part in the range disregarded by the assumption. Hence, the theory might also then be used
in the low-frequency range. For motions without restoring force, surge, sway and yaw, the
consequence of this assumption is severer.

From the Bernoulli equation

(3.14)

interaction between the different components of the total velocity potential can be found
in the quadratic terms in the velocity-squared part of Bernoulli's equation. However, on
the assumption of small wave amplitudes and small motion amplitudes, these terms are
neglected. Thus,

(3.15)

Integrating the pressure over the hull gives the total force and moment components on the
ship. The first term in Eq. (3.15) gives the hydrodynamic force and moment amplitude and
the second term the restoring force and moment amplitude.

First the hydrodynamic force and moment amplitudes are considered:

(3.16)
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The unsteady force component Hj consists of two potentials due to the decomposition. One
from the excitation F; where the incident wave is diffracted by the fixed hull and another
contribution G; due to the motion of the ship radiating waves away from the hull.

By use of Eq. (3.4) the exciting force can be written

F; ,p fl5 zcile (01- + OD) dsax

As described before, use of the Haskind-Hanaoka relation eliminates the diffraction potential
OD and F.; becomes a function of the incoming wave and the radiation potential. The
incoming, wave potential is known and the radiation potential is determined in Chapter 4:

The force due to the motion of the hull is given by

t. TT a N7" r
6

",nj We (,kOkaS = Tjk(k.
SW aX k=1 k-=1

where

/, a \
Tjk ri uve Okds-

SW ax

'The hydrodynamic force or moment Tjk is acting in the jth direction due to a motion in the
kth mode. By use of Stokes' theorem the surface integral in Eq. (3.19) is rewritten to

e f ' nicbkds + Up rnOkdS Up n(kkdl (3.20)

neglecting the line integral along the intersection between the hull and the water surface.
This divides the force into a speed-dependent part and a speed-independent part.. The
definition of mi is the same as in Eq. (3.7). The last term means the line integral over the
aft station indicated by CA. To describe the principle only the cases for i,j = 2, 3,4 are
given. In these cases m is zero, which gives

U
Tjk = Tj9k 7-1Ajk

ZWe

The term tjk is generally given by

tjk

(3.18)

(3.21)

(3.22)

(3.17)

T3k
CA

= njOk°ds

(3.19)
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The superscript A on VA in Eq. (3.21) indicates that the line integral is along the cross-
section of the hull at the aftermost section. However, as noted in Salvesen et al. [49], the
elimination of the speed dependence does not exclusively come from the derivations above,
but requires also that the high-frequency assumption is used in the free-surface condition.
T° indicates the speed-independent part of the force T3k given by3k

= piwe f n,ekds (3.23)

The force T3k can be separated into a real and an imaginary part:

T --= c.4A iCA),B3k (3.24)

where Ajk and B3k are denoted the added mass and damping coefficients, respectively.

If the expression in Eq. (3.15) is returned to, integration of the second term gives the
amplitude of the restoring force:

Ri = (6 + (-4Y (5x)ds j = 2,3, ..6
Sw

This expression can be written as

6

Rj C jk(k
k=1

For a ship symmetric around a longitudinal axis the non-zero hydrostatic restoring coeffi-
cients C3k are C33, C44, C55 and C35, which is equal to C53.

By taking the sum of the inertia force, the restoring force and the hydrodynamic force, the
equations of motion in the frequency domain become

6

[ we2 (Mjk+ Aik)+ iwBk + Ckl k = F.;
k=1

(3.25)

(3.26)

(3.27)

where Mk the generalised mass matrix for the ship.

The potentials 02 = ook(x, y, z) are still 3D potentials. If the beam and draught of the ship
are small compared to the length of the ship, the so-called slenderness assumption can be
used to approximate the surface integral by setting ds 4(11, which gives

pi we fs.,71,0kcIds = pi we n202 = t3kd4
cxL

(3.28)

+

is

1.j9k

=
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where L indicates integration over the length of the hull and tjk the sectional force given in
Eq. (3.22).

If the normal vector n is considered, it follows from the slenderness assumption that the
x-component ni is small compared to n2 and n3. This is valid except at the bow and the
stern. Because these parts of the ship normally constitute a relatively small part of the ship
it can be justified to consider n2 and n3 as the components of a two-dimensional normal
vector. For n5 and n6 this gives

n5 = zni xn3 xn3 (3.29)

n6 = xn2 yni rn2 (3.30)

From these assumptions the three-dimensional Laplace equation and the boundary con-
ditions are simplified to the two-dimensional Laplace equation and the conditions for the
two-dimensional hull cross-section Cx oscillating in the free surface. The potentials 02, 03
and 04 are now considered two-dimensional potentials. It follows from the hull boundary
condition that

05(x, y, z) = x03(y, z) and q56(x, y, z) = x02(y, z) (3.31)

For j, k = 2, 3, 4 this simplifies the sectional force terms to the following two expressions:

tik = piwe 1 nAdl = c4a,k iwebik (3.32)

where a,k and b2k are the two-dimensional added mass and damping coefficients, respectively.

The determination of the two-dimensional potentials cb2, 03 and 04 and thus the sectional
added mass and damping coefficients a,k and a,k is described in Chapter 4. From Eq. (3.27)
the motions can be determined. The relative vertical motion between the undisturbed wave
and the ship as well as the horizontal and vertical accelerations are found from rigid body
dynamics.

In Figures 3.3 and 3.4 examples of the output from the linear strip theory are shown. The
output has been compared with results given in Salvesen et at [49]. The present results are
based on the design draught of the ship and the hydrodynamic coefficients are determined by
use of the Frank Close Fit method, described in Chapter 4. The reference lacks detailed data
on the loading condition of the ship and also the method used to determine the hydrodynamic
coefficients. Therefore, a certain discrepancy could be expected. However, when this is taken
into account both amplitude and phase correspond reasonably well with the calculations by
Salvesen et al. [49].
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Figure 3.3: Linear frequency response func-
tion for heave and pitch determined in head
sea at Fn = 0.2 for Mariner [48].

3.3 Non-Linear Strip Theories

The non-linear methods can be separated into frequency-domain perturbation methods and
time-domain methods, in which non-linear hull boundary conditions and free-surface con-
ditions are satisfied up to a certain degree of accuracy. The non-linear methods in general
include two degrees of freedom, therefore motions in the following mean heave and pitch,
further loads are referred to as vertical shear force and bending moment.

3.3.1 The Quadratic Strip Theory

The quadratic strip theory (SOST) was developed by Jensen and Pedersen [24] based on a
perturbation procedure for predicting wave loads and ship responses in light to moderate seas.
The theory is formulated in the frequency domain and the statistical moments can therefore
be easily obtained. The theory has been shown to predict very well the difference between
hogging and sagging bending moments, Jensen et al. [25]. The first order fluid forces are
determined by classical strip theory methods: Salvesen, Tuck and Faltinsen [49] or Gerritsma
and Beukelman [6], while the quadratic terms are due to a second order exciting Stokes
wave and the perturbation of the restoring force and the two-dimensional hydrodynamic
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Figure 3.4: Linear frequency phase func-
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coefficients. The calculation of the hydrodynamic forces is based on the time derivative of
the momentum of the added mass. The theory furthermore takes into account the flexibility
of the ship by modelling the ship hull as a free-free Timoshenko beam and uses modal
analysis to predict hull deflections. In this section the method and the solution scheme will
be outlined. The complete derivation can be found in Jensen and Pedersen 1241.

The equation of motion in the vertical plane of a non-prismatic Timoshenko beam I's

a F 0\ 41 I a\ taw \ 2,92(70El 1+ + AGA 1+ s-( -3x- = =m3r at2

a a\ tawCA 1
=

m, H(X,

fL
3 cig it = ' viH(x, t, uivi)dx)3 3 3 3

0 i=0

where EI(x) and AGA(x) are the vertical rigidities of the hull girder for bending and shear,
respectively. The slope due to bending is denoted (p(x, t) and the vertical deflection w(x, t).
This includes both the rigid body displacement as well as the elastic deflection of the beam.
Finally, c is the structural damping of the hull, m(x) the hull mass per unit length, and
msr2(x) the mass moment of inertia about the horizontal y-axis. The boundary conditions
for the hull beam state that the shear force and the bending moment are zero at the ends.
The solution is expressed in the form

g

gD(X ,t) = ui(t)cei(x) (3.35)
i=0)

(3,38)

-where u are time-dependent coefficients. The eigenfunctions, a(x) and Vi(X), are arranged 0

1

so that i = 0 indicates heave, i = 1 pitch and i > 1 indicates elastic vibration modes.
Furthermore, the eigenfunctions are orthogonalised. and normalised so that the orthogonality
relation becomes

where .5ij denotes Kronecker's delta. From Eqs. 1(3.33) and (3.37) it follows that the coeffi-
cients u(t) must satisfy

(3.33)

(3.34)

W (X ,t) ui(t)vi(x) (3.36)
i=o

iL
msr2cxiaj + m8viv,i1 dx = (51;j (3.37)

\1 02w



where 1/2' is the eigenvalue corresponding to the jth eigenfunction. The hydrodynamic force
H(x,.t) is determined from the expression proposed by 'Gerritsma. and Beukelman.1[6], in a,
slightly modified version where the hydrodynamic coefficients and the breadth depend on
the sectional immersion:

ap 1
H(x,t) =- a33 (x, i) Di b33(x, i) + B(x,,i) dz

Dt DzflLit

In Eq.. (3.3.1) the added mass is denoted ,a33(x, 2), the damping b33(x, 2), both per unit
length, and the vertical motion is indicated by index three. Finally, the sectional breadth is
represented by B(x, 2). The relative immersion, denoted 2, is given by the difference between
the wave surface elevation h(x , t) and the displacement of the ship in the vertical direction
determined as 2 = w(x, t) n(x)h(x,

.The added. mass term can as before be expanded as follows:

D fDi Da33 (x, Di i
233(X,x, 2) =

Dt Dt Dt a33' Dt2

Da33 (x, Di
+ a33 (x,

D22

Dt Dt2

An important effect, which is included, is momentum slamming. The first term in Eq.. (3.40)
represents this effect.

The perturbed parameters are the added mass a33, the hydrodynamic damping h33, and the
waterline breadth B, given by

a33(x, a33(x,0) + z_aa33

ab33
b33(x, ,b33(±,0) +

z

B
B( , ) R(x .)10) i

i=0

(3.39)

(3.A0)

The first order wave elevation is given as a series of unidirectional waves:

n.

h(1)'(x,t) =N-- cos(i), where Vti = ki(x Ut cos(0)) wt 67; (3.44)
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a33,0(x) + 2(x,t)a33,1(x) (3.41)

b33,0(x) , Ob33 ,i(X) (3.42)

Bo(x) +.2(x, t)Bi(x) (a.43)

fa33
-Dt

+

(x,i)

2

+

z+w



--,

22 Chapter 3. Strip Theory Formulations'

h(x , t) = h(1) + h(2)

with

1n
h(2) = ajai Rki + cos (V) + I cos

z=1 3=1

(1) (2)
Ui(t), Ui

The wave number k, refers in this case to the x-direction. Due to the non-linear free-surface
condition, also a second order incident wave contribution h(2) is introduced in the total
elevation h:

and similar expressions for the exciting wave potential.

The expression for the hydrodynamic force is divided into a restoring part HR = ±
and a hydrodynamic part H H = 4) ± 4) , both with the terms organised as first and
second order. The solution given by the time-dependent coefficients in Eq. (3..35) and Eq.
(3.36) is found in the form

where i = 0, 1 as before, refers to heave and pitch and i > 1 indicates the elastic vibration
modes. Each of the u(t) are determined from two sets of equations. One for the deter-
mination of the linear part uP), and another for the determination of the quadratic part

(2)
Ui

The wave elevation in Eq. (3.44) is manipulated after integration gong the length of the
ship to the more convenient form ai cos(c.ve,t + i) = a, (cos( t) cos(0i) sin(wet) sin(00) =

cos(wet) sin(t) and similarly for the second order .elevation., The linear part of
the response thus becomes

141)(0 =.z cos(w) +.
r=i

+ er+,04,.] sin.(wert) (3.48)

where e.g. NS, and ti,t;,. can be interpreted as the real and the complex part of the heave
frequency response function for the frequency of encounter number r. The second order part
becomes

+[G6 + G+net+i-ju:rt(x) [r6+71 = r.1-net]u;.-t(x)] sin((cver et)t)}

(3.47)

(3.45)

(3.46)
A

71 Z1

u2(t) = 7 7
r=1 t=1

filer6 (x) [G6-Fn

(3.49)

4'r-1-n6] ulr+t (x)] cos( (We,. LtJet )t)

-F[Ut er±net+nlit4rt (X) [er t±n +net] Uct (X)] COS( (W 'WOO

+ [Get 7--Fn6±n1,le/.7Z (X ) [er6+n G+,-,61747:Ft(X)1 Isin((C.4.1er + wet)t)

=

+
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The wave-induced loads on the hull can be determined both from the elastic deflections and
from an integration of the forces. The former requires the inclusion of a large number of
elastic modes to represent the deflection properly. As this is not the case for the latter, this
method has been applied. From the equilibrium equations for the beam a relation between
the wave-induced force and the sectional loads on the hull can be established. These loads
can also be divided into linear and second order parts, e.g. the bending moment M(x, t) at
x = x becomes

with

A/4)(x, t) = Y'{ [6,./Cx) 7..4.,A/g(x)] cos(wt) +

[erM;(x) + 7.4.n.M:(x)] sin(wt) } (3.51)

and

12 71

M(2) (x, t) = s (3.52)
r=1 t=1

[ert 6r+ri6,,,,]/W,+(x) + er+rk]m(x)] cos ((wer + we, )0

+[67-6, + er+net+7,1/w, (x) + [ +n r+rk]m;.st- (x)] cos((cue, we,)0

+{er6, er+7,6t+n}mrsq+(x) + + r+71k1.1W(x)] sin((wer + weit)

+{ t + G±716t-F71iM;t (X) - [6,6t+r, r'i-71.6t].111;t (X)] sin((w, coet)t)}

The solution contains a linear part equivalent to the linear methods described in the previous
section. In addition, also the quadratic terms are included. The linear frequency response
function in terms of M(x) and Mrs (x) refers to the rth frequency of encounter and can also
be denoted Mc (we, x) and Ms (we, x). They represent the coefficients to the cos(wet) and
sin(wt) in the linear response. The response can be rewritten to the response amplitude
operator M1 = (Mr' (x))2 + (Mrs (x))2 and the corresponding phase function, relative to the
phase of the wave, Or.

m(x, = mm(x, + m(2) (x, (3.50)

r=1

ter6+7-,
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Figure 3.5: Example of the response in terms of the midship bending moment for the con-
tainer ship S175. The ship is advancing in head sea at a forward speed of 22 knots.

From these frequency response functions the response to a regular wave can be found. The
quadratic response to an irregular sea state includes summations, .of sum and difference
frequencies. If a regular wave of the amplitude a is considered the sum frequency becomes
the double frequency of the equivalent linear one. The difference frequency becomes zero
and leads to a mean shift of the response. This makes it possible to express the second order
response, /6g±; a = c, s, in terms of M2 = \/(M7-7)2 + (M)2 and the phase function. The
shift of the response is denoted MO2 = M. To clarify the theory in a more physical way, an
example from a calculation on a container ship is shown in the following. The container ship
is denoted S175 and characterised by a relatively high design speed (Fn=0.275) and bow
flare. The principal particulars can be found in Section 6. The second order contribution
mainly originating from the restoring force will be pronounced due to the bow flare.

The linear part of the frequency response function is shown in Figure 3.5a. The quadratic
parts are shown in Figure 3.5b and c. The corresponding frequency range for M2 is half of
the linear transfer function.

