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ABSTRACT

With the advancements in Al agents (i.e., smart products, robots,
software agents) are increasingly capable of working closely to-
gether with humans in a variety of ways while benefiting from
each other. These human-agent collaborations have gained grow-
ing attention in the HCI community; however, the field lacks clear
guidelines on how to design the agents’ behaviors in collaborations.
In this paper, the qualities that are relevant for designers to create
robust and pleasant human-agent collaborations were investigated.
Bratman’s Shared Cooperative Activity framework was used to
identify the core characteristics of collaborations and survey the
most important issues in the design of human-agent collaborations,
namely code-of-conduct, task delegation, autonomy and control,
intelligibility, common ground, offering help and requesting help.
The aim of this work is to add structure to this growing and im-
portant facet of HCI research and operationalize the concept of
human-agent collaboration with concrete design considerations.
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1 INTRODUCTION

The success of Djokovic in Wimbledon 2019 was partially attributed
to his smart tennis racket with its accompanying Al algorithm [93].
This smart product helped him to understand his play patterns and
how to improve his performance, as well as which strategies to
employ against specific opponents. Similar partnerships have long
been established with robots, for example in healthcare (e.g. [89]),
education (e.g. [13]), manufacturing (e.g. [154]), military (e.g. [38]),
among many other fields. Al-powered software agents as well have
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started to work together with doctors (e.g. [146]), journalists (e.g.
[106]), and musicians (e.g. [101]) with varying degrees of success.

This paper is focused on such symbiotic relationships between
humans and agents, which are entitled as “human-agent collabora-
tion”. The word “agent” is used for referring to artefacts that are
equipped with abilities to sense the user and/or environment, au-
tonomously act on the collected data, communicate with users and
each other, learn and evolve [29]. This broad definition deliberately
aims to encompass smart products, robots, and software agents;
and is in line with the “weak notion of agency” described in [160],
where an agent is defined as an artefact with autonomy, some form
of social ability, reactivity, and proactiveness.

The increasingly intertwined complementary interactions be-
tween humans and agents have been an abiding interest in the
Human-Computer Interaction (HCI) and Human-Robot Interaction
(HRI) communities, which gained even more attention in the recent
years with the advancements in Al These mutually amplifying re-
lationships were presented under the names of Man-Machine Sym-
biosis [92], Symbiotic Interaction [72], Human-Agent Collectives
[74], Human-Computer Integration [49], Cooperative Intelligence
[132], Cooperative Al [37], Human-AlI Teaming [45], Collaborative
control [52], and Mixed-initiative interaction [23]. Although there
are differences in the disciplines from which these concepts come
(i.e., HCI, HRI, Al engineering) and how these concepts were un-
packed, they all share the notion of the computer as a partner and
argue that the future of human-computer interaction lies in here.
These works excel in presenting this vision and the opportunities
and challenges to get there, but as the HCI community, we still
lack clear design patterns to guide future design of agent behaviors
in collaborations [12, 124, 152]. Stephanidis and Salvendy [137]
named human-technology symbiosis as one of the seven HCI grand
challenges, in which the field is urgently invited to find ways to in-
tegrate intelligence into everyday life, while also preserving human
self-efficacy and control.

To achieve this vision, a deeper investigation on human-agent
collaboration, its characteristics, and the considerations that need
to be taken when designing collaborations are essential. The aim
of this paper is to investigate what is required from humans and
agents in terms of collaboration capabilities and support future
research and design efforts on human-agent collaboration in HCI
by depicting the qualities that are relevant for designing these
collaborations. In order to understand the characteristics of human-
agent collaborations, this paper will draw from one of the most
prominent frameworks to explain human-human collaborations,
i.e., Shared Cooperative Activity (SCA) of Michael Bratman [17].
Bratman’s framework will be used to cluster the current research on
agents and survey the pertinent issues in the design of human-agent
collaborations. This synthesis of relevant concepts and findings
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from the HCI and HRI literature under the qualities of human-agent
collaborations also allows for a range of design considerations to
elicit. In total, there are 11 design considerations that are explained
throughout the paper. These considerations are posed in the form
of questions to the designers and researchers as a trigger to reflect
on the multiple dimensions of human-agent collaborations and
envision different ways to attain them. The paper also proposes
some promising starting points and directions that could be used
for addressing these questions.

Employing Bratman’s framework do not suggest that human-
agent collaborations should be designed to emulate all attributes
of human-human collaborations. Although mimicking interactions
among humans as closely as possible has the benefit of helping
people to apply already existing expectations and mental schemes
to the interaction with agents, it also comes with costs (see [67] for
examples). Human-human collaboration and human-agent collab-
oration are different kind of encounters (see for example agentic
“superpowers” under Section 3.1.2 and 3.2.2); however, the paper
aims to highlight the basic prerequisites and abilities that are in-
dispensable for agents to eventually enable complex, robust, and
pleasant collaborations with humans. That is, although human-
agent collaborations will for a long time be (and should be) bound
to differ from human-human collaborations in their form, func-
tion, and feel, agents need to be equipped with core capabilities to
make collaborations with humans similarly as effective and pleas-
ant as collaborations between humans. The intended contribution
of this paper is therefore two-fold: to bring structure and clarity
to the emerging body of work on human-agent collaboration in
HCI and HRI, and to operationalize the concept of human-agent
collaboration with concrete design considerations.

In the following section, Bratman’s SCA framework will be re-
viewed and the three core characteristics of human-human collabo-
rations will be underlined: commitment to the joint activity, mutual
responsiveness, and commitment to support [17]. Then, the current
issues discussed in relation to agent design and development will
be organized under these characteristics (Section 3). These are code-
of-conduct, task delegation, autonomy and control, intelligibility,
common ground, offering help and requesting help. In Section 4, the
implications of this analysis for HCI knowledge will be discussed
and the intended next steps in this research will be described.

2 HUMAN-HUMAN COLLABORATION

Let us suppose that two flat mates, John and Bob, agree to clean
their living room. Each intends to do his share of cleaning and trust
that the other will do the same. They will be responsive to each
other’s plans and actions, e.g., John will finish dusting before Bob
will start vacuuming. They will adjust their cleaning tasks so that
they will not have resource conflicts, e.g., both needing the sink at
the same time. They may also help each other out when needed, e.g.,
Bob may offer to lift the sofa so that John can vacuum underneath.

Human life is full of collaborations such as this. Collaboration
entails that those collaborating are engaged in joint intentional ac-
tion [95]. Joint action is a social interaction whereby two or more
individuals coordinate their actions in space and time to bring about
a change in the environment [131]. Even when they may appear
identical, a person’s processes are very different in individual and
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joint actions [34]. Coordinating one’s actions with others to achieve
a joint outcome, such as lifting the sofa, necessitates an interlock-
ing of individual’s behaviors, motor commands, action plans, and
perceptions (see [84] for a review of joint action). Therefore, some
sort of shared intention is necessary [95, 143]. Shared intention
specifies the representational systems that enable the planning of
joint actions [84].

There are a variety of accounts on shared intention (see [143]
for a detailed discussion on individualistic or pluralistic views on
shared intention). Shared Cooperative Activity (SCA) of Bratman
[17] is one of the most prominent accounts on shared agency. The
influence of SCA extends outside philosophy to developmental psy-
chology, artificial intelligence, and robotics [15]. Bratman considers
shared intentions as a state of affairs consisting of a set of interre-
lated individual intentional states. When two people have a shared
intention to conduct a joint activity, then each intends that they
conduct the joint activity together [17]. That is, John and Bob clean
the living room together when their cleaning together is the prod-
uct of each of them acting with an intention of contributing to their
joint activity to cleaning the living room together. Furthermore,
each intends that this be brought about by way of co-realizable
subplans for their cleaning [15]. This requirement that the subplans
“mesh” is designed to rule out cases where John and Bob both intend
that they clean the living room, but their individual plans about
how to go about it undermine the joint action. John may only want
to use expensive environmentally-friendly cleaning agents that
someone needs to go and buy from the supermarket, but Bob may
want to use the cheap cleaning agents that they already have at
home. In this case, the individual subplans are in conflict, and this
would prevent John and Bob from cleaning the living room theoret-
ically “together”. Furthermore, the meshing subplans condition also
rules out certain kinds of coercion, manipulation and deception.
For instance, it rules out the case where John steals Bob’s favorite
t-shirt to mop the floors or where Bob deceives John into thinking
that he had not add chemical cleaning agents to the bucket (when
he in fact has), even though he knows that John’s subplan is that
they clean with ecological cleaning agents only. If the two parties’
intentions interlock and if their beliefs about interdependence and
the common knowledge appropriately coordinates an activity that
is being done together, then it is a Shared Cooperative Activity, i.e.,
collaboration, according to Bratman [15].

