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PREFACE

The Road Not Taken
Two roads diverged in a yellow wood,

And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,

Because it was grassy and wanted wear;
Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.

Oh, I kept the first for another day!
Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I—
I took the one less traveled by,

And that has made all the difference
Robert Frost (1874 – 1963)

In his poem ‘The Road Not Taken’ Robert Frost described the unevitable choice between two paths. A
traveller makes a route choice based on the signs that he is observing. The traveller decides to take the road
that is less traveled by. The better the traveller is able to observe which path is the most interesting, the better
its journey would be. Each traveller decides which path will serve him well, based on tracks that have been
left by previous travellers. In this research the traveller represents a driver that has to navigate from a point
of departure to a destination. The goal of the research is to disperse traffic, such that drivers will follow the
roads less traveled by – just like the traveller.

The main theme of the poem is making a choice. The choice the traveller made, determined the further
course. The second stanza shows that the choice was made rather impulsive, as if he could come back to the
crossing if the path would have disappointed eventually. In the third verse however, the traveller realizes that
one choice initiated a set of new choices, such that it becomes unlikely that he will return to the crossing. This
concatenation of choices is also present in my life, where choices in my study program have led eventually to
this graduation report.

Fortunately, several people were around to help me find my way. I am especially thankful that I had
such a great supervisor around, Matthijs Spaan. He has spent a lot of time and put a lot of effort in me
and this project. I am grateful for the trust that he and the departement showed in me right from the start.
Furthermore, I would like to thank Bram Bakker, whose valuable feedback helped me staying critical to my
own work. It is very special to me that we could work together on an interesting idea with an unrestrained
mind.

Finally, I would like to thank my wife, family and friends, who were essential for the completion of my
study, because their support helped me reaching my objectives. It was refreshing to discuss my ideas with
them in common language, which hopefully has led to a comprehensive graduation report.

P. L. de Goffau
Dordrecht, January 12, 2017
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ABSTRACT

The growth of traffic densities has increased the concentrations of air pollutants, especially in city centres.
Although the natural immune system of the human body can withstand low levels of exposure to air pollu-
tants, exposure to high levels of air pollutants can lead to adverse health effects and even death. These high
exposure levels are often present at city centres, due to high traffic densities at these areas. Therefore, in this
research is explored if exposure levels to air pollutants can be decreased by improving traffic distributions.

In this research the benefits and challenges are explored of a traffic load balancing system that has the ob-
jective to improve the air quality locally, while bounding the length of the detours that are needed to achieve
this. Traffic dispersion is achieved by influencing routes of individual drivers by a collective navigation sys-
tem. A weighted combination of travel time and air pollutant emissions is minimized to achieve lower air
pollution exposure levels to citizens, while drivers maintain short travel times. Nitrogen Oxide (NOx) is used
to bound the vehicle emissions locally, while the emission of Carbon Dioxide (CO2) is minimized globally.
For each car an emission trace is constructed using an emission model. The emission traces are combined
to form a time-dependent emission map. This time-dependent emission map is used for the exploration of
routes that have a lower impact on the health of people that live near these routes.

The approach is evaluated by simulation on real-life maps with an estimation of the traffic demand. The
weighted combination approach is configured and compared to a base case where the drivers would only
optimize their travel time. Using the simulation, it is shown that the exceedance of local thresholds of the
NOx concentrations can be reduced, with only a small increase in travel time.

Furthermore is explored what the effect is if only a part of the drivers would participate in the constructed
load balancing system, while the other drivers would optimize their own travel time. By simulation is shown
that even if only a part of the drivers would participate in this traffic load balancing system, the air quality
can still be improved with a marginal cost of additional travel time.

vii





1
INTRODUCTION

One of the main environmental problems is the problem of growing concentrations of air pollutants in urban
areas. Since the Industrial Revolution the air quality has become worse very rapidly [1], especially in urban
areas [2]. High levels of exposure to air pollutants lead to health problems and shorter life expectancies [3].
Brunekreef and Holgate observed that exposure to ozone, particulate matter (PM) and a mixture of Nitro-
gen oxides have been associated with increases in mortality and hospital admissions due to respiratory and
cardiovascular disease [4]. Therefore, it is desirable to avoid high exposure levels to these air pollutants.

A large part of the emission of air pollutants in cities stems from the combustion engines of cars and
trucks. Together, the traffic flows have a large impact on the local concentrations of air pollutants.