'The form of the results shown in Figure 3.5 makes it difficult to identify and quantify the I

difference from a linear calculation. This becomes more obvious if, as an example, the rigid I

body response in a regular sea is considered. The phase angle of the wave is set to zero. The
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linear part ;in Eq.. (3.51) becomes

M(1)(x,t) a[M(x) cos(wet) (x) sin(wt) (3.53)

and, the quadratic given term in Eq. (3.52)::

M(2) (x, = a2[114,?,± (x)cos(2wert)1+ (x) sin(2wert) + M??, (x)1 (3.54)

0.10

0.10
0 2 4 6 8 10

Time

Figure 3.6: An example of the midship vertical bending moment for the container ship S175.
The frequency of encounter corresponds to L/ A = 1.1 and the wave amplitude au, is 3m.
The ship is advancing in head sea at a forward speed of 22 knots.

In Figure 3.6 the response has been plotted for the wave frequency, which corresponds to
the ratio of L / A = 1.1. This has been marked in Figure 3.5. It is seen that the second
order contribution is at its. maximum at this frequency. In Figure 3.6 the three parts of the
response are shown.

Springing and whipping are typical flexible response modes for ship hull. Springing denotes
the continuous wave-induced two-node vertical vibration. The excitation forces for springing
are active along the entire hull_ Whipping is due to an impulsive wave-induced two-node
vertical vibration. The exciting forces for whipping occur only on certain parts of the hull
and are mainly due to slamming and to shipping green water at the bow region_ In the
quadratic theory springing is included whereas transient effects as whipping cannot be in-
cluded in the frequency-domain approach. For most ships springing and whipping do not

= +

t)
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significantly affect the extreme values but may,, in long slender hulls with low natural fre-
quencies, contribute significantly to the fatigue loading. Figure 3.7 shows some measured
natural frequencies for ships with different lengths and of different types.

_

00000 (4p/ BULK CARRIER ,02)

CONTAINERSIMP 41301
.51000 ter BULK CANKER 01251

53000 (dw ORE CARRIER (1/6). BALLAST
CONTANERSKIP (136)
53000 t<lw ORE CARRIER 11261,LOAOED AND 1.7000 tdw'TANkER.

(1) GREAT LAKES BULK CAREER (SI
7L3elltclw BULK CARRIER 1123). BALLAST

CONTAINERSHiP .11301

0 MOO MN. BULK CARRIER 11231. LOADED'

"'GREAT LAKES BULK C.RIER 141
S5000 Ulm TANKER (113)'

OGREAT LAKES 0 1 0 00 telw TANKER))))
SULK CARRIER(81

(111

BALLASTISSODC0(
TANKER

(130
00,1E41 LAKES

BULK CARRIER11711

200 100 (500

SHIP LENGTH METRES

D I DiH(x,t) a33 (x, + b33(x,,i)Dt + pgA(x, ms(x)g1
Dt.

The immersion dependence on the added mass, the damping and the restoring term form
the extension from the Gerritsma and Beukelman [6] formulation. Symbols are similar to
the cases described previously in this chapter. In the linear and quadratic frequency-domain
formulations, the equilibriumconditionin still water is assumed to be predetermined and only

'Figure 3.7:. Measured natural frequency of the 2-node vertical vibration' as a function. of ship
length (van Gunsteren [10]).

The excitation of springing is mainly due to the second order terms, which gives a high
frequency contribution to the response. This is the reason why it is of limited interest to
implement hydroelasticity in linear formulations.

The quadratic approach described here is based on the theory by Gerritsma and Beukelman.
It is also available to analyses based on Salvesen, Tuck and Faltinsen with a modified method.

3.3.2 The Non-Linear Time-Domain Strip Theory

'The point of departure for the time-domain approach is the linear equations of motion of
Gerritsma and Beukelman [6] in the frequency domain. The program is based on the work
by Petersen [44] and later by Hansen 421 and includes only rigid body motions.. The basic
expression for the hydrodynamic force H is. the expression

(3.55)

2)

)

100 400
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motions from this initial condition are considered. In the time domain, the determination of
the equilibrium condition in still water is included. This is the reason for the two temis in
Eq. (3.55) including A and ms, which is the sectional immersed area and the sectional mass
respectively. However, the steady state dynamic sinkage and trim are not included.

The added mass term can be expanded similarly to Eq. (3.40) and as all terms are included
also momentum slamming is taken into account. In the quadratic strip theory the immersion
dependence is described by a Taylor expansion around the equilibrium position, while in the
time-domain strip theory the terms are evaluated at the instantaneous immersion.

Green water on deck is included. A possibility of including the green water in the d'Alembert
force is an option.

A time signal of the motions is determined by solving the equations of motion using the force
expression in Eq. (3.55) with an Adams predictor corrector scheme. The relative motions
and the loads are found similarly to what has been described previously in this chapter.

3.4 Limitations on the Strip Theory Methods

In general, the derivation of the equations is based on some approximations for the free
surface and the hull boundary condition. The strip theory is based on the following assump-
tions:

The hull is slender with only gradual change of form in the longitudinal direction.

The forward speed of the ship should be relatively low (Froude number less than 0.4).

The frequency of encounter should not be too low or too high.

In addition, for the linear strip theory:

The motions are small.

The ship hull sections are wall-sided at the waterline.

For the quadratic strip theory the slope of the hull section in the waterline is taken into
account. However, if the motions are large the slope is extended under the keel and above
the deck line. This limits the quadratic strip theory to small to mediate sea states.

More specific limits on the assumptions are difficult to determine in general. The agreement
between model experiments and theory depends first of all on the type of result in ques-
tion. Different extent of agreement is found for motions, relative motions, accelerations and
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loads. As noted by Newman [38], strip theory usually underpredicts heave and pitch and
overpredicts vertical bending moments. Normally, better agreement is found for head sea
calculations. In addition, results related to motion in the vertical plane are better predicted
than in the horizontal plane, mainly due to the dominating and well predicted restoring
force.

Published results with comparisons of transfer functions made with strip theory are available.
In the following, a few will be shortly reviewed to give an impression of the applicability of
the strip theory.

3.4.1 Slenderness

For the assumption about slenderness, reference is made to Gerritsma et al. [8]. Good
agreement between model experiments and calculated vertical response in head waves was
found for Fri= 0.3 and ratios of L/B as low as 4. The Seakeeping Committee of the 18th
ITTC [20] concludes that strip theory appears remarkably effective for prediction of vertical
motions of ships with length to beam ratios as low as L/B = 2.5. This conclusion was based
on eleven reported studies comparing theoretical results and model experiments for small
vessels.

3.4.2 Speed

With respect to speed, Blok and Beukelman [4] reported good agreement between strip
theory results and model experiments for a series of models, which were tested in head
waves with a length/beam ratio of L/B = 8. For heave, pitch and vertical acceleration good
agreement was found up to Fn = 1.14. For relative motions good agreement was found up
to Fn = 0.57. In the outline of the derivation of the linear strip theory in Section 3.2.1 the
steady potential Os is discarded as negligible and assumed not to interact with the unsteady
potential OT. The steady contribution will in this case lead to wave pattern around the ship
and a dynamic sinkage and trim. It is possible to take parts of these effects into account by
modifying the equilibrium condition of the ship to the condition observed including dynamic
sinkage and trim. This has a small effect on the motions shown in Figures 3.8 and 3.9
and therefore also on the vertical acceleration as shown in Figure 3.10. Since the pressure
distribution leading to the sinkage and trim may contribute to the loads it is not used for
analyses where loads are considered.

For the pitch motion shown in Figure 3.9 the response amplitude operator does not approach
unity as the frequency decreases. This problem has been found where the speed is high.
However, because no wave energy is present at these frequencies it usually has no effect on
the calculation.
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FCF denotes as indicated the Frank Close Fit method and includes one of the methods for
determining added mass and damping. The method is described in detail in Chapter 4.
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Figure 3.8: Comparison of heave frequency response functions for a fast ferry (Froude num-
ber=0.55) with and without dynamic sinkage and trim. LIST: Linear strip theory. SOST:
Quadratic strip theory. STF: Salvesen, Tuck and Faltinsen. FCF: Frank Close Fit.
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Figure 3.9: Comparison of pitch frequency response functions for a fast ferry (Froude num- I'

ber=0.55) with and without dynamic sinkage and trim. LIST: Linear strip theory.. ,SOST:
Quadratic strip theory. STF: Sal vesen, Tuck and Faltinsen. FCF: Frank Close Fit.
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Figure 3.10: Comparison of acceleration frequency response functions at 3/4L a fast
ferry (Froude number=0.55) with and without dynamic sinkage and trim. LIST: Linear
strip theory. SOST: Quadratic strip theory. STF: Salvesen, Tuck and Faltinsen. FCF:-
Frank Close Fit.,
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3.4.3 Frequency Range

The theory by Gerritsma and Beukelman [6] is theoretically restricted to a medium range of
frequencies. For the short waves the Froude-Krylov hypothesis, assuming the ship to be small
compared to the wave, is violated and for the very long waves the strip theory assumption of
We >> (Max fails. As the theory by Salvesen et al. [49] is not based on the Froude-Krylov
hypothesis, it has only the restriction on the long waves. However, the low-frequency range
is governed by the restoring force, so this limitation can in most cases be neglected.
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Figure 3.11: Response amplitude operators for heave, pitch, vertical shear force and vertical
bending moment. The calculations have been performed for a fast ferry with a Froude
number of 0.55 and a heading of 0 degrees with and without the low frequency of encounter
modification. (SOST: Quadratic strip theory. GB: Gerritsma and Beukelman. LT: Lewis
transformation).

The strip theories predict motions and loads less well for quartering and following seas.
This is particularly the case when the frequency of encounter tends to zero while the wave
frequency has a larger value. From head to beam seas, the frequency of encounter is greater
than or equal to the wave frequency, avoiding the problem. However, for quartering and fol-
lowing seas the frequency of encounter may become zero, leading to unrealistically predicted
results. This is mainly because the two-dimensional hydrodynamic mass in the heaving
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Figure 3.12: Response amplitude operators for heave, pitch, vertical shear force and vertical
bending moment. The calculations have been performed for a fast ferry with a Fronde
number of 0.55 and a heading of 30 degrees with and without the low frequency of encounter
modification. (SOST: Quadratic strip theory. GB: Gerritsma and Beukelman. LT: Lewis
transformation).

mode tends to infinity when the frequency tends to zero. The problem is that in the equa-
tions of motion all frequency-dependent coefficients on the motion parameters depend on the
frequency of encounter, whereas the excitation force depends on the wave frequency. ITTC
84 [19] addressed this subject and drew the conclusion that for following and quartering seas,
where the frequency of encounter is very low, a significant improvement of the results could
be achieved by using the hydrodynamic coefficients corresponding to the wave frequency
instead of the frequency of encounter. This has no physical background and serves only the
purpose to avoid that the results go to infinity.

For the quadratic strip theory, a very simple procedure has been used. An upper limit for the
added mass is taken simply by limiting the parameter k4 in Eq. (4.6) to 2.0 for each section.
The problem observed at low frequencies of encounter as indicated in Figures 3.11, 3.12 and
3.13 presents itself over a relatively wide wave frequency band. At low speeds the wave
spectral density in the corresponding frequency band is small, which makes modifications
less important. However, for higher speeds the wave spectral density may have its maximum
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Figure 3.13: Response amplitude operators for heave, pitch, vertical shear force and vertical
bending moment. The calculations have been performed for a fast ferry with a Froude
number of 0.55 and a heading of 60 degrees with and without the low frequency of encounter
modification. (SOST: Quadratic strip theory. GB: Gerritsma and Beukeln2an. LT: Lewis
transformation).

value where the frequency of encounter tends to zero, which makes modifications vital. From
Figures 3.11, 3.12 and 3.13 the modification is seen to improve the results toward what is
intuitively more reasonable in a physical sense. The modification has no effect on results for
headings from head to beam sea.

LT denotes, as indicated Lewis transformation and includes one of the methods for deter-
mining added mass and damping. The method is described in detail in Chapter 4.
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Chapter 4

Hydrodynamic Coefficients

The hydrodynamic coefficients are found by solving the problem of calculating the fluid
response to a forced harmonic oscillation. The physical problem is shown in Figure 4.1 for the

Figure 4.1: Experimental set-up to determine the hydrodynamic coefficients for heave.

heave mode. The prismatic model has a cross-sectional shape as the ship in the longitudinal
position in question, and it is forced to oscillate sinusoidally at a given frequency. In the
linear case, the force with respect to time can be described by a trigonometric function as
well. The measured force includes the hydrodynamic, the restoring, and the inertia force.
In this case, only the hydrodynamic part is considered. The added mass is defined as the
coefficient to the term in phase with the acceleration of the motion, and the damping is
defined as the coefficient to the term in phase with the velocity, both normalised to unit
amplitude of acceleration and velocity, respectively. This procedure is repeated until the
frequency range of interest is covered. A more advanced experimental method is to perform
transient oscillations to include a range of frequencies in one experiment.

Different theoretical approaches have been applied to this problem. A simplified method uses
the solution to the potential flow around a circular cylinder and in addition a frequency cor-
rection due to the free surface. In 1949 Ursell [61] determined the velocity potential around
a semi-submerged heaving circular cylinder and reported the added mass and damping. The
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velocity potential was based on an infinite series of non-orthogonal polynomials (multipoles)
and a wave source at the origin. It is referred to as the method of multipoles. Based on
the solution to the circular cylinder case the mapping methods were developed to determine
the potential around a wider range of geometries. The known potential around the circu-
lar cylinder is mapped onto the cross-section in question and the pressures are integrated
to determine the forces and thus the hydrodynamic coefficients. These so-called mapping
methods strongly depend on the shape of the mapped sections and an increased number of
parameters are required to map certain cross-sections properly. An alternate approach to
obtaining a solution for bodies of a more arbitrary shape is the use of integral equations, also
called panel methods. These methods use Green's third identity on two potential functions.
One is a source function, which contains a singularity, and the other potential function is
the unknown potential.

In Chapter 3 the potentials in terms of the added mass and damping coefficients A3k and
B3k were left as unknowns to be described in this chapter. To recapture the denotations, the
upper case coefficients, e.g. A.*, refer to the entire ship and the lower case coefficients, ask,
refer to the sectional values. Further, the frequency of the oscillation refers to the frequency
of encounter. Finally, the superscript '0' on the potential, 0°, indicating speed-independence,
has been omitted in this chapter because no speed dependence is considered in this chapter.
However, following the notation strictly would imply the superscript '0' on all potentials in
this chapter.

4.1 Mapping Technique

The mapping procedure is generally a transformation of a known potential around a given
geometry into a flow around a contour in question by use of suitable mapping functions.
The transformation consists of an expansion of parameters to determine the transformation.
By truncating the transformation series to only three terms the mapped cross-sections will
become so-called Lewis forms, after Lewis [29], who first proposed their use.

4.1.1 The Lewis-Form Method

The Lewis transformation has some limitations on the mapped geometries. The cross-section
needs to be symmetric and semi-submerged and the hull surface needs to intersect the water
surface perpendicularly. Further, the deep-water assumption has been applied. Only the
transformation for heave has been implemented.

