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a b s t r a c t 

The maintenance of buildings, underpinned by the digital twin technique, becomes integral to heritage 

conservation effort s. To achieve efficient modelling with minimal manual intervention, automated com- 

ponent recognition based on semantic segmentation of point clouds is imperative. Confronted by the 

challenges of the paucity of requisite datasets and the inherent geometric diversity of historical build- 

ings, a two-step strategy including feature extraction and classification is proposed. First, an improved 

SHOT descriptor is proposed to extract discriminative features by defining a specific local reference sys- 

tem and concatenating support fields at different scales. The extracted features are then classified with a 

learning-based network, avoiding a feature learning process that relies on sufficient data. Experiments on 

real-world heritage point clouds yield 93.7% accuracy and an 80.0% mean-intersection-over-union (mIoU) 

when descriptors with radii of 0.3 m and 0.9 m are combined, surpassing computationally expensive 

deep learning networks and data-intensive unsupervised learning. A slight decrease in segmentation per- 

formance with random removal of points indicates the high robustness of the proposed method against 

data missing and sampling density changes. Additionally, a geometric modelling process with an error of 

less than 10% is introduced to achieve a direct transition from point cloud to model, contributing to the 

establishment of digital twins for heritage structures. 

© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI 

training, and similar technologies. 
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. Introduction 

Historical buildings, integral facets of immovable cultural her- 

tage, serve as witness to urban development. The arisen cultural 

ourism, anchored in these legacies, has progressively become a 

ocal economic booster. However, the inexorable natural aging of 

uilding materials and the inevitable man-made vandalism accom- 

anying heritage activities have engendered irreversible losses in 

tructural performance. Unwarranted risks surface [ 1 , 2 ], necessi- 

ating a call for meticulous structural health monitoring, mainte- 

ance, and risk management of heritages. 

The development of digital techniques, with heightened adapt- 

bility, has facilitated the implementation of information manage- 
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296-2074/© 2024 Elsevier Masson SAS. All rights are reserved, including those for text a
ent frameworks in the scenario of heritage maintenance. Non- 

ontact measurement and monitoring of the deformation are of- 

en necessary to avoid further damage, highlighting the impor- 

ance of structural reconstruction and component recognition [ 3–

 ]. Notably, frameworks like HBIM (heritage building information 

odel) [ 7–9 ] furnish semantic and geometric information, cater- 

ng to the needs of managers, researchers, conservators, and restor- 

rs [ 10 ]. The established concept of digital twins (DT) also demon- 

trates the pivotal role of virtual entities in interactive risk man- 

gement [ 11 , 12 ]. The three-dimensional (3D) point cloud obtained 

rom laser scanning [ 13 , 14 ] or oblique photography [ 15 , 16 ] often

erves as the primary data source for extracting geometric primi- 

ives and building structures, facilitating parametric modelling in 

uch systems. Preprocessing of point clouds, a precursor to dig- 

tal reconstruction, has become a critical prerequisite, imposing 

onstraints on efficient and reliable modelling solutions. The se- 

antic segmentation of point cloud is a technology that links the 
nd data mining, AI training, and similar technologies. 

https://doi.org/10.1016/j.culher.2024.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/culher
http://crossmark.crossref.org/dialog/?doi=10.1016/j.culher.2024.12.006&domain=pdf
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ollected data with semantic labels used in 3D scene understand- 

ng and cognition [ 17 ]. The commonly used feature extraction- 

ased geometric modelling, whether a developed representation 

lgorithm [ 18 , 19 ] or mature commercial solutions [ 20 ], partially re-

ies on manual processing by engineers. Therefore, an automated 

rocessing strategy for semantic segmentation and modelling is re- 

uired to circumvent labour-intensive tasks and expedite the pro- 

ess. We attempt to achieve an automated scheme to obtain geo- 

etric parameters of heritage components required by the digital 

odel. 

The typical procedure to interpret building geometry is to ac- 

uire certain preprocessing steps, called semantic modelling, to ex- 

ract a set of features which is then fed to a classification model 

hat computes the most adequate class label [ 21 ]. The recognised 

omponents, presented by class labels, can be further geometri- 

ally modelled to provide necessary information for monitoring 

nd maintenance activities. Features for semantic modelling could 

e acquired from context or end-to-end learning, resulting in dif- 

erent approaches. 

The segmentation and classification are often sequential when 

eatures are obtained from contextual information of point clus- 

ers (i.e., the relationship between adjacent points). According to 

lgorithms applied to divide the point cloud into clusters, note- 

orthy applications encompass region-growing, model fitting, and 

lustering-based algorithms. The basic conception of the region- 

rowing algorithm is to merge spatial clusters exhibiting similar- 

ty in designated features. This similarity, gauged through criteria 

ike normal vector, curvature, point-to-adjustment plane distance, 

r point-to-candidate point distance [ 22 ], facilitates the detection 

nd segmentation of basic geometrical elements in heritage struc- 

ures [ 23 ]. The features used for similarity identification can also 

e obtained from the deep learning framework, to realize unsu- 

ervised segmentation [ 24 ]. Model fitting aligns raw point clouds 

ith geometric models utilizing sampling methods such as the 

ough transform (HT) and random sample consensus (RANSAC). 

his yields the identification of geometric entities like lines, planes 

 25–27 ], cylinders [ 28 ], and spheres. However, computational ex- 

enses can burgeon when dealing with complex shapes in large 

atasets of practical heritages [ 29 ]. Model fitting is also the pri- 

ary feature extraction tool in geometric modelling after segmen- 

ation. Clustering algorithms, such as K-means and mean shift, seg- 

ent regions based on diverse geometric, colour, or reflection in- 

ensity features [ 30 ]. Similar to the region-growing approach, the 

eficiency for unsupervised clustering is the difficulty in achieving 

esults that fully match practical component classification through 

uitable predefined parameters. By introducing predetermined hu- 

an expertise, such as design regulations, primitive features ex- 

racted from algorithms could be aggregated to higher abstrac- 

ion levels successively until ideal segmentation is accomplished 

 31 ]. Some hybrid approaches with region-growing and fitting al- 

orithms were proposed to realize the segmentation of structural 

omponents in heritages [ 32 ]. 

