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Preface

Cover image: Emperor dragonfly (Anax imperator adapted from a drawing in “British Dragon-
flies (Odonata)” by W. J. Lucas, 1900.

These elegant insects inspired the cover of this work in several ways. The dragonfly itself
is one of nature’s great designs, largely unchanged in hundreds of millions of years. The
dragonfly is one of the most successful aerial hunters known, which is in no small part due to
its sophisticated visual system comprising not just the striking compound eyes, but also three
remarkably complex “simple eyes” or ocelli. Both contain significant refractive index gradients.

The dragonfly’s eyes (and those of most animal life on earth) serve as a reminder for the
technologist to remain optimistic. A key research question of this work was to determine if
gradient-index optics can be advantageously deployed in future optical systems. When we
consider the success of this phenomenon in innumerable organisms over millions of years, it
is clear that they already have a past and a present. We should be optimistic in our ability to
one day replicate this success in human-made optics, with awe for the natural processes can
still assemble GRIN distributions that exceed the sophistication of what can be manufactured
today.

The inner beauty within the eyes of a dragonfly also reminds us to be humble. For all
humankind’s ambition and invention, we are perhaps not as smart as we like to think. For
unlike the dragonfly, our two simple eyes cannot take in both the detail and the perspective
at once. So often, our intense focus blinds us to the bigger picture, and perhaps impending
danger. We must remember, that for gradient-index optics to have a future, so must all life
on earth.

Finally, the dragonfly reminds me of some happy times amongst the long journey that is a
PhD. The image overleaf depicts a pond of waterlilies in St Asaph, not far from the Qioptiq site.
Over the years I have spent many a lunchtime sat by this small, secluded pool, thronged by
all manner of dragonflies and damselflies nurtured by the lush Denbighshire climate. Indeed
it was the site of many of the ideas contained within, a place to contemplate impending
fatherhood, and a sanctuary from stress, pandemics, war, bellicose politicians, and every
other worry bar getting back to my desk before 1. Dear reader, wherever you are in life’s
journey, I do hope you find and cherish your own lily pond.

AMB, January 2025.
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Summary

Within the optics industry, there is a continuous drive to reduce the size, weight, power
consumption and cost of optical systems (known as SWAP-C). A new generation of fabrica-
tion technologies for GRadient-INdex (GRIN) materials promise the capability to manufacture
GRIN media of arbitrary refractive index distribution (within index variation and spatial reso-
lution limits). This represents an opportunity to further optimise the SWAP-C of lens systems,
yet also presents challenges for the optical designer. The necessary optical design tools for
arbitary GRINs are not widely implemented, and the potential applications where arbitrary
GRINs provide a benefit are not widely explored.

This work addresses these design challenges via two routes. In the first body of work we
explore the necessary design tools for generalised GRIN lenses. An efficient mathematical
representation is a vital foundation for the design of GRIN lenses. We explore a mathematical
representation for GRIN lenses based on the relative composition of the constituent materials,
that is amenable to optimisation, and can be easily constrained to materials that are manu-
facturable. This approach is particularly beneficial for GRINs consisting of more than two base
materials.

A critical step in any optical design task is the selection of a starting point from which further
optimisation is performed. This presents a challenge for generalised GRIN design as very few
such starting solutions exist. We explore a procedure via which the paraxial properties of
homogeneous lens systems can be reconstructed as a generalised GRIN medium, to serve as
a starting solution for further optimisation. It is shown that complex homogeneous optical
designs can be reconstructed in this manner, including the worked example of a fourteen-
element lithographic stepper lens. The technique is extended to polychromatic systems, where
chromatic dispersion of the parent system is reconstructed in the GRIN starting point. This
approach is demonstrated via the reconstruction then optimisation of a GRIN Cooke Triplet
equivalent that was composed of the same materials as the parent solution (which were two
glass types and air). These starting solution examples are then optimised to high performing
optical solutions. We conclude that paraxial reconstruction is a powerful technique in starting
point generation, that with further development can greatly improve the time efficiency of
GRIN lens design.

A noteworthy capability of GRIN lenses is their capacity to generate focusing power while
possessing planar surfaces. We explore the consequences of the use of plano GRIN lenses
in imaging lens designs, particularly with respect to the correction of the aberration, coma,
through fulfilment of the Abbé sine condition. We demonstrate that generalised GRIN lenses
have the ability to correct for coma in a thin, plano-plano geometry, yet the approach increases
the refractive index variation and complexity of the GRIN distribution, which presents a trade-
off to the lens designer when considering cost-effective fabrication. It is conversely shown
that a GRIN medium combined with surface curvature can correct for coma with a simpler
GRIN distribution that has smaller index variation, implying that an optimal strategy for the
use of GRIN media in optical designs is to apply them in combination with curved surfaces,
particularly in areas where GRIN materials have comparative advantage over homogeneous
optics such as chromatic aberration correction.
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Summary

In the second body of work we explore the applications that directly benefit from GRIN
optics. We demonstrate that layered polymer GRIN lenses of spherical distribution display the
potential to yield colour-corrected lenses with lower mass than glass doublets and without the
diffractive ghosts of diamond-turned asphero-diffractive hybrid lenses. The highly dispersive
combination of polymers was found to be an effective means of correcting chromatic aber-
rations within diameter limits defined by the moulded curvature of the lens preform. It was
observed that radial GRINs and materials with negative GRIN chromatic dispersion show even
greater potential to control chromatic aberrations.

We also explore the application of freeform-GRIN distributions (with no axis of rotational
symmetry) to the optical design of a head-mounted display (HMD). We show that freeform-
GRIN media act in a comparable manner to tilted and decentred lens elements, as well as
toric and freeform surfaces. This is demonstrated through GRIN solutions that have equiv-
alent performance to homogeneous designs with freeform surfaces. It is also shown that a
freeform-GRIN medium can be used to restore a common mechanical axis in HMD designs, po-
tentially offering significant simplification of the opto-mechanical design. Polymer GRIN-based
HMD designs are shown to have substantially reduced mass compared to their homogeneous
counterparts.

Finally, we investigate the application of GRIN materials to the extreme colour correction
challenges posed by imaging over several discrete wavebands (known as multispectral op-
tics). We show how GRINs based on infrared materials can greatly simplify an objective lens
operating over the short-wave infrared (SWIR) and long-wave infrared (LWIR) wavebands for
a common focal plane. The extreme optical dispersion generated by GRIN materials enables
a much more benign optical power construction that reduces residual aberrations, allowing
significantly fewer optical components and reduced mass and size.

We conclude that the required design infrastructure for arbitrary GRIN lenses is feasible and
emerging, and that there are technological challenges in modern optical design that justify
ongoing research into GRIN optics. Progress in the optical design of generalised GRINs must
be accompanied by refinement in manufacture, metrology, and environmental qualification to
enable widespread adoption and deployment.
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Samenvatting

In de optische industrie is er een voortdurend streven naar het verkleinen van de afmetingen,
het gewicht, het energieverbruik en de kosten van optische systemen (bekend als SWAP-C).
Een nieuwe generatie fabricagetechnologieën voor GRadient-INdex (GRIN) materialen belooft
de mogelijkheid om GRIN-media te produceren met willekeurige brekingsindexverdeling (bin-
nen grenzen van indexvariatie en ruimtelijke resolutie). Dit biedt een kans om de SWAP-C van
lenssystemen verder te optimaliseren, maar brengt ook uitdagingen met zich mee voor de op-
tisch ontwerper. De benodigde optische ontwerptools voor willekeurige GRIN’s zijn niet breed
geïmplementeerd, en de potentiële toepassingen waar willekeurige GRIN’s voordeel bieden
zijn niet uitgebreid onderzocht.

Dit werk pakt deze ontwerpuitdagingen via twee routes aan. In het eerste deel verkennen
wij de benodigde ontwerptools voor gegeneraliseerde GRIN-lenzen. Een efficiënte wiskundige
representatie is een vitale basis voor het ontwerp van GRIN-lenzen. Wij onderzoeken een
wiskundige representatie voor GRIN-lenzen gebaseerd op de relatieve samenstelling van de
bestanddelen, die geschikt is voor optimalisatie en eenvoudig kan worden beperkt tot mate-
rialen die produceerbaar zijn. Deze aanpak is vooral voordelig voor GRIN’s die uit meer dan
twee basismaterialen bestaan.

Een cruciale stap in elk optisch ontwerp is de selectie van een startpunt van waaruit verdere
optimalisatie wordt uitgevoerd. Dit vormt een uitdaging voor gegeneraliseerd GRIN-ontwerp
omdat er zeer weinig van dergelijke startoplossingen bestaan. Wij onderzoeken een procedure
waarbij de paraxiale eigenschappen van homogene lenssystemen kunnen worden gerecon-
strueerd in een gegeneraliseerd GRIN-medium, om te dienen als startoplossing voor verdere
optimalisatie. Er wordt aangetoond dat complexe homogene optische ontwerpen op deze
manier kunnen worden gereconstrueerd, inclusief het uitgewerkte voorbeeld van een veertien-
element lithografische stepper-lens. De techniek wordt uitgebreid naar polychromatische sys-
temen, waarbij chromatische dispersie van het oorspronkelijke systeem wordt gereconstrueerd
in het GRIN-startpunt. Deze aanpak wordt gedemonstreerd via de reconstructie en optimal-
isatie van een GRIN Cooke Triplet-equivalent dat was samengesteld uit dezelfde materialen
als de oorspronkelijke oplossing (twee glastypes en lucht). Deze startoplossingsvoorbeelden
worden vervolgens geoptimaliseerd tot hoogwaardige optische oplossingen. We concluderen
dat paraxiale reconstructie een krachtige techniek is bij het genereren van startpunten, die
met verdere ontwikkeling de tijdsefficiëntie van GRIN-lensontwerp aanzienlijk kan verbeteren.

Een opmerkelijke eigenschap van GRIN-lenzen is hun vermogen om focusserende sterkte
te genereren terwijl ze vlakke oppervlakken hebben. Wij onderzoeken de gevolgen van het
gebruik van plano GRIN-lenzen in beeldvormende lensontwerpen, met name met betrekking
tot de correctie van de aberratie coma, door het voldoen aan de Abbé sinusvoorwaarde. Wij
tonen aan dat gegeneraliseerde GRIN-lenzen het vermogen hebben om coma te corrigeren in
een dunne, plano-plano geometrie, maar de aanpak verhoogt de indexvariatie en complexiteit
van de GRIN-verdeling, wat een afweging vormt voor de lensontwerper bij het overwegen van
kosteneffectieve fabricage. Omgekeerd wordt aangetoond dat een GRIN-medium gecombi-
neerd met oppervlaktekromming coma kan corrigeren met een eenvoudigere GRIN-verdeling
die kleinere indexvariatie heeft, wat impliceert dat een optimale strategie voor het gebruik van
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Samenvatting

GRIN-media in optische ontwerpen is om ze toe te passen in combinatie met gebogen opper-
vlakken, vooral in gebieden waar GRIN-materialen comparatief voordeel hebben ten opzichte
van homogene optica, zoals chromatische aberratiecorrectie.

In het tweede deel onderzoeken wij de toepassingen die direct profiteren van GRIN-optica.
Wij tonen aan dat gelaagde polymeer GRIN-lenzen met sferische verdeling het potentieel
hebben om kleur-gecorrigeerde lenzen te produceren met een lagere massa dan glazen dou-
bletten en zonder de diffractieve spookbeelden van diamant-gedraaide asferisch -diffractieve
hybride lenzen. De zeer dispersieve combinatie van polymeren bleek een effectief middel
voor het corrigeren van chromatische aberraties binnen diameterlimieten die worden bepaald
door de gevormde kromming van de lens-preform. Er werd waargenomen dat radiale GRIN’s
en materialen met negatieve GRIN chromatische dispersie nog meer potentieel hebben om
chromatische aberraties te beheersen.

Wij onderzoeken ook de toepassing van freeform-GRIN verdelingen (zonder as van ro-
tatiesymmetrie) in het optische ontwerp van een head-mounted display (HMD). We laten zien
dat freeform-GRIN media op vergelijkbare wijze werken als gekantelde en gedecentreerde
lenselementen, evenals torische en freeform oppervlakken. Dit wordt aangetoond door GRIN-
oplossingen die vergelijkbare prestaties hebben als homogene ontwerpen met freeform op-
pervlakken. Er wordt ook aangetoond dat een freeform-GRIN medium kan worden gebruikt
om een gemeenschappelijke mechanische as in HMD-ontwerpen te herstellen, wat mogelijk
een aanzienlijke vereenvoudiging van het opto-mechanische ontwerp biedt. HMD-ontwerpen
op basis van polymeer GRIN blijken aanzienlijk minder massa te hebben in vergelijking met
hun homogene tegenhangers.

Ten slotte onderzoeken wij de toepassing van GRIN-materialen op de extreme kleurcorrectie-
uitdagingen die worden gesteld door beeldvorming over verschillende discrete golfbanden
(bekend als multispectrale optica). Wij laten zien hoe GRIN’s op basis van infrarood materialen
een objectieflens die werkt over de kortgolf-infrarood (SWIR) en langgolf-infrarood (LWIR)
golfbanden voor een gemeenschappelijk brandvlak aanzienlijk kunnen vereenvoudigen. De
extreme optische dispersie gegenereerd door GRIN-materialen maakt een veel mildere op-
tische sterkteconstructie mogelijk die resterende aberraties vermindert, waardoor aanzienlijk
minder optische componenten en verminderde massa en omvang mogelijk zijn.

Wij concluderen dat de vereiste ontwerpinfrastructuur voor willekeurige GRIN-lenzen haal-
baar en opkomend is, en dat er technologische uitdagingen zijn in modern optisch ontwerp die
voortgezet onderzoek naar GRIN-optica rechtvaardigen. Vooruitgang in het optisch ontwerp
van gegeneraliseerde GRIN’s moet gepaard gaan met verfijning in fabricage, metrologie en
milieu-kwalificatie om wijdverspreide adoptie en implementatie mogelijk te maken.

xviii



1
Introduction

1.1. Motivation

At the time of writing in 2025, optical imaging and display systems are ubiquitous throughout
the modern world. Major advances in digital sensors and displays have enabled a wide range of
applications from mass-produced consumer cameras [3], to long range surveillance equipment
operating in multiple wavebands [4].

The widespread and mass-produced nature of optical systems within a competitive mar-
ketplace has led to a continuous drive to enhance optical performance whilst simultaneously
minimising size, mass and cost. This is often referred to by an industry acronym, SWAP-C
(size, weight, power and cost).

The drive for SWAP-C minimisation has emerged amidst an ever expanding array of plat-
forms and devices that leverage optical imaging systems. Defence and aerospace end-users
are a particularly strong driver of SWAP-C minimisation, with platforms such as dismounted
infantry, autonomous airborne systems and piloted aircraft requiring ever smaller, lighter,
and more capable optics [5]. Autonomous airborne vehicles are required to perform an ever
expanding variety of optical sensing applications, whilst their mass remains a critical design
aspect due to the limited ability of current propulsion technologies to carry large payloads for
extended periods. The modern dismounted soldier requires ever greater observational and
targeting capability from optical systems to retain a tactical advantage over adversaries, yet
such increased capability is often accompanied by an increased weight burden that must be
minimised. Piloted fast jets require advanced avionic systems to convey information to pilots
whilst minimising safety-critical “heads down” time. This need must be fulfilled on a very fast
moving platform that may undergo very high g-forces under manoeuvres and cockpit ejection.
To this end, low mass optics for helmet-mounted displays (HMDs) are a vital aim. Further-
more, the space envelope of avionic optics may often be challenging, frequently needing to
fit within a compact setting such as a helmet or in a narrow region of a cockpit, making size
reduction a valuable development.

The SWAP-C of optical instruments is very often limited by the optics themselves. While
electronic components of opto-electronic systems have benefited from drastic reductions in
scale, famously observed as Moore’s law, optical modules are generally limited in scale by the

1



1.1. Motivation

fundamental first-order properties of the optic, such as focal length and aperture. For a per-
fectly corrected optic, the angular resolution is directly proportional to the aperture diameter
(as observed by Rayleigh)

sin𝜃 = 1.22𝜆
𝐷 , (1.1)

where 𝜃 is the minimum resolvable angle according to the Rayleigh criterion, 𝜆 is the wave-
length and 𝐷 is the clear aperture diameter. The approximation sin𝜃 ≈ 𝜃 can generally be
applied as 𝜃 is very small at visible and infrared wavelengths. Diffraction caused by the edges
of the optical aperture limits resolution, with such a system referred to as diffraction limited.
Whilst not all optical systems are diffraction limited, broadly, detection of objects at longer
range or in finer detail requires longer focal lengths and larger apertures.

Strategies to improve optical SWAP-C are often centred around reducing the number, size,
and mass of optical components. Reducing the number of optical surfaces required to provide a
specified level of optical performance may simultaneously reduce mass and cost. Examples of
such technologies are aspheric surfaces that improve the monochromatic aberration correction
potential of optical surfaces, and diffractive-refractive hybrid optics that use the extremely
strong chromatic dispersion of an optically powered diffraction grating to correct chromatic
aberrations. Reduction in mass of optical components can often be achieved by changing
the optical material to one with a lower density, such as changing from a glass to an optical
polymer.

Reduction of the length of optical systems also has the potential to reduce SWAP-C. The
ratio of physical length to focal length (referred to as telephoto ratio) is a major driver of the
level of optical correction, with systems that are forced to a shorter physical length tending to
have increased aberrations compared to longer ones, due to a more extreme construction of
the lens element optical powers. In this regard, additional degrees of freedom for aberration
correction are a powerful tool to achieve shorter, optimised SWAP-C systems whilst maintain-
ing a given level of aberration correction. A good example of this approach is illustrated by
camera lenses for mobile phones, which must image a wide field of view within a very compact
space envelope. This is achieved using a telephoto construction* and copious use of aspheric
surfaces to correct aberrations.

A method of SWAP-C minimisation that has seen substantial recent development is compu-
tational imaging. A notable example of this is multi-aperture optics [6, 7]. By this technique,
a larger aperture can be approximately synthesised by arranging a number of shorter-focal-
length, smaller-aperture lens systems, greatly reducing the optical module length. Recovery
of system resolution is then undertaken by post-processing of the sub-images. A further ex-
ample of the use of computational imaging is wavefront coding [8], whereby the point-spread
function (PSF) of an optic is deliberately aberrated such that it remains stable over an extended
focus range. The image is then restored by deconvolution of the aberrated PSF. The benefit
of wavefront coding lies in the simplification of the optical construction, such as through the
removal of a focus mechanism (enabled by the extended depth of focus). In general, compu-
tational imaging systems experience trade-offs in system noise and image artefacts, as well
as demanding increased computational complexity to operate (and therefore increased power
consumption and latency). Furthermore, multi-aperture imaging systems remain bound by
the diffraction limit. Transforming a system into a set of smaller sub-apertures reduces the
diffraction limit of the system to that of the individual sub-apertures.

*A telephoto lens is generally recognised as a lens with a shorter physical length than its focal length.
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A further method of SWAP-C minimisation that has seen particular recent attention in the
literature is multispectral optics [4]. Many imaging platforms require capability in multiple
wavebands simultaneously. Wavebands such as visible light and short-wave infrared (SWIR)
generally provide information to a user based on reflected radiation from a scene of interest.
By contrast, longer wavelength infrared wavebands such as the mid-wave MWIR (3-5 µm) and
long-waveLWIR (8-12 µm) provide a substantial amount of information from emitted thermal
blackbody radiation. To date, imaging both thermal and shorter-wavelength infrared typically
requires two separate optical systems with separate sensors; however recent developments
in focal plane array (FPA) technology are now enabling multiple wavebands to be recorded
simultaneously on a common focal plane. If such a sensor is combined with a common opti-
cal aperture that images all wavebands simultaneously, the SWAP-C benefits are significant.
Adversely, the optical design of multispectral systems is very challenging, particularly with
respect to chromatic aberration correction. Chromatic aberration correction must be achieved
over a significantly broader waveband with a smaller set of optical materials (as the trans-
missive spectral waveband of materials used must span the entire waveband of the system).
The wide range of commonly used optical glasses offer very little transmission in the infrared
wavebands for example, whilst common infrared materials such as germanium and silicon do
not transmit in the visible and NIR wavebands due to their respective electronic bandgaps.
There is significant SWAP-C enhancement available if such imaging capability can be reduced
to a single optical aperture (rather than two separate systems).

GRadient-INdex optics (GRIN) can be regarded as a degree of freedom to minimise the
SWAP-C of conventional optical systems. By adding functionality to the bulk of an optical
component, we may improve the aberration correction of an optical system without adding
mass, and may trade the resulting degrees of freedom for reduction in the size or optical
component-count of the optic. A key motivation for this work, is to explore the possibilities
provided by recent GRIN fabrication technologies for the SWAP-C enhancement of a range of
optical systems, as well as to devise tools and techniques for the optical design of such GRIN
systems.

1.2. Historical Context

GRIN has long been a phenomenon of interest in the design and manufacture of optical sys-
tems. Some of the earliest observations of this effect in deeper antiquity (Cleomedes and
Ptolemy) were of atmospheric refraction effects [9]. It was discovered that refraction by the
atmosphere caused a change in the apparent position of astronomical bodies when observed
close to the horizon, although it would be many centuries until this phenomenon was cor-
rectly interpreted as a GRIN effect. One of the earliest historical examples of a GRIN optical
design was the fisheye lens of Maxwell [10] (1854). Maxwell demonstrated a theoretical GRIN
medium where all rays travel along circular arcs, resulting in perfect geometric imaging be-
tween any two opposing points on the surface of the lens. Maxwell’s design however; was not
manufacturable at optical wavelengths with any fabrication technology of the time. Luneb-
urg [11] (1944) generalised the design principle of Maxwell’s fisheye lens to include imaging
from an object at infinite conjugates. In the early 20th century, GRIN lensing was first ex-
perimentally demonstrated by a cylindrical index distribution, fabricated by soaking a gelatine
cylinder in water, the eponymous Wood lens [12, Chapter 4] (1911, although R. W. Wood
himself attributed the discovery to Exner and Matthiesen). This work itself built on observa-
tions by Exner and Matthiesen (1891) on the compound eyes of insects, which were observed
to be arrays of GRIN rod lenses [13].
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1.2.1. Gradient-Index Lenses in Nature

GRIN lenses are widespread in living organisms. A review in 2012 by Pierscionek and Regini
observed that all biological eyes examined to date exploit some form of GRIN effect [14].
Index gradients freely form in biological eyes due to the assembly of the eye from a large
number of individual cells. These cells spatially vary the amount of refractive index modifying
protein to produce a GRIN of general form (although the eyes may generally resemble the
basic index distributions described in Section 1.7.2).

Strong index gradients are particularly prevalent in aquatic organisms, where the amount of
light captured by the eye must be maximised to overcome low ambient illumination whilst the
refractive index of water diminishes the refractive power of the cornea. Instead, a strongly
curved and ball-like, high refractive index lens provides focusing power, combined with a
GRIN distribution of broadly spherical form. The eyes of fish and cephalopods such as octo-
pus contain strong index gradients, with index variation in the Octopuses Octopus australis
and Octopus pallidus varying between N=1.509 to N=1.357 from centre to edge, likewise the
goldfish Carassius auratus auratus shows an index variation from N=1.55-1.57 at the lens cen-
tre to N=1.35 at the lens edge [14]. The biological eye is also a known example of convergent
evolution, whereby similar structures have evolved in organisms that do not share a common
ancestor [15] (as is indeed the case for cephalopods and fish). Overall, the widespread use of
GRIN in nature lends strength to the potential benefits of GRIN in human-made optics, with
biomimicry often proving a successful engineering strategy

1.2.2. Early Design and Fabrication Approaches

Research in the second half of the 20th century saw identification of the aberration correction
potential of GRIN optics. H. A. Buchdahl proposed a theoretical framework for the aberra-
tions of rotationally symmetric GRIN systems, based on the method of quasi-invariants [16].
Buchdahl also raised the notion of an optical system whereby the number of optical surfaces
tended to infinity, coining the term continuous symmetrical optical system [17]. This theoret-
ical framework for the modelling of GRIN aberrations was later to prove vital to the work of
numerous authors who developed the theory further, such as Sands [18], Bociort [19] and
Moore [20]. Concurrently and crucially, the development of the electronic computer enabled
much faster numerical raytracing and optimisation of GRIN materials. This approach allowed
GRIN designs to break free of a narrow range of distributions that had analytical raytracing
solutions. An early example of the use of GRIN to simplify the optical construction of imaging
systems was published by Atkinson et al. [21], whereby a six-element double-Gauss photo-
graphic lens design was reduced to two radial-GRIN elements with equivalent performance.
This design however; could not be fabricated using techniques available at the time.

In the same period, significant advances were made in the fabrication of GRIN lenses, with
a plethora of techniques developed and published. Methods such as ion exchange [22, 23],
ion stuffing [24], neutron irradiation [25] and chemical vapour deposition (CVD) [26] were all
shown to successfully produce well controlled refractive index gradients within optical materi-
als. The development of these methods saw the emergence of early commercial applications
in GRIN optics, such as in the preparation of precision borescopes [27], as well as optical fi-
bres and their connectors [28]. Axial-GRIN lenses for spherical aberration correction saw some
commercial use. During this period however; numerous commercially viable methods to pro-
duce aspheric and diffractive optics were developed, such as computer numerical controlled
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(CNC) polishing, single-point diamond turning (SPDT) and moulding. By contrast, contempo-
rary GRIN manufacture techniques were energetically demanding and time consuming, with
modest capability to enhance system performance. This limited commercial GRIN imaging to
niche applications, where very thin rod-like lenses were required.

1.2.3. New Generation Gradient-Index Technologies

In the early 21st century, a resurgence of research activity into GRIN imaging optics has
occurred. Enabling technologies such as additive manufacture [29–33], localised material
modification [34–36], and nanolayer co-extrusion [37], have created new possibilities for the
manufacture of reduced-SWAP-C GRIN optics. Such technologies now offer a path to GRIN
lenses with greater diameter, index variation (known as Δ𝑁), chromatic dispersion variation,
lower cost, and reduced mass density. Additive manufacture processes mean it is now possible
to design and manufacture GRIN lenses that have an essentially arbitrary distribution of refrac-
tive index, which can also consist of a large number of base materials. At the time of writing,
non-rotationally symmetric “freeform” and array-based GRIN optics have been experimentally
demonstrated [38].

Multilayer Coextrusion

The group of Eric Baer at Case Western Reserve University identified that extrusion of poly-
mers of different refractive index into fine sub-wavelength layers had the potential to yield a
production process for films of tunable effective refractive index [39]. This process is referred
to as Layered-gradient-index or LGRIN. The LGRIN process is illustrated in Figures 1.1 and 1.2.
A feedstock of two base polymers is melted into an extruder where the two plastics are forced
into assembly with one another. This polymer extrudate is then cut and re-assembled to-
gether multiple times to produce increasingly fine layers. This process continues until the final
film is extruded with individual layers of polymer that are much thinner than the wavelength
range of visible light (approximately 50 nm thick), causing the polymer structure to behave
as an effective medium with minimal scattering. By controlling the relative thickness of the
fixed-index alternating layers, the effective index of the entire film can be tailored to a specific
value (within the refractive index boundaries imposed by the base materials). A GRIN lens
is then fabricated by first arranging a sequence of defined-index films into a stack, which is
consolidated together at elevated temperature and pressure. Further moulding of this axial-
GRIN preform can then be performed to generate a spherical (and potentially aspheric) GRIN
preform. Finally, this GRIN preform is optically processed (typically by SPDT) into a GRIN lens.
It is worth noting that the final optical surfaces need not be conformal with the contours of the
GRIN distribution. We discuss the Optical Design of layered polymer GRIN lenses in greater
detail in Chapter 5.
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Figure 1.1: LGRIN multilayer extrusion process (from Fein and Ponting [1])

Figure 1.2: LGRIN lens moulding and turning process (from Fein and Ponting [1])

Additive Manufacture

Additive manufacture is a particularly promising means to generate GRIN lenses of arbitrary
distribution, with the inherently localised nature of the process enabling the deposition of
volumetric elements (known as voxels) of tailored-index material in a precise manner. Con-
sequently, several authors have investigated this route to GRIN fabrication [29–33].

Significant progress in this field has been demonstrated by the volumetric index of refraction
gradient optics (VIRGO) approach of Vadient Optics LLC (also known as NanoVox™). This
approach uses multiple tailored-index, UV-curable inks that are inkjet printed in a spatially
varying halftone pattern, where index variation is generated by doping with high (and low)
index nanoparticles in the base inks. It is also possible to generate index variation by mixing
different-index base monomers. Δ𝑁 in excess of 0.2 has been experimentally demonstrated via
the VIRGO process [29]. Lenses manufactured via this route are not limited to a compositional
gradient between only two materials, with a much larger material space possible through
printing with three or more base materials. This allows spatial control of refractive index at
multiple independent wavelengths, and therefore, rigorous control of chromatic aberrations.

The direct ink writing process of Dylla-Spears et al. [30] yields printed, glass-based GRIN
material (in contrast to the nanoparticle-doped polymer VIRGO process). Via this approach,
nanoparticles of glass precursors are blended into a printable slurry. Slurries with different
refractive index precursors are mixed inside a printhead and deposited in a spatially varying
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Figure 1.3: Left and centre: image defect through homogeneous 3D-printed window. “Stripe” effect caused by
periodic inhomogeneity at the length scale of printed voxels. Right: localised inhomogeneity in 3D-printed GRIN
distribution, highlighted by a defocused high-contrast image (credit A. Hurst).

distribution, being held in place by a UV-curable binder. The resulting “green” part is then
dried and sintered to remove organic impurities and to densify the material to a glass. Such
an approach similarly enables generalised GRIN, and also expands the capability of additively
manufactured GRINs to glass materials. Glass materials are typically harder than polymers
(with the trade-off of higher density). A glass approach potentially allows GRIN components to
be used on the exterior surfaces of defence and aerospace optics that are frequently exposed
to environmental stressors such as blown sand and dust. Furthermore, the higher melting
point of glass GRIN optics potentially enables their use in high-energy applications (such as
laser systems) where the low melting point (and sometimes photo-darkening) of polymers is
not suitable.

Additively manufactured optics still face technical challenges at the time of writing in 2025.
The “pixellated” approach via which materials are deposited leads to voxel-scale inhomogene-
ity in GRIN materials at length scales similar to the printer resolution. The mechanical and
rheological properties of the inks must also retain a degree of similarity, as ultimately they
must form a smooth spatially varying mixture. Figure 1.3 shows examples of localised inho-
mogeneity formed by optical 3D printing processes. These challenges are being addressed
through progressively higher-resolution print systems and improved ink rheological properties
that increase inter-diffusion between voxels during the print process.

Targeted Modification

Targeted Modification GRIN technologies exploit the fact that, under the right conditions, the
refractive index of a homogeneous material may be modified. If this modification can be
controlled as a smooth, spatial variation then a GRIN component can be fabricated. Further-
more, if the refractive index change can be locally controlled over a sufficiently short spatial
length, then arbitrary GRIN distributions can be formed. At the time of writing, this approach
has been demonstrated in the visible and infrared wavebands, by modification of polymers,
nano-porous silica and silicon, and chalcogenide glasses.

In 2020, Ocier et al. [35] demonstrated significant changes in refractive index within photopolymer-
doped silica networks using direct laser writing; known as the subsurface controllable refractive
index via beam exposure (SCRIBE) process. Through this process, Δ𝑁 values of 0.3 at visible
wavelengths were obtained, with sub-micron spatial index resolution, enabling the fabrication
of a Luneburg lens at optical wavelengths.

Work undertaken at the University of Central Florida by Kang et al. revealed the possibility
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to generate infrared GRIN lenses in chalcogenide glass, via forced, local recrystallisation of
the glass [34, 40]. For an appropriate chalcogenide glass composition, a laser source can
be used to locally force a material phase change within the glass, which upon further heat
treatment causes the growth of high-index nanocrystals within the glass, generating a GRIN
chalcogenide glass-ceramic hybrid material. Via this route, a spatially varying index change of
0.1 was demonstrated. Further development into such phase-change materials has shown the
potential for very large index variation, for example in 2020, Delaney at al demonstrated an
index change in Sb2Se3 of 0.77 [41]. In further work, Delullier et al. at ONERA demonstrated a
GRIN Fresnel lens based on direct laser writing of chalcogenide glass with a Δ𝑁 of 0.055 [42].

Infrared Gradient-Index Lenses

A number of technologies are under investigation for the generation of GRIN media in infrared
materials. Chalcogenide glasses in particular are appealing materials for the generation of
index gradients due to their large glass forming regions, as well as other mechanisms via
which their refractive index may be modified such as targeted modification. Work under-
taken at Naval Research Labs [43], The University of Bordeaux [36] and The University of
Central Florida [40] all demonstrate mechanisms via which chalcogenide GRIN lenses may
be generated. It is also feasible to generate index gradients in certain crystalline materials.
Pickering et al. [26] demonstrated the possibility to generate compositional gradients between
zinc sulphide and zinc selenide. With the exception of the approach of Kang et al. previously
outlined, these processes do not produce GRINs of arbitrary form. however, the application
of GRIN to such materials has significant potential, even with a less general GRIN distribution.
The dispersive properties and broad spectral transmission window of infrared GRIN materials
potentially allow colour-corrected optics over multispectral wavebands, which we explore in
Chapter 7.

1.3. Contemporary Optical Design Challenges and Approaches

The degrees of freedom provided by these new GRIN manufacture processes pose a new
set of design challenges. The highly general nature of the GRIN materials offered by new
manufacture processes presents a new and very broad design landscape that has been little
explored by optical designers. Available GRIN distributions are now limited by imagination
rather than the manufacturing process (within index and resolution limits). It is the design
challenge of how to exploit these new degrees of freedom that this work seeks to address.
Herein, we seek to produce innovations that may now be realised with generalised GRIN
lenses, as well as design tools that provide valuable insights into the inner workings of such
generalised GRIN lenses.

To date, two main design strategies have been employed to address the generalised GRIN
design problem in the literature. These are optical design and transformation optics. The more
classical optical design approach forms the basis of this work and has also been approached
by a small number of authors at the time of writing in 2025 [38, 44–46]. This approach
broadly makes use of geometrical optics and aberration theory to reach an eventual design
by a combination of insight and optimisation. Transformation optics can in some cases be
considered an attempt to invert the optical design problem, seeking a design solution by a
coordinate transformation of an appropriate candidate system.

Transformation optics exploits the fact that Maxwell’s laws are invariant under a coordinate
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transformation. An object with a given permittivity and permeability may be “transformed” into
a new curvilinear coordinate system, resulting in modified permittivity and permeability that
increases where space has been compressed and vice-versa. This approach can be applied to
a number of optical problems, including imaging systems. A useful intuitive example of the
approach was demonstrated by Campbell et al. [47], whereby the transformation of a spherical
lens into a plano-plano geometry yields a positively powered GRIN distribution within the lens.

Transformation optics has some limitations however. The coordinate transformations re-
quired in general may lead to materials that are anisotropic, magnetic, or require very strong
index variation. All of which makes design for manufacture challenging, often requiring the
use of novel metamaterials with electromagnetic properties not observed in natural materials.
This limitation is partly addressed by disregarding magnetic contributions to the derived ma-
terial (which are often very small). This is known as quasi-conformal transformation optics,
published by Li and Pendry [48]. Notably, such transformations when applied to imaging ap-
plications may require further optimisation via raytracing. In this regard, transformation optics
provides a useful design starting point. A further challenge in the application of transforma-
tion optics to imaging optics design is difficulty in applying it to multi-element lens assemblies.
Transforming the set of discontinuous boundaries associated with lens surfaces tends to lead
to discontinuities in the resulting GRIN medium [45].

A classical optical design approach to GRIN optics design benefits from the mature design
infrastructure that exists in the form of optical design software. Such software is well-proven
for raytracing GRIN media, and is typically customisable with macro code and user-defined
GRIN features. This provides us with a foundation to solve a key challenge of this work,
creating tools for the design of generalised GRIN lenses for manufacture. Whilst optical design
software is capable of tracing and optimising a variety of refractive index distributions, it is
not intrinsically able to express GRIN optical designs in terms of a manufacturing process, nor
provide the key optimisation constraints required to ensure a physically valid result. These
tools must be created by the optical designer, and we address that in this work.

1.4. Goals and Outline of this Thesis

This work proposes to answer a central research question: Are there benefits to the SWAP-C
of optical systems through the use of generalised GRIN lenses, and if so what are they? In
support of this central problem, we define the following objectives:

• Review and explore the design freedoms offered by new GRIN manufacture technologies,
motivated by SWAP-C minimisation in defence and aerospace optics.

• Devise design tools that enable the modelling, optimisation, and analysis of GRIN lenses
enabled by new manufacture technologies.

• Identify applications enabled by new GRIN manufacture technologies.
• Conclude whether the use of generalised GRIN optics has a future in SWAP-C-critical
defence and aerospace applications.

Broadly, this work is separated into two themes. Chapters 2, 3, and 4 are aimed at estab-
lishing principles and methods for the design of generalised GRIN lenses. Chapters 5, 6, and
7 are subsequently aimed at the applications and possibilities for optimised SWAP-C optics
using generalised GRIN media.

In Chapter 2, Mathematical Characterisation of Inhomogeneous Optical Media, we explore
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mathematical representations for generalised GRIN media, particularly where the underlying
GRIN consists of more than two base materials. We note that a succinct and well-adapted
mathematical representation for GRINs can ease the process of design optimisation, allowing
the design to be expressed in a manner indicative of the manufacturing process that can also
simplify the passage of lens data to fabricators.

In Chapter 3, Paraxial Analysis and Reconstruction of Gradient-Index Lens Systems, we
explore means to gain insight into the optical construction of generalised GRIN lenses, us-
ing the approximate form of raytracing known as paraxial optics. Using this approximation,
we propose a method to convert existing homogeneous lens systems into continuous GRIN
equivalents that serve as starting points for further optimisation. We propose this method as
a means of filtering the solution space of generalised GRIN optics, leveraging the vast body
of work performed in homogeneous optical design over the past century.

In Chapter 4, Surface Curvature and the Abbé Sine Condition in Gradient-Index Lenses,
we explore the effect of plano-plano surface geometry on the aberration correction of GRIN
lenses. For any lens system to be free from the aberration known as coma, rays propagating
through the lens must satisfy the Abbé sine condition, which we show is impossible for a plano
focusing lens of negligible thickness focused at infinity. We demonstrate that for a plano GRIN
lens with a small, finite thickness, a generalised GRIN medium allows the lens to satisfy the
Abbé sine condition, with the trade-off that the complexity and refractive index variation of
the GRIN medium increases. Conversely, we show that combining surface curvature and a
GRIN medium of much lower index variation and complexity also allows correction of coma.

In Chapter 5, Optical Design of Layered GRIN lenses, we explore the design degrees of
freedom enabled by one modern GRIN manufacturing process, the layered gradient-index
or LGRIN process. Such GRINs consist of contoured layers of customisable index material,
typically with a spherical GRIN distribution. We compare the aberration correction potential
of LGRIN lenses to other optical manufacture technologies.

In Chapter 6, Optical Design of Freeform GRINs for Avionics, we propose that the application
of GRIN media of non-rotationally symmetric form are an effective degree of freedom in the
optical design of tilted and off-axis HMDs. We show how GRINs may reduce the mass and
component count of such systems whilst retaining optical performance, applying GRINs in an
analogous manner to freeform surfaces whilst also considering their capacity to simultaneously
address chromatic aberrations of HMDs.

In Chapter 7, Optical design of athermal, multispectral GRINs, we propose that GRIN optics
are an effective means for SWAP-C minimisation of multispectral optical systems. Chromatic
aberration correction is a well-noted application for GRIN lenses, whilst also being the most
significant challenge for realisation of multispectral optics. We examine the optical perfor-
mance potential of GRIN media based on common infrared materials and further implications
for another key challenge in infrared design, athermalisation. Athermal optical systems have
stable optical performance over an extended temperature range and GRIN materials show
potential as a degree of freedom to correct defocus and aberrations induced by temperature
changes. We show via a theoretical model, that for an idealised GRIN, thermal defocus is
analogous to that of homogeneous lenses, depending only on the lens materials and focal
power. The output of this model is used to design a SWIR and LWIR GRIN objective lens with
a common focal plane, which demonstrates substantially improved performance, reduced lens
count, and reduced tolerance sensitivity compared to a homogeneous baseline design.
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Finally, the results and implications of the main chapters of this work are discussed in con-
cluding Chapter 8, Conclusions.

1.5. Geometrical Optics, Imaging Systems, and Aberrations

The underlying physics of this work makes use of the theory of geometrical optics. The general
physics of light is highly complex, with photons of light having particle-like and wave-like
properties. Geometrical optics abstracts the properties of light into a convenient approximation
that simplifies the analysis of optical systems known as a ray.

There is no single definition of a ray [49, Chapter 1.3], but one sufficient for this work is the
normal to the wavefront of a propagating electromagnetic wave within an isotropic medium
as the frequency of the wave tends to infinity. Under this assumption, the effect of diffraction
becomes negligible. Another useful description is that a ray in an isotropic medium represents
the path of flow of electromagnetic energy.

Ray trajectories in geometrical optics are elegantly described by Fermat’s principle, which
states that the optical path length (defined as distance multiplied by the refractive index) of any
ray is a stationary point with respect to adjacent paths. An intuitive (yet limited) interpretation
of this, is that light takes the path of least time between two points A and B. Fermat’s principle
is given by

𝛿𝑠 = 𝛿∫
𝐵

𝐴
𝑁 (r) 𝑑𝑠 = 0, (1.2)

where 𝑁(r) represents the refractive index as a function of a position vector in space, r, and 𝑠
is the length parameter of the ray path. Refractive index is a dimensionless quantity associated
with an optical material that scales the velocity and wavelength of light propagating through
it. Fermat’s principle can be used to generate an expression for the path of a ray within a GRIN
medium via a Hamiltonian approach. This is explored within the narrow region adjacent to
the optical axis known as the paraxial region in Chapter 3. A further consequence of Fermat’s
principle is the well-known Snell’s law at the interface between two optical media of refractive
indices 𝑁1 and 𝑁2

𝑁1 sin(𝑖) = 𝑁2 sin(𝑟), (1.3)

where 𝑖 and 𝑟 are the respective angles of incidence and refraction to the surface normal at
the point of intersection by a ray. Raytracing in optical systems most commonly consists of
sequential interaction with surfaces, followed by propagation through optical media, from a
defined object to an image surface. These are most commonly spherical surfaces, however
conic sections and aspheres are also frequently used for rotationally symmetric optical designs.
The surface sagitta, 𝑧asphere of a rotationally symmetric even asphere with respect to the
surface vertex is given by

𝑧asphere =
𝑐𝜌2

1 + √1 − (1 + 𝑘) 𝑐2𝜌2
+ ∑
𝑖=4,6,8…

𝐴𝑖𝜌𝑖 , (1.4)

as a function of perpendicular distance from the optical axis, 𝜌. The quantity 𝑐 is the reciprocal
of the surface radius of curvature, 𝑅, such that

𝑐 = 1
𝑅 , (1.5)

11



1.5. Geometrical Optics, Imaging Systems, and Aberrations

Figure 1.4: Left: the principle of stigmatic imaging for a pinhole camera. The blue arrows map points in the object
space (left) to the image space (right). Right: stigmatic imaging through a finite pupil where all rays emanating
from a point source that fit through the pupil focus on the same point in the image space.

𝑘 is the conic constant and 𝐴𝑖 are aspheric surface coefficients. In the case of a spherical
surface, 𝑘 and all 𝐴𝑖 are zero. Aspheric coefficients are typically only applied in powers of 𝜌4
or higher to avoid degeneracy with the base conic.

The interaction of a general skew ray with a conic surface can be calculated analytically [50,
Chapter 4]. However, more general optical surfaces such as aspheres have no such solution.
Likewise, the propagation of a skew ray through a general gradient-index medium has no
analytical solution (with the exception of some specific index distributions). Complex optical
systems therefore rely heavily on numerical methods for raytracing.

A useful trait of ray-based optical models, is that some wave-like aspects of light can be
retrospectively modelled with a high degree of accuracy. The effect of diffraction on the
distribution of intensity formed by an image for example, can be modelled by applying the
aberrations analysed via a ray-based model to a wave-based model defined by Fourier optics.
This approach has enabled accurate performance predictions for complex optical systems for
many decades and is very widely adopted by optical engineers.

1.5.1. Imaging Systems

Whilst geometrical optics can be applied to a wide range of optical problems, within this work
we are primarily concerned with optical imaging systems. A primary concept behind such
systems is that of stigmatic imaging. Imaging systems map information from a source in the
object space, to a receiver in the image space (see Figure 1.4). A point i in the object space
is mapped to a point i′ in the image space by a factor,ℳ, the magnification

i′ =ℳi. (1.6)

Figure 1.4 (left) illustrates the simplest optical system that can perform this task, the camera
obscura. For an infinitesimally small pupil, geometrically perfect stigmatic imaging occurs.
However, the small pupil causes diffraction to limit the resolution of the system (as per Equa-
tion 1.1) with negligible energy capture rendering such a system of little use for most modern
imaging applications. In Figure 1.4 (right), a finite pupil size is illustrated where rays emitted
from a point into a finite solid angle are captured and focused, which increases irradiance at
the image. An optic is required to generate this focusing effect. The larger the size of the
system pupil, the finer the diffraction-limited resolution of the system and the greater the
amount of energy captured. In any given optical system, a limiting aperture known as the
aperture stop limits the size of the axial pupil.

An important property of any imaging system is its focal length. A simplified definition of
focal length is the distance from a thin lens to the image for an object plane located at infinity.
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Figure 1.5: Pupil definitions for a notional optical system where the axial marginal ray show in red clips the edge
of the aperture stop, while the full-field principal ray shown in green passes through the centre of the aperture
stop, as well as the centre of the entrance and exit pupils. Top: Entrance pupil defined as the image of the stop
in object space. Bottom: Exit pupil defined as the image of the stop in image space.

An analogous property of a lens is focal power, defined as the reciprocal of focal length. We
denote focal length and power in this work with the symbols 𝑓 and 𝐾 respectively.

All nontrivial imaging systems also have a finite field of view (FOV), which is determined by
the maximum size of the object or image as defined in Equation 1.6. Very commonly, the FOV
of an imaging system is two-dimensional (such as the focal plane array of a camera). FOV is
often expressed in terms of angle in object space for an object at an infinite distance. In this
case, for an ideal stigmatic imaging system, the scalar image height, 𝑖′, focal length, 𝑓, and
the object angle, 𝜃, are related by the formula

𝑖′ = 𝑓 tan𝜃. (1.7)

In addition to a definition of field, all optical systems have a finite aperture. Typically, one
surface within a rotationally symmetric optical system limits the diameter of the axial field ray
bundle. This surface we refer to as the aperture stop, with the outermost ray of the axial
field bundle that just passes the stop referred to as the axial marginal ray. If we consider a
bundle of rays originating at the aperture stop, we observe in Figure 1.5 that an image of the
stop is formed on each side of it (shown by the intersection of the green dotted lines with the
optical axis). These we refer to as the entrance and exit pupils, with the naming convention
typically being aligned to the direction of light propagation, with light entering the system
via the entrance pupil and vice-versa. The size of this image of the stop on the object side
is known as the entrance pupil diameter or EPD. If we further stipulate that the ray passing
through the centre of the aperture stop emanates from the outermost point of the object, then
we refer to this ray as the full-field principal ray. A further common optical imaging system
attribute related to focal length is the focal ratio or F-number, denoted as F/#. F/# is defined
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for an object plane at infinity by

F/# = 𝑓
EPD

. (1.8)

A lower F/# for a given focal length means a wider pupil, which outputs increased irradiance
at the focal plane of the system. For photographic systems this results in a shorter exposure
time required to capture an image, which has led to the industry parlance whereby lower F/#
lenses are referred to as faster. Faster F/# systems also exhibit greater spatial resolution
when diffraction limited, as well as decreased depth of focus (namely a smaller tolerance on
defocus of the image before the blur spot increases to a given size).

More generally, the product of the entrance pupil area with the solid angle defined by the
field of view, is proportional to the power throughput of an optical system for a uniform scene
brightness (ignoring any losses due to absorption or surface reflectance). We refer to this
product as the system Étendue. Broadly, the SWAP-C of an optical system scales nonlinearly
with Étendue, and so it should be limited to the minimum necessary to execute a specified
imaging task.

1.5.2. Paraxial Optics

An important approximation in the design and analysis of rotationally symmetric imaging sys-
tems is paraxial optics. Under this approximation, it is assumed that all ray angles within the
system become very small such that sin𝜃 ≈ 𝜃, tan𝜃 ≈ 𝜃 [51, 52]. We may therefore also
approximate Snell’s law as

𝑁1𝑖 = 𝑁2𝑟. (1.9)

The paraxial approximation also assumes that the sagitta of curved surfaces is zero. The
first-order expansion of the sagitta of a spherical surface is given by

𝑧𝑠 =
1
2𝑐𝜌

2, (1.10)

for a displacement 𝜌 from the optical axis. From inspection, this quadratically scaling quantity
is negligible for very small 𝜌. Within the paraxial region, we gain insight into some fundamental
properties of optical systems that define the first-order imaging properties of the system or
cardinal points. In particular, the focal length and principal planes allow us to deduce the
location and scale of an image (with knowledge of the object plane size and distance with
respect to the optic). Furthermore, by paraxially tracing two key rays: the axial marginal ray
and full-field principal ray, we can calculate the third-order aberrations of an optical system.
We discuss paraxial optics in greater detail in Chapter 3. We refer to rays traced under the
paraxial approximation as paraxial rays, whereas rays without this simplification are referred
to as finite rays.

