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The maintenance of buildings, underpinned by the digital twin technique, becomes integral to heritage
conservation efforts. To achieve efficient modelling with minimal manual intervention, automated com-
ponent recognition based on semantic segmentation of point clouds is imperative. Confronted by the
challenges of the paucity of requisite datasets and the inherent geometric diversity of historical build-

Keywords: ings, a two-step strategy including feature extraction and classification is proposed. First, an improved
Heritage building SHOT descriptor is proposed to extract discriminative features by defining a specific local reference sys-
Point cloud

tem and concatenating support fields at different scales. The extracted features are then classified with a
learning-based network, avoiding a feature learning process that relies on sufficient data. Experiments on
real-world heritage point clouds yield 93.7% accuracy and an 80.0% mean-intersection-over-union (mloU)
when descriptors with radii of 0.3 m and 0.9 m are combined, surpassing computationally expensive
deep learning networks and data-intensive unsupervised learning. A slight decrease in segmentation per-
formance with random removal of points indicates the high robustness of the proposed method against
data missing and sampling density changes. Additionally, a geometric modelling process with an error of
less than 10% is introduced to achieve a direct transition from point cloud to model, contributing to the

establishment of digital twins for heritage structures.
© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, Al
training, and similar technologies.

Semantic segmentation
Local descriptor
Automated modelling

1. Introduction

Historical buildings, integral facets of immovable cultural her-
itage, serve as witness to urban development. The arisen cultural
tourism, anchored in these legacies, has progressively become a
local economic booster. However, the inexorable natural aging of
building materials and the inevitable man-made vandalism accom-
panying heritage activities have engendered irreversible losses in
structural performance. Unwarranted risks surface [1,2], necessi-
tating a call for meticulous structural health monitoring, mainte-
nance, and risk management of heritages.

The development of digital techniques, with heightened adapt-
ability, has facilitated the implementation of information manage-

* Corresponding authors.
E-mail addresses: j.yang.1@sjtu.edu.cn (J. Yang), wongfayeleung@sjtu.edu.cn (F.
Wang).

https://doi.org/10.1016/j.culher.2024.12.006

ment frameworks in the scenario of heritage maintenance. Non-
contact measurement and monitoring of the deformation are of-
ten necessary to avoid further damage, highlighting the impor-
tance of structural reconstruction and component recognition [3-
6]. Notably, frameworks like HBIM (heritage building information
model) [7-9] furnish semantic and geometric information, cater-
ing to the needs of managers, researchers, conservators, and restor-
ers [10]. The established concept of digital twins (DT) also demon-
strates the pivotal role of virtual entities in interactive risk man-
agement [11,12]. The three-dimensional (3D) point cloud obtained
from laser scanning [13,14] or oblique photography [15,16] often
serves as the primary data source for extracting geometric primi-
tives and building structures, facilitating parametric modelling in
such systems. Preprocessing of point clouds, a precursor to dig-
ital reconstruction, has become a critical prerequisite, imposing
constraints on efficient and reliable modelling solutions. The se-
mantic segmentation of point cloud is a technology that links the

1296-2074/© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, Al training, and similar technologies.
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collected data with semantic labels used in 3D scene understand-
ing and cognition [17]. The commonly used feature extraction-
based geometric modelling, whether a developed representation
algorithm [18,19] or mature commercial solutions [20], partially re-
lies on manual processing by engineers. Therefore, an automated
processing strategy for semantic segmentation and modelling is re-
quired to circumvent labour-intensive tasks and expedite the pro-
cess. We attempt to achieve an automated scheme to obtain geo-
metric parameters of heritage components required by the digital
model.

The typical procedure to interpret building geometry is to ac-
quire certain preprocessing steps, called semantic modelling, to ex-
tract a set of features which is then fed to a classification model
that computes the most adequate class label [21]. The recognised
components, presented by class labels, can be further geometri-
cally modelled to provide necessary information for monitoring
and maintenance activities. Features for semantic modelling could
be acquired from context or end-to-end learning, resulting in dif-
ferent approaches.

The segmentation and classification are often sequential when
features are obtained from contextual information of point clus-
ters (i.e., the relationship between adjacent points). According to
algorithms applied to divide the point cloud into clusters, note-
worthy applications encompass region-growing, model fitting, and
clustering-based algorithms. The basic conception of the region-
growing algorithm is to merge spatial clusters exhibiting similar-
ity in designated features. This similarity, gauged through criteria
like normal vector, curvature, point-to-adjustment plane distance,
or point-to-candidate point distance [22], facilitates the detection
and segmentation of basic geometrical elements in heritage struc-
tures [23]. The features used for similarity identification can also
be obtained from the deep learning framework, to realize unsu-
pervised segmentation [24]. Model fitting aligns raw point clouds
with geometric models utilizing sampling methods such as the
Hough transform (HT) and random sample consensus (RANSAC).
This yields the identification of geometric entities like lines, planes
[25-27], cylinders [28], and spheres. However, computational ex-
penses can burgeon when dealing with complex shapes in large
datasets of practical heritages [29]. Model fitting is also the pri-
mary feature extraction tool in geometric modelling after segmen-
tation. Clustering algorithms, such as K-means and mean shift, seg-
ment regions based on diverse geometric, colour, or reflection in-
tensity features [30]. Similar to the region-growing approach, the
deficiency for unsupervised clustering is the difficulty in achieving
results that fully match practical component classification through
suitable predefined parameters. By introducing predetermined hu-
man expertise, such as design regulations, primitive features ex-
tracted from algorithms could be aggregated to higher abstrac-
tion levels successively until ideal segmentation is accomplished
[31]. Some hybrid approaches with region-growing and fitting al-
gorithms were proposed to realize the segmentation of structural
components in heritages [32].