In recent years, the emergence of end-to-end neural networks 

ailored for processing point clouds has garnered attention. The 

eature extraction in the usual workflow can be automatically im- 

lemented using a deep learning architecture, achieving a direct 

apping from raw point data to semantic labels. Applied in pro- 

essing bridge, building, and heritage point clouds, these networks 

re categorized into 3D convolution on voxels [ 33 ], 2D convolu- 

ion on projected images [ 34 , 35 ], and feature learning on point

ets [ 36 , 37 ]. After the learning-based local feature extraction, vox- 

ls or points are classified, and semantic annotations are given. 

ointNet ++ , a representative model, employs a hierarchical feature 

earning method, concurrently capturing local and global features. 

s mentioned above, the learned features can also be applied to lo- 

al point clusters for classification, thus forming a hybrid method 
253
such as the combination of convolution and region-growing in 

rowSP [ 24 ]). Matching this approach, some attempts were made 

o identify meaningful features to recognize historical architectural 

lements [ 38 ]. Despite the efficacy of neural networks, the reliance 

n substantial labelled data poses a limitation in the early stages 

f training for learning-based models. 

In the realm of heritage projects, the application of semantic 

egmentation presents unique challenges compared to its counter- 

arts in construction scenes, traffic environments, and indoor set- 

ings. Requirements in point density are often aligned with the 

resentation demands of component details. Segmentation cate- 

ories differ in morphology, such as the need to discern arches 

r vaults common in stone masonry is absent in East Asian tim- 

er structure scenes, which calls for specific research. These cat- 

gories and the level of segmentation accuracy should also con- 

ider the application scenario of the converted digital models, like 

tructural analysis or damage detection, to correctly handle the 

rade-offs in details of geometric features [ 39 , 40 ]. Besides, it is 

roper for segmentation algorithms to have the ability to train 

rom small samples due to the lack of sufficient available heritage 

oint cloud data. As widely adopted algorithms are primarily de- 

igned for large datasets like indoor scenes, the performance of 

uch end-to-end algorithms on limited datasets needs to be fur- 

her checked, and optimizations need to be made to adapt to such 

ontext. 

To avoid a feature learning process that relies on sufficient data, 

 pragmatic two-step approach is adopted in this paper to achieve 

emantic segmentation. Algorithms are firstly leveraged to extract 

igh-level manually defined features of each point as input for the 

lassification network. Then point-wise labelling of features is im- 

lemented with a learning process in the second step. It is con- 

idered to yield satisfying segmentation results with limited train- 

ng data and computational power, since the useful semantic infor- 

ation is directly obtained from pre-defined features, rather than 

xtracting features from learning that rely on a large amount of 

raining data. Within this paradigm, geometric [ 41 , 42 ], radiometric 

 43 ], and colour-related [ 44 ] context information has been used as 

igh-level features. In some of the recent attempts [ 45 ], encoded 

eatures generated by the local descriptor were utilized. However, 

he work still targets common infrastructure and does not provide 

n automated modelling process. The ability of such a two-step ap- 

roach to consistent expression in heritage scenarios also needs to 

e tested. 

. Research aim 

With limited training data and variations in data quality, au- 

omated semantic segmentation of real-world point cloud data of 

eritages with high fidelity and efficiency has yet to be solved. 

n this paper, an automated process of semantic segmentation for 

eritage point clouds is proposed. Following the two-step strat- 

gy, an algorithm that can extract sufficient features from con- 

extual information in the first step is the key to addressing the 

bove-mentioned challenges. Taking the timber heritage buildings 

n East Asia as the research object, using the devised multi-scale 

ocal descriptor as a feature extractor and the neural network as a 

lassifier, the proposed segmentation algorithm exhibits good ro- 

ustness under varying point densities and integrity. Emphasizing 

ccurate feature extraction becomes crucial for classification net- 

orks to yield better results, particularly when confronted with 

imited training samples. To form a complete process from scan- 

ing to digital models, the workflow of geometric modelling for 

abelled components is also involved. Consequently, the automated 

odelling from raw point clouds to digital twins of heritages could 

e performed to promote digital monitoring and management in 

eritage preservation. 
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Fig. 1. Workflow of semantic segmentation. 

Fig. 2. Structural components in Chinese traditional architectures. 
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. Materials and methods 

In the first step of our semantic segmentation method, we opt 

or a designed descriptor to extract local features of point clusters. 

hen, a classification neural network is used to infer labels in the 

econd step. The workflow of semantic segmentation is shown in 

ig. 1 . In the field of point cloud processing, a descriptor for a point

s a feature vector calculated by a certain algorithm based on the 

istribution of neighbouring points. Such distinctive feature vectors 

re suitable as inputs for classification networks to infer point-wise 

abels, thereby achieving semantic segmentation. As target seman- 

ic labels in segmentation, typical components of Chinese tradi- 

ional buildings are first defined in Section 3.1 . The algorithm for 

omputing multi-scale descriptors is introduced in Section 3.2 , and 

etails of label inference networks are introduced in Section 3.3 . 

he practicability of the proposed descriptors and two-step strat- 

gy is confirmed in Section 4 . An automated geometric modelling 

ipeline and its application are also introduced in Sections 3.4 and 

 to provide an application scenario for segmented point clouds. 