A further important formula for the paraxial properties of lenses is the lensmaker’s equation
for focal length, which for a thick lens in air is given by

𝐾 = 1
𝑓 = (𝑁 − 1) [𝑐1 − 𝑐2 +

(𝑁 − 1) 𝑡𝑐1𝑐2
𝑁 ] , (1.11)

where 𝑁 is the lens refractive index**, 𝑡 is its thickness, and 𝑐1 and 𝑐2 are the first and second
curvatures respectively. A further useful approximation is where 𝑡 is negligible, known as a
**The use of 𝑁 − 1 indicates the refractive index is relative to the medium in which the lens is embedded, which
is generally air, though immersion in liquids is not uncommon in fields such as lithography and microscopy
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Figure 1.6: Positively powered singlet lenses of equivalent focal power with three different bending factors. Lens
(A) with B=-3.0, lens (B) with B=0, lens (C) with B=3.0. (D) a positive lens of insufficient thickness where the
surfaces have crossed over and produced a physically invalid negative edge thickness.

thin lens, giving a simplified formula for focal power:

𝐾 = 1
𝑓 = (𝑐1 − 𝑐2) (𝑁 − 1) . (1.12)

From inspection of Equations 1.11 and 1.12, it is clear that there are more degrees of freedom
in the lens geometry than are required to solely control the lens focal power. A positive lens
of constant focal power is illustrated in Figure 1.6, with three different bending factors, as
defined by

𝐵 = 𝑐1 + 𝑐2
𝑐1 − 𝑐2

. (1.13)

This additional control over lens shape through bending allows us to influence its aberrations
while retaining a given focal power. A minimum value of lens thickness is required in the case
of positively powered lenses to ensure the edge of the lens has a positive, physically valid
thickness (or more practically, sufficient thickness for manufacturing feasibility). A counter-
example of this is shown in Figure 1.6 (D). In some cases, substantial increases in the lens
thickness are also useful to the designer for aberration correction.

1.5.3. Aberrations

Very few imaging systems produce geometrically perfectly stigmatic imagery (with some no-
table exceptions such as Maxwell’s fisheye). The majority of optical designs have residual
errors in the geometrical distribution of rays at the image. These errors degrade the image
quality of the system and are known as aberrations. Aberrations generally scale as a polyno-
mial function of the aperture size and field of view, making the design of systems with large
aperture and field progressively more challenging for a given focal length or magnification.
The correction and minimisation of aberrations using the degrees of freedom provided by the
design parameters of an optical system, whilst retaining the necessary field and pupil size of
the design requirement, is a key skill of the optical designer.

Aberrations can broadly be categorised into two types, chromatic and monochromatic.

Chromatic Aberrations

The primary chromatic aberrations are variation of the paraxial properties of an optical system
with wavelength, due to the inherent variation of refractive index with wavelength in optical
materials. There are two primary forms of chromatic aberration: axial colour, where the focus
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of light varies with wavelength and lateral colour, where the scale of the image varies with
wavelength. Both degrade image quality for a finite waveband. Correction of chromatic aber-
rations in refractive systems (including GRINs) generally requires the use of multiple materials
with differing magnitudes of optical dispersion. We discuss chromatic aberration correction of
GRIN optics in Section 1.7.3.

A well-known method to produce an optical system free from chromatic aberration is to
use reflective optics. Reflective surfaces are intrinsically achromatic and fully-reflective optical
systems have zero chromatic aberration; however this approach has significant trade-offs.
The need to avoid obscuration from other reflective surfaces often restricts such designs to
very narrow field of view applications such as telescopes, whilst the presence of a central
obscuration can be unacceptable in infrared systems due to signal and resolution loss.

If the design decision is taken to use refractive optics, there are a number of options to imple-
ment chromatic aberration correction. Some common options used in defence and aerospace
applications are illustrated in Figure 1.7. A well known and traditional route is to use a ce-
mented doublet or achromat. This approach has been used successfully by optical design-
ers since its invention in the 19th century. An achromatic doublet is formed when two or
more lenses of different dispersion and optical power are cemented together (sharing a near-
identical radius of curvature at the mating surface). The achromatic condition for a system of
𝑀 thin lenses in contact is given by

𝑀

∑
𝑖=1

𝐾𝑖
𝑉𝑖
= 0, (1.14)

where 𝐾𝑖 and 𝑉𝑖 are the optical power and the well-known Abbé number [53, Chapter 10.1]
respectively of the ith lens element. The Abbé V value describes the dispersion of a given
material, defined by the refractive index at three wavelengths as

𝑉 = 𝑁(𝜆mid) − 1
𝑁(𝜆short) − 𝑁(𝜆long)

, (1.15)

for three sequential defining wavelengths of the material (𝜆long > 𝜆mid > 𝜆short). Achromatic
doublets typically consist of a positively powered lens with high Abbé number (referred to as
a crown) and a negatively powered lens with low Abbé number (referred to as a flint). One
ubiquitous case of the Abbé number is 𝑉d, which is defined by the Fraunhofer spectral lines C,
d† and F (656.3 nm, 587.6 nm and 486.1 nm respectively). These defining wavelengths are
an industry standard and are often quoted by optical material manufacturers to characterise
visible waveband optical materials. The letter indication of a given Fraunhofer line is often
used as a subscript to indicate a refractive index value is a that particular wavelength. Hence,
an equation for 𝑉𝑑 is often given by

𝑉𝑑 =
𝑁𝑑 − 1
𝑁𝐹 − 𝑁𝐶

. (1.16)

It should be noted that satisfaction of Equation 1.14 alone does not necessarily make a good
doublet. The variation of refractive index with wavelength in homogeneous optical materials
is non-linear, hence when their optical powers are combined, residual chromatic aberration
may remain in the form of secondary spectrum. Secondary spectrum is commonly quantified
†while commonly denoted as such in optical material catalogues, the d line is ambiguously defined, with the Fe
line at 466.8 nm also referred to as ‘d’. To avoid this, the He line at 587.6 nm is often referred to as ‘D3’.

16



1.5. Geometrical Optics, Imaging Systems, and Aberrations

Figure 1.7: Left: Achromatic doublet based on cemented glass lenses, centre: diffractive hybrid lens (blaze profile
not to scale), right: Achromatic GRIN lens

and controlled through the use of relative partial dispersion, which for the Fraunhofer g, F and
C lines at 435.8 nm, 486.1 nm and 656.3 nm respectively is given by

𝑃𝑔,𝐹 =
𝑁𝑔 − 𝑁𝐹
𝑁𝐹 − 𝑁𝐶

. (1.17)

𝑃𝑔,𝐹 is a material property of specific wavelengths frequently used in the correction of visible
waveband optics, although in principle, partial dispersion can be defined for any sub-band of
the system waveband relative to the Abbé value. 𝑃𝑑,𝐹 partial dispersion is also commonly used
for visible waveband optics and is defined by

𝑃𝑑,𝐹 =
𝑁𝐹 − 𝑁𝑑
𝑁𝐹 − 𝑁𝐶

. (1.18)

Similarly to primary colour, secondary spectrum can be corrected for a system of thin lenses
in contact by fulfilling the condition

𝑀

∑
𝑖=1

𝐾𝑖𝑃𝑖
𝑉𝑖

= 0, (1.19)

where 𝑃𝑖 is the partial dispersion of the ith lens element. This means that unless two materials
are selected that have very similar partial dispersion, the correction of secondary spectrum
generally requires a set of three materials. Lenses corrected for both primary and secondary
chromatic aberration are often referred to as apochromatic.

Further to primary and secondary chromatic aberrations, each component in the doublet
produces monochromatic aberrations, and chromatic variations thereof. The aberration cor-
rection of cemented doublets is often limited by the chromatic variation of spherical aberration
known as spherochromatism. We discuss these themes in greater detail in Chapter 5.

The second option for chromatic aberration correction shown in Figure 1.7 (centre) is to
use a diffractive hybrid surface. A diffractive surface with a parabolic blaze profile can create
optical power with extremely strong negative chromatic dispersion (𝑉d = −3.45) [54]. As a
result, diffractive surfaces can very easily remove the first-order chromatic aberration from
optical systems. The addition of fourth-order or higher terms to the parabolic blaze profile
also allows control of chromatic variations of monochromatic aberrations. A further SWAP-C
benefit of diffractive surfaces is that they can be applied to a polymer substrate via single-point
diamond turning (SPDT) or via moulding, with the lower density of a polymer compared to
a glass cemented doublet providing a mass advantage. However, an important trade-off in
the use of diffractive surfaces is their diffraction efficiency. Diffractive surfaces split light into
multiple orders (an effect familiarly observed with diffraction gratings). In colour correcting
diffractive optics, it is desirable for as much light as possible to be contained within a single
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“design” order. Otherwise, light coupled into adjacent diffraction orders generates spurious
“ghost” images that can be distracting to a user. Spurious diffraction orders also degrade
image quality through loss of image contrast [55].

As the third and final option in Figure 1.7, GRIN represents a potentially ideal compromise.
GRINs can be constructed from polymer materials to give a low-mass lens, whilst if a material
blend with the right dispersion characteristics can be generated, a colour-corrected lens can
be produced. We discuss the use of GRIN for colour correction applications widely in this
thesis, as it is powerful application of the technology.

Monochromatic Aberrations

Monochromatic aberrations describe the deviation of the shape of an optical wavefront from
the ideal spherical (or plano) case. Monochromatic aberrations are classified into types, iden-
tified by their effect on wavefront error as a function of field and aperture. Of the monochro-
matic aberrations, the five Seidel aberrations (named after the German mathematician Ludwig
Von Seidel) are of particular importance for rotationally symmetric optical systems. These
aberrations are of the fourth order in the wavefront, but are more often referred to as the
third-order aberrations of the image. Correction of the Seidel aberrations alone does not
guarantee a well-corrected system overall when analysed with finite rays, but generally all
well-corrected optics have minimal amounts of the Seidel aberrations (with the potential ex-
ceptions of distortion and Petzval curvature depending on the system application).

Aberration coefficients do not provide an overall metric for system performance, rather, they
provide insight into what limits the performance of a given design. A further useful aspect
of the Seidel aberrations is that the total system aberration is equal to the sum of all surface
contributions (and medium contributions for GRIN). By breaking down aberration contributions
this way, surfaces that generate particularly large amounts of aberration can be identified as
potential sources of nominal performance loss and sensitivity to manufacturing tolerances.

The five Seidel aberrations are characterised as follows:
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Spherical aberration can be understood as the variation of focus with
aperture. It has no field dependency.

Coma is (broadly) the variation of magnification with aperture and has
linear field dependency.

Astigmatism is the variation of focus between sagitta. It has quadratic
field dependency.

Petzval curvature causes the optimum focus to lie on a curve and not a
plane. It has quadratic field dependency. Uniquely among the Seidels,
its surface contributions do not depend on ray heights or angles and
only on optical power divided by the refractive index (or 𝒩2/𝒩2

0 for
GRIN materials). See Chapter 3.

Distortion alters the geometry of an image and has no aperture depen-
dency. As such distortion does not degrade image quality. It has cubic
field dependency.

1.6. Optical Design - The Art and Science

In this work, we define optical design as the process of defining a system of optical com-
ponents to meet a specification of optical requirements. This process typically makes use of
geometrical optics (raytracing) combined with optimisation, followed by detailed analysis of
optical performance, to determine the suitability of an optical solution to the design task.

The suitability of a given optical construction to the specification can be defined as a function
of the wide range of possible system parameters. A merit function is defined based on a
weighted sum of key performance metrics of the lens such as the geometric RMS spot size,
expressed as a function of the lens design parameters such as surface radii of curvature and
thickness. The optimisation goal is to minimise this function whilst typically retaining several
design constraints, such as the space envelope and focal length.

The topology of the optical design merit function is highly complex and non-linear. As a
result, the problem of optical design cannot easily be inverted. Raytracing of optical systems
is generally performed in specialist optical design software such as CodeV® or Zemax®. Op-
timisation techniques are widely used to find solutions to optical imaging problems, with the
Levenberg-Marquardt (damped least squares) algorithm being particularly ubiquitous [56]‡.
‡While based on this approach, most optical design programs are closed source and have proprietary, modified
versions of this algorithm.
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For optical systems of even modest complexity, multiple performance minima exist, with no
simple way to determine if the solution found is the best overall global minimum. We refer
to the abstract multidimensional space defined by the set of all parameters in a given optical
design as solution space. Notably, the Levenberg-Marquardt algorithm is a local optimisation
algorithm, descending into the nearest performance minimum based on the gradient of so-
lution space at the starting point. Modern optical design programs also often feature global
optimisation routines. These routines (that are often proprietary) attempt to move between
different local minima of the solution space. They can be very effective but also have limita-
tions. As the true global minimum of a non-trivial optical design problem cannot be known
with certainty, it is difficult to determine the successful convergence of such an algorithm.
Furthermore, higher-level design decisions such as the addition and removal of components
or application of aspheres, GRINs or other degrees of freedom must generally be made out-
side the algorithm. An important intervention of the optical designer in the design process (for
both local and global optimisation) concerns the selection of the starting solution from which
the final design will be optimised. A poor starting solution often leads to a poor end solution,
as it is difficult using optimisation techniques to jump between very different regions of the
solution space. The inherent complexity of optical design solution spaces and presence of
large numbers of local minima, combined with the trade-offs in system-level performance that
many optimised solutions present (such as size versus optical performance), means that lens
optimisation is seldom a straight forward process. Generally, lens systems are optimised in
many stages, with local optimisations performed, followed by manual adjustment of the lens
system variables (for example to freeze or vary aspheric coefficients), and adjustment of the
optimisation parameters. A loop is formed between repeated optimisation and analysis until
the lens reaches a satisfactory performance level, or the specification must be reconsidered.

Optical design is frequently referred to as both an art and a science, with successful exe-
cution of a design task requiring both a good understanding of the underlying optical theory,
as well as significant intuition into the form and structure of optical systems. Imagination and
determination are often required to tackle the most difficult design tasks. Real-world optical
design tasks also require engineering knowledge. Often the desired performance from an
optical specification is not feasibly achievable with real materials, processes and timescales.
Pragmatic compromises with customers and other stakeholders within the design team of a
wider system are often required to produce an optical system with optimal performance at a
viable cost. The broad skill-set required of optical designers indicates that the job-role will not
be co-opted by computers any time soon!

The author speculates that this principle similarly applies to more recent developments in
artificial intelligence (AI), with the aforementioned engineering skills requiring a very general
form of intelligence that must consider the wider context in which an optical design sits. The
AI would require skills in negotiation, teamwork and leadership, while to produce truly origi-
nal designs, the AI designer must somehow align its creativity with customer need. Another
extremely challenging skill that an AI would also need to master to solve the most challenging
design problems is the estimation of technical risk, which is often done on the basis of incom-
plete information. At present there is little substitute for decades of engineering experience as
a prerequisite to excel at this. AI may however, serve as a means to develop more advanced
global optimisation techniques, and already shows evidence of utility in lens starting solution
selection and optimisation [57]. In time, AI may gain the capability to produce designs of
increasing complexity and originality by controlling more advanced parameters such as the
number of lens elements, aspheric surfaces, and even GRIN media. To do so however, the AI
would need to be equipped with high quality information on relative costs or manufacturing
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difficulty. This is also challenging information to provide, yet in recent years progress has been
made through the development of computational models of lens manufacture processes [58].

It is easy to imagine a future where AI and optical designers work in harmony, with a
greater role in global optimisation and analysis performed by the computer. However, the
author cautions that this must not come at the expense of insight by the human designer.
An understanding of optical constructions, aberrations, and what make some optical designs
perform better than others (particularly under the effects of manufacturing tolerances) is a vital
foundation to apply the higher-level engineering skills that will lead to great optical instruments
and products.

1.6.1. Optical Figures of Merit

A wide range of methods to define optical quality exist, but in this work we are primarily
concerned with imaging optics and make frequent reference to two key performance metrics,
modulation transfer function (MTF) and root-mean-squared (RMS) spot size.

Modulation Transfer Function

The MTF describes how spatial frequencies of an object are transferred to an image by an
optical system. It essentially describes the ability of a lens to transmit information. Usefully,
it incorporates both the geometrical ray-based aspects of a system (aberrations) and the
diffraction effects caused by the apertures of the lens system. MTF is particularly useful as a
performance metric as it is readily measured for a real optical system. For this reason, optical
performance specifications for lens systems are often expressed in terms of MTF. MTF is
related to other quantities of interest, in particular (by its Fourier transform) the point spread
function (PSF) and optical transfer function (OTF), with relations to MTF given by

MTF = ℱ {PSF} , (1.20)

MTF = |OTF| . (1.21)

MTF is typically calculated by an integral of the distribution of optical path difference in the
exit pupil with respect to a reference sphere that defines a perfect image [59]. The aber-
rated wavefront is generally calculated by ray tracing. Conversely, MTF is generally measured
through observation of the PSF (alternatively a line or edge-spread that is numerically decon-
volved), followed by a numerical Fourier transform.

Root-Mean-Squared Spot Size

As the name implies, RMS spot size describes the size of the blurred spot generated by an optic
as the root mean square of ray deviations from a centre point (that is typically the weighted
average position of all rays under analysis). RMS spot size is a purely geometric measure of
performance that neglects the effects of diffraction. This therefore limits the real-world use of
this performance metric. RMS spot size is useful however within a theoretical optical design
context. It is an easily calculated performance metric of a lens that allows for quick comparison
between different solutions. For this reason, RMS spot size (or related RMS wavefront error)
is often used as the basis of the optical design merit function.

A closely related quantity to the RMS spot size that accounts for diffraction is the point spread
function (PSF), calculated by convolution of the ray distribution with the diffraction-limited spot
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Figure 1.8: Contrasting tolerance sensitivities in a visible waveband 100 mm focal length lens. Lens geometry
and MTF versus image height at 10.0 c/mm and 20.0 c/mm for two design examples where (A) represents naïve
design based on best nominal performance and (B) represents best practice in lens desensitisation.

size predicted by Fraunhofer diffraction. From Equation 1.20, we note that image quality and
information throughput is maximised by minimising the PSF. This is achieved by minimising
the RMS spot size and maximising the pupil size (so as to reduce the contribution of diffraction
to the PSF). These are often competing goals, with a larger aperture also transmitting more
aberrations that degrade the RMS spot size or require more design degrees of freedom such
as lens elements to correct. A key design decision therefore concerns selecting the aperture
size, within the bounds of other system requirements such as cost and weight.

1.6.2. Design for Manufacture and Tolerances

Optical design generally has the end goal of producing a design that can be fabricated. It is
at this point however, that design intent and the as-built optical system diverge! No optical
component can be fabricated with perfect optical surface form, thickness, surface alignment
(known as wedge), or refractive index. Likewise, it is not possible to assemble a system of
lenses into perfect alignment. Tilts, decentres, air-spacing errors all alter the properties of
the as-built design. Given that the nominal design is generally at a local minimum in the
solution space, changes to the design upon fabrication statistically yield a net loss in optical
performance.

Another important skill of the optical designer is to produce designs that are robust to small
deviations in form caused by manufacturing tolerances. A well-known trap for the unwary
comprises the generation of a design with very high nominal performance, but with high sen-
sitivity to build errors. We consider two 100 mm lens designs prepared as examples for this
work in Figure 1.8. Both designs have the same optimisable degrees of freedom, with two
aspheric surfaces, variable curvatures, thickness and variable glass types over seven lens el-
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ements. Design (B) has lower nominal performance than design (A), due to constraints on
aspheric surface departure, angles of incidence, and the change in ray angles across lens
components. If we consider theoretical as-built MTF performance however, analysed using a
common set of optical tolerances in CodeV’s wavefront-differential tolerancing routine, TOR,
we observe that design (B) performs significantly better at the 97.7th percentile, as the afore-
mentioned optimisation constraints have led to a solution with lower sensitivity to tolerances.
Design (B) would perform significantly better than (A) in volume production, reducing cost by
eliminating yield losses.

1.7. Fundamentals of Gradient-Index Optics

We define GRIN optics as any optical device that exploits the degrees of freedom available
through use of a continuous and smoothly varying refractive index profile. This covers a
broad set of applications including imaging, illumination and optical fibres. This contrasts to
conventional homogeneous optics in which components have a constant refractive index, and
rely upon interaction with optical surfaces to function. In GRIN optics, both the optical surfaces
and optical media of a system can work in unison to provide improved optical correction, or
potentially smaller and lighter optics for a given performance level.

GRIN materials generally consist of a variation between two or more basis materials. A
frequently cited quantity associated with GRIN material combinations is Delta N, written as
Δ𝑁. This is the difference in refractive index between the maximum and minimum index of
the given material combination. It is partly true that materials combinations offering larger Δ𝑁
values are more beneficial to the optical designer. However, this is significantly complicated
by the chromatic properties of the GRIN we discuss in Section 1.7.3. A single figure of merit
for a GRIN material combination is difficult to define, as it largely depends on the design task
at hand.

1.7.1. Raytracing in Gradient-Index Optics

Numerous authors [19, 52, 60, 61] have addressed the derivation of an equation of motion
for rays in GRIN media. A generally accepted form of the equation [62] is defined as

𝑑2r
𝑑𝑡2 =

1
2∇𝑁

2(r), (1.22)

where 𝑑𝑡 = 𝑑𝑠/𝑁, and 𝑑𝑠 is an infinitesimal arc length along the ray, whilst r is the posi-
tion vector of a point along the ray. 𝑁(r) is the refractive index distribution. This equation
is derived from geometrical optics principles in Appendix B. Generally this equation must be
solved numerically, with only certain simple GRIN distributions (such as the spherical GRINs
found in the Luneburg lens and Maxwell’s fisheye) proving solveable analytically. The nu-
merical solution of this second order differential equation is computationally intensive, with
numerical optimisation of generalised GRIN systems also requiring that significant numbers of
rays be traced. Numerous authors have addressed the problem of GRIN raytracing, with the
procedure based on Runge-Kutta methods outlined by Sharma [63] seeing wide adoption in
commercial optical design software.

A key parameter controlled by the designer when working with GRIN media is the stepping
parameter assigned to the GRIN medium. This determines the step length over which the

23



1.7. Fundamentals of Gradient-Index Optics

Runge-Kutta methods are applied and generates a trade-off in trace precision versus speed,
with larger stepping parameters tracing faster. It is useful to increase the stepping parameter
whilst performing the bulk of optimisation and modification of an optical design. The loss in
raytrace precision generally does not undermine the overall construction of an optical solution
and the faster tracing speed allows more optimisation runs (and thus, potentially a broader
exploration of the solution space) in a given timespan. Once an acceptable solution has been
found, the stepping parameter can be decreased for a final optimisation run to generate a
precise final result.

Due to the step-wise nature of GRIN raytracing, a further complication arises when GRIN
rays intersect with optical surfaces. Runge-Kutta methods do not inherently produce a smooth
curved trajectory, rather, they produce a set of points that each represent a numerically cal-
culated approximation to a point on the ray. Interpolation is therefore required to accurately
determine the ray-surface intersection point and incidence angle. This was addressed by
Sharma by definition of an interpolating cubic from the ray positions and derivatives at the
Runge-Kutta points, [64] and later improved by Stone and Forbes [65] by definition of a quartic
interpolant that used additional information from the Runge-Kutta calculation.

These modern numerical GRIN raytracing techniques require (in addition to the starting
vector of the ray) a function for the refractive index and its derivatives as a function of space.
Only for the simplest GRIN distributions are these functions built in to optical design software
(such as axial or spherical GRINs). Given the early developmental stage of the most advanced
GRIN distributions at the time of writing, a key task of the optical designer is to mathematically
define and program GRIN tracing equations that support generalised GRIN distributions. In
this work, this is generally achieved through compiling a custom GRIN dynamic-link-library
(.DLL) file or simple user “macro” code. Due to the aforementioned computational loads of
tracing GRIN rays, offering a custom .DLL is generally a much more efficient way to trace rays
and optimise a GRIN design (usually providing > 10× speed improvement), and is worth the
additional effort for the majority of design tasks.

1.7.2. Common Refractive Index Distributions

Here, we define some common GRIN distributions and introduce a naming convention for
GRINs of more general form. GRIN distributions mathematically describe the refractive index
as a function of space (𝑁(r)) within a region bounded by the optical surfaces and apertures of
a GRIN lens. the GRIN distribution is described within a coordinate system whose origin may
sit anywhere with respect to the GRIN lens (although it is frequently applied at a lens surface
vertex).

Until recently, GRIN refractive index distributions (both theoretically and practically) tended
to conform to one of three common types: axial, radial, or spherical. More generally, we may
categorise these distributions as one-dimensional GRINs, as they are constrained to variation
along one coordinate axis such as the radial axis of a cylinder or sphere. Whilst the goal of this
work is to characterise more general GRIN lenses, there is significant utility in understanding
the optical properties of these simpler distributions. Simple GRIN distributions may be con-
sidered to be a component part of a more complex general GRIN. For example, a general
rotationally symmetric GRIN can be approximated as a stack of very thin radial GRINs.

GRIN distributions define a refractive index based on one or more index coefficients. In
this work, we distinguish between refractive index coefficients and the refractive index of a
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material by use of the calligraphic𝒩, i.e. 𝒩coefficient and 𝑁material. Refractive index coefficients
have dimensions reciprocal to any term they are associated with, in order for the calculated
refractive index to be dimensionless. For example, a coefficient pairing 𝒩𝑟𝑆𝑟 associated with
a length, 𝑆, has a refractive index coefficient 𝒩𝑟 of dimension (length)-r.

General-Rotationally-Symmetric-Gradient-Index Media

We first define the most general case of smooth, rotationally-symmetric GRIN distribution.
General-rotationally-symmetric GRINs may incorporate axial terms (parallel to the optical axis),
radial terms (perpendicular to the optical axis) at even powers of 𝜌§, and combinations of the
two (𝑧𝑚≥1𝜌𝑛≥2) which we refer to as cross terms. The mathematical form of a general-
rotationally-symmetric GRIN is given in Equation 1.23, with an example illustrated in Figure
1.9

𝑁 (𝜌, 𝑧) =
∞

∑
𝑖=0,2,4…

∞

∑
𝑗=0
𝒩𝑖𝑗𝜌𝑖𝑧𝑗 =(𝒩00 +𝒩01𝑧 +𝒩02𝑧2 +…)

+ (𝒩20 +𝒩21𝑧 +𝒩22𝑧2 +…)𝜌2

+ (𝒩40 +𝒩41𝑧 +𝒩42𝑧2 +…)𝜌4 +…

(1.23)

As general-rotationally-symmetric GRINs contain terms in 𝜌2, the GRIN medium itself can gen-
erate optical power. A significant benefit of general-rotationally-symmetric GRIN distributions
is the variation in linear optical power density, 𝑑𝐾(𝑧)/𝑑𝑧 ∝ 𝒩2(𝑧), along the optical axis,
where the quantity 𝒩2(𝑧) represents a collection of all terms that are factors of 𝜌2

𝒩2(𝑧) =
∞

∑
𝑗=0
𝒩2𝑗𝑧𝑗 . (1.24)

Control of the optical power distribution over a thick GRIN lens is a very significant degree of
freedom that theoretically enables optical systems to consist of just one GRIN lens, potentially
making the continuous optical system envisioned by Buchdahl a reality. We explore this topic
in greater detail in Chapters 2 and 3.

Figure 1.9: Diagram of a hypothetical general-rotationally-symmetric GRIN lens

§while it is possible to generate a GRIN medium with odd terms in 𝜌, it must be noted that the linear term renders
the refractive index non-differentiable along the optical axis, and leads to changes in the optical wavefront that
are non-conducive to imaging. Higher-order odd terms (such as 𝜌3, 𝜌5) may have some utility in optical design,
but it is the even terms that most directly influence the optical power and aberrations.
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Axial-Gradient-Index Media

Axial GRINs have variable refractive index parallel to a straight axis through an optical compo-
nent. They can be conceptualised as a stack of infinitesimally thin layers of different refractive
index. Their potential for aberration correction is comparable to that of an aspheric surface
when applied to a lens surface with finite curvature [18]. The refractive index distribution of
an axial-GRIN medium is given by Equation 1.23 in the specific case where only coefficients
with 𝑖 = 0 are non zero, yielding

𝑁 =
∞

∑
𝑗=0
𝒩0𝑗𝑧𝑗 = 𝒩00 +𝒩01𝑧 +𝒩02𝑧2 +𝒩03𝑧3 +𝒩04𝑧4 +… . (1.25)

Axial GRINs influence the aberrations of a surface but impart no optical power of their own
due to the absence of any radial index variation. A hypothetical axial GRIN is illustrated in
Figure 1.10.

Figure 1.10: Diagram of a hypothetical axial-GRIN lens

Radial-Gradient-Index Media

Radial-GRIN lenses have cylindrically-symmetric index variation perpendicular to the optical
axis, with zero index gradient parallel to the optical axis. They see widespread use in the form
of optical fibres and their connectors, borescopes, and photocopier lens arrays [27]. Radial
GRINs were the amongst the first GRIN lenses to be observed in nature [13] and were the
first type of artificial GRIN lens to be fabricated in the laboratory [12]; the eponymous Wood
lens. The refractive index distribution of a radial-GRIN lens is formed from Equation 1.23 in
the case where only coefficients with 𝑗 = 0 are non zero, giving

𝑁 =
∞

∑
𝑖=0,2,4…

𝒩𝑖0𝜌𝑖 = 𝒩00 +𝒩20𝜌2 +𝒩40𝜌4 +𝒩60𝜌6 +𝒩80𝜌8 +… (1.26)

where 𝜌 is the perpendicular distance from the optical axis of the GRIN. A radial GRIN can
be conceptualised as a set of concentric tubes of different refractive indices and infinitesimal
radial thickness. A hypothetical radial-GRIN lens is illustrated in Figure 1.11. It is particularly
noteworthy that a quadratically varying radial GRIN has optical focusing power. Intuitively,
this focusing power can be conceptualised as the propagating wavefront moving faster/slower
(depending on the sign of optical power) at the optical axis compared to the edge of the
lens, leading to a curved, focusing wavefront. The optical power, 𝐾GRIN of a thin radial-GRIN
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medium [60, Chapter 8.3] is given by

𝐾GRIN = −2𝒩20 (𝜆) 𝑡, (1.27)

where 𝑡 is the GRIN lens thickness. Despite the fact that our definition of GRIN power contains
a thickness term, we still model it as a thin lens. This assumption is generally valid provided
that |𝐾GRIN|𝑡2 ≪ 1 [19, Chapter 4.1]. We note also that the index variation on the surfaces of
a radial-GRIN lens does not affect the optical power [52, Equation 61]. Because the medium
of a radial GRIN generates optical power, it is possible to generate a focusing lens with planar
surfaces. This also means we can define the power of a thin, radial-GRIN lens with curved
surfaces as the sum of surface power contributions and GRIN medium contributions as

𝐾lens = 𝐾surf + 𝐾GRIN = (𝑐1 − 𝑐2)(𝒩00 − 1) − 2𝒩20𝑡, (1.28)

where the axial index value, 𝒩00, contributes to the focal length of the surface (as it defines
the index of the surface in the paraxial region).

Figure 1.11: Diagram of a hypothetical radial-GRIN lens

Spherical-Gradient-Index Media

Spherical GRINs are one of the oldest types of GRIN used in an optical design; dating back
to the formulation of Maxwell’s fisheye lens in 1854 [10]. The inherent symmetry in spherical
GRIN distributions has been exploited to theorise a number of perfect geometric imaging
systems. Examples of such aberration free systems have been designed by Maxwell [10],
Luneburg [11] and Shafer [66]. More recently, special cases of “offset” spherical GRINs have
been manufactured, notably at Case Western Reserve [39], Rochester [67], and NRL [43]
(specifically for infrared chalcogenide glass). In general, these processes involve creating an
axial GRIN by fusion of multiple windows of constant, yet tailored, refractive index. This axial
GRIN is then moulded into a curved preform that is cut into a lens geometry. A hypothetical
spherical GRIN with geometry offset from the optical surfaces is shown in Figure 1.12.
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Figure 1.12: Diagram of a hypothetical spherical GRIN lens

Freeform-Gradient-Index Media

Within this work, we define freeform GRINs analogously to freeform surfaces, where the
GRIN distribution lacks any axis of symmetry. A notional freeform GRIN is illustrated in Figure
1.13. As with freeform surfaces, a very wide range of mathematical representations exist
that can define such a medium. Furthermore, due to the three-dimensional nature of GRIN
distributions, a number of sub-categories of freeform GRIN also exist. A radial GRIN with
additional odd terms in X and Y (perpendicular to the optical axis) fits the definition of a GRIN
lacking any axes of symmetry, but a GRIN with further odd polynomial terms along the z-
axis may be considered an even more general freeform GRIN. The variety of freeform GRIN
representations was discussed by Lippman and Yang [46].

Like with freeform surfaces, such GRINs are near-exclusively applied to systems that them-
selves lack rotational symmetry. The tilt and decentre of powered optical components creates
aberrations that are also asymmetric, with freeform degrees of freedom a notable means to
correct them. A notable aerospace application of such asymmetric systems is in head-mounted
and head-up displays for cockpit avionics. We discuss the application of freeform GRINs within
this setting in Chapter 6.

Figure 1.13: Diagram of a hypothetical freeform GRIN lens

Arbitrary-Gradient-Index Media

We reserve the term arbitrary for the most complex GRIN parts. With new manufacture
approaches, it is not a strict necessity that the GRIN distribution remain a continuous function
of position within the part. Novel components such as GRIN lens arrays and Fresnel lenses
are possible. With recently developed additively manufactured GRINs, arrays of components
can be generated where each lenslet is unique. Additive manufacture processes eliminate the
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need for advanced tooling, which is often a cost driver of such optical components and can be
prohibitive for smaller production runs. Arbitrary GRIN components have been demonstrated
in the design of GRINs for structured illumination [68].

1.7.3. Chromatic Aberrations and Gradient-Index Lenses

Typically, all refractive materials have variable refractive index with wavelength and GRIN
lenses are no exception. The transitional-blended nature of GRINs between two or more base
materials generates some interesting properties however. Like with homogeneous materials,
we can define a GRIN form of the Abbé V value [69, 70]. For a given material combination
this is defined as:

𝑉GRIN =
Δ𝑁(𝜆mid)

Δ𝑁(𝜆short) − Δ𝑁(𝜆long)
, (1.29)

for three defining sequential wavelengths, 𝜆short, 𝜆mid, and 𝜆long. This quantity may be highly
positively or negatively dispersive or even infinite in the case where a constant Δ𝑁 with wave-
length exists between the two defining GRIN materials (such a medium would contribute zero
primary chromatic aberration). Table 1.1 shows notional examples of GRIN material combi-
nations and their corresponding 𝑉GRIN values for the commonly defined Fraunhofer C, d, and
F lines¶. It is shown that combinations of common optical materials can generate a very wide
range of chromatic dispersion values. It follows from Equation 1.29 that the same dispersion

Material 1 𝑁D1 𝑉D1 Material 2 𝑁D2 𝑉D2 Δ𝑁 𝑉D GRIN
N-BK7 1.517 64.13 F4 1.616 36.60 0.100 11.35
S-FTM16 1.593 35.29 N-LAF21 1.788 47.46 0.195 -1012.92
N-PSK53A 1.618 63.36 LF5 1.581 40.83 0.037 -8.16

Table 1.1: Index, Abbé V values and GRIN properties for some example two-material combinations.

characteristics apply to the index gradient (by substituting Δ𝑁 for 𝑑𝑁/𝑑𝑠). This implies that
for a binary material combination, 𝑉GRIN is constant at all points within the GRIN medium,
irrespective of the GRIN distribution. Of particular note for a radial-GRIN lens, the distributed
Abbé number can be obtained by the quadratic GRIN coefficient such that

𝑉20GRIN =
𝒩20(𝜆mid)

𝒩20(𝜆short) −𝒩20(𝜆long)
. (1.30)

As the quadratic 𝒩20 GRIN coefficient is proportional to the power of a thin GRIN lens, we
may also use the quantity 𝐾GRIN/𝑉GRIN in the colour correction of a GRIN lens. A widely used
approach is to balance the optical power of the surfaces of a GRIN lens with that of the GRIN
medium, giving an achromatic condition for a radial-GRIN lens

𝐾surf
𝑉surf

+ 𝐾GRIN𝑉GRIN
= 0. (1.31)

Equation 1.30 is also valid for GRINs consisting of three or more materials, however this must
be considered with caution. In contrast to a binary GRIN combination, 𝑉GRIN of a ternary or
higher-order blend can be a function of position within the lens depending on the form of the
relative composition distribution of each material.
¶Note that these combinations are not representative of manufacture GRIN blends, but notional combinations that
illustrate key chromatic properties that can exist in GRIN materials.
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It is also possible to deduce the value of 𝑉GRIN for a given combination of two materials
for which limited data (only a reference refractive index and Abbé value) are known, which
allows a useful estimate for hypothetical GRIN combinations. Expanding Equation 1.29 for
two underlying materials denoted by the subscripts A and B gives

𝑉GRIN =
𝑁𝐴(𝜆mid) − 𝑁𝐵(𝜆mid)

𝑁𝐴(𝜆short) − 𝑁𝐵(𝜆short) − 𝑁𝐴(𝜆long) + 𝑁𝐵(𝜆long)
. (1.32)

Since

𝑉𝐴 =
𝑁𝐴(𝜆mid) − 1

𝑁𝐴(𝜆short) − 𝑁𝐴(𝜆long)
,

𝑉𝐵 =
𝑁𝐵(𝜆mid) − 1

𝑁𝐵(𝜆short) − 𝑁𝐵(𝜆long)
,

(1.33)

we can rearrange Equation 1.32 to give

𝑉GRIN =
𝑁𝐴(𝜆mid) − 𝑁𝐵(𝜆mid)

(𝑁𝐴(𝜆short) − 𝑁𝐴(𝜆long)) − (𝑁𝐵(𝜆short) − 𝑁𝐵(𝜆long))
. (1.34)

By rearranging Equation 1.33 in terms of 𝑁𝐴(𝜆short) − 𝑁𝐴(𝜆long) and 𝑁𝐵(𝜆short) − 𝑁𝐵(𝜆long), we
can therefore determine the Abbé V value of a two material combination in terms of 𝑁(𝜆mid)
and 𝑉 of each material as

𝑉GRIN =
𝑁𝐴(𝜆mid) − 𝑁𝐵(𝜆mid)
𝑁𝐴(𝜆mid)−1

𝑉𝐴
− 𝑁𝐵(𝜆mid)−1

𝑉𝐵

. (1.35)

Axial GRINs can also be used to correct chromatic aberration through a difference in dispersion
between the front and rear surfaces of the lens, whereby the balance in optical power between
the front and back surface can be used to solve for zero chromatic aberration as

𝐾s1
𝑉s1

+ 𝐾s2𝑉s2
= 0, (1.36)

where s1 and s2 represent the front and rear surfaces of the lens.

It is noted that general rotationally symmetric and freeform GRINs can have both axial and
radial index variation, and thus both of these mechanisms of colour correction can occur in a
single lens.

1.7.4. Monochromatic Aberrations of Gradient-Index Lenses

As previously noted, the aberration coefficients of optical systems allow the designer to gain
significant insight into the inner workings of their designs. GRIN aberration theory has been
addressed by several authors. Originally Buchdahl extended his theory of quasi-invariants to
rotationally symmetric homogeneous media [16][Appendix F]. This was then expanded on by
Sands [18] to provide Seidel aberration coefficients for both the surfaces and medium of GRIN
distributions with the general-rotationally-symmetric form indicated in Equation 1.23.

The calculation of aberrations for GRIN components carries additional complexity in that
both the surfaces and medium (or ray transfer) of the GRIN contribute to the total aberration.
Surface contributions to the third-order aberrations are proportional to both axial and radial
GRIN terms at the surface vertex (𝑑𝒩0/𝑑𝑧 and 𝒩2). Monochromatically, these are broadly
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equivalent to the aberrations generated by an aspheric surface. The expressions for the
ray-transfer contributions of the GRIN aberration theory developed by Buchdahl and Sands
are integrals that in the majority of cases must be solved numerically. Moore produced a
computational procedure for the calculation of GRIN aberrations based on said integrals [20].
More recently, formulas for the Seidel aberrations of GRINs were produced by Bociort for axial
and radial GRIN lenses [19]. These contributions from the medium must be added to the
surface contributions to obtain the total aberrations of the optical system. Contributions to
the index gradient in the fourth power of aperture also act in a similar manner to aspheric
coefficients.

We discuss in detail Seidel aberration calculation for both optical surfaces and media in
Chapter 3.
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2
Mathematical Representations of
Inhomogeneous Optical Media

The contents of this chapter are derived and expanded from “Optical design of multi-material,
general rotationally symmetric GRIN lenses - Proc SPIE 10998, 2019” [1, AMBproc].

2.1. Abstract

We present a model for the optical design of gradient-index (GRIN) media of general rota-
tionally symmetric form, based on any number of constituent materials. This is achieved by
modelling the relative composition of GRIN constituent materials as a function of space in a
form that can be readily converted to refractive index and its derivatives, while being suitable
for optimisation in lens design software. This model is used in the optical design of a singlet
GRIN eyepiece where we demonstrate equivalent performance to a multi-element homoge-
neous design. We also show the potential of such media for correction of both chromatic and
monochromatic aberrations by demonstration of a GRIN singlet with performance exceeding
that of an apochromatic cemented triplet. We conclude that representation of generalised
GRIN media by relative composition shows the potential for a powerful new class of imaging
systems where the bulk of refractive power and aberration control is provided by the GRIN
medium.

2.2. Refractive Index Distribution and Representation

The refractive index distribution is, quite naturally, a key defining feature of a GRIN lens. The
choice of index distribution determines what aberrations are affected by the GRIN medium,
and has very significant implications for how such a lens may be fabricated. A further nuance
in the definition of GRIN lenses must also be considered. A given index distribution is described
by a mathematical representation. It is possible for multiple mathematical representations to
describe the same GRIN distribution. By analogy, it is possible to describe an aspheric surface
using a range of mathematical surface representations (e.g. conventional asphere, Zernike
polynomial, Forbes polynomial). In this chapter, we explore a GRIN representation for general
rotationally symmetric GRINs consisting of multiple materials. We further impose that this
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representation should be amenable to both optimisation and manufacture of the GRIN lens
design.

2.3. Detailed Requirements for a Generalised Gradient-Index
Representation

We specify the requirements for a generalised GRIN representation as follows.

Continuous Whilst it is physically valid for optical rays to cross a discon-
tinuous boundary (Snell’s law), we cannot solve the GRIN
raytracing equations at such a point as the index gradient is
discontinuous. Any such discontinuities must be modelled as
surfaces.

Differentiable Similar to the requirement for continuity, the index medium
must be spatially differentiable at all points within the clear
aperture or the GRIN raytracing equation will not be accu-
rately solved by the raytracing software. Whilst such a dis-
continuity in the derivative is physically possible, it must again
be defined as an optical surface to be modelled correctly.

Suitable for the design
of optical systems

We would ultimately like our representation to be put to use
to design optical systems. It must therefore be suitable for
controlling the paraxial optical properties and aberrations of
the system.

Suitable for optimisa-
tion

Whilst a large number of different GRIN representations exist
that can describe the same index distribution, some represen-
tations may be significantly better conditioned than others in
convergence to a solution via numerical optimisation.

Definable in terms of
the properties of com-
ponent materials

GRIN media may be regarded as a spatially varying combina-
tion of a number of different component materials. We would
like our GRIN representation to describe such a medium in
terms of these components, and (where necessary) account
for any non-linearity in the aggregate refractive index caused
by interactions between the base materials.

2.4. Combination of Component Materials

The ability to fabricate an arbitrary GRIN distribution from multiple materials generates chal-
lenges in how the composite optical material is represented mathematically, as the example
in Figure 2.1 shows. We consider two hypothetical GRINs, consisting of two and three ma-
terials respectively that are defined by the red points in the Abbé diagram, where N is the
refractive index and V is the Abbé V value. In Figure 2.1 (a), we see that for two materials,
the composite material sits on a curve in N-V space between the two base materials. There
is a monotonic relationship between the refractive index at a given reference wavelength and
the relative composition of the GRIN. The refractive index data is therefore useful to both the
lens designer and the lens fabricator as it contains sufficient information for both raytracing
and manufacture. For a three-material system however, refractive index at a reference wave-
length cannot fully characterise the optical material, as a range of different dispersion values
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2.4. Combination of Component Materials

Figure 2.1: (a) Abbé diagram showing transition between two materials. (b) Abbé diagram showing the index and
dispersion region covered by three materials.

are available to the designer for a given index value. In Figure 2.1 (b) we see that the range
of possible N and V values covers the shaded blue area in N-V space. For a three-material
GRIN system, this might be satisfactorily addressed in design by expressing composition of
the GRIN in terms of both index and dispersion, but this approach carries some significant
disadvantages. Firstly, we lose information about variation in partial dispersion from the base
materials, which is required information to model and correct secondary spectrum. Secondly,
an approach based on varying index and its derivatives is less amenable to optimisation, with
a complex set of boundary constraints required for three or more materials to prevent the
optimisation from returning an invalid N and V combination outside the blue shaded area.
Such a result would need to consist of a negative fraction of a given base material, and is
therefore unphysical. Such complex inequality constraints also generate a significant risk of
the optimisation becoming ill-conditioned and unstable. The difficulties here outlined become
further compounded for GRINs consisting of four or more base materials.

GRIN lens design relies heavily on wise selection of a mathematical representation that is
amenable to optimisation and analysis, and that enables design for manufacture, which in this
context means we are able to express and optimise the optical design in alignment with a cho-
sen manufacture process, rather than a design that is optimal in the purely theoretical sense.
The eponymous GRIN lens designs of Luneburg and Maxwell [10, 11] are counter-examples
of design-for-manufacture. These designs both provide aberration free imaging, but were not
designed with a fabrication process in mind and thus until very recently remained theoretical
curiosities at optical wavelengths [35]. Broadly, without constraints on material properties, op-
timised GRIN lenses tend towards very large Δ𝑁 values and non-physical chromatic dispersion
values that have little prospect of manufacture. Conversely, a representation that accounts
for design for manufacture allows us to reach a solution that has the optimal performance
the fabrication process can provide. It also helps us to understand the effects of variability
in the manufacture process and tolerances it may introduce. The PhD thesis of Bentley [71,
chapter 6] shows an example of this, with a design-for-manufacture approach employed in
the optical design of a GRIN-based compact disc scanning lens. Two designs were produced,
one with ideal theoretical performance, the other in terms of a GRIN diffusion model that
strongly correlated with the manufacture process. Whilst the theoretically ideal design had
slightly better performance, only the diffusion model based design could be manufactured.

Representations for a GRIN consisting of more than two materials were proposed by Mait
et al. [72] and Beadie et al. [73], where the GRIN material is represented as a sum of partial
compositions of the base materials, with the proportion of each base material required to add
up to unity. Importantly, the representation described the GRIN medium in a form that is
meaningful to an optical fabricator (synthesis), but similarly can be converted to a value of
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refractive index and its gradient that is required to solve the differential ray tracing equations
for GRIN media (analysis). Herein we propose a slight modification to Mait & Beadie’s rep-
resentation, with the relative fractions of each material normalised to allow greater flexibility
in optimisation. More recently, Desai et al. [74] showed an example of a quaternary GRIN
singlet medium, which using a material space enabled by 3D-printed nanoparticle-doped inks
yielded a single lens corrected for chromatic aberration at five individual wavelengths.

In this chapter we show that it is possible to obtain the first-order thin-lens properties of
multi-material GRIN media from a relative composition model. Furthermore, we show it is
possible to decompose the first-order properties of a multi-material radial GRIN into those
contributed by each of the constituent materials provided we can make some assumptions
about the nature of the effective medium theory governing the combination of the lens mate-
rials. We call such a decomposition partial power. This technique yields insight into the means
by which GRIN lenses can correct for chromatic aberrations by reformulating the material se-
lection problem in a similar form to the thin-lens theory that can be used for homogeneous
lenses. The resulting benefit of this is an efficient means to generate starting solutions for the
design of achromatic GRIN lenses.

2.5. Representation of an N-Material Gradient-Index Medium
by Relative Composition

2.5.1. Selection of a Coordinate System

Figure 2.2 shows the coordinate system for all formulae and optical designs in this chapter.
We adopt a right-handed coordinate system where the z-axis is defined as the optical axis.
We also define a quantity, 𝜌, where 𝜌2 = 𝑥2 + 𝑦2 and represents the radial distance from
the optical axis. Such a coordinate system is amenable to use within common optical design
software packages.

2.5.2. Effective Medium Assumptions

Our choice of effective medium theory dictates how index scales for intermediate compositions
between materials in our GRIN. This requires detailed consideration of the composition of the
GRIN material at a sub-wavelength level, such as the size, shape and density of refractive-
index-modifying dopants. This detail lies beyond the scope of this work. Rather we make

Y

X

Z

ρ

Figure 2.2: Defining coordinate system for general GRIN representations in this chapter. A notional GRIN ray
propagating along the positive z-axis is shown in green.
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the assertion that provided we can express the material in terms of a quantity that scales
linearly with relative composition, and have a means to convert said quantity to refractive
index, then the approach is useful. For this work, we consider two potential effective medium
approaches: weighted average square refractive index (volumetric average permittivity for
dielectric materials), and weighted average refractive index. Other models such as Maxwell-
Garnett are also feasible to model, albeit more mathematically complex. In each case we
show that it is possible to convert relative composition to a refractive index polynomial. In the
simpler case of combination by average index, we may go even further and decompose the
focal power into contributions by material. We discuss this concept further in Section 2.5.5.

In the literature we note two index scaling approaches in use by GRIN manufacturers. The
average permittivity approach is adopted by Peak Nano LLC [75], whereas a linear index
scaling with volumetric dopant fraction is observed by NanoVox [29].