The three parameter transformation ensure the beam-draught ratio BO-, and the section
area coefficient A/(BI) is the same for the two cross-sections.
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The added mass per cross-sectional length can be written

a33(x) =Pk2k4A(x) (4.1)

Here k2 is the non-dimensional coefficient which determines the mapping of the geometry into
the flow around a circular cylinder without any free surface. The non-dimensional coefficient
ki is a frequency correction for the free surface. The density of the water is denoted p
and .A(x) is the sectional immersed area. The non-dimensional coefficient k2 becomes in
accordance with Lewis [29]:

k2 =
1 C/2. 3C3

(1 + Ci)2 + 3C
(4.2)

Here C1 and C2, ,ar6 Lewis mapping 'coefficients, given by

.A) C2-= -B 1 ± A)
Bo - Bo

it C
t 3(1 + 1(1 + Ar'+,841 4-Tin

2T AA= =
BY

where B and T are the sectional waterline breadth and draught, respectively. If the argument
under the square root sign in Eq. (4.3) is negative, the actual draught T(x) is replaced by
a new, larger draught, so that the argument becomes zero. The non-dimensional coefficient
ki reflects the free-surface effects. This value depends on the cross-sectional shape and the
non-dimensional frequency

w2B
6 =

2g

For small values of the non-dimensional frequency (6 < 0.2), Ursell. [61] has given the
following expression for elliptic cross-sections:

Co <0.2 ,(4.4)

Tasai 1581 showed that this expression could be used for other than elliptic body plans. For
larger values of the non-dimensional frequency 6, > 0.2, k4 does not vary very much as a

4.1.
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Figure 4.2: The non-dimensional coefficient k4 as a function of and the non-dimensional
frequency of encounter.

function of the shape of the cross-section. Therefore, in this frequency range k4 is expressed
by

(-)+000.01001,
0.2 < 6 < 1.388

{

k4,2 = 0.2367C,2, 0.49446 ± 0.8547 +

k4 .--- k4,3 = 0.4835 ± V-0.0484 + 0.05046 0.001, 1.388 < G < 7.31

e0 > 7.31

(4.5)

The expressions in Eq. (4.5) are found by fitting numerical results for a circular cross-
section given by Ursell. This gives four expressions, each defined within the ranges given
above. However, use of the these limits does not always lead to a proper match between k4,1
and Ic4,2. An example of this is shown on the left side of Figure 4.2. The reason is that the
intersection between the two curves depends on the ratio of as it can be seen in Figure
4.2. It has therefore been changed so that the limit between k4,1 and k4,2 is determined by
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the intersection between the two curves. For < 6.1 this gives

6 < -0.9846 +032.3567 ± 0.5497k4 = -71f In (0.795 (1 + V e01

k4,2 = 0.2367a - 0.49446 + 0.8547 + en+°,3%

Jk4= k4,3 = 0.4835 + - /-0.0484 + 0.05046 - 0.001a

k4,4 = 1.0

k4,2 - 0.2367a - 0.49446 + 0.8547 + 0.01

k4= B

1k4,3

= 0.4835+ . /-0.0484 + 0.05046 -0.001 1.388 < 6 < 7.31

k4,4 - 1.0 6 > 7.31

For I; > 6.1 no intersection between Ic4,1 .and ko exists, so k4,2 has been extended to describe
this frequency range as well, which gives

1.3503 + 0.5497 < < 1.388T -0.9846+2.3567

6 < 1.388

1.388 < 6 <7.31 (4.6)

6 > 7.31

These expressions give continuous values of k4 as a function of the non-dimensional frequency
6.

The damping coefficient per unit length of the cross-section b33(x) can be written as

b33 ( X = pg2
-A2

(4.7)

where A is the non-dimensional amplitude ratio between the amplitude of the forced oscilla-
tion and the amplitude of the generated wave. Grim [9] derived an expression for the circular
cross-section and Tasai [58] presented the expression for a Lewis form:

go
A

fc° /1+ 3C21
cos /CO ,

/04 + Cii32 + 11\ do (4.8)=
1 + + C2 02 04

±
(1 + + C2)03

This expression has been derived consistently based on the potential theory. A simpler
expression have been given by Yamamoto et al. [68]:

A = 2 sin e e
(w2B -47-)

2g
(4.9)
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Both expressions for the damping have been implemented.

Although the Lewis forms cover a wide range of cross-sections of ships, inaccurate transfor-
mations can occur, especially for the bow and the stern. To overcome this problem there are
two possible solutions: to include more parameters in the mapping technique or to resort to
a Green function method. The latter has been chosen as it has a wider range of applicability,
however, at the expense of complexity and computer time.

4.2 2D Green Function Methods

In the following, three applications will be outlined which cover

Unsymmetrical cross-sections in shallow water.

Unsymmetrical cross-sections in deep water.

Symmetric cross-sections in deep water.

Some of the items listed above could seem to be subcases of each other. The reason why
each case is handled separately is to reduce computational time. If for instance the method
listed first was to be used for a deep-water analysis, segments from the surface down to a
large depth would be needed. This requires a long calculation time compared to a method
intended for deep-water calculations. The symmetry condition reduces the calculation time

The procedure can be divided into three steps. First, the boundary conditions are stated.
Then, the use of the Green's function in Green's second identity is described and leads to an
integral equation. Finally, the integral equation is converted into a set of algebraic equations.
This last step is in principle the same for all the methods. Therefore, a separate section is
dedicated to a short description of this.

The general problem is considered to be solution of the deep-water case, which is the typical
one and subsequently the case for restricted water depth is described, as an extension of the
former. Further, only modes of motion in the transverse plane of the ship are considered
because the solutions for the remaining modes can be determined from these modes.

The semi-infinite domain is shown in Figure 4.3, bounded by the free surface at its mean level
and by the hull contour. The boundary of the domain is referred to as S and the hull contour
is denoted C. For simplicity only translations are shown in the figure. In accordance with
Figure 3.1 the coordinate system (y, z) is fixed with respect to the mean position of the hull,
while the coordinate system (y', z') is fixed in the hull. The two systems coincide at rest
and the motions are described by the two translations 772 and 7/3 and the rotation 774. The

similarly.
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Figure 4.3: The fluid domain and the boundaries for the deep-water case.

rotation refers to the origo of the coordinate system (y', z'). The generalised normal vector
n is normalised with respect to the transverse plane, neglecting the longitudinal component.
The generalised normal vector nk is given by (n2, n3, n4) = (my, nz, ynz zny).

On the assumption about small rotations, the relation between the two systems becomes

= y' + 072(0 Y74(0 (4.10)

z = z' + Er/3(0 + y'ri4(t) (4.11)

The transient response is neglected and the solution will then depend harmonically on time.
The motion of the hull cross-section is defined as:

,A(t) ==ReKket] k == 2,3,4 (4.12)

The potentials must satisfy the Laplace equation given by

V20k(Y,z) = 0, k = 2, 3, 4, (y, z) E R (4.13)

Next, the linearised combination of the kinematic and the dynamic free-surface condition
evaluated at the mean water level from Eq. (3.13) yields

(4.14)

-
-CO
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Or

aok w2
(y, 0) cbk(y, 0) = 0, k = 2, 3, 4

9

The kinematic hull boundary condition states that the normal velocity on the hull determined
from the potential is identical to the prescribed motion of the surface. Two complications
present themselves here as both the hull contour and the normal change with time. The
potential can be given in both coordinate systems by use of the transformation given in Eq.
(4.10):

Here the potential Ok has been primed, which indicates that the transformation has been
substituted into it. This gives two possibilities with respect to the boundary condition on
the hull:

ilk(t)nk = a0k(Y,71)ilk(t)
anik(y, z)

The radiation condition states that a wave of constant amplitude radiates
oscillating hull. This implies

a Ok
(YR °) = ikROk) YR» 0

Z

aok (yL, 0) = ikL0k, YL « 0
az

In the inertial coordinate system (y, z) the normal depends on time, while in the coordinate
system on the hull (y', z') there is no time dependence. By use of the Kirchhoff decomposition
in the primed coordinate system given by

Olc(yi z'; t) = Ok(y', Zi)ilk(t) (4.19)

which replaces the time dependence in the potential by a product of a space-dependent
potential and velocity. The result is that the kinematic hull boundary condition now has
to be satisfied in the mean position of the hull and that the time dependence has been
eliminated, which gives

cx

aok(v ,z')
nk =

anik(y, zi) cx

(4.15)

(4.20)

away from the

(4.21)

(4.22)

rik(t)nk
a0k(Y , z; t)

c,
(4.17)ank(y, z; t)

acYk(y', z'; t)
(4.18)an,k(y', z') cx

Ok(Y, Z: t) = Zi; t) (4.16)(y',
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In this equation, referring to Figure 4.3, kR and k[., denote the wave number of the waves
progressing away from the hull in the right and left direction, respectively. The yL and
YR are the horizontal positions where these conditions are applied. They must be at a
relatively large distance from the hull to ensure that the transient behaviour of the wave
has disappeared. For deep water the wave number k is given by k = 4/g and for restricted
water by ktanh(kd) = weVg, where d is the water depth.

Moreover, a condition related to the bottom has to be applied. For restricted water depth
the kinematic condition evaluated on the seabed becomes

a(bk = 0
On

and alternatively for deep water, implying that the disturbance will vanish as the potential
is evaluated at increasingly negative z-coordinates:

Depending on which case is considered the boundary conditions listed above can be combined
to pose a boundary value problem for the space-dependent potentials.

By use of Green's second identity this can be converted to an integral equation. Considering
two points of interest in a fluid domain P(y, z) and Q(., 77). The point Q (e, ri) refers to the
position of the Green function and the point P(y, z) refers to a point at which the potential
is to be evaluated.

Green's second identity yields the following theorem for a point P on the boundary:

Ok(P) = ' 7'20k(s)G(P,Q)dA

1 aG(P,Q) 1 k(s)
Ok(s) ds G(P,Q)00 ds

7r S On 71 S an

Due to the field equation, Eq. (4.13), the expression reduces to

1
Ok(P) = q(s) aG(P,Q)

ds 1 f G(P Q)a0k(s) dsk
S 3m irs an

(4.23)

(4.25)

(4.26)

The 77 in Eq. (4.26) refers to a point on the boundary. This is changed to 27r for a similar
expression for an internal point in the domain and for a knuckle point the angle between the
two segments connected to the knuckle point. The Green functions G(P,Q) are distributed
over the boundary of the hull. The potential is determined from an integration of the

lim Ok = 0 (4.24)

+



a
70k(P) Ok(s)(1n(r))ds ln(r)°°k(s) dss an s an

The subsequent subdivision of this contour refers to the symbols indicated in Figure 4.3.
The two vertical contours SR and Si, are located in the horizontal positions yr, and YR)
respectively. The contour on the free surface is denoted Sp, and the contour describing
the seabed, SE.. By integration over the boundary of the domain and use of the boundary
conditions Eqs. (4.15), (4.20), (4.21), (4.22) and (4.23) give

70k(P)a
cxgsk(s)an(1n(r))ds

nk(s) ln(r)ds +

Ok(s)[a(1n(r)) kln(r)ids
SF an

Ok(s)[a(1n(r)) ik ln(r)] ds +s, an

q5k(s)(1n(r))ds +
sB an

a
Ok(s)[n (in(r)) +-ikln(r)ldsan

(4.28)
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potential function along the boundaries of the domain. The potentials can be determined!
from Eq. (4.26), which becomes a set of linearly coupled,Fredholm integral equations of the
second kind.

A number of Green functions can be applied.. The general form is

G(y, z; e, n) = /n(r) H(y, z; e, (4.27)

where r is the distance between the two points P(y, z) and Q(e, H is any function that as
a minimum satisfies the Laplace equation. If, in addition, the function H satisfies the free-
surface, the radiation condition and the bottom boundary condition, the integral equation
will only include integration over the hull boundary Cx.,

11

This leaves the choice between evaluating a complicated Green function only over the hull
boundary or evaluating a simpler Green function over the entire boundary of the fluid.

4,2,1 Simple Green Function

The Green function is in its simplest form G(P, Q) = 1n(r), where r is the distance from
the point P(y, z) to the location of the singularity Q (e, n). This rather simple function makes
it necessary to integrate around the entire boundary. Inserting the Green function in Eq.
(4.26) gives

(4.29)

+ 77)

n).

=

+



In the case where the domain is semi-infinite in terms of the distance to the seabed, the
equations are simplified to some extent. In the following, two cases are treated.

Infinite Water Depth

If the distance to the seabed is infinite or at least of an order of which the deep-water
wave approximation can be justified (d/A >> 0.5), then the disturbance from the motion will
vanish as z approaches oo. This makes the fifth term in Eq. (4.29) negligible. Following
the approach by Yeun.g [69] with the right radiation boundary as an example, the term
associated with this boundary can be replaced by ¢.(1?, 0)e" on the assumption that the
distribution of the potential is an exponentially decaying function of the vertical distance
from the free surface.

The corresponding integral in Eq. (4.29) for the point P(y z) becomes

1 0k[- ln(r) ikln(r)]ds
an,

a
FiR(k

co
R)= ek"ln[. (yi )2 + (zi 11)2]_co a

,

GiR(k, R) = k '
To

/(y - )2 + - 02] dn

= Ok(R, 0) TO ektql ln(r) ikln(r)]dri
-00 4:9.

= k("R, 0)[FiR - (4.30)

The derivative with respect to the generalised normal n becomes equal to (9/49, because the
radiation boundaries are vertical. The integrals F,R and G!? are defined by

(4.32)

Using a similar approach on the left radiation boundary leaves only the integral on the hull
boundary and the free surface. The unknowns on the radiation boundary are hereby replaced
by a single unknown k(R, 0) on the free surface on each side of the hull.

Finite Water Depth

For finite water depth the general approach is the same as before except for the integral on
the seabed is not being negligible and, moreover, the way the radiation condition is treated
is also different. The radiation conditions given by Eqs. (4.21) and (4.22) require that the
distance from the section they are applied is sufficiently large so that transients have died
out. However, this also leads to a larger domain which is not beneficial. Therefore, the
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C177 (4.31)
e=e R

-9
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possibility of taking these transients into account in the posed condition is advantageous.
Following the approach by Yeung [69] and also used by Andersen and He [1], the potential in
the outer region of the radiation boundary on the right side of the domain R can be written
as a sum of potentials

oo

= CnR0nR
n=0

where CThR are unknown coefficients. For n = 0 the unit potential is given by

OR = ekoRb-YR)CaSh[kOR(Z hR)]

COSh[kORhR]

The constant km is given as the n-th positive solution to

ktanh(khR) = (4.37)
9

The terms, 0,-,R are a set of eigenfunctions satisfying the Laplace equation, the free-surface
condition and the bottom boundary condition. At the radiation boundary the potentials are
matched (OR = OR), which gives

NR

(4.33)

(4.34)

The depth is indicated by hR, and yR is the horizontal position of the radiation boundary,
both corresponding to the right side of the domain. koR is the positive solution to the
equation:

This corresponds to the potential of an outgoing shallow water wave. If decaying transients
occur, they are included by the additional terms given by

ko tanh(kohR) = (4.35)

= eknFtb -") cos[lcR(z hli)1 (4.36)

= CnknR (4.38)
n=0
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Finally, the condition on the right side becomes

00 00(-0)sR = (SR
NR

= ikORCOMPOR knRCnR0nR
n=1

Using the same procedure on the left side of the domain gives

(00
00,

)SL )5
NL

= ikoL,CoLOoL kr,L,Cmi3OnL,
n=1

Applying these radiation conditions to Eq. (4.29) leads to the boundary value problem for
restricted depth.

4.2.2 Frank Close Fit

The Frank Close Fit method, or what has earlier been referred to as application of a compli-
cated Green function, uses a source distribution on the boundary of the hull and solves for
the source strength. The implemented method is in accordance with Potash [45] and uses
a Green function to solve for the potential. As it is shown in [45], this approach becomes
equivalent to the Frank Close Fit method. This involves a more complicated Green function
satisfying the required boundary conditions. In this case it is the infinite water depth bound-
ary condition, the radiation condition and the free-surface condition corresponding to Eqs.
(4.24), (4.21), (4.22) and (4.15). The Green function is given for the infinite water depth in
Wehausen and Laitone [64] as the potential for a point source of unit strength located at

iek(z+n) cos(k(y .))1 sin(wet) z, < o (4.43)

By application of this Green function to Eq. (4.26) it can be shown that the integrals
vanishes as the depth approaches infinity except on the hull surface. The numerical details
about the solution of principal value integral in Eq. (4.43) can be found in e.g. Yeung [69].

The remaining procedure for determining the potentials is similar to the description in the
previous sections.