With this sketch of the requisite shared intentionality in hand,
we will now turn to the characteristics that Bratman identified as
central to collaboration (other scholars such as Gilbert [55] and Lud-
wig [95]) also indirectly mention these characteristics in relation
to shared intentionality and full cooperation, respectively). These
are: commitment to the joint activity, mutual responsiveness, and
commitment to support [17]. While Bratman acknowledges that
collaborations can involve large numbers of participating individu-
als and can take place within a complex institutional framework,
his analysis specifically focuses on shared cooperative activities
that involve only a pair of participating individuals and are not
the activities of complex institutions with structures of authority
(i.e., excludes, for example, the activities of a symphony orchestra
following its conductor). He entitles these egalitarian small-scale
shared activities as “modest sociality” [17], which is also our focus
in this paper (Section 3 will investigate the collaborations between
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a human and an agent; and other collaboration configurations will
be briefly presented in Section 4). Below, we will elaborate on each
collaboration characteristic.

2.1 Commitment to the joint activity

The first characteristic of collaboration is that the participating
individuals each have an appropriate commitment to the joint ac-
tivity. Ludwig [95] defines full cooperation as “participants in a
joint action are committed to rendering appropriate contributions
as needed toward their joint end so as to bring it about as efficiently
as they can, consistently with the type of action and the generally
agreed upon constraints within which they work” (p. 10). Similarly,
Gilbert [56] maintains obligations with corresponding entitlements
inhere in any joint commitment.

Each individual may participate in a collaboration with different
intentions [17]. When John and Bob clean together, John may be
primarily concerned with having a clean house, while Bob with
finding his lost AirPod while tidying up. In collaborations, each
individual will typically have such an intention for some reason
or other and these intentions will keep them both working on the
cleaning until the living room is clean. When committed to a joint
activity, an individual cannot hold intentions that conflict with
his/her commitment to the collaborative plan, is required to make
a new plan if something goes wrong, and take actions to avoid
potential for resource conflicts [61].

Commitment to the joint activity also necessitates the individ-
uals to agree on how they are going to do the joint action and
concur on who will take on each of these tasks. Here, the individ-
uals must reason about the match between their capabilities and
the requirements of the task/context. They also need to reconcile
intentions from private acts with those from group activities [61].
These agreements and the obligations they entail play a central role
in the mental state required for collaboration.

2.2 Mutual responsiveness

The second characteristic of collaboration is that each participating
individual is responsive to the intentions and actions of the other,
knowing that the other party is attempting to be similarly respon-
sive [17]. Jointly acting individuals do not merely act in parallel;
each responds to what the other do and plan to do [87]. In our
cleaning scenario, Bob may start filling in the bucket for mopping
after seeing that John is almost done with vacuuming; or John may
dry the leaves of the plants that Bob has been spraying. Being mutu-
ally responsive requires the individuals to adjust their behavior as
needed in light of information about how the other party is faring
in order to ensure effective pursuit of their joint end [95].
Bratman [17] identifies two types of mutual responsiveness. The
first one is mutual responsiveness of intention. It refers to the sit-
uations in which each individual constructs his/her subplans to
accomplish the joint task with an eye to meshing with the other’s
subplans. But then each will go off and play their role with no fur-
ther interaction. Bratman entitles this noninteractive performance
as “prepackaged cooperation” (e.g., John and Bob agree that John
will vacuum before going to work in the morning and Bob will mop
after work in the evening). For a joint activity to be a collabora-
tion, the individuals must additionally be responsive to the actions
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of the other. This mutual responsiveness in action is a defining
characteristic of collaborations.

2.3 Commitment to mutual support

The last characteristic has to do with each agent committing to sup-
port the efforts of the other to play his/her role in the joint activity
[17]. Willingness to aid is also identified as a feature of fully cooper-
ative behavior [95]. This implies that the participating individuals
are ready and willing to provide aid to other in performance of their
parts in the joint action and do not interfere with the contributions
of the other, insofar as it is compatible with their performing their
own parts and the aid offered does not otherwise detract from their
joint pursuit of the goal [95]. In our scenario, if John believes that
Bob needs help to clean the living room windows, he is prepared
to provide such help and that Bob is similarly prepared to support
John in his tasks. If John assesses that helping with cleaning the
windows would cost an extra hour, he may in the end decide he
cannot help Bob out, but he must consider the tradeoff between
doing so and not. That is, he needs to weigh his obligation to the
joint activity against other commitments in light of his abilities
(and also the requirements of morality) and make a decision [61].
Some participants in a collaboration may be willing to incur what
would normally be seen as fairly high costs in helping the other;
others may be willing to help only if the costs thereby incurred are
of a sort that would normally be seen as minimal [17]. Regardless of
the substantiality of the help, the commitment to support the other
differentiates collaboration from other forms of jointly intentional
activity.

2.4 Final notes on Human-Human
Collaboration

To synthesize what we have so far, the joint act of cleaning the
living room is a collaboration between John and Bob because they
both have the intention and commitment to cleaning the living
room and trust that the other has the same. They agreed on a plan
to follow and have a role division. Each seeks to guide his cleaning
behavior with an eye to the behavior of the other, knowing that the
other seeks to do likewise. If one of them needs help, the other will
assist. So, there is commitment to the joint activity, an agreed-upon
role division and action plan, mutual responsiveness in action, and
commitment to the success of the other’s actions. In short, they
have a collaboration.

Bob and John also have a means to communicate with each
other (gestures and speech in this case) that helps guiding their
cleaning activities. As a matter of fact, none of the collaboration
characteristics can be attained without communication between the
collaborating individuals. Cohen and Levesque [31] argued that the
collaborating partners would neither be able to establish a common
ground nor interweave subplans to achieve a shared goal without a
means to effectively communicate with each other. Tollefsen [144]
maintained that joint attention, reading intention-in-action, and
verbal communication are mandatory for guiding the actions of
collaborating individuals. Clark [35] demonstrated how speech is
used to prespecify who will do what and to agree on the specifics
of the joint performance; and Grosz [61] discussed the importance
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of communication in resolving conflicts when carrying out a joint
activity.

In the next section, we will adapt the collaboration character-
istics of Bratman to human-agent collaborations. Bratman’s work
is no stranger to the field of computer science. Grosz and her
colleagues employed it to design architectures for collaboration-
capable, resource-bounded computer agents [62, 63]. Cohen and
Levesque [31] proposed a formalism that provides analyses for
Bratman’s commitment characteristic, specifically focusing on the
functional roles played by intentions of collaborative agents. In
HRI, Chang et al. [26] and Hoffman and Breazeal [69] built dynamic
collaborative frameworks for human-robot teams by adapting SCA.
All these works excel in operationalizing Bratman’s framework to
develop algorithms. Our approach in this paper is different that we
use this framework to present in a systematic fashion the qualities
that are especially important for effective and pleasant human-
agent collaborations. In the next section, these qualities will be
discussed in detail.

3 HUMAN-AGENT COLLABORATION

Human-agent collaboration is about humans and agents working
closely together in a variety of ways, enhancing human experience.
These collaborations require humans and agents to be aware of each
other’s strengths and limitations, negotiate and align intentions,
and support each other. When designed properly, human-agent
collaborations can amplify human capacity for reasoning, learning,
decision-making and problem solving—all leading to flourishing
and empowerment.

Table 1 presents a summary of the collaboration qualities that
will be discussed in this section, together with the relevant design
considerations and some promising starting points for designers to
address and/or answer these. In the following sub-sections, these
will be discussed in detail.

3.1 Commitment to the joint activity

As mentioned in Section 2.1, commitment to the joint activity con-
cerns the agreements and obligations related to the collaboration.
The collaborators must agree on how they will undertake the joint
action and decide who will do what. In relation to human-agent
collaboration, we will discuss code of conduct and task delegation
respectively, as activities intended for laying the groundwork for
collaboration.