In recent years, the emergence of end-to-end neural networks
tailored for processing point clouds has garnered attention. The
feature extraction in the usual workflow can be automatically im-
plemented using a deep learning architecture, achieving a direct
mapping from raw point data to semantic labels. Applied in pro-
cessing bridge, building, and heritage point clouds, these networks
are categorized into 3D convolution on voxels [33], 2D convolu-
tion on projected images [34,35], and feature learning on point
sets [36,37]. After the learning-based local feature extraction, vox-
els or points are classified, and semantic annotations are given.
PointNet++, a representative model, employs a hierarchical feature
learning method, concurrently capturing local and global features.
As mentioned above, the learned features can also be applied to lo-
cal point clusters for classification, thus forming a hybrid method
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(such as the combination of convolution and region-growing in
GrowSP [24]). Matching this approach, some attempts were made
to identify meaningful features to recognize historical architectural
elements [38]. Despite the efficacy of neural networks, the reliance
on substantial labelled data poses a limitation in the early stages
of training for learning-based models.

In the realm of heritage projects, the application of semantic
segmentation presents unique challenges compared to its counter-
parts in construction scenes, traffic environments, and indoor set-
tings. Requirements in point density are often aligned with the
presentation demands of component details. Segmentation cate-
gories differ in morphology, such as the need to discern arches
or vaults common in stone masonry is absent in East Asian tim-
ber structure scenes, which calls for specific research. These cat-
egories and the level of segmentation accuracy should also con-
sider the application scenario of the converted digital models, like
structural analysis or damage detection, to correctly handle the
trade-offs in details of geometric features [39,40]. Besides, it is
proper for segmentation algorithms to have the ability to train
from small samples due to the lack of sufficient available heritage
point cloud data. As widely adopted algorithms are primarily de-
signed for large datasets like indoor scenes, the performance of
such end-to-end algorithms on limited datasets needs to be fur-
ther checked, and optimizations need to be made to adapt to such
context.

To avoid a feature learning process that relies on sufficient data,
a pragmatic two-step approach is adopted in this paper to achieve
semantic segmentation. Algorithms are firstly leveraged to extract
high-level manually defined features of each point as input for the
classification network. Then point-wise labelling of features is im-
plemented with a learning process in the second step. It is con-
sidered to yield satisfying segmentation results with limited train-
ing data and computational power, since the useful semantic infor-
mation is directly obtained from pre-defined features, rather than
extracting features from learning that rely on a large amount of
training data. Within this paradigm, geometric [41,42], radiometric
[43], and colour-related [44] context information has been used as
high-level features. In some of the recent attempts [45], encoded
features generated by the local descriptor were utilized. However,
the work still targets common infrastructure and does not provide
an automated modelling process. The ability of such a two-step ap-
proach to consistent expression in heritage scenarios also needs to
be tested.

2. Research aim

With limited training data and variations in data quality, au-
tomated semantic segmentation of real-world point cloud data of
heritages with high fidelity and efficiency has yet to be solved.
In this paper, an automated process of semantic segmentation for
heritage point clouds is proposed. Following the two-step strat-
egy, an algorithm that can extract sufficient features from con-
textual information in the first step is the key to addressing the
above-mentioned challenges. Taking the timber heritage buildings
in East Asia as the research object, using the devised multi-scale
local descriptor as a feature extractor and the neural network as a
classifier, the proposed segmentation algorithm exhibits good ro-
bustness under varying point densities and integrity. Emphasizing
accurate feature extraction becomes crucial for classification net-
works to yield better results, particularly when confronted with
limited training samples. To form a complete process from scan-
ning to digital models, the workflow of geometric modelling for
labelled components is also involved. Consequently, the automated
modelling from raw point clouds to digital twins of heritages could
be performed to promote digital monitoring and management in
heritage preservation.
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Fig. 1. Workflow of semantic segmentation.
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Fig. 2. Structural components in Chinese traditional architectures.

3. Materials and methods

In the first step of our semantic segmentation method, we opt
for a designed descriptor to extract local features of point clusters.
Then, a classification neural network is used to infer labels in the
second step. The workflow of semantic segmentation is shown in
Fig. 1. In the field of point cloud processing, a descriptor for a point
is a feature vector calculated by a certain algorithm based on the
distribution of neighbouring points. Such distinctive feature vectors
are suitable as inputs for classification networks to infer point-wise
labels, thereby achieving semantic segmentation. As target seman-
tic labels in segmentation, typical components of Chinese tradi-
tional buildings are first defined in Section 3.1. The algorithm for
computing multi-scale descriptors is introduced in Section 3.2, and
details of label inference networks are introduced in Section 3.3.
The practicability of the proposed descriptors and two-step strat-
egy is confirmed in Section 4. An automated geometric modelling
pipeline and its application are also introduced in Sections 3.4 and
5 to provide an application scenario for segmented point clouds.

