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Abstract

Reinforcement Learning from Human Feedback (RLHF) is a promising approach to
training agents to perform complex tasks by incorporating human feedback. However,
the quality and diversity of this feedback can significantly impact the learning process.
Humans are highly diverse in their preferences, expertise, and capabilities. This paper
investigates the effects of conflicting feedback on the agent’s performance. We analyse
the impact of environmental complexity and examine various query selection strate-
gies. Our results show that RLHF performance rapidly degrades with even minimal
conflicting feedback in simple environments, and current query selection strategies are
ineffective in handling feedback diversity. We thus conclude that addressing diversity
is crucial for RLHF, suggesting alternative reward modelling approaches are needed.
Full code is available on GitHub.

Acronyms
A2C Advantage Actor Critic

LLM Large Language Model

PPO Proximal Policy Optimization

RL Reinforcement Learning

RLHF Reinforcement Learning from Human Feedback

TRPO Trust Region Policy Optimization

1 Introduction
Reinforcement Learning (RL) is an area of Machine Learning where we attempt to opti-
mize the actions or decisions that an agent takes to navigate through an environment via
trial and error [1]. RL has been very successful in highly complex environments when pro-
vided with an optimal reward function [2, 3]. However, this reward function is typically
sophisticated and challenging to design manually [4]. Reinforcement Learning from Human
Feedback (RLHF) aims to model a reward function from human feedback, addressing not
only the limitations of traditional reward function engineering but also benefitting agent
alignment. Once we learn the reward model, we can use RL to train the agent. RLHF has
proven successful in various applications, ranging from robotics control [5] and gaming [6]
to chatbots [7, 8]. Notably, RLHF has emerged as a crucial strategy for fine-tuning Large
Language Models (LLMs) such as ChatGPT [9, 10].

However, despite its successes, RLHF is not without its challenges. Fine-tuned LLMs are
known to produce biased, inaccurate, and harmful responses [9, 11, 12, 13]. The difficulties in
obtaining high-quality human feedback, managing inconsistent, diverse, and noisy feedback,
and ensuring scalability are well-documented [14]. Moreover, the simplicity of the reward
model function in RLHF fails to capture and balance the preferences of individuals, thereby
overlooking the rich diversity of human preferences [15, 16]. This oversight leads to one of
the major challenges in RLHF - dealing with diverse preferences. Evaluators often disagree,
creating conflicting feedback; for instance, during Anthropic’s LLM training, the agreement
rate between researchers and crowd workers was as low as 63% [17], or OpenAI, that found
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that the inter-annotator agreement rates among training labellers were at 72.6%± 1.6% [8].

Despite the criticality, most of the latest RLHF approaches ignore the consideration of the
diversity in human preference, treating these differences as noise [7, 18, 19]. As a result,
when preferences differ, the majority wins, greatly restricting and potentially subduing the
opinions of the minorities, leading to social biases. To mitigate this issue, several research
approaches have been recently made. Safe RLHF [20] decouples human preferences regard-
ing helpfulness and harmlessness, significantly reducing harmful responses. MaxMin-RLHF
[16] learns a mixture of preference distributions via an expectation-maximization algorithm.
Nash-MD [21] attempts to fully represent the richness of human preferences by achieving
Nash equilibrium in the preference model. In addition, other approaches attempt to learn
multiple reward functions, such as [22, 23]. Another line of research focuses on the consensus-
based algorithm for aggregating human representations [17, 24].

While these approaches have shown promise in alternative reward modelling, there has
been no comprehensive evaluation of the actual effect and relevance of conflicting data,
especially concerning single utility RLHF, the current state-of-the-art. We lack a thorough
understanding of how diversity influences the overall objective. Consequently, in this paper,
we aim to answer the research question:

How can RLHF deal with possibly conflicting feedback coming from multiple individuals?

This paper’s contributions are:

• To compare the performance of RLHF when using different degrees of conflicting
feedback.

• To evaluate how the complexity of the environment impacts RLHF’s ability to handle
conflicting feedback.

• To study the effectiveness of RLHF’s query selection strategies in handling diversity.