3.1.1 Code of conduct.

Design consideration 1: Are the agent’s intentions and protocols
visible to users? Committing to a collaborative activity requires that
the participating parties undertake appropriate actions as needed
towards the joint task, while they trust that the other party will
do the same [95]. This means that the participants have task re-
sponsibility—i.e., being responsible for the assigned task—towards
each other. Bratman [18] further argues that mutual obligations
and entitlements are extremely common in cases of collaboration,
which are moral obligations associated with assurance, reliance,
promises, and the like. This refers to an additional moral responsibil-
ity that the parties have towards each other—i.e., being responsible
for one’s intentions and actions. In order to collaborate with an
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agent, humans need assurance that the agent bears both types of
responsibility.

In relation to autonomous systems, Santoni de Sio and van den
Hoven [128] unpacked the concept of meaningful human control
based on the insights from the literature on free will and moral
responsibility. Their philosophical account was originally aimed at
autonomous weapon systems, yet their insights have been general-
ized to IoT devices [147], surgical robots [50] and dual-mode driving
systems [102], among others. The authors propose two conditions
that should be jointly satisfied in order to achieve meaningful hu-
man control over intelligent systems, namely tracking and tracing
[128]. The tracking condition requires a system to be responsive
to the relevant human reasons to act. In order to meet the track-
ing condition, one should identify the relevant human agents and
moral reasons at stake in different scenarios with the system, and
the level of responsiveness to those moral reasons under different
circumstances. Tracing condition requires the presence of one or
more human agents in the system’s design history or use context
who can at the same time understand the capabilities of the sys-
tem and recognize their own moral responsibility for the system’s
behavior. The joint satisfaction of these two conditions grants hu-
man controllers, designers, programmers, regulators and others a
more meaningful kind of control over automated systems, thereby
maximizing safety and eliminating unwanted accountability gaps
[102].

These may seem as requirements addressed to the creators of
autonomous agents; however, van den Hoven [149] argued that
the users of autonomous systems also have a so-called “meta-task
responsibility”. That is, an obligation to check whether the system
allows them to do what they ought to do in situ. Such responsibili-
ties are also discussed in relation to robot-assisted surgeries where
surgeons and robots collaborate. Fosch-Villaronga et al. [53], for
example, maintain that the role of human performance in medical
robot surgeries may decrease as robotic technology takes over, but
the role of human oversight will increase. A similar trend is being
seen in “Al-chaperones” in autonomous driving [83]. These point
to an additional overseeing responsibility that humans are required
to have in human-agent collaborations, where they are required to
keep an eye on the agent regarding whether it fulfills its task and
moral responsibilities.

Meaningful human control is an important construct because
it brings forward the important issues where human oversight is
specifically needed. Before committing to collaborate, users need
transparency in the intentions of the autonomous agent. Collabora-
tive systems have the affordance to direct people towards specific
behaviors, such as pro-environmental awareness (e.g. [142]) and
health and wellbeing (e.g. [60]). There is an ethical concern here
for the users’ ability to actually control their choices facing the
persuasive power of agents [72]. Bratman [17] states that collab-
oration is a cooperation between intentional individuals each of
whom sees and treats the other as such, and intending to coerce
an individual in a certain direction bypasses his/her intentional
agency. The aforementioned meshing of subplans is also needed
in human-agent collaborations, where the subplans of the agent
should be transparent and clear to users, and the users have assur-
ance that the agent would work to empower their choices instead
of prescribing actions.
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Table 1: The 11 design considerations categorized by human-agent collaboration qualities, along with potential starting points

for designers to address the design considerations

Collaboration qualities
Code of conduct

Design considerations

visible to users?

Task delegation What task is the agent to perform?

Autonomy and control ~ What level of autonomy is appropriate
for this agent?
What kind of agent decisions do or do

not require user awareness and approval?

How should an agent intervene?
When and how to release or retain
autonomy?

Intelligibility
agent works and why it behaves in
certain ways?

How to explain the intentions and
behaviors of agents?

Common ground How to establish a common ground

between the human and the agent?

Agent offering help When and how an agent can offer help to
humans?
Agent requesting help ~ What are the most effective means for an

agent to request help?

Are the agent’s intentions and protocols

How to provide intelligibility into how an

Promising starting points for designers

Ensuring that the agent fulfills its task and moral responsibilities,
and that the intentions and behavior protocols of the agent are
transparent and clear to the users

Ensuring that the agent is designed to be responsive to users’
intentions, actions, and values

Taking precautions for preventing negative behavior from users
towards the agent

Augmenting (and not replacing) the skills of humans, while
levering on the agent’s superpowers

Breaking the task into its components and assigning each to an
agent, a human, or both, according to their skills and capabilities
Enabling the agent to read a social context, judge situations
according to social norms, and identify emergencies

Carefully designing the timing and form of proactive behaviors
Creating a flexible and open system that users can adjust the
agent’s level of autonomy any time, flag exceptions in data, and
opt-out from the decisions of the agent

Integrating transparency into an agent’s data sets and algorithms,
as well as into its intentions, behaviors and uncertainties in its
predictions

Resorting to the psychological mechanisms of how humans
explain things, while also considering potential communication
means that are unique to agents

Taking into consideration the specific explanation needs
depending on the type of agent and context

Enabling the agent to read the users’ intentions (e.g., through
verbal commands, gaze, gestures)

Embedding verbal and/or nonverbal communication means into
the agent so that the users can understand the agent’s status and
intentions

Investigating the level of help proactivity requested by the users
under specific contexts

Enabling users to adjust the level of proactivity for help
Resorting to human-to-human help offering strategies (e.g.,
Politeness Theory, discourse markers)

Investigating the factors that influence compliance from humans
Designing agents that display the inherent uncertainty in the
task/context

A similar transparency is also needed in the behavior protocols
of the agent. Assuming that an individual has decided to collabo-
rate with an agent by providing personal data, it is an important
challenge to keep him/her in the loop and in control so as to deter-
mine how the service is provided and under which conditions [137].
In relation to voice activated personal agents that are shared in a
household, for example, Luria et al. [96] asked intriguing questions
such as “What should an agent do when a mother-in-law asks for
her daughter-in-law’s location? Should it share, prevaricate, stall,
redirect the subject, or cynically refuse?”. Answers to such ques-
tions should be clear to users before they commit to collaboration.

Agents are required to carry out their task and moral respon-
sibilities, yet collaboration is a two-way street. Humans are also

obliged to reciprocate by carrying out their responsibilities. In the
last decade, several studies have observed bullying of robots [127],
aggression towards autonomous vehicles [107], and harassment of
conversational agents [19]. These behaviors obviously fall outside
of good social conduct in collaborations and need to be avoided by
humans. HRI field, for example, has been investigating what makes
people more, or less, aggressive towards robots (e.g. [79]) and devel-
oping different strategies to stop aggression (e.g. [127, 141]). Here
lies additional challenges for designers.

To sum, agents are required to be maximally sensitive not only to
the end users’ intentions and reasons for action, but also to societal
norms and legal statuses [147]. In order to commit to collaborate
with such agents, these sensitivities must be visible to users (Design
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Figure 1: Some examples of robot use during the Covid-19
pandemic.

Ry

consideration 1: Are the agent’s intentions and protocols visible to
users?). In other words, people need to know the intentions (or sub-
plans in Bratman’s terms) of the agent and the expected behaviors
depending on the embedded protocols in its system; and should
be ensured that the system is designed to be responsive to their
intentions, actions, and values. Designers, engineers, and program-
mers of these agents have an obligation to design the system in a
way that this type of inquiry by users is not made impossible or un-
duly difficult [128]. They are also required to consider whether the
agent would elicit any form of negative behavior from users, e.g.,
bullying, harassment, vandalism, and take necessary precautions
in the design (or governance) of the agent.

3.1.2  Task delegation.

Design consideration 2: What task is the agent to perform? When
individuals collaborate with agents, they willingly cede some of
their decision-making power to technology. Affirming the principle
of autonomy in the context of Al and agency means striking a
balance between the decision-making power humans retain and
that which it is delegated to agents [51]. A first step in this regard
is to consider which tasks to delegate before committing to a joint
task with an agent. A common narrative is that agents and robots
are eminently suited for tasks that can be described with the three
d’s: dull, dirty, and dangerous [47]. At the height of the Covid-19
pandemic, for example, we have seen robots at work in different
tasks (Figure 1). Some were utilized for spraying disinfectants in
the hospitals and other indoor environments (Figure 1la), some
checked in with the patients at the ICU (Figure 1b). Some robots
were placed into public spaces such as supermarkets to recite the
social distancing and hygiene rules (Figure 1c), and some others
took people’s temperature before entering buildings (Figure 1d).