.1. Typical components of Chinese traditional buildings 

The evolution of Chinese traditional architecture, particularly 

he construction techniques in the Song and Qing Dynasties, as- 

umes pivotal significance in both archaeological and engineering 

ealms. Insights from key technical standards, namely the “Treatise 

n Architectural Methods” ( Yin Zao Fa Shi ) [ 46 ] in the Song Dynasty

nd the “Code of Engineering Practice” ( Gong Cheng Zuo Fa Ze Li ) 

 47 ] in the Qing Dynasty, offer a detailed division of the structural 

orm of the timber frame system. In the former paradigm, a classi- 

cation distinguishes between palace-type and hall-type column- 

eam frames, emphasizing whether the bracket sets layer can be 
254
dentified in the vertical direction. As shown in Fig. 2 , the roof sys- 

em in palace-type buildings is directly supported and connected 

o the frame through the bracket sets ( Dou-Gong ). The height of the 

nterior and exterior columns is not equal in the hall-type frame, 

nd the load-bearing beams are directly inserted into the column 

y mortise-tenon joints ( Sun-Mao ) [ 48 ]. A similar building clas- 

ification based on the presence or absence of bracket sets was 

dopted in the Qing Dynasty, where bracket sets primarily serve 

rnamental purposes. Beyond the above two categories that can be 

egarded as the post and lintel construction, the column-and-tie 

onstruction emerges as a distinct structural form (see Fig. 2 ). In 

his system, the roof load directly transmits to the columns, lead- 

ng to a dense column grid arrangement, utilizing the tie-beams 

 Fang ) to connect columns under each purlin for support. From the 

bove description, ground, columns, beams, walls, bracket sets, and 

oof systems constitute the six target labels for the semantic seg- 

entation of the point cloud in this study. These categories could 

e regarded as the main structural components of Chinese timber 

uildings with topologically distinguishable. 

.2. Segmentation step 1: feature extraction with local descriptor 

As the feature extractor in our proposed semantic segmentation 

rocess, a multi-scale local descriptor is designed. Considering the 

otential noise in practical point cloud data, we chose the encod- 

ng method of the Signature of Histograms of OrienTations (SHOT) 

 49 ] as a reference due to its ability to reduce noise effects [ 50 ].

HOT records and counts the coordinate relationship between a 

oint and its adjacent points into several histograms. The contex- 

ual information within the neighbourhood of this point (i.e., the 

upport field) therefore is encoded into a feature vector. The divi- 

ion of support fields and the statistical strategy of histograms are 
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Fig. 3. Design of multi-scale descriptors. 
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nherited in this paper. Two improvements are made: (1) the lo- 

al reference system (LRF) is specified according to the application 

cenarios for buildings, and (2) features of two different scales are 

oncatenated. The resulting descriptor relies on the statistical strat- 

gy of orientation histograms and support fields of varying sizes, 

nsuring robustness and fidelity in extracting local features. Note 

hat the size of the support field is determined by its radius, so 

he number of neighbouring points in the field varies. The detailed 

onstruction of our descriptor is defined as follows. 

Assuming Pu is the uth target point in the point cloud that needs 

o calculate its feature vectors, and nu is the estimated normal 

ector of Pu . Within the nearest neighbours of Pu , the least-square 

lane fitting is implemented to find the local plane around this 

oint, and the normal vector of this plane, which is the equiva- 

ent of nu , is estimated through principal component analysis (PCA) 

nalysis. The neighbour radius for normal estimation was set to 0.1 

 in the following implementation. We first introduce the LRF and 

phere grids to define the geometric relationship between the Pu 

nd its neighbouring points located in the support field. As given 

n Fig. 3 , the Z-axis in LRF is parallel to the vertical direction v

ince this direction in building scenes is generally fixed to indi- 

ate elevation. To ensure the rotational invariance in the horizon- 

al plane, the X-axis of LRF is along with the horizontal compo- 

ent of the nu , and the Y-axis is naturally the cross product of the 

-axis and X-axis. As for the sphere grids for histogram statistics, 

 radius divisions, 8 azimuth divisions, and 2 elevation divisions 

ivide the support field into 32 volumes. Each volume in sphere 

rids has a histogram with 11 bins. Then, for the ith neighbouring 

oint Pui of the target point Pu , the angle, θui , between v and the 

ormal of this neighbouring point, nui , is chosen as the statistical 

ariables to describe the geometric relationship between this two 

oints. To improve computational efficiency, cos θui is calculated to 

eveal the value of θui , since it can be easily obtained by nui · v . Af-

er traversing all neighbouring points in the support field, counts 

re accumulated in bins according to cos θui , forming the signature 

f histograms. Thus, a sub-descriptor, i.e., a feature vector, of the 

arget point with 352 dimensions is formed. For example, the first 

1 numbers of this vector represent the histogram of cos θui of all 

eighbouring points in the first volumes. 

Since the local histograms are used here to represent features, 

t is inevitably affected by boundary effects. Therefore, for each 
255
oint being accumulated into a specific local histogram bin, we 

erform interpolation with its neighbours to eliminate such effects 

see Fig. 3 ). In particular, four factors, d1 to d4 , are defined in the 

adius, azimuth, elevation, and histogram quantized domains, re- 

pectively. In radius, azimuth and elevation domains, d is the an- 

ular or Euclidean distance between the neighbouring point Pui 

nd the centre of volume. In histogram domains, d is the differ- 

nce between the value of cos θui and the central value of the bin. 

ote that d in each domain is calculated in both the two near- 

st volumes or bins (i.e., d1 and d1 
′ 

in the radius domain shown 

n Fig. 3 ), and normalized by the size of the volume or the bin

o meet the continuity. Subsequently, four factors are multiplied 

ccording to Eq. (1) to achieve the final interpolation, and the 

ub-descriptor is normalized by the L2 norm to address the non- 

niform point density issue. Thus, points located on the boundary 

ould be smoothly counted into adjacent volumes and bins. Ex- 

mples of sub-descriptors corresponding to six categories in the 

ractice dataset are given in Fig. 3 . The discriminative ability of 

he designed descriptor is reflected through significant differences 

n feature vectors. 