Societies struggle with the air pollution problem, because on the one hand people want to reach all their
destinations in the shortest possible travel time, while on the other hand – as local residents – they want to
inhale fresh air. Because people interact and have relations with each other, they tend to gather together,
which increases traffic densities, travel times and decreases the air quality caused by vehicle emissions.

1.1. OBJECTIVE
This section describes the objective of this research, and the way in which the research is divided. Figure 1.1
shows that a driver often has several short routes at his disposal, which run through different areas with dif-
ferent air qualities. If drivers would base their route choices not only on travel time, but also on the local
air quality, the local air quality could be improved. However, if all drivers would choose routes which run
through the same area, the concentration of air pollutants becomes too high in those areas. This research ex-
plores if a method could prevent this by influencing route choices based on estimations of local air pollutant
concentrations, global vehicle emissions and the individual travel time.

The objective of this research is to evaluate if the air quality can be improved by influencing the individual
routes of drivers. Therefore, the main research question is formulated as follows.

• Can collective routing algorithms improve the air quality in cities, while preserving low travel times for
individual drivers?

To solve this problem, the problem is divided into several subquestions. First a metric must be determined
for the air quality. It must be specified which air pollutants are considered, and at which scale.

1. What is a good expression for the air pollution of a single vehicle, dependent on its vehicle type and
speed?

From the emissions of single vehicles, a global emission model can be constructed, which can be used to
compare different routing algorithms with each other.

2. What is a good emission model that can be used to compare different routing methods with each other?

An algorithm can be developed to solve the Shortest Path Problem for a single vehicle, where the weights
of edges are calculated using a database that contains traffic information based on statistics and on the routes
planned by other cars.

1



2 1. INTRODUCTION

(a) The prevailing local estimations of the Air
Quality Index from the RIVM in Amsterdam at 30
december 2016, 10:00 AM [5].

(b) A driver from South to North has 4 different
routes at his disposal of which the travel times
differ at most 20% from each other.

Figure 1.1: If drivers from South to North would choose routes that run through the eastern part of the city, the air quality at the western
part of the city is improved, while the additional travel time for drivers is limited.

3. How can an efficient algorithm be created that solves the Shortest Path Routing problem on a graph of
which the weights are dependent on emission information which is updated during the routing process
according to the planned routes of other vehicles?

The algorithms that have been created must be evaluated on the objective to improve the air quality, while
offering short routes for individual drivers.

4. What is the relative improvement of the air quality if these algorithms, which take the local air quality
into account, have been used for the calculation of routes compared to the situation where each driver
chooses its fastest possible route?

The algorithms may improve the air quality, but most presumably, this improvement of the air quality
comes with the cost of longer travel times of drivers.

5. What is the relative growth of the average and maximum travel times for drivers that use these algo-
rithms compared to the situation where each driver chooses its fastest possible route?

Most presumably, not all drivers are willingly to participate in a project like this, because the time invest-
ments would be regarded to high. Therefore, also the impact of lower participation rates on the air quality is
explored.

6. What is the impact of lower participation rates on the growth of the total travel time and the improve-
ment of the air quality?

1.2. RELATED WORK
To reduce the traffic densities in the heart of their cities and metropoles, governments have taken several mea-
sures. These measures are described in Section 1.2.1. Scientists are interested in improving the air quality and
traffic densities in cities as well. Related research that has been performed on improving traffic distributions
by the manipulation of routes of individual drivers is described in Section 1.2.2, for methods which focus on
emissions, and in Section 1.2.3, for methods which focus on traffic densities.

1.2.1. GOVERNMENTAL TRAFFIC MANAGEMENT IN CITIES
The methods that have been used by governments to influence the traffic densities in cities can be categorized
into two groups: banning all or part of the traffic from certain areas, or pricing of certain road segments or
areas. Subsequently, road pricing can be divided into two different scopes: setting a penalty for entering
an area with a vehicle with high emission rates (generally called low emission zones), or by pricing per road
segment (road pricing).
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TRAFFIC BAN

Several cities have set thresholds for the exposure of air pollutants to their citizens, with bounds on the num-
ber of days that these thresholds may be exceeded. Last year, the cities Beijing1 and Rome2 were closed for
(part of the) motorized traffic for several days, because the number of days that the thresholds were exceeded,
was higher than permitted. A traffic ban is a very unpopular measure, because people are restricted in their
freedom, and unable to reach their destinations, like working places. Therefore, this solution cannot be re-
garded as a sustainable method to reduce the concentrations of air pollutants in cities.