Looking at it from the perspective of the three d’s, the robots
in la and 1b indeed freed humans from some dangerous tasks and
allowed the care team to put their skills and efforts into other impor-
tant tasks related to patient care. The common guideline to consider
when designing agents is to always strive for this technology to
support and enhance the skills of the human as opposed to substi-
tuting skills of the agents for skills of the human [81]. Humans and
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artificial agents have different capabilities. To take full advantage
of human-agent collaboration, one must study how humans can
most effectively augment agents and how agents can enhance what
humans do best [158].

Some scholars in the HCI and HRI fields have already suggested
to reflect more on what is unique to humans and unique to tech-
nology instead of blindly imitating humans in interactions. Welge
and Hassenzahl [155], for instance, discussed various capabilities
which are difficult for humans to maintain, while easy for robots to
achieve provided by their particular “thingness”. These are: being
void of competitiveness, having endless patience, being uncondi-
tionally subordinated, having the ability to contain themselves, not
taking things personally, and assuming responsibility. The authors
named these social skills of robots as their “superpowers”. The
term superpowers indicate that each species, including the agent,
serves its unique niche where its capabilities fit better than those of
other species [43]. Similarly, Philips et al. [115] investigated human-
animal teams as an analogue for human-robot teams. Animals have
been actively domesticated to fulfill roles different than human
based on their natural abilities, instincts, and physical capabilities.
The authors maintain that human-robot collaborations are best
facilitated through an approach in which the skills of robots com-
plement the skills of humans, not unlike the ways in which humans
and animals leverage skills to work interdependently. Going back
to the robots in Figure 1c and 1d, we can argue that these robots
actually released people from some dull and repetitive tasks as re-
quired by the three d’s perspective. Yet, they do not exploit the full
potential of superpowers related to being a (social) robot. The robot
in 1c may as well be a sign or an announcement and the robot in
1d could be a thermal imaging camera. That is why their use comes
across as gimmickier, compared to the examples in Figure 1a and
1b, which are better at exploiting their agentic potential.

Leveraging the unique capabilities of agents would also help
to mitigate the disruptive effects of integrating agents into every-
day life. For instance, in the HRI field, there is a vast amount of
work investigating the introduction of robots in manufacturing
settings, ranging from the technical to sociotechnical perspectives
(e.g. [27, 114]). Welfare et al. [154] revealed the serious concern
of workers regarding automation reducing the human interaction,
movement and exercise, variation of tasks, possible autonomy, and
physical work. By investigating which tasks to delegate to agents in
specific contexts, employers can instead consider ways to augment
employee wellbeing and productivity, while decreasing negative
job attributes [98]. This augmentation does not necessarily have
to be in rational, repetitive, and predictable tasks. Human-agent
collaboration can happen in creative practices [94]. Al agents have
been collaborating with musicians to compose music [101], sup-
porting people in writing stories and slogans [33], helping actors
to create introductions for improvised theatrical scenes [112], and
supporting game designers to create levels in a game [164]. What is
important in these cases is that the agents add to humans’ existing
abilities and keep the creativity and fun in the activity, instead of
automating the task away entirely.

In summary, committing to a joint activity with an agent requires
delegation of tasks. This delegation may occur more organically in
human-to-human collaborations provided by the free will and con-
sciousness of human beings, yet in the domain of artificial agents,
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deciding on who-does-what raises new considerations for design-
ers (Design consideration 2: What task is the agent to perform?). The
tasks delegated to the agents should augment the skills of humans
and not replace them; and understanding the user needs and the
specific use context is critical, as in any design project, to identify
these tasks. Second, designers also need to leverage the superpow-
ers of agents. Instead of replicating attributes of humans, they need
to explore the skills that agents can uniquely contribute for facil-
itating meaningful human-agent collaboration. This requires an
exercise into overcoming the human frame of reference, take the
best from “humanness” and “thingness” and combine it adequately
into a meaningful interaction [155].

3.2 Mutual responsiveness

After delegating roles, the shared task execution commences in
collaborations. As aforementioned, the collaborating parties are
required to be mutually responsive during task execution, meaning
that each party responds to what the other do and plan to do. In a
similar vein, Johnson et al. [75] coined the term “coactive design”
to characterize an approach in designing human-agent interac-
tions that takes interdependence as the central organizing principle
among humans and agents working together on a joint activity.
Interdependence is meant to convey the reciprocal and mutually
constraining nature of actions and effects that are conditioned by
coordination [ibid].

Designing for interdependence has multiple facets. Imagine a
war veteran who suffers from post-traumatic stress disorder (PTSD).
He wears a smart jacket that helps him cope with stress and anxiety
in everyday life. Borrowing this concept from [123], we can elab-
orate on it by imagining it as a partner in a collaboration. In this
collaboration, the jacket tracks the heart rate and muscle tension
of the wearer:

e When there is an increase, the jacket autonomously responds
by either engaging the wearer with deep abdominal breath-
ing to help him relax or fixating him when stress levels are
too high to control (which may lead to irrational or aggres-
sive behavior) [123]. The autonomy of the jacket can be
overridden by the wearer. He can also activate the jacket any
time he deems appropriate, e.g., as an anticipatory behavior
before being exposed to human crowds.

e It is clear to him how the jacket works in terms of its inner
sensing mechanism and behavior, so that he knows what
and what not to expect when wearing it.

o The jacket is able to distinguish between stress behavior
and other types of heart rate increasing activities, such as
running for the bus; and the wearer is able to understand
the momentary status and intentions of the jacket.

Taken altogether, these behaviors refer to three qualities of being
mutually responsive, namely autonomy and control, intelligibility,
and common ground, respectively, which will be discussed below in
detail.

3.2.1 Autonomy and control.

Design consideration 3: What level of autonomy is appropriate for
this agent? One of the important facets of mutual responsiveness
in human-agent collaboration is about determining how much

CHI ’22, April 29-May 05, 2022, New Orleans, LA, USA

Figure 2: Packbot, a military search robot by Endeavor Ro-
botics, has low autonomy in sensing and planning, but high
autonomy in acting,.

autonomy and control to give to agents. Beer et al. [10] defined
the different levels of agent autonomy along the “sense, plan, act”
primitives. An agent can vary in autonomy from low to high along
these; and each of these primitives could be allocated to the human,
the agent, or both. The PTSD jacket, for example, demonstrates high
levels of autonomy in all of the primitives. When the jacket senses
the increasing heart rate and tensing muscles, it plans on a strategy
depending on the severity of the situation (e.g., giving biofeedback
or fixating the person), and execute these behaviors. Packbot, on
the other hand, is a partially tele-operated scout robot used in a
military context for searching bomb-traps (Figure 2). Its capability
of avoiding collisions with obstacles can be poor (i.e., low autonomy
in sensing), and hence its human partner needs to intervene before
the robot is seriously damaged (i.e., low autonomy in planning) [9].
Packbot then moves away from the potential obstacle autonomously
(i.e., high autonomy in acting).

Most of the human-agent collaborations involve such a mixed-
initiative control. Mixed-initiative systems requires a negotiation
between the human and the agent, resulting in the system taking
advantage of each of their skills, capabilities, and knowledge to best
adapt to contingencies in the environment during task execution
[90]. For instance, in relation to the control of Wilderness Search
and Rescue robots, it was demonstrated that the human party fo-
cused resources better on likely search areas, but the robots tended
to utilize large numbers of agents to systematically cover ground
more effectively [66]. In order to support optimal human-agent
collaboration, an agent’s autonomy level and the level of control to
be given to an individual should be carefully considered according
to the task at hand and the specific skills and capabilities of the
users (Design consideration 3: What level of autonomy is appropriate
for this agent?). Here, planning along the sense, plan, act primitives
might be useful to break the tasks into components and consider
which components to assign to agents and which to humans.