2.5.3. Derivation of an Average-Refractive-Index Relative Composition Model

We define our GRIN as a combination of materials from a set of𝑀 base materials with refractive
indices

{𝑁𝜇; 1 ≤ 𝜇 ≤ 𝑀}. (2.1)

We define a quantity 𝑚𝜇, which is a compositional coefficient of material 𝜇. The refractive
index of the material mixture is then defined by

𝑁(𝜌, 𝑧) = 1
𝑚𝑇

𝑀

∑
𝜇=1

𝑁𝜇𝑚𝜇(𝜌, 𝑧). (2.2)

where 𝑚𝑇(𝜌, 𝑧) represents the sum of all compositional coefficients at a given position, given
by

𝑚𝑇(𝜌, 𝑧) =
𝑀

∑
𝜇=1

𝑚𝜇(𝜌, 𝑧). (2.3)

In the case of a given material, 𝑞, if 𝑚𝑞 ≠ 0 and all other 𝑚𝜇 are zero, the refractive index
is 𝑁𝑞. We define 𝑚𝜇(𝜌, 𝑧) to be in the general rotationally symmetric form of Equation 1.23,
given by

𝑚𝜇(𝜌, 𝑧) =
∞

∑
𝑖=0,2,4…

∞

∑
𝑗=0
𝑚𝜇𝑖𝑗𝜌𝑖𝑧𝑗 . (2.4)

Our GRIN representation now provides two essential pieces of information. It provides relative
composition data as a function of space for fabrication, as well as refractive index as a function
of space for analysis. Such a representation has the potential to be useful to both the lens
designer and the lens fabricator. We can also obtain some of the first-order and paraxial
properties of a lens with such a distribution. Properties such as the GRIN medium optical
power may provide useful diagnostic information to the designer. By substitution of Equations
2.3 into 2.2, we obtain

𝑁(𝜌, 𝑧)
𝑀

∑
𝜇=1

𝑚𝜇(𝜌, 𝑧) =
𝑀

∑
𝜇=1

𝑁𝜇𝑚𝜇(𝜌, 𝑧). (2.5)
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Substituting 𝑁(𝜌, 𝑧) for its definition in Equation 1.23, 𝑚𝜇(𝜌, 𝑧) for its definition in Equation
2.4 and expanding with respect to 𝜌 gives

𝑀

∑
𝜇=1

∞

∑
𝑖=0,2,4…

𝒩𝑖(𝑧)𝜌𝑖
∞

∑
𝑙=0,2,4…

𝑚𝜇𝑙(𝑧)𝜌𝑙 =
∞

∑
𝑖=0,2,4…

𝑀

∑
𝜇=1

𝑁𝜇𝑚𝜇𝑖(𝑧)𝜌𝑖 , (2.6)

where

𝒩𝑖(𝑧) =
∞

∑
𝑗=0
𝒩𝑖𝑗𝑧𝑗 , and 𝑚𝜇𝑖(𝑧) =∑

𝑗
𝑚𝜇𝑖𝑗𝑧𝑗 . (2.7)

By use of the Cauchy product of two infinite series given by

∞

∑
𝑝=0

𝑎𝑝
∞

∑
𝑞=0

𝑏𝑞 =
∞

∑
𝑟=0

𝑟

∑
𝑝=0

𝑎𝑝𝑏𝑟−𝑝, (2.8)

we rearrange Equation 2.6 as

∞

∑
𝑖=0,2,4…

𝑖

∑
𝑘=0,2,4…

𝑀

∑
𝜇=1

𝒩𝑘(𝑧)𝑚𝜇𝑖−𝑘(𝑧)𝜌𝑖 =
∞

∑
𝑖=0,2,4…

𝑀

∑
𝜇=1

𝑁𝜇𝑚𝜇𝑖(𝑧)𝜌𝑖 . (2.9)

Then, by collecting terms in 𝜌𝑖, we obtain an expression for the radial GRIN coefficents as a
function of 𝑧

𝑖

∑
𝑘=0,2,4…

𝑀

∑
𝜇=1

𝒩𝑘(𝑧)𝑚𝜇𝑖−𝑘(𝑧) =
𝑀

∑
𝜇=1

𝑁𝜇𝑚𝜇𝑖(𝑧). (2.10)

It is of particular use to expand the first two terms of Equation 2.10, as they yield the paraxial
properties of a GRIN medium [76]. For a GRIN consisting of 𝑀 base materials we have

𝒩0(𝑧) =
∑𝑀𝜇=1𝑁𝜇𝑚𝜇0(𝑧)
∑𝑀𝜇=1𝑚𝜇0(𝑧)

, (2.11)

𝒩2(𝑧) =
∑𝑀𝜇=1𝑁𝜇𝑚𝜇2(𝑧) −𝒩0(𝑧)∑

𝑀
𝜇=1𝑚𝜇2(𝑧)

∑𝑀𝜇=1𝑚𝜇0(𝑧)
. (2.12)

We make use of Equations 2.11 and 1.11 to deduce the power contribution from the lens
surfaces, whilst we substitute Equation 2.12 into Equation 1.27 to obtain the local optical
power of the GRIN medium*. Further simplification of these formulae is obtained in the case
where 𝑚𝑇(𝜌, 𝑧) = 1 at all points within the GRIN medium. In this case, where 𝜌 = 0

𝑀

∑
𝜇=1

𝑚𝜇0 = 1. (2.13)

*This approach is valid to calculate optical power of a thin region within a general GRIN where𝒩2 and ray heights
do not vary greatly. For a thick, generalised GRIN, a full paraxial raytrace is required to robustly calculate the
focal power of the entire lens.
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At non-zero values of 𝜌 it follows that
𝑀

∑
𝜇=1

𝑚𝜇2 = 0. (2.14)

In this case, the first two terms of Equation 2.10 in 𝜌 simplify further to

𝒩0(𝑧) =
𝑀

∑
𝜇=1

𝑁𝜇𝑚𝜇0(𝑧), (2.15)

𝒩2(𝑧) =
𝑀

∑
𝜇=1

𝑁𝜇𝑚𝜇2(𝑧). (2.16)

Binary and Ternary Blends

Some common cases of GRIN material blends concern mixtures of two and three base mate-
rials. These combinations are frequently referred to in this work, where we define the binary
case as 𝑀 = 2, 𝜇 = 1 = 𝐴, 𝜇 = 2 = 𝐵, and the ternary case as 𝑀 = 3, 𝜇 = 1 = 𝐴, 𝜇 = 2 =
𝐵, 𝜇 = 3 = 𝐶. The refractive index as a function of position of respective binary and ternary
blends is given by

𝑁(𝜌, 𝑧) = 𝑁𝐴𝑚𝐴(𝜌, 𝑧) + 𝑁𝐵𝑚𝐵(𝜌, 𝑧)
𝑚𝐴(𝜌, 𝑧) + 𝑚𝐵(𝜌, 𝑧)

, (2.17)

𝑁(𝜌, 𝑧) = 𝑁𝐴𝑚𝐴(𝜌, 𝑧) + 𝑁𝐵𝑚𝐵(𝜌, 𝑧) + 𝑁𝐶𝑚𝐶(𝜌, 𝑧)
𝑚𝐴(𝜌, 𝑧) + 𝑚𝐵(𝜌, 𝑧) + 𝑚𝐶(𝜌, 𝑧)

. (2.18)

The 𝒩0 coefficients of such blends are for the binary and ternary respective cases are given
by

𝒩0(𝑧) =
𝑁𝐴𝑚𝐴0(𝑧) + 𝑁𝐵𝑚𝐵0(𝑧)
𝑚𝐴0(𝑧) + 𝑚𝐵0(𝑧)

, (2.19)

𝒩0(𝑧) =
𝑁𝐴𝑚𝐴0(𝑧) + 𝑁𝐵𝑚𝐵0(𝑧) + 𝑁𝐶𝑚𝐶0(𝑧)

𝑚𝐴0(𝑧) + 𝑚𝐵0(𝑧) + 𝑚𝐶0(𝑧)
, (2.20)

whilst the 𝒩2 coefficients are given by

𝒩2(𝑧) =
𝑁𝐴𝑚𝐴2(𝑧) + 𝑁𝐵𝑚𝐵2(𝑧) −𝒩0(𝑧) [𝑚𝐴2(𝑧) + 𝑚𝐵2(𝑧)]

𝑚𝐴0(𝑧) + 𝑚𝐵0(𝑧)
, (2.21)

𝒩2(𝑧) =
𝑁𝐴𝑚𝐴2(𝑧) + 𝑁𝐵𝑚𝐵2(𝑧) + 𝑁𝐶𝑚𝐶2(𝑧) −𝒩0(𝑧) [𝑚𝐴2(𝑧) + 𝑚𝐵2(𝑧) + 𝑚𝐶2(𝑧)]

𝑚𝐴0(𝑧) + 𝑚𝐵0(𝑧) + 𝑚𝐶0(𝑧)
. (2.22)

Applying the condition 𝑚𝑇(𝜌, 𝑧) = 1 yields further simplified expersions by applying Equations
2.13, 2.14, 2.15, and 2.16. In this case the refractive index as a function of position is given
by

𝑁(𝜌, 𝑧) = 𝑁𝐴𝑚𝐴(𝜌, 𝑧) + 𝑁𝐵𝑚𝐵(𝜌, 𝑧), (2.23)

𝑁(𝜌, 𝑧) = 𝑁𝐴𝑚𝐴(𝜌, 𝑧) + 𝑁𝐵𝑚𝐵(𝜌, 𝑧) + 𝑁𝐶𝑚𝐶(𝜌, 𝑧), (2.24)

with axial coefficients
𝒩0(𝑧) = 𝑁𝐴𝑚𝐴0(𝑧) + 𝑁𝐵𝑚𝐵0(𝑧), (2.25)

𝒩0(𝑧) = 𝑁𝐴𝑚𝐴0(𝑧) + 𝑁𝐵𝑚𝐵0(𝑧) + 𝑁𝐶𝑚𝐶0(𝑧), (2.26)
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and likewise quadratic radial index coefficients

𝒩2(𝑧) = 𝑁𝐴𝑚𝐴2(𝑧) + 𝑁𝐵𝑚𝐵2(𝑧), (2.27)

𝒩2(𝑧) = 𝑁𝐴𝑚𝐴2(𝑧) + 𝑁𝐵𝑚𝐵2(𝑧) + 𝑁𝐶𝑚𝐶2(𝑧). (2.28)

2.5.4. Derivation of an Average Permittivity Relative Composition Model

By similar logic to that employed in Section 2.5.3, we can represent a multi-material GRIN
by the average of the square of the refractive index of the constituent materials (relative
permittivity for dielectric base materials). This represents an alternative to the linear index
combination outlined in Chapter 2.5.3 and is dependent on the physics of how GRIN basis
materials combine for a given manufacture process. Such an approach adapts the optical
design process to the manufacture process, enabling improved design for manufacture by
ensuring designs are representative of what can be made. For the same material set denoted
in Equation 2.1, the compositional scaling law for a GRIN based on average relative permittivity
is given by

𝑁2 = 𝜖𝑒𝑓𝑓 =
∑𝑀𝜇 𝑚𝜇𝜖𝜇
∑𝑀𝜇 𝑚𝜇

, (2.29)

where 𝜖𝑖 represents the permittivity of the µth material. We seek a GRIN distribution of the
form

𝑁2 (𝑧, 𝜌) = 𝜂0(𝑧) + 𝜂2(𝑧)𝜌2 + 𝜂4(𝑧)𝜌4 +… . (2.30)

This form of GRIN distribution is amenable to the calculation of optical power and the Seidel
aberrations [77]. We use the letter 𝜂(𝜌, 𝑧) to distinguish coefficients in permittivity from the
𝒩(𝜌, 𝑧) terms used in GRINs with a weighted average index combination law. Following an
analogous derivation to that of Chapter 2.5.3 we obtain the following coefficients for 𝜂0 and
𝜂2:

𝜂0(𝑧) =
∑𝑀𝜇=1 𝜖𝜇𝑚𝜇0(𝑧)
∑𝑀𝜇=1𝑚𝜇0(𝑧)

, (2.31)

𝜂2(𝑧) =
∑𝑀𝜇=1 𝜖𝜇𝑚𝜇2(𝑧) − 𝜂0(𝑧)∑

𝑀
𝜇=1𝑚𝜇2(𝑧)

∑𝑀𝜇=1𝑚𝜇0(𝑧)
. (2.32)

These two coefficients in particular are useful as they fully describe the paraxial properties of
the GRIN medium . The 𝜂0 and 𝜂2 coefficients describe the optical power of a thin radial-GRIN
lens of thickness, 𝑡, in N-squared form [78], given by

𝐾GRIN = −
𝜂2
√𝜂0

𝑡. (2.33)

2.5.5. Partial Power

The linear index compositional scaling rule of Equation 2.2 allows significant insight into the
properties of the GRIN by separating the optical power into contributions by each of the
component materials. For a multi-material GRIN, we suppose that it can be replaced by a
stack of thin, radial-GRIN lenses in contact, with optical power as given by Equation 1.28.
Each lens of this stack consists of only one component material of the GRIN, with the others
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Figure 2.3: Separation of a ternary-material GRIN (left) into three thin GRIN lenses of identical geometry that
blend between a given component material and air.

replaced by air (N=1). Each lens in the stack has the same thickness and surface curvatures.
This hypothetical lens is illustrated in Figure 2.3 for a ternary blend. We shall show that
the combined optical power of this stack of thin GRIN lenses is equivalent to the combined
multi-material GRIN. We assume 𝑚𝑇 = 1 to simplify the derivation through use of Equations
2.15 and 2.16, which we sum over all materials after making all but a given material 𝜈 have
refractive index 𝑁 = 1. The power of the 𝜈th lens in this thin lens stack is given by

𝐾𝜈 = (𝑐1 − 𝑐2) [𝑁𝜈𝑚𝜈0 +
𝑀

∑
𝜇=1

𝑚𝜇0 −𝑚𝜈0 − 1] − 2𝑡 [𝑁𝜈𝑚𝜈2 +
𝑀

∑
𝜇=1

𝑚𝜇2 −𝑚𝜈2] . (2.34)

Using equations 2.13 and 2.14 to simplify, then summing over all 𝜈 we obtain
𝑀

∑
𝜈=1

𝐾𝜈 = (𝑐1 − 𝑐2)
𝑀

∑
𝜈=1
[𝑁𝜈𝑚𝜈0 −𝑚𝜈0] − 2𝑡

𝑀

∑
𝜈=1
[𝑁𝜈𝑚𝜈2 −𝑚𝜈2], (2.35)

where the optical power contribution from material 𝜈 is
𝐾𝜈 = (𝑁𝜈 − 1) [𝑚𝜈0(𝑐1 − 𝑐2) − 2𝑡𝑚𝜈2] . (2.36)

We refer to the contribution of each material as its partial power.

Partial power shows that the optical power of a multi-material GRIN lens can be represented
as the sum of individual material contributions. These formulae represent a simple means for
a designer to gain insight into the behaviour of a multi-material GRIN system, particularly
through the use of common thin-lens theory for achromatic lenses. By use of Equations 1.14
and (if required) 1.19, we can determine whether the material combination in a GRIN is useful
for correction of primary and secondary chromatic aberrations. Crucially, this can be achieved
without resorting to more time-consuming finite raytracing and detailed optical design by
solving the achromatic condition for a set of 𝑀 given materials, which is given by

𝑀

∑
𝜇=1

𝐾𝜇
𝑉𝜇
= 0. (2.37)

2.6. Optical Designs Using a Relative Composition
Representation

A key desirable property of our GRIN representations is that they be amenable to optimisation
in optical design software. In this section we demonstrate some examples of the relative
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composition approach applied to optical design problems. We first demonstrate the simplified
case of a two-material GRIN. We then expand the approach to a three-material radial GRIN
to achieve apochromatic correction, before demonstrating optimisation of GRIN systems with
multiple materials and a generalised rotationally symmetric distribution.

2.6.1. Design of a Two-Material Gradient-Index Achromat

Figure 2.4: Geometry of a two-material radial-GRIN lens

We first consider the simplified case of a two-material radial GRIN (𝑀=2, 𝜇=1=𝐴, 𝜇=2=
𝐵). Prior to optimisation, we generate an analytical starting solution by calculating the relative
composition of the lens as a function of 𝜌 and the difference in the lens surface curvatures.
We assume that the lens consists entirely of material A along the optical axis and entirely of
material B at the aperture edge, 𝜌max. The radial GRIN distribution is independent of 𝑧. It
is also assumed to be quadratic and therefore terms in 𝜌4 or greater are zero. The lens has
thickness 𝑡 and surface curvatures 𝑐1 and 𝑐2. This GRIN geometry is illustrated in Figure 2.4.
The refractive index is given by Equation 2.23 where the coefficients for material A are

𝑚𝐴(𝜌) = 𝑚𝐴0 +𝑚𝐴2𝜌2,
𝑚𝐴0 = 1,

𝑚𝐴2 =
−1
𝜌2max

,
(2.38)

and for material B

𝑚𝐵(𝜌) = 𝑚𝐵0 +𝑚𝐵2𝜌2,
𝑚𝐵0 = 0,

𝑚𝐵2 =
1
𝜌2max

.
(2.39)

The partial power of materials A and B is obtained by substitution of the concentration co-
efficients into Equation 2.36 for each respective material. We obtain partial powers for each
material given by

𝐾𝐴 = (𝑁𝐴 − 1) [(𝑐1 − 𝑐2) +
2𝑡
𝜌max

] ,

𝐾𝐵 = −
2𝑡(𝑁𝐵 − 1)
𝜌2max

.

(2.40)
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Summing these partial powers gives an expression for the optical power of the lens

𝐾lens = (𝑐1 − 𝑐2)(𝑁𝐴 − 1) +
2𝑡(𝑁𝐴 − 𝑁𝐵)

𝜌2max
. (2.41)

We define an achromatic GRIN lens by invoking the achromatic condition of Equation 2.37
using the Abbé V values of the base materials, 𝑉𝐴 and 𝑉𝐵. The Abbé V values effectively
define the waveband of our system. In this case, the system defining wavelengths are 633,
546 and 436 nm. This condition gives us sufficient information to generate equations for the
lens thickness, 𝑡 and the difference in lens curvatures, 𝜏 = (𝑐1 − 𝑐2), noting that only the
difference in surface curvatures determines focal length of a thin lens. The lens thickness is
given by

𝑡 = 𝜌2max𝐾lens
2 (𝑁𝐵 − 1) (

𝑉𝐴
𝑉𝐵
− 1)

(2.42)

𝜏 (𝑁𝐴 − 1) = 𝐾lens [1 −
(𝑁𝐴 − 𝑁𝐵)

(𝑁𝐵 − 1) (
𝑉𝐴
𝑉𝐵
− 1)

] (2.43)

Selection of a total power, 𝐾lens = 0.05 and semi-diameter, 𝜌max = 5 along with hypothetical
lens materials** N-BK7 and SF6 return the GRIN and surface curvature parameters in Table
2.1.

𝜌max 5.0 mm
𝐾lens 0.05 mm-1

𝑡 0.465 mm
𝜏 0.117 mm-1

𝑅1 = −𝑅2 17.030 mm
𝐾GRIN -0.011 mm-1

𝐾surf 0.061 mm-1

𝐾𝐴 0.080 mm-1

𝐾𝐵 -0.030 mm-1

𝑀𝐴0 1.00
𝑀𝐴2 -0.040 mm-2

𝑀𝐵0 0.000
𝑀𝐵2 0.040 mm-2

Table 2.1: Lens parameters for an N-BK7 and SF6 achromatic GRIN lens, derived via spreadsheet calculation

This first-order lens model was constructed in the CodeV optical design software, as shown
in Figure 2.5 (a). The value of 𝜏 was converted to individual surface curvatures by assuming
a biconvex lens geometry, namely 𝑐1 = −𝑐2. Our GRIN employs an average-index effective
medium model. We see excellent agreement for the focal power versus wavelength of an
N-BK7, SF6 GRIN lens with linear index scaling, as shown in Figure 2.6. It is noted that
the first-order model returns a very thin GRIN lens with negative edge thicknesses. This is

**Materials are selected to demonstrate the theory. This combination has not been experimentally generated.
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addressed in our CodeV model by increasing the thickness inversely to the GRIN 𝑚𝐴2 and
𝑚𝐵2 coefficients. Alternatively, edge thickness can be increased through optimisation by the
imposition of weighted constraints. The coefficients and thickness of Figure 2.5 (a) were
scaled by a factor of 1/5 and 5 respectively. The starting lens of 2.5 (a) has significant
spherical aberration, but this is readily reduced by optimisation of the bending factor and
GRIN coefficients of the lens. Optimisation, with variable radii of curvature and 𝑚𝐴0, 𝑚𝐴2,
𝑚𝐵0 and 𝑚𝐵2 coefficients returns the optimised design in Figure 2.5 (b). Performance of the
optimised lens is limited by fifth-order spherical aberration balanced by third-order spherical
aberration, with some residual axial colour.

Figure 2.5: (a) N-BK7 SF6 GRIN singlet from first-order model with thickness and GRIN coefficients scaled to
avoid negative edge thickness. The transverse ray errors for this starting solution show well-corrected chromatic
aberration and residual primary spherical aberration. (b) Optimised singlet corrected for chromatic and spherical
aberration (note change of scale).
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Figure 2.6: Normalised power vs wavelength for first-order calculation (left) and CodeV model (right).

2.6.2. Design of a Three-Material Radial-Gradient-Index Apochromat

We apply the relative composition model to the optical design of an apochromatic GRIN singlet
lens. We will then compare the construction and performance of this GRIN lens to a cemented
triplet design consisting of the same materials. The specification to which these lenses are
designed is listed in Table 2.2.

The apochromatic condition is met when the focal length is the same at three distinct wave-
lengths. Achieving this condition generally requires the use of three separate materials (or
alternatively two materials with equivalent partial dispersion). We model our apochromatic
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F/# 6.0
Focal length 50 mm
Waveband 435.8-632.8 nm, uniform weighted
Semi-FOV 0.25°
RMS spot size to be minimised

Table 2.2: Apochromatic lens specification.

system as three thin lenses in contact, consisting of materials, A, B, and C, each providing
their own optical power contribution, given by

𝐾lens(𝜆) = 𝐾𝐴(𝜆) + 𝐾𝐵(𝜆) + 𝐾𝐶(𝜆), (2.44)

where 𝐾𝐴(𝜆), 𝐾𝐵(𝜆), 𝐾𝐶(𝜆) are the optical powers of materials A, B, and C respectively, effected
either via surface curvature or by a quadratically varying radial GRIN medium. We can expect
equivalent colour correction via either route as chromatic aberration is a first-order property of
the material selection. We now define three distinct wavelengths, 𝜆1, 𝜆2, and 𝜆3 which form
the waveband of our apochromatic system. The apochromatic condition is given by

𝐾lens(𝜆1) = 𝐾lens(𝜆2) = 𝐾lens(𝜆3). (2.45)

From Equation 2.36, we observe that for both GRIN partial power and homogeneous lenses,
the optical power is proportional to (𝑁(𝜆) − 1), with all other terms in the equation being
independent of wavelength. We therefore define an optical power coefficient, 𝒦, which for
the 𝜈th material is given by

𝒦𝜈 =
𝐾𝜈

𝑁𝜈 − 1
. (2.46)

For a thin, homogeneous lens
𝒦𝜈 = 𝑐1 − 𝑐2 = 𝜏, (2.47)

and for material 𝜈 within a GRIN lens

𝒦𝜈 = 𝑚𝜈0(𝑐1 − 𝑐2) − 2𝑡𝑚𝜈2 = 𝑚𝜈0𝜏 − 2𝑡𝑚𝜈2. (2.48)

The optical power of each lens in the three-material apochromat in terms of 𝒦 is given by

𝐾𝐴(𝜆) = 𝒦𝐴(𝑁𝐴(𝜆) − 1)
𝐾𝐵(𝜆) = 𝒦𝐵(𝑁𝐵(𝜆) − 1)
𝐾𝐶(𝜆) = 𝒦𝐶(𝑁𝐶(𝜆) − 1).

(2.49)

We can now find𝒦𝐴,𝒦𝐵, and𝒦𝐶 to solve Equation 2.45 by solving a system of three equations,
which expressed as a matrix equation is given by

⎛
⎜⎜

⎝

𝑁𝐴(𝜆1) − 1 𝑁𝐵(𝜆1) − 1 𝑁𝐶(𝜆1) − 1

𝑁𝐴(𝜆2) − 1 𝑁𝐵(𝜆2) − 1 𝑁𝐶(𝜆2) − 1

𝑁𝐴(𝜆3) − 1 𝑁𝐵(𝜆3) − 1 𝑁𝐶(𝜆3) − 1

⎞
⎟⎟

⎠

⎛
⎜⎜

⎝

𝒦𝐴

𝒦𝐵

𝒦𝐶

⎞
⎟⎟

⎠

=
⎛
⎜⎜

⎝

𝐾lens

𝐾lens

𝐾lens

⎞
⎟⎟

⎠

. (2.50)

We solve 2.50 for a known apochromatic combination of three Schott glasses: N-BK7, N-SF6
and N-KZFS8†. The residual chromatic aberration is shown in Figure 2.7. Partial powers for
†As before, this material blend is notional to demonstrate the theory and is not based on fabricated GRIN material.
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each material are listed in the central column of Table 2.4. Further calculation is then required
to convert partial powers to values of 𝑐1, 𝑐2, 𝑡, and 𝑚𝜈0, 𝑚𝜈2 for each constituent material.
Firstly, the value of 𝜏 is calculated. We divide Equation 2.36 by 𝑁𝜈 − 1 for each material to
obtain 𝒦𝜈, then sum over the three materials to obtain

𝒦𝐴 +𝒦𝐵 +𝒦𝐶 = 𝜏 (𝑚𝐴0 +𝑚𝐵0 +𝑚𝐶0) − 2𝑡 (𝑚𝐴2 +𝑚𝐵2 +𝑚𝐶2) , (2.51)

where because 𝑚𝐴0+𝑚𝐵0+𝑚𝐶0 = 1 and 𝑚𝐴2+𝑚𝐵2+𝑚𝐶2 = 0, we can simplify the bracketed
terms to solve for 𝜏, given by

𝜏 = 𝒦𝐴 +𝒦𝐵 +𝒦𝐶 . (2.52)

As with the two-material case, we simplify selection of the surface curvatures by making
𝑐1 = −𝑐2. From here, the designer must select values of the free parameters 𝑚𝜈0 and 𝑡 to
produce a physically valid solution. If poorly selected, it is possible to obtain a solution where
𝑚𝜈(𝜌) becomes negative within the lens, while still producing the correct 𝐾(𝜆). Clearly 𝑡 must
be positive; it must also be sufficiently thick to ensure values of |𝑚𝜈2| remain sufficiently small
to ensure positive𝑚𝜈(𝜌) over the lens aperture. To select optimal values for these parameters,
a two-stage process is undertaken. Firstly, for any material where 𝑚𝜈2 > 0, 𝑚𝜈0 is set to zero.
Secondly, to maximise the diameter at which 𝑚𝜈(𝜌) = 0, we choose the values of 𝑚𝜈0 to be
𝒦𝜈 divided by the sum of all positive 𝒦, namely

𝑚𝜈0 =
𝒦𝜈

∑𝑀𝑖, 𝒦𝑖>0𝒦𝑖
, (2.53)

for a set of M materials (where M=3 for this lens design). Applied to the N-BK7, N-SF6, N-
KZFS8 example lens, we note from Table 2.4 that N-BK7 and N-SF6 have positive 𝒦. This
yields the required values for 𝑚𝜈0 which are shown in Table 2.3. Once the values for 𝒦𝜈, 𝑚𝜈0,

𝑡 1.5
𝜏 0.0667
𝜌max 8.333
𝒦𝐴 𝒦𝐴 𝒦𝐴
0.164 0.064 -0.162
𝑚𝐴0 𝑚𝐵0 𝑚𝐶0
0.719 0.281 0
𝑚𝐴2 𝑚𝐵2 𝑚𝐶2

-0.03878 -0.01514 0.05391

Table 2.3: Apochromatic lens parameters for A=N-BK7, B=N-SF6, C=N-KZFS8 GRIN lens.

and 𝜏 are known, we can readily obtain a value for 𝑚𝜈2𝑡 by rearranging Equation 2.36

𝑚𝜈2𝑡 =
𝑚𝜈0 −𝒦𝜈

2 . (2.54)

While the value of 𝑡 can be selected by the designer, it is instructive to show the minimum
value that yields all positive 𝑚𝜈(𝜌) over the lens aperture. For a lens of semi-aperture 𝜌max,
𝑚𝜈 at the clear aperture is given by

𝑚𝜈(𝜌max) = 𝑚𝜈0 +𝑚𝜈2𝜌2max. (2.55)
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Rearranging Equation 2.55 in terms of 𝑚𝜈2 and substituting into Equation 2.54 gives an ex-
pression for the value of 𝑡 that returns a GRIN lens with zero concentration of materials with
positive partial power at the lens edge, provided the process of Equation 2.53 has been fol-
lowed

𝑡 ≥ 𝜌2max
𝒦𝜈 −𝑚𝜈0𝜏
2𝑚𝜈0

, (2.56)

where 𝑡 can (and generally should) be greater to provide some leeway for optimisation of
higher-order compositional coefficients𝑚𝜈4, 𝑚𝜈6, …. Once 𝑡 is selected,𝑚𝜈2 is easily calculated
by rearranging Equation 2.54

𝑚𝜈2 =
𝑚𝜈0 −𝒦𝜈

2𝑡 . (2.57)

These parameters were used to define our GRIN optimisation starting solution, which was
modelled in CodeV. The RMS spot size was then optimised to yield the solution shown in Figure
2.8. Surface curvatures, the lens centre thickness and back focal distance were all variables
in the optimisation. Additionally, the front surface was made aspheric with variable fourth and
sixth-order coefficients, with GRIN relative composition terms for each material in 𝜌0, 𝜌2, and
𝜌4 also variable. The end result is that the lens was able to correct for spherical aberration
and spherochromatism, with the only residual aberrations being higher-order axial chromatic
aberration. The resulting performance was diffraction limited with a transmitted polychromatic
wavefront error of 0.0067 waves RMS over a uniform-weighted waveband between 436 nm
and 633 nm. Concurrently, a cemented triplet lens consisting of N-BK7, N-KZFS8 and N-SF6
was designed to the same optical specification by optimisation of the lens surface curvatures
and by trial-and-error ordering of the materials in the triplet to minimise the RMS spot size.
This lens solution is illustrated in Figure 2.10. Transverse rays errors for this design are shown
in Figure 2.11. The spherical surfaces of the design result in significant spherochromatism,
which limits the optical correction of the lens to 0.038 waves RMS. The performance of the
homogeneous design can be improved to that of the GRIN design by optimising aspheric terms
on all of the optical surfaces that comprise the lens (noting that this would entail manufacture
of six aspheric surfaces in total). We deduce by comparison of these lens designs, that ternary
GRIN media with full control of relative composition as a function of aperture are extremely
powerful components in the correction of chromatic aberrations, being essentially limited to
the paraxial chromatic aberration of the underlying material selection. While the materials in
this exercise were fictitious and not representative of any particular manufacture approach, it
is clear that if the underlying material palette of the GRIN process has sufficient variability in
refractive index, dispersion, and partial dispersion, then such well colour corrected lenses can
be made a reality.

Material 𝐾partial (First-order model) 𝐾partial (Optimised lens)
𝐾N-BK7 0.0862 0.0922
𝐾N-SF6 0.0532 0.0534
𝐾N-KZFS8 -0.1194 -0.1256
𝐾total 0.02000 0.01997

Table 2.4: First-order partial powers for an N-BK7, N-SF6, N-KZFS8 apochromat.
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Figure 2.7: Normalised power of an N-BK7, N-SF6, N-KZFS8 apochromat.

Figure 2.8: Optical design of an N-BK7, N-SF6, N-KZFS8, F/6 ternary GRIN singlet.

Figure 2.9: Transverse ray errors for a N-BK7, N-SF6, N-KZFS8 ternary GRIN singlet.

Figure 2.10: Optical design of an N-BK7, N-SF6, N-KZFS8, F/6 cemented triplet with spherical surfaces.
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Figure 2.11: Transverse ray errors for a N-BK7, N-SF6, N-KZFS8 cemented triplet with spherical surfaces.
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2.7. Optical Design of a Ternary-Material,
General-Rotationally-Symmetric-Gradient-Index Magnifier

We demonstrate that the relative composition representation may be applied to the optical de-
sign and optimisation of more general GRIN distributions. A magnifier optical design exercise
was performed for a micro-OLED (organic light emitting diode) display, where we compare a
generalised GRIN solution to a homogeneous design. The intent of this design exercise was to
determine whether there are sufficient degrees of freedom in general-rotationally-symmetric
GRIN media to perform an equivalent role to multiple aspheric and diffractive surfaces. The
magnifier specification is detailed in Table 2.5.

We generalise our GRIN distribution to incorporate terms in 𝜌, 𝑧, and cross terms (𝜌𝑛>0𝑧𝑚>0).
Such a GRIN distribution has the degrees of freedom to allow optical power to vary along the
z-axis of the GRIN. If our GRIN lens is sufficiently thick, these degrees of freedom may be
very powerful in the correction of optical aberrations. The composition coefficient of the µth
material is given by

𝑚𝜇 = 𝑚𝜇00+𝑚𝜇01𝑧+𝑚𝜇02𝑧2+(𝑚𝜇20+𝑚𝜇21𝑧+𝑚𝜇22𝑧2)𝜌2+(𝑚𝜇40+𝑚𝜇41𝑧+𝑚𝜇42𝑧2)𝜌4, (2.58)
where the refractive index of the GRIN medium is obtained by combining the contributions of
all materials as per Equation 2.2. A reference design was generated for intended fabrication
using state-of-the-art optical technologies that are widely deployed in industry, which includes
cemented doublets, polymer lenses, and aspheric refractive-diffractive hybrid surfaces that
can be produced via diamond turning.

Field of view 30°
Entrance pupil diameter 10 mm
Display size 640x512, 15 µm pixel pitch
Eye relief 30 mm
Clear aperture 23 mm (vignetting permitted)
Waveband Photopic

Table 2.5: GRIN magnifier cardinal point requirements

2.7.1. Homogeneous Solution

A conventional magnifier design was optimised from a starting solution typical of high-performance
designs. The optical construction is shown in Figure 2.12 (top). An N-LASF31A, S-NPH2
doublet provides some colour correction whilst introducing small contributions to the Seidel
aberrations due to the very high refractive indices and dispersion difference of these glasses.
This doublet is followed by two acrylic lenses. The first of these features a hybrid refractive-
diffractive surface. Hybrid surfaces enable highly effective colour correction, due to their
strongly negative dispersion, but the presence of parasitic diffraction orders also increases the
risk of stray light and may reduce the system contrast [55]. Each acrylic lens also features
aspheric terms to enable correction of astigmatism and higher-order aberrations.

The overall level of correction of this lens over the field and full pupil is sufficient to execute
the display viewing task specified. MTF at 35 cycles/mm (approximately the Nyquist spa-
tial frequency of the specified micro-OLED display) is greater than 0.5 across the entire field
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(shown in Figure 2.14 (left)). Transverse ray error plots are shown in Figure 2.13 (left). The
Seidel aberrations are substantially corrected and are balanced against higher-order aberra-
tions, with the design limited by a small amount of spherical aberration and lateral/axial colour.
This design represents a useful baseline with which we can compare our GRIN designs.

2.7.2. Gradient-Index Solution Optimisation

A magnifier starting solution for optimisation was generated via the partial power method
previously outlined. Our material selection this time is more complex than previous examples,
as our lens design now has a larger FOV and aperture. In addition to correction of primary
chromatic aberrations, we would like the magnifier to provide an image with minimal Petzval
curvature, which as noted in Chapter 1.5.3 depends on the optical power and axial refractive
index of a lens. As a result, three different materials are required in the starting solution to
give degrees of freedom to solve for focal power, chromatic aberration, and Petzval curvature.
For a homogeneous lens, the Petzval curvature has the relationship

𝑆4hom ∝
𝐾lens
𝑁lens

, (2.59)

While for a GRIN lens, we have

𝑆4GRIN ∝
𝐾GRIN
𝒩2
0
. (2.60)

In the partial power model, the amount of optical power from each material can be provided
by both the optical surface and GRIN medium, which complicates the calculation of a flat-field
starting solution. Pragmatically, we assume that all optical power is provided by the GRIN
medium such that 𝐾𝐴

𝑁2𝐴
+ 𝐾𝐵𝑁2𝐵

+ 𝐾𝐶
𝑁2𝐶

= 0, (2.61)

while noting that a thicker GRIN lens has the ability to influence Petzval curvature through the
distribution of optical power in the lens. We assume that a flat-field all-GRIN starting point
found via first-order theory is sufficiently close to the optimised solution that will combined
surface and GRIN optical power. With any three materials, we have sufficient degrees of
freedom to find a power construction that gives achromatic performance (corrected at two
wavelengths) and a correct focal power, given by

𝐾𝐴
𝑉𝐴
+ 𝐾𝐵𝑉𝐵

+ 𝐾𝐶𝑉𝐶
= 0 (2.62)

and
𝐾𝐴 + 𝐾𝐵 + 𝐾𝐶 = 𝐾lens. (2.63)

This now defines a system of three equations, which written in matrix form is given by

⎛
⎜⎜

⎝

1 1 1
1
𝑉𝐴

1
𝑉𝐵

1
𝑉𝐶

1
𝑁2𝐴

1
𝑁2𝐵

1
𝑁2𝐶

⎞
⎟⎟

⎠

⎛
⎜

⎝

𝐾𝐴
𝐾𝐵
𝐾𝐶

⎞
⎟

⎠

=
⎛
⎜

⎝

𝐾lens
0

0

⎞
⎟

⎠

. (2.64)

Equation 2.64 can then by solved by substituting multiple materials combinations‡. We must
then apply one further condition to select our materials from the large number of possible
‡As with previous examples, the materials are notional examples to demonstrate the design theory and process,
and are not representative of real, manufactured GRIN material.
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solutions. We would like the monochromatic aberrations of the system to be minimised to
obtain good imaging performance. We achieve this by reducing the magnitude of the power
of each material in the system. We therefore filter material combinations by the root-sum-of-
squares (RSS) optical partial power in each material. These conditions generally lead us to
select glass combinations that consist of a high refractive index, low-dispersion “crown”, with
a combination of high and low index dispersive “flints”. A combination of N-LAK9, N-KF9 and
N-SF10 was eventually selected, as it had a low normalised-RSS power of 7.60 and a sufficient
Δ𝑁 of 0.210. By comparison, the previous combination of N-BK7, N-SF6 and N-KZFS8 had
a normalised-RSS power of 22.89. A more extreme material combination of N-LASF31A, N-
SF66 and N-KF9 provides even further reduced power balance, but requires a very large Δ𝑁 of
0.411. Calculation of the lens curvatures, thickness, and GRIN coefficients was then calculated
using the procedure outlined in Section 2.6.2.

Optimisation of the GRIN lens was then undertaken from the first-order starting solution
to minimise the RMS spot size over a weighted average of each field angle. The lens GRIN
coefficients, aspheric coefficients, curvatures and centre thickness were all variables in the
optimisation. The centre thickness of the GRIN was limited to the axial length of the homo-
geneous solution optics.

Material Kn Material Kn Material Kn

N-BK7 -6.96 N-LAK9 5.94 N-LASF31A 4.38
N-SF6 -10.91 N-SF10 -1.26 N-SF66 -1.37
N-KZFS8 18.87 N-KF9 -3.69 N-KF9 -2.00
𝐾RSS 22.88 𝐾RSS 7.60 𝐾RSS 5.01
Δ𝑁 0.297 Δ𝑁 0.210 Δ𝑁 0.411

Table 2.6: Example flat field achromatic GRIN combinations

Optimisation of the GRIN-based solution with a generalised distribution yielded the solution
shown in Figure 2.12 (bottom). A good level of correction is achieved in a single component.
The transverse ray errors of the GRIN solution are shown in Figure 2.13 (right). Performance
is limited by small amounts of higher-order aberrations. MTF performance is shown in Figure
2.14 (right). We achieve improved colour correction on axis, as the GRIN provides better
correction of secondary spectrum than the diffractive variant. Performance at wider field
angles is broadly comparable between the two approaches.

2.7.3. Relative Composition Plots

It is important that we verify that any optimised GRIN design is physically valid. For a relative
composition representation we need to verify that there is no negative proportion of any
material within the design. The relative compositions of each material over a cross-section of
the lens were plotted. Figure 2.15 shows three sample plots for the singlet magnifier design.
The colour of the plot fades to white as the amount of a given material approaches zero.
However if the amount of the material becomes negative, the relevant region of the plot turns
black to highlight this fact. An example of a compositional violation is shown in Figure 2.16.
Relative composition plots also give us an intuitive perspective of how the GRIN is achieving
correction of the optical system. The distribution of N-LAK9 in Figure 2.15 is concentrated at
the front optical surface, and forms a positively powered GRIN through the bulk of the lens,
whilst the distribution of N-KF9 becomes more strongly negatively powered towards the back
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Hybrid eyepiece: N-LASF31A, S-NPH2, ACRYLICx2

AMB 

Asphere
Hybrid

N-LAK9, NKF9, N-SF10 eyepiece
1.50

1.56

1.62

1.68

1.74

1.80

10.00 mm

Figure 2.12: Cross sections of magnifier designs. Top, conventional design featuring a cemented doublet, an
asphero-diffractive hybrid and an aspheric lens. Bottom, continuous GRIN magnifier composed of N-LAK9, N-KF9
and N-SF10.

Figure 2.13: Magnifier design transverse ray error plots. Left, conventional asphero-hybrid design. Right, contin-
uous GRIN design.

of the lens. This is typical of a magnifier construction, with strong positive power as close as
possible to the entrance pupil and negative power near the image plane to flatten the field.
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Figure 2.14: Magnifier design MTF vs. frequency plots. Left, conventional asphero-hybrid design. Right, continu-
ous GRIN design.
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Figure 2.15: Relative composition plots by material for N-LAK9, N-SF10, N-KF9 singlet eyepiece design
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Figure 2.16: Example relative composition plot showing a compositional violation in black.
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2.8. Conclusions

In this chapter we have demonstrated a mathematical representation for the optical design
of GRIN media of multiple constituent materials. In particular we have shown an effective
approach for combinations of three or more base materials. This representation is applied to
optical design examples of radial and general rotationally symmetric GRIN lenses, however in
principle this approach could be applied to any other GRIN distribution. We propose that such
an approach is well suited to the design-for-manufacture of GRIN lenses made via additive
manufacture or similar routes, as it is easy to link to commonly made effective medium the-
ory approximations. Effective medium theories based on volumetric average permittivity and
average index are addressed, as these are confirmed by the observations of two GRIN lens
manufacturers.

When the assumption is made that the refractive index scales linearly with relative com-
position, it was demonstrated that it is possible to decompose the optical power of GRIN
lenses into contributions from each underlying material, known as partial power. Through
the use of partial power, we can solve for known material combinations via thin lens theory.
This technique enables us to efficiently search for material combinations without the need
for successive material substitution and optimisation via finite raytracing, using a figure of
merit based on the residual chromatic aberrations and the RSS sum of optical powers. This
search technique was used to select base materials for a range of optical designs ranging
from two and three material radial GRIN singlets to general rotationally symmetric GRINs that
show equivalent performance to multi-element homogeneous optical designs. In particular, a
thick singlet magnifier design was generated based on a ternary blend of glass materials that
showed superior performance to a four element magnifier design consisting of a cemented
doublet, an acrylic asphero-hybrid and an acrylic asphere.
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A key discussion point relating to this design concerns the selection of materials. The current
material selection was based on glasses in the Schott catalogue, which combined to allow a
GRIN that provides good colour correction with a small RSS sum of partial powers. This choice
of materials was fictitious due to a lack of refractive index data for nanoparticle doped polymer
materials available at the time of design. We note that a glass solution would have significantly
higher density and would potentially undermine the SWAP-C benefits of a continuous GRIN.
More recently however, the required level of index variation to produce this design has been
demonstrated by NanoVox LLC [29] through the use of titania and zircona-based nanoparticle
dopants into a polymer matrix.

An area of study that may demonstrate further benefits is to consider GRIN solutions con-
sisting of two lens elements. The generation of an air gap in the centre of the optic offers
potentially greater degrees of freedom for aberration correction and mass reduction, however
it carries with it the trade-off of additional polishing and assembly operations, with the need
for alignment of the lens elements introducing a potential performance penalty.
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3
Paraxial Analysis and
Reconstruction of Gradient-Index
Lens Systems

The contents of this chapter are derived and expanded from “Paraxial reconstruction: con-
version of homogeneous lens forms to continuous gradient-index media - Applied Optics 63,
7252-7261 (2024)” [1, AMBref].

3.1. Abstract

We present a technique for the optical design of generalised-distribution GRIN lenses. Multi-
element homogeneous lens designs are reconstructed as single GRIN media via smoothing
of the homogeneous lens paraxial ray paths. These continuous optical systems successfully
replicate the first-order properties of their homogeneous parent lens systems and serve as
starting points for further optimisation. When the technique is applied at several wavelengths,
the chromatic aberration correction of the homogeneous parent lens is also converted. The
paraxial reconstruction, finite-ray optimisation and evaluation of several lens designs is demon-
strated.

3.2. Introduction

Several of the new GRIN manufacture methods described in Chapter 1 enable the manufacture
of GRIN lenses of arbitrary refractive index distribution. Such manufacture approaches allow
multiple lens components (and potentially entire optical assemblies) to consist of a single
GRIN lens, where the optical work performed by several homogeneous optical surfaces is
instead performed by a continuous GRIN medium. We refer to such optics as Continuous
Optical Systems, abbreviated to COS herein. COS were first coined by Buchdahl [17] as an
example of an optical system where the number of surfaces tends to infinity. However, an
historical lack of suitable manufacture processes and computational power required for design
optimisation means only a handful of published designs exist at the time of writing in 2024.
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3.2. Introduction

The combination of the degrees of freedom for aberration correction provided by GRIN optics,
with scalable yet flexible additive manufacture, promises a new route to fabricate improved
SWAP-C optics. The reduced need for custom tooling required by an additive approach may
also enable reduced development cycle time to deployment and engineering non-recurring
expenditure (NRE), significantly lowering the cost and time barriers to the use of bespoke
optical systems in a range of applications. There is therefore a strong motivation to develop
optical design tools for COS.

In the development of any optical product, the optical design process forms a substantial
part of the engineering NRE. Optical design can be a challenging task, with significant skill
required to optimise a design and ensure adequate performance while accounting for the
effects of manufacturing tolerances. A key decision in the optical design process is the selection
of a starting solution*, which due to the complexity and topology of optical design solution
spaces has a very significant effect on the end solution that is reached by optimisation. The
starting point, if chosen well, leads to a high performing and cost-effective final design over
an efficient development time scale. Conversely, a poor starting solution may quickly lead to a
poor local minimum after optimisation of the design, resulting in a poorer performing product
and accruing significant extra cost over an extended production run.

Due to the relative novelty of generalised GRIN technology, few such starting solutions
exist for COS, with the design landscape relatively unexplored. In addition, such lens opti-
misation problems have a very large number of complex degrees of freedom, accounting for
the variation in refractive index coefficients at multiple powers of lens aperture as described
in Equation 1.23. For more complex optical systems such as wide-angle lenses or telecentric
relay lenses, manual construction of a starting solution by manipulation of GRIN coefficients
becomes extremely difficult.

Our objective for this work is to devise a method to generate COS starting solutions derived
from the optical constructions of homogeneous optical designs. Previous works in the litera-
ture have addressed the problem of reconstructing a GRIN lens from a conventional optic. In
the field known as transformation optics, components such as homogeneous lenses are con-
verted to GRIN media by a coordinate transformation of the lens geometry [48]. Given that
Maxwell’s equations are invariant under such a coordinate transformation, the compression or
expansion of the space within an optical component yields a spatially varying (and anisotropic)
permittivity and permeability. The magnetic and anisotropic contributions are often small and
disregarded to yield a simpler all-dielectric solution (known as quasi transformation optics or
qTO). Whilst this is a powerful technique, it is difficult to apply to multi-element lens sys-
tems, with the boundaries between lens elements leading to discontinuities in the resulting
GRIN [45].

Several authors have addressed the inverse problem of refractive index distribution con-
struction via a geometrical optics approach. Nemoto and Makimoto [79] first demonstrated
a method to solve for a GRIN distribution given a known ray curve, noting that in such a
case, numerous paraxially-equivalent index distributions exist for a single ray path. In 2022,
Kochan et al. [80] demonstrated a method of reconstructing individual homogeneous surfaces
as GRIN media, by use of a sigmoid function GRIN distribution. In 2023, Gomez-Correa et
al. [81] demonstrated a means to solve for the GRIN distribution given a finite ray path, ex-
ploiting an invariant quantity that arises when Fermat’s principle is solved via a Lagrangian
approach. This invariant quantity was shown to enable analytical solutions to ray paths within

*See also Chapter 1.6 for a discussion of the importance of starting points.
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spherical and cylindrical gradient-index media.

In this work, we present a method for the conversion of multi-element homogeneous lens
systems to a single GRIN medium that serves as a starting solution for further finite-ray op-
timisation. We propose that the paths of two defining paraxial rays (non-degenerate in field
and aperture) contain sufficient information to reconstruct the first-order optical properties of
a homogeneous lens system as a COS.

3.3. Paraxial Raytracing in GRIN lenses

To achieve a GRIN reconstruction of a homogeneous lens design, we use paraxial raytracing.
The paraxial approximation assumes that all rays in the system travel along a narrow, thread-
like region about the optical axis, allowing us to substitute all trigonometric functions for the
first-order terms in their series expansions. In the case of Snell’s law we state

𝑁 sin 𝑖 ≈ 𝑁𝑖, (3.1)

for an incidence angle 𝑖 and refractive index, 𝑁. We also assume that the sagitta of a curved
surface is negligible, as it is proportional to the square of the (assumed very small) lens aper-
ture. In essence, the paraxial approximation simplifies finite raytracing of an optical system to
a linear form, allowing significant insight into its properties. In addition to the first-order prop-
erties of an optical system, a paraxial raytrace of the axial marginal and full-field principal rays
also contains sufficient information to calculate the third-order aberrations for both GRIN and
homogeneous surfaces and media [77]. We define a paraxial COS in Figure 3.1. The quantity
𝑦 represents the height of a paraxial ray. The quantity 𝑢 represents the paraxial ray angle in
the anti-clockwise trigonometric convention such that 𝑢 ≈ �̇�, where dotted quantities repre-
sent differentiation with respect to the optical axis, 𝑧. The optical system itself is represented
by the green box labelled ABCD. Barred quantities are those associated with the paraxially
traced full-field principal ray, whereas unbarred quantities are of the paraxial marginal ray.
The subscripts 𝑂 and 𝐼 represent quantities in the object and image planes respectively.