 =
4 ∏ 

i =1 

(1 − di ) (1) 

To enhance the perception of descriptors, two sub-descriptors 

ith different support fields are concatenated, that is, two feature 

ectors of length 352 are concatenated into one feature vector of 

ength 704, as shown in Fig. 3 . In the small support field, the ori-

ntation distribution of close neighbours is described to separate 

he basic local geometric patterns, such as boundaries of struc- 

ural components. The global topological relationships would be 

eserved in the large support field to locate similar components 

hat are difficult to distinguish in the local area. By traversing all 

oints in the point cloud, point-wise features are obtained as in- 

uts for classification. 

.3. Segmentation step 2: point-wise classification with neural 

etwork 

In our semantic segmentation method, the classification of the 

alculated descriptors is undertaken by a relatively simple neural 

etwork. Since descriptors with explicit topological relationships 
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Fig. 4. Structures of the neural network. 

Fig. 5. Geometric modelling after segmentation. 
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nd considerable perception have been obtained as features of 

oint clusters, a simple classifier is sufficient to complete the train- 

ng task with a small computational cost. The neurons adopted in 

his paper contain a linear function and a nonlinear function (i.e., 

ctivation function). The linear function is mathematically denoted 

s in Eq. (2) . For the ith neuron in the current layer, Si is the re-

ult of the linear function, wi j and x j are the weight and the value 

f the jth input respectively, bi is the bias. The rectified linear unit 

ReLU) is chosen as the activation function since it converges faster 

nd avoids gradient vanishing [ 51 ]. The expression of ReLU is given 

s Eq. (3) , where Si and Oi are the input and output of this neu-

on, respectively. The outputs of neurons will be passed through 

onnections and become the input of neurons in the next layer, 

nd the nth neuron in the next layer is illustrated given by Eq. (4) ,

here On is the output of the neuron, wni is the weight of the ith 

nput, bn is the bias. As for the output layer, the soft-max function, 

llustrated by Eq. (5) , is taken as the nonlinear function, and the 

robability of each label (i.e., categories) could be obtained. Here, 

i is the result of the linear function of the ith neuron in the output 

ayer. 

The structure of the neural network in this research is pre- 

ented in Fig. 4 . The number of inputs is the dimension of the

escriptor. Six hidden layers gradually decreasing from 1024 to 32 

eurons are adopted, and the number of outputs is 6 correspond- 

ng to the aforementioned categories of structural components. To 

itigate over-fitting and enhance robustness in the feature space, 

atch normalization is implemented at each hidden layer, and a 

0% drop-out is conducted after the last hidden layer. Such a drop- 

ut technique is finished by randomly dropping neurons as well as 

heir connections during training. During the training process using 

abelled data, the gradient descent and the standard cross-entropy 

oss are employed as the optimization method and loss function, 
256
espectively. Such loss function is defined as Eq. (6) and (7) , where 

 is the input, y is the target, ω is the weight, N is the batch size.

eights are set to deal with unbalanced training datasets, as will 

e introduced later. Weights and biases of neurons are iteratively 

ptimized through the partial derivatives of the loss function using 

he backpropagation training technique. 

i =
∑ 

wi j x j + bi (2) 

i = f (Si ) = max (0 , Si ) (3) 

n = f

(∑ 

wni f

(∑ 

wi j x j + bi 

)
+ bn 

)
(4) 

oftmax( ti ) =
eti ∑ 

eti 
(5) 

(x, y ) =
∑ N 

n =1 

1 ∑ N 
n =1 wyn 

ln (6) 

n = −�yn yn log (xn ) (7) 

.4. After segmentation: geometric modelling 

After the above two steps to achieve semantic segmentation of 

he raw data, different building components have been recognised 

s points with different labels. Further geometric modelling is ex- 

ected to achieve the complete process of scanning to digital mod- 

ls, as shown in Fig. 5 . Hence, an automatic process is proposed 

ere to finish the modelling of each structural category for her- 

tage buildings. 
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Fig. 6. Workflow of column modelling. 

Fig. 7. Workflow of beam modelling. 
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.4.1. Determination of the column grid and modelling of columns 

Determining the column grid is the key to component position- 

ng and is usually handled first. The workflow of column modelling 

s given in Fig. 6 , and its details are as follows: 1) The density-

ased spatial clustering of applications with noise (DBSCAN), a 

lustering algorithm, is first introduced to separate each column 

nd noise. DBSCAN finds core points of high density and expands 

lusters from them, thereby achieving instance segmentation. The 

arameters eps and minPts are crucial for clustering and are set 

o be 0.6 and 50 here. eps is the maximum relative distance be- 

ween two points for one to be considered as in the neighbour- 

ood of the other, and minPts is the minimum number of points 

n a neighbourhood for a point to be considered a core point. 

) Consider each column as a cylinder described by Eq. (8) , esti- 

ate their axis vector and radii via RANSAC sampling and fitting. 

n Eq. (8) , (x, y, z) is a point on the cylinder surface, (x0 , y0 , z0 )

s a point on the axis, (a, b, c) is the axis vector, and r0 is the

ylinder radius. RANSAC identifies data whose distribution can be 

xplained by some set of model parameters as interior and fits 

eometric parameters using inliers. The maximum distance from 

he model to a potential inlier point, dRANSAC , is set to 0.02 m. 3)

o obtain the length and the positioning coordinates of the col- 

mn, the point cloud of each column is projected onto its axis 

sing PCA to acquire the extreme coordinates in the axis direc- 

ion, thereby the range of the column is determined. Although the 

ength of the invisible part of the column could not be obtained, 

he known geometric parameters, i.e., axis vector, cylinder radius, 

oordinates, and visible length, are sufficient to locate the column 

rid and obtain the geometric model of columns. The column grid 

btained here is the basic information for locating other compo- 

ents. 