Design considerations 4 and 5: What kind of agent decisions do or
do not require user awareness and approval? How should an agent
intervene? Mixed-initiative control allows integrating the human
into many complex control domains in the way the human often
wants to be integrated—flexibly in charge and aware, but not re-
quired to issue every command [105]. Here lies additional design
challenges as to when an agent should take initiative and when it
is appropriate for an agent to interrupt the user. Luria et al. [96]
demonstrated that the proactive interventions of a voice activated
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personal assistant must adapt to the social situations at the context
of home. For example, the interventions of this agent were wel-
comed when it initiated a game with the boy as he was waiting for
dinner, whereas felt uncomfortable when the parents made-up after
a fight. Agents need to possess a capacity to decide on when to
engage in a scene by understanding the social context, which seems
not fully feasible in the near future. Another finding from the same
study was that the participants expected the agent to recognize
an emergency and report it [96]. This brings in more challenges
related to being able to identify what counts as an emergency. One
parent in the study, for example, expected the agent to be highly
proactive if it learned that their teenager was drinking beer. This
may count as an emergency in this particular household, but not in
others. How an agent can judge situations according to (commonly
established or localized) rules and norms is another difficult yet
important question to explore.

Emergencies could be universally-agreed-upon cases for proac-
tivity, but what about other interruptions? In general, interruptions
are distracting, potentially leading to negative effects on task perfor-
mance [99]. Prior research has specifically identified the appropri-
ateness of the timing of an interruption as one of the most important
factors dictating interruption consequences [121]. In this regard,
Banerjee et al. [6] developed an algorithmic model for an agent to
be able to assess the “interruptability degree” of a person. Regarding
how an agent should interrupt, Saulnier et al. [129] demonstrated
that people were able to interpret interruption urgency from robot
behavior using only minimal nonverbal behavioral cues, such as
motion speed and proximity to the person. Chiang et al [28] devel-
oped an online interactive learning framework for social robots to
initiate an interruption in a socially acceptable manner by person-
alizing its behavior according to the attention of its partner and its
conjecture about partner’s awareness of itself.

Taken altogether, these insights indicate a necessity to carefully
consider when an agent should intervene (Design consideration 4:
What kind of agent decisions do or do not require user awareness and
approval?); and the timing and form of proactive behaviors (Design
consideration 5: How an agent should intervene?). How an agent
could read a social context, judge situations according to social
rules and norms, and identify emergencies are challenges in this
regard.

Design consideration 6: When and how to release or retain auton-
omy? Autonomy is generally conceived to be a fluid concept. Being
integrated into the complexity and noise of the real-world usually
render a static autonomy level insufficient to maintain high levels
of performance. Here, flexible autonomy—also known in slightly
different forms as dynamic task allocation, adjustable autonomy, or
sliding autonomy—is key. Flexible autonomy refers to being able
to dynamically change the autonomy level of a system and that a
user can provide input into the system to improve its performance
at any point in time [2]. In Bratman’s collaboration framework,
mutual responsiveness requires each individual to adjust his/her
contributions in light of information about how the other party is
faring. Flexible autonomy provides this adjustment in human-agent
collaboration. Adjusting autonomy levels has known benefits for
increasing the engagement of humans with the agents [77] and
keeping a strong feeling of control over the agent [2]. Tariff Agent,
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for example, is a software agent that tracks energy consumption
and energy tariffs, calculates the best tariff for the next day and
(optionally) automatically switch to it [2]. It provides flexible auton-
omy by sending users updates about the status and decisions of the
system and allowing them to switch easily between suggestion-only,
semi-autonomous, and full autonomous options with an interface
(Figure 3).

Being in control of the autonomy level also requires being able
to override the autonomous decisions of an agent. Let us go back
to the concept of “meshing of subplans” in collaborations. When
the subplans of a user and an agent do not match after the collab-
oration has started, there must be options offered to the users in
order to stop or re-plan the collaboration. The first option in this
regard is to be able to flag exceptions. Exception flagging allows
users to identify exceptional inputs that the system should ignore
when building models and making predictions [163]. No matter
how many sensors are included in an agent or how elaborate its
algorithms become, there will be gaps in an agent’s knowledge. Ex-
isting approaches to fill these gaps focus on giving feedback on the
system’s output or on eliciting more and higher quality input from
the user [ibid]. Yang and Newman [163] demonstrated that none of
these approaches seem well suited to an agent such as Nest, whose
system-initiated changes become visible only after the change. The
authors recommend an alternative approach which enables users
to flag inputs that should not be learned. A key design challenge
is, then, to create interfaces that can help the agent differentiate
the data that represents regular, stable preferences from input that
does not.

In addition to exception flagging, any delegation of control to
an agent should remain overridable in principle [51]. Being able to
opt-out from some or all of the decisions of an agent temporarily or
permanently should be a key design consideration in collaborations.
In relation to autonomous distributed energy systems, Pschetz et al.
[118], for example, found that an agent that ruled out opportunities
to negotiate faced a strong resistance from the participants. Explicit
mechanisms for opting out have also been studied in relation to
surveillance and wearable cameras [113, 117, 130] and privacy in
teleoperation robots [22]. Creating mechanisms for users to flag
exceptions or opt-out from the decisions of the agent should not be
necessarily seen as removing or diminishing agency from the agent.
As a matter of fact, the user input provides more data for the system
to adjust its behavior, which is crucial for mutual responsiveness.

These insights bring us to the last design consideration in relation
to autonomy and control, that is, leaving the system open to transfer
of control by allowing users to adjust the system’s level of autonomy
any time they want, and being able to flag exceptions and opt-out
from the decisions of the agent (Design consideration 6: When and
how to release or retain autonomy?).

3.2.2 Intelligibility.

Design consideration 7: How to provide intelligibility into how an
agent works and why it behaves in certain ways? The second require-
ment for being mutually responsive in human-agent collaboration
is about helping users to understand how an agent interprets and
acts upon the data it receives, i.e., intelligibility. The misalignment
between users’ mental models and the actual agent constraints can
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Figure 3: Tariff Agent’s homepage. The “setting” box allows for flexible autonomy (Courtesy of Alper Alan).

lead to over- or under-estimation of the agent’s capabilities. Bring-
ing back the two examples mentioned in the previous section, Alan
et al. [2] had found that the participants perceived Tariff Agent’s
predictions to be smarter and more complex than they are in reality,
even though the system’s strategy was explicitly explained on the
system’s home page. Yang and Newman [163] demonstrated that
the users of Nest overestimated its learning capabilities, which lead
to some energy wastage. Overestimation was hazardous in these
two cases; but it can lead to disastrous, even lethal, outcomes in
critical systems and it should be avoided at all costs [57]. Maybe
not as critical as overestimation, but under-estimation can also
lead to negative consequences, such as a lack of communication
and increased workload for humans. Under-estimation (and under-
trust) can be detrimental to the effectiveness and efficiency of the
collaborations since it may lead to disuse or micromanagement
[41].

The primary focus of intelligibility research has been on provid-
ing explanations for how an agent works and why it behaves in
certain ways. Central to these works is increasing the transparency
of a system, such as its performance, process, intent, and purpose
[3]. A major research stream on Explainable AI (XAI) focuses on
all background information that is needed to make the decision-
making processes of Al algorithms transparent and understandable,
including the training data and model performance [110]. Abdul et
al. [1], however, point to a delicate balance regarding explainability:
XAl efforts typically focus on transforming complex “black box”
models into simpler mathematically interpretable models. While
these are significant contributions, these works tend to neglect
whether they are usable and intelligible for humans. Making a sys-
tem visible does not necessarily mean that it is understandable,
which a challenging task when it comes to complex systems [137].

In this respect, transparency also brings in accessibility concerns
and there is an opportunity for HCI research to bridge this gap [1].

There have been efforts in this direction by exploring trans-
parency in conveying information about the uncertainty, depen-
dence, and vulnerability of an Al system. Although many research
go into creating robust models, currently uncertainty constitutes a
fundamental attribute of any Al-driven system [14]. To mitigate for
its impact, Intuitive Confidence Measure (ICM) model was designed
to explain the likelihood of a correct single prediction based on its
similarity to previous experiences, e.g. “I am reasonably certain that
there is a victim at location A” [150]. Begoli et al. [11] recommended
to implement a precise uncertainty estimation metric that incorpo-
rates all sources of decision uncertainty (e.g., performance on model
capabilities, prior knowledge about the training data distribution,
noises on input data) in software agents in order to emphasize the
limitations of Al prediction. Jung et al. [76] operationalized this
recommendation by designing an interface that displayed the un-
certainty in an electric car’s range estimation (Figure 4). This range
estimation often leads to inaccurate predictions. While most of the
prior work on car batteries focused on improving prediction accu-
racy by increasing the number of parameters that the system takes
into account, Jung et al. [76] embraced the uncertainty and found
that a range display that highlights prediction uncertainty led to
improvements in driving experience, behavior and trust towards
the car. Approaches such as this are in line with the advocacy in
HCI to consider uncertainty and ambiguity as generative design
material, rather than something to diminish (e.g. [14]).