This study focuses solely on the original RLHF algorithm. Although alternative reward
modelling techniques have been proposed, as previously mentioned, their novelty, complex-
ity, and data gathering requirements have limited their application to research settings only.
In addition, we will use Proximal Policy Optimization (PPO), a state-of-the-art RL algo-
rithm, to train the agent after learning the reward model.

The remainder of this paper is structured as follows. In Section 2, we provide a formal de-
scription of RLHF and PPO. The evaluation framework is introduced in Section 3. Section
4 details the experimental setup along with the results. Section 5 discusses how diversity in-
fluences RLHF based on the prior experiments. Then, Section 6 details responsible research
practices applied during this study. Finally, Section 7 concludes the paper by summarizing
the findings and discussing some potential directions for further research.

2 Preliminaries
To understand the context and mechanisms underlying the research presented in this paper,
it is crucial to explore the techniques that our work builds upon. This section provides a
concise overview of the methods that underpin our work: PPO and RLHF.
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2.1 PPO
Proximal Policy Optimization (PPO) is an on-policy reinforcement learning policy opti-
mization method [25] that combines concepts from Advantage Actor Critic (A2C) [26], by
having multiple workers, and Trust Region Policy Optimization (TRPO) [27], by using a
trust region to improve the actor. The main idea is that PPO restricts the degree to which
a policy can change during each update, thereby reducing the risk of harmful updates that
can cause performance to deteriorate severely. Mathematically, Schulman et al. [25] defines
the main objective as:

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(1)

where epsilon is a hyperparameter, Ât is an estimator of the advantage function, and rt(θ)
is the ratio of probabilities to take action at between the new and the old policy.

2.2 RLHF
The current RLHF approaches [7, 8, 28, 29] fit a single reward function to the human
preferences while simultaneously training a policy to optimize the current predicted reward
function, as depicted in Figure 1.

Figure 1: Schematic illustration of RLHF [4]. The reward predictor is trained from human
feedback with respect to comparisons of trajectory segments from the environment, and
the RL algorithm maximizes the predicted reward.

We consider an agent interacts with an environment over a sequence of steps; at each time
t, the agent receives an observation ot ∈ O from the environment and then sends an action
at ∈ A to the environment. The resulting sequence y = ((o0, a0), (o1, a1), . . . , (ok−1, ak−1)) ∈
(O ×A)k is called trajectory segment. The goal of the agent is to produce trajectories which
are preferred by a human overseer.

The human overseer is given two trajectory segments to indicate which segment they prefer.
The human judgements are recorded in a database D of triplets (y1, y2, µ), where y1, y2 are
trajectory segments and µ is a distribution indicating which segment the human prefers.
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The human’s probability of preferring a segment y1 over y2 can be expressed as a preference
predictor, adhering to the Bradley-Terry model [30]:

P̂ (y1 ≻ y2) =
exp(

∑
r̂(o1t , a

1
t ))

exp(
∑
r̂(o1t , a

1
t )) + exp(

∑
r̂(o2t , a

2
t ))

= σ(
∑

r̂(o1t , a
2
t )−

∑
r̂(o2t , a

2
t )) (2)

where r̂ is the latent reward model and σ(x) = 1/(1 + exp(−x)) is the logistic function.

We choose r̂ to minimize the cross-entropy loss between the predictions and human labels:

loss(r̂) = −
∑

(y1,y2,µ)∈D

µ(1) log P̂ [y1 ≻ y2] + µ(2) log P̂ [y2 ≻ y1] (3)

The parameters of r̂ can be optimized via supervised learning to fit the comparisons collected
from humans. After using r̂ to compute rewards, we are left with a traditional reinforcement
learning problem. Typically, the PPO algorithm is used to train the policy of the agent [4].

RLHF’s pseudocode is described in Algorithm 1. It is important to note that the standard
RLHF algorithm is divided into two stages: (1) reward learning and (2) RL training. The
reward learning phase is further divided into two steps: (i) query generation and (ii) the
training of the reward function. This latter step is based on the oracle’s feedback, as per
Equations 2 and 3. The RL training phase is more conventional and involves running an
RL algorithm, often PPO, with the currently trained reward function.