LOW EMISSION ZONES

A less strict measure is the constitution of a zone where motorized traffic with high emissions pay a price for
entering that zone. For instance, in the Netherlands, the local government of Rotterdam constituted such a
low emission zone at the center of the city. Vehicles that have large emission rates are not allowed to drive
in that region [6], and will be fined if they neglect the prohibition. The same measure was introduced to the
center of the city of London, to exclude vehicles with large emissions from the city center. All vehicles that
have been marked as highly pollutant are fined for every day they travel through the low emission zone. Since
the introduction of the low-emission zone, the concentrations of particulate matter within the low emission
zone have dropped by 2.5 to 3%, compared to just over 1% for areas just outside the zone [7].

Although low emission zones have been proven to be feasible implementations of a road pricing system
in cities, they do not charge vehicles closely according to road usage, because the price is the same regardless
of the time or road space that is spent by drivers in the zone.

ROAD PRICING

The idea of a low emission zone in London is based on the road pricing system that is introduced in Sin-
gapore [8]. Road pricing is a method that assigns a price to road segments that expresses their value. Road
segments that are very popular are assigned higher prices. In Singapore, one of the main objectives that was
put forward for the introduction of a road pricing system is the increasing average traffic speed and traffic
flow. The traffic flow is increased by reducing the demand of driving at certain road sections by pricing them.
Encouraged by lower prices drivers would change their time of departure, their routes or their means of trans-
port. Based on the economical decisions of travellers, the traffic would be spread out over the infrastructure.
Road pricing can then consequently also lead to a better air quality in busy city centres.

Singapore has used the Electronic Road Pricing (ERP) system since 1998 [8]. ERP gantries are placed at
the most crucial road sections in the city center. Each driver is obliged to have an In-vehicle Unit (IU) built in
at the dashboard of a vehicle. Every time the IU passes a gantry, it charges the price of a road section from a
credit card. The time, the vehicle type and the expected traffic density determine the price of a road section.

Such a system could easily lead to unwanted driver behaviour. Drivers tend to look for certain loopholes.
In Singapore, large queues were formed just after the time period in which road sections were more expensive.
In order to discourage this behaviour, the time period with high prices is extended, after which this behaviour
has vanished.

Although the traffic volumes have been decreased by 15% by the ERP system in Singapore, there is still
plenty of room for improvement, especially by combining real-time traffic information into the prices of road
sections. The price of road sections can be made dynamic, based on the current traffic density. The drawback
of such a system is that drivers do not know the prices of different trajectories in advance.

May [9] formulated guidelines for the introduction of a road pricing system3. It is very complicated and
expensive to construct a road pricing system that complies with all these guidelines. Therefore, in many
countries, road pricing is only used for highways, by a toll booth system. Such implementations of road
pricing systems are not easily expandable to city centres, and do therefore not comply with the guidelines of
May [9].

1.2.2. ECO-ROUTING
Fortunately, there are other methods that can reduce traffic emissions (in cities). Global Positioning System
(GPS) based navigation systems have been used increasingly by travellers. These devices are used to calculate

1BBC, China pollution: Factories closed by beijing smog, http://www.bbc.com/news/world-asia-china-35141188 (Accessed 19
december 2015).

2BBC, Italy smog: Milan and rome ban cars as pollution rises, http://www.bbc.com/news/world-europe-35188685 (Accessed 28
december 2015).

3Santos et al. [8] have formulated a summary of these guidelines.

http://www.bbc.com/news/world-asia-china-35141188
http://www.bbc.com/news/world-europe-35188685


4 1. INTRODUCTION

the shortest path (mostly in time, or in distance) from a source to a destination. Furthermore, the navigation
devices can also be configured to minimize emissions. Several methods have been developed for the global
minimization of emissions, of which some are described in this Section.

Yunlong Zhang et al. [10] presented a methodology of assigning traffic in a network with the considera-
tion of air quality. The traffic assignment problem is formulated as an optimization problem of an objective
function that contains both the travel cost and on-road emissions. The on-road emissions have been stored
cell-based, where emissions in one cell have influence on the nearby cells, assuming a Gaussian distribution.
By means of a simple case study it is shown that minimizing the travel cost and reducing the air pollutants
may not always be achieved at the same time. However, the proposed traffic assignment procedure can ef-
fectively reduce emission concentrations at locations with the worst air quality conditions. This approach
does not take the current air quality into account while routing. It computes routes that globally have lower
emissions, but locally the concentrations of air pollutants may still exceed the legal bounds.