Figure 3.1: Schematic of a paraxial COS, ABCD. Rays traced are indicated in blue (marginal ray) and red (principal
ray). barred quantities refer to the principal ray. The refractive index of the object and image spaces is indicated
by 𝑁𝑂 and 𝑁𝑖 respectively. The aperture stop is labelled thus.
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The linearisation of raytracing in the paraxial region allows us to represent the optical system
as a 2x2 matrix that relates the height and optical direction cosine of a paraxial ray in the object
space to the image space. In Equation 3.2, we represent the optical system of Figure 3.1 in
this way, treating the object and image space conjugate distances, 𝑑𝑂 and 𝑑𝐼, with respective
homogeneous refractive indices, 𝑁𝑂 and 𝑁𝐼, separately. We have

( 𝑦𝐼𝑁𝐼𝑢𝐼
) = (1 𝑑𝑖/𝑁𝑖

0 1 )(𝐴 𝐵
𝐶 𝐷)(

1 𝑑𝑂/𝑁𝑂
0 1 )( 𝑦𝑂

𝑁𝑂𝑢𝑂
) , (3.2)

where the quantities A,B,C,D fully characterise the first-order properties of the system. In
particular, the quantity -C is equivalent to the focal power (the inverse of the focal length).
It is also possible to break the ABCD matrix down into contributions from individual surfaces
and ray transfer events between surfaces, representing the system as a product of elemental
matrices. We assume a general-rotationally-symmetric GRIN distribution of the form defined
in Equation 1.23. The equation of propagation for a GRIN paraxial ray in the plane 𝑥 = 0
within such a GRIN is given by

2𝒩2(𝑧)𝑦(𝑧) −
𝑑
𝑑𝑧 [𝒩0(𝑧)𝑢(𝑧)] = 0. (3.3)

Equation 3.3 is derived in Appendix B.2. In the general-rotationally-symmetric case, the
transfer matrix of a GRIN has no analytical solution [76]. The paraxial raytrace of the GRIN was
therefore performed by slicing the COS into thin slices, as illustrated in Figure 3.2. Following
the derivation of Sands [76], the ray path in a thin GRIN slice is then evaluated locally about
a point, 𝑧, based on a Taylor series expansion of the 𝒩0 and 𝒩2 coefficients

𝒩0(𝑧 + 𝛿𝑧) = 𝒩0(𝑧) + �̇�0(𝑧)𝛿𝑧 +
1
2�̈�0(𝑧)𝛿𝑧

2 +…

𝒩2(𝑧 + 𝛿𝑧) = 𝒩2(𝑧) + �̇�2(𝑧)𝛿𝑧 +
1
2�̈�2(𝑧)𝛿𝑧

2 +… ,
(3.4)

where 𝛿𝑧 is the small, finite thickness along the optical axis of an elemental GRIN located at
𝑧. We also expand the first and second terms of Equation 3.3 as a series

𝑦 (𝑧 + 𝛿𝑧) = 𝑦 (𝑧) + 𝑢 (𝑧) 𝛿𝑧 + �̇�
(𝑧)
2 𝛿𝑧2 +… ,

𝒩0 (𝑧 + 𝛿𝑧) 𝑢 (𝑧 + 𝛿𝑧) = 𝒩0 (𝑧) 𝑢 (𝑧) +
𝑑
𝑑𝑧 [𝒩0 (𝑧) 𝑢 (𝑧)] 𝛿𝑧 +

𝑑2
𝑑𝑧2

[𝒩0 (𝑧) 𝑢 (𝑧)]
2 𝛿𝑧2 +… .

(3.5)

Figure 3.2: General-rotationally-symmetric GRIN decomposed into planar, thin, elemental GRINs of thickness 𝛿𝑧.
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The solution to the thin ray transfer matrix has the general form for the ith slice within the
GRIN located at 𝑧𝑖

𝑦(𝑧𝑖 + 𝛿𝑧) = 𝐴𝑖𝑦(𝑧𝑖) + 𝐵𝑖𝒩0(𝑧𝑖)𝑢(𝑧𝑖),

𝒩0(𝑧𝑖 + 𝛿𝑧)𝑢(𝑧𝑖 + 𝛿𝑧) = 𝐶𝑖𝑦(𝑧𝑖) + 𝐷𝑖𝒩0(𝑧𝑖)𝑢(𝑧𝑖).
(3.6)

Our goal is therefore to express the equation for the ray trajectory in terms of 𝑦(𝑧) and
𝒩0(𝑧)𝑢(𝑧). To achieve this, we find expressions for �̇�, 𝑑/𝑑𝑧(𝒩0(𝑧)𝑢(𝑧)) and 𝑑2/𝑑𝑧2(𝒩0(𝑧)𝑢(𝑧)),
which we substitute into Equation 3.5. Expanding Equation 3.3 yields

2𝒩2(𝑧)𝑦(𝑧) − �̇�(𝑧)𝒩0(𝑧) − �̇�0(𝑧)𝑢(𝑧) = 0, (3.7)

which solved for �̇� is
�̇� = 2𝒩2𝑦 − �̇�0𝑢

𝒩0
. (3.8)

We then substitute Equation 3.8 into Equation 3.5. We simplify the second derivative terms
using Equation 3.3 by substituting 𝑑

𝑑𝑧 [𝒩0(𝑧)𝑢(𝑧)] for 2𝒩2(𝑧)𝑦(𝑧). This gives

𝑦(𝑧 + 𝛿𝑧) = 𝑦(𝑧) + 𝑢(𝑧)𝛿𝑧 +
𝒩2𝑦 −

1
2�̇�0𝑢

𝒩0
𝛿𝑧2 +… ,

𝒩0(𝑧 + 𝛿𝑧)𝑢(𝑧 + 𝛿𝑧) = 𝒩0(𝑧)𝑢(𝑧) + 2𝒩2(𝑧)𝑦(𝑧)𝛿𝑧 + [𝒩2(𝑧)𝑢(𝑧) + �̇�2(𝑧)𝑦(𝑧)]𝛿𝑧2 +… .
(3.9)

Collecting terms in 𝒩0(𝑧)𝑢(𝑧) and 𝑦(𝑧) and expanding to the quadratic order then yields

𝑦(𝑧 + 𝛿𝑧) = [1 + 𝒩2(𝑧𝑖)𝒩0(𝑧𝑖)
𝛿𝑧2] 𝑦(𝑧) + [ 𝛿𝑧

𝒩0(𝑧𝑖)
− 12

�̇�0(𝑧𝑖)
𝒩0(𝑧𝑖)2

𝛿𝑧2]𝒩0(𝑧)𝑢(𝑧)

𝒩0(𝑧 + 𝛿𝑧)𝑢(𝑧 + 𝛿𝑧) = [2𝒩2(𝑧𝑖)𝛿𝑧 + �̇�2(𝑧𝑖)𝛿𝑧2] 𝑦(𝑧) + [1 +
𝒩2(𝑧𝑖)
𝒩0(𝑧𝑖)

𝛿𝑧2]𝒩0(𝑧)𝑢(𝑧).

(3.10)

By inspection of Equation 3.6, it is clear that the square bracketed terms of Equation 3.10
correspond to A, B, C, and D of an elemental GRIN ray-transfer matrix to the quadratic order

𝐴𝑖 = 1 +
𝒩2(𝑧𝑖)
𝒩0(𝑧𝑖)

𝛿𝑧2,

𝐵𝑖 =
𝛿𝑧

𝒩0(𝑧𝑖)
− 12

�̇�0(𝑧𝑖)
𝒩0(𝑧𝑖)2

𝛿𝑧2,

𝐶𝑖 = 2𝒩2(𝑧𝑖)𝛿𝑧 + �̇�2(𝑧𝑖)𝛿𝑧2,

𝐷𝑖 = 1 +
𝒩2(𝑧𝑖)
𝒩0(𝑧𝑖)

𝛿𝑧2.

(3.11)

The full system ABCD matrix (as per Equation 3.2) of the COS divided into 𝐿 slices is given by

(𝐴 𝐵
𝐶 𝐷

) = ( 1 0
𝑐𝐿(𝑁𝐼−𝒩0(𝑧𝐿)) 1

)
𝐿

∏
𝑖=0

(𝐴𝑖 𝐵𝑖
𝐶𝑖 𝐷𝑖

)( 1 0
𝑐1(𝒩0(0)−𝑁𝑂) 1

) , (3.12)
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where the leftmost and rightmost matrices are due to refraction across the optical surfaces at
each end of the COS. As each internal elemental GRIN is planar (excluding the end surfaces),
the surface refraction contribution is the identity matrix and is disregarded. The quantity −𝐶𝑖
gives the focal power of a GRIN ray transfer matrix, yielding the well-known formula for the
focal power of a thin, radial GRIN medium, 𝐾GRIN = −2𝒩2𝛿𝑧𝑖, for a GRIN of thickness, 𝛿𝑧𝑖.
From this, the distribution of 𝒩2(𝑧) can be intuitively interpreted as the linear optical power
density of a COS.

The use of a numerical paraxial tracing approach means it is necessary to ensure that
enough thin slices are used to avoid numerical errors in ray height and angle. Accuracy of
the fit is diagnosed by calculating the determinant of the system ABCD matrix which should
have negligible deviation from unity (in the 𝑁𝑢 ray direction convention used), with the two
mitigation options for insufficient accuracy being to add additional Taylor expansion terms or
finer GRIN slices. Expansion of Equation 3.7 to the quadratic order in 𝛿𝑧 is generally sufficient.
For the lens reconstructions in this work, 𝐿=2500 slices, which achieved a determinant error
less than 10-6 in all cases.

3.3.1. Location of the Aperture Stop and Pupil Size

In order to define the Étendue and calculate the aberrations of a paraxial lens system, it is
necessary to define or calculate (depending on design approach) a position along the optical
axis as the aperture stop. Two conditions are met at the aperture stop. Firstly, the height
of the paraxial full-field principal ray is zero, secondly, the clear semi-aperture of the stop is
equal to the paraxial marginal ray height at the stop surface. Definition of the stop is partly
dependent on how the designer chooses to set up the optical system. For example, the
designer may define a specific stop location and diameter and solve for rays that satisfy the
above conditions, or they may equally calculate the location and diameter of the stop based
on a specific set of input rays. For simplicity, we shall assume that the designer wishes to
define a), a fixed entrance pupil diameter b), a stop location on the optical axis and c), a fixed
angular field of view.

As the height of the paraxial principal ray must be zero at the stop, this determines the
ray-aiming of the paraxial principal ray in the object plane. If the field of the optic is defined
as the object plane angle, then 𝑁𝑂�̄�𝑂 is constrained, meaning we must determine the principal
ray height in the object plane, �̄�𝑂, that gives �̄� = 0 at the stop surface. To do this, we define
a sub-matrix of the system, consisting of all surfaces from the object plane to the stop, where
the ray vector of the full-field principal ray at the stop surface is given by

( 0
𝑁stop�̄�stop

) = (𝐴stop 𝐵stop
𝐶stop 𝐷stop

)(1 𝑑𝑂
0 1 )(

�̄�𝑂
𝑁𝑂�̄�𝑂

) . (3.13)

With a known value of 𝑁𝑂�̄�𝑂, this equation can be solved for the necessary value of �̄�𝑂 to
intersect the centre of the stop

�̄�𝑂 =
−𝑁𝑂�̄�𝑂 (𝐴stop𝑑𝑂 + 𝐵stop)

𝐴stop
. (3.14)

By rearrangement of Equation 3.14, we can also solve for the object space slope of the principal
ray, 𝑁𝑂�̄�𝑂, when the principal ray height in the object plane, �̄�𝑂, is constrained.

Next, we must define the paraxial marginal ray based on the entrance pupil diameter. For
a system with an object plane at infinity, this is a trivial calculation, as the value of 𝑁𝑂𝑢𝑂 is
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3.4. Paraxial Reconstruction

zero, and so 𝑦𝑂 = EPD/2. For an entrance pupil at finite conjugates, we must determine the
entrance pupil location, which we obtain by finding the point at which the paraxial principal
ray crosses the optical axis, as given by

𝑑EP =
−�̄�𝑂
�̄�𝑂

. (3.15)

For such a finite conjugate system, 𝑦𝑂 = 0 and the paraxial marginal ray angle in object space
is given by

𝑢𝑂 =
EPD
2𝑑EP

. (3.16)

By similar logic, paraxial principal ray heights and angles can be determined for alternative
field and pupil specifications in the image plane, such as paraxial image height or image F/#.
The only prerequisite is that both the field and aperture of the system be defined in some way.

Once defined as shown in the preceding section, our paraxial COS can be considered a
“template” from which we can reconstruct a parent system by finding appropriate values of
𝑐1, 𝑐𝐿, 𝒩0(𝑧), and 𝒩2(𝑧).

3.4. Paraxial Reconstruction

Our approach shall be to identify a GRIN distribution in the form of Equation 1.23, such that
the ABCD matrix of a conventional system is approximately replicated within the same axial
length. To achieve a smooth GRIN distribution, we will convert the discrete and segmented
trajectory of two paraxially traced rays (typically the axial marginal and full-field principal rays)
within a homogeneous optical system to a smooth ray path indicative of a GRIN medium. An
example of this ray smoothing concept is shown in Figure 3.3. From these smoothed and
fitted rays, we then solve for the refractive index distribution. To avoid the requirement for a
GRIN medium in the object and image space, we bound the GRIN region by the first and last
surfaces of the optic.

Assuming the paraxial ray height 𝑦(𝑧) and its derivatives with respect to 𝑧 are known from
the reconstruction of the ray, we must devise a procedure to reconstruct the axial and parabolic
radial GRIN coefficients, 𝒩0(𝑧) and 𝒩2(𝑧) at any point along the optical axis of the lens.
Rearrangement of Equation 3.3 gives an expression for the value of 𝒩2(𝑧)

𝒩2(𝑧) =
�̇�(𝑧)𝒩0(𝑧) + �̇�0(𝑧)𝑢(𝑧)

2𝑦(𝑧) , (3.17)

where from inspection, in addition to the ray paths, we must determine the values of 𝒩0(𝑧),
and its derivative with respect to 𝑧, �̇�0(𝑧). To achieve this, we make use of the Lagrange
invariant, a conserved quantity of any optical system loosely related to energy throughput.
The Lagrange invariant is defined as

𝐻 = 𝒩0(𝑧) [�̄�(𝑧)𝑦(𝑧) − 𝑢(𝑧)�̄�(𝑧)] , (3.18)

where barred quantities refer to the full field principal ray. The numerical value of 𝐻 is inher-
ited from the paraxial rays of the parent homogeneous optical system. This, in combination
with the reconstructed ray trajectories gives us sufficient information to calculate 𝒩0(𝑧) from
Equation 3.18. �̇�0(𝑧) is determined by differentiation of the Lagrange invariant as

�̇�0(𝑧) [�̄�(𝑧)𝑦(𝑧) − 𝑢(𝑧)�̄�(𝑧)] +𝒩0(𝑧) [ ̇�̄�(𝑧)𝑦(𝑧) − �̇�(𝑧)�̄�(𝑧)] = 0. (3.19)
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3.5. Selection of a Mathematical Representation for Reconstructed Ray-paths

Figure 3.3: Reconstruction of a notional paraxial ray within a lens system (red lines, not to scale) to a continuously
differentiable GRIN trajectory (blue dashed line). The ray positions and derivatives in both cases are matched at
first and last surfaces of the lens system.

By rearranging Equations 3.18 and 3.19 we obtain the following expressions for 𝒩0(𝑧) and
�̇�0(𝑧):

𝒩0(𝑧) =
𝐻

�̄�(𝑧)𝑦(𝑧) − 𝑢(𝑧)�̄�(𝑧) , (3.20)

�̇�0(𝑧) =
−𝒩2

0 (𝑧) [ ̇�̄�(𝑧)𝑦(𝑧) − �̇�(𝑧)�̄�(𝑧)]
𝐻 . (3.21)

Once𝒩0(𝑧), �̇�0(𝑧), and the smoothed ray paths are known, we calculate𝒩2(𝑧) from Equation
3.17 for each elemental GRIN slice within the COS.

3.5. Selection of a Mathematical Representation for
Reconstructed Ray-paths

A key decision in paraxial reconstruction concerns selection of a tool for the smoothed ray
fit. A number of candidate mathematical constructions were considered based on three key
requirements:

• The fitted curve must match the position and slope of the discrete ray path at the end-
points to correctly account for refraction at the end surfaces. This condition ensures that
the first-order properties will be accurately reconstructed.

• The curve must be smooth and continuous to at least the second derivative in 𝑧 to avoid
discontinuities in the distribution of 𝒩2.

• The fitted curve should not rely upon least-squares numerical fitting, which adds com-
plexity to the process and does not guarantee a good fit can be found for more complex
distributions of refractive index, being vulnerable to over-fitting effects such as Runge
Phenomenon.

Bézier curves were identified as ideal candidates based on these criteria. Bézier curves are
parametric polynomials in the Bernstein basis [82, chapter 1.3.4] that are widely used in
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graphics and product design due to their user-friendly application and numerical stability.
Bézier curves are defined by a set of control points, which in paraxial reconstruction are based
on the paraxial ray paths of the parent system, allowing us to avoid numerical least-squares
fitting routines. The polynomial order of a Bézier curve is equal to the number of control points
minus one. The position and derivative of the curve endpoints are defined by the first and
last control point segments, fulfilling the first criterion. A set of at least three control points
yields a curve for which a second derivative exists that is continuous**. Furthermore, Bézier
curves do not interpolate intermediate control points exactly, but approximate them with the
property of diminished variation. This property minimises over-fitting effects and the resulting
index gradients of the reconstruction. Further information on Bézier curves is provided in
Appendix C.

3.6. Computational Implementation

The paraxial reconstruction approach was implemented using the Python programming lan-
guage. Specifically, the “bezier” library[83] was used to model the Bézier curves required for
reconstructing the rays, whilst elements of the “scipy” library [84] were used for various other
aspects such as spline fitting the resulting index coefficient curves.

An example Double-Gauss lens from the CodeV software was used as a homogeneous “par-
ent” lens system. Its basic optical properties are listed in Table 3.1. A raytrace cross section
of this design is shown in Figure 3.4.

Parameter Value
F/# 2.0
Focal Length 100 mm
Waveband† 486.1-656.3 nm
Back focal clearance 61.1 mm
Axial length 139 mm
Semi-field of view 14°

Table 3.1: Basic parameters for the parent Double-Gauss lens.

**A Bézier curve of only two points would define a straight line, which would not be able to represent the curved
ray trajectories of a GRIN

†The paraxial reconstruction of this lens was carried out monochromatically at a wavelength of 587.6 nm.

Figure 3.4: Finite raytrace of homogeneous parent Double-Gauss lens.
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Trace paraxial rays through
parent homogeneous sys-

tem and determine ray paths

Perform Bézier curve
fit to ray trajectories

Calculate GRIN distribution
from paraxial GRIN equation
and Lagrange invariant us-
ing Equations 3.20 and 3.17)

Perform spline fit to the resulting
distribution of 𝒩0(𝑧) and 𝒩2(𝑧)

Export index coefficients to
optical design software and
optimise using finite rays

Optional: Adjust aspheric surface
𝐴4 coefficient and GRIN 𝒩4(𝑧)

distribution to minimise aberrations

Figure 3.5: Flowchart for the paraxial reconstruction process

Paraxial reconstruction was implemented via the procedure summarised in Fig. 3.5. The dis-
crete ray paths of the parent optical system were converted to piecewise linearly interpolated
functions. Sets of evenly spaced control points were defined along each linearly interpolated
ray path that define the Bézier curves. The closeness of the reconstructed ray paths to the
parent rays is affected by the number of control points, which for the designs in this work
was notionally set to twice the number of optical surfaces of the parent system. Increasing
the number of control points results in reconstructed rays that more closely track the parent
ray path. This increases the curvature of these rays, resulting in a greater magnitude of 𝒩2
and therefore increased index modulation in the reconstructed design. The choice of control
points is therefore a trade-off between how precisely the paraxial GRIN rays track those of
the parent solution, and reduction of index variation in the reconstructed design, which is
worthy of investigation in further work. Note that the first-order properties of the design are
unaffected by this choice, as the constrained ray slopes and positions at the endpoints of the
lens determine this.

Following Bézier fits of the ray paths, these curves were input to Equations 3.7, 3.20, and
3.21. The output of these calculations was another set of curves defining 𝒩0(𝑧) and 𝒩2(𝑧).
It was then necessary to further fit these curves in a form more amenable to optical design
software. Whilst Bézier curves are an optimal mathematical form to reconstruct the ray path,
the number of control points required depends on the number of lens elements in the parent
system. Furthermore, the large number of control points invariably leads to a large number of
refractive index coefficients required in optimisation, which slows the optimisation process of
the finite-ray traced design. For this reason, a cubic spline fit was made to the reconstructed
𝒩0(𝑧) and𝒩2(𝑧) distributions. The number of spline knots required depends on the complexity
of the optical design being reconstructed, but is generally much smaller than the number of
control points in the Bézier curves.

A further benefit of a spline-distributed GRIN lies in its ability to locally and stably control
the axial distribution of GRIN coefficients. For polynomial GRIN distributions of a high degree
in the optical axial coordinate, 𝑧, it is very difficult to locally control the GRIN distribution at the
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Figure 3.6: Left: paraxial raytrace of parent homogeneous system based on CodeV example F/2 Double-Gauss
lens. Right: paraxial reconstruction raytrace of the same lens. The paraxial upper marginal ray is shown in blue.
Full-field paraxial rays are show for the upper, centre (principal ray), and lower pupil in red.

far end of a thick GRIN lens, relying on the balancing of several polynomial terms. Whereas,
for a spline GRIN, tactile and local adjustments can be made by changing only a single control
point, leading to better conditioning of the finite ray optimisation problem.

An immediate question that follows the use of a secondary spline fit to the refractive index
coefficients is: “why not use splines for the ray path fit?”. While this is a valid technique, it
suffers from worse over-fitting effects compared to Bézier curves, with much greater index
variation in the fitted curves. Unlike Bézier curves, splines are not bounded by the convex
hull of the control points, which means values of 𝒩0(𝑧) < 1.0 can be formed in the fit. These
are non-physical, cause raytrace errors in the reconstructed system, and importantly cannot
be rectified by simply reducing the lens field or aperture. Using a Bézier fit followed by a
secondary spline fit gives us the “best of both worlds”, allowing us to start from the more
optimal shape of the Bézier fit, but with the convenience of splines in optical design software.

A paraxial reconstruction example of the Double-Gauss lens is shown in Figure 3.6. The
Bézier curve fits of the paraxial marginal and principal rays are shown in Figure 3.7. From
these ray paths, 𝒩0(𝑧) and 𝒩2(𝑧) were calculated. These distributions are shown in Figure
3.8. It is observed that the axial refractive index distribution broadly follows that of the parent
design, with𝒩0 being close to 1 inside the central air gap of the Double-Gauss lens. Similarly,
the 𝒩2 distribution correlates well with the expected distribution of optical power density
(Note that linear optical power density is proportional to −𝒩2). The regions at each end of
the system contain positive optical power density, whereas the central region of the paraxial
reconstruction contains negative power density. This leads to the familiar “hourglass” profile
of the axial marginal ray we observe in the Double-Gauss solution. The focal length of the
GRIN was 99.7 mm, a very close match to the parent design focal length of 100 mm. Spline
fits to the reconstructed 𝒩0(𝑧) and 𝒩2(𝑧) distributions are also shown in Figure 3.8. 𝒩0(𝑧)
shows the distribution of the axial refractive index, whilst 𝒩2(𝑧) is related to the distribution
of linear optical power density, being related by the equation 𝑑𝐾/𝑑𝑧 = −𝒩2(𝑧). A natural
cubic spline fit with ten knots placed at the Chebyshev-Lobatto nodes provides a sufficiently
accurate fit to these reconstructed distributions with minimal oscillations.
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Figure 3.7: Homogeneous segmented ray paths, control points, and their Bézier reconstructions for the paraxial
marginal and full field principal rays. Double Gauss F/2 example lens. Plot coordinate system origin sits at the
lens front vertex.

Figure 3.8: Reconstructed GRIN coefficients for the Double Gauss design example. Left: reconstructed distribution
for the axial index, 𝒩0. Right: reconstructed distribution for the quadratic radial coefficient, 𝒩2.
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3.6.1. Seidel Aberration Calculation

It is informative to calculate the Seidel aberrations of both the homogeneous parent and
paraxially reconstructed designs. Paraxial reconstruction does not guarantee the resulting
system will have equivalent third-order aberrations to the parent system. In addition to the
standard Seidel aberration contributions of the refractive surfaces, GRIN lenses produce two
additional Seidel contributions for each of the Seidel aberrations. These consist of an additional
surface contribution, and also a transfer contribution generated as rays pass through the
GRIN medium. For a COS, the magnitude of the transfer contributions can be very significant
compared to the that of the optical surfaces.

In extreme cases, the Seidel aberrations of reconstructed designs may require some pre-
liminary correction, if they are of a magnitude that seriously affects finite raytracing. Several
authors have shown methods to calculate the Seidel coefficients of GRIN lenses [18, 77]. The
calculation of aberrations of a COS is complicated by the varying index coefficients and ray
heights and angles. We therefore outline a procedure by which they can be calculated.

The total aberrations of a COS for the nth Seidel coefficient are given by

Sn = Snhom1 + Sngs1 + Sngt + SnhomL + SngsL. (3.22)

The terms Snhom1 and SnhomL represent the homogeneous surface contributions of surfaces
s1 and sL, which are equivalent in form to the Seidel aberration contributions of a homo-
geneous refractive lens, with the exception that we substitute the refractive index, 𝑁, of a
homogeneous lens for the values of 𝒩0(𝑧) at the applicable lens surface. These homoge-
neous contributions, for a surface of radius of curvature 𝑐 and refractive index 𝑁, are given
by [50]

S1hom = −𝐴2𝐻Δ(
𝑢
𝑁)

S2hom =
�̄�
𝐴S1hom

S3hom =
�̄�
𝐴S2hom

S4hom = −𝐻2𝑐Δ (
1
𝑁) ,

S5hom =
�̄�
𝐴S3hom +

�̄�
𝐴S4hom.

(3.23)

Δ indicates the change in a quantity after refraction at the surface. The quantities 𝐴 and �̄�
are known as the refraction invariants for the marginal and principal rays respectively. These
are given by

𝐴 = 𝑁 (𝑦𝑐 + 𝑢) = 𝑁𝑖
�̄� = 𝑁 (�̄�𝑐 + �̄�) = 𝑁𝑖, (3.24)

where 𝑖 represents the angle of incidence as stipulated in Equation 3.1. The terms of Equation
3.22, Sngs1 and SngsL, represent the GRIN surface contributions, and Sngt represents the
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GRIN transfer contribution. Following Sands [18], the surface contributions are influenced by
both 𝒩0 and 𝒩2 at the corresponding lens surface

S1gs = 𝜅𝑦4
S2gs = 𝜅𝑦3�̄�
S3gs = 𝜅𝑦2�̄�2
S5gs = 𝜅𝑦�̄�3

(3.25)

where the factor 𝜅 is due to the axial and radial index gradients at the surface vertex.

𝜅 = −𝑐Δ(2𝒩2 +
1
2𝑐�̇�0) . (3.26)

Note that the GRIN surface contributions do not affect S4. Monochromatically, the GRIN
surface contributions have equivalent dependency on the paraxial ray heights and angles to
those contributions generated by an aspheric surface. A subtle difference between GRIN and
aspheric surface contributions however, is that the chromatic variation of the aberrations gen-
erated can differ if the GRIN has a different 𝑉GRIN compared to the homogeneous case. More
significantly, the aberrations induced at the surface of a GRIN are proportional to curvature.
A planar surface does not have third-order GRIN surface aberration contributions.

Sands [18] produced a set of integrals for the calculation of the GRIN transfer contributions
to the Seidel aberrations of general-rotationally-symmetric GRIN media. These depend on the
distributions of 𝒩0(𝑧), 𝒩2(𝑧), and 𝒩4(𝑧) within the lens‡ and are given by

S1gt =
1
2Δ [𝒩0𝑦𝑢

3] + ∫
𝑧𝐿

0
[4𝒩4𝑦4 + 2𝒩2𝑦2𝑢2 −

1
2𝒩0𝑢

4] 𝑑𝑧

S2gt =
1
2Δ [𝒩0𝑦𝑢

2�̄�] + ∫
𝑧𝐿

0
[4𝒩4𝑦3�̄� + 𝒩2𝑦𝑢 (𝑦�̄� + �̄�𝑢) −

1
2𝒩0𝑢

3�̄�] 𝑑𝑧

S3gt =
1
2Δ [𝒩0𝑦𝑢�̄�

2] + ∫
𝑧𝐿

0
[4𝒩4𝑦2�̄�2 + 2𝒩2𝑦�̄�𝑢�̄� −

1
2𝒩0𝑢

2�̄�2] 𝑑𝑧

S4gt = 𝐻2∫
𝑧𝐿

0
[ 𝒩2𝒩2

0
] 𝑑𝑧

S5gt =
1
2Δ [𝒩0𝑦�̄�

3] + ∫
𝑧𝐿

0
[4𝒩4𝑦�̄�3 +𝒩2�̄��̄� (𝑦�̄� + �̄�𝑢) −

1
2𝒩0𝑢�̄�

3] 𝑑𝑧,

(3.27)

where 𝐻 is the Lagrange invariant. These integrals must be integrated numerically over the
thickness of the GRIN lens, which we perform via the trapezium rule, using the ray heights
and angles at 𝑧 and 𝑧+𝛿𝑧 for each of the thin, elemental GRIN slices of thickness 𝛿𝑧 to define
trapezia. The contributions for each elemental GRIN are then summed over the thickness of
the COS.

To allow for a more meaningful comparison of the aberrations between GRIN and homo-
geneous systems in this work, we show the cumulative Seidel aberrations of the system,
‡𝒩4(𝑧) is initially set to zero during the reconstruction process, 𝒩4 terms are shown in Equation 3.27 for com-
pleteness
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illustrating the ebb and flow of the aberrations as influenced by the construction of a given
optic. Cumulative aberrations are calculated for a given surface by a sum of the aberration
contributions of that surface with those of all preceding surfaces in the system. For the GRIN
transfer contributions, cumulative contributions are calculated by performing the integrals of
Equation 3.27 from 𝑧 = 0 to an intermediate point, 𝑧, within the lens. The Seidel aberration
contributions of both the homogeneous Double Gauss and COS reconstruction are shown in
Figure 3.9. It is observed that while the cumulative distribution of the Seidel aberrations bears
some similarity between the homogeneous and COS paraxial reconstruction, there is a gradual
divergence of aberrations for the COS solution which results in significant Seidel contributions
at the image plane. Whether this is problematic for use of the paraxial reconstruction as an
optimisation starting point depends on the aperture, field and total amount of aberration, but
it is sometimes useful to control the Seidel aberrations of the starting point to allow finite ray
tracing for optimisation. Generally, reconstructed lens systems can be brought out of ray-
failure by reduction of the field and aperture until they trace successfully, with the aperture
and field restored by gradually increasing them with successive optimisations. Pre-correction
of the Seidels is useful in cases where a particularly severe reduction in field and aperture is
required that could result in a significant change to the lens construction when optimised to
recover the field and aperture (such as very wide-angle lens systems that require significant
barrel distortion to raytrace successfully).

If control of the third-order aberrations is required, then additional degrees of freedom are
available to the designer prior to optimisation with finite rays. Firstly, aspheric surface terms
can be applied to compensate for surface GRIN contributions. Secondly, the quartic GRIN
coefficient, 𝒩4(𝑧) can be used to control aberrations.

There are two options for controlling GRIN surface aberration contributions. Firstly to con-
strain the gradient of the axial index distribution to zero at the lens vertices, and secondly
to introduce 𝐴4 aspheric surface coefficients (as defined in Equation 1.4) to correct the aber-
rations induced by the index gradient (only the fourth order of an asphere or conic surface
is meaningful in Seidel aberration calculation). In this work we have adopted the latter ap-
proach to avoid further complicating the paraxial reconstruction approach. Such aspheric
surfaces can be retained in the final design (as many modern GRIN processes yield materials
that are amenable to the production of aspheric surfaces via diamond turning), or progres-
sively optimised out of the system by use of a weighted constraint that pushes the 𝐴4 aspheric
coefficient towards zero.

From Sands [18][Equations 31-32] we note that the surface contributions of a generalised
GRIN lens have equivalent dependency on the incident ray heights and angles to a fourth-
order aspheric term. We therefore define a value of the fourth-order aspheric term, 𝐴4, as
per Equation 1.4, that causes the GRIN surface Seidel contributions to be equal and opposite
to the surface aspheric Seidel contributions. When this condition is satisfied, the end surfaces
of the paraxial reconstruction have equivalent aberration contributions to the parent system.
The value of 𝐴4 with GRIN-equivalent surface aberration is given by

𝐴4 =
𝜅

4Δ𝒩0
. (3.28)

Control of the GRIN medium contributions (with the exception of S4) can be achieved by
numerical optimisation of the 𝒩4(𝑧) spline coefficients. This can be performed without re-
peated tracing of the GRIN paraxial reconstruction, as the𝒩4(𝑧) coefficients do not affect the
paraxial ray trace.
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Figure 3.9: Cumulative Seidel aberration contributions for the F/2 Double-Gauss lens (blue) and its COS paraxial
reconstruction (orange). S1-5 represent the usual Seidel aberration coefficients of spherical aberration, coma,
astigmatism, Petzval curvature and distortion. The discontinuous changes in cumulative aberration are caused by
the discrete Seidel contributions of optical surfaces.
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Figure 3.10: Illustrated 3x5 grid of control points assigned over the first of six sub-elements of a rotationally
symmetric GRIN lens.

3.6.2. Lens Optimisation and Analysis

Once the paraxial reconstruction process was completed, the model was exported as a CodeV
command sequence file. It was necessary to produce custom raytracing DLLs to enable tracing
of a general GRIN distribution in the CodeV optical design software. These DLLs take the
defined 𝒩𝑛 coefficients of the optical model and return refractive index and its derivative in
x, y, and z for a given point within the lens. Additionally, coefficients for the sixth and eighth
power of 𝜌,𝒩6(𝑧) and𝒩8(𝑧), were added to allow for optimisation and control of higher-order
aberrations. Raytracing DLLs for a spline-based GRIN distribution were written and compiled
from source code in the C programming language.

The resulting paraxially reconstructed double Gauss starting point was optimised in CodeV
using the damped-least-squares “AUT” option. Overarching constraints on the refractive index
limits were imposed by first slicing the GRIN into six sub-lenses, then calculating the minimum
and maximum refractive index over a grid of points as illustrated in Figure 3.10. Segmenting
the GRIN in this way allows us to avoid over-estimating the clear aperture of the lens (and
therefore over-constraining the GRIN distribution) in the central “bottleneck” of the design.
Care must be taken to ensure the grid is sufficiently dense to capture local variation (in this
case 11x11 points over the lens aperture). For this example, the refractive index was con-
strained to lie between 1.4 and 1.75. These limits are not indicative of current manufacture
technology, rather, they are chosen constraints to demonstrate the paraxial reconstruction
method. The curvature of the rearmost surface was constrained to be convex to preserve
back focal clearance (a typical space envelope constraint for photographic lenses). The Back
focal distance was kept identical to the homogeneous parent solution.

The lens was optimised in stages, with only the𝒩2 terms made variable at first. The𝒩0,𝒩4
and higher-order radial terms were varied progressively after the lens was allowed to optimise
to the local minimum for each order. Introducing too many variables too soon tended to lead
to poor local minima. A raytrace cross-section is shown in Figure 3.11 with overlaid GRIN
distribution.

The RMS spot size (at 587 nm wavelength) of the GRIN solution was smaller than that
of the homogeneous lens, which is shown for reference in Table. 3.2, however one must
consider with caution that making a direct comparison of performance is not a fair test, as the
parent design was corrected for chromatic aberrations, and was presumed to be optimised
accordingly, while the GRIN was not.
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Figure 3.11: Finite raytrace of optimised COS from paraxially reconstructed starting point.

Field (°)
Homogeneous RMS
Spot size (µm)

GRIN RMS
Spot size (µm)

0.0 26.4 7.6
10.0 29.8 11.0
14.0 42.6 17.3

Table 3.2: RMS spot size over field for homogeneous and GRIN reconstructed-optimised Double Gauss solutions.

3.7. Further Examples

To reduce the risk of fitting the paraxial reconstruction method to a specific problem, the
approach was applied to a wider range of design examples. These systems were selected to
represent some of the diversity of common imaging lens systems. Paraxial reconstructions of
these solutions are shown in Figure 3.12. Good fidelity of the reconstructed focal length is
observed for all designs with error in the focal length within 5% in all cases (see Table 3.3).
It is noted that some designs incur negative refractive index around the lens edges. This is
generally due to rays in the paraxial region significantly exceeding the ray heights of the finite
ray design. This is due to vignetting factors in other design examples such as the previous
double-Gauss lens and the 300 mm telephoto design of Figure 3.12. A further example of
a fisheye lens (not shown) produced very negative refractive indices, as the extreme barrel
distortion of such a lens is not observed in paraxial rays. These low index regions are broadly
resolved on a return to finite raytracing with appropriate vignetting factors and distortion, and
can be further mitigated by temporarily reducing field and aperture if they persist.

Lens
Nominal Focal
Length (mm)

Reconstructed Focal
Length (mm)

Zeiss Sonnar 49.82 50.60
Telephoto Lens 295.04 304.88

Eyepiece (Warmisham) 25.05 25.15

Table 3.3: Focal lengths of further parent and reconstructed design examples.
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Figure 3.12: Paraxial reconstructions of additional lens designs.
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3.8. Further Worked Example - Lithographic Lens Design

We demonstrate the strength of paraxial construction as a method of starting point genera-
tion by conversion of a complex lithographic lens design [85]. Such lens designs feature large
numbers of lens elements of modest optical power and produce ray structures that closely
resemble the curved ray trajectories of a GRIN. A fourteen-element stepper lens of NA=0.2,
589 nm reference wavelength, and 50mm image diameter at -1 magnification was paraxially
reconstructed as a GRIN (see Figure 3.13 top). Paraxial traces of the homogeneous parent
system and paraxial reconstruction are illustrated in Figure 3.14. Strong left-right symmetry
is observed about the aperture stop surface in both the parent and reconstructed solutions.
Distortion and telecentricity of such optical systems are of paramount importance to the litho-
graphic process. The paraxial reconstruction approach maintains the telecentric entrance and
exit pupil locations with a strong degree of fidelity, with both the entrance and exit pupils
located over 50 metres from the lens vertices.

The reconstructed system was then optimised in CodeV. To maintain low distortion and to
guide the optimisation away from poor local minima, bilateral symmetry about a plane through
the aperture stop was initially forced into the design optimisation. This was achieved by con-
straining variables each side of the stop to have equivalent values. This has the additional
benefit of reducing the size of the optimisation problem by halving the number of variable
coefficients. The GRIN distribution consisted of 20 spline knots as illustrated in Figure 3.15,
with individual knots placed at the Chebyshev-Lobatto nodes (this particular distribution of
knots being more concentrated at the ends of the GRIN where more structure exists in the
distribution). As was the case for the previous Double Gauss example, initial optimisation runs
allowed only the 𝒩0 and 𝒩2 coefficients to vary to avoid poor local minima, with the excep-
tion of 𝒩4 coefficients closest to the aperture stop to control spherical aberration. Once the
optimisation had converged for these lower order coefficients, higher-order coefficients were
gradually made variable. The resulting design is shown in Figure 3.13 (bottom). Distortion,
telecentricity error (defined as the principal ray incidence angle at the image plane), RMS spot
size, and RMS wavefront error are all comparable to the parent solution, as listed in Table 3.4.

Image
Height
(mm)

Hom.
Telecentricity

(°)

Hom. RMS
Spot Size
(µm)

Hom. RMS
Wavefront Error
(Waves at 589 nm)

Hom.
Distortion
(%)

0.0 0.0000 0.309 0.0056 0.0000
5.0 0.0705 0.303 0.0096 -0.0328
10.0 0.1243 0.939 0.0328 -0.0290
17.5 0.1347 1.688 0.0780 -0.0180
25.0 0.0018 1.743 0.0432 0.0000
Image
Height
(mm)

GRIN
Telecentrity

(°)

GRIN RMS
Spot Size
(µm)

GRIN RMS
Wavefront Error
(Waves at 589 nm)

GRIN
Distortion
(%)

0.0 0.0 0.271 0.0063 0.0000
5.0 0.0799 0.306 0.0066 -0.0237
10.0 0.1351 0.455 0.0088 -0.0199
17.5 0.1134 0.984 0.0290 -0.0089
25.0 0.1271 1.819 0.0450 -0.0091

Table 3.4: Telecentricity, RMS spot size, and RMS wavefront error with image height for the optimised paraxially
reconstructed GRIN and homogeneous parent solution

The cumulative Seidel aberration contributions of the parent and reconstructed starting
system are shown in Figure 3.16. Spherical aberration is not corrected by the reconstruction
approach but can be corrected in near isolation by changing the𝒩4 coefficient spline knot close
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3.8. Further Worked Example - Lithographic Lens Design

Figure 3.13: Finite ray trace of parent homogeneous lithographic lens (A) and optimised COS solution from parax-
ially reconstructed starting point, with overlaid GRIN distribution (B).

Figure 3.14: Paraxial trace of lithographic lens (A) and GRIN paraxial reconstruction (B).

Figure 3.15: Lithographic lens paraxial reconstruction outputs. (A): 𝒩0 distribution and associated spline fit. (B):
𝒩2 distribution and associated spline fit.
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3.8. Further Worked Example - Lithographic Lens Design

Figure 3.16: Cumulative Seidel aberrations of the paraxially reconstructed lithographic lens (orange series) and
homogeneous parent design (blue series).
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3.8. Further Worked Example - Lithographic Lens Design

to the aperture stop of the system. Coma and distortion are well corrected by the symmetry of
the lens. Astigmatism is also corrected in each half of the lens, although the causal mechanism
(if any) is not currently known as symmetry alone does not guarantee astigmatism correction
in a lens. Petzval curvature is observed to gradually diverge from the homogeneous solution,
despite a very similar power construction. This is due to a fundamental difference in aberration
theory between powered GRIN media and refractive homogeneous lenses [77]. In Equation
3.29 we note that for a thin, radial GRIN medium, Petzval curvature is proportional to power
divided by the square of the axial index𝒩0, whereas for homogeneous lenses the dependency
is optical power divided by the lens refractive index.

𝑆4GRIN = −𝐻2
𝐾GRIN
𝒩2
0

𝑆4hom = −𝐻2
𝐾lens
𝑁lens

.
(3.29)

The result of this difference in aberration theory is a change in the power construction of the
GRIN solution following optimisation of the paraxially reconstructed starting point. On visual
inspection of Figure 3.13, it is observed that the ray paths of the homogeneous solution show
three “bulges” where ray heights from the optical axis reach local maxima. By contrast, only
two such bulges are shown in the GRIN solution. It is surmised that this is caused by the
use of the optical power distribution to correct Petzval curvature. In microcosm, this principle
can be demonstrated by a simple objective lens consisting of two lens elements of equal
refractive index and opposite optical power. According to Equation 3.29, this lens system has
zero Petzval curvature, however if modelled as thin lenses in contact, the system has zero
optical power. Spatially separated however, the lens system has net positive optical power.
The optical power of a system of two thin lenses of optical powers 𝐾1 and 𝐾2, separated by a
distance, 𝑑, is given by

𝐾𝑇 = 𝐾1 + 𝐾2 − 𝑑𝐾1𝐾2. (3.30)

If 𝐾1 = −𝐾2, then the net optical power of this zero-Petzval-curvature lens system is given by

𝐾𝑇 = 𝑑𝐾21 . (3.31)

A paraxial raytrace of an optical system of this form is shown in Figure 3.17 (A). While Petzval
curvature is corrected, the lens does not demonstrate the symmetry shown in the Lithographic
designs of Figure 3.13. Rather, we must place two copies of the lens in Figure 3.17 (A) end
to end, and place the aperture stop between them in order to generate bilateral symmetry
in the design and ensure coma, lateral colour, and distortion are corrected. This combined
lens is shown in Figure 3.17 (B) and now illustrates a “double bulge” construction. A similar
solution exists where the powers of the positive and negative lenses are reversed, which
leads to a compact design, yet it is much harder to correct for aberrations of the field such as
astigmatism. In highly complex lithographic relay designs, multiple bulges can be observed in
the ray paths as the lens corrects for multiple orders of all aberration types. It is surmised that
the change in relationship between Petzval curvature and the axial refractive index between
the homogeneous and GRIN solution types has led to the structural change in the optical
solution from three bulges to two. It is however difficult to prove this definitively (as for any
complex lens design), as the system is optimised for a construction that corrects multiple
orders of all aberration types.
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Figure 3.17: (A) Paraxial trace on axis of two separated lenses with equal and opposite optical power displaying
net positive focusing power for an object at infinity. (B) Paraxial trace of two copies of the same lens placed end
to end. Locations of the characteristic ray bulges are denoted by an asterisk.

3.9. Chromatic Paraxial Reconstruction to a Three Material
GRIN

GRIN lenses are frequently used to enhance the chromatic aberration correction of optical
systems. Thus, there is a strong motive to apply the paraxial reconstruction method to poly-
chromatic systems. Such a conversion may be achieved by paraxially reconstructing at three
defining wavelengths that span the operating waveband of the system. With these three
paraxially-reconstructed systems we define two key quantities, the axial dispersion 𝒩0𝜆 and
the distributed GRIN second order dispersion 𝒩2𝜆, defined as

𝒩0𝜆 = 𝒩0(𝜆long) −𝒩0(𝜆short), (3.32)

𝒩2𝜆 = 𝒩2(𝜆long) −𝒩2(𝜆short). (3.33)

For a GRIN where the Δ𝑁 is constant with wavelength, the distributed Abbé value according
to Equation 1.29 is infinite. The spatial distribution of chromatic dispersion as a function of
𝑧 in a GRIN lens may frequently pass through zero, which implies an infinite Abbé number.
This leads to asymptotes in the VGRIN distribution, making a mathematical fit very challenging.
Therefore we use dispersion, which is inversely related to the Abbé number.

Once the required values of dispersion from the paraxial reconstruction are known, we fit
the reconstructed 𝒩0, 𝒩2, 𝒩0𝜆, and 𝒩2𝜆 profiles to a basis of constituent materials that form
the GRIN starting solution. Fitting a GRIN to a spatial distribution of base materials enables
improved design for manufacture by expressing the GRIN lens in terms of what can be made.
For a GRIN consisting of two base materials, VGRIN is a constant (with paraxial reconstruction
at a single wavelength all that is required). A three material GRIN is required to fit 𝒩0, 𝒩2,
𝒩0𝜆, and 𝒩2𝜆.

Previous works (Chapter 2, [72]) have outlined mathematical representations for the refrac-
tive index of GRIN lenses consisting of three or more materials as a weighted average of the
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3.9. Chromatic Paraxial Reconstruction to a Three Material GRIN

constituent material refractive indices. We define the refractive index of a three-base-material
GRIN lens as per Equation 2.24. For such a GRIN, 𝒩0(𝑧) and 𝒩2(𝑧) are given by Equations
2.26 and 2.28. Calculation of 𝒩0(𝑧, 𝜆long) − 𝒩0(𝑧, 𝜆short) and 𝒩2(𝑧, 𝜆long) − 𝒩2(𝑧, 𝜆short) yields
the GRIN dispersion equations

𝒩0𝜆(𝑧) = 𝑁𝐴𝜆𝑚𝐴0(𝑧) + 𝑁𝐵𝜆𝑚𝐵0(𝑧) + 𝑁𝐶𝜆𝑚𝐶0(𝑧), (3.34)

𝒩2𝜆(𝑧) = 𝑁𝐴𝜆𝑚𝐴2(𝑧) + 𝑁𝐵𝜆𝑚𝐵2(𝑧) + 𝑁𝐶𝜆𝑚𝐶2(𝑧), (3.35)

where 𝑁𝐴𝜆, 𝑁𝐵𝜆, 𝑁𝐶𝜆 are the dispersion values of the base materials given by

𝑁𝐴𝜆 = 𝑁𝐴(𝜆long) − 𝑁𝐴(𝜆short)
𝑁𝐵𝜆 = 𝑁𝐵(𝜆long) − 𝑁𝐵(𝜆short)
𝑁𝐶𝜆 = 𝑁𝐶(𝜆long) − 𝑁𝐶(𝜆short).

(3.36)

Equations 2.13, 2.14, 2.26, 2.28, 3.34, and 3.35 form a system of six equations that allow
us to solve for the distribution of 𝑚𝐴0(𝑧),𝑚𝐵0(𝑧),𝑚𝐶0(𝑧) and 𝑚𝐴2(𝑧),𝑚𝐵2(𝑧),𝑚𝐶2(𝑧) for each
material once the refractive index and dispersion of the base materials, as well as𝒩0(𝑧),𝒩2(𝑧),
𝒩0𝜆(𝑧), and 𝒩2𝜆(𝑧) of the system (via paraxial reconstruction), are known. This system of
equations can be represented as two 3x3 matrix equations, given by

(
1 1 1
𝑁𝐴 𝑁𝐵 𝑁𝐶
𝑁𝐴𝜆 𝑁𝐵𝜆 𝑁𝐶𝜆

)(
𝑚𝐴0
𝑚𝐵0
𝑚𝐶0

) = (
1
𝒩0
𝒩0𝜆

) , (3.37)

(
1 1 1
𝑁𝐴 𝑁𝐵 𝑁𝐶
𝑁𝐴𝜆 𝑁𝐵𝜆 𝑁𝐶𝜆

)(
𝑚𝐴2
𝑚𝐵2
𝑚𝐶2

) = (
0
𝒩2
𝒩2𝜆

) . (3.38)

We define a quantity, 𝜙, which is the determinant of the matrices in Equations 3.37 and 3.38
and is given by

𝜙 = 𝑁𝐴𝑁𝐵𝜆 − 𝑁𝐴𝑁𝐶𝜆 − 𝑁𝐵𝑁𝐴𝜆 + 𝑁𝐵𝑁𝐶𝜆 + 𝑁𝐶𝑁𝐴𝜆 − 𝑁𝐶𝑁𝐵𝜆. (3.39)

Equations 3.37 and 3.38 have solutions provided 𝜙 is non-zero. Solution by Cramer’s rule then
gives the following equations for the relative composition coefficients of each material:

𝑚𝐴0(𝑧) = [𝑁𝐵𝑁𝐶𝜆 − 𝑁𝐶𝑁𝐵𝜆 +𝒩0(𝑧) (𝑁𝐵𝜆 − 𝑁𝐶𝜆) −𝒩0𝜆(𝑧) (𝑁𝐵 − 𝑁𝐶)] 𝜙−1,

𝑚𝐵0(𝑧) = [−𝑁𝐴𝑁𝐶𝜆 + 𝑁𝐶𝑁𝐴𝜆 −𝒩0(𝑧) (𝑁𝐴𝜆 − 𝑁𝐶𝜆) +𝒩0𝜆(𝑧) (𝑁𝐴 − 𝑁𝐶)] 𝜙−1,

𝑚𝐶0(𝑧) = [𝑁𝐴𝑁𝐵𝜆 − 𝑁𝐵𝑁𝐴𝜆 +𝒩0(𝑧) (𝑁𝐴𝜆 − 𝑁𝐵𝜆) −𝒩0𝜆(𝑧) (𝑁𝐴 − 𝑁𝐵)] 𝜙−1,

𝑚𝐴2(𝑧) = [𝒩2(𝑧) (𝑁𝐵𝜆 − 𝑁𝐶𝜆) −𝒩2𝜆(𝑧) (𝑁𝐵 − 𝑁𝐶)] 𝜙−1,

𝑚𝐵2(𝑧) = [−𝒩2(𝑧) (𝑁𝐴𝜆 − 𝑁𝐶𝜆) +𝒩2𝜆(𝑧) (𝑁𝐴 − 𝑁𝐶)] 𝜙−1,

𝑚𝐶2(𝑧) = [𝒩2(𝑧) (𝑁𝐴𝜆 − 𝑁𝐵𝜆) −𝒩2𝜆(𝑧) (𝑁𝐴 − 𝑁𝐵)] 𝜙−1.