3.1. Typical components of Chinese traditional buildings

The evolution of Chinese traditional architecture, particularly
the construction techniques in the Song and Qing Dynasties, as-
sumes pivotal significance in both archaeological and engineering
realms. Insights from key technical standards, namely the “Treatise
on Architectural Methods” (Yin Zao Fa Shi) [46] in the Song Dynasty
and the “Code of Engineering Practice” (Gong Cheng Zuo Fa Ze Li)
[47] in the Qing Dynasty, offer a detailed division of the structural
form of the timber frame system. In the former paradigm, a classi-
fication distinguishes between palace-type and hall-type column-
beam frames, emphasizing whether the bracket sets layer can be
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identified in the vertical direction. As shown in Fig. 2, the roof sys-
tem in palace-type buildings is directly supported and connected
to the frame through the bracket sets (Dou-Gong). The height of the
interior and exterior columns is not equal in the hall-type frame,
and the load-bearing beams are directly inserted into the column
by mortise-tenon joints (Sun-Mao) [48]. A similar building clas-
sification based on the presence or absence of bracket sets was
adopted in the Qing Dynasty, where bracket sets primarily serve
ornamental purposes. Beyond the above two categories that can be
regarded as the post and lintel construction, the column-and-tie
construction emerges as a distinct structural form (see Fig. 2). In
this system, the roof load directly transmits to the columns, lead-
ing to a dense column grid arrangement, utilizing the tie-beams
(Fang) to connect columns under each purlin for support. From the
above description, ground, columns, beams, walls, bracket sets, and
roof systems constitute the six target labels for the semantic seg-
mentation of the point cloud in this study. These categories could
be regarded as the main structural components of Chinese timber
buildings with topologically distinguishable.

3.2. Segmentation step 1: feature extraction with local descriptor

As the feature extractor in our proposed semantic segmentation
process, a multi-scale local descriptor is designed. Considering the
potential noise in practical point cloud data, we chose the encod-
ing method of the Signature of Histograms of OrienTations (SHOT)
[49] as a reference due to its ability to reduce noise effects [50].
SHOT records and counts the coordinate relationship between a
point and its adjacent points into several histograms. The contex-
tual information within the neighbourhood of this point (i.e., the
support field) therefore is encoded into a feature vector. The divi-
sion of support fields and the statistical strategy of histograms are
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Fig. 3. Design of multi-scale descriptors.

inherited in this paper. Two improvements are made: (1) the lo-
cal reference system (LRF) is specified according to the application
scenarios for buildings, and (2) features of two different scales are
concatenated. The resulting descriptor relies on the statistical strat-
egy of orientation histograms and support fields of varying sizes,
ensuring robustness and fidelity in extracting local features. Note
that the size of the support field is determined by its radius, so
the number of neighbouring points in the field varies. The detailed
construction of our descriptor is defined as follows.

Assuming Py is the u,, target point in the point cloud that needs
to calculate its feature vectors, and n, is the estimated normal
vector of P,. Within the nearest neighbours of P, the least-square
plane fitting is implemented to find the local plane around this
point, and the normal vector of this plane, which is the equiva-
lent of n,, is estimated through principal component analysis (PCA)
analysis. The neighbour radius for normal estimation was set to 0.1
m in the following implementation. We first introduce the LRF and
sphere grids to define the geometric relationship between the P,
and its neighbouring points located in the support field. As given
in Fig. 3, the Z-axis in LRF is parallel to the vertical direction v
since this direction in building scenes is generally fixed to indi-
cate elevation. To ensure the rotational invariance in the horizon-
tal plane, the X-axis of LRF is along with the horizontal compo-
nent of the n,, and the Y-axis is naturally the cross product of the
Z-axis and X-axis. As for the sphere grids for histogram statistics,
2 radius divisions, 8 azimuth divisions, and 2 elevation divisions
divide the support field into 32 volumes. Each volume in sphere
grids has a histogram with 11 bins. Then, for the i;, neighbouring
point P,; of the target point P,, the angle, 0,;, between v and the
normal of this neighbouring point, n,;, is chosen as the statistical
variables to describe the geometric relationship between this two
points. To improve computational efficiency, cos8,; is calculated to
reveal the value of 6,;, since it can be easily obtained by n; - v. Af-
ter traversing all neighbouring points in the support field, counts
are accumulated in bins according to cos6,;, forming the signature
of histograms. Thus, a sub-descriptor, i.e., a feature vector, of the
target point with 352 dimensions is formed. For example, the first
11 numbers of this vector represent the histogram of cos8,; of all
neighbouring points in the first volumes.

Since the local histograms are used here to represent features,
it is inevitably affected by boundary effects. Therefore, for each
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point being accumulated into a specific local histogram bin, we
perform interpolation with its neighbours to eliminate such effects
(see Fig. 3). In particular, four factors, d; to dg4, are defined in the
radius, azimuth, elevation, and histogram quantized domains, re-
spectively. In radius, azimuth and elevation domains, d is the an-
gular or Euclidean distance between the neighbouring point P
and the centre of volume. In histogram domains, d is the differ-
ence between the value of cos6,; and the central value of the bin.
Note that d in each domain is calculated in both the two near-
est volumes or bins (i.e., d; and d;’ in the radius domain shown
in Fig. 3), and normalized by the size of the volume or the bin
to meet the continuity. Subsequently, four factors are multiplied
according to Eq. (1) to achieve the final interpolation, and the
sub-descriptor is normalized by the L2 norm to address the non-
uniform point density issue. Thus, points located on the boundary
would be smoothly counted into adjacent volumes and bins. Ex-
amples of sub-descriptors corresponding to six categories in the
practice dataset are given in Fig. 3. The discriminative ability of
the designed descriptor is reflected through significant differences
in feature vectors.