Patil [11] constructed several static traffic assignment models in order to reduce tailpipe emissions in
road transportation systems. Based on its speed, an approximation for every road section can be made of
the driver’s emission of air pollutants. Patil constructed two model-types, based on Wardrop’s principles
for the User Equilibrium (UE) and System Optimum (SO) [12]. In the environmental UE (E-UE), users are
assumed to minimize their own vehicle emissions or fuel consumption. In the environmental SO (E-SO)
the sum of the emissions of all drivers is minimized, while individual drivers could get a route assigned that
does not have the minimum emissions. The objective function is a summation over all edges, where for
each edge the traffic flow is multiplied with a factor that represents either the fuel consumption or the CO2

emission. To analyse the systems, both models have been solved on two hypothetical networks. The travel
time, CO2 emissions and fuel consumptions have been compared for these two models, and the equivalent
models that only consider travel time cost per edge. For the second network, which is the most realistic
of the two hypothetical networks, the CO2-based E-UE model increases the travel time, CO2 and the fuel
consumption with 23, 8 and 8% respectively. This increase in fuel-based UE is about 22, 3, and 3%. The total
emissions are increased, because of decreased traffic flows. Reduced traffic flows leads to higher emissions
per driver. Therefore, the author cannot guarantee that the system level emissions can be reduced when the
travellers’ aim is to reduce their own CO2 or fuel. Further analysis needs to be carried out to find out under
what situations the system level emissions increase. However, a reduction in emission level can be achieved
if the drivers are routed to reach environmental SO. For this network, the reduction of CO2 in the E-SO is
about 4% compared to corresponding pollutants in Travel Time-UE; about the same percentage of reduction
is observed for fuel. In this approach the emissions are minimized globally, while locally high concentrations
of (in this case) CO2 may occur.

Aziz et al. [13] chose CO as a representative for the air pollutants stemming from traffic. They combine CO
emission rates, system-wide travel time and speed profiles into a new traffic assignment model, and compare
this model with a traditional dynamic assignment model (where the only objective is to minimize the travel
time). The model is formulated as a minimalisation problem with constraints. Using small hypothetical stan-
dard networks they show the effect of considering vehicle emissions on the route choice, for three different
objective functions. First only travel time is considered in the objective function. The second model aims
only for the minimization of the CO emission. In the main model both the travel time and the CO emission
are reduced by expressing both objectives as monetary values. A CPLEX-solver is used to solve the mathe-
matical programs. If both the CO emission and travel time have been expressed in monetary values, the CO
emissions have been decreased by a factor of two, while the increase of the travel time is marginal. Like with
Patil [11], this approach does not consider the local effects of high concentrations of air pollutants.

Fan Zhang et al. [14] have performed research on multi-criteria routing dynamic traffic assignment mod-
els. They have presented a simulation-based bi-level optimization method that solves the multi-criteria rout-
ing dynamic traffic assignment model iteratively using two different loops. In the inner loop, the travel times
are updated, while the emission costs are considered to be fixed. Then, in the outer loop, the emission costs
are calculated, after which a new traffic assignment is made. A multi-criteria user equalibrium is found when
the solutions converge to an equilibrium. By using the traffic simulation model Dynasmart-P, the authors
show that if drivers choose routes based on both travel time and emissions, the average travel time and emis-
sions per vehicle decrease. The average travel time is reduced, because the number of congested links is
reduced. Congested links have a higher impact on vehicle emissions and travel time. The study shows what
the positive impact of presenting more routing information to drivers can be on the average travel time and
the environment. However, concentrations of air pollutants may locally still be very high.
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1.2.3. TRAFFIC DISPERSION ALGORITHMS

Besides the research that has been performed on eco-friendly routes, research has also been done on traffic
dispersion. In this section, some traffic dispersion methods are described that have the objective to minimize
the number and the length of traffic jams. These methods were an inspiration for the idea of this research,
where the emission of vehicles is stored at a common graph, such that the emissions can be bound locally.
Improved traffic distributions over the road network will usually reduce the number and length of traffic
jams. Traffic dispersion can therefore lead to lower travel times and maybe also lower concentrations of air
pollutants, which makes these methods interesting.