(3.40)

Computationally, these coefficients were determined via an analogous method to that out-
lined for monochromatic paraxial reconstruction. 𝒩0(𝑧) and 𝒩2(𝑧) were calculated via the
fitting of Bézier curves to the paraxial rays of the parent optical system at three separate
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wavelengths. The trace at the central reference wavelength was used to define 𝒩0(𝑧) and
𝒩2(𝑧), whilst the difference between the short and long wavelength systems was used to de-
fine 𝒩0𝜆(𝑧) and 𝒩2𝜆(𝑧). The resulting functions 𝒩0(𝑧), 𝒩2(𝑧), 𝒩0𝜆(𝑧), and 𝒩2𝜆(𝑧) were then
input to Equation 3.40 to solve for the relative composition coefficients of the lens, 𝑚𝐴0(𝑧),
𝑚𝐵0(𝑧), 𝑚𝐶0(𝑧), 𝑚𝐴2(𝑧), 𝑚𝐵2(𝑧), 𝑚𝐶2(𝑧). Spline knots were then fitted to these functions of
𝑧, these knots forming the input to a spline-based, three-material GRIN tracing DLL. Three
materials and their associated properties were defined as input parameters for the reconstruc-
tion. In principle, any three unique materials with non-identical refractive index and dispersion
can be used to fit relative composition, however the refractive index and dispersion space de-
fined by materials A, B and C should be comparable to or larger than that defined by the
materials of the parent system. If the range of refractive index and dispersion values differ
significantly between the parent lens and GRIN reconstruction, then regions of unphysical
negative concentration may result from the paraxial reconstruction process. Whilst such re-
gions are generally simple to address through optimisation, correction of excessive material
errors can lead to poor local minima in the optimised design.

A Cooke triplet example lens system was reconstructed over a finite waveband to demon-
strate this technique. The specification of this lens is listed in Table 3.5. For consistency, the
GRIN basis materials A, B and C were equivalent to the parent system (N-SK16, N-F2 and
air). Whilst this design is not indicative of any current GRIN manufacture approach, it is used
to demonstrate the technique and the first-order equivalence of the reconstructed solution.
The relative composition of the paraxially reconstructed GRIN starting point is shown in Fig-

Focal Length 50.00 mm
F/# 5.0
Field of view 40°
Wavelengths (nm) 486.1, 546.1, 656.3
Glass Types N-SK16, N-F2, N-SK16
Back focal clearance 38.71 mm
Overall length 57.55 mm

Table 3.5: Optical specification for the Cooke triplet parent lens design.

ure 3.18. Notably, there are regions of negative concentration in N-F2 (material B), with a
corresponding excess of N-SK16 (material A). This is due to the very similar refractive index
between these two materials. Such negative concentration errors are corrected through the
imposition of constraints during finite-ray optimisation. The similar index of these materials
allows restoration of only positive material concentration distributions without a change in
the merit function of a magnitude that would cause significant disruption to the optimisation
process.

The paraxially converted starting point is shown alongside a paraxial trace of the parent
solution in Figure 3.20. The focal length of the converted system (at the centre wavelength)
matches the parent solution very closely, at 49.62 mm compared to 50.00 mm. The focal
length versus wavelength of the paraxial reconstruction and parent design is shown in Figure
3.19. It was observed that the chromatic aberration successfully replicates that of the parent
solution.

Optimisation was again performed in CodeV. The merit function comprised the RMS spot
size, with constraints to ensure the focal length of 50 mm was maintained. Grid constraints
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Figure 3.18: Reconstructed relative composition distribution of Cooke triplet parent design. (A): axial relative com-
position 𝑚0(𝑧) for each constituent material. (B): second order 𝑚2(𝑧) distribution for each constituent material.

Figure 3.19: Focal length versus wavelength of the paraxial reconstructed GRIN Cooke triplet lens and its homo-
geneous parent.
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RMS Wavefront error (waves at 546.1 nm)
Field angle (°) Homogeneous Parent GRIN Optimised

0.0 0.1266 0.0527
7.0 0.2916 0.0717
14.0 0.7771 0.1398
17.0 0.7859 0.1151
20.0 0.2788 0.1644

Table 3.6: RMS wavefront of Cooke triplet homogeneous parent lens and optimised GRIN solution from paraxially
reconstructed starting point.

Figure 3.20: Conventional Cooke triplet paraxial raytrace (A). Paraxially reconstructed GRIN paraxial raytrace (B).

analogous to those used for the Double Gauss converted design were implemented, this time
being used to ensure the concentration of any of the constituent materials did not become
negative within the clear aperture of the lens. As before, to ensure these constraints were not
applied over an excessive aperture, the GRIN was sliced into 12 segments. Initially, only the
𝑚0(𝑧) and 𝑚2(𝑧) coefficients were allowed to vary for each material, with additional orders
progressively made variable after convergence of the previous optimisation run to avoid poor
local minima. The overall thickness of the GRIN was kept constant at an equivalent value to
the axial length of the parent homogeneous solution. Likewise, the back focal distance was
frozen at an identical value to the homogeneous parent lens.

The optimised GRIN system and homogeneous parent lens are shown in Figure 3.21. RMS
wavefront error of the GRIN solution is significantly better than the homogeneous starting
solution (listed in Table 3.6), however it must be noted that the GRIN design has significantly
more degrees of freedom than the homogeneous solution and is not based on any current
GRIN technology. Rather, this solution is intended to demonstrate the utility of the paraxial
reconstruction technique, yielding a GRIN analogue to a conventional design with high perfor-
mance and without the need for time consuming global optimisation. The relative composition
of the optimised GRIN solution is shown in Figure 3.22. The distribution of material within this
lens remains strongly analogous to the homogeneous parent solution, with a higher concen-
tration of N-SK16 close to the two refractive surfaces at each end of the lens, and a negatively
powered central region. One notable difference is the shift of concentration of N-F2 from the
centre of the lens to the lens surfaces. The large central region of the lens dominated by air
indicates that should a smallerΔN GRIN combination be required for manufacturing feasibility,
the solution may function well as two lenses separated by an air gap containing the aperture
stop.
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Figure 3.21: (A): conventional Cooke triplet design. (B): Converted and optimised COS design.

Figure 3.22: Relative composition of optimised COS reconstructed from the Cooke triplet.

3.10. Conclusions

The optical design of generalised GRIN continuous optical systems (COS) is a significant op-
tical design challenge, due to a very large parameter space and computationally intensive
raytracing. As a result, selection of a suitable starting solution is a critical step in the pro-
duction of a high-performance optical design. We have demonstrated a method to generate
starting solutions for COS, based on the chosen assumption that the optical constructions of
homogeneous lens systems are broadly analogous to their COS form. This was achieved by
smoothing of the discrete, segmented, paraxial ray paths of homogeneous systems to target
paraxial GRIN ray trajectories, followed by calculation of the requisite GRIN properties from
the paraxial raytracing equation for GRINs and the Lagrange invariant, a technique we refer
to as paraxial reconstruction. These converted designs successfully replicate the first-order
optical properties of the parent design with high fidelity.

We have demonstrated several paraxial reconstructions of common optical lens system
types, yielding COS with comparable optical performance to their homogeneous parent so-
lutions following finite-ray optimisation. Furthermore, we have shown that paraxial recon-
struction can be used to convert the chromatic properties of the parent system. This was
demonstrated for a Cooke triplet that showed excellent agreement in chromatic aberration
properties between the paraxial reconstruction and homogeneous parent solution.

In its current state of development, the following limitations are noted in the paraxial re-
construction technique

• The process frequently leads to solutions with large amounts of index modulation. This
is often induced by the presence of air gaps and edges. This can be an issue where the
index modulation greatly exceeds that of the intended GRIN manufacture process.
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• The process assumes that the input homogeneous solution is a good starting point for
optimisation in the first place.

• Aberrations of the parent solution are not reconstructed, and in this work, sometimes
required numerical optimisation of the fourth-order refractive index coefficient, 𝒩4(𝑧),
to correct them where their magnitude caused finite raytracing failures that were not
easily addressed by temporary reduction in field and aperture.

• Paraxial reconstruction does not find inherently new distributions of optical power that
may lead to new COS-based designs. The final optimised solution must be sufficiently
similar to the reconstructed starting solution to be found via local optimisation.

• The paraxial reconstruction process inherently produces lenses that are very thick, which
may if incorrectly applied increase the optical mass of the finished optical design.

It is planned to address the limitation of large index variation in future work. It was ob-
served that large index variation in reconstructed designs was predominantly caused by large
air gaps and “air edges” caused by two lenses with adjacent convex surfaces. The large index
variation can be addressed by quite simply dividing the paraxial reconstruction into multiple
sub-systems where such large air gaps and edges are bounded by optical surfaces. This con-
cept is illustrated for a hypothetical lens system in Figure 3.23. The large air gap between
doublets of Figure 3.23 (A) results in a region of low refractive index in the paraxial recon-
struction of Figure 3.23 (B). The overall index variation of the reconstruction can be reduced
by either paraxially reconstructing the two doublets independently, or by inserting an air gap
into the paraxial reconstruction and solving the surface curvatures such that the first-order
properties of the lens system are retained (Figure 3.23 (C)). Such an approach may represent
a more harmonious use of GRIN lenses in combination with optical surfaces, where GRIN me-
dia are highly effective for correcting chromatic and monochromatic aberrations, yet require a
large Δ𝑁 to produce substantial focusing power that could be applied more simply with optical
surfaces.

Performing paraxial reconstruction on regions of lenses within a wider system would also
mitigate any potential increases in system mass while maximising the other SWAP-C bene-
fits GRIN can bring. High-performance lens systems in particular can contain regions with a
high density of air-spaced lens elements (similar to the lithographic relay lens example of this
chapter). These regions often contain sequences of alternating positive and negatively pow-
ered lenses, which can generate high cost due to tight surface form and assembly alignment
tolerances. Substitution of such regions of an optical system for a COS could yield signifi-
cant simplification and cost reduction (provided sufficiently economical GRIN material can be
produced).

Development of an analytical method to correct the Seidel aberrations of the reconstructed
system would also be of significant benefit, as it would reduce the need for numerical fitting of
𝒩4(𝑧) or temporary reduction of field and aperture in the paraxial reconstructed optimisation
starting solution. Promisingly, if this technique is augmented by a fitting approach for a finite
marginal ray on axis, in a manner similar to those outlined in references [79, 81], then a
deterministic procedure for a starting solution corrected for spherical aberration and coma
is possible (by constraining the image plane ray to fulfil the Abbé sine condition§). With
continuing development, paraxial reconstruction may serve as the foundation of a powerful
suite of techniques to simplify generalised GRIN design and optimisation problems.
§We define and derive the Abbé sine condition in Chapter 4.
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Figure 3.23: Conceptual lens system (A) paraxially reconstructed as a single lens (B) and as two separate GRIN
lenses (C).
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4
Surface Curvature and the Abbé
Sine Condition in Gradient-Index
Lenses

4.1. Abstract

The Abbé sine condition is a well-known requirement for optical imaging systems to be free
from coma. We derive the Abbé sine condition from geometrical optical principles, before
exploring its implications for GRIN lenses. In particular, we explore the consequences of
plano and curved surfaces for the correction of coma in GRIN lenses. We find that general-
rotationally-symmetric GRIN distributions have the potential to correct coma in a plano lens
geometry, but with the trade-off that the complexity and Δ𝑁 of the GRIN distribution must
increase compared to a Wood lens, while similar performance can be achieved with much
simpler GRIN distributions when the lens surface can be curved.

4.2. Introduction
It is well proven both theoretically and experimentally, that radial GRIN lenses can generate
optical focusing power despite having planar surfaces [12, Chapter 4]. This has the potential
to be very convenient in the optical processing of the lens surfaces, as plano surfaces can be
manufactured readily in large volumes, while their surface metrology using an interferometer
or similar device is relatively simple to implement. This often leads to the question of whether
the degrees of freedom conferred by generalised GRIN media supersede the need for sur-
face curvature on GRIN lens elements. To evaluate this possibility, we must investigate the
aberration correction properties of such planar GRIN lenses, as it is ultimately influence over
aberrations that drives utility of GRIN as a technology for imaging optics. A key requirement
of a hypothetical flat surface imaging GRIN lens is the correction of coma (assuming the lens
requirement has a finite field of view). To correct coma, it is fundamentally necessary that
the lens satisfy the Abbé sine condition. The Abbé sine condition was one of the earliest
developments in aberration theory, and led to significant improvements in the image quality
of telescope lenses [86]. We first derive the Abbé sine condition before investigating whether
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it is possible for flat GRIN lenses of general distribution to satisfy it. We then compare this
approach to the use of surface curvatures, a known technique for satisfying the same.

4.3. Derivation of the Abbé Sine Condition

We follow the derivation of the Abbé sine condition outlined by Braat [86]. We define a
“black box” rotationally symmetric optical system as illustrated in Figure 4.1. Herein, unprimed
and primed quantities are associated with the object and image space respectively. A ray
emanating from a point, 𝑃, along the optical axis is imaged by the system to a point, 𝑃′. This
axial image is assumed to be aberration free. This ray propagates with a direction defined by
the vectors r and r′ in the object and image space respectively, with respective angles 𝑈 and
𝑈′ with the optical axis. These ray vectors therefore have components given by

r = (0, sin𝑈, cos𝑈), (4.1)

r′ = (0, sin𝑈′, cos𝑈′). (4.2)

The object space and image space have homogeneous refractive indices, 𝑁 and 𝑁′ respec-
tively. We also define a neighbouring ray, which travels from the point 𝑄 to the point 𝑄′,
which emanates from a point an infinitesimal distance away from 𝑃, given by a displacement
vector

𝛿s = (0, 𝛿𝑦, 0). (4.3)

We in turn define a displacement vector in the image space between the two rays

𝛿s′ = (0, 𝛿𝑦′, 0) (4.4)

This second ray is assumed parallel to the first ray in object and image space. We now wish to
derive under what condition the image quality at 𝑄′ is identical to that of 𝑃′. If the image point
defined by the first ray is perfect, then this is assumed to be a first-order optical system, where
we can obtain the corresponding change in position in the image plane between 𝑃′ and 𝑄′
by use of the paraxial transverse magnification,ℳ. The magnification gives us a relationship
between the object and image displacements [50, Chapter 3.4], given by

𝛿𝑦′ =ℳ𝛿𝑦. (4.5)

In order for the image quality of the paths 𝑃𝑃′ and 𝑄𝑄′ to be identical, the optical path length
through the system must be identical for any direction of the ray vector, r, that reaches the

Figure 4.1: Finite rays from two object plane points passing through a notional rotationally-symmetric optical
system.
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4.4. Plano GRIN Lenses and the Abbé Sine Condition

entrance pupil of the optical system. We therefore evaluate an optical path difference, Δ𝑊,
between the two rays and observe under what condition it is zero. In the object space, the
optical path difference is given by

Δ𝑊𝑂 = −𝑁r ⋅ 𝛿s = −𝑁𝛿𝑦 sin𝑈, (4.6)

while in the image space it is given by

Δ𝑊𝐼 = 𝑁′r′ ⋅ 𝛿s′ = 𝑁′𝛿𝑦′ sin𝑈′. (4.7)

Adding these two optical path length differences, and stipulating that the sum be zero gives

𝛿𝑊 = 𝑁′𝛿𝑦′ sin𝑈′ − 𝑁𝛿𝑦 sin𝑈 = 0. (4.8)

We then substitute the primed quantities using Equation 4.5 to give

𝛿𝑊 = 𝑁′ℳ𝛿𝑦 sin𝑈′ − 𝑁𝛿𝑦 sin𝑈 = 0, (4.9)

which after cancelling 𝛿𝑦 gives
sin𝑈′ = 𝑁 sin𝑈

𝑁′ℳ . (4.10)

We assert that this condition is equally true in the paraxial region, and substitute a paraxial
ray angle, 𝑢, in a manner as discussed in Chapter 1.5.2, which is given by

𝑢 ≈ sin𝑈, (4.11)

and
𝑢′ ≈ sin𝑈′. (4.12)

The relationship between these paraxial rays is again determined by the system magnification
where 𝑁𝑢

𝑁′𝑢′ =ℳ. (4.13)

We can then substitute Equation 4.13 into Equation 4.10, giving

sin𝑈
𝑢 = sin𝑈′

𝑢′ , (4.14)

which is the form the Abbé sine condition is most commonly expressed in. The implication of
this condition is that the optical system has zero coma. This is because under this condition,
the derivative of the wavefront error with respect to object height is zero, and coma is the
only third-order aberration with a linear dependency on field. Deviation from this condition is
referred to as offence against the sine condition. When the axial image is perfect, and the
Abbé sine condition satisfied, the image is said to be aplanatic.

4.4. Plano GRIN Lenses and the Abbé Sine Condition

Let us consider an optical system focused at infinity with a planar surface, as illustrated in
Figure 4.2. Both object and image are in air such that 𝑁 = 𝑁′. Such a lens could not
practically consist of a single refractive surface. Rather, it could consist of a diffractive optical
surface, metasurface, or Fresnel lens, where we assume the optical path length change of the
surface is generated by an infinitesimally thin structure with infinite refractive index, known
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4.4. Plano GRIN Lenses and the Abbé Sine Condition

Figure 4.2: A planar lens of focal length 𝑓. The red line indicates the path of the axial marginal ray, while the
black dashed line indicates the angle that would be required of the same ray to satisfy the Abbé sine condition.

as the Sweatt approximation [87]. For a lens focused at infinity, the distance 𝑑 → ∞, in which
case

lim
𝑑→∞

𝑢 = 𝑈, (4.15)

therefore

lim
𝑑→∞

sin𝑈
𝑢 = 1, (4.16)

and we can therefore modify Equation 4.14 such that

sin𝑈′ = 𝑢′. (4.17)

From paraxial optics, we determine that 𝑢′ = ℎ/𝑓, which we susbtitute into the expression to
give the aplanatic condition for a lens focused at infinity

sin𝑈′ = ℎ
𝑓 . (4.18)

We now observe that for the lens in Figure 4.2, the ray paths form a right-angled triangle, and
therefore

tan𝑈′ = ℎ
𝑓 = 𝑢

′. (4.19)

It is clear from Equation 4.19 that sin𝑈′ ≠ 𝑢′, and that such an optic must generate offence
against the sine condition. The required finite ray angle, 𝑈′, in image space to satisfy the sine
condition is indicated in Figure 4.2 by the black dashed line. To satisfy the sine condition, it
is necessary that the sagitta of the blue surface be adjusted such that it intersects the black
dashed line at a height, ℎ. It is further noteworthy that such a flat lens generates offence
against the sine condition irrespective of the position of the aperture stop, as the ray height, ℎ,
does not change with stop location. Only at unity magnification (which would be an optically
powerless window for an infinite object distance) can a thin, plano lens be aplanatic, due to
bilateral symmetry of the optical system about the aperture stop. In summary, curvature of
such a thin lens is fundamentally necessary to correct coma.

4.4.1. Non-Aplanatic Wood lens

The situation for plano-surface GRIN lenses is more complex, as no GRIN lens truly has zero
thickness. Equation 1.27 indicates that the focal power of a radial GRIN lens is proportion to
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Figure 4.3: Raytrace of 50 mm focal length, F/4 Wood lens.

Figure 4.4: Transverse ray errors for 50 mm focal length, F/4 Wood lens. Substantial coma is present at 1 ° field,
which is observed as a quadratic contribution with aperture in the tangential section.

its thickness, and so tends to zero as the lens thickness does. It is known that a thin Wood
lens lacks the degrees of freedom to satisfy the sine condition and correct coma. An example
of this is shown in Figure 4.3, illustrating an F/4 Wood lens of 50 mm focal length, whose
GRIN distribution is of the form shown in Equation 1.26. Even after optimisation of the 𝒩4
coefficient, this lens cannot correct coma, while spherical aberration is well-corrected (Figure
4.4). The GRIN lens has a Δ𝑁 of 0.1043.

4.4.2. Aplanatic, Homogeneous Singlet

By contrast to the plano Wood lens, homogeneous lenses are readily able to correct coma
by means of the lens bending factor (as described in Equation 1.13). Figure 4.5 shows an
aspheric singlet consisting of N-BK7 (ND=1.518). Bending of a lens with spherical surfaces
gives sufficient degrees of freedom to minimise spherical aberration while correcting coma,
while for an N-BK7 singlet, fourth and sixth-order aspheric terms are required to eliminate third
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Figure 4.5: Raytrace of 50 mm focal length, F/4 homogeneous singlet lens. An aspheric surface is illustrated in
red.

Figure 4.6: Transverse ray errors for 50 mm focal length, F/4 homogeneous lens. Coma is corrected and perfor-
mance is limited by astigmatism and field curvature at 1 ° field.

and fifth-order spherical aberration. Transverse ray errors (Figure 4.6) indicate that the optical
correction of the lens is limited by astigmatism and Petzval curvature, which a homogeneous
singlet at the stop does not have the degrees of freedom to correct. Notably, astigmatism has
a quadratic dependency that is unaffected by the presence of a very small field angle, and
so satisfying the Abbé sine condition has no effect on its correction. The question remains,
whether variation in the properties of the GRIN as a function of position along the optical axis,
𝑧, allows for satisfaction of the sine condition, and furthermore, what role surface curvature
may play in the aberration correction of GRIN lenses.

4.4.3. Plano, Aplanatic, Generalised-GRIN Lenses

A generalised GRIN with the same thickness as the Wood lens of Figure 4.3 was optimised
from the very same starting solution. The solution was optimised to minimise the RMS spot
size, with radial and axial GRIN coefficients of progressively higher orders in 𝑧 and 𝜌 added
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Figure 4.7: Raytrace of 50 mm focal length, F/4 general rotationally symmetric GRIN lens.

until the solution would improve no further. The GRIN was of the form described in Equation
1.23, with the coefficients shown in Table 4.1. The resulting design is shown in Figure 4.7. The

𝑧0 𝑧1 𝑧2 𝑧3 𝑧4 𝑧5
𝜌0 1.5000 −7.773 × 10−2 8.206 × 10−2 −2.533 × 10−2 0.000 0.000
𝜌2 −2.334 × 10−3 4.154 × 10−3 −8.930 × 10−3 2.896 × 10−3 0.000 0.000
𝜌4 3.401 × 10−5 2.953 × 10−6 −5.56 × 10−6 −3.317 × 10−6 0.000 0.000
𝜌6 −1.056 × 10−8 1.066 × 10−8 0.000 0.000 0.000 0.000
𝜌8 6.336 × 10−12 0.000 0.000 0.000 0.000 0.000

Table 4.1: GRIN coefficients of optimised 50 mm, F/4, aplanatic lens.

GRIN distribution is now significantly more complex, and has a much greater Δ𝑁 of 0.2986.
The lens is, however, now capable of correcting coma as shown in Figure 4.8, being limited
by astigmatism in a similar manner to the aspheric singlet of Figure 4.5, with a very small
amount of higher order spherical aberration present on axis. Notably, the much larger Δ𝑁 of
this design has ramifications for its manufacturability.
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4.4. Plano GRIN Lenses and the Abbé Sine Condition

Figure 4.8: Transverse ray errors for 50 mm focal length, F/4 general rotationally symmetric GRIN lens. Coma is
corrected and performance is limited by astigmatism and field curvature at 1 ° field.

We next consider the effect of increasing the thickness of the GRIN lens, which as per
Equation 1.27, theoretically allows smaller GRIN coefficients to achieve the same focal power,
which in turn reduces the Δ𝑁 of the lens. The lens thickness was varied in optimisation
with an upper bound of 6 mm, double that of the previous solution. Due to the increased
thickness, coefficients with a higher power in 𝑧 were varied to yield the solution shown in
Table 4.2. A raytrace of the resultant lens is shown in Figure 4.9. The Δ𝑁 of the lens has
reduced significantly from 0.2986 to 0.0897. As with the thinner case, the lens is aplanatic,
as shown in Figure 4.10. The trade-off with this design however, is that the thicker lens
doubles its volume (and would generally be expected to increase its mass). We therefore
consider whether there is benefit in a combined approach, using a curved optical surface in
conjunction with the GRIN medium.

𝑧0 𝑧1 𝑧2 𝑧3 𝑧4 𝑧5
𝜌0 1.499 −2.896 × 10−3 −4.365 × 10−4 1.734 × 10−4 9.213 × 10−6 −1.990 × 10−6

𝜌2 −1.580 × 10−3 1.009 × 10−4 −1.034 × 10−4 1.640 × 10−5 −2.354 × 10−7 3.222 × 10−9

𝜌4 1.080 × 10−5 −7.017 × 10−7 −7.410 × 10−7 −3.919 × 10−10 0.000 0.000
𝜌6 −5.754 × 10−11 7.893 × 10−11 1.088 × 10−10 0.000 0.000 0.000
𝜌8 −4.084 × 10−11 3.026 × 10−12 2.811 × 10−12 0.000 0.000 0.000

Table 4.2: GRIN coefficients of optimised 50 mm, F/4, aplanatic lens.
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Figure 4.9: Raytrace of 50 mm focal length, F/4 general rotationally symmetric GRIN lens with increased thickness.

Figure 4.10: Transverse ray errors for 50 mm focal length, F/4 general rotationally symmetric GRIN lens with
increased thickness. Coma is corrected and performance is limited by astigmatism and field curvature at 1 ° field.
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4.4.4. Curved, Aplanatic, Radial GRIN Lens

We now evaluate the performance of a radial GRIN lens with a spherical curved surface on
one side. From a Wood lens starting solution, the curvature of the first surface was varied in
optimisation with the 𝒩20, 𝒩40, and 𝒩60 coefficients of a radial refractive index distribution
as defined in Equation 1.26. The optimised solution is shown in Figure 4.11. The lens is well
corrected on axis and has negligible coma as per Figure 4.12. As in the other aplanatic design
cases, performance is limited by astigmatism and Petzval curvature. The Δ𝑁 of this lens is
much smaller than for a plano GRIN lens of the same performance, with a total Δ𝑁 of 0.0312,
while the lens thickness is the same as the lens illustrated in Figure 4.7.

Figure 4.11: Raytrace of 50 mm focal length, F/4 radial GRIN lens with curved front surface.
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Figure 4.12: Transverse ray errors for 50 mm focal length, F/4 radial GRIN lens with curved front surface. Coma
is corrected and performance is limited by astigmatism and field curvature at 1 ° field.

4.5. Conclusions

Via the method published by Braat [86] we have derived an expression for the Abbé sine
condition, which must be fulfilled to yield a lens design free from coma. We have shown that
in the case of a plano singlet optic (of the type which could be generated by a diffractive
lens, metasurface or Fresnel lens), it is impossible to fulfil this condition for an object at an
infinite distance. We have shown that a similar effect applies to a Wood lens, which while not
infinitesimally thin, has very little principal ray height variation over its length and lacks the
necessary degrees of freedom in the GRIN distribution to control coma.

By contrast, general-rotationally-symmetric-GRIN distributions are shown to have sufficient
degrees of freedom for coma correction in the case of an F/4 singlet, producing similar aber-
ration correction to an aspheric homogeneous singlet. The side effect of this however is a
very large Δ𝑁 within the GRIN distribution when the lens is thin, or, a much thicker GRIN lens.
By contrast, when a curved surface and a radial GRIN distribution are combined, an aplanatic
lens is obtained with a much smaller Δ𝑁.

One caveat that must be applied to all results is that they only concern correction of coma
within a single lens element, while the combined effect of multiple lens elements (that would
ordinarily not fulfil the Abbé sine condition on their own) can correct coma when arranged
correctly. Third-order aberration contributions can be summed over each surface (and GRIN
medium) of an optical system to give the total aberration coefficients for the system. It fol-
lows that a positive coma contribution from one component can be combined with a negative
contribution of equal magnitude from another component to give zero overall contribution.
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However, while on first thought this effect may be considered to be an easy solution to aber-
ration correction, the designer must also consider the effect of higher-order aberrations, which
themselves can be induced at optical surfaces and media by the presence of existing third-
order aberrations. As a consequence, the control, if not correction of aberrations for a given
component within a multi-element optical system is of great importance to minimise fifth
and higher-order aberrations, strengthening the requirement for aplanatic components within
more complex optical systems.

The consequence of this study for GRIN lens design and manufacture must be treated with
pragmatism. While new GRIN manufacture technologies are enabling progressively larger Δ𝑁
values and more general GRIN distributions, this entails increased manufacturing complexity,
while generation and polishing of a spherical surface is a very mature technology and can be
applied at low cost. An alternative approach of using a thicker, general GRIN distribution to
achieve lower Δ𝑁 achieves the same imaging result, but with a corresponding size and mass
penalty as the lens must be thicker. While the cost of a general GRIN lens with plano surfaces
may eventually be less than that of a curved homogeneous lens, this is not presently the case,
and as a result, there is little commercial argument to migrate to the new technology for this
reason alone. Rather, it is more sensible to use GRIN lenses in harmony with curved surfaces,
and identify applications where such curved and general GRIN lenses have a high comparative
advantage over homogeneous optics. This could include applications where the core function
of the optical device is impossible without GRIN, or where GRIN imparts a major SWAP-C
benefit, such as improving the aberration correction of a lens within a highly-constrained
volume. We explore such applications in the next three chapters.
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5
Optical Design of Layered GRIN
lenses

The contents of this chapter are derived and expanded from ‘Layered Polymer GRIN Lenses
and their Benefits to Optical Designs - Andrew Boyd, Michael Ponting & Howard Fein, Advanced
Optical Technologies Vol. 4, pp. 429-443, 2015’ [2, AMBref], in addition to internal R&D work
undertaken at Qioptiq. Optical design work is my own, with material and process data provided
by my co-authors.

5.1. Abstract

We discuss the findings of an optical design study into layered polymer gradient-index (LGRIN)
lenses. A range of GRIN singlet lenses were designed for various aperture and field of view
configurations. Their optical performance was compared to polymer refractive-diffractive hy-
brid lenses and glass cemented doublets (with both spherical and aspheric surfaces) designed
to the same specification. We find that LGRIN lenses offer comparable performance to achro-
matic doublets and hybrid elements over a significant aperture and field of view range. We
also find that the correction potential of GRIN solutions is substantially increased when: the
bulk GRIN Abbé value (VGRIN) is negative, the GRIN distribution is radial, or the index range
(Δ𝑁) of the GRIN is increased significantly.

5.2. Introduction

It is of key interest in the imaging optics industry to generate products which provide good
image quality at reduced size, mass and cost. Optical design greatly influences this. Opto-
mechanical modules often comprise the majority of the size and mass of an imaging system.
Traditionally, optical systems have used one of three methods to correct chromatic and spher-
ical aberrations (as illustrated in Figure 1.7). Firstly, the classical doublet enables colour
correction through balancing the wavelength dependent powers of two lenses of different
materials cemented together. It is a well-understood and effective solution but involves the
use of glass lenses which are denser than polymer lenses and requires that two lenses be
first manufactured, then precisely aligned during a cementing operation. Secondly, a hybrid
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refractive-diffractive lens enables colour correction through use of a highly dispersive, blazed
surface that removes the chromatic aberration generated by the underlying refractive sur-
faces. This blaze can be generated on a polymer substrate via SPDT or moulding, enabling
the generation of a lightweight, well-corrected solution which is easy to manufacture. How-
ever diffractive lenses have limitations due to the stray light effects of spurious diffraction
orders, which can become problematic in broad wavebands or high dynamic range imaging. A
GRIN lens made from a polymer substrate has the potential to reduce the mass of an optical
system by eliminating denser glass material while maintaining chromatic aberration correction
(and without introducing significant stray light).

One major barrier to widespread adoption of GRIN technology has been the cost and com-
plexity of manufacture. Recent developments in layered polymer GRIN technology (known as
LGRIN) have the potential to overcome this barrier. Developed over the early 2000s, LGRIN
materials rely on the forced assembly of a very large number of sub-wavelength thickness
polymer films of two or more materials with different refractive indices [88]. Due to their neg-
ligible optical thickness, the layers act as an effective medium for visible or longer wavelengths.
By controlling the relative thickness of the fixed-index alternating layers, the refractive index
of the medium can be modified spatially. This approach enables the generation of polymer
lens preforms with axial, spherical, and even aspheric GRIN profiles. Two polymers are cur-
rently used to generate LGRINs: poly (methyl methacrylate) (PMMA) and styrene acrylonitrile
(SAN17). These are suitable for single-point diamond turning (SPDT) which enables econom-
ical generation of aspheric surfaces on the finished lens. These surfaces need not necessarily
be conformal with the polymer nano-layers.

The LGRIN manufacturing process is summarised in Figure 1.1 and Figure 1.2 [37]. Two
materials are co-extruded through a layer multiplying process to generate 50 μm thick films of
constant, yet customisable, refractive index. Index customisation is achieved by varying the
proportional thickness of the input layers via in-line precision melt pumps calibrated to control
the relative polymer material feed rates down to 0.3%. Quality assurance refractive index
testing is routinely performed on processed 475m long × 0.5m wide nano-layered film rolls
to ensure the target refractive index is achieved. Based on the developed nano-layered film
refractive index testing procedures averaged from 750 unique measurements over the entire
roll, a refractive index variation tolerance of less than 2.5 × 10−4 must be met to qualify the
material for continued processing into GRIN optics. Once qualified, these films are then used
to populate an inventory of available index values. The films are then selected and stacked
subject to the design of the GRIN profile. This film stack is then consolidated into a single
GRIN sheet. From here, the axial GRIN may be moulded further into a spherical (potentially
aspheric) GRIN preform. The optical surface quality of the spherical preforms is sufficient to
allow optical alignment of preforms to diamond turning lathes.

5.3. Modelling of Layered GRIN Lenses

Polymer GRINs are not subject to the same manufacturing constraints that diffusion-driven
GRIN manufacture methods are limited by. This method of GRIN manufacture requires a new
optical design modelling approach. A simple spherical GRIN distribution is defined as

𝑁(𝑅) = 𝒩0 +𝒩1𝑅 +𝒩2𝑅2 +𝒩3𝑅3 +… , (5.1)

where 𝑅 defines the distance from the centre of the GRIN distribution of a surface of constant
refractive index, while 𝒩0,𝒩1, … are refractive index coefficients. While in principle Equation
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Figure 5.1: Coordinate transform for optimisation of spherical polymer GRINs.

5.1 can be used for the design and optimisation of a polymer spherical GRIN, it can be put
into a form much more amenable for optimisation in optical design software. Typically, for
LGRIN lenses, the centre of the spherical GRIN distribution is a significant distance away from
the lens surfaces along the optical axis, a position along the optical axis we define as 𝑧0 as
shown in Figure 5.1. This distance is a necessary constraint of the moulding process, as
indicated in Figures 1.2 and 5.3. The value of 𝑧0 is also typically an optimisation variable, as
it has a significant impact on the optical power of the GRIN. The form of Equation 5.1 is very
poor for optimisation, as changes in 𝑧0 cause the GRIN distribution to move relative to the
lens vertex. The result of this approach is lens optimisations frequently become “stuck”, as
multiple variables must change simultaneously to improve the lens. It is much more preferable
to separate the variation of 𝑧0 and the GRIN polynomial terms, and furthermore, place the
origin of the GRIN polynomial at the lens vertex. To perform this separation, we define a local
radius, 𝑅loc, given by

𝑅loc = 𝑅 − 𝑧0. (5.2)

We then change the variable of our GRIN polynomial to 𝑅loc,

𝑁 (𝑅loc) = 𝒩0 +𝒩1𝑅loc +𝒩2𝑅2loc +𝒩3𝑅3loc +… . (5.3)

Figure 5.1 shows an example of such an offset spherical GRIN representation. The origin
of the spherical GRIN iso-indicial contours lies outside the lens. 𝑥len, 𝑦len and 𝑧len represent
the Cartesian coordinates of any point inside the GRIN with respect to the origin of the lens
surface, as will generally be used by commercial optical design software such as CodeV or
Zemax. At a given point within the lens, the GRIN iso-indicial contour radius is given by

𝑅2contour = 𝑥2len + 𝑦2len + (𝑧len − 𝑧0)
2 . (5.4)

Expressing the refractive index as a function of 𝑅loc decouples the origin which controls the
contour curvature from the origin which controls the index polynomial, and allows much more
stable optimisation. In order to model accurately a GRIN lens made from any two known
materials (say A and B), one must also consider chromatic dispersion effects. LGRIN can be
modelled as a mixture of the two constituent materials where the index varies linearly with
the volumetric proportion of each material between the properties of A and B, as outlined in
Section 2.5.5. Experimentally, such a linear scaling law has been shown to be valid [39] within
the repeatability of the LGRIN fabrication process. Due to the fact this refractive index change
is linear with relative composition, it is possible to generate a wavelength-dependent scaling
coefficient, 𝐶(𝜆), defined as the ratio of the index change at a given wavelength to the index
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change at a reference wavelength

𝐶(𝜆) = Δ𝑁(𝜆)
Δ𝑁(𝜆ref)

, (5.5)

where
Δ𝑁(𝜆) = 𝑁𝐵(𝜆) − 𝑁𝐴(𝜆). (5.6)

We then define the refractive index polynomial as a base material, 𝑁𝐴(𝜆) plus an index variation
as a function of space multiplied by 𝐶(𝜆), given by

𝑁(𝑅loc, 𝜆) = 𝑁𝐴(𝜆𝑛) + 𝐶(𝜆) [𝒩0 +𝒩1𝑅loc +𝒩2𝑅2loc +𝒩3𝑅3loc +…] . (5.7)

𝐶(𝜆) is required to model the GRIN at any wavelength other than 𝜆ref. In the case where
𝜆 = 𝜆ref, 𝐶 = 1. The refractive index coefficients 𝒩0,𝒩1, … therefore define the GRIN at
𝜆 = 𝜆ref. In the case where the square bracketed term of Equation 5.7 equals Δ𝑁(𝜆ref),
𝑁(𝜆) = 𝑁𝐵(𝜆).

For optimisation it is useful to add a variable𝒩0 term. This essentially changes the starting
material at 𝑅loc = 0. An 𝒩0 value equal to Δ𝑁(𝜆ref) represents a full transition to material
B, whilst retaining the correct dispersion properties. The index variation generated by the
bracketed term must be constrained to within Δ𝑁(𝜆ref) over a GRIN lens volume to avoid the
design of an un-manufacturable material.

5.4. Trade-off Study of Colour Correction Methods

To investigate the aberration correction properties of LGRIN lenses, a lens parameter study
was undertaken into the performance of simple, single-element systems of various F/# and
field-of-view (FOV) configurations. Sets of GRIN, spherical doublet, aspheric doublet and
diffractive lenses were designed according to a basic specification listed in Table 5.1. The
material combination used for the GRIN lenses was PMMA-SAN17 (Δ𝑁=0.085, VGRIN=6.16).
The effectiveness of GRIN lenses is heavily dependent upon the lens thickness, therefore to
ensure a fair comparison between lenses, the axial thicknesses of each lens was held constant
at 10 mm.

Parameter Value(s)
Focal Length 50 mm

Entrance Pupil Diameter (EPD) 5, 10, 15, 20, 25 mm
Field of View 0, 4, 8°
Waveband 450-650 nm, uniform spectral weighting

Image Plane Curvature Curved image plane permitted
Lens Thickness 10 mm max
RMS Spot Size To be minimised

Table 5.1: Colour correction trade study lens specification
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5.5. Optimisation

Material selection for the glass doublets was limited to commercially available glasses from
Schott and Ohara. The CodeV macro “glassexpert.seq” was used to efficiently find optimal
glass choices, thicknesses and curvatures over the full range of fields and apertures of the trade
study (30 glass designs in total). The material pairings chosen were required to be thermally
stable by means of a tolerance on glass coefficient of thermal expansion (CTE) mismatch.
Any doublet glass combination which demonstrated a deviation greater than 0.1μm/K over
the clear aperture was rejected.

The RMS spot size of the trial GRIN lenses was optimized using the CodeV automatic design
(AUT) option. It was necessary to control the refractive index limits of the GRIN lenses during
optimization to prevent un-manufacturable solutions from being generated. This was done via
user-defined constraints within the optimiser. Maximum and minimum refractive index limits
were defined as the pure forms of each constituent material of the GRIN. For computational
simplicity, the refractive index profile was constrained at the optical axis and the clear aperture
(Figure 5.2). This was generally effective as the index extremes within the GRIN lenses tended
to occur along the optical axis and at the clear aperture. The index control process was further
simplified by the rotational symmetry of the system. It was also important to control the GRIN
contour origin offset, 𝑧0. Left unconstrained this had a tendency to produce solutions with
the origin of the GRIN contours internal to the lens itself which is infeasible to manufacture
via the LGRIN process. A basic moulding feasibility constraint was added, which did not allow
the GRIN curvature origin, 𝑧0, any closer to the lens vertex than the size of the adjacent clear
semi-aperture. This avoids the scenario shown in the left-hand side of Figure 5.3. Finally, as
both surfaces of the GRIN lens are diamond turned, variable aspheric terms were added to
combine with the GRIN properties for monochromatic aberration correction. The number of
variable aspheric terms was increased progressively until the optimization process stagnated.

Figure 5.2: Regions of a GRIN lens where the index is constrained in optimisation along the optical axis and at the
lens clear aperture.
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Figure 5.3: Large and small mould radius scenarios.

5.6. Results

The RMS spot size over the field of view was recorded for each trade space lens. The lens de-
signs and RMS spot size values are shown in Figures 5.4 and 5.5 for the axial lens specification,
5.6 and 5.7 for the 4° field specification, and 5.8 and 5.9 for the 8° field specification.

Non-linear growth was observed in the axial RMS spot size versus entrance pupil diameter
(EPD) of each solution type with the exception of the diffractive solution. Particularly rapid
growth was seen in the RMS spot size of the spherical doublet solutions. At the edge of the
field of view, the performance of each solution type is broadly similar. For the widest angle
solutions with a field of view of 8°, some greater variation in spot size is observed with the
diffractive and GRIN lenses outperforming the doublet lenses. The spherical doublets show
particularly rapid growth in on-axis spot size due to the onset of spherical aberration. As
colour correction is a key objective of GRIN lens use, the percentage variation of the focal
length against wavelength was recorded for each solution type (Figure 5.10).

Achromatic correction was observed for the 5 mm, 10 mm and 15 mm EPD GRIN lenses.
This comes in the form of a U-shaped variation of focal length with wavelength. Beyond 15
mm EPD a progressive breakdown in the level of correction occurred. The variation of focal
length with wavelength becomes gradually more “hockey stick” shaped, with a progressively
smaller region of the waveband corrected for two wavelengths. Chromatic aberration remains
well-controlled by both the spherical and the aspheric doublets over the full aperture range.
The diffractive solution shows a fixed level of secondary spectrum for all EPD values. Note
that the secondary spectrum profile is inverted due to the negative chromatic dispersion of
the diffractive surface. All solutions showed a steady loss in off-axis performance due to
astigmatism which cannot be corrected in simple lenses located at the aperture stop.
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Figure 5.4: Trade study lens designs for the axial specification.

Figure 5.5: Trade study RMS spot sizes for the axis-only field of view specification.
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Figure 5.6: Trade study optical designs for the 4° field of view specification.

Figure 5.7: Trade study RMS spot sizes for the 4° field of view specification.
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Figure 5.8: Trade study optical designs and for the 8° field of view specification.

Figure 5.9: Trade study RMS spot sizes for the 8° field of view specification.
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Figure 5.10: Percentage focal length variation of axial field 50 mm designs for several entrance pupil diameters.

5.7. Discussion

It was observed that it is possible to correct axial colour for GRIN, diffractive and doublet
designs at modest aperture values (EPD=5-15 mm, corresponding to F/10-3.33). Within this
range, the spherical doublet surfaces are capable of controlling spherical aberration and coma
to an adequate degree. We observe better RMS spot size performance from the doublet at
these smaller apertures due to reduced secondary spectrum. This is due to the fact that the
glass doublet solutions have the design freedom to select an optimal material combination,
whereas the diffractive-refractive hybrid and GRIN solutions are constrained in their material
selection.

At the full aperture of 25 mm, each solution type is limited by different aberrations. These
are apparent when one observes the transverse ray errors for the axial field (see Figure 5.11).
The GRIN optic is limited by loss of colour correction whilst providing some compensation
through control of spherical aberration and spherochromatism. The spherical doublet no
longer has the ability to control spherical aberration due to the lack of an aspheric surface.
The hybrid-diffractive lens controls spherical aberration and chromatic aberration well, but is
limited by the secondary spectrum caused by combining a diffractive (that has linear disper-
sion and 𝑃𝑔,𝐹 =0.3) with refractive optical power from the PMMA substrate (𝑃𝑔,𝐹 =0.53). There
are also practical limits to manufacturing a diffractive component due to the fact that as the
aperture expands the zone spacing becomes progressively smaller, eventually becoming im-
practical. For zone spacings of ≈ 10 wavelengths or less, the thin phase approximation used
in their design begins to break down, leading to a requirement for highly complex, rigorous
diffraction analysis of the lens or the risk of ghosting and efficiency loss. The best overall
performer was the aspheric doublet which can suppress secondary chromatic aberration and
spherical aberration, being limited by a small amount of spherochromatism. Such a solution
could prove costly however if the aspheric surfaces cannot be generated by an economical
process such as precision moulding (that also requires a suitable glass type).
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Figure 5.11: Transverse ray aberrations of GRIN, doublet, diffractive and aspheric doublet 4° FOV designs (EPD=25
mm).
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The loss of colour correction for a spherical GRIN depends on two factors. Firstly, the loss
of surface-based correction due to the changing shape of the lens and secondly, the loss of
correction from the GRIN transfer contributions due to the limited Δ𝑁 and gradual decrease in
curvature of the GRIN contours. The second factor occurs due to the need to retain an aspect
ratio of the GRIN that is feasible for moulding, as shown in Figure 5.3.

5.7.1. Challenging the F/# limits of GRIN Correction

By considering the current limitations of GRIN materials, we propose some future develop-
ments which can offer improvements in performance at faster F/#s. Three candidate tech-
nologies were considered:

• Negative VGRIN materials
• Increased Δ𝑁 material combinations
• Radial GRIN distributions

Each of these technologies were considered in turn and applied to the 25 mm EPD, 4° FOV
design.

Negative VGRIN GRINs are generated by selecting a pair of compatible materials whereby the
higher index material has lower dispersion than the low index material. We recall and inspect
Equation 1.29 for the Abbé value of a GRIN material. Zero-dispersion GRIN occurs where the
Δ𝑁 is identical at long and short wavelengths, and dispersion becomes negative when the high
index material is less dispersive than the lower index material. Take for example the glasses
N-LAK14 and F2 (shown in Figure 5.12). Traversing the glass chart in from top left to bottom
right generates a GRIN with a negative VGRIN dispersion value of -17.559 as opposed to the
opposite diagonal where a combination of SK5 and N-BASF64 gives a VGRIN value of 13.894.

This approach shows particularly strong potential for aberration correction as it allows the
reduction of chromatic aberration using positive power. This allows reduction of the surface
curvatures of the lens which in turn reduces monochromatic aberrations. A design was gener-
ated where the GRIN was composed of polycarbonate and a hypothetical material of equivalent
dispersion characteristics to the Schott glass N-LAK7*. This GRIN had a VGRIN value of -5.25
and a Δ𝑁 of 0.064. In Figure 5.13 we observe reduced aspheric departure in the optical sur-
faces of the negative VGRIN design compared to the positive VGRIN case. This leads to reduced
contributions from higher-order aberrations which generally limit the performance of lenses
at wider apertures. In Figure 5.14, reduced axial colour and spherochromatism was observed
as a result of the improved power balance.

Another effective approach to improve aberration correction of an LGRIN lens at faster F/#
is to increase the available index difference between the low and high index material. One
such possibility for increased Δ𝑁 was prototyped at Polymerplus LLC. A mixture of PVDF and
PMMA was used to reduce the refractive index of the low index GRIN material. Pure PVDF is a
crystalline material which is unsuitable for extrusion, but when blended correctly with PMMA
forms a low-index, low-dispersion starting material which can be extruded. This approach
extends the Δ𝑁 to 0.129 from the 0.085 available with a PMMA-SAN17 GRIN.

*This combination is not directly representative of manufactured GRIN material, however similar optical properties
have been demonstrated by NanoVox [29].
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Figure 5.12: Illustration of both negative and positive VGRIN material combinations. [2]

Figure 5.13: Optical design cross sections of positive and negative VGRIN solutions, EPD=25 mm

Figure 5.14: Transverse ray aberrations of positive and negative VGRIN, 4° FOV designs.
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Figure 5.15: Optical design cross sections of PMMA-SAN17 and PVDFb-SAN17 GRINs

Figure 5.16: Transverse ray aberrations of PMMA-SAN17 and PVDFb-SAN17 4° FOV designs.
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Figure 5.17: Optical design cross sections of PMMA-SAN17 spherical and radial GRINs, 4° FOV.

Figure 5.18: Transverse ray aberrations of PMMA-SAN17 spherical and radial GRINs, 4° FOV.

Figure 5.15 demonstrates the effect of a larger Δ𝑁 on the optical design. In this case the
starting material on the convex first surface has lower index. This leads to this particular
aspheric surface having a tighter base radius of curvature of 20.22 mm, reduced from 24.38
mm. In Figure 5.16 the effect of this higher Δ𝑁, lower VGRIN dispersion GRIN on image quality
is exhibited. The lower dispersion reduces the influence of the GRIN on colour correction and
has resulted in increased axial colour. This has been balanced with spherochromatism in the
solution. Such a component may be useful in improving systems limited by spherochromatism,
an aberration which is difficult to correct with conventional lenses.

Finally, changing the GRIN geometry inside the lens can have a significant effect upon its
correction capability. In the case of our singlet components, the curvature of the spherical
GRIN tends toward the tightest possible value subject to our moulding rule outlined in Figure
5.3. This implies the GRIN needs to be more radial in nature as defined in Equation 1.26. Radial
GRINs are currently not supported in LGRIN manufacture, but we can nonetheless model the
optical properties such a solution would provide. A radial GRIN was therefore designed with
an index distribution in the form of Equation 1.26 and with the same PMMA and SAN17 base
materials as the LGRIN solutions.