G(y, z,t) In
27r \

1
r) ek('+'')

cos(u(y e))dul
(y e)2 + (z 77)2

(y e)2 + (z +71)2
cos(wt)

71- o k

(4.39)

(4.40)

(4.41)

(4.42)

I
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4.2.3 Discretization of the Integral Equation

The integral equation in a form dependent on the methods described in the previous sections
consists of a curve integral along parts of or the entire boundary of the domain. This curve
is approximated by straight-line segments. The segments are described by geometry points,
which form the endpoints of the segments. The midpoints of the segments are considered to
be potential points, which represent the constant potential on the segment. The potential
on the ith segment Ok, which forms the linear connection between ( ) and (+1, 77,±1), is
given by

Oki = Tk -+-i
2 2

It is conceivable that this is reasonably accurate if the subdivisions are fine. For each poten-
tial point the integral along the boundary can be rewritten as a sum of all the contributions
from the segments in question with the constant potential corresponding to each segment
as a coefficient. This can be rearranged to a number of equations equal to the number of
potential points. This discretization reduces the integral equation to a set of linear algebraic
equations. The unknowns become the values of the potentials at a discrete set of control
points along the boundary.

jN

(4.44)

Figure 4.4: Example of the discretization of the boundary for the infinitely deep-water case.

This set of equations is solved for each of the modes sway, heave and roll and the potentials
are determined.

The potential determined in this chapter is the space-dependent part of the decomposed
potential Ok(y, z; t) = (y, z)iweez'et . The sectional hydrodynamic force and moment t2(t)

-CO -CO

+
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t3(t) and t4(t), due to the oscillation, can be expressed as

t(t) =- p acbk(y, z,t)
c, at

nds k = 2, 3, 4

by neglecting higher order terms in the Bernoulli equation. In Eq. (4.45) the sectional force
or moment related to a certain mode j includes coupling terms from other modes. For the
determination of the added mass and damping coefficients, only the amplitudes of the force
and moment components are required. They can therefore be expressed specifically as t3k,
which means the amplitude of the force or moment corresponding to the jth mode due to
motion corresponding to the ith mode.

tjk = pw Ok(Y, z)njdsc,

Eqs. (4.46) and (3.32) deviate from Eq. (3

that in Chapter 3 the potential01°, denotes
chapter the derivations have been simplified
velocity. This leads to the relation between
by 4(y, z) = ic.ocbk(y, z).

The expression in Eq. (3.32) relates the sect
to the potentials

pwe2 njOkdl = we2ajk iwebikc,

From this, the added mass and the damping become

ajk = p nilie(5k)d1
c,

ifbjk = p n
We c, (k) dl

(4.45)

(4.46)

.22) by a factor of iw. The reason for this is
the amplitude of the potential, while in this
by expressing the potential as a factor on the
the potentials in Eqs. (3.32) and (4.46) given

ional added mass and hydrodynamic damping

(4.47)

(4.48)

(4.49)

In Figure 4.5a 4.5b and 4.5c examples of results for different depths are shown. The general
tendency is that in the low-frequency area the hydrodynamic mass is increasing with de-
creasing clearance between the keel and the bottom. On the contrary as regards the higher
frequencies where the hydrodynamic mass is decreasing with decreasing clearance. An ex-
ception is the hydrodynamic mass for heave in Figure 4.5c, which increases in the entire
frequency range as the clearance decreases.

The effect of the water depth was considered by ITTC 1978 [17], which concluded that
the influence of the water depth on ship motions becomes noticeable when the depth is
shallower than twice the ship draught. However, the effect manifests itself both through the
hydrodynamic coefficients and through the shallow water exciting wave, the latter has not
been implemented here.
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Figure 4.5: Non-dimensional added mass and damping of a rectangular symmetric section
with B/T = 2 and different depth/draught-ratios.
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Figure 4.6: The non-dimensional added mass and damping for a rectangular symmetric
section with B/T = 2 and different heeling angles.
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In Figure 4.6 examples of the added mass and damping for a heeling section are presented.
Nine terms are shown for both added mass and damping due to the asymmetry. For sway,
heave, roll and the coupling between roll and sway, no significant change is observed. This
is mainly due to the relatively small heeling angle. However, the remaining coupling terms
increase as the heel angle increases and, approach zero as the ship becomes upright,

4.3 Irregular Frequencies

It is a distinct advantage of the Green function approach that it solves the problem. for the'
cross-section in question without the requirement of a proper transformation as for the map-
ping methods. At first sight there appears to be no restrictions on the cross-sectional shape.
However, the matrix of influence coefficients can become singular for certain frequencies. A
frequency where this happens is called an irregular frequency. Normally it happens at rather
high frequencies and does not affect the calculation in the wave frequency range. For the
simple Green function methods described above no irregular frequencies have been observed.
For the Frank Close Fit the irregular frequencies do occur but usually for high frequencies
where the wave spectrum contains less energy so the response spectrum is unaffected by it.

Different authors have proposed modifications to remove the frequencies. An example is
Ohmatsu 1[42], who proposed to put a hydrodynamic lid on the water plane of the hull to
suppress the oscillation of the interior of the hull, causing the irregularities,

Lee et al. [28] review this problem and add that discretization errors in the numerical solution
of panel methods translate into large errors in the solution over a substantial frequency band
around the irregular frequencies. Furthermore, that the width of the polluted frequency band
can be reduced by increasing the number of panels.

It

Regarding the use of the methods the irregular frequencies usually occur at relatively high
frequencies with no influence on the calculation. A regular ship motion problem even with
a rather dense grid can be solved in reasonable time, which makes it possible to narrow
the polluted frequency band.. Finally, use of the Lewis transformation avoids the irregular
frequencies. Therefore, it has been concluded that the ship 'motion problem can be solved
without modifications regarding irregular frequencies.

1.4 Roll Damping

The 'damping in ship motion problems comes mainly from radiating waves away from the
ship.. This wave damping constitutes the major part of the dissipation of energy. Rolling of
a ship, however, is an exception from this.. In this case, the wave-making damping is only a
small fraction of the total roll damping, which the ship experiences in reality. The remaining
roll damping arises from
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Eddy shedding from e.g. a sharp keel or bilges when the ship rolls.

Skin friction as forces on the surface when the ship rolls.

Appendage forces, which oppose the rolling motion.

All these effects are due to the viscosity of the fluid, which is neglected in the strip theory.
The wave-making damping is linear and proportional to the roll velocity. However, this is
not the case for the viscous roll damping, which is generally proportional to the square of the
roll velocity. A lot of more or less empirical relations have been developed, e.g. Schmitke [50]
and Tanaka [56], to determine the three contributions listed above and make a linearisation
with respect to a proper point of roll velocity.

In this work a simple procedure has been selected, in which it is possible to choose a per-
centage of the critical damping to add to the wave-making damping in order to get at least
realistic values of the roll amplitude.
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Chapter 5

Response Statistics

5.1 Introduction

The description of the ship response in waves in the previous chapters aims at regular waves
only. However, the ocean wave climate is stochastic. The wave signal and the ship response
must therefore be considered as stochastic processes subdivided into durations where they
can be considered as stationary in a statistical sense. Stationary means in this context that
the statistical properties characterising the stochastic process do not depend on time A
duration in which the process can be considered as stationary is denoted short-term and it
is typically of the order of hours. The use of the definition long-term covers the 'in-service'
lifetime of the ship and can be described by a large number of short-term periods. The
outcome of the statistical analysis of the response is a distribution of the extreme values
in terms of probabilities of exceedance for different levels of the response. Based on this
distribution, design loads can be determined. In addition, the fatigue damage due to the
stress amplitude distribution and number of cycles to which a detail on the ship has been
exposed can be determined from these statistical results. The statistical procedure to be
applied depends on the form of the response described in the previous chapters. In the
following sections the procedure for each type will be addressed.

5.2 Short-Term Response Statistics

In the linear analysis the wave kinematics in a stationary sea state is modelled as Gaussian
distributed processes. Due to the linear relation between waves and ship responses, also
the responses are Gaussian distributed processes. The Gaussian process is described by its
mean value and variance. As only wave-induced response is considered the mean value in
the linear analysis is zero. The non-linear analyses introduce responses which deviate from
the Gaussian distribution. These deviations can be determined on the basis of the statistical
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moments and expressed approximately in terinS of Mean p, variance V H- skewness n3
and kurtosis K4. As shown in Figure 5.1 the skewness causes an asymmetry to the Gaussian

1C4

K4 <3

K <o

Skewness

=0 IC'3 >0,

Figure 5.1: The effect of skewness- and kurtosis in the Gaussian distribution.

distribution, while the kurtosis increases the, probability in the 'tails? of the distribution..

5.2.1 Linear Frequency Response

The procedure for the linear response in the frequency domain is a standard linear spectral
analysis. The response is known in terms of a complex frequency response function or a
response amplitude operator RPM 0) and the corresponding phase function P(w1U,
The vessel experiences the load sequences with respect to a frequency of encounter we, which
is the wave frequency measured from a moving reference placed on the ship. The response
spectrum SR(we) is given as

S R(c.vell Hs, Tz U, 0) = RCe U, 13)2 S,e7 (wel Ha, T, U, 0) (5.1)

where S7.ei(ws) is the wave spectrum.as .a function of the frequency of encounter, the significant
wave height Hs and the zero uperossing period Ti,. The relation between the frequency of
encounter and the wave frequency is given in Eq. (5.2).

The transformation of the spectrum from the wave frequency to the frequency of encounter is
described e.g. in Price and Bishop [46]. If a wave spectrum is considered, it can be expressed
In terms of Loth the wave frequency and the frequency of encounter by the relation

f4e = LTCOS03)1 (5.2)

>3
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The relation between the wave spectrum given as a function of the wave frequency and. as
a function of the frequency of ,encounter is found by using energy conservation. This states
that the energy of the waves in a frequency band must be the same whether it is expressed
in terms of the wave frequency w or the frequency of encounter we.:

Sr7(W)c1W =..Sne(we)dw (5.3)

so that

si7(w)

s'e7(wel II dwe/dw II

for the real, positive value of ci.2 given by

1 4Lwe cos(0)1 2

w `2u cos(0)

As stated in Jensen and Dogliani [23], Eq. (5.2) has up to three solutions of the wave
frequency for each frequency of encounter for following and quartering seas.. This makes
integration with respect to the wave frequency less straightforward.

From the response spectral density SR, the spectral moments

n
rn SR(We)dWe,,, n=_O,

.9

scan. be determined.

Given these spectral moments of the response the distribution of the peak values can be
determined. By assuming the response to be narrow-banded the distribution can be appro-
ximated by the Rayleigh distribution:

F(z) 1 ye 27,R0 (5.7)

To determine the rate at which peaks occur the uperossing rates must be determined. By
use of the results derived by Rice [47],. the zero uperossing rate is determined by

27r ,or.
=

1 or
(5.8)

S77(W)

2coU cos(0) I (5.4)

(5.5)

(5.6)

=

1
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where a is the standard deviation of the response and 6- is the standard deviation of the
time derivative of the response. The latter enters through the condition of uperossing. For
a linear response the spectral moments of the derivatives are related by mk, = rnka+2 for
n 0,1, which gives

1 Tri ,R2

27 MR0

Similarly, the peak rate becomes

77711-71
V

27r rn,R2

For a narrow-banded response the peak rate can be approximated by the zero uperossing
rate.

The number of peaks occurring within a given duration T is determined by N = vpT
The distribution of the extreme values of the response with the duration T in the form of
the probability of exceeding a given response level ( can be determined by use of different
methods. Often order statistics are used with the relation

Fmax(() == 1- {Fp(Or == 1- {1 e m2/C-72n}iPT

assuming statistically independent peaks. An alternative is to consider the response as
a Poisson process. The Poisson distribution has been derived on the assumption that the
individual peaks are uncorrelated. This implies a not too narrow-banded response spectrum.
The distribution of the extreme value of the response within a given period T is then given
by

Frno.x(() = 1 (5.12)

where the uperossing rate v of the level ( is given by

with the zero uperossing rate vo given by Eq. (5.9).

(5.9)

(5.10)

(5.11)

= VOe 2mR° (5.13)
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5.2.2 Quadratic Frequency Response

The response determined from the quadratic strip theory analysis contains in addition to
the linear response amplitude operator two quadratic response amplitude operators. These
quadratic response operators are given as described in Section 3.3.1. They are functions
of sum and difference frequencies, respectively. The operator related to the difference fre-
quencies represent a slowly varying contribution to the solution and the operator related to
the sum frequencies represents a rapidly varying contribution. Given a wave spectrum at
equidistantly spaced frequencies of encounter and the quadratic frequency response functions
in Eqs., (3.51) and (3.52) the response can be written in the compressed form

M( x, 0) 2n 2m
= AiXj .EV AjkXAk (5.14)

A j=1 k=1

where the independent stochastic variables xj are defined. as

11/2

N-{(itC2 +1(43)2W, = OnRo
r=1

The, linear standard deviation referring to each frequency of encounter becomes'

Aik

Using t = 0, which is applicable as the response is stationary in a statistical sense. Finally,
the second order coefficients become

I(m+m;k---')-

v.1 vk

(A1t +Al)-ivivk_n

(11121+n,k 'Win* 1"11 V3--rt k

Y4-

The amplitude and phase lag of each wave component are, as in Section 3.3.1, expressed
as ei aj cos(03) and .J.F7, = aj sin(03) and with a variance given by Vi Vj+,2 = S77e(We1)
corresponding to the frequency We;. The response has been normalised by the standard
.deviation of the first order contribution, denoted A, and given by

for j,k < n

for j < n and k >

for j > n and, k <

for j, k > n

(5.15)

(5.16)

(5.18)

A/Ar7.7 for j < n.A4-;

A; =

Ms. -Vv for j > n3-Th

+

= =

A =

t

=
n

n

(5.17)
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These coefficients have been normalised by the non-linearity parameter . to fulfil

By reference to the work by Jensen and Dogliani [23], the first four raOments of the response
become

K3o.3 =

ELM= pm

ERM ity)I =

EaM .12y)31 = IC34

iLyr] = 6441

/ 2n 2n 2n 2n 2n.
K3 = A3 t 6E AiAijAj + 83 7 7 7 AiikikAki (5,22)

j=1 i1 j=1.

OC4 = 3)0-4 = K4 = A448E2 7 7 7 AiAijAikAk + E2 7 7 7 7 AijAjkAkiAh 1(5.23)
i=1 j=1 k=1 j=11c=1

Different methods can be used for the extreme value prediction as discussed in Jensen and
'Dogliani [23]. The approximate procedure applied here is a simple cubic Hermite polynomia
transformation. For a Gaussian process the distribution of peaks is simple to determine from
Eq. (5.7). The Herraite series approximation method takes advantage of this by a functional
transformation of a, non-linear response into a standard Gaussian process. The non-linear
response M(t) is used to determine a polynomial g(U(t)) of the standard Gaussian process
U(t). The procedure is to determine the four deterministic coefficients co, C1., c2 and c3 in

/ 2n 2n 2n 2n 2m 2n 2n

This set of algebraic equations is solved by a Newton-Raphson scheme.,

(5.24)

are the same,

(5.25)

(5.26)

(5.27)

(5.28)

.co + c2

= c21 + 6c1c3 + :2c.22 + 15c32'

= c2 (64 +8c + 72c1c3 + 2704)

=t 604 + 3c + 103954 + 60ccf + 4500cM +

.63044 + 936c1ck3 + 3780c1d + 60dc3

M(t) g(u(t)) = C + c1U + c2u2 + ic3u3

so that the mean value bc, the variance o-2, the skewness K3 and the kurtosis k4
for M(t) and g(U(t)). Thus, see [22]:

2n 2n
7 7 Ajk = (5.10
j=1 k=1

2m

A = Af Aii (5.20)

(72. = K2 = A2 (1 + 2E2\ (5.21)

=

i=1 k=1

i=1

E[(M

=

1
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The distribution of the extremes can now be formulated simply by use of the transformation
to the standard Gaussian distribution.