ANT-INSPIRED DYNAMIC TRAFFIC ROUTING

Alves et al. [15] used an Ant Colony Optimization technique to disperse the traffic. For multiple source-
destination pairs the shortest routes have been determined by an ant-inspired algorithm, which finds short
routes on the pheromone trace that is left by each ant. The pheromone traces are used to predict the traffic
load during the pre-processing of a graph. The predicted load at edges is translated to a probability to choose
a certain edge on every vertex. During the initialisation round the probabilities are set, after which new vehi-
cle routing requests can be made. The algorithm proved to work accurately for a case study network involving
the Singapore Expressway Network.

Dallmeyer, Schumann, Lattner and Timm investigated ant-inspired Traffic Routing in urban environ-
ments with a changing problem structure [16]. Dynamic traffic routing differs from static routing in the sense
that the problem structure changes while solving the problem. The aim is to minimize the traveling time,
instead of minimizing the traveling distance. The authors assume that cars can be enabled to communicate
with each other and also with their environment. The information that they will share will help for the routing
decisions. Each car determines its own route. Traffic congestion is caused by a too high number of vehicles
that enter the same road segments. In order to avoid congestion an ant-based routing algorithm is used in
each car that will improve the traffic distribution over the network. Each car acts as an ant by virtually storing
a pheromone trace of their trajectory in a shared map. Based on the cumulative pheromone that is dropped
by other cars the routing algorithms decide which route to take. The more pheromone on a certain path, the
less the probability that the routing algorithm would select this path. Using the MAINSIM traffic simulator
the authors show that the ant-based algorithm spreads the traffic over different routes, while an individual
algorithm manages the traffic through a single path which will lead to huge traffic jams on those paths.

TRAFFIC ROUTING BASED ON BACKPRESSURE

Rui Zhang et al. [17] constructed an algorithm that disperses traffic based on the backpressure algorithm
that is known from wireless communication networks. The authors have assumed in their research that an
infrastructure was present which makes it possible to share information about the traffic density on edges
between cars and intersections. Each car sends the edge on which it currently is to the intersections which
are near to that car. Based on the traffic flow of the adjacent edges the intersection returns a dispersion rate
for each adjacent edge the car may take. The car decides which edge he will take next based on this rate, and
on its urgency to reach the destination as fast as possible. The dispersion rate can be used within a ’roulette
wheel selection’ method, where the dispersion rate indicates the probability of the edge that the car may take
next. The urgency parameter is dependent on the difference between the current time and the preferred time
of arrival of the car. The authors show that this approach can lead to a balance between user satisfaction and
a system optimum.

1.3. APPROACH AND SCIENTIFIC CONTRIBUTION OF THIS RESEARCH
Eco-routing methods can lead to lower emissions, but locally high exposure levels to air pollutants may still
be present. Therefore, in this research an emission model will not only be used for the comparison of rout-
ing methods, but the routing methods will also emphatically make use of this emission model, by sharing
emission traces of drivers that have already calculated their paths. By this collective routing method the con-
centrations of air pollutants are kept low locally, while preserving small travel times of individual drivers.
Besides the objective of low local concentrations, a global minimization of the emission of CO2 is pursued as
well.

The main difference with Yunlong Zhang et al. [10], Patil [11], Aziz et al. [13], Fan Zhang et al. [14] is that
in this method the objective is to improve the air quality locally, while in the other researches only a global
improvement of the air quality is pursued.
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The method that is constructed in this research is comparable to the traffic dispersion methods that are
suggested by [16] and [17], but the objective of this method is different, because vehicle emissions are consid-
ered as well. This different objective may lead to other route choices compared to the objective of congestion-
minimization. Traffic dispersion methods may prefer the fastest routes, which are usually road sections with
higher speeds. For higher speeds the vehicle emissions per kilometer are higher. Therefore, it is interesting to
explore methods that disperse traffic based on the local air quality.

This method stores the emission of planned routes in a common map. The users calculate the fitness of
a certain road segment based on the travel time of a certain road segment, and the local emissions of routes
that have already been planned to this (or a nearby) road segment. By means of this method, road segments
that usually are very busy, become less attractive when other routes have already been planned on these
segments.

Most scientists use traffic simulation applications which are able to calculate the average travel time and
total emissions of a certain traffic demand. In these systems it is not possible to implement a collective rout-
ing method that takes the local air quality into account. However, improving the air quality locally by such
a method is the main objective of this research. Therefore, in this research another approach is used for the
construction and evaluation of the multi-objective routing method.