The change in lens form of the radial GRIN solution is shown in Figure 5.17. It was observed
that the aspheric departure of the GRIN optical surfaces had reduced as well as the lens
“bending factor”, yielding a biconvex component. Surface one aspherically departs by 0.1397
mm compared to 0.2250 mm for the LGRIN solution; surface two now departs from spherical
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Figure 5.19: Comparison of axial RMS spot size for future and current aberration correction methods.

by 0.0398 mm compared to 0.2182 mm. Figure 5.18 demonstrates the effect of a radial profile
on the transverse ray errors. It is observed that the level of spherochromatism has been
dramatically reduced, leaving the system limited by secondary spectrum only. This is intrinsic
to the material selection of the lens. If anomalous dispersion plastics could be developed for
LGRIN materials, the level of correction could be improved further yet. Radial GRINs show
great potential to correct aberrations over an extended field of view, they are particularly
effective in eyepiece designs where there is significant pupil separation over the lens surfaces,
as demonstrated by Visconti et al. [89].

The efficacy of these next generation GRIN technologies was compared to current technol-
ogy by evaluation of the axial RMS spot size. In Figure 5.19 we observe that negative VGRIN
shows the greatest aberration correction potential. A spherical GRIN of PVDFb and SAN17
comes in second place, followed closely by a radial GRIN of PMMA and SAN17. Significantly
we observe that all GRIN solutions produce a spot size smaller than that of a diffractive surface
turned onto a PMMA aspheric lens.

5.8. Conclusion

GRIN lenses offer great potential to improve optical systems with respect to their size and
mass. Polymer GRIN lenses give the optical designer a new degree of freedom to correct
chromatic aberrations within visible optical systems. It was shown that spherical GRINs com-
posed of PMMA-SAN17 can provide aberration correction comparable to achromatic doublets
or hybrid refractive-diffractive lenses. This similarity was demonstrated over a range of fields
of view from 0-8° and a range of entrance pupil diameters from 5-25 mm. This GRIN correc-
tion capability currently degrades with faster F/# due to the GRIN geometry and magnitude
of the Δ𝑁 and VGRIN dispersion values. Further development of the underlying polymers that
form the GRIN material to incorporate negative VGRIN properties and greater Δ𝑁 values will im-
prove this further by allowing a greater proportion of aberration correction to take place within
a single lens element. Development in this area has the potential to enable GRIN lenses to
become the optical correction solution of choice for lightweight, high-performance imaging
systems.

114



6
Optical Design of Freeform-GRIN
Lenses for Avionics

The contents of this chapter are derived and expanded from “Optical design of a freeform,
gradient-index, head-mounted display - Optical Engineering Vol. 62, No. 7, Jul 2023” [3,
AMBref].

6.1. Abstract

We present the results of an optical design study into the performance benefits of non-
rotationally-symmetric “freeform” gradient-index (GRIN) media on a pupil-relay head-mounted
display (HMD). A range of design variants are presented based on freeform-GRIN lenses con-
sisting of ternary base material combinations, enabled by recent developments in additive
manufacture. The optical performance of these designs is compared to homogeneous solu-
tions comprising combinations of spherical, aspheric, toric and freeform surfaces. We show
that freeform-GRIN media represent powerful degrees of freedom for aberration correction in
tilted and off-axis optical systems, performing comparably to homogeneous freeform optics
whilst illustrating significant potential reductions in lens count and mass.

6.2. Introduction

The recent development of new GRIN manufacuture methods, particularly additive manu-
facture techniques [29, 30, 35], demonstrate the potential to manufacture visible waveband
GRIN lenses of arbitrary distribution with rotational symmetry about an optical axis no longer
a constraint. Concurrently, there is also significant interest in freeform surfaces that lack any
axis of symmetry. Freeform surfaces are well documented as a degree of freedom suitable for
the correction of aberrations in asymmetric systems caused by the tilt and decentre of optical
components [90, 91].

Helmet and Head-Mounted Displays (HMDs) are two system types in particular that obtain
optical performance benefits from freeform optics. HMD systems see broad applications such
as avionics for defence and aerospace applications and mixed-reality goggles. HMDs typically
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Figure 6.1: Two types of combiner surface interacting with a remote pupil. Left: the planar combiner introduces
no aberration but the necessary collection aperture for relay optics (shown in aqua) is very large. Right: the use of
a curved combiner creates an intermediate image which significantly reduces the collection aperture of the relay
optics, but the powered and tilted surface introduces aberrations.

project information into the eye of a user via a semi-reflective component known as a combiner.
The outside world is simultaneously transmitted through the combiner, allowing symbology to
be overlaid for the user. For the optics not to clash with the user’s head, it is fundamentally
necessary to break rotational symmetry of the optical system.

It is often beneficial to the size and mass of the projection optics to make the combiner
curved, giving it converging optical power in reflection. This approach is illustrated in Fig-
ure 6.1. On the left, ray bundles from the eye box continue to diverge following reflection
off a planar combiner, and thus require a much larger collection aperture for the projection
optics (illustrated approximately as a cyan ellipse). Such a collection optic becomes larger
and heavier than powered alternatives and may not conform to the often challenging space
envelopes required of avionic systems. The right-hand side of Figure 6.1 illustrates the effect
of a powered combiner. The bundles of rays now converge to an intermediate image and
subsequent relayed pupil, requiring a significantly smaller collection aperture than a planar
combiner. A curved combiner of uniform thickness also generates a small amount of optical
power in transmission that affects perception of the outside world. This effect is minimised by
making the combiner as thin as practical whilst being constructed from a low refractive index
material. Alternatively, the curved combiner surface may be “buried” at the interface between
two lenses with planar exterior surfaces or even implemented as a volume hologram.

There is a trade-off associated with the use of a tilted, powered combiner however, as
a highly aberrated intermediate image is generated. These aberrations must be equal and
opposite to the relay optics in order to provide satisfactory image quality to the user. The
rotational asymmetry of these aberrations necessitates asymmetry in the optics of the relay
lens. Due to the inherent difficulty in the manufacture of non-rotationally-symmetric optical
surface geometries, this is conventionally achieved through the use of multiple tilted and
decentred spherical (and aspheric) lenses.

Cylindrical and toric surfaces are also a powerful degree of freedom for the correction of
asymmetric aberrations. Their two radii of curvature in separate azimuths make them par-
ticularly apt for the correction of astigmatism, whilst their geometrical form retains an axis
of symmetry that makes them more amenable to conventional optical polishing and turning
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processes than true freeform surfaces.

True freeform surfaces lack any degree of rotational symmetry. This represents both a
powerful design degree of freedom and a manufacturing challenge. Their usefulness in the
correction of aberrations of tilted and decentred optical systems as well as head-mounted
displays has been widely demonstrated in the literature [90, 92]. Their lack of rotational
symmetry prevents their manufacture by conventional lap polishing processes, with techniques
such as CNC grinding and polishing required to generate the required departure in form and
slope from a sphere. A further challenge in freeformmanufacture lies in the required metrology
processes. The lack of an axis of symmetry requires precise alignment of the part under test
with respect to a sufficient number of datum features to constrain fully translation and rotation.

Cylindrical, toric, and freeform surfaces can also be applied to the reflective combiner sur-
face [92]. This approach has advantages and disadvantages. From an aberration correction
standpoint, it is beneficial to reduce the aberrations of the combiner where they are generated,
reducing the magnitude of aberrations that must be corrected in the projector optics, and po-
tentially simplifying their construction. This method is not a panacea however, with significant
remaining aberration transfer between the combiner and projector that must be corrected by
correspondingly non-rotationally-symmetric degrees of freedom. One must also note that ap-
plication of a freeform or similar surface form to one side of a combiner necessitates that
the same surface deformation be applied to the other, to avoid distortion and parallax of the
outside world, which may add manufacturing complexity compared to a spherical combiner.

A further significant design challenge for HMDs concerns the correction of chromatic aberra-
tions. The relay lenses of HMD systems are generally refractive in nature, whilst modern LED
light sources emit a finite waveband. The chromatic dispersion of lens elements leads to axial
and lateral colour over the lens field of view, whilst prismatic effects due to the tilt and decentre
of lens elements also introduce field-constant lateral colour; all of these chromatic aberrations
degrade system resolution. More recently, requirements for full-colour HMDs compound the
necessity for chromatic aberration correction. Conventionally, chromatic aberrations in HMD
systems are corrected by the combination of lens elements with dissimilar Abbé V values and
opposing signs of optical power. Whilst effective, this adds optical components and mass.
Diffractive optical elements may also be used in HMD systems. Diffractive optical elements
(DOEs) generate extreme optical dispersion with a negative Abbé V value that is highly effec-
tive in the removal of chromatic aberrations. They may also be applied to polymer materials
via diamond turning or moulding, reducing mass significantly. However, DOEs also diffract
light into spurious higher and lower orders. For avionic applications, such diffraction can cause
veiling glare and multiple “ghost” images, with a risk that such artefacts can be hazardously
misleading to a pilot under challenging environmental conditions.

Another design approach in HMD displays that has been the subject of significant research is
the use of pupil-replicating waveguides. Such components function by replicating a collimated
pupil over one or more dimensions, via diffraction gratings or alternative mechanisms such
as polarisers or microprism arrays [93]. The SWAP-C benefits of waveguides are potentially
very significant, as the accompanying optics may be vastly reduced in scale and rotationally
symmetric, as the waveguide effectively replaces the combiner. This approach introduces
trade-offs however. The pupil replication effect in waveguides means a correspondingly higher
luminance must transmit through the projection optics. This higher energy density within the
optical system introduces challenges in heat management and athermalisation, with added
technical risk attached to the use of polymer lenses due to their lower melting points and
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susceptibility to yellowing with time under intense light. The waveguide projection optics
must also be very well corrected and collimated, to avoid errors “cascading” over the multiple
pupil replications in the waveguide. Furthermore, the efficiency of a waveguide itself must be
carefully calibrated over the pupil and field of view for different wavelengths. Otherwise, there
is a significant risk of non-uniformity in the colour and brightness over the pupil and field of
view of the system, as well as the potential for ghost imaging.

In this work, we examine the application of freeform-GRIN media to HMD optics. We define
freeform-GRIN media as continuously varying gradient-index materials that lack any axes of
rotational symmetry. A freeform refractive index distribution within a lens of finite thickness
causes an optical path difference to transmitted light that is analogous to the function of one or
more freeform surfaces (depending on thickness, distribution and index variation). Freeform
GRINs have only recently been applied to imaging problems of non-rotationally-symmetric
systems . Lippman et al. defined and demonstrated simulations of non-rotationally symmetric
GRIN representations, showing their influence on aberrations within imaging systems [46].
Yang et al. demonstrated experimentally that freeform-GRIN lenses can reduce the aberra-
tions of a tilted, spherical mirror [38], while both Yee et al. and Desai et al. showed the
promise of the technology in the design of a freeform-GRIN prismatic display [44], and a
novel spectrographic GRIN lens that produces a well-corrected image spatially separated by
wavelength [94].

Radial-GRIN lenses are a well-known strategy to correct chromatic aberrations [95]. The
combination of different materials within a GRIN leads to the generation of a combined Abbé
number or VGRIN as defined in Equation 1.29. VGRIN may assume radically different values to
homogeneous materials, with highly dispersive values such as VGRIN< 10 and even negative
dispersion a possibility. As a result of such extreme dispersion characteristics, GRIN media
with only modest optical power can be used to correct the chromatic aberrations of optical
systems. The development of GRIN polymer materials also enables colour correction in a low-
mass component. In this work, we also investigate the colour correction potential of GRINs
in HMD systems.

GRIN lenses of freeform distribution have the potential to address a wide range of design
problems simultaneously. A single GRIN lens can have attributes of an aspheric/freeform
surface and achromatic doublet within a single optical medium. This multiplexing of lens
properties has the potential to significantly reduce SWAP-C of HMD optics, by reducing the
size and number of lens components.

It is noted that replacing freeform surfaces with freeform media has an effect on the optical
manufacture approach, with some transfer of complexity from the optical surfaces to the
optical medium. At the time of writing, freeform-GRIN components have been fabricated [38],
however significant challenges remain with respect to manufacture of non-planar surfaces, as
well as metrology and alignment of the GRIN distribution with respect to the optical surfaces
of the GRIN component and during assembly into a multi-element optical system.

6.3. Mathematical Representation of Freeform Surfaces and
Gradient Index Media.

We define a coordinate system as the basis for subsequent freeform surfaces and GRIN media
in Figure 6.2. In this basis we define a freeform optical surface in Equation 6.1. We represent
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Figure 6.2: Coordinate system definition for optical surfaces in our system. The vertex of each surface is locally
defined at the origin of a left-handed Cartesian coordinate system. The z-axis defines surface sagitta and the local
optical axis.

a freeform surface with an x-y polynomial appended to a base conic. Whilst the number
of potential freeform representations for both GRIN and surfaces is vast and merits further
research [46, 96], such an exploration was not possible in this work due to time constraints,
with an x-y polynomial considered sufficient for proof of concept of freeform-GRIN media,
whilst also being simpler to implement computationally as a GRIN tracing routine. The surface
sagitta, 𝑧surf(𝑥, 𝑦), of this freeform surface is given by

𝑧surf =
𝑐𝜌2

1 + √1 − (1 + 𝑘) 𝑐2𝜌2
+∑
𝑖=0
∑
𝑗=0
𝐵𝑖𝑗𝑥𝑖𝑦𝑗 , (6.1)

where 𝜌2 = 𝑥2 + 𝑦2 defines the distance from the optical axis, 𝑧, 𝑘 is the conic constant, and
𝐵𝑖𝑗 are coefficients of non-rotationally-symmetric freeform terms. Herein, we also explore the
use of toric surfaces in the optical design of an HMD. Toric surfaces have some of the benefits
of a freeform surface, namely by allowing optical power to be split into 𝑥 and 𝑦 components.
We define a toric surface by rotation of a circle of radius, 𝑟𝑥 = 1/𝑐𝑥 in the x-z plane about the
y-axis over a radius 𝑟𝑦 = 1/𝑐𝑦. The surface sagitta of such a “y-toric”, 𝑧toric, is given by [97]

𝑧 = 𝑟𝑥 − [(√𝑟2𝑦 − 𝑦2 + 𝑟𝑥 − 𝑟𝑦)
2
− 𝑥2]

1
2

, (6.2)

where 𝑟𝑥 and 𝑟𝑦 are the x and y axis radii of curvature respectively. Both the x-y polynomial
and toric surface representations can be modelled in CodeV without customisation.

To define a freeform GRIN distribution, we follow a broadly analogous approach to the x-y
polynomial surface, which we adapt to a multi-material GRIN representation in three dimen-
sions. In Chapter 2, a mathematical representation was outlined for such a general multi-
material GRIN whereby the refractive index is computed based on the relative composition of
a number of constituent materials. The refractive index at a point, 𝑃, for a combination of
three base materials: A, B, and C of respective refractive indices: 𝑁𝐴(𝜆), 𝑁𝐵(𝜆), and 𝑁𝐶(𝜆) is
given by

𝑁(𝑃, 𝜆) = 𝑁𝐴(𝜆)𝑚𝐴(𝑃) + 𝑁𝐵(𝜆)𝑚𝐵(𝑃) + 𝑁𝐶(𝜆)𝑚𝐶(𝑃)
𝑚𝑇(𝑃)

, (6.3)

119



6.3. Mathematical Representation of Freeform Surfaces and Gradient Index Media.

where 𝑚𝑇(𝑃) = 𝑚𝐴(𝑃)+𝑚𝐵(𝑃)+𝑚𝐶(𝑃) and the quantity 𝑚𝜇(𝑃)/𝑚𝑇(𝑃) describes the relative
composition of the µth material at a given point within the lens. 𝑚𝜇(𝑃) must be positive at
all points within the lens. To impart freeform degrees of freedom, 𝑚𝜇(𝑃) was defined as a
polynomial in even powers of 𝜌 plus an x-y polynomial (analogously to Equation 6.1) about the
surface vertex of the GRIN lens. Furthermore, as freeform GRINs can have refractive index
variation in three dimensions, each 𝑚𝜇(𝑃) coefficient was allowed to vary as a function of 𝑧,
giving

𝑚𝜇(𝑃) = 𝑚𝜇(𝑥, 𝑦, 𝑧) =
𝑀

∑
𝜇=1

∑
𝑘=0

𝑧𝑘 (∑
𝑙=0
𝑚𝜇𝑙𝑘𝜌𝑙 +∑

𝑖=0
∑
𝑗=0
𝑚𝜇𝑖𝑗𝑘𝑥𝑖𝑦𝑘) . (6.4)

Here, we apply an additional sum of rotationally symmetric terms defined by the 𝑚𝜇𝑙𝑘 coef-
ficients. At first the additional rotationally symmetric terms defined by the 𝑚𝜇𝑙𝑘 coefficients
appear degenerate as, for example, 𝜌4 = 𝑥4 + 2𝑥2𝑦2 + 𝑦4. However, if used correctly, they
are important for improving the conditioning of the freeform GRIN optimisation problem. It
is often useful to constrain multiple terms to vary in unison to address specific aberrations
(for example, variation in 𝜌4 near to the aperture stop of a lens allows control of spherical
aberration). If left to vary independently, three terms in an x-y polynomial (coefficients of
𝑥4, 2𝑥2𝑦2, 𝑦4) must vary together to achieve this, which increases the risk of descent into a
poor local minimum and increases computation time as three finite differences must be com-
puted by raytracing the system. In the 𝜌4 basis, the same can be achieved by varying a single
coefficient*. Such an approach also allows a starting solution to be designed with rotational
symmetry, before applying tilts and decentres to surfaces such as the combiner.

Of all the terms in Equation 6.4, many can also be redundant depending on the symmetry
of the design problem. For example, for an optic with symmetry about the y-z plane (as is the
case for the designs in this work), there is little utility in terms that contain odd powers of 𝑥.
Such redundancy was significant due to a limit on the number of optimisable coefficients that
could be applied to a GRIN material in CodeV. At the time of writing, CodeV (version 2022.03)
had a limit of 150 optimisable user-defined GRIN coefficients. The usefulness of these co-
efficients was therefore maximised by removing a) any coefficients that were odd powers of
𝑥 and b) removing one coefficient per even power of aperture to eliminate the degeneracy
with 𝜌𝑛 terms previously discussed. The number of base materials was limited to three, as
this was shown to be effective in Chapter 2 for correcting both chromatic and monochromatic
aberrations. Coefficients were budgeted to a higher order in 𝑥 and 𝑦 than for 𝑧, as such terms
perpendicular to the optical axis tend to have a greater effect on aberration correction, with
z-axis terms tending to vary less over the lens volume. Potentially variable coefficients using
this GRIN distribution are shown in Table 6.1. In this case, y-z plane symmetric freeform
terms to the quintic order were possible for three materials whilst meeting the CodeV 150
GRIN coefficient limit.

These equations were then used to write and compile user-defined raytracing DLLs in the
C programming language. GRIN raytracing is computationally intensive compared to conven-
tional homogeneous surfaces. For asymmetric problems such as HMD design, this issue is
compounded by the requirement to trace a larger number of field angles to sufficiently sam-
ple the entire field of view. Further yet, such complex systems have a very large number of
optimisation variables that require the system to be traced a greater number of times to com-
pute all variable derivatives for optimisation via finite differences. Compilation of raytracing

*This can also be achieved by use of “coupling codes” or “pickups” in optical design software that constrain
coefficients to be a factor of one another, however this was not possible at the time of writing for GRIN materials
in CodeV and had to be implemented via additional coefficients.
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Table 6.1: Variant coefficients for the µth material of an x-y-z polynomial GRIN distribution. Only even powers in
x are variable.

DLLs significantly improves optimisation time (compared to macro code within CodeV) and
enables a more interactive design process, with the capability to explore a greater number of
solutions within a given time frame.

6.4. Material Selection and Colour Correction

Base material data in this study were provided by NanoVox LLC. These materials are UV-
curable, nanoparticle-doped polymers with significant variation in refractive index, making
them suitable for additive manufacture of GRIN lenses via an inkjet printing approach (known
as the Volumetric Index of Refraction GRIN Optic process or VIRGO [29]).

Material Nd Vd Pd,F Density (g cm-3)
VYIX1060 1.45621 24.0 0.643 1.42
VZBX2000 1.62308 46.7 0.703 1.15
VZAX1500 1.70432 18.6 0.718 1.44

Table 6.2: Basic properties of NanoVox base materials.

Refractive index and Abbé V values for the base materials are shown in Table 6.2 for the
Fraunhofer d, F, and C lines as defined in Chapter 1.5.3. Their properties relative to Schott
catalogue glasses are shown in Figure 6.3. The large Δ𝑁 of the GRIN combination provides
a significant level of design freedom. The low mass-density of these polymers ensures a
lightweight design is achievable. At the time of writing, these are developmental inks that are
not in production.

The set of three materials outlined in Table 6.2 yields three possible GRIN combinations.
The optical properties of these combinations are shown in Table 6.3.

These three materials were selected to maximise the area of an inverted pyramid formed
in N-V space. In Chapter 2 it was identified that such a combination of GRIN base materials
enables chromatic correction, a large Δ𝑁 that minimises GRIN thickness, and a flat field cor-
rected for primary field curvature. The thickness of the GRIN lens and the Δ𝑁 of the GRIN
have a very strong influence on aberration correction potential and manufacturing feasibility.
Smaller Δ𝑁 GRINs require increased thickness to impart the same optical path length change,
whilst printing of thicker GRINs incurs greater manufacturing difficulty. If the Δ𝑁 is too small,
the GRIN may not be able to impart sufficient optical function, even if it occupies the majority
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Figure 6.3: Left: Abbé diagram showing GRIN base materials laid over the Schott catalogue glasses for comparison.
Right: short-end partial dispersion plot showing the same material sets.

of the available track length of the lens. Conversely, larger Δ𝑁 GRINs can be more difficult
to manufacture due to the challenges associated with printing inks with higher nanoparticle
loadings. The large Δ𝑁 and variable dispersion of the material combinations listed enable very
powerful degrees of freedom for the aberration correction of GRIN lens systems.

The first combination of VYIX1060 and VZBX2000 has a large Δ𝑁 and relatively weak neg-
ative dispersion. This combination can be usefully combined with weakly positive optical
dispersion contributions from the lens surfaces to effect optical power that is distributed be-
tween the surface and the medium. Distributing the power of a lens in this way enables an
achromatic lens with reduced monochromatic aberrations. The second and third GRIN com-
binations both have high optical dispersion with varying Δ𝑁 values. Such GRIN combinations
allow strong, negative chromatic aberration contributions with only a small negative contribu-
tion to the optical power of the GRIN. It is also noteworthy in Figure 6.2 (right) that the base
material VYIX1060 has highly anomalous partial dispersion compared to conventional Schott
glasses and the other materials in the GRIN. This indicates that a composite “flint” gener-
ated by negative optical power contributions balanced between VYIX1060 and VZAX1500 has
the potential to correct for secondary spectrum generated by positive power contributions
from VZBX2000. This extreme partial dispersion difference between VYIX1060 and VZBX2000
also leaves the potential for residual secondary spectrum, however this effect is offset by the
benefits to monochromatic aberration correction of the increased Δ𝑁.

Material Combination Δ𝑁d VGRIN
VYIX1060-VZBX2000 0.167 -29.52
VYIX1060-VZAX1500 0.248 13.16
VZBX2000-VZAX1500 0.081 3.32

Table 6.3: Combinatorial GRIN properties of NanoVox base materials.

6.5. Colour Helmet-Mounted Display Optical Design Study

To assess the benefits of freeform-GRIN media, we define a lens specification upon which
comparative designs are based. A schematic of a HMD device is shown in Figure 6.4. A
combiner component sits in front of the user’s eye. This combiner has a partially reflective
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6.5. Colour Helmet-Mounted Display Optical Design Study

Figure 6.4: Basic construction of a head-mounted display device.

Field of view 40° circle truncated to 30° vertical
Eyebox diameter 10 mm

Axial combiner distance 40 mm
Combiner tilt angle 20°

Waveband 486.1-656.3 nm (uniform weighted)
Display size 800x600 pixels, 15 µm pitch

Temperature range Ambient only

Table 6.4: Specification parameters for hypothetical HMD requirement

coating that transmits the majority of light from the outside world, whilst also reflecting key
wavelengths of interest from the projection system of the HMD. Another reflective component
is located at the forehead of the user, known as the brow mirror, this redirects light from the
relay lens away from the user’s head and towards the combiner. Due to the strong positive
optical power of the tilted combiner surface, a highly aberrated intermediate image exists
between the combiner and the brow mirror. It is the purpose of the relay lens to generate
aberrations opposite to this intermediate image to enable projection of high-resolution images
to the user from a notional microdisplay.

A set of basic optical requirements for the system are listed in Table 6.4. The field of view and
display combination corresponds to a focal length of approximately 16.5 mm and F/# of 1.65
for an equivalent rotationally-symmetric system. This yields an indicative diffraction-limited
spot size (given by 𝜈 = 1.22𝑓𝜆/𝐷) of 1.15 µm. Illustrations of key construction dimensions are
also shown in Figure 6.5. These dimensions form the system-human interface, with sufficient
clearance from the forehead and ergonomic placement of the eyebox needed in any real-
world HMD design. Dimensions of the combiner and brow mirror are also constructed such
that sufficient clearance exists for a notional lens housing. These dimensions are however,
not indicative of any real-world design requirement, but rather, they serve as a standard com-
parator to assess the aberration correction potential of the GRIN and homogeneous designs.
An equivalent amount of aberration is generated by the tilted combiner for each solution.

Our performance metric for each optical design in this work was RMS spot size over the
field of view for the full eyebox, as traced from the eyebox to the display. This is only a
basic performance metric; adopted both for brevity and due to time constraints on this work.
Tracing in this manner simplifies the optimisation of the design as ray-aiming through the
accessible pupil is far simpler, reducing the risk of ray failures and ill-conditioned optimisation.
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Figure 6.5: Key dimensions of HMD basic construction. Left, the front elevation of the design (the head viewed
from the side). Right: The plan view of the space envelope (view from the top of the user’s head).

The fine optimisation and analysis of HMD optical designs is a complex process, requiring
consideration of a large number of eye sub-pupils within the total eyebox as well as effects on
accommodation (and parallax where the system will be applied to both eyes) [98]. Performing
such analysis over a large number of designs would be time consuming, and whilst delivering a
more detailed answer, would only be marginally more useful in assessing the overall usefulness
of GRIN degrees of freedom in HMD design.

Where applicable, packaging constraints were applied to the lens elements, constraining air
gaps between surfaces to be greater than 1 mm (at any point over the lens surface). Length
of the relay lens from the brow mirror to the centre of the display was constrained to 36 mm
or less. The focal length of the design was constrained by forcing the horizontal field to fill
the horizontal axis of the display. Distortion of the design was not constrained in optimisation,
under the assumption that it may be corrected by “pre-distorting” the image on the display
electronically, such that it is compensated by the projection optics.

Optimisation was performed using the CodeV automatic design (AUT) local optimiser. Weighted
constraints and inequality constraints were defined to satisfy the requirements of the previ-
ously outlined specification, as well as case-specific constraints for GRIN and homogeneous
designs outlined below. To minimise the risk of the optimised lens designs becoming stuck in
poor local minima, degrees of freedom such as coefficients for aspheres, freeforms, and GRINs
were added progressively in successive optimisation runs, starting with lower orders and pro-
gressing to the higher-order terms. For all solutions, the brow mirror was made aspheric, with
coefficients allowed to vary.

To provide a subjective analysis of each design, the transverse ray errors of each solution
were computed and evaluated for the axial field, as well as fields that represented the hori-
zontal and vertical edges of the field of view. Additionally, the optical mass of each solution
was estimated. The boundary of each lens was defined by the clear aperture. Whilst real
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lenses have additional “overage” added to enable mechanical integration, a full mechanical
design was not feasible within the bounds of this study and so mass estimates should be con-
sidered as comparative rather than absolute. Mass estimation of the GRIN components was
simplified by assuming each consisted of homogeneous VZAX1500, the densest of the three
base materials.

6.6. Non-GRIN Optical Designs

To determine if freeform-GRIN media are beneficial to the design of HMD systems, we require
non-GRIN baseline designs to form a comparison. The solutions shown in this section were
generated by a process of material and surface type substitution followed by multiple local
optimisations until a good solution was found. Glass and plastic materials were both used in
the design, as well as judicious use of special surfaces such as aspheres, torics and freeforms.
Six lens elements were used in the relay of each homogeneous solution.

6.6.1. Non-GRIN with aspheres and torics

A design variant was optimised that made use of aspheric and toric surfaces (illustrated in
Figure 6.6). Such surfaces represent the state of the art in (non-freeform) HMD optics. A
set of tilted and decentred lenses provide aberration correction inverse to that introduced
by the combiner surface. A cemented doublet component is incorporated to provide colour
correction. A toric surface is applied close to the intermediate pupil to assist in correction of
field-constant astigmatism.

Optical performance of this variant is shown in Figure 6.7. Performance on axis is limited by
spherical aberration, with a comparatively small chromatic aberration residual. Performance
at the outermost x-fields suffers from some astigmatism and coma.

Optical materials (in order from closest to the brow mirror, to the display) were Zeonex E48R,
Schott N-LAK9, Schott N-PSK53A cemented to Ohara S-NPH1, Ohara S-LAM60 and Schott N-
PSK53A. The optical mass of the solution was estimated to be 3.70 grams. This estimate was
performed by applying rectangular and elliptical clear apertures that efficiently surround the
system rays, followed by calculation of the volume of each component in CAD software.
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Figure 6.6: Raytrace of conventional HMD variant featuring aspheric surfaces (red) and a single toric surface
(blue).

Figure 6.7: Left: transverse ray errors for the aspheric and toric non-GRIN HMD design. Right: RMS spot size
over the field of view.
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6.6.2. Non-GRIN with Freeform surfaces

Freeform surfaces were added to the baseline design on lenses 2 and 6, as illustrated in green
in Figure 6.8. The first of these replaced the toric surface of the baseline design whilst the
second replaced a spherical surface. These locations allow freeform degrees of freedom to be
applied close to the intermediate pupil and display, to address aberrations with different field
and pupil dependencies. The two aspheric surfaces from the baseline design were retained.
Freeform terms up to and including the quartic order were added to each surface. RMS
spot size over the field of view is illustrated in Figure 6.9. The average RMS spot size is
substantially reduced to 11.9 µm. Furthermore, the spot size is very consistent over the field
of view, with a standard deviation of 1.9 µm. Aberrations of the system are shown in Figure
6.7. Performance is limited by a combination of aberrations over the field of view, principally
coma and astigmatism at wider field angles. The same set of materials were used for this
design as the toric-based solution, resulting in an approximate optical mass of 4.0 grams.
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Figure 6.8: Raytrace of conventional HMD variant with twin freeforms. Aspheric surfaces are highlighted in red.
Freeform surfaces are highlighted in green.

Figure 6.9: Performance data for the twin-freeform homogeneous variant. Left: Transverse ray errors over the X
and Y field angles. Right: RMS spot size over full entrance pupil vs field.
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6.7. GRIN Optical Designs

GRIN base materials were derived from the 3D printing VIRGO process of NanoVox as dis-
cussed in Section 6.4, for which refractive index data was provided in support of this work.
These material data were selected based on the fact that the 3D printing VIRGO process
is capable of producing an arbitrary refractive index distribution required for freeform-GRIN
components.

The relative composition mathematical representation of Equation 6.3 allows for unphysi-
cal results if the relative composition of any material 𝑚𝑛 becomes negative. The optimiser
tended to produce negative material composition when unconstrained. To prevent this, grid
constraints were placed over the lens volume. These constraints return the minimum value
of material concentration for each material over a set of sample points covering the lens bulk.
An example of such a constraint grid is illustrated in Figure 6.10. These constraint grids were
constrained slightly above zero in optimisation (in this case 0.005 relative composition), to en-
sure that regions between the grid points did not drop below zero. For each design, validity of
the relative composition was verified by plotting it over a fine grid of points. In this work, the
grid points were aligned in polar coordinates about the optical axis, however it is considered
that an evenly spaced grid in x and y may be a simpler and more effective means for future
work, as a polar grid is somewhat sparse at the lens edge whilst excessively dense close to
the optical axis.

Figure 6.10: Constraint grid for a freeform-GRIN lens. Shown in x-y section (left), z-y section (centre) and z-x
section (right).
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6.7.1. Six-Element GRIN Solution

To enable a more direct comparison of the effectiveness of freeform GRIN relative to its ho-
mogeneous analogue, a design based on the preceding twin-freeform variant was produced,
with substitution of the freeform surfaces for freeform GRINs. All other design variables were
equivalent, with an identical set of radii, thickness and aspheric coefficients allowed to vary.
The freeform surfaces of the homogeneous twin-freeform variant were replaced with spherical
surfaces. As the GRIN lenses were relatively thin, an x-y polynomial GRIN formula of the form
shown in Table 6.1 was used that featured terms constant in 𝑧 only.

The optimised solution is illustrated in Figure 6.11. The GRIN lenses are shown by an
overlay of their refractive index distribution, being lenses 2 and 6 of the overall system. The
overall appearance of the solution is very similar to the twin-freeform-surface variant. Optical
performance of the design is illustrated in Figure 6.12. RMS spot size is, on average, fractionally
larger than the freeform-surface variant at 12.3 µm RMS compared to 12.1 µm RMS. Chromatic
aberration correction is noticeably improved for the GRIN design, with the difference in RMS
spot size due to increased monochromatic aberrations. Inspection of the transverse ray errors
of Figure 6.12 indicated this was due to marginally increased coma. The modification of two
lens components to a lower density polymer material reduced the approximate optical mass
to 2.7 grams (from 4.0 grams for the homogeneous variant).

The refractive index distribution of this design is illustrated in Figure 6.13. the distribution
of lens 2 shows only slight asymmetry, with the distribution largely resembling a decentred
radial GRIN. The index distribution of lens 6 is significantly more freeform, using the entire
allowable Δ𝑁 of the materials and with notable asymmetry between the X and Y axes. Relative
composition is illustrated in Figure 6.14, illustrating that for lens 2, the GRIN heavily favours
the low dispersion combination of VZBX2000 and VYIX1060, whilst lens 6 favours a more
general blend of the three materials, but with a notably larger contribution at the lens edges
from the high index and high dispersion material, VZAX1500, to correct lateral colour at wider
field angles.
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Figure 6.11: Raytrace of the six-element GRIN variant, where two freeform surfaces are replaced by freeform-
GRIN media. Aspheric surfaces are illustrated in red. GRIN lenses are indicated by the shading of their refractive
index distribution. (Patent Pending [1, AMBpat])

Figure 6.12: Performance data for the six-element GRIN lens variant. Left: Transverse ray errors over the X and
Y field angles. Right: RMS spot size over full entrance pupil vs field.
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Figure 6.13: Refractive index cross-section for both GRIN lenses of the six-element GRIN solution. Coordinates
are with respect to the local surface vertex.

Figure 6.14: Normalised relative composition by material in x-y cross-section for both GRIN lenses of the six-
element GRIN solution. Coordinates are with respect to the local surface vertex.
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6.7.2. Two-Element GRIN Solution

Whilst the preceding six-element GRIN design demonstrates that a freeform-GRIN medium
can be used as a direct substitute for a homogeneous freeform lens, we would like to explore
design concepts that incorporate GRIN from the outset. In particular, constructing the design
from thicker GRIN lenses that allow the GRIN medium to exert more influence over the design
is of interest.

A solution based on two GRIN lenses was optimised. The placement of the GRIN lenses was
targeted for maximal impact on the aberration correction of the system, with the first GRIN
placed approximately at the intermediate pupil of the relay, whilst the second was placed close
to the display to address aberrations of the field. The GRIN distribution of each lens was a
y-plane symmetric distribution (as shown in Table 6.1) featuring radial terms to the 6th power
of aperture and yz-plane-symmetric terms to the 5th power of aperture. The refractive index
distribution was again independent of 𝑧. The GRIN lenses each had one variable aspheric
surface to assist in the correction of rotationally-symmetric aberrations.

The two GRIN lenses of this solution share a common axis through their optical surface
vertices. This is of significant benefit for the alignment and assembly of the GRIN. The coaxial
symmetry of the end surfaces in the relay means the GRIN lenses may be aligned during
assembly based on reflection off the lens surfaces and run-out of the lens edges, whilst the
rotational alignment of the GRIN distribution about the optical axis may be performed by
rotation of the lens elements. This opto-mechanical simplification may have benefits for the
cost of such a system.

The optimised two-element GRIN design is illustrated in Figure 6.15. Optical performance is
illustrated in Figure 6.16. Excellent chromatic aberration correction is shown over the field of
view due to the ternary GRIN blend. RMS spot size is limited by monochromatic aberrations,
with some residual astigmatism present along the optical axis. Despite the simplified coaxial
geometry, average RMS spot size is improved over the baseline solution, at 18.1 µm compared
to 22.8 µm. Approximate mass of this solution is significantly reduced, at 1.8 grams.

Cross-sections of the refractive index distribution and material concentration profile are
shown in Figure 6.17 and Figure 6.18 respectively. It is observed that the GRIN distributions
have significant asymmetry, deviating strongly from a radially symmetric distribution. The
relative composition of lens 1 indicates a gradual transition from VZBX2000 at the centre to
VZAX1500 at the edge, this is a negatively powered and highly dispersive combination primarily
correcting axial colour within the system.
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Figure 6.15: Raytrace of the two-element GRIN variant. Aspheric surfaces are illustrated in red. GRIN lenses are
indicated by the shading of their refractive index distribution. (Patent Pending [1, AMBpat])

Figure 6.16: Performance data for the two-element GRIN lens variant. Left: Transverse ray errors over the X and
Y field angles. Right: RMS spot size over full entrance pupil vs field.
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Figure 6.17: Refractive index cross-section for both lenses of the two-element GRIN solution. Coordinates are
with respect to the local surface vertex.

Figure 6.18: Normalised relative composition by material in x-y cross-section for both lenses of the two-element
GRIN solution. Coordinates are with respect to the local surface vertex.
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6.7.3. Three GRIN lens solution

The two-element GRIN solution demonstrates that performance in excess of the baseline
toric variant is possible with a greatly reduced lens count, however the performance of this
variant is lower than the six-element GRIN and six-element homogeneous freeform solutions.
Inspection of the transverse ray errors in Figure 6.16 indicated that astigmatism was not
entirely corrected over the full field of view. Further analysis of astigmatism over the field
of view using a field map indicated a bimodal distribution of astigmatism (Figure 6.20 (A))
that would require additional non-rotationally-symmetric degrees of freedom to correct. To
achieve this, a third freeform-GRIN lens was added to the system. The resulting optimised
design is shown in Figure 6.19. Performance of the lens is shown in Figure 6.21. The RMS spot
size over the field of view is significantly reduced due to improved astigmatism correction, as
shown in Figure 6.20 (B). The bimodal distribution of astigmatism remains, but at a reduced
amplitude that is on average over the field of view, approximately half that of the two-element
GRIN design. Initially, the mass of this design was only slightly lighter than the homogeneous
variants, at 3.5 grams when analysed with circular clear apertures like the two-element GRIN.
This is due to the increased clear aperture of lens three that is caused by the altered power
construction. When rectangular truncations are applied to the apertures, as was the case for
the homogeneous variants, a reduced mass of 2.4 grams was obtained. This modification
would increase the mechanical complexity of the lens housing, but the surfaces themselves
still maintain a single optical axis.
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Figure 6.19: Raytrace of the three-element GRIN variant. Aspheric surfaces are illustrated in red. GRIN lenses
are indicated by the shading of their refractive index distribution. Patent pending [1, AMBpat].

Figure 6.20: Distribution of astigmatism over the field of view of (a) the two-element freeform-GRIN solution, and
(b) the three-element GRIN solution.
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Figure 6.21: Performance data for the three-element GRIN variant. Left: Transverse ray errors over the X and Y
field angles. Right: RMS spot size over full entrance pupil vs field.
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6.7.4. Single GRIN Lens Solution

The previous GRIN variants may be considered two-dimensional freeform GRINs, as the non-
rotationally-symmetric index variation occurs perpendicular to the optical axis. A further design
variant was generated that features a three-dimensional freeform-GRIN medium, with index
variation in the x, y and z axes, with symmetry only in the y-z plane (only even polynomial terms
in x). It was considered that if both rotationally-symmetric and non-rotationally-symmetric
terms of the GRIN were allowed to vary along the optical axis, then an HMD design consisting
of just one GRIN lens could be generated. The benefits of this approach are that further
optical processing and alignment steps are removed from the system, albeit with the trade-off
of potentially increased mass (compared to a two-element GRIN solution) and GRIN blank
manufacture complexity. Additional manufacturing complexity is also generated due to the
fact that the optical surfaces must be accurately positioned with respect to the GRIN in three
dimensions rather than two (whilst accounting for lens thickness errors). Each surface of
the single-element GRIN was aspheric. The lens variable coefficients ultimately spanned the
entire available set listed in Table 6.1 over the same three materials as previous GRIN variants.
Variable coefficients were activated gradually, starting with lower orders of aperture whilst
allowing variation to the quadratic order in 𝑧 to avoid descent into poor local minima.

The optimised single-element design is illustrated in Figure 6.22. Optical performance is
illustrated in Figure 6.23. RMS spot size is intermediate to the two-element and six-element
GRIN designs. The significant GRIN thickness of 22 mm allows excellent correction of non-
rotationally-symmetric aberrations generated by the combiner, with a small amount of coma
in the x-field and astigmatism in the y-field limiting performance. Some field curvature is
also present over the field of view due to an absence of negative optical power in the system.
Loosely, the design can be considered analogous to a Petzval lens, with the gradual distribution
of optical power through the system minimising field curvature, but not correcting it.

The refractive index distribution is shown in Figure 6.24. The difference in symmetry be-
tween the x-z and y-z sections is readily apparent, with the y-z distribution approximately tilted
with respect to the optical axis of the lens. Approximate mass of the solution is comparable
to the six-element GRIN solution at 2.6 grams.
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Figure 6.22: Raytrace of a single GRIN lens variant. Aspheric surfaces are illustrated in red. GRIN lenses are
indicated by the shading of their refractive index distribution. (Patent Pending [1, AMBpat])

Figure 6.23: Performance data for the single GRIN lens variant. Left: Transverse ray errors over the x and y field
angles. Right: RMS spot size over full entrance pupil vs field.
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Figure 6.24: Refractive index cross-section for the x-z and y-z planes of the single GRIN lens solution. Coordinates
are with respect to the local surface vertex.

Visualisation and Diagnostics

In order to diagnose and monitor the evolving lens solution for material space errors, as
well as better observe the form of the index distribution, appropriate visualisation tools were
developed. The highly arbitrary nature of the GRIN distribution renders 2D slices of the GRIN
an incomplete means to obtain this information. Due to the truly freeform index distribution,
there remains a risk that any compositional errors lie outside the analysis planes used. The
solution to this is to present the entire three-dimensional index field in a manner that is
interpretable by a human. A point cloud type visualisation approach was adopted using the
“pptk” library in Python [99]. A large number of sample points were cast over the bulk of the
lens design and the relative composition and refractive index evaluated at these points. The
point cloud visualisation tools were then used to flag up any unphysical regions of negative
relative composition.

An example of this approach is shown in Figure 6.25 for an earlier design scheme that
contained a relative composition error due to an incorrectly coded optimisation constraint. A
cloud of 16 million points was assigned over a box bounding the lens volume, where relative
composition errors (𝑚𝑛 < 0) are indicated for 𝑚𝐴 and 𝑚𝐵 in red and blue respectively, whilst
points with physically valid composition are coloured translucent white. These errors result in
regions of refractive index that are outside of the allowable index range intended for optimisa-
tion. The trajectories of the ray bundles within the lens were used to define the boundary of
the index point cloud. The design was temporarily “sliced” into a number of thinner lens seg-
ments by macro code. The positions of each ray at each surface were then recorded and the
convex hull of these points generated for each lens segment. These convex hulls were then
combined into a mesh, and a dense, random point cloud defined within. Any points within the
mesh were evaluated for their refractive index and relative composition, whilst points external
to the lens were deleted from the model.
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Figure 6.25: Left: relative composition point cloud indicating negative composition regions for 𝑚𝐴 and 𝑚𝐵 in red
and blue respectively. Right: refractive index point cloud with lighter colours representing higher refractive index.

6.8. Distortion and Relative Illumination

An analysis of the image distortion of each design was performed by tracing rays from the
centre of the eyebox pupil into a predefined angular grid that was representative of the trun-
cated field of view requirement of Table 6.4. Distortion grids for each design are shown in
Figure 6.26. All designs show similar levels, being primarily affected by “keystone” distortion
induced by the tilted combiner and brow mirror. Some slight clipping in the lower half of the
field of view was observed, which with further development of the design solution could be
mitigated by reducing the x-azimuth focal length marginally. Maximum and minimum relative
illumination of the designs with respect to the axial field is reported in Table 6.5. Some vari-
ation is noted over the solution set, but is at a level which can be digitally corrected over an
emissive display without excessive loss of dynamic range.

Relative Illumination (%)
Solution Minimum Maximum

Homogeneous Toric 60.0 114.2
Homogeneous Freeform 61.1 110.7
Six-Element with GRIN 59.5 115.4
Single-Element GRIN 59.1 115.0
Two-Element GRIN 55.6 120.6
Three-Element GRIN 68.1 112.5

Table 6.5: Worst case relative illumination for each HMD design.
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Figure 6.26: Image shape required on the display over the specification field of view for each HMD design.

6.9. Discussion

We have demonstrated the application of freeform-GRIN degrees of freedom to a HMD de-
sign with a tilted and powered combiner element. Freeform GRINs are shown to substantially
reduce the aberrations caused by the systemic asymmetry generated by the tilt of the spher-
ical combiner surface. It was shown by direct substitution of freeform GRINs for freeform
surfaces within a six-element HMD system, that GRINs provide comparable performance to a
homogeneous freeform-surface solution.

We have also shown that GRINs are capable of yielding comparable performance to more
conventional HMD solutions whilst drastically decreasing the component count. GRIN-based
optical designs are shown based on one, two, and three GRIN lenses. We have shown that
a two-element freeform-GRIN solution has comparable performance to a homogeneous so-
lution featuring six tilted and decentred components, with two aspheres and a toric surface.
Addition of extra GRIN degrees of freedom through a three-element design further recovers
performance to that of the six-element freeform-GRIN design. A single-element GRIN solution
is also presented, utilising a fully freeform-GRIN distribution in three dimensions over a thick,
aspheric lens geometry, which also yielded similar optical performance to the two-element
GRIN and six-element toric designs.

Freeform-GRIN media enable a significant reduction in optical complexity by performing
multiple aberration correction roles simultaneously. The GRIN medium provides rotationally-
symmetric optical power, either as bulk focusing power or as highly dispersive optical power for
chromatic aberration correction in conjunction with refractive optical surfaces. In superposi-
tion, the higher-order symmetric and non-rotationally-symmetric terms of the GRIN contribute
to correction of the aberrations generated by the tilted combiner surface.
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Figure 6.27: Comparison of approximate mass of HMD optical designs

Freeform-GRIN media also enable a significant potential reduction in the optical mass of
an HMD. Figure 6.27 shows a comparison of the mass of each design solution. The degrees
of freedom of the GRIN contained within a low-density medium are particularly effective in
this regard. Conversion of two glass freeform elements to a lower density GRIN polymer
enables a 30% mass reduction from a twin-freeform solution. Redesign of the solutions based
on an all-GRIN approach enables even more significant mass savings. Comparing the six-
element toric solution and two-element GRIN solution (which share similar performance),
a 50% mass reduction is achieved. The single-element GRIN solution has slightly improved
optical performance relative to these two solutions, while its mass is intermediate to them. It is
also noteworthy that the mass estimates of the GRIN solutions are likely over-estimates as their
density was assumed to be that of the densest material in the GRIN. An option to reduce the
mass of the homogeneous solutions would be to replace some glass elements with polymers,
however this results in a reduced N and V material space for the homogeneous design that
reduces scope for correction of chromatic aberrations. Lower index materials are also less
favourable for the correction of monochromatic aberrations. Diffractive surfaces would enable
significant improvement in chromatic aberration correction, but with the aforementioned trade-
off of spurious ghost images and veiling glare caused by adjacent diffraction orders.

This work, in conjunction with other examples from the literature is evidence that significant
SWAP-C enhancement of tilted and off-axis lens systems is possible by using freeform-GRIN
media as design degrees of freedom. Opportunities to further enhance the performance in-
clude consideration of a fourth material within the GRIN distribution, as well as further inves-
tigation into other mathematical representations for freeform-GRIN media, such as Zernike
polynomials or similar orthonormal bases. Further exploration of the trade-space between
thickness of the GRIN elements and the number of refractive surfaces is also worthy of inves-
tigation. Finally, the two and three-element GRIN designs in particular may benefit from the
added degrees of freedom provided by a three dimensional GRIN distribution similar to that
used in the single-element GRIN, with the caveat that such GRINs may add further manufac-
ture and metrology complexity. This work justifies further development in the printing, optical
processing, metrology and integration of freeform-GRIN lenses, which are also key challenges
that must be addressed before mass deployment of this technology.
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7
Optical Design of Athermal,
Multispectral, Radial Gradient-Index
Lenses

The contents of this chapter are derived and expanded from “Optical design of athermal,
multispectral, radial gradient-index lenses - Optical Engineering Vol. 57, No. 8, Jul 2018” [4,
AMBref].

7.1. Abstract

Many infrared systems operate in extreme environments (such as space or military) that re-
quire stable optical performance over an extended temperature range. A model is presented
for the first-order optical design of athermal, radial-GRIN lens systems, which is based on a
form of the thermo-optic glass coefficient adapted to inhomogeneous material combinations.
It is found that radial GRIN components can significantly reduce the optical power balance
of athermal, achromatic systems, thus reducing aberration contributions from individual lens
elements and improving overall performance. This introduces the scope for a class of GRIN
multispectral infrared imaging solutions. This enhanced first-order modelling technique is used
to generate starting points for optimization of a short wave to long wave infrared (SWIR/L-
WIR) multispectral optical design. An example of SWIR/LWIR optical design for a weapon sight
application is generated and shown to have significantly reduced mass and improved perfor-
mance compared with a conventional non-GRIN solution. Furthermore, it is demonstrated
that the milder optical power construction of the GRIN solution leads to reduced sensitivity to
alignment tolerances.