4
n=[]0-d)
i1

To enhance the perception of descriptors, two sub-descriptors
with different support fields are concatenated, that is, two feature
vectors of length 352 are concatenated into one feature vector of
length 704, as shown in Fig. 3. In the small support field, the ori-
entation distribution of close neighbours is described to separate
the basic local geometric patterns, such as boundaries of struc-
tural components. The global topological relationships would be
reserved in the large support field to locate similar components
that are difficult to distinguish in the local area. By traversing all
points in the point cloud, point-wise features are obtained as in-
puts for classification.

(1)

3.3. Segmentation step 2: point-wise classification with neural
network

In our semantic segmentation method, the classification of the
calculated descriptors is undertaken by a relatively simple neural
network. Since descriptors with explicit topological relationships
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and considerable perception have been obtained as features of
point clusters, a simple classifier is sufficient to complete the train-
ing task with a small computational cost. The neurons adopted in
this paper contain a linear function and a nonlinear function (i.e.,
activation function). The linear function is mathematically denoted
as in Eq. (2). For the i;; neuron in the current layer, S; is the re-
sult of the linear function, w;; and x; are the weight and the value
of the j;; input respectively, b; is the bias. The rectified linear unit
(ReLU) is chosen as the activation function since it converges faster
and avoids gradient vanishing [51]. The expression of ReLU is given
as Eq. (3), where S; and O; are the input and output of this neu-
ron, respectively. The outputs of neurons will be passed through
connections and become the input of neurons in the next layer,
and the n,; neuron in the next layer is illustrated given by Eq. (4),
where 0, is the output of the neuron, wy; is the weight of the iy,
input, by, is the bias. As for the output layer, the soft-max function,
illustrated by Eq. (5), is taken as the nonlinear function, and the
probability of each label (i.e., categories) could be obtained. Here,
t; is the result of the linear function of the i;;, neuron in the output
layer.

The structure of the neural network in this research is pre-
sented in Fig. 4. The number of inputs is the dimension of the
descriptor. Six hidden layers gradually decreasing from 1024 to 32
neurons are adopted, and the number of outputs is 6 correspond-
ing to the aforementioned categories of structural components. To
mitigate over-fitting and enhance robustness in the feature space,
batch normalization is implemented at each hidden layer, and a
50% drop-out is conducted after the last hidden layer. Such a drop-
out technique is finished by randomly dropping neurons as well as
their connections during training. During the training process using
labelled data, the gradient descent and the standard cross-entropy
loss are employed as the optimization method and loss function,
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Note: FC refers to full connection
BN refers to batch normalization

the neural network.
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ling after segmentation.

respectively. Such loss function is defined as Eq. (6) and (7), where
x is the input, y is the target, w is the weight, N is the batch size.
Weights are set to deal with unbalanced training datasets, as will
be introduced later. Weights and biases of neurons are iteratively
optimized through the partial derivatives of the loss function using
the backpropagation training technique.

Si :Zwijxj+bi (2)
0; = f(5;) = max(0, ;) (3)
0n = £ (X wia (3w +bi) + b (4)
L
softmax(t;) = s (5)
N 1
I(x,y) = Zn:1 mln (6)
I = —WynYn log(xn) (7)

3.4. After segmentation: geometric modelling

After the above two steps to achieve semantic segmentation of
the raw data, different building components have been recognised
as points with different labels. Further geometric modelling is ex-
pected to achieve the complete process of scanning to digital mod-
els, as shown in Fig. 5. Hence, an automatic process is proposed
here to finish the modelling of each structural category for her-
itage buildings.

6
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3.4.1. Determination of the column grid and modelling of columns

Determining the column grid is the key to component position-
ing and is usually handled first. The workflow of column modelling
is given in Fig. 6, and its details are as follows: 1) The density-
based spatial clustering of applications with noise (DBSCAN), a
clustering algorithm, is first introduced to separate each column
and noise. DBSCAN finds core points of high density and expands
clusters from them, thereby achieving instance segmentation. The
parameters eps and minPts are crucial for clustering and are set
to be 0.6 and 50 here. eps is the maximum relative distance be-
tween two points for one to be considered as in the neighbour-
hood of the other, and minPts is the minimum number of points
in a neighbourhood for a point to be considered a core point.
2) Consider each column as a cylinder described by Eq. (8), esti-
mate their axis vector and radii via RANSAC sampling and fitting.
In Eq. (8), (x,y,z) is a point on the cylinder surface, (xq,Yo,Z20)
is a point on the axis, (a,b,c) is the axis vector, and ry is the
cylinder radius. RANSAC identifies data whose distribution can be
explained by some set of model parameters as interior and fits
geometric parameters using inliers. The maximum distance from
the model to a potential inlier point, dransac, i set to 0.02 m. 3)
To obtain the length and the positioning coordinates of the col-
umn, the point cloud of each column is projected onto its axis
using PCA to acquire the extreme coordinates in the axis direc-
tion, thereby the range of the column is determined. Although the
length of the invisible part of the column could not be obtained,
the known geometric parameters, i.e., axis vector, cylinder radius,
coordinates, and visible length, are sufficient to locate the column
grid and obtain the geometric model of columns. The column grid
obtained here is the basic information for locating other compo-
nents.