x − x0 ) 
2 + (y − y0 ) 

2 + (z − z0 ) 
2 −

[
a (x − x0 ) + b(y − y0 ) 

+ c(z − z0 )
]2 = r2 

0 (8) 

x + By + Cz + D = 0 (9) 

.4.2. Modelling of beams 

Subsequently, the arrangement of beams can be estimated 

ased on the obtained column grid as shown in Fig. 7 . Its de-

ails are as follows: 1) Find the axis of all beams based on col- 

mn coordinates. 2) Set appropriate cuboid bounding boxes along 
257
he axis coordinates to isolate individual beams, achieving instance 

egmentation. 3) In contrast to columns, timber beams are often 

omposite due to the presence of Fangs, leading to an irregular 

ross-section. We use PCA to project the cross-section along the 

eam axis and the concave hull algorithm is applied to obtain the 

equisite dimensions of cross-sections. 

.4.3. Modelling of walls and ground 

Walls and ground, with planar features, entail a straightfor- 

ard task. The normal vectors of each plane are sequentially es- 

imated following Eq. (9) using RANSAC. In Eq. (9) , (x, y, z) is a

oint on the plane, (A, B, C) is the axis vector in Hessian paradigm,

nd D is a constant. dRANSAC for RANSAC here is set to 0.15 m. 

y projecting all points onto the corresponding fitting plane, the 

oundaries of the plane can be determined using the convex 

ull algorithm. As for the roof system, it is difficult to identify 

ertain structural components, such as purlins, due to the com- 

lete blocking, and the instance segmentation of the roof system 

s not considered in this paper. We hope to obtain this infor- 

ation in other approaches, rather than directly from the point 

loud. 

.4.4. Extraction of symmetry plane of bracket sets 

Complex types and configurations of bracket sets, compounded 

y a stepped structure, pose challenges for direct plane fitting. It 

s also not feasible to directly determine the centroid since the 

ollected data is often incomplete. Their relatively small size also 

inders feature extraction. Therefore, we adopt the process from 

ey-point recognition, instance segmentation, to symmetry plane 

xtraction (shown in Fig. 8 ) to obtain the centre coordinates of 

he bracket set, as described below: 1) Use PU-GCN [ 52 ] to up-

ample the raw point cloud to a resolution of 15 mm to improve 

he accuracy of key-point recognition. In this network, the local 

oint information from point neighbourhoods is encoded using a 

raph convolutional network to generate fine-grained details and 

erform the interpolation. 2) Calculate Harris key-points of the 

p-sampled point cloud and cluster them using affinity propaga- 

ion or mean shift algorithms. The Harris detector determines ge- 

metric features of bracket sets, such as the corners and edges, by 

dentifying regions of drastic changes in the point normal vec- 

or. The radius for normal estimation and the threshold to filter 

ut weak corners are set to 0.07 m and 0.01, respectively. Ex- 

mples of estimated key-points before and after up-sampling are 



B. Pang, J. Yang, T. Xia et al. Journal of Cultural Heritage 71 (2025) 252–264

Fig. 8. Workflow of bracket sets symmetry plane extraction. 
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lso given in Fig. 8 , revealing that more details are recognised 

fter up-sampling. 3) For each point cluster identified as a sin- 

le instance, the centroids of clusters are projected onto the col- 

mn grid to calculate the spacing between each component since 

racket sets are often are uniformly spaced. The cuboid bound- 

ng boxes can be set accordingly to isolate individual bracket sets. 

he length of bounding boxes is the average spacing calculated 

bove. Note that the instance segmentation is implemented on the 

aw data to reduce the computational complexity of subsequent 

teps. 

Then, the precise coordinate of a bracket set is determined 

hrough the preliminary determination and optimization of the 

ymmetry plane, as stated below: 4) For all point pairs in an in- 

tance point cloud, filter potential symmetrical pairs according to 

oordinates and normal vectors. Each pair can correspond to a po- 

ential symmetry plane with parameters A, B, C , and D expressed 

y Eq. (9) . To determine a definite plane, place these plane param- 

ters in a 3D space described by normalized A, B , and D (C is ig-

ored since it is approximately 0), and employ the mean shift algo- 

ithm to find the region with the highest density. The coordinates 

orresponding to this region are the parameters of the preliminary 

ymmetry plane PSP. 5) To further improve accuracy, optimization 

s executed by addressing registration errors. Given the raw point 

loud RC, a mirror point cloud MC is derived based on the PSP. 

raverse all points in RC, PRi , find the nearest point in MC, PM j , and

alculate the distance between them, d(PRi , PM j ) . To avoid the ef- 

ect of the local asymmetry caused by the incompleteness of the 

C, a threshold, here we set to be 0.09 m, is defined to filter out

airs of points with a distance greater than this threshold. Take 

(PRi , PM j ) as the registration error, and employ an iterative clos- 

st point (ICP) approach to adjust the position of MC to minimize 

uch error, resulting in the precise determination of the symmetry 

lane SP. 