7.2. Introduction
In recent years, in addition to the increased interest in visible-waveband GRINs, there has also
been a resurgence of interest in GRIN optics for infrared applications. This is again substan-
tially due to the development of novel manufacture methods [36, 40, 43]. Concurrently to
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Figure 7.1: From Toet and Hogervorst [100]: (A) Visible and NIR imagery of a nighttime scene, (B) LWIR imagery
of the same scene. (C) Fused multispectral image combining the visible-NIR and LWIR images.

the development of these manufacture methods, interest has grown in multispectral imaging
as a means to convey more information to an observer from a scene of interest [4]. Con-
ventionally, this is achieved by combining images from two separate sensors with separate
optics and focal plane arrays. However this approach adds size and mass to the overall sensor
package, which is a critical factor to many multispectral imaging applications such as defence
and aerospace. Ideally, we would like a single-aperture optic to image radiation from multiple
wavebands on to a single, broadband-sensitive (and selective) focal plane array.

Figure 7.1 outlines some of the benefits of multispectral imaging. Images (A) and (B)
show the information conveyed by the visible and near-infrared (NIR) waveband, contrasted
to the thermal long-wave infrared (LWIR). The visible waveband presents detail, often as
a result of reflected light from objects of interest. Meanwhile, the thermal infrared channel
substantially conveys emitted radiation, which is very useful in the detection of heat sources
such as people and vehicles. Image (C) conveys the benefits of fusing both images. The
combined image is colourised such that thermal infrared sources colour red within the scene.
This enables enhanced detection of both the wire fence (which is difficult to see in the thermal
waveband as it is in thermal equilibrium with its surroundings) and the standing person (who
can be difficult to pick out of a cluttered scene, particularly if camouflaged). The combined
information of both wavebands allows enhanced detection, as well as improved discrimination
between friend, foe, or civilian in military environments.

The challenges of optical design and manufacture for multispectral wavebands are substan-
tial; recent research has shown that imaging between the short-wave infrared (SWIR) and
LWIR wavebands generally requires that the designer resort to unconventional materials or
surfaces to achieve an achromatic solution. Conventional optical materials tend to lead to very
heavy solutions with a large number of lens elements. Such designs may be heavier than two
single waveband optics combined! In 2013, Thompson [101] demonstrated that colour correc-
tion over the SWIR-LWIR wavebands is possible via a number of routes: diamond-based lens
elements, alkali-halide-based lens elements, and catadioptric or reflective systems. All these
approaches have trade-offs, with diamond optics proving highly effective at colour correction
in a reduced SWAP package, yet leaving significant fabrication challenges in generating and
polishing such a hard material. Alkali halide lenses are effective at colour correction, yet are
extremely delicate and soluble. As a result they again raise significant challenges in optical
processing, as well as packaging and mounting of the lenses within a housing that can survive
environmental shock loads and temperature variations. Catadioptric solutions suffer from the
limitations alluded to in Chapter 1.5.3. In particular, the presence of a central obscuration
reduces the optical performance due to suppression of the diffraction limit. This effect is il-
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7.2. Introduction

Figure 7.2: MTF vs spatial frequency for a diffraction limited F/1.0 (working) 50 mm system of effective wavelength
10.6 µm. Percentage obscuration of the pupil is indicated. The greater the obscured percentage of the pupil, the
more MTF is suppressed at low frequencies.

lustrated in Figure 7.2 and is particularly severe in the LWIR waveband. In 2014, Rolland and
Fuerschbach [90] demonstrated a freeform mirror-based solution with 8° x 6° field of view
that removed the effect of the central obscuration. This was achieved by tilting the mirror
surfaces such that no mirror aperture was obscured, then by applying freeform terms to the
optical surfaces to correct the aberrations induced by surface tilt. The resulting design is
inherently achromatic at all wavelengths and was diffraction limited at wavelengths above 5
µm. The principal trade-off of this approach is the system size relative to focal length, which is
significantly larger than refractive systems. This effect is primarily due to the convex primary
mirror that enables aberration correction over a wider field of view. Furthermore, depending
on the system application, further features such as a lens hood may be required to reduce
stray light effects which reflective systems are inherently vulnerable to.

In addition to chromatic aberration correction, it is highly desirable that optical modules
exhibit athermalism via passive means [102, 103]. Broadly, optical systems (if not ather-
mal) observe changes in optical performance over an extended temperature range due to the
change in refractive index of optical materials with temperature and thermal expansion of the
optical surfaces and housing. Passively athermal optical designs do not require active focus
mechanisms to compensate for temperature changes at a uniform temperature soak, with
thermal variation of the lens properties corrected in the optical design itself. This can improve
system SWAP-C by elimination of mechanics (and potentially electronics) that compensate
for thermal defocus. Passive athermalisation adds an additional challenge to the design of
multispectral systems, as we require stable focus of the optical design over a wide range of
wavelengths and temperatures simultaneously. In reflective systems this process is relatively
simple. We simply require the system housing to have the same coefficient of thermal expan-
sion (CTE) as the mirror surfaces. If this is the case, then uniform temperature changes simply
result in a change of scale of the system. A number of materials exist that are amenable to
such an approach. In particular aluminium can be used to generate mirror surfaces and hous-
ings, alternatively glass ceramic materials such as Schott Zerodur® may be combined with
low-expansion alloys such as Invar. The approach required for refractive systems is more
complex, as we must consider not only the thermal expansion of the housing and the optical
materials, but also the thermal variation in refractive index or 𝑑𝑁/𝑑𝑇. Correct selection of
optical and housing materials and the power construction of the optical design itself allows
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optical solutions that are passively optically athermal (with no user intervention required). We
explore this approach in greater detail in Section 7.3.4. A related approach is passive mechan-
ical athermalisation, whereby mechanical structures are engineered to produce an effective
CTE for the optical housing that removes thermal defocus. Whilst effective in theory, this
approach suffers from practical drawbacks including hysteresis (often due to a dependency
on high CTE polymers), jamming, and increased cost due to mechanical complexity. Finally,
optical systems may be actively athermalised, via a mechanism operated by the user or by the
system mechatronics. Active athermalisation by the user is generally reserved for optical sys-
tems that already have focus mechanisms in place to account for changes in object distance,
or quite simply in cases where it is not possible to achieve passive athermalisation alone due
to other system constraints.

In this study we investigate how radial-GRIN lenses can be leveraged to simplify the de-
sign of athermal, multispectral objective lenses. We evaluate how GRIN elements influence
the first-order imaging properties of such an optical system, in particular how these proper-
ties vary with respect to temperature and wavelength. We consider the SWAP-C impact of
radial-GRIN elements for a 15° field of view multispectral objective lens, when compared to a
conventional homogeneous optical solution. We do not consider the potential trade-offs of the
manufacturing approach at this stage, rather we seek to determine if there is any theoretical
benefit of a GRIN based approach. If such a benefit exists, there is justification for further
investigation of potential manufacture routes.

7.3. A First-Order Model of a Multispectral GRIN Lens

7.3.1. Optical Power of Thin GRIN Lenses

We can estimate the optical power of a first-order system by modelling it as a number of thin
lenses in contact. We define optical power in as the inverse of the focal length, 𝑓lens.

𝐾lens =
1
𝑓lens

= 𝐾1 + 𝐾2 + ... + 𝐾𝑛 (7.1)

for a system of 𝑛 lens elements. The power of a thin, homogeneous lens as a function of
wavelength is defined as

𝐾(𝜆) = (𝑐1 − 𝑐2)(𝑁(𝜆) − 1), (7.2)

Figure 7.3: Geometry of a radial-GRIN lens
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where 𝑐1 and 𝑐2 are the curvatures of the front and rear surfaces as illustrated in Figure 7.3,
with the sign convention that a positive surface curvature generates a positive surface sagitta
in the optical axis, 𝑧. We define 𝒦𝑆 = 𝑐1 − 𝑐2 as a power coefficient, as the level of lens
“bending” does not affect the power of a thin lens. A radial-GRIN medium and its subsequent
optical power contribution are defined in Equations 1.26 and 1.27. Thus, the total optical
power of a curved, thin, radial-GRIN lens with thickness, 𝑡, is given by

𝐾lens = 𝐾surf + 𝐾GRIN = 𝒦𝑆 (𝒩00 (𝜆) − 1) − 2𝒩20𝑡 (7.3)

The GRIN itself is composed of a quadratic variation in index between two base materials, 𝐴
and 𝐵 with refractive indices 𝑁𝐴(𝜆) and 𝑁𝐵(𝜆) respectively (as illustrated in Figure 7.3). The
GRIN refractive index as a function of clear aperture radius, 𝜌, is given by

𝑁(𝜌, 𝜆) = 𝑁𝐴(𝜆) +𝒩20(𝜆)𝜌2, where 𝒩20(𝜆) =
𝑁𝐵(𝜆) − 𝑁𝐴(𝜆)

𝜌2max
. (7.4)

This equation satisfies the conditions: 𝑁(0, 𝜆) = 𝑁𝐴(𝜆), 𝑁(𝜌max, 𝜆) = 𝑁𝐵(𝜆). We then define a
power coefficient and wavelength scaling factor for our GRIN medium, 𝒦𝐺 and 𝜅 respectively.
𝜅 is unity at a defined reference wavelength, 𝜆ref. The power of the GRIN is then given by

𝐾GRIN = 𝒦𝐺𝜅(𝜆) = −2𝒩20(𝜆ref)𝜅(𝜆)𝑡, (7.5)

where

𝜅(𝜆) = 𝑁𝐵(𝜆) − 𝑁𝐴(𝜆)
𝑁𝐵(𝜆ref) − 𝑁𝐴(𝜆ref)

= Δ𝑁(𝜆)
Δ𝑁(𝜆ref)

. (7.6)

7.3.2. Colour Correction Over Multiple Wavebands with GRIN

We define axial primary chromatic aberration as the derivative of optical power with respect to
wavelength. A system of thin lenses in contact is therefore achromatic at a given wavelength
(𝜆𝑖) if this derivative is zero. This condition is shown for a system of 𝑀 optical surfaces and 𝑃
radial GRIN lenses with plano surfaces

𝑑𝐾lens(𝜆𝑖)
𝑑𝜆 =

𝑀

∑
𝑚=1

𝒦𝑚
𝑑𝑁𝑚(𝜆𝑖)
𝑑𝜆 +

𝑃

∑
𝑝=1

𝒦𝑝
𝑑𝜅𝑝(𝜆𝑖)
𝑑𝜆 , (7.7)

where 𝑁𝑚 is the refractive index of the mth homogeneous surface and 𝜅𝑝 is the wavelength
scaling factor of the pth GRIN lens. It can be preferable to express Equation 7.7 in terms of the
more familiar Abbé V value, as defined in Equations 1.15 and 1.29 for homogeneous and GRIN
materials respectively. For a system with three sequential wavelengths 𝜆long > 𝜆𝑖 > 𝜆short, the
Abbé value can be approximately related to the derivative of refractive index with respect to
wavelength by

𝑑𝑁(𝜆ref)
𝑑𝜆 ≈

𝑁(𝜆long) − 𝑁(𝜆short)
𝜆long − 𝜆short

, 𝑉𝑖 =
𝑁(𝜆𝑖) − 1

𝑁(𝜆short) − 𝑁(𝜆long)
, (7.8)

and by similar logic for GRIN materials by differentiating 𝜅 with respect to wavelength

𝑑𝜅(𝜆)
𝑑𝜆 = 𝑑Δ𝑁(𝜆𝑖)/𝑑𝜆

Δ𝑁(𝜆ref)
≈ 1
Δ𝑁(𝜆ref)

Δ𝑁(𝜆long) − Δ𝑁(𝜆short)
𝜆long − 𝜆short

. (7.9)
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This approach yields approximations for 𝑑𝑁(𝜆𝑖)/𝑑𝜆 and 𝑑𝜅(𝜆)/𝑑𝜆

𝑑𝑁(𝜆𝑖)
𝑑𝜆 ≈ 𝑁(𝜆𝑖) − 1

−𝑉𝑖(𝜆long − 𝜆short)
, (7.10)

𝑑𝜅(𝜆)
𝑑𝜆 ≈ 𝜅(𝜆𝑖)

−𝑉GRIN𝑖(𝜆long − 𝜆short)
. (7.11)

Equations 7.10 and 7.11 are substituted into Equation 7.7 to yield

𝑑𝐾lens(𝜆𝑖)
𝑑𝜆 ≈ Δ𝐾lens

(𝜆long − 𝜆short)
≈

𝑀

∑
𝑚=1

𝒦𝑚
(𝑁𝑚(𝜆𝑖) − 1)

−𝑉𝑚𝑖(𝜆long − 𝜆short)

+
𝑃

∑
𝑝=1

𝒦𝑝
𝜅𝑝(𝜆𝑖)

−𝑉GRIN𝑝𝑖(𝜆long − 𝜆short)
= 0.

(7.12)

Pragmatically, we cancel the (𝜆long − 𝜆short) term from Equation 7.12, as it is not required to
ensure that Δ𝐾lens = 0. For multispectral systems we can define multiple sub-bands 𝑖, 𝑗, 𝑘, ...,
and assign our component materials separate Abbé V values for each sub-band.

7.3.3. Thermal Expansion of Inhomogeneous Materials

α1 α5α3α2 α4

δx δx δx δx δx

Figure 7.4: Inhomogeneous strip decomposed into homogeneous, infinitesimal elements

The linear thermal expansion of a homogeneous solid is given by the equation:

Δ𝑋(𝑇) = 𝛼Δ𝑇𝑋, (7.13)

where the temperature change Δ𝑇 = 𝑇 − 𝑇0. 𝑋 is a given dimension of the solid and 𝛼 is the
coefficient of thermal expansion or CTE. We can model the thermal expansion of an inhomo-
geneous strip in one dimension, by first considering the material as an array of infinitesimal
homogeneous strips (see Figure 7.4). We can then derive an equation for a thermally per-
turbed coordinate. Integrating 𝑑𝛼/𝑑𝑥 as a function of the spatial coordinate 𝑥, we obtain

Δ𝑋 = ∫
𝑋𝑇0

0

𝑑𝛼(𝑥)
𝑑𝑥 Δ𝑇𝑑𝑥. (7.14)

This now allows us to define a thermally perturbed GRIN distribution suitable for use in optical
design software. An intrinsic difficulty in modelling inhomogeneous components is modelling
the effect of mechanical stress induced by the spatial variation of the CTE. This important
mechanical consideration may lead to thermal failures of GRIN components where the differ-
ence in CTE is too great [104, 105] . This is a complex problem, more suited to finite-element
analysis, and therefore lies beyond the scope of the present work.
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7.3.4. A Thermo-Optic Glass Coefficient for Radial-GRIN Lenses

The thermo-optic glass coefficient, 𝛾, is a useful derived material property for the first-order
design of athermal systems [102] . 𝛾 is the thermal derivative of the optical power of a given
component divided by its optical power

𝑑𝐾lens
𝑑𝑇 = 𝛾𝐾lens. (7.15)

We can derive 𝛾 by differentiation of Equation 7.2 with respect to temperature, within which
the lens radii of curvature and refractive index are functions of temperature. The thermal
derivative of refractive index, 𝑑𝑁/𝑑𝑇, must be determined experimentally for a given material.
This is typically achieved using a refractive index measurement technique such as minimum
beam deviation [106] within a controlled thermal chamber, although it can also be measured
interferometrically [107]. The thermal derivative of surface curvature depends on the lens
material CTE (which again must be determined experimentally). The lens material CTE then
determines thermal variation in the radius of curvature, 𝑅, given by

𝑅(𝑇) = 1
𝑐(𝑇) . (7.16)

Δ𝑅 = 𝛼𝑅Δ𝑇. (7.17)

Using the chain rule, we then determine 𝑑𝑐/𝑑𝑇
𝑑𝑐
𝑑𝑇 =

𝑑𝑐
𝑑𝑅

𝑑𝑅
𝑑𝑇 = −

1
𝑅2
𝑑𝑅
𝑑𝑇 = −𝛼𝑐. (7.18)

Differentiating Equation 7.2 with respect to 𝑇, we obtain by using the product rule
𝑑𝐾
𝑑𝑇 =

𝑑𝑁
𝑑𝑇 (𝑐1 − 𝑐2) + (𝑁 − 1)𝛼 (𝑐2 − 𝑐1) , (7.19)

𝑑𝐾
𝑑𝑇 =

𝑑𝑁
𝑑𝑇

𝐾
𝑁 − 1 − 𝛼𝐾, (7.20)

where after collecting terms in 𝐾

𝑑𝐾
𝑑𝑇 = 𝐾 [

𝑑𝑁
𝑑𝑇

1
𝑁 − 1 − 𝛼] = 𝛾𝐾, (7.21)

hence
𝛾 = 𝑑𝑁

𝑑𝑇
1

𝑁 − 1 − 𝛼. (7.22)

This assumes the material is in air, and that refractive index and 𝑑𝑁/𝑑𝑇 are relative to that of
air [108]. The condition for an athermal optical system is that the thermal change in power
is opposite to the expansion of the lens housing, 𝛼𝐻,

𝑑𝐾lens
𝑑𝑇 = −𝐾lens𝛼𝐻 . (7.23)

To find an expression for the thermo-optical glass coefficient for radial-GRIN lenses, we must
follow a similar path to the homogeneous case and differentiate Equation 7.3 with respect to
temperature. Using the product rule and substituting Equation 1.26 gives

𝑑𝐾lens
𝑑𝑇 = 𝑑𝐾GRIN

𝑑𝑇 + 𝑑𝐾surf𝑑𝑇 = 𝑑
𝑑𝑇 [−2𝑡

𝑁𝐵 − 𝑁𝐴
𝜌2max

] + 𝑑
𝑑𝑇 [(𝑁𝐴 − 1) (𝑐1 − 𝑐2)] . (7.24)
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We address subsequently the temperature derivative of the GRIN and the surface contribu-
tions. Further expansion of the derivatives and substitution of Equation 7.4 gives

𝑑𝐾GRIN
𝑑𝑇 = (𝑁𝐵 − 𝑁𝐴)

𝜌4max
[−2𝜌2max

𝑑𝑡
𝑑𝑇 + 2𝑡

𝑑
𝑑𝑇(𝜌

2
max)] +

−2𝑡
𝜌2max

𝑑
𝑑𝑇(𝑁𝐵 − 𝑁𝐴). (7.25)

We must now determine each of the derivatives in the right hand side of Equation 7.25. Of
these, the 𝑁 and 𝑑𝑁/𝑑𝑇 of the base materials must be provided for a given GRIN material
combination.

To compute the derivatives of the lens curvatures and thickness, we assign coefficients of
thermal expansion to our base materials. 𝛼𝐴 and 𝛼𝐵 define the CTE of materials A and B
respectively. The CTE of the lens is therefore equal to 𝛼𝐴 along the optical axis and 𝛼𝐵 at
𝜌max. We assume the lens CTE is constant along the optical axis and that there is no induced
stress from the neighbouring material. The temperature derivative of the axial thickness is

𝑑𝑡
𝑑𝑇 = 𝑡𝛼𝐴. (7.26)

The derivative of 𝜌2max is found by first using Equation 7.14 to express 𝜌max as a function of T

Δ𝜌max(𝑇) = ∫
𝜌max

0
(𝛼𝐴Δ𝑇 +

(𝛼𝐵 − 𝛼𝐴)
𝜌2max

𝜌2Δ𝑇)𝑑𝜌. (7.27)

Given that over a typical military operating temperature range for common optical materials,
𝛼Δ𝑇 ≈ 10−3, we can assume that any (𝛼Δ𝑇)2 terms are negligible by comparison. This gives
us the component derivative

𝑑𝜌2max(𝑇)
𝑑𝑇 = 𝜌2max (2𝛼𝐴 +

2(𝛼𝐵 − 𝛼𝐴)
3 ) . (7.28)

Substituting the component derivatives in Equations 7.26, 7.28, and 1.27 into Equation 7.25
gives us an equation for the thermal derivative of the GRIN medium power

𝑑𝐾GRIN
𝑑𝑇 = [

𝑑𝑁𝐵
𝑑𝑇 − 𝑑𝑁𝐴

𝑑𝑇
𝑁𝐵 − 𝑁𝐴

− (2𝛼𝐵 + 𝛼𝐴)3 ]𝐾GRIN. (7.29)

For a radial-GRIN lens, the optical surfaces themselves will be thermally perturbed by the
GRIN medium. We can find what effect this has by differentiating the surface contribution to
power with respect to temperature

𝑑𝐾surf
𝑑𝑇 = 𝑑

𝑑𝑇 [(𝑁𝐴 − 1)(𝑐1 − 𝑐2)] =
𝑑𝑁𝐴
𝑑𝑇 (𝑐1 − 𝑐2) + (𝑁𝐴 − 1)(

𝑑𝑐1
𝑑𝑇 −

𝑑𝑐2
𝑑𝑇 ). (7.30)

To simplify our calculations, we assume that surfaces take the form of paraboloids (which are
the first-order Taylor approximation to a sphere)

𝑧 = 1
2𝑐𝑛𝜌

2, 𝑛 = 1, 2 (7.31)

At the maximum aperture of the lens, the sag of surface 𝑛 becomes

𝑧max =
1
2𝑐𝑛𝜌

2
max. (7.32)
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We use the quotient rule to express 𝑑𝑐𝑛
𝑑𝑇 in terms of 𝑧max and 𝜌max as

𝑑𝑐𝑛
𝑑𝑇 = 𝑑

𝑑𝑇 (
𝑧max
2𝜌2max

) =
𝜌2max

𝑑
𝑑𝑇 (𝑧max(𝑇)) − 𝑧max

𝑑
𝑑𝑇 (𝜌

2
max(𝑇))

2𝜌4max
. (7.33)

We must now calculate 𝑑
𝑑𝑇 (𝑧max). The GRIN medium itself induces curvature with tempera-

ture change, due to the difference in CTE between the optical axis and 𝜌max. We make the
assumption that this induced curvature manifests entirely in surface 1 for simplicity, although
the thin lens assumption tells us that the relative distribution of induced curvature between
surfaces 1 and 2 does not matter. Change in the surface sagitta of surface 1, Δ𝑧max,1, is given
by

Δ𝑧max,1 = [𝛼𝐵𝑧max,1(𝑇0) − (𝛼𝐵 − 𝛼𝐴)𝑡] Δ𝑇. (7.34)

Substitution of Equations 7.34 and 7.28 into 7.33 gives

𝑑𝑐1
𝑑𝑇 =

2 [𝑧max(𝑇0)𝛼𝐵 + (𝛼𝐴 − 𝛼𝐵) 𝑡] − 2𝑧max(𝑇0) (
4𝛼𝐴
3 − 𝛼𝐵

3 )
𝜌2max(𝑇0)

. (7.35)

Rearranging Equation 7.4 we obtain

2𝑡
𝜌2max

= 𝐾GRIN
𝑁𝐵(𝜆) − 𝑁𝐴(𝜆)

. (7.36)

Using this and Equations 7.31 and 7.2 we obtain an expression for 𝑑𝑐1𝑑𝑇 with terms that are
factors of 𝐾GRIN and 𝐾surf

𝑑𝑐1
𝑑𝑇 = −𝐾GRIN

(𝛼𝐴 − 𝛼𝐵)
𝑁𝐵(𝜆) − 𝑁𝐴(𝜆)

− 𝐾surf
𝑁𝐴(𝜆) − 1

(4𝛼𝐴3 − 𝛼𝐵3 ) . (7.37)

Equation 7.37 becomes equivalent to the expansion of a homogeneous surface if 𝛼𝐴 = 𝛼𝐵.
There are two contributions to the thermal behaviour of the surface, namely the thermal
expansion of the inhomogeneous surface, and an induced curvature term which depends on
the thickness of the GRIN medium. We must now substitute our expressions for 𝑑𝑐/𝑑𝑇 into
Equation 7.30. By substituting Equation 7.37 into Equation 1.28 we find:

𝑑𝐾surf
𝑑𝑇 = 𝑑𝑁𝐴

𝑑𝑇
𝐾surf
𝑁𝐴 − 1

+ 𝐾GRIN(𝑁𝐴 − 1)(𝛼𝐵 − 𝛼𝐴)(𝑁𝐵 − 𝑁𝐴)
− 𝐾surf(

4
3𝛼𝐴 −

1
3𝛼𝐵). (7.38)

Combining Equations 7.38 and 7.29 and rearranging with respect to medium and surface
contributions, we arrive at a thermo-optic glass coefficient for radial-GRIN materials

𝑑𝐾
𝑑𝑇 = 𝐾GRIN𝛾20 + 𝐾surf𝛾01, (7.39)

where the medium and surface thermo-optical coefficients are defined as 𝛾20 and 𝛾01 respec-
tively and are given by

𝛾20 =
𝑑𝑁𝐵
𝑑𝑇 − 𝑑𝑁𝐴

𝑑𝑇
𝑁𝐵 − 𝑁𝐴

− (2𝛼𝐵 + 𝛼𝐴)3 + (𝑁𝐴 − 1)(𝛼𝐵 − 𝛼𝐴)(𝑁𝐵 − 𝑁𝐴)
, (7.40)

and
𝛾01 =

𝑑𝑁𝐴
𝑑𝑇

1
𝑁𝐴 − 1

− 43𝛼𝐴 +
1
3𝛼𝐵 . (7.41)
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In comparison to the homogeneous thermo-optic glass coefficient of Equation 7.15, we have
additional complication due to the design choice of how optical power is distributed between
the lens surfaces and the GRIN medium. This has led us to a final expression with two gamma
terms. Whilst these thermo-optic coefficients are more complicated than the homogeneous
equivalent, they nevertheless depend solely on the material properties of a given GRIN com-
bination and are independent of lens geometry.

7.3.5. Design of an Athermal, Radial-GRIN Singlet

To test the validity of Equations 7.39-7.41, a radial-GRIN singlet composed of ZnS-ZnSe was
designed. This was done to the first order by solving Equation 7.23 for zero thermal defocus,
as well as by optimisation of a CodeV® GRIN lens model for minimised RMS spot size on axis.
An additional reference lens model consisting of a ZnS singlet was optimised in CodeV for
comparison. The results of each approach were then compared. The system of equations
that must be solved for a ZnS-ZnSe GRIN lens of focal power, 𝐾lens, and zero thermal defocus
is obtained by collecting Equations 7.3, 7.23 and 7.39 and is given by

𝐾lens = 𝐾surf + 𝐾GRIN
𝑑𝐾lens
𝑑𝑇 = 𝛾01𝐾surf + 𝛾20𝐾GRIN + 𝛼𝐻𝐾lens = 0.

(7.42)

Solving Equation 7.42 for 𝐾surf and 𝐾GRIN gives

𝐾surf =
−𝐾lens (𝛾20 + 𝛼𝐻)
(𝛾01 − 𝛾20)

, 𝐾GRIN =
𝐾lens (𝛾01 + 𝛼𝐻)
(𝛾01 − 𝛾20)

. (7.43)

We then use known literature values for 𝑁 and 𝑑𝑁/𝑑𝑇 of ZnS and ZnSe to find 𝛾01 and 𝛾20
and subsequently solve Equation 7.43 for 𝐾surf and 𝐾GRIN. Material coefficients in the CodeV
optical model are then determined using Equations 2.25 and 2.27, with judicious selection of
a lens thickness such that the relative composition of ZnS and ZnSe remains positive at all
points within the lens model. The lens was then optimised in CodeV through minimisation of
the RMS spot size by varying the surface curvatures and GRIN material coefficients.

Raytraces of the CodeV models are shown in Figure 7.5. The values of 𝐾surf and 𝐾GRIN are
shown in Table 7.1. These closely match the values obtained by optimisation of the CodeV
GRIN model. To minimise the impact of third-order or higher aberrations, the front surface of
the GRIN singlet was made aspheric and restricted to an F/8 aperture. Table 7.1 shows some
residual thermal defocus remains in the CodeV model to balance the presence of thermally
induced spherical aberration by the GRIN medium, as well as non-linearity in the 𝑑𝑁

𝑑𝑇 values
of the base materials. Such non-linearity in the thermo-optic coefficients may need to be
considered for particularly broad temperature ranges, such as those in space applications.
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3.00 mmZnS Singlet ZnS-ZnSe GRIN

Figure 7.5: Homogeneous ZnS singlet and athermal ZnS-ZnSe radial-GRIN lens

Property
First-order
solution

CodeV optimised
design

Reference
ZnS singlet

𝐾lens (mm−1) 0.01 0.01 0.01
F/# NA 8 8
𝐾surf (mm−1) 0.01676 0.01618 0.01
𝐾GRIN (mm−1) -0.00676 -0.006716 NA

Thermal defocus (mm)
(-30°C to +70°C) 0 0.069 0.506

Table 7.1: Comparison of lens properties for a first-order GRIN singlet design, CodeV GRIN singlet design and
reference ZnS singlet
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7.3.6. The search for a Multispectral Starting Solution

We now use the first-order design tools derived in Sections 7.3.2 and 7.3.4 to find a starting
solution for an athermal, multispectral objective lens. In a similar manner to Section 7.3.5, we
generate a lens system requirement that defines a set of linear equations. These equations
are then solved by a corresponding number of degrees of freedom provided by a set of thin
lenses of different materials and optical powers. Our specification for a detailed optical design
is defined in Table 7.3. Firstly, we assign three defining wavelengths for the system: 𝜆𝑖 =1.4
µm, 𝜆𝑗 = 𝜆𝑟𝑒𝑓 =4 µm and 𝜆𝑘 =10 µm. To achieve SWIR-LWIR imaging onto a common focal
plane, we would firstly like the focal power of the two sub-bands to be identical. We therefore
constrain the focal power of the system at 𝜆𝑖 and 𝜆𝑘 to unity. We can evaluate performance
at different focal lengths by simply scaling the system. Secondly, we would like the chromatic
aberration of each sub-band to be controlled. We therefore solve for the focal power derivative
with respect to wavelength, 𝑑𝐾/𝑑𝜆, at 𝜆𝑖 and 𝜆𝑘. The refractive index derivative with respect
to wavelength of each constituent material will be approximated by the Abbé V value for each
sub-band, 𝑉𝑖 and 𝑉𝑘, as per Equations 7.10 and 7.11. The combination of optical powers
that yield zero chromatic aberration can then be found via Equation 1.14. Finally, we would
like our system to be athermal. We achieve this by setting the thermal power derivative to be
equal and opposite to the coefficient of thermal expansion of the housing, 𝛼𝐻, as per Equation
7.23. This set of requirements has a total of five parameters that must be solved for. This can
be achieved using two GRIN lenses and one homogeneous lens, or five homogeneous lenses.
This set of equations is represented as a matrix in equation 7.44 for a solution consisting of two
GRIN lenses and one homogeneous lens element. Columns 1 and 2 of Equation 7.44 represent
the first GRIN lens, columns 3 and 4 the second GRIN lens, and column 5 the homogeneous
component. The first two rows of Equation 7.44 control the lens focal power in the SWIR and
LWIR wavebands respectively. Rows three and four control the chromatic aberration at 𝜆𝑖 and
𝜆𝑘 respectively. Row five controls the thermal defocus of the lens system at 𝜆𝑗.

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑁1(𝜆𝑖) − 1 𝜅2(𝜆𝑖) 𝑁3(𝜆𝑖) − 1 𝜅4(𝜆𝑖) 𝑁5(𝜆𝑖) − 1

𝑁1(𝜆𝑘) − 1 𝜅2(𝜆𝑘) 𝑁3(𝜆𝑘) − 1 𝜅4(𝜆𝑘) 𝑁5(𝜆𝑘) − 1
𝑁1(𝜆𝑖)−1

𝑉1𝑖
𝜅2(𝜆𝑖)
𝑉GRIN2𝑖

𝑁3(𝜆𝑖)−1
𝑉3𝑖

𝜅4(𝜆𝑖)
𝑉GRIN4𝑖

𝑁5(𝜆𝑖)−1
𝑉5𝑖

𝑁1(𝜆𝑘)−1
𝑉1𝑘

𝜅2(𝜆𝑘)
𝑉GRIN2𝑘

𝑁3(𝜆𝑘)−1
𝑉3𝑘

𝜅4(𝜆𝑘)
𝑉GRIN4𝑘

𝑁5(𝜆𝑘)−1
𝑉5𝑘

[𝑁1(𝜆𝑗) − 1]𝛾011𝑗 𝜅2(𝜆𝑗)𝛾202𝑗 [𝑁3(𝜆𝑗) − 1]𝛾013𝑗 𝜅4(𝜆𝑗)𝛾204𝑗 [𝑁5(𝜆𝑗) − 1]𝛾5𝑗

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛
⎜
⎜
⎜
⎜
⎜

⎝

𝒦1
𝒦2
𝒦3
𝒦4
𝒦5

⎞
⎟
⎟
⎟
⎟
⎟

⎠

=

⎛
⎜
⎜
⎜
⎜
⎜

⎝

1

1

0

0

−𝛼𝐻

⎞
⎟
⎟
⎟
⎟
⎟

⎠

(7.44)

Whilst a solution to Equation 7.44 can be found for any unique set of materials, this information
alone is not sufficient to determine whether a given solution is a well-corrected design starting
point. Residual chromatic aberrations exist at wavelengths other than 𝜆𝑖,𝑗,𝑘, and thermal
defocus can vary at 𝜆𝑖,𝑘. An additional figure of merit is derived from the peak-to-valley (P-V)
of residual chromatic aberration and defocus due to temperature over the SWIR and LWIR
sub-wavebands as illustrated in Figure 7.6. We also define the root-sum of squares (RSS) of
individual element powers as

𝐾RSS = √𝐾2S1 + 𝐾2GRIN1 + 𝐾2S2 + 𝐾2GRIN2 + 𝐾2lens3, (7.45)

where 𝐾S1 and 𝐾GRIN1 are the surface and GRIN power contributions to GRIN lens 1 and 𝐾S2
and 𝐾GRIN2 are the surface and GRIN power contributions for lens 2. 𝐾lens3 is the power
of the homogeneous lens 3. Real optical designs have field and aperture. A lens design
with a steep balance of component optical powers induces greater optical aberrations as the
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Figure 7.6: Definition of peak-to-valley for each sub-band of a multispectral thin lens solution.

aperture and field of view are increased. These aberrations then further induce higher-order
aberrations which are very difficult to correct. Furthermore, optical systems with strongly
powered lenses tend to be more sensitive to manufacturing tolerances than a solution with
weaker components to the same overall specification. A good lens design heuristic is to
minimise optical component power to simplify the task of correcting the system aberrations.
A sample merit function derived from the weighted RSS of these quantities is defined as

𝐹𝑂𝑀 = √𝐾2RSS +𝑤SWIR𝑃𝑉2SWIR +𝑤LWIR𝑃𝑉2LWIR, (7.46)

where 𝑤SWIR and 𝑤LWIR are weighting factors applied to the peak to valley chromatic aber-
ration over the design temperature range of -30°C to +70°C for each sub-band. 𝑤SWIR and
𝑤LWIR were assigned a value of 5000, as the value of P-V residual chromatic aberration and
thermal defocus is much smaller than the RSS sum of lens powers. This merit function was
used to optimise over the solution space of available materials. A brute-force optimisation
was undertaken for the SWIR-LWIR solution space given the relatively small computational
overhead required to search the solution space of approximately 95000 solutions for common
IR materials.

Brute-force optimisation revealed the solution shown in Figure 7.7 and Table 7.2. Chromatic
aberration is low over each sub-band and the thermal performance is stable. Some higher-
order residual chromatic aberration exists at the short wavelength SWIR end of the system.
We see some variation in the athermalisation over the extended waveband due to variation
in material 𝑑𝑁/𝑑𝑇 with wavelength, with the athermalisation being under-corrected in the
SWIR waveband but over-corrected in the LWIR. This thermo-chromatic aberration is the
main source of residual P-V normalised power for the thin lens model. Additional components
made from different materials may provide the degrees of freedom to correct this, but for this
study we accept the residual level as acceptable for our design starting point.

It is particularly noteworthy that a design based on the same materials in their homogeneous
form gives equivalent chromatic and thermal performance to the thin-lens GRIN solution, but
the normalised RSS power is significantly higher at 9.44, compared to 1.51 for the GRIN
solution. To the first order, a radial-GRIN lens is an equivalent degree of freedom to two
conventional lenses of different materials, but the reduction in optical power balance caused
by the GRIN also enables optical designs with greatly reduced lens element powers that make
smaller aberration contributions, as well as a reduced lens count.

It is important to note that the first-order design approach only yields starting points from
which a real solution can be optimised. It is not guaranteed that the solution with the best
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GRIN lens 1 ZnSe-ZnS
GRIN lens 2 IRG24-IRG26
Lens 3 AMTIR1
Klens1surf -0.36
Klens1GRIN 0.02
Klens2surf 0.829
Klens2GRIN -0.55
Klens3 1.07
KTotal 1.000
KRSS 1.51
P-V KSWIR 0.0023
P-V KLWIR 0.0022

Table 7.2: First-order SWIR-LWIR solution data
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Figure 7.7: Multispectral first-order solution. Power versus wavelength.
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first-order performance yields the best performance when optimised into a real optical design.
Finite field of view, aperture and lens thickness/separation all have a substantial influence on
optical designs and therefore a number of potential starting solutions should be evaluated
during the design process.

7.4. SWIR-LWIR Objective Lens Optical Design

To test the first-order design method described in Section 7.3.6, a GRIN optical design was op-
timised against the specification shown in Table 7.3. This specification was for a weapon sight
type requirement with a relatively narrow field of view and common SWIR-LWIR sensor array.
Athermalisation was required to be passive, with no allowance for user focus mechanisms. A
homogeneous SWIR-LWIR solution was also optimised to act as a baseline comparison. Op-
timisation used the default merit function in CodeV AUT, that minimises the RMS spot size.
Optimisation variables consisted of lens surface curvatures, thicknesses, air gaps, and as-
pheric terms, and GRIN coefficients for the GRIN solution. The homogeneous solution was
also found by using the CodeV “Glassexpert.seq” macro, which automatically substitutes glass
types within a user-defined glass map then optimises the design until an optimal material set
is found. Optimisation with glassexpert.seq was followed by manual substitution of aspheric
surfaces to find an optimal overall solution. The GRIN solution was constructed from the
first-order solution in Table 2.4, followed by local optimisation in CodeV and the addition of
aspheres where necessary. More specifically, an aspheric surface was added to the front lens
group of each design to aid in correcting aberrations of the pupil such as spherical aberration,
while a dual aspheric component was introduced close to the image plane of each design to
improve correction of astigmatism.

7.4.1. Homogeneous Solution

A solution consisting of AMTIR1, AMTIR2, ZnSe, cleartran, IRG24, KRS5 and GaAs was ulti-
mately found (illustrated in Figure 7.8). KRS5 was necessary to improve athermalisation and
axial colour correction. This is a highly undesirable material from a fabrication perspective
due to its poor workability and very high toxicity. The dual aspheric GaAs element was nec-
essary to correct aberrations of the field such as coma and astigmatism. Optical mass of
this solution was 83.5g. MTF performance is shown in Figure 7.9. Despite the use of KRS5,
athermalisation is relatively poor in the LWIR. There is significant thermo-chromatic aberra-
tion observed, with significant divergence in best focus between the SWIR and LWIR bands
at extreme temperatures.

Focal length 50 mm
F/# 1.6
SWIR waveband 1-1.8 µm
LWIR waveband 8-12 µm
Semi field-of-view 7.5°
Operating temperature range -30 °C to +70°C

Table 7.3: Multispectral objective lens specification
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7.4. SWIR-LWIR Objective Lens Optical Design

Figure 7.8: Conventional, homogeneous SWIR-LWIR optical design, aspheric surfaces are highlighted in green

Figure 7.9: MTF vs defocus over temperature of a conventional SWIR-LWIR optical design. Coloured curves
represent different field angles in the sagittal (dashed) and tangential (solid) sections.
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7.4. SWIR-LWIR Objective Lens Optical Design

7.4.2. GRIN Solution

The optimised GRIN optical design is shown in Figure 7.10 with the refractive index distribution
overlaid upon the GRIN lens elements. One additional dual-aspheric gallium arsenide element
placed near the image plane was required in order to give acceptable off-axis performance by
correcting coma and astigmatism. Lens 1 forms a weakly positive GRIN distribution, whilst lens
3 forms a strongly negative GRIN. This is in broad agreement with the data in Table 7.2. MTF
performance over the operating temperature range is shown in Figure 7.11. Athermalisation
is greatly improved in the LWIR waveband. Some MTF loss in the SWIR waveband occurs at
the extreme temperatures due to thermally induced chromatic aberration. Optical mass of this
solution was 55 grams. Overall, size and mass of the GRIN solution is significantly reduced
compared to the homogeneous design.

Figure 7.10: Multispectral GRIN lens optical design, aspheric surfaces are highlighted in green. GRIN lens elements
have their refractive index distribution overlaid as a colour scale.
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7.4. SWIR-LWIR Objective Lens Optical Design

Figure 7.11: Through focus MTF performance over temperature of a radial-GRIN SWIR-LWIR optical design

7.4.3. Alignment Sensitivity

It was observed that the optical power construction of the GRIN design was significantly
more relaxed than that of the conventional solution. The optical powers of each lens element
for the GRIN and homogeneous solution are shown in Table 7.4. This contrast in optical
power construction was also found to have ramifications for performance of the system with
manufacturing tolerances. Frequently, the centration of lens elements within an optical system
dominates the as-built performance. With this in mind, the two designs were analysed for the
MTF sensitivity in the SWIR waveband of each lens element. Assessment of performance
loss was undertaken using the CodeV TOR algorithm based on wavefront differentials, which
gives a fast and accurate analysis of perturbations to lens designs provided the loss in MTF
performance is small.

MTF loss in the SWIR waveband at 30 cycles/mm for each component in each design is
plotted in Figure 7.12. These sensivity values were for a fixed, 30 µm decentre. It was
observed that the homogeneous variant’s lens elements were significantly more sensitive to

Lens Number
GRIN Element Power

(mm-1)
Homogeneous Element Power

(mm-1)
1 0.00511 0.02615
2 0.01137 -0.03738
3 0.00010 0.04972
4 0.00256 -0.02700
5 -0.01919
6 0.01931
7 0.00472

Table 7.4: Multispectral objective lens design focal powers
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7.5. Conclusion

Figure 7.12: MTF loss for a 30 µm decentre of each lens element. Analysis at 30 c/mm for both axial and full field
(7.5° semi-field). Left: GRIN solution. Right: Homogeneous solution.

decentre, and would require tighter tolerances to maintain an equivalent performance loss to
the GRIN solution. Such a design would likely require optical alignment of one or more lenses
in the system to compensate the performance loss, which would add significant cost.

At the time of analysis, a full performance comparison of the designs was not feasible due
to a lack of information on tolerances of the GRIN media, which were hypothetically based
on existing chalcogenide glasses. It is however noteworthy, for a given system wavefront
error budget, that any future GRIN chalcogenide technology may give capacity for a larger
error budget in the transmitted wavefront error of the GRIN components due to a reduced
contribution to the system error budget from lens alignment errors.

7.5. Conclusion

A first-order design method for athermal and multispectral GRIN lenses was demonstrated.
It was shown that a variant of the thermo-optic glass coefficient can be derived for a given
pair of materials which form a radial-GRIN lens. Changes to the optical power are caused by
changes in the base material refractive indices, thermal expansion of the lens thickness and
curvatures, and finally an induced curvature term caused by the difference in CTE between the
lens centre and outer aperture. It was found that the radial-GRIN thermo-optic coefficient, like
its homogeneous counterpart, depends only on the lens consituent materials, with the added
complication of relative power distribution between the GRIN lens surfaces and medium. There
is significant utility in determining that the GRIN thermo-optical properties depend solely on
the underlying materials, as it means that we do not need to trace rays to determine if a given
material combination makes a useful GRIN. This is useful to the researcher/fabricator of GRIN
materials, who can use this information to design useful GRIN material combinations based on
the properties of the constituent glasses in their homogeneous form. Using predictive models
of glass properties such as those discussed in Ryan-Howard & Moore [70], we may propose
GRIN material combinations that have intrinsic athermal and achromatic properties.

The athermal, multispectral, first-order design method was used to find starting points for
optimisation of a SWIR-LWIRmultispectral objective lens. It was found for a given set of optical
materials and system focal length, that GRIN solutions have greatly reduced optical component
focal power. These reduced-power components generate reduced aberration contributions to
the optical system, improving nominal optical performance as well as alleviated sensitivity
to manufacturing tolerances. An optical design based on a starting solution found via this
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7.5. Conclusion

method was optimised and analysed for optical performance over an extended temperature
range. It was found that the use of radial-GRIN lenses can enable high quality imaging over
a SWIR-LWIR waveband, whilst improving size and mass over a homogeneous solution. This
raises the prospect of a new class of optical designs which have the potential to provide more
scene information to the end user within a reduced size and mass package.
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8
Conclusions

8.1. Summary of main results

Within this work we have presented a deep exploration of the optical design freedoms provided
by generalised-gradient-index lenses. This work has broadly consisted of two themes, first
exploring design tools for generalised GRINs, then their applications. As the mathematical
representations and software design tools required to explore generalised-GRIN lenses were
in a nascent state, it was necessary to develop them. Mathematical representations for GRIN
lenses consisting of three or more materials were developed, based on the relative composition
of the base materials therein. It was shown that such a representation allows calculation of the
first-order properties of the GRIN, which can also be decomposed into contributions from the
base materials. Expression of the material properties in this way is amenable to specification
for optimisation and specification for manufacture, as demonstrated by the successful design
of a three-material generalised-distribution GRIN magnifier with comparable performance to
a homogeneous design with aspheric and diffractive surfaces.

A method for the construction of starting points for the optimisation of generalised-GRIN
systems was also generated. Again, due to the nascent state of generalised-GRIN designs,
there is a lack of existing starting solutions from which continuous optical system designs can
be optimised. By analysis of the paraxial properties of homogeneous lens systems, followed
by smoothing of their paraxial raypaths, it was demonstrated that it is possible to reconstruct
homogeneous lens systems as a single GRIN medium that replicates the first-order properties
of the parent solution with a high degree of fidelity.

Further consideration was given to the imaging properties of generalised GRIN lenses where
the surface geometry is planar. It was shown that such “flat” optics ordinarily cannot correct
for coma, due to their inability to satisfy the Abbé sine condition. For such lenses, a gener-
alised GRIN distribution can correct for this, through variation of optical power over the lens
thickness. It does however come at the expense of increased Δ𝑁 or lens thickness, while the
combination of a radial GRIN with surface curvature can correct coma with a much smaller
Δ𝑁.

The second major theme of this work addressed applications of GRIN lenses. The degrees of
freedom provided by spherically-distributed LGRIN lenses were assessed, demonstrating that
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8.2. Answers to Research Questions

in a singlet they offer comparable optical correction to doublets and diffractive lenses. They
achieve this whilst reducing optical mass by virtue of their low-density polymer construction
and minimising the risk of stray light artefacts associated with diffractive optics.

A study of the potential performance benefits offered by 3D-printed GRIN lenses in tilted and
off-axis lens designs was undertaken. It was shown that asymmetric freeform-GRIN distribu-
tions have the potential to significantly reduce the optical element count of a head-mounted
display or similar off-axis system, allowing a single GRIN lens to simultaneously correct rota-
tionally symmetric and asymmetric monochromatic aberrations as well as chromatic aberra-
tions. Moving to nanoparticle-doped polymer GRINs from conventional glass materials also
enabled a significant reduction in system mass.

Finally, the application of GRIN lenses to ultra-wide waveband multispectral imaging prob-
lems was investigated. Conventionally, such systems require many lens elements consisting
of exotic materials. They also often require extreme distributions of optical power between
lens elements, resulting in poor imaging performance, especially over a finite temperature
range. It was found that GRIN lenses significantly ease the optical power construction of such
systems, effectively by merging positive and negatively powered lens elements into a single,
reduced-power lens. This enables a substantial reduction in lens count and improved opti-
cal performance over a finite temperature range, as demonstrated by the design of a GRIN
SWIR-LWIR imaging system that compared favourably to its homogeneous equivalent.

8.2. Answers to Research Questions

8.2.1. Are there benefits to the SWAP-C of optical systems through the use
of generalised GRIN lenses, and if so what are they?

Generalised-GRIN lenses allow several lens elements to be replaced by a single thick GRIN
medium. The benefits with respect to optical element count are immediately clear in this
regard. Fewer turning/polishing, coating and assembly operations are required to satisfy a
given optical function. This replacement of lens elements also precipitates a substantial saving
in mass where the GRIN lenses replace conventional glass lens elements with nanoparticle-
doped polymers. This mass saving was particularly evident in the design of a HMD system.
In some situations such as multispectral optics, GRIN lenses can be the difference between
viability and non-viability of the imaging system, through improving performance, reducing
mass, and replacing materials that are highly toxic and difficult to work with.

An important consideration we must apply to SWAP-C analysis of generalised GRIN lens
designs is that of real-world base optical materials. It is trivial to show that a GRIN lens with
an extremely large index variation gives a significant performance benefit, but such designs
have little utility unless they can be made. In this work we have demonstrated methods to
bind the optical design process of GRIN lenses to real materials, showing several examples
where new and emerging GRIN manufacture processes exhibit sufficient variation in refractive
index and chromatic dispersion to provide a significant performance benefit.

A trade-off occurs in generalised GRIN use, where we transfer manufacturing complexity
from surface fabrication and alignment into the optical medium of lens elements. The GRIN
distribution must be generated with sufficient precision and aligned with the lens surfaces
during surface generation and polishing. We can therefore partially answer this research
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8.2. Answers to Research Questions

question. Nominally, generalised GRINs show significant benefit, as demonstrated by the
simplification of several lens designs to fewer, or sometimes even a single, lens element.
In many cases this is demonstrated using material data representative of GRIN manufacture
processes, such as the VIRGO printing process of NanoVox LLC. Replacement of homogeneous
lens elements with generalised GRIN lenses near universally provides a performance benefit
with respect to SWAP (omitting the “C” for cost). The additional complexity in processing may
have ramifications for cost, but it is not feasible to quantify this in the present work.

8.2.2. Do Generalised GRIN Optics have a Future in SWAP-C-Critical
Imaging Applications?

By the optical design approach undertaken in this work, we have shown that GRIN lenses
frequently allow for an optical solution that is lighter, more compact, and with greater optical
performance. Simply put, making use of the optical medium of a lens as well as its surfaces
provides greater design degrees of freedom to an optical system and improves performance
within a given size/mass/lens-count budget. The ample use of polymer materials in GRIN
systems also enable significant mass reduction due to their lower density, as shown in the
design of an HMD system using nanoparticle-doped polymers.