(x—x0)* + (= y0)* + (- 20)* — [a(x — x0) + b(y — ¥o)

2
+e(z-20)] =13

(8)

Ax+By+Cz+D=0 (9)
3.4.2. Modelling of beams

Subsequently, the arrangement of beams can be estimated
based on the obtained column grid as shown in Fig. 7. Its de-
tails are as follows: 1) Find the axis of all beams based on col-
umn coordinates. 2) Set appropriate cuboid bounding boxes along
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the axis coordinates to isolate individual beams, achieving instance
segmentation. 3) In contrast to columns, timber beams are often
composite due to the presence of Fangs, leading to an irregular
cross-section. We use PCA to project the cross-section along the
beam axis and the concave hull algorithm is applied to obtain the
requisite dimensions of cross-sections.

3.4.3. Modelling of walls and ground

Walls and ground, with planar features, entail a straightfor-
ward task. The normal vectors of each plane are sequentially es-
timated following Eq. (9) using RANSAC. In Eq. (9), (x,y.2) is a
point on the plane, (A, B, C) is the axis vector in Hessian paradigm,
and D is a constant. dgansac for RANSAC here is set to 0.15 m.
By projecting all points onto the corresponding fitting plane, the
boundaries of the plane can be determined using the convex
hull algorithm. As for the roof system, it is difficult to identify
certain structural components, such as purlins, due to the com-
plete blocking, and the instance segmentation of the roof system
is not considered in this paper. We hope to obtain this infor-
mation in other approaches, rather than directly from the point
cloud.

3.4.4. Extraction of symmetry plane of bracket sets

Complex types and configurations of bracket sets, compounded
by a stepped structure, pose challenges for direct plane fitting. It
is also not feasible to directly determine the centroid since the
collected data is often incomplete. Their relatively small size also
hinders feature extraction. Therefore, we adopt the process from
key-point recognition, instance segmentation, to symmetry plane
extraction (shown in Fig. 8) to obtain the centre coordinates of
the bracket set, as described below: 1) Use PU-GCN [52] to up-
sample the raw point cloud to a resolution of 15 mm to improve
the accuracy of key-point recognition. In this network, the local
point information from point neighbourhoods is encoded using a
graph convolutional network to generate fine-grained details and
perform the interpolation. 2) Calculate Harris key-points of the
up-sampled point cloud and cluster them using affinity propaga-
tion or mean shift algorithms. The Harris detector determines ge-
ometric features of bracket sets, such as the corners and edges, by
identifying regions of drastic changes in the point normal vec-
tor. The radius for normal estimation and the threshold to filter
out weak corners are set to 0.07 m and 0.01, respectively. Ex-
amples of estimated key-points before and after up-sampling are
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also given in Fig. 8, revealing that more details are recognised
after up-sampling. 3) For each point cluster identified as a sin-
gle instance, the centroids of clusters are projected onto the col-
umn grid to calculate the spacing between each component since
bracket sets are often are uniformly spaced. The cuboid bound-
ing boxes can be set accordingly to isolate individual bracket sets.
The length of bounding boxes is the average spacing calculated
above. Note that the instance segmentation is implemented on the
raw data to reduce the computational complexity of subsequent
steps.

Then, the precise coordinate of a bracket set is determined
through the preliminary determination and optimization of the
symmetry plane, as stated below: 4) For all point pairs in an in-
stance point cloud, filter potential symmetrical pairs according to
coordinates and normal vectors. Each pair can correspond to a po-
tential symmetry plane with parameters A, B, C, and D expressed
by Eq. (9). To determine a definite plane, place these plane param-
eters in a 3D space described by normalized A, B, and D (C is ig-
nored since it is approximately 0), and employ the mean shift algo-
rithm to find the region with the highest density. The coordinates
corresponding to this region are the parameters of the preliminary
symmetry plane PSP. 5) To further improve accuracy, optimization
is executed by addressing registration errors. Given the raw point
cloud RC, a mirror point cloud MC is derived based on the PSP.
Traverse all points in RC, Py;, find the nearest point in MC, Py;, and
calculate the distance between them, d(Py, Py;). To avoid the ef-
fect of the local asymmetry caused by the incompleteness of the
RC, a threshold, here we set to be 0.09 m, is defined to filter out
pairs of points with a distance greater than this threshold. Take
d(Pgi, Pyj) as the registration error, and employ an iterative clos-
est point (ICP) approach to adjust the position of MC to minimize
such error, resulting in the precise determination of the symmetry
plane SP.

The geometric feature of bracket sets required for modelling
is guided by precision considerations. Typical simplified calcula-
tion models with different accuracy have been summarized in
[53]. In a numerical analysis with low precision, generally cor-
responding to the spring model, the information about the cen-
tral axis coordinates is concerned. With a known column grid,
the frontal plane aligned with the grid could be obtained, and
the central axis of a bracket set is the intersection line of SP
and the frontal plane. As for the precise analysis, specific details
can also be derived by certain manual recognition, such as pro-
jecting onto symmetrical planes, thereby obtaining a 3D calcu-
lation model, such as the beam, truss, and corbel models listed
in [53].
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4. Semantic segmentation results and discussions
4.1. Datasets and implementation parameters