Algorithm 1 Generic RLHF Algorithm [4]

1: Initialize parameters θ (policy), ϕ (critic), and ψ (reward)
2: Initialize replay buffer B with randomly-generated trajectories
3: Let D be the database with the human judgements
4: for i = 1 : N do
5: // Reward learning
6: Generate queries from B
7: Update D with answers to queries from the oracle(s)
8: Update ψ using D
9: // RL training

10: Update B with new trajectories generated with πθ
11: Update ϕ (critic) and θ (actor) using Rψ and B
12: end for

2.2.1 Query Selection Strategies

A crucial aspect of RLHF is how queries (i.e. trajectory segments) are chosen. There are
two primary strategies:

• Random selection: We select queries uniformly at random, without any specific
criteria or bias.

• Active selection: We prioritize queries with the highest variance of rewards from the
learned model. The goal is to minimize the uncertainty of the predictions quickly.
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Christiano et al. [28] and Gleave et al. [31] show that neither of these methods is universally
superior. The effectiveness of each can vary depending on the context and the nature of the
data. Therefore, it is essential to understand how both strategies handle conflicting data.

3 Methods
This section outlines the methodology proposed in this study. We discuss how to model
diverse preferences and the technical details around implementing the RLHF algorithm.
The methodology is summarized in Figure 2.

Figure 2: Flowchart detailing the methodology.

3.1 Conflicting Human Feedback
The first step of the RLHF algorithm is the generation of a set of trajectories. These were
generated using PPO. While other RL algorithms could have been considered, PPO has al-
ready demonstrated a high level of performance, significantly outperforming a random policy.

Next, RLHF gathers human feedback on the set of trajectories. For the purpose of this
research, the data used in the experiments was synthetic, serving as a proxy for human
behaviour. Collecting real human feedback was not feasible within the given timeframe, as
it would be more challenging to acquire and less controllable [32]. Moreover, our evalua-
tion focuses on analysing performance differences between varying levels of diversity, where
optimal performance is not strictly required. Previous research has shown that synthetic
feedback can provide similar performance to real feedback [28], validating the use of syn-
thetic data in our experiments.

After generating the trajectories, we obtained feedback using synthetic preferences based
on the ground-truth rewards. For each fragment pair (y1, y2), we started by calculating
the discounted sum of rewards for each fragment segment. We then sampled preferences
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from a softmax distribution, obtaining the probability µ that fragment y1 is preferred over
fragment y2.

Finally, to introduce diversity into the preference predictor, we calculated the conflicting
preference µc as follows:

µc =

{
µ if U ≥ p

1− µ otherwise
(4)

Where U is a random number drawn from the uniform distribution U(0, 1), and p is the
conflicting probability. When p = 0, the model reduces to the original Bradley-Terry model.
As p increases, the likelihood of reversing our preference increases. At p = 1, the preferences
are entirely reversed.

3.2 Evaluation
This research aims to analyse the behaviour of RLHF under varying degrees of conflicting
feedback. Six different levels of conflicting data were tested: 0%, 25%, 40%, 50%, 75%, and
100%. The 0% level serves as a baseline with no conflict, adhering strictly to the original
reward of the environment. The 25%, 40%, and 50% levels introduce moderate conflict,
where feedback inconsistently aligns with the true reward. The 75% and 100% levels rep-
resent challenging scenarios, greatly deviating from the true reward. This diversity was
implemented based on Equation 4, where the level determines the probability of inverting
the original value.

This broad spectrum provides a comprehensive understanding of how different degrees of
conflict impact performance. For instance, if RLHF can maintain performance within the
first few levels in the lower-complexity environments, the higher conflict levels would allow
us to analyse the extent to which RLHF can handle conflicts. Additionally, the last conflict
levels serve as a benchmark to determine if there is a threshold beyond which performance
bottoms out.

4 Experiments
In this section, we present a comprehensive empirical evaluation of diversity. First, we
introduce the environments used in our experiments. Then, we detail our experimental
framework, including how we evaluate the agents’ performance. Finally, we analyse the
performance in the different environments and briefly discuss the results.