Taken altogether, we can state that there are opportunities for
HCI research to study how to align users’ mental models of an
agent’s capabilities with actual constraints of the agent (Design
consideration 7: How to provide intelligibility into how an agent works
and why it behaves in certain ways?). In this regard, designers might
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Figure 4: Remaining range was displayed as either highly precise values (left) or a diffuse color band (right) (Courtesy of Malte

Jung).

experiment with integrating transparency into an agent’s data sets,
algorithms, and data models; as well as its intentions, behaviors,
and uncertainty in its predictions.

Design consideration 8: How to explain the intentions and behav-
iors of agents? When it comes to “how” to explain, it is commonly
assumed that a helpful explanation should align with how hu-
mans explain behavior [40, 104]. Harbers et al. [65], for example,
demonstrated that users’ explanations of an agent’s behavior can
be mapped to mental categories such as beliefs, desires/goals, inten-
tions (BDI). The authors proposed to design agents according to the
BDI principles in order to be explainable in human-compatible ways.
Stange and Kopp [136] created a model that maps decision-making
processes of a robot onto folk-psychological concepts found in hu-
man explanations: needs, intentions, actions. Their model includes
causally structured explanations that connect two steps of the ro-
bot’s reasoning process, e.g. “I did this because I intended that” or
“Iintended to do this because I needed that”. The authors found that
the explanations containing two elements with a marked causal
relation were preferred over those containing only one, as they
justified the behaviors better and increased their understandability.
An interesting finding from the same study was that human-like
needs-based explanations of robots (e.g. “I did this because I needed
social contact or entertainment”) led to a decrease in behavior de-
sirability and lower ratings concerning how well they justified the
behaviors, compared to intention- and action-based explanations
which were related to the robot’s rational agency.

This insight points to additional design challenges about inves-
tigating the levels of intentionality and desire that humans are
willing to attribute to agents. Anthropomorphism is a delicate sub-
ject in human-agent interactions. While there are many examples
of anthropomorphism providing a positive user experience (e.g.
[46, 116]), there is also a recent stream of work that argue anthropo-
morphism is not the only solution to create good agents. Wortham
and Rogers [161], for example, designed a robot that explains its
behavior by a means that is both human and machine at the same
time. The robot presents its generated plan by employing the social
practice of muttering to oneself, but in a particular, machine-like
way (i.e., “Attempting forward avoiding obstacle”, “Doing sleep 10
seconds”). The design challenge here is to balance the product-ness,

robot-ness, and humanlike-ness of an agent in understandable and
creative ways [42] when it comes to explainability.

Yang and Newman [163] point out that many approaches to
intelligibility and transparency assume that the users have a con-
scious interest in understanding the agent and are willing to invest
time and energy in doing so. Their observations with Nest users
suggested that the desire to understand the system arose only when
something went wrong. However, it would be beneficial to the sys-
tem’s operation, and ultimately to the user, if they did see the value
in understanding the agent’s behavior. For this reason, Yang and
Newman [163] recommend delivering intelligibility opportunisti-
cally, without requiring explicit interaction dedicated to the task.
This incidental intelligibility is about designing interaction elements
to increase the users’ understanding of an agent’s intelligent be-
havior in the tasks that the users consciously seek to accomplish,
while avoiding asking users to learn how the system thinks as a
discrete task [ibid]. Nest is a highly autonomous agent that allows
small, occasional, and incidental interactions with users. On the
other hand, when it comes to agents that interacts with users con-
tinuously or when the stakes are higher (e.g., Al-powered Clinical
Decision Support Systems in hospitals or loan organization systems
for mortgage), the willingness to understand the inner mechanics of
an agent is likely to be higher. Explanation is a social process where
humans tailor explanatory contents to different explainability needs
[78]. The call for intelligibility and transparency can succeed only
if we know which contexts require explaining and what forms of
explanations are actually helpful.

These bring us to the second design consideration regarding in-
telligibility (Design consideration 8: How to explain the intentions and
behaviors of agents?). When giving explanations into agent behav-
ior and intentions, designers might want to resort to psychological
mechanisms that humans explain things in order to ensure the
understandability of these explanations. However, while doing so,
it is important to remember that agents might have unique means
to communicate these mechanisms that combines humanlikeness
and agent-ness, and users might have specific explanation needs
depending on the context.

3.2.3 Common ground.
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Figure 5: Joggobot, the running companion drone (Courtesy of Exertion Games Lab).

Design consideration 9: How to establish a common ground between
the human and the agent? In collaborations, all the parties involved
are in the context of the same joint activity. In addition to each
agent having its own situation, there is also a need to be aware of
the situation that the other parties are in. This collective under-
standing of context that is necessary for being mutually responsive
brings in a new regulatory constraint that is referred to as com-
mon ground [75]. As defined by Clark and Brennan [36], common
ground between two collaborators is the knowledge, beliefs, and
suppositions they believe they share about the activity. Although
the common ground framework was developed to understand com-
munication and collaboration among people, recent work extended
the framework into HCI and HRI (e.g. [25, 82, 138]). This research
suggests that interfaces can be improved by framing the user’s
experience as a conversation in which a shared meaning between
the user and the interface is developed [138]. This is, however, eas-
ier said than done in relation to agentic technologies. When two
humans are co-present, they have the same perceptual access to
the shared environment and generally do not have any problem
understanding each other’s references. Agents, on the other hand,
have significantly mismatched perceptual and cognitive capabilities
[24]. Tt is important for these parties to mediate differences and
establish a common ground. This requires the agent to know the
human’s status, and likewise, the human to know the agent’s status
to the degree that they respond to each other’s goals and actions
[10].

To start with the former, let us consider the Joggobot [60]—a
drone exercise companion (Figure 5). It flies in front of the runners
to give them extra motivation or companionship during their run.
To achieve these goals, Joggobot needs to know if the runner would
want to slow down or speed up and which route they would like
to take. In other words, it needs to correctly infer the intended
goal of the runner in order to meaningfully assist them. This is
known as the intent inference problem [73]. One approach to infer
the user’s intent could be to have the user explicitly communicate
their intentions, such as via verbal commands. However, requiring
explicit communication from the user could lead to increased cog-
nitive load and ineffective collaboration [58]. Furthermore, giving
verbal commands may be inappropriate in certain contexts for some
people. A major stream of research in HRI investigate the use of

nonverbal communication to infer intentions during collaborative
tasks. Among many others, some examples include using users’
gaze patterns to predict where an agent should look at [111] and to
perform anticipatory actions [71]; utilizing gestures for object infer-
ence in interactions [156]; and using motion patterns for planning
an agent’s route [100].

When it comes to humans interpreting the agents’ behavior, the
concept of theory of mind (ToM) is an important starting point.
ToM refers to an understanding that others have beliefs, desires,
and intentions different from oneself, and that these beliefs, desires,
and intentions influence their behavior (see [59] for a review of
ToM). This mechanism allows people to take perspective of others
and infer intentions and goals that underlie action [80]. Interacting
with agents cannot help but give the users an impression that the
agents act with beliefs, desires, and intentions [39]. This act of mind
reading will be purely illusory, but the impression may nevertheless
prove enduring if certain “tricks” are implemented in the agent [91].
Joggobot, for example, uses tricks such as mid-air twitch to signal
the runner to start off or go faster [60].

One of the most investigated communication means is the motion
trajectories of agents. For instance, it has been shown that motion
alone is sufficient to convey intent and coordinate joint action
[134] and that legible motion, planned to clearly express the robot’s
intent, leads to more seamless collaborations [44]. Sharma et al.
[133] explored how the locomotion path of a flying quadrotor robot
can communicate affect to people. Saerbeck and Bartneck [125]
demonstrated that acceleration and curvature of robot motions had
more significant impact in conveying different affect to humans
than having facial features. Another means for communicating
intent is the gestures of an agent. In this regard, gaze (e.g. [108]),
arm and body movements (e.g., [85, 120]) were studied to express
intent, states, and other relevant information. In the domain of
non-anthropomorphic agents, Sirkin et al. [134] used a vertical lift
movement in a robotic ottoman to suggest attention and readiness
to move; Burneleit et al. [21] had the Impatient Toaster to shake
nervously to remind the user to eat; and Yamaji et al. [162] designed
a smart trash can that moved toward the trash with a twisting
motion and vocal interaction to entice children to collect trash.