The peak distribution for the non-linear response ( thus becomes

2(0
Fp(() = 1 - e- 2

where u(() is the inverse function of g(U) given by the real solution to

(5.29)

The uperossing rate is found in a similar way as in the linear case except for a more com-
plicated relation between the response and its time derivative. From an expression of the
same form as Eq. (5.14) for the time derivative of the response the uperossing rate can be
calculated as in [23], by

1 a ( 1
vo 1+ (tc4 3) \ (5.31)

The extreme value prediction is determined as in the linear case by Eq. (5.12) but using the
transformation in the relation between zero uperossing and the uperossing rate at u(c):

5.2.3 Fatigue Analysis

As the local loads are related to the global loads, the fatigue analysis becomes relevant in this
context. There are several models for relating the cyclic stress/strain state at a structural
detail to the fatigue strength of the material. The basic assumption is that the fatigue
performance of the detail can be described by a small-scale laboratory specimen when it is
exposed to the same stress history.

3

c, = (5.30)
i=o

= e 2 (5.32)
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The S-N Approach

The S-N approach is based on fatigue tests which describe the relation between a constant
cyclic stress range Au and the corresponding number of load cycles N leading to failure.
The procedure assumes that it is only necessary to consider the range Aa in the principal
stresses when the fatigue endurance is estimated. Thus, the influence of the mean stress
level is neglected. The result from the S-N fatigue test is described on the following form

I

Ne(Ao)m = (5.33)

where Ne is the number of cycles for failure at the streSS range Lo- and m is the negative slope
of the S-N curve. Finally, a is a scale parameter. To extend this constant amplitude test
result to a load sequence of varying amplitude, the linear Palmgren-Miner fatigue damage
model [33] is used. It states that the total damage experienced by the structure may be
expressed by the accumulated damage from each load cycle at different stress levels. A load
sequence consisting of different amplitudes or stress ranges can be divided into j levels of
constant stress amplitude and the expected accumulated damage D is calculated as

D=
1=1 ivc,,

niAcrin
(5.34)

where ni is the number of stress cycles at the load level i and Ne,i is the corresponding
critical number of load cycles. Failure is assumed to occur when the damage index D is
equal to 1.0. The Palmgren-Miner approach 1133] assumes that the cumulative damage D is
independent of the sequence of the applied stress. This is generally not the case. However,
the Palmgren-Miner rule is still one of the most accurate models for cumulative damage
calculations.,

'For a symmetric, slightly non-Gaussian stress response the fatigue damage per cycle can be I

estimated on the basis of the Palmgren-Miner [33], rule as given by Winterstein [66]:

d' = F(1 i) fi+ l(n2+ M)(K4 - 3)i

24rt(20-im
(5.35)

where FO is the Gamma function,. d and in the scale and slope parameters in the S-N curve.
and a and K4 the standard deviation and kurtosis of the stress response_ 'The total expected
damage D during a time period T can finally be calculated as

D. = Tvod (5,36)

i=1
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Q(Mp(T)) P(max Mp >
T "

-

1 Fr e-vig)Ti
i=L
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5.3 Long-Term Response Statistics

The long-term analysis covers the lifetime of a ship, say 20 years. The applied concept is
that the long-term analysis is modelled as a sequence of stationary short-term periods. The
determination of the spectral moments for the short-term responses has been described in
previous sections.

As the wave spectrum is a function of the square of the significant wave height it is in the
linear case only necessary to determine the variance for a single significant wave height and
all relevant zero, uperossing periods. Similarly, for the second order response a relation is
used between the significant wave height and the cumulants K, given in Eq.. (5.20)-Eq.
(5.23). In this case it involves calculation of the spectral moments at only two different
significant wave heights, The details can be found in [23].

The probability of exceedance becomes

.( 5. 37)

(5.38)

(5.39)

(.5.40)

using the Poisson uperossing description. For second order responses the transformation
u(() is given by Eq.. (5.30)1 whereas for the linear response no transformation is needed. fsi
is the fraction of the time in a given sea state Ti out of the total period T. Further, p is the
number of stationary combinations of the parameters.,

Significant wave height H3.

Zero upctossing period Tr.

Forward speed U.

Heading angle 13,

vbi is the zero uperossing rate in the combination number i out of the total number p_ IS'ach
of the combinations above is experienced by the ship in a certain fraction of time fsi given,
by

fs = fsAllsATzAUAO (5.41)

= ()

=

= 1



U, 0) = fm(H., 7z)fu(U1114.fo(01Hs) (5.42)

and AH,, AT, AU and Ai3 are the discretization of Hs, T, U and 0. The fraction fm of
time spent in the different combinations of Hs and T is determined by the operational profile
given by a number of scatter diagrams and the corresponding time distribution. Based on
the selected scatter diagrams, a normalised scatter diagram is determined as

fm(H8,I) =- P, fm,(H,,T,) (5.43)
.J=1

where n is the number of scatter diagrams, P3 is the fraction of time in diagram j and fm,
is the distribution of short-term sea states given by the jth scatter diagram.

The speed distribution fu can also be interpreted as a speed reduction because it takes into
account deviations from the design speed. The speed reduction can be divided into two
terms a voluntary and an involutary speed reduction.
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Figure 5.2: The added resistance in waves
as a function of the wave length [41].

"CAREFUL

SPEED
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WEATHER

Figure 5.3: Example of speed reductions
as a function of the weather roughness
[30].

The involuntary speed reduction can be seen in Figure 5.2 as the increased resistance due
to the waves and the ship motions. The upper curve in Figure 5.3 indicates how the ship
speed slowly decreases as the weather roughness increases. This curve indicates the speed
given a constant thrust. However, a lot of ships have a power reserve to account for this kind
of situation, which might eliminate the involuntary speed reduction. The voluntary speed
reduction is indicated in Figure 5.3 as the linear, decreasing lines. This applies to situations
where the master of the ship estimates the sea state to be too rough on the ship and eases it

CA LM ROUGH
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by reducing the speed. As shown in Figure 5.3 the decision when to reduce speed is highly
dependent on the experience of the master of the ship. This experience is modelled by a
number of threshold values for the significant wave height, which make it possible to define
a number of ranges where different speeds are applied.

The heading distribution fo is given in a similar manner with a set of probabilities as in Eq.
(5.44) for each range of the significant wave height:

f3(0) = {Po=31,P3=32, (5.44)
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Chapter 6

Verification and Validation of the
Code

This chapter is dedicated to verification and validation of the code. Emphasis is put on the
verification against results from other codes, but also validation against model tests is made.

A very precise verification, which would require an exact match of the results, could have
been made with a program using the same theory and the same algorithms. However, such
results are not always available and even if the type of strip theory was the same, the
method for determining added mass and damping could be different. Besides, differences in
the modelling of the ship, in terms of geometry and weights, could lead to minor deviations.
Parts of the verification are made with results from ordinary strip method (OSM) and new
strip method (NSM), which are variants of the present methods. The reason is that they
seem more widely used and are therefore found more frequently in articles. The results
from the three analysed ships are, however, the best available. A comparison with a sample
of results from an in-house software at Registro Italiano Navale has also been made. This
program is denoted SGN80 and is based on the theory by Salvesen, Tuck and Faltinsen.
Finally, results from a commercial program denoted SHIPMO has been used for comparison.
This program is also based on the theory by Salvesen, Tuck and Faltinsen.

The linear strip theory program (LIST) is based on the theory by Salvesen, Tuck and Faltin-
sen (STF). Both STF and Gerritsma and Beukelman (GB) are options for the quadratic
strip theory (SOST). The non-linear time-domain strip theory, also based on GB, is denoted
NLST.

The two methods for determination of added mass and damping using the simple Green
function have not been found sufficiently robust for general use. The reason is that the
present method for discretization of the additional boundaries is not suffiently general to
handle the entire frequency range used for the analyses. Two methods for the determination
of added mass and damping are used in this section. The Lewis transformation, denoted LT
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and the Frank Close Fit method, denoted FCF. All results of motions refer to the centre of
gravity and phases refer to a wave crest at the centre of gravity.

Emphasis is put on the response amplitude operators because they are often available for
comparison and, furthermore, the following short- and long-term calculations are theoret-
ically more straightforward. As regards the quadratic strip theory only the linear part of
the transfer function is verified. The second order contribution is included in the long-term
calculation.

6.1 Analysis of a Container Ship

A relevant ship type for non-linear analyses is a container ship, due to the bow flare. A good
test example is the container ship S-175, which has been subject to several model tests and
computer studies. The ship has a block coefficient of 0.572, a bulbous bow, and a relatively
high design speed of 22 knots corresponding to a Froude number of 0.275. Its principal
particulars are given in Table 6.1

Table 6.1: Principal particulars for the container ship S-175.

The results used for verification are based on the work by the ITTC78 Committee [17] on
the comparison of results obtained by computer programs to predict ship motions. Twenty-
two organisations submitted results from their computations and model tests were carried
out. None of the organisations used the same program. The main part of the analyses was
performed by use of the ordinary strip method (OSM) and two analyses were made on the
basis of the theory of Salvesen, Tuck and Faltinsen. The results are presented as a lower

Principal Particulars
Length between perpendiculars L 175.0
Breadth B in 25.4
Side height H m 15.4
Design draught T in 9.5
Trim (Taft Tiara)ore) ill 0.03
Displacement A t 24856.6
Block coefficient CB 0.59
Longitudinal centre of buoyancy LCB/L,,, % -1.42
Transverse metacentric height GMT 771 1.0
Vertical centre of gravity (from baseline) z9 in 9.5
Longitudinal radius of gyration rylL 0.251
Roll period Tr sec 18.0

in

.
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and upper quartile of the results from all the participants and thus also give a measure of
the spreading of the results. The reason for this spreading can be divided into two. First
the comparison involves results from different methods. Secondly the code from different
institutions does not give identical results, even though the same theory has been applied.
This might be due to differences in modelling or use of different algorithms.

6.1.1 Geometry

Figure 6.1: Geometrical description of the container ship S-175.

The geometry of the ship is described by 25 station curves with an increased density in the
aft and fore part of the ship. The geometry is shown in Figure 6.1.
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Figure 16.2: Weight distribution and body plan for the container ship S-175.

The weight condition shown in Figure 6.2 has been determined on the basis of the displace-
ment, trim and longitudinal radius of gyration. No data has been found on the vertical
distribution. Therefore, all the sectional weights have the centre of gravity at the same
vertical level.

6.1.3 Motions,

The motions in the vertical plane have been analysed for the S-175. Both transfer and
phase functions are compared. In Figure 6.3 the response amplitude operator and the phase
function for the heave motion of the ship S-175 in head waves are shown. The results from
three of the present results are in between the quartiles. The results from SOST can be
divided into analyses using STF strip theory and analyses based on GB strip theory. The
response calculated using SOST, STF is generally larger than the SOST, GB. The heave
response amplitude determined by SOST, STF is above the upper quartiles. The reason for
the difference between LIST, STF and SOST, STF is that the use of the diffraction potential
in the former has been replaced by the relative motion concept in the latter, however, still
including the. speed-dependent terms similar to STF.
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Figure 6.3 Comparison of the heave response amplitude operator and phase function for
S-175 in head sea at a speed of 22 knots.

The present methods give the same results for zero forward speed. An example of this is
given in Appendix A. It is indicated that the speed dependent terms are the source to the
difference.

The phases are defined in relation to a wave crest in the centre of gravity and correspond
well with the predictions except in the high-frequency region. At the frequencies where the
folding to the range +180 degrees takes place, there are some deviations. However, the,
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response is very small in the high frequency region. Therefore, the deviation does not have
any impact on the results for practical purposes. The present results correspond well with
the results from the model test outside the frequency range, where the dynamic amplification
occurs. In the range where the response is amplified the computed results overestimate the
heave response compared to the model test.
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Figure 6.4: Comparison of the pitch response amplitude operator and phase function for
S-175 in head sea at a speed of 22 knots.

In Figure 6.4 the pitch response amplitude operator and the phase function are shown. The
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response amplitude operator corresponds well with the quartiles, however, as for the heave
response, the two ,SOST, STF calculations overpredict to some extent. The LIST, STP
follows the upper quartile, while the two SOST, GB calculations follow the lower quartile.
The difference between the two SOST, GB calculations is the method used to determine
added mass and damping. The results show no or very small sensitivity to this. The model
test follows the lower quartile quite well and a very good prediction can be observed with,
the SOST, GB, FCF and the SOST, GB, LT.

As in the case of the heave phases, also the pitch phases show good agreement with the
quartiles. The high-frequency part folds at different frequencies, which makes the deviation
seem larger. However, as for the heave motion the response is insignificant in this range.

6.1.4 Loads

The loads on the hull were subsequently compared by an ITTC Committee, ITTC81 1[181
The comparison is presented in terms of plots of the results from all the participants. TO-,

go into detail about all this data would require a large description, which has been avoided.
Instead the results are included for the purpose of showing an example of the spreading
which may occur in 'computed results of this type. The results from the participants are
shown with different symbols. The large circles are results from model tests and finally the
present results are shown by curves.
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Figure 6.5: Comparison of the response amplitude ,operators for the midship vertical shear
force for S-175 in head sea at a speed of 22 knots,
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In Figure 6.5 the response amplitude operator for the vertical shear force amidship is shown.
Generally, the present results are within the relatively large scatter of the results. The
present results can be divided into three groups. The SOST, STF, LT corresponds well with
the LIST, STF, FCF, despite differences in the motions, and form the upper level of the
predictions. The SOST, GB, LT and the SOST, GB, STF again show a very small difference
due to the method af added mass and damping. Finally, the SOST, STF, FCF give a rather
poor prediction compared to the remaining methods.

In Figure 6.6 the response amplitude operator for the midship vertical bending moment is
shown. The results from the ITTC participants are distributed into two groups. The LIST,
STF, FCF and the SOST, STF, LT correspond well with the upper level, while the SOST,
GB, LT and SOST, GB, FCF correspond well with the lower level. The SOST, STF, FCF
again deviate both in level and in tendency from the remaining results.

The results from the model tests show roughly the same tendency as the calculations. The
scatter of the calculated responses is also found in the results from the model tests. However,
not to the same extent. The model tests show responses in the upper part of the scatter of
the calculated results. The results are therefore generally found to be acceptable both with
respect to comparisons with other programs and with respect to comparisons with model
tests.
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Figure 6.6: Comparison of the response amplitude operators for the midship vertical bending
moment for S-175 in head sea at a speed of 22 knots.

- -



6.1. Analysis of a Container Ship 75

6.1.5 Long-Term Predictions

A long-term calculation has been performed on the basis of a 20 year period. The frequency
response functions are calculated for various headings, in increments of 45 degrees from
following sea (0 degrees) to head sea (180 degrees). Two speeds have been used: the de-
sign speed and a reduced speed. Normally, a long-term prediction involves all the weight
conditions the ship will experience. However, in this example only the weight condition cor-
responding to full load has been used. The heading distribution is shown in Table 6.2. It is

Table 6.2: Heading distribution of time in the sea states.

similar to what has been used by Jensen and Dogliani, [23]. The speed distribution is given
in Table 6.3. The design speed is used in sea states with a significant wave height less than
4m, and a reduced speed of 8 knots is used in the severer sea states. The applied range of the

Table 6.3: Speed distribution of time in the sea states.

frequencies of encounter is 0.01 rad/s to 4.0 rad/s and 50 frequencies have been distributed
equidistant in the range. The fraction of time the ship is in the different Marsden areas is
shown in Table 6.4. The numbers in the scatter diagrams refer to Hogben et at [14].

Table 6.4: Distribution of time in the Marsden areas.

The result of the long-term calculation is shown in Figure 6.7 in terms of probability of
exceedance curves for the response.

Heading 0 45 90 135 180

Om < Hs <4m 0.071 0.143 0.143 0.429 0.214
4m < H, < 15m 0.071 0.143 0.143 0.429 0.214

Speed 22 knots 8 knots
Om < H, <4m 1.0 0.0
4m < Hs < 15m 0.0 1.0

Marsden area 10 11 15 16 23 25 33 35 48
Fraction of time 0.083 0.083 0.083 0.083 0.083 0.250 0.083 0.083 0.167
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--*-1Design level

Sagging:
SOST, GB, LT, PU

2 SOST, GB, LT, OS
3 SOST, GB, LT, PU (ica =0,,c4 =3)
Hogging:

SOST, GB, LT, PU
5 SOST, GB, LT, OS
6 SOST, GB, LT, PU (r,3 =0,K4 =3)

SOST, GB, LT, PU (Linear)

LIST, STF, FCF, PU (Linear)

Figure 6.7: Comparison of present long-term predictions. The results are the vertical bending
moments (PU: Poisson uperossing. OS: Order statistics).