4.1 Environment design
We describe our experimental setup across three environments of different complexity. The
complexity of an environment can be determined based on:

• State and action space. The larger the state and action spaces, the more complex
the models and exploration strategies need to be.

• Dynamics complexity. Environments with more complex dynamics (e.g., robotics
arms, humanoid robots) require more sophisticated control and exploration strategies.
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• Reward structure. Delayed or sparse rewards need advanced exploration strategies.

Based on this, we chose the following environments from the Gymnasium framework [33],
in increasing complexity:

• Pendulum. A very simple 2D environment where the agent needs to swing a pen-
dulum in an upright position. The observation space is small (3 dimensions), and the
action space is continuous (1 action).

• Lunar Lander. A 2D environment where an agent needs to land a spacecraft on the
moon. The observation space is relatively small (8 dimensions), and the action space
is discrete (4 actions).

• Bipedal Walker. A more complex 2D environment where the agent needs to move a
walker robot in a straight line. The observation space is bigger (24 dimensions), and
the action space is continuous (4 actions).

The reward structure is dense for all chosen environments. The environment models are
shown in Figure 3.

Figure 3: The environments used in the experiments. From left to right: Pendulum, Lunar
Lander, and the Bipedal Walker environments.

Note that some of these environments have a variable horizon, which has confounded prior
evaluation [34]. Since episode termination conditions are often correlated with reward,
variable-length episodes provide a side channel of reward information that algorithms can
exploit. To avoid this, we ensured the episodes had a constant length, ending after 3500
time steps.

4.2 Experimental design and configuration
The experiments were implemented using PyTorch [35] and Imitation [36]. These libraries
ensure the accurate and bug-free implementation of the RLHF implementation, following
the procedure described in Section 2.

Across all environments, we utilised PPO, tuning the hyperparameters for each specific en-
vironment by using the Optuna framework [37]. Some hyperparameters, such as the number
of synthetic queries, had to be limited due to hardware and time constraints. Nevertheless,
it resulted in satisfactory performance, slightly inferior to training with the ground-truth
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rewards. The complete list of the hyperparameters can be found in Appendix A.

In our experiments, we first train the RLHF’s reward models. We use an ensemble of 3 pre-
dictors, which is necessary to estimate uncertainty and apply active selection. Subsequently,
we use the learned reward function to train the PPO agent.

After 1000 environment steps, the agent policies are evaluated across 10 test episodes in an
independent evaluation environment. The average reward per episode is recorded. Analysing
the development of the average reward allows us to assess not only the performance of the
policy but also the reward model, as the PPO agent relies solely on the reward model learned
by RLHF. The results are averaged across three experiments, each with different random
seeds, to reduce uncertainty and the influence of any random events.

Once all agents have completed their training, we compare the learned policies using per-
mutation tests on their mean rewards of the final 20 episodes, with a significance level of
p = 0.005. This threshold is recommended in scientific research to discriminate significant
from non-significant results [38].

A permutation test is a statistical method that allows for a confident comparison of agent
performance [39]. We set the null hypothesis that both agents perform similarly, meaning
no significant difference exists between their rewards. The permutation test determines if
the difference is significant or could have occurred by chance, assuming the null hypothesis
is true. If the actual difference is unlikely to have occurred by chance, indicated by a p-value
below the significance level, the null hypothesis is rejected, and it is concluded that there is
a significant difference between the agents’ performances.

4.3 Results
In this section, we present our empirical findings and briefly outline their significance towards
answering the research question. The learners are denoted as learner_x, where x indicates
the percentage of conflicting feedback, e.g., learner_40 represents 40% conflicting feedback.

4.3.1 Pendulum

We first present the results of training RLHF in the Pendulum environment with varying
levels of conflicting feedback. This environment is characterized by its low complexity. Fig-
ure 4 and Table 1 illustrate the results for both random and active query selection.

Active selection shows better results than random selection when there is no conflicting
feedback, achieving a final mean reward of approximately -11500 and -14550, respectively.
The standard error with random selection (the shaded blue area) is much greater than with
active selection. Interestingly, learner_25 (in orange) shows a similar performance to the
no-conflict scenario (in blue) when using active selection, as confirmed by the permutation
tests in Table 1b. In other words, low diversity does not significantly impact performance.