The geometric feature of bracket sets required for modelling 

s guided by precision considerations. Typical simplified calcula- 

ion models with different accuracy have been summarized in 

 53 ]. In a numerical analysis with low precision, generally cor- 

esponding to the spring model, the information about the cen- 

ral axis coordinates is concerned. With a known column grid, 

he frontal plane aligned with the grid could be obtained, and 

he central axis of a bracket set is the intersection line of SP 

nd the frontal plane. As for the precise analysis, specific details 

an also be derived by certain manual recognition, such as pro- 

ecting onto symmetrical planes, thereby obtaining a 3D calcu- 

ation model, such as the beam, truss, and corbel models listed 

n [ 53 ]. 
258
. Semantic segmentation results and discussions 

.1. Datasets and implementation parameters 

Two datasets of Chinese-style heritage buildings were collected 

o evaluate our proposed semantic segmentation method. In the 

rst dataset, 4 buildings from open-source architectural cultural 

eritage point clouds datasets (i.e., ArCH dataset [ 54 ], Open Her- 

tage 3D [ 55 ], and WHU-TLS Benchmark [ 56–58 ]) were involved. 

o obtain more point cloud data for accuracy purposes, 4 simulated 

oint clouds were generated through ray tracing operations on 3D 

odels with triangulated surfaces. Specifically, for each model, a 

ircumscribed icosahedron composed of regular triangles is deter- 

ined, and a series of virtual cameras are placed at the faces of 

he icosahedron. Point clouds from different viewpoints are cap- 

ured by emitting virtual scanning rays from each virtual camera. 

n amalgamated cloud resembling practical scans is generated by 

ligning these point clouds through recorded camera poses. Of the 

 buildings, only KAS Pavilion-1 and KAS Pavilion-2 from ArCH re- 

ain their original labels, which include roofs, columns, and walls, 

ligning with the target labels of this research. The remaining 

uildings were manually labelled by us. 

We collected the second dataset using the terrestrial laser scan- 

er, including a timber building called Qiao-Lou, and the campus 

ate of Shanghai Jiao Tong University. The Qiao-Lou is located in 

he historic district Zi Town ( Zi-Cheng ) of Jiaxing City, China, and 

erves as a watchtower above the city wall since the last rehabil- 

tation in 1908. The campus gate is a replica of the old one when 

he new campus was being constructed. The old gate with the style 

f the Qing Dynasty palace was built in 1934 and is considered a 

ymbol of the University. Although the new gate is built of con- 

rete, it is completely copied in appearance, maintaining typical 

hinese architectural features. The point density was set to 3.1 mm 

ver 10 m in two scans. Since it is difficult to obtain structural de- 

ails of the roof by ground scans, unmanned aerial vehicle (UAV)- 

ased oblique photography was also carried out to repair the holes 

aused by blocking and create a complete set of point clouds. Qiao- 

ou and the campus gate were also manually labelled with 6 cate- 

ories and labels of two datasets are marked with different colours 

n Fig. 9 . 

In the implementation of our semantic segmentation approach, 

he first dataset was used as the training set, while the sec- 

nd dataset functioned as the testing set. To address computer 

emory constraints, a voxel down-sampling with a size of 30 mm 

as performed on all data. Eventually, the training set contains 8 

uildings with a total of 2247829 points and the test set contains 
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Fig. 9. Labelled datasets. 

Fig. 10. Training process and parameters of the neural network. 
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 buildings with a total of 2885076 points. Thirty percent of the 

oints in the training set were randomly selected as the valida- 

ion set during training. The output for classification comprised six 

ategories, ground, columns, beams, bracket sets, walls, and roof 

ystem, with training weights (see Eq. (7) ) adjusted to (2.67, 8.16, 

.65, 2.66, 2.96, 1.00) to mitigate the impact of imbalanced data 

uring training. These weights were determined based on the ra- 

io of points in each category, indicating that categories with fewer 

oints in the training set will gain greater weight during training. 

otably, the colour of scanned points was abandoned due to their 

usceptibility to lighting conditions, features of point clusters were 

erived directly from the coordinate information. The loss and ac- 

uracy curves when the radius of the descriptor is 0.9 m are given 

n Fig. 10 as an example of classifier training, and parameters in 

he experiment are also presented. It can be seen that when the 

poch exceeds 25, the training and validation accuracy both in- 
259
rease slowly and exceed 98%, indicating that the parameters in 

he neuron have stabilized. Therefore, 35 serves as the number of 

raining termination epochs for all models. 

.2. Implementation results 

For evaluation metrics, mean intersection-over-union (mIoU) 

nd overall accuracy (OA) were reported across all classes. If TP 

true positive) is the number of correctly labelled points, FP (false 

ositive) is the number of wrongly labelled points, FN (false nega- 

ive) is the number of miss-labelled points, the IoU for each cate- 

ory can be given as Eq. (10) , and the mIoU is the average of each

ategory. 

oU = T P 

T P + F P + F N 

(10) 
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Fig. 11. Results of semantic segmentation of descriptors with different support radii: (a) OA results; (b) mIoU results. 

Fig. 12. Segmentation results of radius (a) 0.3 m; (b) 0.9 m; (c) 2.1 m; (d) 0.3 m and 0.9 m. 
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Firstly, the exploration of our single-scale descriptors, SHOT, 

nd Fast Point Feature Histograms (FPFH) was conducted. Differ- 

nt descriptors with different support fields were calculated as in- 

uts for the classifier proposed in Section 3.3 . After training on the 

raining set, different trained models were used for inference on 

he testing set, and the classification results are shown in Fig. 11 . 

t is shown that the highest mIoU of these three descriptors is 

.77, 0.56, and 0.54 respectively, indicating that our descriptors 

erform better than other descriptors in the semantic segmenta- 

ion accuracy. A trend of increasing and then decreasing can be 

bserved in mIoU as the descriptor radius increases. The increase 

n mIoU reveals that more precise topological relationships are ex- 

ressed along with the expansion of perception fields. A smaller 

eld may result in points within the component being unable to 

lassify correctly ( Fig. 12 (a)). However, when the radius exceeds 

he general size of the structural component, more counted neigh- 

ouring points could make the extracted geometric features less 

istinguishable. The classification of points on the edge of com- 

onents may be affected by surrounding components ( Fig. 12 (c)). 

hen the radius of the proposed single-scale descriptor is 0.9 m, a 

ocal maximum in mIoU is obtained, revealing a balance between 

ccuracy and robustness. 