For Poisson uperossing and order statistics the return period of a given response will corre-
spond to the duration in question roughly at an exceedance level equal to 0.5. This level of
the vertical bending moment with a return period of 20 years is indicated by design level.
The calculations with SOST are made using GB, LT. It is seen that the Poisson uperossing
and order statistics give almost identical results both for hogging and sagging. The second
order response with the skewness set to 0 and the kurtosis set to 3 indicated by 3) and 6) has
thus been made Gaussian, leading to a reduced sagging bending moment and an increased
hogging bending moment. This is mainly because the skewness is reduced to zero, which
causes probability to move from the tail in the sagging part to the tail in the hogging part
to become Gaussian distributed.

The linear part of the second order response is identical to the hogging bending moment with
K,3 = 0 and K,4 = 3. The reason that the linear part is not larger than the above-mentioned
hogging bending moment is that the now Gaussian distributed response has a nonzero mean
value.

The results from the LIST show a higher level than SOST, GB, LT, PU. Generally, the
vertical bending moment is larger when it is determined using the theory of LIST, STF,
FCF than with the SOST, GB, LT. Therefore, also a larger response level for the long-term
prediction can be expected.

The long-term calculation is compared with results determined according to the Interna-
tional Association of Classification Societies, IACS requirement S11, [40], which include a
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Table 6.5: Comparison of design midship vertical bending moments.

unified requirement for longitudinal strength. The comparison is shown in Table 6.5. The
hogging bending moment from the SOST corresponds well with the hogging bending moment
determined according to the TAGS rules. However, the sagging bending moment deviates
by 30 % , which is also of the order found in Jensen and Dogliani, [23]. Part of the reason
for this could be that the second order theory is suited for determination of the response in
low to mediate sea states. In the severer sea states the immersion dependence, in terms of
the vertical slope of the hull in the waterline, is extrapolated below the keel and above the
deck. This is the case for the linear methods as well. However, for the second order strip
theory the extrapolation is not vertical but corresponds to the vertical slope, which makes
the difference between the modelled and the real ship larger.

Since the linear vertical bending moment has been shown to deviate to some extent from
the model tests, also a deviation from the TAGS rules could be expected. Further, the long-
term predictions given above are based on an operational profile, which does not necessarily
correspond to reality and neither to the operational profile, the design values from TAGS are
based on, which could be a reason for the deviation. Long crested seas have been used also.
If short crested seas, which applies a certain spreading to the sea from a certain direction,
were used, a probable reduction of the response would have been the result.

With respect to the deviation from the IACS rules, good correspondence cannot necessarily
be expected as the rules are empirical. The aim of this work has been to make a tool which
could be used to investigate reasons for differences, but not necessarily deteimine them. The
subject has therefore not been pursued further.

6.1.6 Results from the Non-linear Time-domain Strip Theory

The non-linear time-domain strip theory has been used to analyse the response of the con-
tainer ship S-175 in head sea. To present the results in a form comparable to the linear
results, the minimum and the maximum of the time-domain response in regular seas has

Unit Hogging Sagging
TAGS [40] MNm 814 1237

SOST, GB, LT. PU. MNm 775 1642

SOST, GB, LT. OS. MNm 756 1660

SOST, GB, LT. PU. (n3 = 0,4 = 3) MNm 948 1013

SOST, GB, LT. Linear MNm 940 940

LIST, STF, FCF. OS. MNm 1080 1080
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been determined, from which an average amplitude has been determined as

respma, + resp,a =
2

aheave
2.0

1.6

1.2

0.8

0.4

0.0

Present,NIST,LT,a=0.1m
Present,NLST,LT,aw=0.5m
Present,NLST,LT,a=1.0m
Present,NLST,LT,a=2.0m
Present,NLST,LT,aw=3.0m
ITI'C78, Lower Quartile
ITTC78, Upper Quartile

(6.1)

Figure 6.8: Heave response amplitude operators determined by the non-linear time-domain
strip theory. The heading corresponds to head sea and the speed is 22 knots.

In Figure 6.8 the response amplitude operators for heave are shown on the basis of different
wave amplitudes with the quartiles as in Figures 6.3 and 6.4. For decreasing wave amplitudes
the response amplitude operators should converge towards the result from a linear analysis.
The heave response amplitude operators based on the small wave amplitude (ai, -= 0.1) are
slightly shifted in comparison with the results from the ITTC81 Commitee. Also the peak
exceeds the upper quartile. For increasing wave amplitudes the response amplitude operator
decreases due to non-linearities.

The response amplitude operators for pitch are shown in Figure 6.9, also with the above-
mentioned quartiles. The magnitude of the response for the small wave amplitudes corre-
sponds well with the quartiles provided the shift in frequency is neglected. The reason for
this shift has been sought but no explanation has been found.
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Figure 6.9: Pitch response amplitude operators determined by the non-linear time-domain
strip theory. The heading corresponds to head sea and the speed is 22 knots.
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In Figure 6.10 the response amplitude operators for the vertical bending moment arnidship
are shown. A larger dependence on the wave amplitude is found reflecting larger non-
linearities. Compared to the corresponding linear frequency domain results in Figure 6.6,
the magnitude of the response is generally too low for the small amplitude (mu, = 0.1)
response amplitude operator. The reason for this low level could be the deviating pitch
response.

The results from the implemented time-domain strip theory are generally not found satisfac-
tory for practical use. The heave motion for small wave amplitudes shows good agreement
slightly above the upper quartiles from ITTC81. The pitch motion in small wave amplitudes
shows a poor agreement and, finally, the magnitude of the vertical bending moment is too
low.
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6.2 Analysis of a VLCC

The tanker used for validation is a Very Large Crude Carrier (VLCC). The validation has
been made by comparing the present results with results obtained by use of NSM and results
from model tests, both from Tanizawa et al. [51 Moreover, a comparison with results from
SGN80 and a commercial program denoted SHIPMO has been made, both based on the
theory by Salvesen, Tuck and Faltinsen.

The weight distribution is different for the analyses made with SGN80, however, the longi-
tudinal centre of gravity and the radius of gyration are the same. Therefore, only motions
have been compared with this program.

The data on the ship is given as dimensions of a model. This has been converted to a
full scale ship with a displacement of 264,000 t. However, as all results have been made
non-dimensional the actual dimensions have no effect on the calculations.

The principal particulars are given in Table 6.6.

Table 6.6: Principal particulars for model and full-scale tanker. The scale ratio is 68.0.

The vertical distribution of the weights has not been available, so a uniform distribution at
the level of the given centre of gravity has been assumed. No transverse radius of gyration
has been given. However, from the roll period the moment of inertia can be determined
including the added mass. By subtracting the calculated added mass moment of inertia at
the given frequency the radius of gyration for the dry model has been approximated.

Principal particulars Ship Model
Length between perpendiculars Lyg m 306.0 4.500

Beam B m 53.9 0.793
Depth H m 30.9 0.430

Design draught T m 19.3 0.285
Trim (Taft Tfore) m -0.48 0.0

Displacement A t 264.000 0.821

Longitudinal centre of buoyancy LCB/Lyg % 0.033 -

Vertical centre of gravity (from baseline) zg In 15.3 0.225
Longitudinal metacentric height GM', m 6.80 0.100
Longitudinal radius of gyration ry/Lpi, 0.253 0.241
Transverse radius of gyration rx / B 0.33 -

Roll period Tr sec 15.35 1.861
-
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6.2.1 Geometry

The geometry of the tanker is shown in Figure 6.11. The tanker has been subdivided into
22 station curves.
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Figure 6.11: Geometrical description of the VLCC tanker.

6.2.2 Weight Condition

The weight condition given for the ship is shown in Figure 6.12.

3500 50 100 150 200 250 900

Longitudinal position from AP [raj

Figure 6.12: Analysed weight condition of the VLCC.



6.2.3 Motions

The motions have been compared for four headings at the design speed of 14.3 knots.

Heave motion Pitch motion
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Figure 6.13: Comparison of the response amplitude operators for the heave and pitch motions
of a VLCC in head sea at a speed of 14.3 knots.

In Figure 6.13 the response amplitude operators for heave and pitch in head sea are shown.
The present results for heave show a relatively small scatter, however, deviate to some extent
from the SGN80 and the NSM, which predict a lower heave response in the peak region. The
results from the model test are in the region in between the two groups of curves. For the
pitch response a very small scatter in the present results can be seen. The results correspond
well with both the SGN80 and the NSM. The model tests are predicted well except in the
long-wave range where the theories generally underpredict the response. Generally, a good
agreement has been found.

In Figure 6.14 the response amplitude operators for the motions of the ship with a heading
of 150 degrees are shown. The characteristics of the comparison for heave and pitch in head
sea are also valid for this heading. The present results predict larger heave response than the
NSM. However, the present results correspond well with the results from the model tests.
For sway, roll and yaw only the LIST, STF, FCF has been compared to NSM and to the
results from the model tests. Generally, the results from the LIST and the NSM are very
close and correspond very well with the results from the model tests. An exception is the
result from the model test in the long-wave region for sway, where the predicted response is
half the response measured in the model test. The roll motions has been determined by use
of an additional damping of 15 % of the critical damping in the full frequency range.

In Figure 6.15 the response amplitude operators for the motions of the ship with a heading
of 90 degrees are shown. For heave, the present results agree well with the NSM, except for
the LIST, STF, FCF, which overestimates largely in the peak region compared to the other
calculations. However, the method corresponds better with the model test in this region.
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The pitch motion is small and the calculations generally underestimate the response. For
sway, roll and yaw the response is not predicted as well as for the vertical motions. The
sway motion deviates in the long-wave region.
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Figure 6.14: Comparison of the response amplitude operators for the heave, pitch, sway, roll
and yaw motions of a VLCC. The heading is 150 degrees and the speed 14.3 knots.
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Figure 6.15: Comparison of the response amplitude operators for the heave, pitch, sway, roll
and yaw motions of a VLCC. The heading is 90 degrees and the speed 14.3 knots.

A small peak can be seen due to the coupling to the roll motion, which peaks at the corre-
sponding wave length. The roll motion follows the same tendency but the results from the
LIST show a more pronounced peak than both those from the NSM and the model tests.
To improve this prediction the additional damping could be changed to a more advanced
method.

4,

11.2'
11 4) .44144.

1.2 1.4, 18 00 0.2 0.4 0.6 0.8, i.o, 12 1.4

X/Lpp

Roll motion.

0.0 02 0.4 0.6 0.8 1.0 12 1.4

A/L
PP,

0.6111

0.41

0.8

0.8

0.8

0.4

0.2

1.8

1.4

1.2

1.0

0.8

0.6

0.4

02

0.0
00

0.0

0.8

4.0

20

2.0

1.0

0.0
00

0.6

0.4

1.8

16



86 Chapter 6. Verification and Validation of the Code

1.0

0.8

0.8

0.4

0.2

0.0

Heave motion

avBm 0.030

pgL2ppB
0.025

0.020

0.015

0.010

0.005

0.0
0.4 0.6

12

1.0

0.8

0.6

0.4

0.2

0.0

Present, LIST, STF, FCF
Present, SOST, STF, FCF
Present, SOST, STF, LT
Present, SOST, GB, FCF
Present, SOST, GB, LT
Tanizawa et al., NSM
Tanizawa et al.. Model Test

0.8 1.0

Pitch motion

Figure 6.16: Comparison of the response amplitude operators for the heave and pitch motions
of a VLCC in following sea at a speed of 14.3 knots.

In Figure 6.16 the response amplitude operators for heave and pitch in following sea are
shown. With an exception of one result from the model test a very good agreement between
the calculations and the model tests is found.

6.2.4 Loads
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Figure 6.17: Comparison of the response amplitude operators for the midship vertical ben-
ding moment for a VLCC in head sea at a speed of 14.3 knots.
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In Figure 6.17 the response amplitude operators for the vertical bending moment for the ship
in head sea are shown. For the short-wave lengths the predicted response forms a relatively
narrow band in good agreement with the model tests. For the long-wave range three levels
are found. The NSM gives the largest predictions and corresponds well with the model tests.
The three computations using STF underpredict the response. The two computations using
GB predict the lowest response.
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Figure 6.18: Comparison of the response amplitude operators for the midship vertical ben-
ding moment for a VLCC. The heading is 150 degrees and the speed is 14.3 knots.

In Figure 6.18 the response amplitude operators for the vertical bending moment for the ship
with a heading of 150 degrees are shown. The same characteristics for the comparison for
head sea are valid for the heading of 150 degrees. It is a general tendency that the response is
overpredicted in an intermediate range of wave lengths and underpredicted in the long-wave
range.

In Figure 6.19 the response amplitude operators for the horizontal bending moment for the
ship with a heading of 150 degrees are shown. The NSM gives larger predictions than the
LIST. The LIST corresponds well with the model test.

In Figure 6.20 the response amplitude operators for the horizontal bending moment for the
ship in following sea are shown. The present results form a rather wide band. The LIST
predicts a response slightly larger than the NSM and the two calculations with SOST, GB a
slightly smaller one. The two calculations with SOST, STF predict an even smaller response.
Further, it is found that for head sea the SOST, STF gives larger vertical bending moment
than the SOST, GB, similarly to what has been found for the container ship. For following
sea the opposite has been observed.
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6.3 Analysis of a Fast Ferry

Analysis of a fast ferry using conventional low speed strip theory may seem to he a use of the
program outside its capabilities. However, it has been shown by e.g. Blok and Beukelman [4]

that this theory yields reasonable results even at very high Froude numbers. Therefore, the
fast ferry has been included among the three ship types. A similar study where the results
have been compared with full-scale measurements have been reported in Wang et al. [63].

The monohull fast ferry used for validation and verification has the approximate data as
listed below. This ship has been selected because both results from other programs and a
sample of short term statistical results from model tests has been available. The full-scale
ferry has active fins to reduce the motions. This is not included in any of the calculations
and the model tests used for comparison were carried out without fins

The vessel has an approximate length of 100m. Beam of about 17m and a displacement
about 1700t.

The dynamic sinkage and trim has been measured in the model tests and used in the analyses
of motions and accelerations. For analyses determining loads, no dynamic sinkage and trim
has been applied.

6.3.1 Weight Condition

The weight condition given for the ship is shown in Figure 6.21.
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Figure 6.21: Weight distribution of the analysed fast ferry.
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6.3.2 Motions
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Figure 6.23: Comparison of the pitch response amplitude operators for a fast ferry advancing
in head sea at a speed of 35 knots.
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The response amplitude operators for the heave motion shown in Figure 6.22 can be divided
into three groups. The three programs LIST, SGN80 and SHIPMO are based on the same
theory and therefore the results should also be very close. The LIST and the SGN80 cor-
respond well, while SHIPMO gives slightly larger heave response. The two sets of results
from the SOST, STF have the same tendency, however, the dynamic amplification deviates
almost 20 percent. This is also the case for the two sets of results from the SOST, GB. The
difference between the programs is that the one uses the Lewis transformation and the other
the Frank Close Fit method. An explanation of this could be that the hull shape of the fast
ferry deviates from the Lewis shapes.

The pitch response amplitude operators shown in Figure 6.23 agree generally well. The same
pattern of the methods for heave is valid for pitch. In the low-frequency range some of the
codes give a pitch response, which deviates from the wave slope. A reason for the deviation
could be that, as pointed out in Section 3.2.1, an assumption of a high frequency of encounter
has been used in the derivation, which is violated for the frequencies in question. However,
the response in this range is dominated by the restoring forces and the hydrodynamic forces
are small.

The behaviour of the response in the low frequency region normally has no effect on the
response because no waves are present at these wave frequencies.

6.3.3 Accelerations
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Figure 6.24: Comparison of the response amplitude operators for the vertical acceleration in
FP for a fast ferry advancing in head sea at a speed of 35 knots.
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The response amplitude operators for the vertical accelerations in the FP are shown in Figure
6.24. Because the accelerations are derived from the heave and pitch, a similar pattern as
for those is expected. The grouping is, however, more significant.