Two datasets of Chinese-style heritage buildings were collected
to evaluate our proposed semantic segmentation method. In the
first dataset, 4 buildings from open-source architectural cultural
heritage point clouds datasets (i.e., ArCH dataset [54], Open Her-
itage 3D [55], and WHU-TLS Benchmark [56-58]) were involved.
To obtain more point cloud data for accuracy purposes, 4 simulated
point clouds were generated through ray tracing operations on 3D
models with triangulated surfaces. Specifically, for each model, a
circumscribed icosahedron composed of regular triangles is deter-
mined, and a series of virtual cameras are placed at the faces of
the icosahedron. Point clouds from different viewpoints are cap-
tured by emitting virtual scanning rays from each virtual camera.
An amalgamated cloud resembling practical scans is generated by
aligning these point clouds through recorded camera poses. Of the
8 buildings, only KAS Pavilion-1 and KAS Pavilion-2 from ArCH re-
tain their original labels, which include roofs, columns, and walls,
aligning with the target labels of this research. The remaining
buildings were manually labelled by us.

We collected the second dataset using the terrestrial laser scan-
ner, including a timber building called Qiao-Lou, and the campus
gate of Shanghai Jiao Tong University. The Qiao-Lou is located in
the historic district Zi Town (Zi-Cheng) of Jiaxing City, China, and
serves as a watchtower above the city wall since the last rehabil-
itation in 1908. The campus gate is a replica of the old one when
the new campus was being constructed. The old gate with the style
of the Qing Dynasty palace was built in 1934 and is considered a
symbol of the University. Although the new gate is built of con-
crete, it is completely copied in appearance, maintaining typical
Chinese architectural features. The point density was set to 3.1 mm
over 10 m in two scans. Since it is difficult to obtain structural de-
tails of the roof by ground scans, unmanned aerial vehicle (UAV)-
based oblique photography was also carried out to repair the holes
caused by blocking and create a complete set of point clouds. Qiao-
Lou and the campus gate were also manually labelled with 6 cate-
gories and labels of two datasets are marked with different colours
in Fig. 9.

In the implementation of our semantic segmentation approach,
the first dataset was used as the training set, while the sec-
ond dataset functioned as the testing set. To address computer
memory constraints, a voxel down-sampling with a size of 30 mm
was performed on all data. Eventually, the training set contains 8
buildings with a total of 2247829 points and the test set contains
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Fig. 10. Training process and parameters of the neural network.

2 buildings with a total of 2885076 points. Thirty percent of the
points in the training set were randomly selected as the valida-
tion set during training. The output for classification comprised six
categories, ground, columns, beams, bracket sets, walls, and roof
system, with training weights (see Eq. (7)) adjusted to (2.67, 8.16,
6.65, 2.66, 2.96, 1.00) to mitigate the impact of imbalanced data
during training. These weights were determined based on the ra-
tio of points in each category, indicating that categories with fewer
points in the training set will gain greater weight during training.
Notably, the colour of scanned points was abandoned due to their
susceptibility to lighting conditions, features of point clusters were
derived directly from the coordinate information. The loss and ac-
curacy curves when the radius of the descriptor is 0.9 m are given
in Fig. 10 as an example of classifier training, and parameters in
the experiment are also presented. It can be seen that when the
epoch exceeds 25, the training and validation accuracy both in-
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crease slowly and exceed 98%, indicating that the parameters in
the neuron have stabilized. Therefore, 35 serves as the number of
training termination epochs for all models.

4.2. Implementation results

For evaluation metrics, mean intersection-over-union (mloU)
and overall accuracy (OA) were reported across all classes. If TP
(true positive) is the number of correctly labelled points, FP (false
positive) is the number of wrongly labelled points, FN (false nega-
tive) is the number of miss-labelled points, the IoU for each cate-
gory can be given as Eq. (10), and the mloU is the average of each
category.

TP

IoU =15 FP7 N

(10)
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Fig. 12. Segmentation results of radius (a) 0.3 m; (b) 0.9 m; (c) 2.1 m; (d) 0.3 m and 0.9 m.

Firstly, the exploration of our single-scale descriptors, SHOT,
and Fast Point Feature Histograms (FPFH) was conducted. Differ-
ent descriptors with different support fields were calculated as in-
puts for the classifier proposed in Section 3.3. After training on the
training set, different trained models were used for inference on
the testing set, and the classification results are shown in Fig. 11.
It is shown that the highest mloU of these three descriptors is
0.77, 0.56, and 0.54 respectively, indicating that our descriptors
perform better than other descriptors in the semantic segmenta-
tion accuracy. A trend of increasing and then decreasing can be
observed in mloU as the descriptor radius increases. The increase
in mloU reveals that more precise topological relationships are ex-
pressed along with the expansion of perception fields. A smaller
field may result in points within the component being unable to
classify correctly (Fig. 12 (a)). However, when the radius exceeds
the general size of the structural component, more counted neigh-
bouring points could make the extracted geometric features less
distinguishable. The classification of points on the edge of com-
ponents may be affected by surrounding components (Fig. 12 (c)).
When the radius of the proposed single-scale descriptor is 0.9 m, a
local maximum in mloU is obtained, revealing a balance between
accuracy and robustness.

Therefore, to fully represent the geometric features and improve
the segmentation accuracy, the support radius of 0.3 m and 0.9
m were selected to form a multi-scale descriptor (blue points in
Fig. 11), and the mloU increased from 77.5% to 80.0%. The IoU re-
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Columns of
campus gate

sults for each category are presented in Table 1. The segmentation
result of columns in the campus gate is relatively poor due to the
close connection between the columns and the infill wall in this
building (Fig. 12 (d)), where the topological features of the column
are similar to those of the wall. In contrast, when the column is
exposed, as in Qiao-Lou, the results would be acceptable.