Conversely, the cost aspects of SWAP-C cannot be addressed meaningfully by this work due
to a lack of certainty over the long-term cost potential of GRIN technologies. It is reasonably
expected that the additional complexity in the preparation of GRIN material leads to an addi-
tional cost in the lens blank compared to a similar homogeneous material. For GRIN to provide
a cost benefit, this cost should more than offset the additional expense of the extra lens ele-
ments (or more complex surfaces such as aspheres). At present, the cost-driving parameters
of GRIN materials are not well known. GRIN manufacturing processes are in an early stage
of commercial production (or still at low TRL levels requiring development before production
can commence). There is little knowledge of what effect economies of scale will have. Design
work can however set a target for cost reduction. From the designs in this work based on
real-world GRIN materials, there is an approximate 3:1 reduction in lens count that can be
generated via the use of GRINs, therefore, if the cost-delta of a GRIN lens is approximately
that of two conventional lenses, we may estimate cost parity between approaches.

Factors beyond the nominal design also influence the feasibility and viability of GRIN lenses.
To manufacture GRIN lenses, a reliable method of lens metrology must exist. A well-known
maxim in optical engineering states that if you can’t measure it, you can’t make it. GRIN
lenses generate additional challenges for metrology, as their media do not interact in the
same way that optical surfaces do. For homogeneous lenses, surface form measurement can
be performed in reflection, to isolate the effect of each optical surface. For GRIN, it is always
necessary to measure in transmission which provides the confounding factor of interaction
between the GRIN medium and the lens surfaces. Furthermore, in real optical systems, a
GRIN lens will seldom easily provide a null test. A GRIN lens that forms part of a larger optical
system will almost always have significant finite aberration that requires a more complex
process to measure. This becomes an even more significant challenge for GRIN lenses with
non-rotationally symmetric refractive index distributions.

GRIN metrology also may be split into two categories:

• Acceptance: where we wish to make a top-level assessment of the GRIN lens as to
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8.3. Future GRIN Optical Design Work

Figure 8.1: The four technical pillars that support a GRIN optics capability.

whether its performance is acceptable for use in a product, but with minimal information
about what the error mechanisms are.

• Diagnostic or Tomographic: where we wish to make detailed measurements of the
refractive index errors of a GRIN lens. In essence, where a GRIN lens fabrication has
gone wrong and we want to know why. Understanding the error mechanisms allows us
to drive a continuous improvement loop, by refining the process and re-measuring.

Developments in methodology for both of these metrology categories is a vital goal in the
further development of GRIN lenses.

A further requirement for the application of GRIN lenses in real-world defence and aerospace
applications is that of environmental qualification. In addition to being SWAP-C critical, such
applications are also safety critical. Failure of avionic equipment vital to manoeuvre and nav-
igation of aircraft would have very serious consequences and must occur at an extremely low
probability. As a result, the long-term reliability of GRIN materials in challenging environments
must also be demonstrated. For many applications, it is vital that GRIN systems do not show
temporary or permanent degradation of performance over a finite temperature range.

Combined, we consider four technical “pillars” that support a real-world GRIN capability
(Figure 8.1). As with conventional optics, it must be possible to design and analyse it, man-
ufacture it, measure it, and ensure it works reliably in the target environment. This work has
made significant progress towards the first “design” pillar. We have shown there is significant
nominal benefit in a range of different contemporary GRIN processes, however further (on-
going) work is required to address the other pillars. Once the four pillars are addressed at a
viable cost, one can readily conclude that GRIN has a future in SWAP-C-critical applications.

8.3. Future GRIN Optical Design Work

Whilst this work has demonstrated significant progress towards a production-ready GRIN de-
sign capability, substantial challenges remain and should be the subject of future work in this
area.
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8.3. Future GRIN Optical Design Work

The design of generalised GRIN over a finite temperature range remains a significant chal-
lenge. We require precise knowledge of the optical properties of GRIN lenses over an extended
temperature range (around -50° C to +80° C) to understand their effects on the optical per-
formance of an overall system. In this work we have made some preliminary steps towards
solving this problem by some first-order analysis approximations. These approximations allow
the optical designer to estimate whether a given GRIN material combination is suitable for
use over a finite temperature range, but are generally limited to combinations with similar
coefficients of thermal expansion and simple, radial-GRIN distributions. A confounding factor
not addressed in this work is the effect of induced stress on GRIN parts due to the spatial
variation of CTE and Young’s modulus. This is a particular risk for polymer-based GRINs which
have a large coefficient of thermal expansion and negative 𝑑𝑁/𝑑𝑇. When applied to a GRIN
of generalised distribution, thermal analysis requires a more general computation approach,
such as finite element analysis, to determine the change in shape and refractive index of the
lens. Induced stresses (particularly in polymers) also induce birefringence which may have a
detrimental effect on imaging performance.

Optical design of GRINs would substantially benefit from further research into high-speed
raytracing, which still acts as a bottleneck to the designer for the most complex systems. The
rapid development of graphic processing units (GPUs) has the potential to increase ray tracing
speed dramatically by parallelising it over many processing cores. Tracing speed increases well
in excess of an order of magnitude have already been observed for homogeneous raytracing.
A further area of development potentially lies in differential raytracing, which can offer great
speed improvements by providing additional information in the raytrace about the derivatives
of the ray with respect to system variables, negating the need for multiple raytraces to compute
optimisation variable derivatives via finite differences [109]. The derivatives in differential
raytracing can be accessed computationally for little overhead through a process known as
automatic differentiation. This development is particularly useful for the most general GRIN
systems as they can have a very large number of optimisable coefficients.

A further important contribution of the optical designer towards the design for manufacture
of future GRIN systems is that of optical tolerance analysis. Tolerances provide limits on the
deviation of key system parameters such as surface form and figure errors, centre thickness,
wedge, and the positioning errors of lens elements. Optical materials also require limits to
errors in their refractive index, dispersion, birefringence and homogeneity. At the time of
writing, only basic limits to the wavefront error of GRIN lenses can be specified. This is due to
the fact that the error mechanisms in GRIN materials are not well known. Ideally, tolerances
are indicative of common failure modes in optical materials (such as the astigmatism and
zonal “roll-off” produced by typical polishing processes). Once the error mechanisms in new
GRIN manufacture processes are better known, the optical designer can develop models to
establish their effect on optical performance and define limits. This work can provide further
useful information in the continuous improvement of GRIN manufacture processes. When the
most severe error mechanisms are known, this informs the priority to the fabricator of what
aspects of the process to improve.
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A
Transverse Ray Errors and their
Interpretation

Transverse ray error plots (also known as rim-ray plots) are a powerful tool for the diagnosis of
aberrations in optical systems. They map out the transverse (perpendicular to the optical axis)
departure of rays at the image plane as a function of pupil. An example of this error mechanism
is illustrated in Figure A.1. Variation of aberrations over the field is typically represented by
several transverse ray error plots at defined field points. Plots are also typically generated
in the sagittal and tangential sections for each field point for a rotationally symmetric optic.
Transverse ray error is generally calculated with respect to the image plane position of the finite
principal ray. Doing this essentially eliminates distortion from the plots (at a given reference
wavelength). Distortion is often a much larger aberration than the scale of the RMS spot size
(for example in fisheye lenses), and so is removed for readability of the transverse ray error
plots, as it does not directly affect image quality.

A further consideration in transverse error plots concerns the definition of the normalised
pupil coordinate which forms the abscissa of the plot. While it is possible to define this in
either the entrance or exit pupil, it is more commonly defined as the height of a given ray in
the plane of the aperture stop, normalised to the aperture stop semi-diameter. The reason for
this is primarily to improve readability for lens systems with substantial pupil aberration (such
as wide angle systems), where the scale of the abscissa would need to vary significantly over
the field of view of the lens under analysis.

Performance metrics such as MTF or RMS spot size allow an assessment of the image quality

Figure A.1: Definition of transverse ray error in an azimuth defined by the plane of the page. The finite principal
ray of a given field is shown as a dotted line, with a finite ray at a notional pupil coordinate shown as a solid line.
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of an optical system, but provide less insight into what limits the optical correction. Transverse
ray errors however allow insight into the design by the “signature” of certain aberration types
and their combinations. A set of example transverse error plots are shown in Figure A.2 for
the monochromatic Seidel aberrations and axial and lateral colour, to serve as an aid to the
reader in interpretation of transverse ray error plots used in this thesis. The shape of these
aberration curves indicates the types of aberration present in the lens. Understanding these
forms of ray error is a key skill of the optical designer; the ability to diagnose combinations of
aberrations as well as higher-order aberrations enables to designer to understand what limits
system performance and how best to address it.
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Figure A.2: Example of the functional form of common third order and chromatic aberrations when plotted as
transverse ray errors.
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B
Raytracing in Gradient-Index Media

In this appendix we derive the equations of ray propagation for GRIN media for both finite
and paraxial rays. Raytracing is fundamental to the design of GRIN lenses, which rely on
geometrical optics for their simulation in optical design software.

B.1. Finite Ray Propagation in an Inhomogeneous Medium

Herein we follow the derivation approach documented by Bociort [19][ 2.1.1] and Hopkins [52],
where we determine the change in ray direction between two points, r and r + 𝑑r, defined
with respect to an origin, 𝑂. r and r + 𝑑r are embedded in a continuously differentiable, in-
homogeneous, and isotropic medium, and located an infinitesimal distance, 𝑑𝑠, apart. Figure
B.1 illustrates the propagation of such a ray. By definition, the wavefront that the ray of Figure
B.1 represents is perpendicular to the direction of propagation. We will derive a differential
equation that describes the change in direction of the ray over 𝑑𝑠, by determining the gradi-
ent of the wavefront at r and r+ 𝑑r. Another vector, a, has a unit length and represents the
direction of propagation of the ray at r. The change in phase of the ray between r and r+𝑑r

Figure B.1: Propagation of a ray (green) within an inhomogeneous medium, with perpendicular wavefronts indi-
cated in blue. Ray positions vectors, r and r + 𝑑r, are indicated with respect to an origin, 𝑂.
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B.1. Finite Ray Propagation in an Inhomogeneous Medium

is given by

𝑑Φ = 2𝜋
𝜆 𝑁(r)𝑑𝑠, (B.1)

where 𝜆 is the wavelength of light in a vacuum, and 𝑁(r) is the refractive index as function of
r. In the limit where 𝑑𝑠 is infinitesimally small, 𝑑r and a become parallel and so

𝑑r = a𝑑𝑠, (B.2)

where r = (𝑥, 𝑦, 𝑧) and a ⋅ a = 1, such that

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2. (B.3)

We now express the left hand side of Equation B.1 in the same basis as r

𝑑Φ = 𝜕Φ
𝜕𝑥 𝑑𝑥 +

𝜕Φ
𝜕𝑦 𝑑𝑦 +

𝜕Φ
𝜕𝑧 𝑑𝑧 = ∇Φ𝑑r. (B.4)

We combine Equations B.4, B.1 and B.2 to obtain

∇Φa = 2𝜋
𝜆 𝑁(r). (B.5)

Again by definition of a ray as perpendicular to the propagating wavefront, we can state that
a and ∇Φ are parallel such that ∇Φ ⋅ a = |∇Φ| and |∇Φ|a = ∇Φ. We therefore multiply both
sides of Equation B.5 by a to obtain

∇Φ = 2𝜋
𝜆 𝑁(r)a. (B.6)

Differentiating Equation B.6 with respect to 𝑠 gives

𝑑
𝑑𝑠∇Φ =

2𝜋
𝜆
𝑑
𝑑𝑠(𝑁(r)a) = ∇

𝑑Φ
𝑑𝑠 . (B.7)

From Equation B.1, the right hand side of Equation B.7 can be rewritten as

∇𝑑Φ𝑑𝑠 =
2𝜋
𝜆 ∇𝑁(r), (B.8)

and so Equation B.7 can be rewritten as

𝑑
𝑑𝑠(𝑁(r)a) = ∇𝑁(r), (B.9)

or by substituting Equation B.2 we obtain

𝑑
𝑑𝑠 (𝑁(r)

𝑑r
𝑑𝑠) = ∇𝑁(r). (B.10)

Whilst Equation B.10 is sufficient to solve the paths of rays in generalised GRIN media, it is
not in a convenient form for numerical solution that is required for computational tracing of
finite rays in optical design software. We therefore define another variable, 𝑡, such that

𝑑𝑡 = 𝑑𝑠
𝑁(r) . (B.11)

174



B.2. Paraxial Raytracing in General-Rotationally-Symmetric Gradient-Index Media

Multiplying both sides of Equation B.10 by 𝑁(r) gives

𝑁(r) 𝑑𝑑𝑠 (𝑁(r)
𝑑r
𝑑𝑠) = 𝑁(r)∇𝑁(r) =

1
2∇𝑁(r)

2. (B.12)

Substituting Equation B.11 then gives

𝑑𝑠
𝑑𝑡

𝑑
𝑑𝑠 (

𝑑𝑠
𝑑𝑡
𝑑r
𝑑𝑠) =

1
2∇𝑁

2(r), (B.13)

which simplifies to
𝑑2r
𝑑𝑡2 =

1
2∇𝑁

2(r). (B.14)

This equation can now be solved using common numerical methods for second order differ-
ential equations such as the fourth-order Runge-Kutta method, with a small increment the
quantity, 𝑡 forming a stepping parameter for computation of the ray paths [63].

B.2. Paraxial Raytracing in General-Rotationally-Symmetric
Gradient-Index Media

Paraxial optics enable great insight into the properties of an optical system for minimal com-
putational effort. Computation is minimised by linearising raytracing of an optical system,
simplifying the optical model to a set of 2x2 matrix products to model the behaviour of ray
vectors between surfaces and media. This linearised approach gives us a full description of
the first-order properties of an optical system, and by further calculation, the third-order aber-
rations. Paraxial raytracing becomes more complex for GRIN media however, as the paraxial
ray propagation along a curved path through an inhomogeneous medium must be solved to
yield its 2x2 ray-transfer matrix.

We therefore derive a simplified form of Equation B.14 applicable to the paraxial region only.
We will follow the Lagrangian method outlined by Buchdahl [17]. Fermat’s principle states that
the optical path length, defined by the integral of refractive index, 𝑁, between two points, 𝐴
and 𝐵, along a path of arc length, 𝑠, is a stationary point. Starting with an infinitesimal arc
length, 𝑑𝑠 that we express in cartesian coordinates as per Equation B.3. We define a paraxial
ray propagating in the y-z plane, using the z-axis as our optical axis and effect a change of
variables to express 𝑑𝑠 in Cartesian coordinates

𝑑𝑠 = 𝑑𝑠
𝑑𝑧𝑑𝑧 = 𝑑𝑧

√𝑑𝑦2 + 𝑑𝑧2
√𝑑𝑧2

= 𝑑𝑧√𝑑𝑦
2

𝑑𝑧2 + 1. (B.15)

Fermat’s principle can now be rewritten as a Lagrangian, using a dot notation to signify dif-
ferentiation with respect to 𝑧

𝛿 ∫𝑁𝑑𝑠 = 𝛿∫𝐿 (𝑦, �̇�, 𝑧) 𝑑𝑧 = 0, (B.16)

where
𝐿 = 𝑁 (𝑦, 𝑧)√1 + �̇�2. (B.17)
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B.3. Analytical Solutions for Paraxial Rays in GRIN Media

To obtain an equation of paraxial ray propagation within a GRIN medium, we solve the Euler-
Lagrange equation [110, chapter 9.2.16], which for our coordinate system is given by

𝜕𝐿
𝜕𝑦 −

𝑑
𝑑𝑧 (

𝜕𝐿
𝜕�̇�) = 0. (B.18)

To simplify the the square root term of Equation B.17, we expand as a Taylor series in �̇�

𝐿 = 𝑁 (𝑦, 𝑧) [1 + 12�̇�
2 − 14�̇�

4 + ...] . (B.19)

We must now also define the refractive index distribution as a function of 𝑧, of the form
described in Equation 1.23

𝑁 (𝜌, 𝑧) = 𝒩0(𝑧) +𝒩2(𝑧)𝜌2 +𝒩4(𝑧)𝜌4 + ..., (B.20)

where 𝜌 = 𝑥2 + 𝑦2. We now further expand Equation B.19 by multiplying the square root
expansion with the refractive index distribution. As our ray propagates in the 𝑦 − 𝑧 plane, we
can substitute for 𝜌2 = 𝑦2. In applying the paraxial approximation, we assume that 𝑦 and �̇�
are small numbers, and therefore higher-order terms can be neglected. We therefore collect
any fourth order or higher terms in 𝑦 from Equation B.21 in the term 𝒪4, and disregard them,
giving

𝐿 = 𝒩0(𝑧) + [
1
2𝒩0(𝑧)�̇�

2 +𝒩2(𝑧)𝑦2] + 𝒪4. (B.21)

Equation B.21 is now simple to differentiate with respect to 𝑦 or 𝑧, which we substitute into
the Euler-Lagrange equation to yield an equation of propagation for paraxial rays in a general
rotationally symmetric GRIN medium

2𝒩2(𝑧)𝑦 −
𝑑
𝑑𝑧 (𝒩0(𝑧)�̇�) = 0. (B.22)

B.3. Analytical Solutions for Paraxial Rays in GRIN Media

The existence of analytical solutions to equation B.22 depends on the functional form of𝒩0(𝑧)
and 𝒩2(𝑧). Sands explored analytical paraxial solutions for axial and radial GRIN distribu-
tions [76]. It is beneficial to explore such solutions, as they can act as useful diagnostic tests
for raytracing algorithms designed for more complex paraxial GRIN distributions, by providing
a ground truth to which we may compare the numerical approach.

B.3.1. Radial GRIN

For a solely radial GRIN (the eponymous Wood lens), 𝒩2(𝑧) and 𝒩0(𝑧) are constants. Substi-
tution into equation B.22 gives us the second order ordinary differential equation:

�̈� = 2𝒩2
𝑁0

𝑦(𝑧) (B.23)

For the case of 𝒩2 < 0, a sinusoidal ansatz yields
𝑦(𝑧) = 𝐴 cos(𝛼𝑧) + 𝐵 sin(𝛽𝑧)
�̇�(𝑧) = −𝛼𝐴 sin(𝛼𝑧) + 𝛽𝐵 cos(𝛽𝑧)
�̈�(𝑧) = −𝛼2𝐴 cos(𝛼𝑧) − 𝛽2𝐵 sin(𝛽𝑧).

(B.24)

176



B.3. Analytical Solutions for Paraxial Rays in GRIN Media

Substitution of the ansatz into equation B.23 gives

�̈� − 2𝒩2𝒩0
𝑦(𝑧) = 𝐴(−𝛼2 − 2𝒩2𝒩0

) cos(𝛼𝑧) + 𝐵 (−𝛽2 − 2𝒩2𝒩0
) sin(𝛽𝑧) = 0. (B.25)

By substituting trial solutions at 𝑧 = 0 and 𝛽𝑧 = 𝜋, we can obtain values for 𝛼 and 𝛽. A
becomes the parameter 𝑦(0) and B can be found by substitution into �̇�. This gives us a
paraxial ray equation for the Wood lens.

𝑦(𝑧) = 𝑦(0) cos(𝛼𝑧) + �̇�(0)𝛼 sin(𝛼𝑧), where 𝛼 = √−2𝒩2𝒩0
(B.26)

B.3.2. Axial GRIN

For an axial GRIN distribution of the form described in Equation 1.25, 𝒩2 = 0 whilst 𝒩0 is a
function of 𝑧. 𝒩2 = 0 simplifies Equation B.22 to obtain

𝑑
𝑑𝑧 (𝑁0(𝑧)�̇�) = 0. (B.27)

We assume the ray propagates through an axial GRIN medium from the 𝑧-axis origin to 𝑧.
Integration of Equation B.27 with respect to 𝑧 gives

∫
𝑧

0

𝑑
𝑑𝑧𝒩0(𝑧)�̇�𝑑𝑧 = 𝒩0(𝑧)�̇�(𝑧) −𝒩0(0)�̇�(0) = 0. (B.28)

We then rearrange this expression in terms of �̇� and integrate with respect to 𝑧 to obtain an
expression for 𝑦(𝑧)

∫
𝑧

0
�̇�(𝑧)𝑑𝑧 = 𝑦(𝑧) − 𝑦(0) = 𝒩0(0)�̇�(0)∫

𝑧

0

1
𝒩0(𝑧)

, (B.29)

where the values 𝑦(0) and �̇�(0) describe the starting position and direction of the ray.
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C
Introduction to Bézier curves

Bézier curves are a form of parametric curve widely used in graphics and product design.
They were independently discovered by two mathematicians: Pierre Bézier, an engineer at
the automaker Citroën, and Paul de Casteljau, an engineer at the same company who was
unable to publish his interpretation of the approach until some years later. They are popular
in engineering and software applications due to the complex curves they are able to produce
and their numerical stability.

Two widely published approaches are used to define Bézier curves, these are Bernstein
polynomials [82, Chapter 1.3.2] and De Casteljau’s algorithm [82, Chapter 1.3.5].

C.1. The Bernstein Basis

The Bernstein polynomial basis is defined over the interval 0 ≤ 𝑡 ≤ 1, and will ultimately serve
as a weighting function to define our Bézier curves. We define a Bernstein polynomial of order
𝑛 as

𝐵𝑖,𝑛(𝑡) =
𝑛!

𝑖! (𝑛 − 𝑖)! (1 − 𝑡)
𝑛−𝑖 𝑡𝑖 , 𝑖 = 0,… , 𝑛. (C.1)

As an example, we sum the four Bernstein polynomials where 𝑛 = 3
3

∑
𝑖=0
𝐵𝑖,3(𝑡) = (1 − 𝑡)

3 + 3 (1 − 𝑡)2 𝑡 + 3 (1 − 𝑡) 𝑡2 + 𝑡3. (C.2)

Each of the four terms of our example Bernstein polynomial is plotted in Figure C.1 (noting
that the summation index, 𝑖, starts with zero). It is noteworthy that the basis is symmetric
about 𝑡 = 0.5. Another noteworthy property of the basis is

𝑛

∑
𝑖=0
𝐵𝑖,𝑛(𝑡) = 1. (C.3)

This unity sum property makes the Bernstein basis in its pure form of little interest in defining
curves, however its utility is transformed when we apply coefficients that represent control
points of the curve to each term in the basis. This act of applying weighted control points
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C.1. The Bernstein Basis

Figure C.1: Plot of the Bernstein basis where n=3.

transforms the Bernstein basis into a Bézier curve. In the paraxial reconstruction technique
of Chapter 3, the control points are defined by sampled coordinates along the segmented
paraxial ray paths of a homogeneous optic. Consider a Bézier curve example, of the same
order as the Bernstein polynomial of Equation C.2, which requires a set of four control points,
𝑃,

𝑃 = {p1,p2,p3,p4}, where
p1 = (0, 0)
p2 = (3/2, 7)
p3 = (6, 3)
p4 = (8, 7) .

(C.4)

For a given parameter, 𝑡, the value of the Bézier curve, f, is given by

f(𝑡) = p1 (1 − 𝑡)
3 + 3p2 (1 − 𝑡)

2 𝑡 + 3p3 (1 − 𝑡) 𝑡2 + p4𝑡3. (C.5)

The curve f(𝑡) is plotted in Figure C.2. From inspection of Equation C.5, the values of f at
𝑡 = 0 and 𝑡 = 1 are p1 and p4 respectively. It must also be noted from Figures C.1 and C.2,
that between the endpoints, no single point along the curve ever has a weighting of 1 (which
would be required to intersect the control point). This means that Bézier curves approximate
rather than interpolate the set of points over which they are defined [111].
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C.2. De Casteljau’s Algorithm

Figure C.2: Control points and resulting Bézier curve for example control points, p.

C.2. De Casteljau’s Algorithm

Another elegant (and equivalent) way to define a Bézier curve is via De Casteljau’s algorithm.
This algorithm consists of recursive linear interpolations along segments defined by the Bézier
curve control points. Consider a Bézier curve, f(𝑡) that is defined by a set of 𝑛 control points

𝑃 = {p1,p2,p3, … ,p𝑛}, (C.6)

where the vectors p1 to p𝑛 define said control points. As with the previous definition using the
Bernstein basis, we parameterise the Bézier curve using a factor, 0 ≥ 𝑡 ≤ 1. De Casteljau’s
algorithm performs a linear interpolation between each successive pair of control points at
each iteration, given by

p′𝑖 = p𝑖 + 𝑡(p𝑖+1 − p𝑖) (C.7)

for the ith and i+1th control points. When applied to the entire set, 𝑃, the result is a set of
𝑛 − 1 control points that form an intermediate curve, given by

𝑃′ = {p′1,p′2,p′3, … ,p′𝑛−1}. (C.8)

De Casteljau’s algorithm terminates when the interpolation process returns a single point. This
point sits on the Bézier curve, f(𝑡). This process of successive linear interpolation for a Bézier
curve consisting of four control points, {p1,p2,p3,p4}, is illustrated in Figure C.3. A visual
example of De Casteljau’s algorithm is also shown in Figure C.4 for the same set of control
points as defined in Equation C.4. Starting from the original control points that form the blue
segmented line, successive linear interpolations yield the orange then green segmented lines,
terminating with the red point that sits on the Bézier curve for the given 𝑡 value.
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C.2. De Casteljau’s Algorithm

Figure C.3: Flowchart illustrating De Casteljau’s algorithm for a Bézier curve defined from four control points,
{p1,p2,p3,p4}. Each row of the pyramid indicates a successive iteration of the algorithm, culminating in a single
point that sits on the Bézier curve.

Figure C.4: Points on a Bézier curve defined via De Casteljau’s algorithm for three values of 𝑡. The blue curve
indicates the original set of control points defining the curve. The orange polygon has one less segment, and is
formed by interpolating along each segment of the blue curve by a factor, 𝑡. The interpolated points are indicated
on the leftmost example for the first iteration. The green line segment is formed when the same interpolation
process is applied to the orange polygon. The process is again applied to the green segment to yield the red point,
which can be interpolated no further and is a point on the Bézier curve.
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C.3. Further Properties of Bezier Curves

C.3. Further Properties of Bezier Curves

C.3.1. Derivatives

The derivative of a Bézier curve (often referred to as its hodograph) is another Bézier curve
of lower order [82, Chapter 1.3.4].

ḟ(𝑡) = 𝑑f
𝑑𝑡 = 𝑛

𝑛−1

∑
𝑖=0

(p𝑖+1 − p𝑖) 𝐵𝑖,𝑛−1(𝑡). (C.9)

From inspection of Equation C.9, we observe that for 𝑡 = 0 and 𝑡 = 1 we obtain the following
derivatives

ḟ(0) = 𝑛 (p1 − p0)
ḟ(1) = 𝑛 (p𝑛 − p𝑛−1) ,

(C.10)

we infer from these values that the derivatives at 𝑡 = 0 and 𝑡 = 1 are parallel to the end
segments of the control points.

C.3.2. Diminished Variation

We define a more complex Bézier curve in Figure C.5. The largest area polygon that can be
defined by the control points is known as the convex hull. A Bézier curve always sits within
this region. Bézier curves produce minimal oscillation, even at very high orders, showing
diminished variation with respect to the segmented line of control points.

Figure C.5: Bézier curve where 𝑃 = {(0, 0), (5, 5/2), (7/2, 5), (3/2, 5), (0, 5/2), (5, 0)}. The convex hull of the
control points is shaded in red.
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D
Paraxial Reconstruction: Data
Annexe

The following sections represent data for the lens designs of Chapter 3. GRIN coefficients and
equations are broken out into separate tables as indicated. No indicated material implies an
air medium.

D.1. Double-Gauss Example

D.1.1. Homogeneous Parent Design

F/# 2.0
Semi-Field (°) 14.0

Wavelengths (nm) 𝜆1 =486.1, 𝜆2 =587.6, 𝜆3 =656.3
Spectral Weights 1.0 1.0 1.0

Label Surface
Radius
(mm)

Thickness
(mm)

Clear Diameter
(mm) 𝑁(𝜆1) 𝑁(𝜆2) 𝑁(𝜆3) Glass

Object 0 INFINITY INFINITY
1 56.20238 8.75 56.34 1.630455 1.622292 1.618769 NSSK2
2 152.286 0.5 54.27
3 37.683 12.5 49.25 1.61486 1.607379 1.604134 NSK2
4 INFINITY 3.8 45.79 1.614617 1.603417 1.598744 F5
5 24.231 16.369 34.59

Stop 6 INFINITY 13.748 31.40
7 -28.377 3.8 30.27 1.614617 1.603417 1.598744 F5
8 INFINITY 11 34.50 1.627559 1.620408 1.617271 NSK16
9 -37.925 0.5 37.85
10 177.412 7 40.70 1.627559 1.620408 1.617271 NSK16
11 -79.411 61.488 41.55

Image 12 INFINITY -0.40 49.19
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D.1. Double-Gauss Example

D.1.2. Paraxial Reconstruction

F/# 2.0
Semi-Field (°) 14.0

Label Surface Radius (mm) Thickness (mm) Clear Diameter (mm) Material
OBJECT 0 INFINITY INFINITY

1 56.202 41.919 33.25 GRIN
STOP 2 INFINITY 36.048 18.7 GRIN

3 -79.411 61.415 28.9
IMAGE INFINITY 0.00 35.7

GRIN Coefficients

The GRIN distribution is of the form indicated in Equation 1.23, consisting of axially varying
radial polynomial terms. The axial coefficients,𝒩0(𝑧) and𝒩2(𝑧) are determined by a ten knot
cubic spline function, with knots at the Chebyshev-Lobatto nodes. For a spline consisting of
𝑄 nodes and interval, 𝐿, the location of the 𝑞th node is given by

𝑧𝑞 =
𝐿
2 [1 − cos( 𝑞

𝑄 − 1𝜋)] , 𝑞 = 0, 1, 2, … , 𝑄 − 1. (D.1)

The GRIN distribution of the paraxially reconstructed Double Gauss has its vertex at surface
1, 𝐿 = 77.967, 𝑄 = 10 with GRIN distribution

Knot Location (mm) 𝒩0 𝒩2 (mm−2)
0 0 1.63046 −5.189 × 10−4

1 2.351 1.62846 −4.289 × 10−4

2 9.12045 1.54514 −1.171 × 10−5

3 19.49185 1.25653 3.219 × 10−4

4 32.21425 1.04711 2.387 × 10−4

5 45.75315 1.03089 1.948 × 10−4

6 58.47555 1.20233 2.695 × 10−4

7 68.84695 1.52126 −9.547 × 10−5

8 75.6164 1.64063 −9.417 × 10−4

9 77.9674 1.62756 −1.269 × 10−3

D.1.3. Optimised GRIN Design

Design is sliced into six segments with the GRIN distribution coordinate origin at the vertex of
surface 1.

F/# 2.0
Semi-Field (°) 14.0

Label Surface Radius (mm) Thickness (mm) Clear Diameter (mm) Material
OBJECT 0 INFINITY INFINITY

1 1055.36 13.973 56.00 GRIN
2 INFINITY 13.973 50.5 GRIN
3 INFINITY 13.973 40.65 GRIN

STOP 4 12.016 36.15 GRIN
5 INFINITY 12.016 36.95 GRIN
6 INFINITY 12.016 39.15 GRIN
7 -489.93 61.09 40.00 GRIN

IMAGE 8 INFINITY 61.551 51.9
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D.2. Lithographic Lens

GRIN Coefficients

GRIN is of the form indicated in Equation 1.23, with each radial GRIN coefficient, 𝒩𝑛(𝑧),
determined by a set of Chebyshev-Lobatto-distributed spline nodes as per Equation D.1, with
𝑄 = 10, 𝐿 = 77.9674, and knots given by

Knot Location (mm) 𝒩0 𝒩2 (mm−2) 𝒩4 (mm−4) 𝒩6 (mm−6)
0 0 1.55528 2.69 × 10−4 −5.23 × 10−7 −2.22 × 10−10

1 2.351 1.64011 −3.08 × 10−4 −9.49 × 10−8 −5.42 × 10−12

2 9.12 1.69706 −4.47 × 10−4 2.01 × 10−8 −3.92 × 10−11

3 19.492 1.50761 −2.88 × 10−4 1.81 × 10−7 3.21 × 10−11

4 32.214 1.44373 1.95 × 10−4 2.61 × 10−7 1.12 × 10−10

5 45.753 1.45701 7.05 × 10−4 −9.42 × 10−7 3.06 × 10−10

6 58.476 1.52674 1.85 × 10−4 −3.28 × 10−7 −1.95 × 10−10

7 68.847 1.59101 −6.88 × 10−4 5.61 × 10−7 3.58 × 10−10

8 75.616 1.70572 −6.18 × 10−4 5.73 × 10−7 −7 × 10−10

9 77.967 1.70412 9.1 × 10−4 −3.07 × 10−6 −3.26 × 10−9

D.2. Lithographic Lens

D.2.1. Homogeneous Parent Design

Object Numerical Aperture 0.1923
Max Object Height 25.0 mm
Wavelength (nm) 589
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D.2. Lithographic Lens

Label Surface Radius (mm) Thickness (mm) Clear Diameter (mm) Refractive Index
OBJECT 0 INFINITY 183.406 122.3

1 INFINITY 1000000 61.2
STOP 2 INFINITY -1000000 392003.1

3 INFINITY 16.9 122.3 1.672443
4 -260.195 0.26 124.5
5 268.321 20.8 125.4 1.672443
6 -379.188 0.26 124.2
7 95.8621 30.42 112.2 1.672443
8 443.469 13 99.4
9 561.062 10.27 82.8 1.774162
10 62.4221 29.9 68.3
11 -71.9383 15.6 63.3 1.672336
12 -134.427 5.2 66.5
13 -82.986 15.21 66.3 1.633012
14 -78.3661 0.26 70.4
15 4427.22 15.6 69.1 1.656007
16 -336.107 6.5 67.8
17 INFINITY 6.5 66
18 336.107 15.6 67.8 1.656007
19 -4427.22 0.26 69.2
20 78.3661 15.21 70.5 1.633012
21 82.986 5.2 66.5
22 134.427 15.6 66.6 1.672336
23 71.9383 29.9 63.5
24 -62.4221 10.27 68.6 1.774162
25 -561.062 13 83.3
26 -443.469 30.42 100.1 1.672443
27 -95.8621 0.26 112.9
28 379.188 20.8 125.2 1.672443
29 -268.321 0.26 126.5
30 260.195 16.9 125.6 1.672443

IMAGE 31 INFINITY 186.063003 123.4

D.2.2. Paraxial Reconstruction

Object Numerical Aperture 0.1923
Max Object Height 25.0

Wavelength 589 nm

Label Surface Radius (mm) Thickness (mm) Clear Diameter (mm) Material
OBJECT 0 INFINITY 183.406 25.0000

1 INFINITY 180.180 71.91 GRIN
STOP 2 INFINITY 180.18 60.1 GRIN

3 INFINITY 183.122 68.6 GRIN
IMAGE 4 INFINITY 0.00 25.0

GRIN Coefficients

GRIN is of the form indicated in Equation 1.23, with the radial GRIN coefficients, 𝒩0(𝑧) and
𝒩2(𝑧), determined by a set of Chebyshev-Lobatto-distributed spline nodes as per Equation
D.1. The origin of the GRIN distribution is at the vertex of surface 1, with 𝑄 = 20, 𝐿 = 360.36,
and knots given by
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D.2. Lithographic Lens

Knot Location 𝒩0 𝒩2 (mm−2)
0 0 1.68742 −1.2962 × 10−4

1 2.457 1.69357 −1.2438 × 10−4

2 9.763 1.71481 −1.35 × 10−4

3 21.716 1.74016 −1.5097 × 10−4

4 37.993 1.64715 −8.7381 × 10−5

5 58.147 1.36579 2.6852 × 10−5

6 81.631 1.11979 7.4728 × 10−5

7 107.803 1.07392 6.9113 × 10−5

8 135.948 1.23279 2.6712 × 10−5

9 165.301 1.45557 −4.3935 × 10−5

10 195.059 1.45557 −4.3935 × 10−5

11 224.412 1.23279 2.6712 × 10−5

12 252.557 1.07392 6.9113 × 10−5

13 278.729 1.11979 7.4728 × 10−5

14 302.213 1.36579 2.6852 × 10−5

15 322.367 1.64715 −8.7381 × 10−5

16 338.644 1.74016 −1.5097 × 10−4

17 350.597 1.71481 −1.35 × 10−4

18 357.903 1.69357 −1.2438 × 10−4

19 360.36 1.68742 −1.2962 × 10−4.

D.2.3. Optimised Design

Design is sliced into 20 segments with the GRIN distribution coordinate origin at the vertex of
surface 3.

Object Numerical Aperture 0.1923
Max Object Height 25.0
Wavelength (nm) 589

Label Surface Radius (mm) Thickness (mm) Clear Diameter (mm) Material
OBJECT 0 INFINITY 183.4057 50

1 INFINITY 1000000 62.75
STOP 2 INFINITY -1000000 -

3 INFINITY 18.018 125.5 GRIN
4 INFINITY 18.018 128 GRIN
5 INFINITY 18.018 124.1 GRIN
6 INFINITY 18.018 114.1 GRIN
7 INFINITY 18.018 102.3 GRIN
8 INFINITY 18.018 91.4 GRIN
9 INFINITY 18.018 81.1 GRIN
10 INFINITY 18.018 71.8 GRIN
11 INFINITY 18.018 64.4 GRIN
12 INFINITY 18.018 59.3 GRIN
13 INFINITY 18.018 55.4 GRIN
14 INFINITY 18.018 59.3 GRIN
15 INFINITY 18.018 64.4 GRIN
16 INFINITY 18.018 71.8 GRIN
17 INFINITY 18.018 81.3 GRIN
18 INFINITY 18.018 91.7 GRIN
19 INFINITY 18.018 102.7 GRIN
20 INFINITY 18.018 114.5 GRIN
21 INFINITY 18.018 124.5 GRIN
22 INFINITY 18.018 128.5 GRIN
23 INFINITY 183.4064 126

IMAGE 24 INFINITY 0 50
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D.2. Lithographic Lens

GRIN Coefficients

GRIN is of the form indicated in Equation 1.23, with each radial GRIN coefficient, 𝒩𝑛(𝑧), de-
termined by a set of Chebyshev-Lobatto-distributed spline nodes as per Equation D.1, with
𝑄 = 20, 𝐿 = 360.36, and knots given by

Knot Location 𝒩0 𝒩2 (mm−2) 𝒩4 (mm−4)
0 0 1.09237 7.3273 × 10−7 −6.7007 × 10−10

1 2.457 1.46417 9.3379 × 10−6 −9.9016 × 10−9

2 9.763 1.77599 −1.2937 × 10−4 1.2934 × 10−10

3 21.716 1.76277 −1.2055 × 10−4 8.6712 × 10−10

4 37.993 1.73877 −9.7305 × 10−5 −8.1839 × 10−10

5 58.147 1.20319 3.3677 × 10−5 −5.6647 × 10−10

6 81.631 1.05599 2.1733 × 10−5 3.0968 × 10−9

7 107.803 1.06237 −2.1853 × 10−5 7.8586 × 10−9

8 135.948 1.1258 2.2799 × 10−5 9.5313 × 10−10

9 165.301 1.57243 4.1362 × 10−5 −1.053 × 10−8

10 195.059 1.57243 4.1362 × 10−5 −1.053 × 10−8

11 224.412 1.1258 2.2799 × 10−5 9.5313 × 10−10

12 252.557 1.06237 −2.1853 × 10−5 7.8586 × 10−9

13 278.729 1.05599 2.1733 × 10−5 3.0968 × 10−9

14 302.213 1.20319 3.3677 × 10−5 −5.6647 × 10−10

15 322.367 1.73877 −9.7305 × 10−5 −8.1839 × 10−10

16 338.644 1.76277 −1.2055 × 10−4 8.6712 × 10−10

17 350.597 1.77599 −1.2937 × 10−4 1.2934 × 10−10

18 357.903 1.46417 9.3379 × 10−6 −9.9016 × 10−9

19 360.36 1.09237 7.3258 × 10−7 −6.7007 × 10−10

Knot Location 𝒩6 (mm−6) 𝒩8 (mm−8) 𝒩10 (mm−10)
0 0 −5.5818 × 10−13 3.5209 × 10−16 −4.9666 × 10−20

1 2.457 −2.9312 × 10−13 −6.0387 × 10−18 −7.0593 × 10−22

2 9.763 3.2011 × 10−13 1.5717 × 10−17 −2.7024 × 10−21

3 21.716 2.8238 × 10−13 −4.6336 × 10−18 4.0261 × 10−22

4 37.993 5.0479 × 10−14 −6.8685 × 10−18 2.8555 × 10−21

5 58.147 −3.7371 × 10−13 −1.3545 × 10−17 −7.0485 × 10−23

6 81.631 −6.7795 × 10−13 −4.9631 × 10−17 1.336 × 10−20

7 107.803 1.2001 × 10−12 1.8473 × 10−16 −2.8746 × 10−20

8 135.948 1.4901 × 10−12 −3.7034 × 10−17 3.9503 × 10−20

9 165.301 −1.5456 × 10−12 1.7891 × 10−16 −1.0088 × 10−20

10 195.059 −1.5456 × 10−12 1.7891 × 10−16 −1.0088 × 10−20

11 224.412 1.4901 × 10−12 −3.7034 × 10−17 3.9503 × 10−20

12 252.557 1.2001 × 10−12 1.8473 × 10−16 −2.8746 × 10−20

13 278.729 −6.7795 × 10−13 −4.9631 × 10−17 1.336 × 10−20

14 302.213 −3.7371 × 10−13 −1.3545 × 10−17 −7.0485 × 10−23

15 322.367 5.0479 × 10−14 −6.8685 × 10−18 2.8555 × 10−21

16 338.644 2.8238 × 10−13 −4.6336 × 10−18 4.0261 × 10−22

17 350.597 3.2011 × 10−13 1.5717 × 10−17 −2.7024 × 10−21

18 357.903 −2.9312 × 10−13 −6.0387 × 10−18 −7.0593 × 10−22

19 360.36 −5.5818 × 10−13 3.5209 × 10−16 −4.9666 × 10−20.
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D.3. Cooke Triplet Example

D.3.1. Homogeneous Parent Design

F/# 5.0
Semi-Field (°) 20.0

Wavelengths (nm) 𝜆1 =486.1, 𝜆2 =546.1, 𝜆3 =656.3
Spectral Weights 1.0, 2.0, 1.0

Label Surface
Radius
(mm)

Thickness
(mm)

Clear Diameter
(mm) 𝑁(𝜆1) 𝑁(𝜆2) 𝑁(𝜆3) Material

Object 0 INFINITY INFINITY
1 16.878 3.25 16.3 1.6229 1.6276 1.6173 NSK16
2 247.026 4.984 15.1

Stop 3 -35.957 1.25 7.7 1.6241 1.6321 1.6151 NF2
4 15.886 6.099 8.6
5 49.081 3.25 16.8 1.6229 1.6276 1.6173 NSK16
6 -27.621 38.714 17.4

Image 7 INFINITY 0 35.9

D.3.2. Paraxial Reconstruction

Label Surface Radius (mm) Thickness (mm) Clear Diameter (mm) Material
OBJECT 0 INFINITY INFINITY

1 16.878 8.23 13.8 GRIN
STOP 2 INFINITY 10.6 8.6 GRIN

3 -27.621 38.71 16.2
IMAGE 4 INFINITY 0 46.4

GRIN Coefficients

Refractive index of the GRIN distribution is determined by the relative composition of con-
stituent materials, 𝐴, 𝐵, and 𝐶, as given by Equation 2.24. The compositional parameters:
𝑚𝐴(𝜌, 𝑧), 𝑚𝐵(𝜌, 𝑧), and 𝑚𝐶(𝜌, 𝑧), are polynomials in 𝜌 with coefficients that are a function of
the optical axis, 𝑧, given for the nth material by

𝑚𝑛(𝜌, 𝑧) = 𝑚𝑛0(𝑧) + 𝑚𝑛2(𝑧)𝜌2. (D.2)

The ith axial coefficient of the nth material is given by a natural cubic spline interpolated
function with seven evenly spaced knots spanning an interval, 𝐿 = 18.8334. Knot values and
locations are given by
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Knot Location 𝑚𝐴0 𝑚𝐵0 𝑚𝐶0
0 0 4.092 −3.079 −1.357 × 10−2

1 3.1389 1.187 −8.592 × 10−1 6.725 × 10−1

2 6.2778 2.38 × 10−1 −1.555 × 10−1 9.175 × 10−1

3 9.4167 4.172 × 10−2 −1.042 × 10−2 9.687 × 10−1

4 12.5556 3.253 × 10−1 −2.251 × 10−1 8.998 × 10−1

5 15.6945 1.283 −9.323 × 10−1 6.496 × 10−1

6 18.8334 4.092 −3.079 −1.357 × 10−2

Knot Location 𝑚𝐴2 𝑚𝐵2 𝑚𝐶2
0 0 2.924 × 10−3 −2.289 × 10−3 −6.346 × 10−4

1 3.1389 6.909 × 10−3 −5.46 × 10−3 −1.449 × 10−3

2 6.2778 1.914 × 10−2 −1.518 × 10−2 −3.963 × 10−3

3 9.4167 2.325 × 10−2 −1.843 × 10−2 −4.818 × 10−3

4 12.5556 1.3 × 10−2 −1.038 × 10−2 −2.617 × 10−3

5 15.6945 −2.072 × 10−3 1.391 × 10−3 6.811 × 10−4

6 18.8334 −1.471 × 10−2 1.152 × 10−2 3.194 × 10−3

Refractive indices of the constituent materials, 𝑁𝐴, 𝑁𝐵, and 𝑁𝐶 at the defining wavelengths
of the system are given by

Wavelengths 656.3 nm 546.1 nm 486.1 nm
NA 1.61727 1.62286 1.62756
NB 1.61506 1.62408 1.63208
NC 1 1 1

D.3.3. Optimised Design

F/# 5.0
Semi-Field (°) 20.0

Wavelengths (nm) 𝜆1 =486.1, 𝜆2 =546.1, 𝜆3 =656.3
Spectral Weights 1.0, 2.0, 1.0

Label Surface Radius (mm) Thickness (mm) Clear Diameter (mm) Material
OBJECT 0 INFINITY INFINITY

1 INFINITY 6.962 15.1
STOP 2 INFINITY -6.962 10

3 16.886 2.622 14 GRIN
4 INFINITY 1.122 13.1 GRIN
5 INFINITY 1.122 12.1 GRIN
6 INFINITY 1.122 10.9 GRIN
7 INFINITY 1.122 9.6 GRIN
8 INFINITY 1.122 8.4 GRIN
9 INFINITY 1.267 8.2 GRIN
10 INFINITY 1.267 9 GRIN
11 INFINITY 1.267 9.8 GRIN
12 INFINITY 1.267 10.8 GRIN
13 INFINITY 1.267 11.9 GRIN
14 INFINITY 4.267 12.8 GRIN
15 -27.675 38.714 14.8

IMAGE 16 INFINITY 0 36.9

GRIN Coefficients

Refractive index of the GRIN distribution is determined by the relative composition of con-
stituent materials, 𝐴, 𝐵, and 𝐶, as given by Equation 2.2. The compositional parameters:
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𝑚𝐴(𝜌, 𝑧), 𝑚𝐵(𝜌, 𝑧), and 𝑚𝐶(𝜌, 𝑧), are polynomials in 𝜌 with coefficients that are a function of
the optical axis, 𝑧, given for the nth material by

𝑚𝑛(𝜌, 𝑧) = 𝑚𝑛0(𝑧) + 𝑚𝑛2(𝑧)𝜌2 ++𝑚𝑛4(𝑧)𝜌4 ++𝑚𝑛6(𝑧)𝜌6. (D.3)

The ith axial coefficient of the nth material is given by a natural cubic spline interpolated
function with seven evenly spaced knots spanning an interval, 𝐿 = 18.8334. Knot values and
locations for each compositional material are given by

Knot Location (mm) 𝑀𝐴0 𝑀𝐴2(mm−2) 𝑀𝐴4(mm−4) 𝑀𝐴6(mm−6)
0 0 9.377 −1.237 × 10−1 −1.561 × 10−4 −2.543 × 10−6

1 3.1389 1.625 −3.32 × 10−2 −1.82 × 10−5 −1.795 × 10−7

2 6.2778 2.134 × 10−2 1.939 × 10−2 −1.619 × 10−5 8.335 × 10−8

3 9.4167 6.39 × 10−3 2.428 × 10−2 2.643 × 10−5 −4.846 × 10−7

4 12.5556 9.535 × 10−2 1.013 × 10−2 −2.14 × 10−5 −1.819 × 10−8

5 15.6945 5.86 × 10−1 −1.069 × 10−2 1.308 × 10−5 6.792 × 10−8

6 18.8334 1.188 −2.337 × 10−2 1.34 × 10−4 −1.135 × 10−6

Knot Location (mm) 𝑀𝐵0 𝑀𝐵2(mm−2) 𝑀𝐵4(mm−4) 𝑀𝐵6(mm−6)
0 0 2.49 × 10−1 8.433 × 10−2 1.02 × 10−4 −5.003 × 10−7

1 3.1389 1.391 × 10−2 2.179 × 10−2 7.908 × 10−6 1.589 × 10−10

2 6.2778 3.617 × 10−1 −1.216 × 10−2 3.307 × 10−6 1.97 × 10−7

3 9.4167 3.169 × 10−1 −1.359 × 10−2 5.001 × 10−5 −1.942 × 10−7

4 12.5556 3.564 × 10−1 −7.712 × 10−3 −3.429 × 10−6 1.532 × 10−7

5 15.6945 3.854 × 10−2 8.201 × 10−3 1.302 × 10−5 6.823 × 10−8

6 18.8334 7.347 × 10−2 9.87 × 10−3 −4.796 × 10−5 7.935 × 10−9

Knot Location (mm) 𝑀𝐶0 𝑀𝐶2(mm−2) 𝑀𝐶4(mm−4) 𝑀𝐶6(mm−6)
0 0 1.503 × 10−1 −3.546 × 10−3 1.638 × 10−5 −9.217 × 10−8

1 3.1389 2.106 × 10−1 −8.204 × 10−4 8.603 × 10−6 6.461 × 10−8

2 6.2778 1.255 −6.845 × 10−3 −9.474 × 10−6 −1.194 × 10−7

3 9.4167 1.314 −1.599 × 10−2 −2.627 × 10−5 2.937 × 10−7

4 12.5556 5.248 × 10−1 −2.432 × 10−3 3.359 × 10−5 −1.73 × 10−7

5 15.6945 2.2 × 10−2 1.77 × 10−3 7.857 × 10−6 2.416 × 10−8

6 18.8334 1.213 × 10−1 4.083 × 10−4 −4.033 × 10−5 −7.755 × 10−8.
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