In Figure 6.25 a comparison between predicted root mean square values (rms) of the vertical
acceleration and results from model tests is shown. The comparison has been performed at
three longitudinal positions on the ship and for different speeds, headings, wave spectra and
sea states. The left column of the plots is for head sea and the right column is for a heading
of 135 degrees. A definite pattern is difficult to find because the model tests have only
been available for the shown cases. From one case to another both the speed and sea state
parameters change and in the lower plot also the wave spectrum is changed from JONSWAP
to Pierson Moskowitz.

Generally, the predictions of the acceleration levels for the LIST, STF and SGN80 are very
close. For head sea a relatively good agreement between the predictions and the results from
the model tests is found. The calculated responses correspond well for the speed of 25 knots.
However, some deviation is found for the high speed.

For the heading of 135 degrees a very good agreement between calculations and model
experiments is found for the high speed and the low sea state shown in Figure 6.25f. Less good
agreement is found for the remaining sea states at this heading. Generally, the agreement
between the model tests and the predictions is less good than for the head sea case.

This comparison depends on where the peak of the wave spectrum is located relative to
the peak of the response amplitude operator. For the calculations based on the Pierson
Moskowitz spectrum the zero uperossing periods of 4.3 s and 5.5 s correspond to the non-
dimensional frequencies of 2.5 and 3.2, respectively. Similarly for the JONSWAP spectrum,
the zero uperossing period of 7.8 s corresponds to the non-dimensional frequency of 1.9. The
agreement between the response amplitude operators, shown in Figure 6.24, for the LIST,
STF, FCF and the SGN80 is very good in this range. Therefore, also a good correspondence
between the root mean square values is expected. However, the integration of the response
spectrum sums up deviations in the entire frequency range, which could be a reason for the
agreement in Figure 6.25c is not so good between the two calculations.
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6.3.4 Loads
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Figure 6.26: Comparison of the response amplitude operators for the vertical shear force in
the COG for a fast ferry advancing in head sea at a speed of 35 knots.
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In Figure 6.26 the response amplitude operators for the vertical shear force at the longitudinal
position of centre of gravity is shown. Normally, the shear force is not of interest at this
position because is is not the position where it is at its maximum. However, for the purpose
of performing a comparison the shear force is as useful here. The results from the different
programs show a relatively narrow band. SHIPMO deviates at the high frequencies from
the remaining calculations. This is also the case in the low-frequency range for the two
calculations using SOST, GB. However, generally the results agree very well.

In Figure 6.27 the response amplitude operators for the vertical bending moment at the
position of the centre of gravity are shown. The pattern is found as for the motions. However,
the calculation with LIST shows the level as the calculations with SOST, STF and SGN80
but it is shifted with respect to the frequencies. The reason for this shift has been sought
for without success.

6.4 Summary of the Verification and Validation

Generally, some spreading has been found between the compared programs. As shown by
the ITTC78 [17] and ITTC81 [17], committee differences occur, even between programs
based on the same theory. The aim of this verification has been to show that the programs
give results within the limits expected by the applied methods. This aim has been reached
from an overall point of view. There are, however, some exceptions. The SOST,STF, FCF

deviates largely at some points. For the LIST, STF, FCF a shift of the vertical bending
moment for the fast ferry has been found. Also for the roll motion some deviation has been
found. However this is expected to be due to the rather simple implementation of additional
damping. The NLST has been shown not to converge towards the linear results for decreasing
wave amplitudes for pitch and the vertical bending moment. This implementation of the
theory has therefore not been found suitable for practical purposes.

A validation to draw definite conclusions upon must include a larger number of cases based
on more weight conditions, headings and speeds. The heave response in head sea determined
theoretically in the region with dynamic amplification is generally overestimated compared
to results from model tests. A relatively good prediction of pitch in head sea has been found,
however, some of the methods overestimate. For the horizontal motions the agreement is
good. However, as the headings approach beam sea the agreement becomes less good. As
regards the loads the predictions on the container ship is fairly good taking the spreading on
the results from the model tests into account. For the tanker there is proper agreement in
the lower part of the considered frequency range but underprediction is found in the upper
part.

For the fast ferry the different programs correspond well and the short-term calculations on
the vertical acceleration show good agreement with the model tests.

Since the quadratic strip theory is not widely used, it has been difficult to find results
for verification. A comparison with the design values based on the IACS unified rules of
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classification, [40] for longitudinal strength shows good agreement with the hogging bending
moment but an overpredicted sagging bending moment. Similar agreement has been found
by Jensen and Dogliani, [23].

The reason for the different predictions the methods give could be treated more in detail by
comparing the different terms in the calculations for a given frequency. However, the scope of
this work has been to validate and verify the code and not to perform a parameter study on
the methods available. The conclusion therefore becomes that the different methods deviate
to some extent depending on both the type of result and the type of ship. It has, however,
been found that the methods, with the exception of the SOST, STF, FCF for the container
ship give reasonable results and correspond to some extent well with the model tests.



Chapter 7

System Design

7.1 Introduction

The present work has focused on the implementation of practical methods for prediction of
wave loads on ships and much effort has been made to implement the program system into
a comprehensive integrated rational ship design package, I-ship (see Baatrup et al. [2] and
Michelsen et al. [32]). The design package is organised in a number of program modules for
related tasks in preliminary ship design. Each of these modules are divided into submodules
for more specific tasks.

7.2 General

The I-ship program system is at present divided into five main program modules:

Geometry definition.

Hydrostatic calculations.

Resistance and propulsion.

Wave load prediction.

Midship section/hull girder response.

Figure 7.1 shows a more detailed list of the modules and submodules available for preliminary
ship design in the system. This report covers the program module Wave load prediction.



Figure 7.1: I-ship modules and submodules for preliminary ship design.

The module Wave load prediction includes three submodules: a Strip theory preprocessor,
a Strip theory solver and a Strip theory postprocessor. The concept has been to develop a
pre- and postprocessor applicable in general to strip theory calculations. The solver contains
the theories described in the previous sections and the basic idea is that it should be suited
for extensions to be added.

Preprocessor

Solver

Linear strip theory

Quadratic strip theory

Time domain strip theory

Postprocessor

Figure 7.2: Basic concept of the wave load module.

A more detailed description will be given in the following sections.
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Geometry definition Hydrostatic calculations
PRFL Definition of 2D profiles CAPA Compartment capacity calculations
FMDA Definition of initial lines from standard shapes WCHT Definition of loading condition
LINE Definition of hull lines and surfaces STCT Definition of stability criteria
BSRF Definition of B-spline surfaces from hull lines HYTB Intact and damaged stability calculations
APDG Definition of hull appendages LGST Longitudinal strength calculations
CPDF Definition of hull compartmentation
GM IF Interface of geometry via neutral file formats Resistance and propulsion

PROP Hull resistance and propeller calculations
Wave load prediction
STPE Strip theory preprocessor Midship section/hull girder response
STSL Strip theory solver SCTN Definition of midship sections
STPP Strip theory postprocessor CRSC Calculation of cross-sectional constants

HVTR Static/dynamic hull girder response



7.3 The Preprocessor

In the Strip theory preprocessor different input is given and relevant ship data is determined
for the strip theory calculations based on the predefined ship. The predefined input required
as a minimum, is the geometry of the ship, defined in the Geometry definition module, and
a weight condition, defined in the Hydrostatic calculation module.

Load case
related input:

Short term
related input:

Long term
related input:

0."*.

Equilibrium condition

Discretisation of submerged stations

and the ape

Ut

Linear load case:
Select method for deter-
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and damping

Select response type

Motion
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Quadratic load case:
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Input speed distribution
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Figure 7.3: Diagram of the Strip theory preprocessor.
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As shown in Figure 7.3 the input can be divided into four groups, which will be addressed
in the following.

7.3.1 General Input

The general input is common for any type of calculation and the initial input is the physical
constants, the acceleration of gravity and the density of the sea water. Then a hydrostatic
calculation follows to determine the equilibrium condition of the ship, based on a selected
weight condition. It is possible to use a manipulated condition as equilibrium, which e.g.
takes dynamic sinkage and trim into account.

The submerged stations are described by a sequence of straight line segments. The segments
are of equal length except when knuckle points are present. In such cases the station curve
is treated as a number of subcurves ensuring that knuckle points are preserved as endpoints
to segments. The input is given as the number of segments on each station or a single
number giving the same number of segments on all stations. During inspection of the grid
it is possible to adjust the grid by increasing or decreasing the number of segments.

The grid is determined in the discretization dialogue window as shown in Figure 7.4.
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Figure 7.4: Discretization dialogue window.

By setting the number of points on a certain station equal to 0 it is possible to ignore the
station from the calculation. This is a very useful facility as a large number (r' 100) is
often used for the hydrostatic calculation, whereas about 30 40 is sufficient for strip theory
calculations.
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A part of the general input also includes the operational data for the ship in terms of number
of speeds, headings and either wave or frequencies of encounter as well as the corresponding
ranges.

Finally, the type of the response of interest is specified. The response has been divided into
a number of types and three calculation levels as shown in Table 7.1.

Table 7.1: Types and calculation levels of the response ( FRF: Frequency response function,
SHTM: Short-term response statistics, LGTM: Long-term response statistics).

The relative motions are the motions of the ship relative to the undisturbed wave surface for
given longitudinal positions. The accelerations are the horizontal and vertical acceleration
levels at a certain longitudinal position corresponding to the absolute motions of the ship.
The shear forces refer to the horizontal and vertical directions. Finally, the bending moments
refer to a horizontal and vertical plane and the torsional moment is included in this item.

The types of output described above refer to the horizontal and vertical plane. Only the
linear analysis includes both of these planes. The non-linear calculations only consider the
vertical plane, which limits the degrees of freedom within each item.

7.3.2 Load Case Related Input

Each calculation is defined as a load case. It is possible to define three different types of
load cases:

Linear frequency-domain load case.

Quadratic frequency-domain load case.

Non-linear time-domain load case.

The selection of the method for determining the added mass and damping coefficients is
common for all the load case types. Five methods are available and listed below.

Level
Response type: FRF SHTM LGTM
Motions
Relative motions
Accelerations
Shear forces
Bending moments
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Lewis (1-dof, symmetric).

Lewis/Yamamoto (1-dof, symmetric).

Frank Close Fit (3-dof, symmetric).

Simple Green function II (3-dof, symmetric).

Simple Green function II (3-dof, limited depth).

In connection with the input of each load case more specific input has to be given as well.
The Green function II require a water depth and a width of a rectangular domain, which
along with the hull section encloses the domain. Based on a given number of points a grid
will be made on the boundaries.

Linear Frequency Domain Load Case

The simplest load case is the linear frequency-domain load case. The selection of the method
for determination of added mass and damping is the only input for this load case.

Quadratic Frequency-Domain Load Case

The same information as in the linear case is needed for the quadratic frequency domain
load case.

Two options for the linear part of the quadratic calculations are available: either the theory
according to Gerritsma and Beukelman, [6], or that derived by Salvesen, Tuck and Faltin-
sen, [49]. The quadratic strip theory requires also the sectional derivatives with respect to
immersion. The draughts to be applied for the numerical determination of these derivatives
must be given. The selection of either a rigid body analysis or a hydroelastic analysis is
done through the number of modes selected. Two modes, as a minimum, indicate rigid body
analysis (heave and pitch). A mode number equal to three includes the two-node vibration
and so forth. For hydroelastic calculations the vertical bending and the shear rigidities are
required at the longitudinal positions where the station curves are defined. Finally, the
structural damping is needed to complete a hydroelastic calculation.

Non-Linear Time-Domain Load Case

The procedure for the non-linear time-domain load case is somewhat different from the
frequency-domain procedures. In order to be able to evaluate the hydrodynamic and hydro-
static coefficients for any sectional immersion, a table is established for each station. This

1

2.

'3.
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table consists of added mass, damping and restoring coefficients for each discrete immersion
according to the grid.

The analysis consists of transfer functions for a number of specified wave amplitudes in a
prior defined frequency range.

7.3.3 Short-Term Related Input

The short-term related input is the selection between a Pierson-Moskowitz wave spectrum
or a JONSWAP spectrum. Auxiliary input for fatigue damage analysis is given as the ratio
between the response and the stress at the structural detail in question. Also the slope and
the scale factor for the S-N curve have to be given. This facility is oonly available for the
vertical bending moment.

7.3.4 Long-Term Related Input

The long-term related input concerns the distribution of speeds and headings during the
time in question. The aim of the analysis is to determine the extreme value distribution for
a certain response type during the lifetime of a ship. First the duration in question is given
in years. A normalised scatter diagram is determined on the basis of input of a number of
Marsden areas and a corresponding distribution of time in the respective areas. The general
approach used for the input of heading and speed distribution is that they can be given
different in ranges of the significant wave height. This facility makes it possible to define
different philosophies concerning weather-influence reduction in the operational profile.
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;I.,at. C Wrue rano.% 7 UT90 range t Unya range t
! racyrce. , S.01 S.0<tio<20.8110.8<8,,IS.01

continue

Figure 7.5: Example of a heading distribution
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Figure 7.6: Example of a speed distribution.

In Figures 7.5 and 7.6 an example is shown where three ranges for the significant wave height
have been defined, each with different distributions of heading and speed. This can model
common practice in navigation in heavy weather to reduce the loads on the ship and ease it
either by changing the heading or by reducing the speed.

7.4 The Strip Theory Solver

The Strip theory solver calculates the response for the predefined load cases. The response
corresponding to the defined load cases is determined by calling the respective subprograms
in the solver shown in Figure 7.2.

7.5 The Postprocessor

In the Postprocessor the responses can be printed and plotted. The files shown in Table 7.2
are used for storage.
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Figure 7.7: Print output example.

Table 7.2: Input and output files.

An analysis is a part of a project contained in a project file. The definition of the analysis
undertaken and the corresponding ship data are stored in the analysis definition file. For a
linear load case as well as a quadratic load case the hydrodynamic data in terms of added
mass and damping is stored in the hydrodynamic data file and can be plotted and printed
in the postprocessor. This is very useful in cases where reasons for deviations are sought.
A good start is a plot of the added mass and damping for all the stations, which will very
quickly show if a station gives unrealistic results. The station curve can then be identified
and usually a modification of the grid will improve the results.

Description Type
Project file projectname.pjc
Analysis definition file pro j ect name. ste
Hydrodynamic data file pro j ect name. amd
Linear load case output file projectname.lst
Quadratic load case output file projectname.sst
Time-domain load case output file projectname.tme
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Chapter 8

Conclusion and Recommendations

8.1 Conclusion

The objective of the present work has been to develop a rational computer software system
to predict design wave loads on ships. From a survey of available theoretical formulations,
a number has been selected and a system design for an analysis tool have been developed.
The theoretical background and the structure of program have been described. To verify
and validate the procedures, a number of comparisons with other methods and results from
model tests have been carried out.

The conclusions drawn will be described in the following.

From a survey of available theoretical formulations, three theoretical approaches have been
selected: the linear strip theory, the quadratic strip theory and a non-linear time-domain
strip theory. The linear strip theory program for basic calculations and for analyses requiring
motions and loads in both the vertical and the horizontal plane. Then, in order to include
non-linearities and hydroelasticity the quadratic strip theory has been implemented, with
the advantage of being formulated in the frequency domain. Finally, for more detailed
studies a non-linear time-domain strip theory has been implemented. A common part of
strip theory calculations is the determination of added mass and damping. Therefore, a
library of methods for determination of these has been developed to include different types
of effects. The theoretical background to the applied theories has been described in the first
part of the thesis.

The ship definition has been based on the I-ship system. Therefore, a large number of
facilities has been available initially. However, this also applies some constraints on the
system. The I-ship system is structured in modules and this architecture has been adopted
for consistency in a preprocessor, a solver and a postprocessor.
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A preprocessor with the main purpose of extracting ship data from the I-ship modules,
interpret user input and prepare an input file for the solver module.