4.3. Discussion on different methodologies

Two end-to-end point-wise networks, GrowSP [24] and
PointNet++ [36], were applied to perform semantic segmentation
on our dataset for comparison. In the novel GrowSP network, 3D
semantic elements are discovered via the growth of super-points.
Point-wise features are learned from an encoder-decoder proce-
dure, and the sizes of super-points progressively grow through
clustering based on such features. The intuition of Pointnet++
came from the basic CNN structure where its lower-level neurons
have smaller receptive fields whereas larger level has larger recep-
tive fields. The hierarchical structure in this network is composed
of a number of set abstraction levels to extract multi-level features.
Here, our training set was used to train PointNet++ and perform
inference on the testing set. On the contrary, the testing set was
directly implemented in GrowSP, as it is an unsupervised method.
Only the number of categories (i.e., 6) was given in GrowSP for un-
supervised matching.



B. Pang, |. Yang, T. Xia et al.

Journal of Cultural Heritage 71 (2025) 252-264

Table 1
IoU results of the testing set based on proposed descriptors and other methodologies.
Methodologies IoUs for each category (Qiao-Lou / Campus gate) mloU
Ground Column Beam Bracket set Wall Roof
Radius of proposed 0.3 0.71/0.89 0.61/0.37 0.56/0.66 -/0.75 0.74/0.78 0.92/0.88 0.71/0.72
descriptors/m 0.6 0.79/0.93 0.67/0.30 0.64/0.77 -/0.83 0.83/0.83 0.96/0.92 0.78/0.76
0.9 0.74/0.94 0.64/0.28 0.69/0.72 -/0.87 0.82/0.82 0.96/0.95 0.77/0.76
1.2 0.72/0.93 0.58/0.27 0.68/0.68 -/0.90 0.80/0.82 0.95/0.95 0.74/0.76
15 0.71/0.93 0.58/0.26 0.64/0.64 -/0.87 0.78/0.82 0.95/0.96 0.73/0.75
1.8 0.71/0.92 0.61/0.24 0.70/0.66 -/0.88 0.79/0.83 0.95/0.96 0.75/0.75
2.1 0.69/0.92 0.57/0.21 0.70/0.65 -/0.85 0.77/0.84 0.95/0.96 0.74/0.74
Multi 0.75/0.94 0.71/0.34 0.73/0.74 -/0.91 0.84/0.84 0.96/0.95 0.80/0.78
GrowsSP [24] 0.01/0.01 0.09/0.07 0.16/0.03 -J0.01 0.02/0.01 0.04/0.02 0.06/0.03
PointNet++ [36] 0.26/0.03 0.01/0.01 0.04/0.06 -/0.24 0.64/0.73 0.65/0.31 0.32/0.22

Boundary
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Fig. 13. Segmentation results of end-to-end networks (a) GrowSP; (b) PointNet-++.

The results of these two networks are shown in Table 1 and
Fig. 13. Due to the limited data, the discrimination of the features
learned by the two networks is still restricted, resulting in unsat-
isfactory segmentations. The OAs and mloUs of the two networks
are less than 0.7 and 0.4, respectively, which is lower than the re-
sults obtained by our method. End-to-end networks rely on learn-
ing features with good discrimination from sufficient training sam-
ples. In the original paper of PointNet++ [36], an 84% accuracy for
indoor scenes was obtained from a dataset with 1201 scenes, while
the available models in this paper were only 8. Hence, with our
dataset, points belonging to different categories are wrongly di-
vided together using PointNet++, such as the confusion of ground
and roof (see points marked in red in Fig. 13 (b)) due to simi-
lar normal vectors. The necessity of defining coordinate systems in
small sample learning is therefore emphasized. Similar phenom-
ena were also found in the results of GrowSP. The ground and
walls were incorrectly divided together (see points marked in blue
in Fig. 13 (a)) due to similar plane features. Some basic topologi-
cal region divisions based on feature clustering could be seen with
GrowSP. However, segmentation can hardly correspond to the true
label due to the lack of a priori knowledge even though the geo-
metric features such as Point Feature Histograms (PFH) were used
to enhance the expression ability of its features. Such complete er-
ror in label mapping resulted in a nearly zero mloU with GrowSP.
However, even if the mismatch on this label is ignored, such seg-

mentation with local irregular clustering is still unacceptable. The
imbalance of data in categories also deteriorates the segmentation
performance since limited information is learned in the category
with fewer points. Besides, some unexpected boundaries on the
roof deserve attention. As mentioned, in order to obtain a com-
plete point cloud, different techniques are used to fill the holes
caused by blocking, leading to certain differences in the topologi-
cal relationship of points in these regions. The appearance of these
boundaries indicates the high sensitivity of the two networks to
the raw data. Therefore, our method is more accurate and appli-
cable for the small sample learning scenario compared with other
methodologies. The clear geometric meaning of the extracted fea-
tures from the proposed descriptors makes the classifier more ex-
pressive and distinguishable, making them more suitable for com-
plex scenes like heritage buildings.