Therefore, to fully represent the geometric features and improve 

he segmentation accuracy, the support radius of 0.3 m and 0.9 

 were selected to form a multi-scale descriptor (blue points in 

ig. 11 ), and the mIoU increased from 77.5% to 80.0%. The IoU re-
 s

260
ults for each category are presented in Table 1 . The segmentation 

esult of columns in the campus gate is relatively poor due to the 

lose connection between the columns and the infill wall in this 

uilding ( Fig. 12 (d)), where the topological features of the column 

re similar to those of the wall. In contrast, when the column is 

xposed, as in Qiao-Lou, the results would be acceptable. 

.3. Discussion on different methodologies 

Two end-to-end point-wise networks, GrowSP [ 24 ] and 

ointNet ++ [ 36 ], were applied to perform semantic segmentation 

n our dataset for comparison. In the novel GrowSP network, 3D 

emantic elements are discovered via the growth of super-points. 

oint-wise features are learned from an encoder-decoder proce- 

ure, and the sizes of super-points progressively grow through 

lustering based on such features. The intuition of Pointnet ++ 

ame from the basic CNN structure where its lower-level neurons 

ave smaller receptive fields whereas larger level has larger recep- 

ive fields. The hierarchical structure in this network is composed 

f a number of set abstraction levels to extract multi-level features. 

ere, our training set was used to train PointNet ++ and perform 

nference on the testing set. On the contrary, the testing set was 

irectly implemented in GrowSP, as it is an unsupervised method. 

nly the number of categories (i.e., 6) was given in GrowSP for un- 

upervised matching. 
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Table 1 

IoU results of the testing set based on proposed descriptors and other methodologies. 

Methodologies IoUs for each category (Qiao-Lou / Campus gate) mIoU 

Ground Column Beam Bracket set Wall Roof 

Radius of proposed 

descriptors/m 

0.3 0.71/0.89 0.61/0.37 0.56/0.66 -/0.75 0.74/0.78 0.92/0.88 0.71/0.72 

0.6 0.79/0.93 0.67/0.30 0.64/0.77 -/0.83 0.83/0.83 0.96/0.92 0.78/0.76 

0.9 0.74/0.94 0.64/0.28 0.69/0.72 -/0.87 0.82/0.82 0.96/0.95 0.77/0.76 

1.2 0.72/0.93 0.58/0.27 0.68/0.68 -/0.90 0.80/0.82 0.95/0.95 0.74/0.76 

1.5 0.71/0.93 0.58/0.26 0.64/0.64 -/0.87 0.78/0.82 0.95/0.96 0.73/0.75 

1.8 0.71/0.92 0.61/0.24 0.70/0.66 -/0.88 0.79/0.83 0.95/0.96 0.75/0.75 

2.1 0.69/0.92 0.57/0.21 0.70/0.65 -/0.85 0.77/0.84 0.95/0.96 0.74/0.74 

Multi 0.75/0.94 0.71/0.34 0.73/0.74 -/0.91 0.84/0.84 0.96/0.95 0.80/0.78 

GrowSP [ 24 ] 0.01/0.01 0.09/0.07 0.16/0.03 -/0.01 0.02/0.01 0.04/0.02 0.06/0.03 

PointNet ++ [ 36 ] 0.26/0.03 0.01/0.01 0.04/0.06 -/0.24 0.64/0.73 0.65/0.31 0.32/0.22 

Fig. 13. Segmentation results of end-to-end networks (a) GrowSP; (b) PointNet ++ . 
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The results of these two networks are shown in Table 1 and 

ig. 13 . Due to the limited data, the discrimination of the features 

earned by the two networks is still restricted, resulting in unsat- 

sfactory segmentations. The OAs and mIoUs of the two networks 

re less than 0.7 and 0.4, respectively, which is lower than the re- 

ults obtained by our method. End-to-end networks rely on learn- 

ng features with good discrimination from sufficient training sam- 

les. In the original paper of PointNet ++ [ 36 ], an 84% accuracy for

ndoor scenes was obtained from a dataset with 1201 scenes, while 

he available models in this paper were only 8. Hence, with our 

ataset, points belonging to different categories are wrongly di- 

ided together using PointNet ++ , such as the confusion of ground 

nd roof (see points marked in red in Fig. 13 (b)) due to simi-

ar normal vectors. The necessity of defining coordinate systems in 

mall sample learning is therefore emphasized. Similar phenom- 

na were also found in the results of GrowSP. The ground and 

alls were incorrectly divided together (see points marked in blue 

n Fig. 13 (a)) due to similar plane features. Some basic topologi- 

al region divisions based on feature clustering could be seen with 

rowSP. However, segmentation can hardly correspond to the true 

abel due to the lack of a priori knowledge even though the geo- 

etric features such as Point Feature Histograms (PFH) were used 

o enhance the expression ability of its features. Such complete er- 

or in label mapping resulted in a nearly zero mIoU with GrowSP. 

owever, even if the mismatch on this label is ignored, such seg- 
261
entation with local irregular clustering is still unacceptable. The 

mbalance of data in categories also deteriorates the segmentation 

erformance since limited information is learned in the category 

ith fewer points. Besides, some unexpected boundaries on the 

oof deserve attention. As mentioned, in order to obtain a com- 

lete point cloud, different techniques are used to fill the holes 

aused by blocking, leading to certain differences in the topologi- 

al relationship of points in these regions. The appearance of these 

oundaries indicates the high sensitivity of the two networks to 

he raw data. Therefore, our method is more accurate and appli- 

able for the small sample learning scenario compared with other 

ethodologies. The clear geometric meaning of the extracted fea- 

ures from the proposed descriptors makes the classifier more ex- 

ressive and distinguishable, making them more suitable for com- 

lex scenes like heritage buildings. 