A solver including the strip theory formulations along with a library of routines to
determine added mass and damping.

A postprocessor, where input and output can be printed and for the main part also
plotted.

The system design has been described and the interface of the developed modules have been
documented.

The results from the solver have been verified against results from other applications by
analyses of three ships. Also a validation has been performed by comparison with model
tests. The conclusions drawn on this part of this work are

The library of routines for determination of added mass and damping consists of five
methods. Three methods have been found to be suitable for strip theory calculations.
The methods denoted Green function I and II have been found to be very sensitive to
the used grid. The present method for discretization of the additional boundaries has
not been sufficiently general to handle a large frequency range, which is relevant for
analyses. Therefore, the present implementation of these methods has not been judged
to be sufficiently robust for general use.

The linear strip theory (LIST) has been found generally to predict motions and loads
well in comparison to other programs and model tests. However, deviations have been
found in the determination of the vertical bending moment on a fast ferry. The present
implementation of roll damping has been found to be too simple leading to a less good
prediction of roll motion in beam seas.

In the verification and validation also the quadratic strip theory (SOST) has generally
been found to predict linear motions and loads in good agreement with other programs
and model tests. A single combination of the use of the program (SOST, GB, FCF)
have been found to deviate generally, however, this is only a small part of the available
combinations. For the second order part of the response, a comparison with the design
values based on the IACS unified rules of classification [40] for longitudinal strength
shows good agreement with the hogging bending moment, but an overpredicted sagging
bending moment. A similar agreement has been found by Jensen and Dogliani [23].

The time-domain strip theory (NLST) has been implemented only for analysis in reg-
ular waves. It has been shown to give satisfactory heave motion but unsatisfactory
pitch motion leading to too low wave-induced loads on the hull. This part of the pro-
gram has therefore not been found to be suitable for analyses. It has, however, been
demonstrated that the system can handle time-integration methods.
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Generally, the developed system has been shown to be a useful tool for determination of
wave loads on ships. The included facilities has been narrower than originally intended. The
task of implementing and test a complete application including time-domain strip theory and
hydroelasticity has been too ambitious. The emphasis has therefore been put on a robust
well tested application including the linear strip theory and the quadratic strip theory with
the described statistical facilities to perform short- and long-term predictions.

8.2 Recommendations for Future Work

The developed system has been considered a suitable frame for existing and future appli-
cations based on strip theory. The recommendations for future work therefore focus on
improvements of the existing methods and extensions of the system to include new methods.

The improvements include

The linear strip theory: The motion and load derived from the roll motion can
be improved by a more advanced method to include viscous roll damping. Pressure
distributions on the hull are another very useful extension. The surge motion can be
added to the existing five degrees of freedom.

The quadratic strip theory: The present validation has focused on rigid body
motions at the expense of the hydroelastic part of the method. More effort should be
made to validate this part of the program.

The time-domain strip theory: More effort put into the present implementation
should be able to make it give satisfactory results. Provided this is done, improved
facilities for the input wave signal could be made, e g analysis in irregular waves and
corresponding statistical postprocessing.

The recommended extension of the theoretical methods implemented so far would be to
include the strip theories which are developed to a level suitable for practical use in general.

This includes

Extending the linear strip theory to the unified slender body theory and thus elimi-
nating the frequency limitation.

Improving the time-domain strip theory to take memory effects and hydroelasticity
into account as e.g. Wang [62].
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Appendix A

Additional Results on the Container
Ship
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Figure A.1: Response amplitude operators for the vertical bending moment amidship for
S-175 in head sea at a speed of zero knots.

The vertical bending moments amidship for the different methods are seen to be identical
when the speed is set to zero. The difference in the results from the present methods could
therefore be related to speed dependent damping terms.
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Appendix B

Documentation of the User Interface

This documentation describes the use of the modules for determination of wave loads. The
modules are denoted STPE, LIST, SOST, NLST and STPP and they are a part of the I-
ship design system. The pre- and postprocessor consist of the single modules STPE and
STPP, while the solver includes the three modules LIST, SOST and NLST, each capable
of performing different types of analyses. The documentation is divided into three sections
describing the use of the preprocessor, the solver and the postprocessor, respectively.

The use of the modules requires a prior definition of the ship geometry and the weight
condition. This is done by use of the modules WGHT and LINE, which is also included in the
I-ship design system. Separate documentation is available on these modules. An important
requirement related to the LINE module is that the station curves must be defined from the
keel to the line of symmetry in the deck.

In the main documentation of the I-ship design system the general guide to the use of the
system can be found. The most important information on the general use of the system is
shortly summarised in the following.

The file structure is gathered in a project. By the selection of a project the files, which
are necessary for the module in question are autoloaded. The general philosophy is that
menu items are to be selected in the order from top and down, which also refers to the item
numbers. A supplement to this documentation is provided by the help related to each menu.
The help is invoked by the input of ?. It is also possible to abort a menu by the input of $.

B.1 The Preprocessor

The main entry of the preprocessor consists of the menu labelled THE PREPROCESSOR.
The menu items 1-3 divides the input into three categories. The first and the second include
General input in Figure 7.3 and the third covers Load case related input.
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Menu item 4 makes it possible to determine added mass and damping directly in the prepro-
cessor and is intended for use where the output of interest is the added mass and damping,
e.g for use in another program. Menu item 5 is a standard I-ship module menu. It is used
for project file manipulation and it is documented in the main I-ship documentation. Menu
item 6 is used for manipulation of input and output files. It is important to note that the
last action in the preprocessor is to save the output file and it is done using this menu item.
The menu items will be described further in the following.

B.1.1 Input Ship Data

Environmental data includes the gravitational acceleration and the
used for the analysis.

Hydrostatic data makes it possible to choose a weight condition for
equilibrium position of the ship is determined. Prior to the return to
relevant input data is listed.

density of the water

the analysis and the
the shown menu all

THE PREPROCESSOR
Input ship data

Input operational parameters

Specify analysis

Miscellaneous
Setup
File

EXIT

Input ship data
Environmental data

Hydrostatic data

Define sinkage and trim (OPTIONAL)

Hull discretization

RETURN

3.

5.

6,

7.
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Define sinkage and trim (OPTIONAL) consists of the possibility of basing the analysis
on a deviation from the equilibrium condition. This is given in terms of an input of sinkage
and trim.

Hull discretization covers the menu item for input of data for determination of the grid
of segments on the station curves. It is possible to

use the automatic grid generation to distribute a given number of points on all the stations.
This is normally the initial step. A following inspection or modification of the grid can
be performed by selecting Modify grid or Plot grid. In the Modify grid it is possible to
step through the station curves and decrease or increase the number of points. The grid is
updated automatically after each modification. If the number of points on a station curve is
set to zero it will be neglected from the analysis. This may be convenient, e.g. if a station
curve has a characteristic shape which gives unphysical results.

B.1.2 Input Operational Parameters

Input speed(s) is possible both in terms of [m/s], [knots] or based on a Froude number.
The Froude number is based on the length between perpendiculars.

1

Hull discretization
Automatic grid generation

Modify grid

Plot grid

Auxiliary

RETURN

Input operational parameters
Input speed(s)

Input heading(s)

Input frequencies

Input frequency distribution

RETURN

3.

4.

.



130 Appendix B. Documentation of the User Interface

Input heading(s) is possible by specifying a lower and upper limit along with the number
of equidistantly distributed headings. Generally, seven headings are sufficient, but in some
cases, especially in studies of accelerations, a larger number of headings may be feasible.

Input frequencies cover the range and number of frequencies for the analysis. It can
be given both in terms of wave and encounter frequency. The range must cover the wave
spectrum in the considered sea states.

Input frequency distribution makes it possible to manipulate the distribution of the
frequencies of encounter. It is possible to choose from an equidistant and a weighted dis-
tribution. The former is self-explaining and compulsory for quadratic analyses. The latter
takes into account for a given range of frequencies of encounter the fact that the correspond-
ing wave frequencies are shifted depending on the headings. The frequencies of encounter
are distributed in a way which makes the wave frequencies in an overall sense more evenly
distributed.

B.1.3 Specify Analysis

When the input for the analysis has been defined, the next step is to define the analysis in
terms of methodology and output of interest.

The first two menu items are necessary for a basic analysis, while the selection of short- and
long-term statistics is optional. The output from the analysis is specified by selecting the
first menu item. If this includes short-term or long-term statistics the default or the specified
input under menu items 3 and 4 will be used.

Specify Output

All output except the motions is related to a longitudinal position. These positions are given
as input by selecting the first menu item.

Specify analysis
Specify output

Select methods

Short-term statistics (OPTIONAL)
Long-term statistics (OPTIONAL)

RETURN

1.
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The input is given in the following form. Initially, the sqare brackets on the right side of
the menus are empty. Each time a menu item is selected an additional set of brackets is
filled for the selected menu item. The abbreviations are FRF, Frequency response function,
SHTM, Short-term statistics and finally LGTM, Long-term statistics. The dependence of
some selections on others is taken into account by adding contents to the brackets from the
left to the right. A selection of a menu item having the full selection listed in brackets resets.
the menu item.

Select Methods

The method for the analysis is selected by means of the menu shown below.

The [y] or [n]l indicates whether the input has been completed or not. The first two Methods
have input in common, therefore the same basic menu is invoked, however, not all menu
items are active. These menu items are indicated by an italic font. The third method has a
separate menu due to a different input.

Specify output
Specify longitudinal positions [3]

Ship motions 1[FRFIISHTM1[LGTM],

Relative motions

Accelerations 1FRF][SHTM][LGTM]

Shear forces [FRFJISH TM] [LGTM]
Bending moments 1[FRFRSHTMli[LGTM1

RETURN

Select methods
Linear load case [n]

Quadratic load case [34
.3. Time-domain load case

Reset load cases

RETURN

[FRF][SHTM][LGTM]

5
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Linear Load Case

The input for a linear load case consists of the selection of the method for determining
added mass and damping. This selection is the same for the quadratic load case and will be
described separately in a following section.

Quadratic Load Case

Because the quadratic strip theory can be based on both the theory according to Gerritsma
and Beukelman [6] as well as Salvesen, Tuck and Faltinsen [49], the first menu item makes
it possible to select from the two. The selection of the method for determining added mass
and damping will be described below. The draught variation for the determination of the
derivatives with respect to immersion is given as input by selecting menu item 3. Menu item
4 makes it possible to perform a hydroelastic analysis by including a given number of elastic
modes. Heave and pitch refer to mode one and two, while selection of a higher number of
modes includes the corresponding elastic modes. Sectional shear and bending rigidities as
well as the structural damping must be given as input too, if a mode number larger than
two is selected.

Linear load case
Strip theory

Methods for added mass and damping

Derivatives
Modes

RETURN

Quadratic load case
Strip theory

Methods for added mass and damping

Derivatives
Modes

RETURN

L
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Added Mass and Damping

A part of the module consists of a library of methods for determining added mass and
damping. The methods are listed below.

Added mass and damping
1-dof theory according to Lewis
1-dof theory according to Lewis/Yamamoto
3-dof Frank Close Fit
3-dof Green function I
3-dof Green function II (Finite depth)

Additional roll damping

RETURN

For load case selections including only heave and pitch all methods are available, while
for the remaining only menu items 3-5 are available. The first menu item indicates Lewis
transformation. The second determines added mass using Lewis transformation and damping
according to Yamamoto et al. [68]. The methods under menu items 3-5 are described in
Chapter 4. The Green function I refers to the method for infinite depth and the Green
function II refers to finite water depth. Selection of the 3-dof Green function II requires an
input of the size of the domain in terms of depth and distance to radiation boundaries.

For load cases including roll there is a possibility of including additional roll damping. The
input is given as a fraction of the critical damping.

Time-Domain Load Case

The input specific for a time-domain load case is as shown below.

Time-domain load case
No. of stations
No. of waterlines
No. of wave amplitudes

Green water implementation

5 RETURN

.6.

7.
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For the time-domain analysis a grid is made on the basis of interpolation. The grid consists
of a given number of stations and waterlines. The analysis includes determination of the
response amplitudes in regular waves with the amplitudes specified by selecting menu item
3. The frequencies refer to the input given in the Input ship data menu. Menu item 4 makes
it possible to include the green water on deck in the d'Alembert force in the analysis. An
input between zero and one can be given. The input indicates the fraction of the green water
which is to be included in the d'Alembert force.

Short-Term Statistics

Input of the short-term statistics is only required if output of this type is selected. The
spectrum can be specified to be ISSC or JONSWAP. The duration of the sea state is given
in seconds under menu item 2. The number of significant wave heights and zero uperossing
periods is fifteen and should not be modified. This will cover regular scatter diagrams

Long-Term Statistics

The input to the long-term statistics is as in the preceeding case only necessary if output
of this kind has been specified. The operational period for the analysis is usually twenty
years but can be modified by use of menu item 1. The route data is given in menu item 2
as the number of the scatter diagrams and a corresponding distribution of the time. The
distribution of the speeds and headings specified for the analysis can be given by use of menu
item 3.

Short-term statistics
Spectrum [ISSC1
Duration 10000.0 sec
No. of Hs 15
Limits for Hs 1.0-15.0 m
No. of Tz 15

Limits for Tz 1.0-15.0 sec

8. RETURN

Long-term statistics
Period
Route data
Speed and heading distribution
Auxiliary

RETURN
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Menu items 1 and 2 list the numbers of speeds and headings earlier specified. Menu item
3 is used to define the range for the significant wave height where it is possible to define
different distributions for the speed and heading. The distributions are given by using menu
items 4 and 6 and can be viewed by using menu items 5 and 7.

Menu items 1, 2 and 3 cover input to fatigue calculations. The stress/response ratio is given
between the vertical bending moment and a structural detail on the ship. Menu item 4 is
used to modify the output of the probability of exceedance curves. The input is the lower
and upper limit for the response and the number of calculation points.

Speed and heading distribution
No. of speeds 2

No. of headings 5

No. of limits for the significant wave heights 2

Modify speed distribution
View speed distribution

Modify heading distribution
View heading distribution

RETURN

Auxiliary
Stress/response ratio
Slope of SN curve
Scale of SN curve

Ranges for probability of exceedance

RETURN

4.
5.

6.
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B.2 The Strip Theory Solver

The solver covers the three modules LIST, SOST and NLST. Only one load case type can
be selected for each analysis.

B.3 The Postprocessor

The main menu of the postprocessor has the menu items shown below.

The first step is to load data, which gives the options listed below.

THE SOLVER
Compute load cases

Setup
File
EXIT

THE POSTPROCESSOR
Load data

Print data
Plot data

Setup
RETURN

Load data
General data on the ship [STE]

Added mass and damping [AMID]

Linear strip theory load case [1ST]
Quadratic strip theory load case [.SST]
Time domain strip theory load case LTMEI

View load cases

RETURN

3.

2.
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First menu item 1 is to be selected. Secondly, the result corresponding to the load case type
defined can be loaded. To view the main parameters of the analysis menu item 6 can be
used.

Returning to the main menu and selecting Print data give the following options:

The results can be printed in tables as shown in Figure 7.7. Help is provided at each menu
point for guidance.

By selection of the Plot data menu item in the main menu the following option becomes
available:

An example of the plots is shown in Figure 7.8. The response amplitude operators include
transfer and phase functions. Phases are defined relative to a wave crest in the centre
of gravity. Usually, the preferred form of the output is different. Therefore, a facility to
manipulate the units on the axes is available. An example of this is shown below for the
abcissa on a plot of a transfer function.

Print data
Input for this analysis

Hydrodynamic data

Response amplitude operators

Short-term response

Long-term response

RETURN

Plot data
Hydrodynamic data

Response amplitude operators

RETURN

1.

2.

3.
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The current selection has a different colour and is marked by an increased vertical space to
the remaining menu items.

Manipulate settings
Angular frequency of encounter
Angular wave frequency
Wave length

Ship to wave length ratio

Wave to ship length ratio
Non-dimensional frequency w. respect to Lpp
Non-dimensional frequency w. respect to B
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