4.4. Discussion on robustness of the proposed method

In practical heritage scanning, the point cloud that needs to be
segmented is often a fusion of ground laser scanning and oblique
photography, introducing challenges of spatial scale and density
variations [43]. Since a robust result is desired with point clouds
of different quality, the performance of the proposed method was
evaluated by adjusting the integrity of point clouds in the testing
set. The precision in estimating the surface normal, which is cru-
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Fig. 15. Geometric modelling results.

cial for feature extraction, may be severely affected under different
sampling conditions. By randomly dropping a certain percentage
(90% to 60%) of points from raw data, the quantitative analysis on
the relationship between the level of completeness and the seg-
mentation results was conducted as given in Fig. 14. It is revealed
that when 60% of points being removed, the mloU slightly de-
creased from 0.80 to 0.76. To simulate the inevitable blocking prob-
lem in practical application, the removal of partial point clusters is
also implemented. Points in various geometries were removed here
to present the holes caused by blocking, and these removed points
account for approximately 16.5% of the total number of points. In
this blocking scene, the mloU has decreased to 0.78.

It can be concluded that the segmentation is slightly affected
by the integrity of point clouds. Due to the relatively small propor-
tion of beam and column data, the reduction of point cloud density
may be a concern for identifying such categories. The performance
in the partially blocking scenario is slightly worse than those with
similar completeness, which may be caused by the misclassifica-
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tion of the points at the edge of the holes. The topological rela-
tionship of points close to the holes will be significantly different
from that of other complete regions. Therefore, as long as the topo-
logical structure of the point cloud is not fundamentally damaged,
acceptable segmentation results could be achieved, which shows
the good robustness of the proposed method.

5. Automatic geometric modelling results

To automatically acquire geometric models essential for BIM
archives or numerical analysis, the proposed modelling process
given in Section 3.4 is employed with Qiao-Lou, and the results
are shown in Fig. 15. In the figure, the comparison between the
estimated geometric parameters (marked by blue), and the on-site
measured values (marked by black) is given. It is revealed that the
error between the two is generally less than 10%, demonstrating
satisfied modelling accuracy. With the small tilt of the column, the
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estimation error is relatively significant since it is affected by the
noise.

Since the bracket set is not involved in Qiao-Lou, we use the
bracket set layer extracted from the campus gate to illustrate the
evaluation results of the bracket set symmetry plane parameters.
In this case, the evaluation of the average spacing between each
bracket set is 1.197 m, while the measured value is 1.204 m, and
the error between the two is 0.6%. When determining the sym-
metry plane parameters of each bracket set, the average d(Py;, Py;)
corresponding to the preliminary symmetry plane PSP and the fi-
nal symmetry plane SP are 22.6 mm and 21.4 mm, respectively,
indicating an effective parameter optimization.

It should be emphasized that the large-scale geometric infor-
mation of the structure, such as tilts of columns shown in Fig. 15,
is focused on in the proposed modelling process. Although geo-
metric details, such as local buckling or cracking of columns, may
be generalized or simplified, the extracted information still plays a
crucial role as the parameter for evaluating the overall structural
load performance and the monitored indicator in structural health
monitoring activities. When discussing a true-to-deformation geo-
metric reconstruction, specific high-precision methods need to be
developed, which is not covered in this paper.

6. Conclusions

This paper introduces a semantic segmentation method based
on a novel multi-scale local descriptor to identify primary struc-
tural components in traditional Chinese buildings from point
clouds. An automatic modelling procedure is also given to facili-
tate the transition from the classified point cloud to the required
geometric model. The performance of the proposed approach was
field validated using point cloud data collected from two buildings,
from which the following conclusions can be drawn:

1. Using local descriptors to extract discriminative high-level fea-
tures before learning-based classification can avoid a data-
intensive feature learning process in structural component
recognition. By defining a local reference system and concate-
nating support fields at different scales, the mloU of seman-
tic segmentation using the proposed descriptors has increased
from 0.54 to 0.80 compared with the results obtained using
FPFHs and SHOTs. The notable discrimination of the extracted
features ensures the effective recognition of complex heritage
components even with limited training samples, which is diffi-
cult for other end-to-end networks to achieve.

. To achieve optimal performance, it is recommended to set the
radii of the two-scale descriptors to 0.3 m and 0.9 m respec-
tively in heritage building scenes. In this condition, the mloU of
segmentation decreases slightly to 0.76 with random removal of
60% points, demonstrating the high robustness of the proposed
method against data missing and sampling density changes. The
adaption of our process to the complexity of real-world scenar-
ios is therefore highlighted.

. Leveraging the proposed automatic geometric feature extraction
process enables the generation of geometric models for heritage
buildings with less than 10% evaluation error in geometric di-
mensions. This facilitates subsequent numerical analysis or dig-
ital twin construction, reducing the need for extensive manual
operations.

It should be emphasized that the proposed strategy could be
applied to other types of heritages, not only on Chinese-style tim-
ber buildings, by redefining the labels that need to be segmented
and conducting corresponding network training. Still, the proposed
method has some limitations. The performance of the proposed
descriptor will decrease when the geometric features of the com-
ponent are similar to those of the surrounding area (e.g., columns
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embedded in the wall as shown in Fig.10). The introduction of ad-
ditional information, such as the picture colour, may potentially
solve this problem in future research. Besides, the local descriptor
is designed and proven to work well in outdoor scenes. For data
containing indoor information, especially complex scenes with fur-
niture, the proposed methodology needs to be adapted to elimi-
nate the interference of objects unrelated to architecture.
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