However, despite the choice of query selection strategies influencing the agents’ ability to
handle diversity, the results indicate that this alone is insufficient. For both strategies,
performance degrades rapidly at higher levels of conflicting feedback, e.g., 40% or 50%,
which are common disagreement ratios.
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(a) Random query selection (b) Active query selection

Figure 4: Results on the Pendulum environment. We compare different levels of conflicting
feedback based on the mean evaluating reward over 100 episodes. 68% confidence intervals
(one standard error from the mean) are shown in the shaded regions.

4.3.2 Lunar Lander

We analyse the behaviour in the Lunar Lander environment, a more complex scenario. Fig-
ure 5 presents the results for the different query selection strategies.

Similar to the Pendulum environment, active selection outperforms random selection when
there is no conflicting feedback, achieving a final reward of -989 and -2210, respectively.
However, as the percentage of conflicting feedback rises, the performance of both methods
deteriorates. Interestingly, random querying appears to be more resilient to diversity, with a
decline to −18000, compared to active’s drop to −30000. Moreover, the standard deviation
for active selection rapidly increases when dealing with conflicting feedback levels around
50%.

Permutation tests show that the agent with no conflicting feedback (learner_0) signifi-
cantly outperforms the others, always yielding a p-value of 0.0001. This highlights how the
environment’s complexity greatly influences the decline in performance. In contrast to the
Pendulum environment, a 25% probability of conflict is already sufficient to significantly
impact the agent’s performance, regardless of the query selection strategy.

4.3.3 Bipedal Walker

Finally, we analyse the Bipedal Walker environment, a more complex scenario. The results
are shown in Figure 6. As with the Lunar Lander environment, permutation tests indicate
that learner_0 is significantly better than the other learners, consistently resulting in a
p-value of 0.0001.
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Agent 1 Agent 2 P-value
learner_0 learner_25 0.0001
learner_0 learner_40 0.0001
learner_0 learner_50 0.0001
learner_0 learner_75 0.0001
learner_0 learner_100 0.0001

(a) Random query selection

Agent 1 Agent 2 P-value
learner_0 learner_25 0.476
learner_0 learner_40 0.0001
learner_0 learner_50 0.0001
learner_0 learner_75 0.0001
learner_0 learner_100 0.0001

(b) Active query selection

Table 1: Permutation tests on the Pendulum environment. These tests are based on the last
20 reward episodes, using a significance level of 0.005. If the p-value is below this threshold,
the difference in performance between the agents is significantly large. Otherwise, they have
similar performance.

(a) Random query selection (b) Active query selection

Figure 5: Results on the Lunar Lander environment. We compare different levels of con-
flicting feedback based on the mean evaluating reward over 100 episodes. 68% confidence
intervals (one standard error from the mean) are shown in the shaded regions.

This environment supports our previous findings: the current RLHF algorithm is likely
unable to efficiently address diversity, and regular levels of conflicts, such as 25%, can sig-
nificantly impact the final outcomes. Similar to the Lunar Lander environment, random
selection seems to handle diversity better than active selection, as shown by the perfor-
mance of learner_75. However, this advantage is still insufficient to prevent a significant
decline in performance. Furthermore, as in previous scenarios, the standard error for active
selection increases rapidly at around 50% conflicting probability.

Note that the permutation tests’ tables have been omitted for the Lunar Lander and Bipedal
Walker environments due to their similarity to the Pendulum’s table 1a for random query
selection, as the results are consistently 0.0001. Namely, except for active selection in the
Pendulum environment, learner_0 is always significantly superior to the other agents.
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(a) Random query selection (b) Active query selection

Figure 6: Results on the Bipedal Walker environment. We compare different levels of
conflicting feedback based on the mean evaluating reward over 100 episodes. 68% confidence
intervals (one standard error from the mean) are shown in the shaded regions.