.4. Discussion on robustness of the proposed method 

In practical heritage scanning, the point cloud that needs to be 

egmented is often a fusion of ground laser scanning and oblique 

hotography, introducing challenges of spatial scale and density 

ariations [ 43 ]. Since a robust result is desired with point clouds 

f different quality, the performance of the proposed method was 

valuated by adjusting the integrity of point clouds in the testing 

et. The precision in estimating the surface normal, which is cru- 
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Fig. 14. IoUs of semantic segmentation with different levels of completeness. 

Fig. 15. Geometric modelling results. 
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ial for feature extraction, may be severely affected under different 

ampling conditions. By randomly dropping a certain percentage 

90% to 60%) of points from raw data, the quantitative analysis on 

he relationship between the level of completeness and the seg- 

entation results was conducted as given in Fig. 14 . It is revealed 

hat when 60% of points being removed, the mIoU slightly de- 

reased from 0.80 to 0.76. To simulate the inevitable blocking prob- 

em in practical application, the removal of partial point clusters is 

lso implemented. Points in various geometries were removed here 

o present the holes caused by blocking, and these removed points 

ccount for approximately 16.5% of the total number of points. In 

his blocking scene, the mIoU has decreased to 0.78. 

It can be concluded that the segmentation is slightly affected 

y the integrity of point clouds. Due to the relatively small propor- 

ion of beam and column data, the reduction of point cloud density 

ay be a concern for identifying such categories. The performance 

n the partially blocking scenario is slightly worse than those with 

imilar completeness, which may be caused by the misclassifica- 
s

262
ion of the points at the edge of the holes. The topological rela- 

ionship of points close to the holes will be significantly different 

rom that of other complete regions. Therefore, as long as the topo- 

ogical structure of the point cloud is not fundamentally damaged, 

cceptable segmentation results could be achieved, which shows 

he good robustness of the proposed method. 

. Automatic geometric modelling results 

To automatically acquire geometric models essential for BIM 

rchives or numerical analysis, the proposed modelling process 

iven in Section 3.4 is employed with Qiao-Lou, and the results 

re shown in Fig. 15 . In the figure, the comparison between the 

stimated geometric parameters (marked by blue), and the on-site 

easured values (marked by black) is given. It is revealed that the 

rror between the two is generally less than 10%, demonstrating 

atisfied modelling accuracy. With the small tilt of the column, the 
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stimation error is relatively significant since it is affected by the 

oise. 

Since the bracket set is not involved in Qiao-Lou, we use the 

racket set layer extracted from the campus gate to illustrate the 

valuation results of the bracket set symmetry plane parameters. 

n this case, the evaluation of the average spacing between each 

racket set is 1.197 m, while the measured value is 1.204 m, and 

he error between the two is 0.6%. When determining the sym- 

etry plane parameters of each bracket set, the average d(PRi , PM j ) 

orresponding to the preliminary symmetry plane PSP and the fi- 

al symmetry plane SP are 22.6 mm and 21.4 mm, respectively, 

ndicating an effective parameter optimization. 

It should be emphasized that the large-scale geometric infor- 

ation of the structure, such as tilts of columns shown in Fig. 15 ,

s focused on in the proposed modelling process. Although geo- 

etric details, such as local buckling or cracking of columns, may 

e generalized or simplified, the extracted information still plays a 

rucial role as the parameter for evaluating the overall structural 

oad performance and the monitored indicator in structural health 

onitoring activities. When discussing a true-to-deformation geo- 

etric reconstruction, specific high-precision methods need to be 

eveloped, which is not covered in this paper. 

. Conclusions 

This paper introduces a semantic segmentation method based 

n a novel multi-scale local descriptor to identify primary struc- 

ural components in traditional Chinese buildings from point 

louds. An automatic modelling procedure is also given to facili- 

ate the transition from the classified point cloud to the required 

eometric model. The performance of the proposed approach was 

eld validated using point cloud data collected from two buildings, 

rom which the following conclusions can be drawn: 

1. Using local descriptors to extract discriminative high-level fea- 

tures before learning-based classification can avoid a data- 

intensive feature learning process in structural component 

recognition. By defining a local reference system and concate- 

nating support fields at different scales, the mIoU of seman- 

tic segmentation using the proposed descriptors has increased 

from 0.54 to 0.80 compared with the results obtained using 

FPFHs and SHOTs. The notable discrimination of the extracted 

features ensures the effective recognition of complex heritage 

components even with limited training samples, which is diffi- 

cult for other end-to-end networks to achieve. 

2. To achieve optimal performance, it is recommended to set the 

radii of the two-scale descriptors to 0.3 m and 0.9 m respec- 

tively in heritage building scenes. In this condition, the mIoU of 

segmentation decreases slightly to 0.76 with random removal of 

60% points, demonstrating the high robustness of the proposed 

method against data missing and sampling density changes. The 

adaption of our process to the complexity of real-world scenar- 

ios is therefore highlighted. 

3. Leveraging the proposed automatic geometric feature extraction 

process enables the generation of geometric models for heritage 

buildings with less than 10% evaluation error in geometric di- 

mensions. This facilitates subsequent numerical analysis or dig- 

ital twin construction, reducing the need for extensive manual 

operations. 

It should be emphasized that the proposed strategy could be 

pplied to other types of heritages, not only on Chinese-style tim- 

er buildings, by redefining the labels that need to be segmented 

nd conducting corresponding network training. Still, the proposed 

ethod has some limitations. The performance of the proposed 

escriptor will decrease when the geometric features of the com- 

onent are similar to those of the surrounding area (e.g., columns 
263
mbedded in the wall as shown in Fig.10 ). The introduction of ad- 

itional information, such as the picture colour, may potentially 

olve this problem in future research. Besides, the local descriptor 

s designed and proven to work well in outdoor scenes. For data 

ontaining indoor information, especially complex scenes with fur- 

iture, the proposed methodology needs to be adapted to elimi- 

ate the interference of objects unrelated to architecture. 
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