To sum, there is a need in human-agent interactions for the
two parties to know each other’s status and intentions so that the
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human and the agent could respond to each other (Design consider-
ation 9: How to establish a common ground between the human and
the agent?). Designers are required to create this common ground
by enabling the agent to read the users’ intentions through ex-
plicit commands, gaze or gestures, and vice versa, i.e., embedding
communication means into the agents in order to enable users to
understand the agents’ intentions. Exploring the richness of nonver-
bal communication is a promising direction to follow, considering
both anthropomorphic and nonanthropomorphic agents.

3.3 Commitment to mutual support

The last characteristic of collaboration mentioned by Bratman is
about the collaborating parties to provide support to each other
when necessary. This includes behaviors such as providing guid-
ance, suggestions or warning, and requesting assistance. Below, we
will address these two behaviors of support under “agent offering
help” and “agent requesting help”.

3.3.1 Agent offering help.

Design consideration 10: When and how an agent can offer help to
humans? Designing an agent that offers help requires to consider
two aspects—when an agent offers help and how it offers help. To in-
vestigate the former, Baraglia et al. [8] proposed a developmentally
motivated behavior in which the agent intervenes to help when it
detects that the effects of a human’s action were not as predicted.
Sakita et al. [126] designed robot assistance behaviors triggered in
different conditions, such as taking over when both hands of the
user are occupied or providing verbal disambiguation when the
user’s hesitation is detected. Baraglia et al. [7] developed a joint
task execution system for object manipulation that has three trigger
mechanisms, namely human-initiated help (i.e., the user controls
the timing of robot action), robot-initiated reactive help (i.e., the
assistance is triggered when the robot detects that the user needs
help), and robot-initiated proactive help (i.e., the robot helps when-
ever it can). Their results indicated that people collaborated best
with a proactive robot when measured with team fluency metrics
and preferred the proactive help over human-initiated or reactive
help.

The foci of these studies are on task accomplishment where
proactivity in helping is appreciated, yet when it comes to the help-
ing behavior of all-round agents to be integrated in the complexity
of the home environment, Luria et al. [96] presented a more nu-
anced picture. The authors demonstrated that the preferred help
behavior of voice activated personal agents depended on the situa-
tion and context. Participants varied between wanting the agent
to only be reactive to requests, be proactive by providing informa-
tion, or be proactive by providing recommendations for a course
of action. These preferences varied even within the preferences of
each individual. While designing helping agents, Luria et al. [96]
recommend thinking of proactivity in thresholds and identify when
a threshold is crossed in interactions.

This brings us to “how” an agent could offer help. Research
shows that negative human responses are common when an agent is
perceived as issuing explicit commands or dictating task/interaction
structure (e.g. [141]). As a strategy to mitigate the commanding
tone implied in direct statements of advice and directions, Torrey
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et al. [145] proposed options for a robot’s help-giving speech by
drawing from Politeness Theory [20] and informal speech. These
include using hedges (words like “I think” and “probably”) and
discourse markers (words like “I mean” and “like”). The authors
demonstrated that when robots used hedges and discourse markers,
they were perceived as more considerate and likeable, and less
controlling. Nikolaidis et al. [109] compared two conditions for
instruction giving, in which the robot explained to the human how
it wanted to do a task and informed the human why it chose to act
in a specific way. The authors showed that when the robot provided
informative utterances, “I need to be able to see the door with my
forward-facing camera”, the adaptation rate of the humans to the
robot increased significantly. This strategy is also in line with the
aforementioned intelligibility of an agent.

Taken altogether, the proactivity of the help and the form of
help have an immense impact on the users’ experience with the
agents (Design consideration 10: When and how an agent can offer
help to humans?). While proactive help might be appreciated when
accomplishing some tasks, it may damage the whole experience
under other situations. As in every design process, the needs of
the users and the use context should be carefully examined in this
regard beforehand. Furthermore, proactivity better be offered such
as flexible autonomy, where users can adjust how much and when
they need help in situ. When helping, agents could resort to human-
to-human help offering strategies (i.e., using Politeness Theory or
discourse markers) and/or give reasons of the instructions they
give. It should be noted that these two examples involve verbal
communication. What would be the equivalents of these polite
behaviors in nonverbal agents is an interesting question to tackle
for designers.

3.3.2  Agent requesting help.

Design consideration 11: What are the most effective means for
an agent to request help? As agents move away from controlled
environments into unstructured and dynamic environments, e.g.,
home, work, public space, they will almost always encounter situ-
ations that are beyond their capabilities. Engineers and computer
scientists accept that any robot have many limitations and will
continue to face various forms of limitations for the foreseeable
future [151].

In most of these problematic situations, an agent may be more
effective in achieving its tasks by proactively requesting assistance
from people. In HRI, there are multiple studies which investigated
the possibility of robots to augment their sensory or physical ca-
pabilities via a request for help. Michalowski et al. [103] designed
a robot to play a game of “social tag” in which the task was to
locate a team member who was wearing a pink hat. By asking “I
am looking for the person in the pink hat. Can you help me?” to
passers-by, the robot achieved its goal in 83% of the cases. Weiss
et al. [153] revealed that an autonomous mobile robot could suc-
cessfully navigate to a goal location in an outdoor scenario without
any prior map or GPS, simply by asking for directions from by-
standers. Rosenthal et al. [122] developed CoBot, which proactively
requested help from humans in an office about localization, writing
notes, and moving chairs. The authors found that people were will-
ing to help the robot, even though it required some participants to
interrupt their meetings and phone calls. Srinivasan and Takayama
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[135] operationalized Politeness Theory [20] in scenarios that a
robot requested help from people by using positive politeness, neg-
ative politeness, direct requests, and indirect requests. The authors
demonstrated that using a positive politeness strategy (i.e., the help
requester conveys liking toward the listener and makes them feel
good about themselves, interests, or possessions; e.g. “You diagnose
problems really well. If you teach me to diagnose the copier, it will
be very helpful in the future”) is more effective for robots that need
help from people, especially when the robot is perceived as a peer.

In contrast to verbal help requests which were covered so far,
another direction in the HRI field is to capitalize on more implicit
nonverbal requests to elicit help from people. Yamaji [162], for
example, demonstrated that movements and vocal cues can be
used to effectively convey the purpose and required assistance of a
minimalistic trash can robot. Gestures can be used for highlighting
the uncertainty in an agent’s action so that humans would take
preemptive actions to ensure that the agent is able to accomplish
the task. Van den Brule et al. [148] employed existing mechanisms
of human signaling for uncertainty, e.g., scratching one’s forehead,
for alerting people to impending failures of a humanoid robot. The
authors demonstrated that robots could solicit useful interventions
from people to improve task performance by gesturally indicating
a level of confidence or uncertainty about their actions. Kwon et
al. [88] focused on the mechanisms for a robot to communicate
when it is incapable of accomplishing a task. The authors designed
expressive movements, which the robot executes a trajectory similar
to the trajectory it would have executed had it been capable. Once
the robot realizes that it is incapable of turning a valve, for example,
it would find some motion (e.g., rotating its hand) that still conveys
what the task is and sheds light on the cause of incapability. The
authors found that these expressive movements improved not only
the participants’ understanding of what the robot is trying to do and
why it cannot (i.e., intelligibility), but also their overall perception
of the robot and willingness to collaborate with it.

The results of these studies indicate that people are willing to
help agents when there is a need. Designers are required to envision
ways to leverage this tendency of humans in the most effective
ways (Design consideration 11: What are the most effective means for
an agent to request help?). Investigating the factors that influence
compliance [135] and designing agents that respond to the inherent
uncertainty in the context [148] are promising starting points in
this regard.

4 DISCUSSION

This article aims to identify the important issues to inform the
future implementations of artificial agents that are supposed to
work and dwell with humans. The three collaboration characteris-
tics that were described in Bratman’s Shared Cooperative Activity
framework were used to organize the different lines of research
prevalent in the HCI and HRI communities related to agentic tech-
nologies and identify the qualities that require attention for accom-
plishing effective and pleasant collaborations between humans and
agents. These qualities were presented as 11 design considerations,
which are about code of conduct, task delegation, autonomy and
control, intelligibility, common ground, agent offering help and
agent requesting help. With these design considerations, we hope
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to increase awareness about the different dimensions of human-
agent collaborations, and to support other researchers in getting
an overview about the current challenges in the HCI and HRI fields
in relation to this topic, locating their work, and planning future
research.