5 Discussion
In this study, we critically examined the limitations of conventional single-reward RLHF
concerning the diversity of human feedback. Our findings suggest significant limitations,
demonstrating that even a minimal amount of conflicting data can quickly degrade perfor-
mance, particularly in complex tasks. The environment can also greatly influence the final
result. For example, in a simple environment like Pendulum, RLHF can handle low levels
of conflict without any problems. However, when we move to more complex environments
such as Lunar Lander or Bipedal Walker, its performance drops significantly in the presence
of diversity.

Besides, we analysed the effect of query selection techniques and confirmed their substan-
tial impact when dealing with conflicting data. Consistent with findings from [28, 31], we
observed that none of them constantly provides better results. However, we also found that
active selection appears to be more effective in managing diversity when the environment’s
complexity is low, whereas random selection performs better in handling conflicting feedback
in more complex tasks.

The confidence intervals also provided interesting insights regarding query selection strate-
gies. When training without conflict, the standard error is significantly greater with random
selection, which is expected since active selection specifically aims to reduce variance. For
active selection, the standard error rapidly peaks near 50%, remaining relatively small at 0%
or 100%. This pattern is logical, as diversity could alter the uncertainty of the predictions in
unexpected ways. In contrast, the standard error remains mostly stable with random selec-
tion, since it does not aim to reduce uncertainty but simply selects the next query randomly.
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These findings highlight the need for further research into alternative reward representations
and query selection strategies. More effective management of feedback diversity is essential
for improving performance.

We recognise that we did not exhaustively explore certain hyperparameters, such as the
configuration of the evaluation environment and the exclusive use of PPO, and limited
other parameters like training time steps, principally due to hardware and time constraints.
Consequently, we cannot completely rule out the possibility of different outcomes with al-
ternative parameter configurations. However, we took steps to ensure the consistency of our
results by averaging several runs with different seeds and analysing different tasks.

Furthermore, we acknowledge the absence of high-complexity environments, such as MuJoCo
[40] and Arcade Learning Environments [41], which are commonly used in RL literature
[4, 6, 28]. These environments provide a more realistic setting for investigating the effects of
diversity on RLHF, with a broader variety of tasks and conditions. However, they require
numerous training steps to finish the task successfully. As a result, we could not incorporate
them into the current study due to hardware resources and time constraints.

6 Responsible Research
In this section, we discuss the ethical aspects of our research.

Data source. A key ethical aspect of RL experiments is the provenance of data. Despite the
title of this study mentioning human data, no data from humans was used in this research.
We exclusively used synthetic data generated using RL algorithms in virtual environments.
This approach allows for easier data control while mitigating any ethical concerns, such as
those related to consent, reidentification, data manipulation, and more.

Ethical considerations. When conducting this study, we have committed to maintaining
the essential principles of ethical research. RLHF algorithms, as detailed in Section 1, pos-
sess a great potential for misuse or unintended consequences, particularly in applications
like LLMs, where these algorithms can be susceptible to social biases and discrimination.
For example, Abid et al. [12] demonstrate how LLMs can inaccurately associate Muslims
with violence. Our research is deeply connected to these issues, as they all revolve around
the conflicting opinions of human experts. We aspire for the potential applications of our
research to be oriented towards beneficial and ethical goals.

Plagiarism and biases. To ensure the highest standards of scientific integrity, avoiding
plagiarism and conflicts of interest is crucial. We have meticulously documented all the
sources used throughout this study. The research was conducted solely by the author under
the guidance of supervisors. None of these parties has had any conflicting opinions or been
influenced by any third party.

Reproducibility. Responsible research dictates that a study must be reproducible, valid,
and must have not been manipulated. To adhere to these principles, we have provided a
transparent and detailed explanation of the methodologies, including the development of
the RLHF algorithms and our experimental process. Furthermore, we are committed to the
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FAIR (Findable, Accessible, Interoperable, and Reusable) principles by making the code used
within this study publicly accessible under an MIT licence1. Finally, Appendix A contains
all the hyperparameter settings for replicating the experiments.

7 Conclusions and Future Work
Reinforcement Learning from Human Feedback (RLHF) is a powerful Reinforcement Learn-
ing algorithm that models the reward function from human feedback. Despite its many
successes, RLHF faces significant challenges, especially when handling conflicting feedback.
This study has investigated the importance and impact of diversity on the RLHF algorithm
by answering the research question: How can RLHF deal with possibly conflicting feedback
coming from multiple individuals?

Our results show that the performance of RLHF is significantly affected by even modest
amounts of conflicting feedback, with degradation observed at levels as low as 25%. Even
LLM labellers, trained to provide reliable feedback, diverge up to 40% of the time [8, 17].
It is only in extremely simple environments such as Pendulum where RLHF agents can
barely maintain their performance. In addition, we discovered that randomly selecting
queries yields better results than active selection in complex environments with high levels
of feedback diversity. However, this improvement was insufficient to prevent performance
degradation.

In summary, our research provides evidence of the issue that diversity supposes for the
Reinforcement Learning from Human Feedback algorithm and similar methods. We hope
our work stimulates further investigation into alternative reward models and query selection
strategies.

Future work could investigate the performance of alternative reward modelling approaches,
such as Safe RLHF [20], or the combination of multiple reward functions. Incorporating
real human feedback, rather than relying solely on synthetic feedback, is another crucial
area for exploration. Additionally, more complex scenarios, such as Large Language Models
like LlaMA [42] or the MuJoCo environments [40], could be studied to better understand
the effects of diversity across various applications.

Another promising direction would be to quantify the complexity of the environments and
analyse the relationship between this complexity and the degradation in performance when
diversity increases. Finally, experimenting with other imitation learning methods that use
human feedback, such as the Direct Preference Optimization (DPO) algorithm [43], would
be highly valuable.
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A Hyperparameters
We used the Optuna framework [37] to tune the hyperparameters of the algorithms. The
specific hyperparameters employed for PPO can be found in Table 2, while the hyperpa-
rameters for RLHF are listed in Table 3.

It is important to note that the initial selection of some PPO hyperparameters was influenced
by the documentation provided by Stable-Baselines3 and the Center for Human-Compatible
AI, the creators of the Imitation library, on Hugging Face. These hyperparameters were
subsequently improved using the Optuna framework.

Table 2: Hyperparameters of PPO for the environments

Hyperparameter Pendulum Lunar Lander Bipedal Walker

batch_size 64 64 64
clip_range 0.2 0.1 0.18
ent_coef 0.01 0.01 0.0
learning_rate 1×10-3 3×10-4 3×10-4

gae_lambda 0.95 0.9 0.95
gamma 0.91 0.999 0.999
n_envs 8 8 8
n_epochs 10 4 10
n_steps 1024 2048 2048
n_timesteps 100_000 1_000_000 2_000_000
policy FeedForward32 MLP MLP

Table 3: Hyperparameters of RLHF for the environments

Hyperparameter Pendulum Lunar Lander Bipedal Walker

total_timesteps 500_000 500_000 2_000_000
total_comparisons 500 500 700
num_iterations 60 60 60
reward_trainer_epochs 3 1 4
fragment_length 100 97 100
transition_oversampling 1 1.7 1.7
initial_comparison_frac 0.1 0.32 0.32
exploration_frac 0.24 0.24 0.25
temperature 0.22 1.7 1.8
discount_factor 1 0.95 0.96

B Hardware Specifications
For all experiments, we use a machine equipped with an NVIDIA GeForce RTX 3070, an
AMD Ryzen 7 5800h, and 32 GB of RAM. We could not use a supercomputer such as
DelftBlue due to technical issues. One train run (training the RLHF reward model, training
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the RL agent, and evaluating it) typically takes around 4 to 5 hours. We believe the biggest
bottleneck is the large amount of training steps required to accurately estimate the reward
model. In addition, the biggest constraint during PPO training is the evaluation, as we test
our agent for 10 episodes after 10000 training steps.

21


	Introduction
	Preliminaries
	PPO
	RLHF
	Query Selection Strategies


	Methods
	Conflicting Human Feedback
	Evaluation

	Experiments
	Environment design
	Experimental design and configuration
	Results
	Pendulum
	Lunar Lander
	Bipedal Walker


	Discussion
	Responsible Research
	Conclusions and Future Work
	Hyperparameters
	Hardware Specifications