In the paper, different types of agents—from robots to smart
products and software—were included. These are different product
categories with varying characteristics and qualities. We consider
that the 11 design considerations are relevant and sufficiently broad
to apply to all these different agent types, yet the specifics of how
these considerations could be met might differ from agent to agent.
For instance, how the intentions and behaviors of a social robot
could be communicated to users would probably be different than
communicating the intentions of a smart tennis racket. There will
even be additional legal constraints in this regard when it comes
to a high-risk and highly-regulated agent such as an autonomous
vehicle. Nevertheless, the necessity to take “intent communication”
into account in the design of the collaboration is still present in
these three different types of agents. That is why the design consid-
erations were deliberately formalized as questions and kept broad:
Designers could consider how to address them in their own ways
according to the agent type and the design context. The hope is
that the design considerations would stimulate and inform future
research into the development of guidelines specific to different
agent types.

The broad review of the relevant HCI and HRI work in this paper
also allowed identifying some promising directions for addressing
the design considerations. These were posed as starting points,
rather than guidelines or heuristics, since being prescriptive about
how to answer the design considerations was not the aim of this
paper. The planned next steps in this research will be to use the
design considerations and the proposed starting points in designing,
prototyping, and evaluating collaborations. The ultimate goal is
to arrive at validated “design patterns” [16] and best practices for
human-agent collaboration, which would add to the recent stream
of work on Al-related design guidelines (e.g., Amershi et al’s [5]
design guidelines for human-Al interaction and Hagendorff’s [64]
guidelines for Al ethics).

Using a framework that is intended for human-human collabora-
tions to explain human-agent collaborations may seem to counter-
act posthumanism, which urges us to acknowledge that nonhumans,
such as artificial agents, do not need to be similar to humans and
should not be made similar. A post-humanistic perspective on Al
enables Al to free itself from the burden to imitate the human and
explore different kinds of being and intelligence [30]. A similar
debate is ongoing in the HRI literature about the extent to which
theories about human-human behavior could be transferred to
human-robot behavior [48]. There is evidence that some character-
istics of human-human interactions, such as perspective taking and
common ground, are replicated in human-robot interaction (see for
areview [86]); while some others, such as ascribing blame or expec-
tations regarding task completion, do not (e.g. [68, 97]). Instead of
aiming to replicate human-human interactions with human-robot
interactions, Evers et al. [48] recommends comparing the latter
with the former to fully explore and understand the boundary con-
ditions for applying behavior theories to human-robot interaction
and to develop more nuanced theories specific to human-robot
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interaction. This was also our aim in this paper. We used Bratman’s
framework on human-human collaboration not as a prescriptive
approach on how human-agent collaborations should be, but more
as a descriptive exercise into organizing the current work, distill
insights from it, and identify research and design directions. These
characteristics are fundamental to the efficacy and pleasantness of
a collaboration, and even more so for attempts to design it between
humans and agents.

Throughout the paper, we identified multiple differences be-
tween human-human and human-agent collaborations. Agents
have physical and social superpowers which require exploiting
in task delegation and establishing common ground. They fail a
lot in the tasks they are assigned to, which require designing extra
mitigation strategies. Although they have agency, the overseeing
of their activities should always be a part of human responsibility.
Furthermore, there are various behaviors that occur naturally in
human-human collaborations, which either are impossible to emu-
late with the current technology (e.g. reading social cues; ascribing
intentions, beliefs, and desires to others) or need to be explicitly
programmed (e.g. behavior protocols regarding how an agent will
cope with harassment, how it will deal with sensitive data, how
it will intervene). All in all, there lies many practical and ethical
challenges for designers.

The self-learning, proactive, and Al-infused agents are a differ-
ent sort of artefact than their “non-connected” and “non-smart”
counterparts. Hassenzahl et al. [67] argue that Al-driven technolo-
gies create a fundamental shift from an embodied relationship with
technology (i.e., technology is perceived as an extensive of the
self) to one of alterity (i.e., technology is perceived to be other).
The authors entitle this class of intelligent agents as “otherware”
and make a call-for-action to the HCI community to develop new
models, software architectures, and design methods to design oth-
erware properly. Correspondingly, Giaccardi and Redstrom [54]
demonstrate that the issues that arise in relation to intelligence and
data are no longer “centered” around the human. Human-centered
approaches to design fail to support designers since what things are
and how they come to present themselves as such are not primarily
about functionality in the local sense anymore. They are about the
interactions between humans and things, as well as between things
and other things, without humans being aware of the exchanges
taking place. For this reason, the authors explore what happens if
one thinks of networked computational things not only as designed
artefacts or technological enablers, but also as agents in a design
space where they actually participate. In a similar vein, Wiltse
[159] points out that intelligent things have lives of their own, to
which humans are only partially privy as users. She suggests con-
sulting to object-oriented ontology and alien phenomenology as
analytic methods in order to account for the character and relations
of things. In HRI, Alves-Oliveira et al. [4] critique the predominant
discourse on robots which focus only on utilitarian values and robot
ideals of autonomy and efficiency. The authors list various possible
metaphors, such as neediness, domestication, destruction, and citi-
zenship, as new frames-of-reference for how humans can utilize,
relate to, and co-exist with robots. All these perspectives point to
an urgent need to fundamentally reframe the conceptual space of
how to design agents, if humans intend to shape this technology
into desirable outcomes. We hope that the 11 design considerations
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would provide a starting point to unpack and envision the agents’
role in collaborations in particular.

As aforementioned, in this paper we mainly focused on collabo-
rations that involve a human and an agent, which are in line with
Bratman’s original “modest sociality” concept [17]. However, agents
are part of a heterogenous system of connected actors, which in-
volve other agents, humans, and the environment. Therefore, there
are other possible configurations for collaboration. For example, a
human can collaborate with multiple agents. This is a research area
that is frequently addressed in the military context, such as search
and rescue robot teams or combat systems with multiple UVs. Here,
an operator collaborates with two to a dozen agents operating under
swarm behavior. Transition of a human between different robots
(i.e., when a robot in a heterogenous robot team lacks the capabili-
ties to complete a task and summons another one who actually can)
[140] and re-embodiment of an agent (i.e., an agent moves its social
presence from one device to another, taking on the physical capa-
bilities of each physical device) [119] are also interesting research
areas in this configuration. Another collaboration configuration is
between multiple agents and multiple humans, in which a team of
operators manage a team of agents (e.g., Multi User-multi Robot
System [MURS]). Lastly, agent to agent collaborations are also pos-
sible. Distributed Al systems (DAI), smart contracts, IoT blockchain
applications, and robot-to-robot communication are some of the
relevant research areas for this configuration.

Focusing solely on modest sociality in this paper may have lim-
ited giving a thorough overview of the complexity of each collabo-
ration quality. For example, when one or more humans collaborate
with multiple agents at the same time, the issue of autonomy and
control becomes even more layered. There could be various clas-
sifications of control in these configurations: benevolent or com-
petitive, team of hierarchical, static or shifting roles [32]. Another
example is that the concept of intelligibility to become much more
complex when it comes to agent-to-agent collaborations. Williams
et al. [157] found that silent communications between robots in
a team was perceived as being unnerving by co-located human
teammates. In such collaboration configurations, designers are re-
quired to find new means for providing intelligibility. The main
argument is that the design considerations that were presented in
this paper about modest sociality would also apply to these different
configurations of collaboration, yet their priority level and speci-
ficity would be different. Future work is needed to investigate how
each collaboration quality plays out in different configurations, and
eventually, create additional collaboration configuration-specific
guidelines.

The idea of humans working with agents is complex and multi-
faceted, extending beyond technical boundaries to address ethical,
societal, and philosophical issues. The big Vygotskian idea is that
what makes human cognition different is not more individual brain-
power, but rather the ability of humans to collaborate with others in
collective activities [144]. Time has come for the agents to gain this
skill. There are many challenges to address to move forward. We
need to make sure that the agents perform useful and meaningful
tasks, they are safe, transparent, intelligible, reliable, instructible,
correctable, and negotiable. Ultimately, a key success factor for
agents will be whether they are designed to work truly in concert
with users [70].
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