In this research a new simulator is constructed, which makes it possible to have full control on the se-
lection of information that is important for this research. The simulator needs a specific area as input for
which the simulation must be performed. Based on this area, a traffic demand is generated which represents
the actual traffic demand at that area. The traffic demand consists of a list of driver profiles that have a start
and end location, a start time and a vehicle type. Based on the trajectories of individual drivers an emission
model is constructed. This model is used for the evaluation of different routing methods, but it is also used
as a data source for the traffic dispersion method that is constructed in this research. That is the reason why
a new simulator is constructed, such that the emission of other vehicles has influence on the route choices of
successive drivers.

The simulator is route-based, which makes it not feasible to implement traffic congestion. The imple-
mentation of traffic dependency (and thus congestion) would require multiple iterations, which would cost
much run-time. Considering the fact that avoiding traffic congestion is not an explicit objective of this re-
search, traffic dependency is not implemented in the simulation setup.

The studies by Patil [11] and Aziz [13] did not evaluate their methods on real life networks. We consider it
essential to evaluate the constructed methods on real life networks, because the effects of air pollutants are
measured locally. Generalization of networks would probably remove local problems present in every city.

1.4. OUTLINE OF THE REPORT
In Chapter 2 the problem is formalized. Chapter 3 describes the emission model that is used for the compar-
ison of the methods and algorithms. A description of the constructed methods and algorithms can be found
in Chapter 4. A description of the experimental setup can be found in Chapter 5. Chapter 6 compares the
outcome of the different methods with each other. Suggestions for other methods to solve this problem can
be found in Chapter 7. A conclusion of the results and an answer to the research questions is presented in
Chapter 8.



2
PROBLEM DESCRIPTION

It is necessary to formalize the problem, such that the methods and algorithms can be evaluated in an unam-
biguous way. The main objective of this research is to improve the air quality in cities. Section 2.1 describes
how a healthy air quality can be defined. Then, in Section 2.2 the problem is defined for finding routes for
drivers while minimizing the local air pollution. Section 2.3 describes which assumptions are made in this
research and why these are reasonable.

2.1. REPRESENTATION OF THE AIR QUALITY
Exposure to air pollutants has locally a bad influence on the health of citizens (Section 2.1.1), while globally
high levels of greenhouse gasses lead to higher temperatures, which lead amongst other things to increased
water levels (Section 2.1.2).

2.1.1. LOCAL AIR QUALITY
As already mentioned in Chapter 1, Brunekreef and Holgate indicated that exposure to Ozone, Particulate
Matter (PM) and a mixture of Nitrogen Oxides (NOx) can lead to increases in mortality and hospital admis-
sions due to respiratory and cardiovascular disease [4].

The concentrations of ozone and NOx are strongly correlated. This correlation stems from the fact that
Nitrogen oxides react very easily with ozone, because NOx belongs to the group of radicals. Similarly, the
World Health Organisation (WHO) observed a very strong relation between the concentrations of NOx and
PM [18].

Because of those correlations between the air pollutants, and the fact that it would make the problem
unnecessarily complicated if all three air pollutants would be considered, the decision has been made to use
the emission of NOx as an indicator of the air quality of traffic distributions that are composed by the traffic
routing methods. Based on the guidelines from the WHO and the European Union (EU), the hourly average
of NOx may not exceed 200 µg /m3 [4].

2.1.2. GLOBAL AIR QUALITY
Besides the local effect of traffic emissions on the health of people that live nearby, commonly the emission
of CO2 is assumed to contribute to the global warming of the earth, by partly blocking the emission of heat
from the earth to the atmosphere. Therefore, most countries strive to decrease the emissions of CO2

1. De-
creasing the concentrations of NOx locally might lead to an increase of the total CO2 emission. Therefore, the
reduction of the total emission of CO2 is also part of the problem.

2.2. FORMAL PROBLEM
In Section 2.1 is described that for a healthy air quality, the concentrations of NOx may not exceed the thresh-
old of 200 µg /m3. However, drivers want to be able to reach their destinations. Therefore, in this research,
drivers must be assigned routes such that the exceedance of the NOx threshold by vehicle emissions is min-
imized, while they will reach their destinations in time. The problem is defined as a minimization problem

1This is a consequence of the global climate agreement in Paris.

7
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with constraints in Equation 2.1.

min
S

h(A,S,θ)

s.t. l (s)− l (sfast ) ≤ ρ× l (sfast ) ∀s ∈ S∑
s∈S

c(s) ≤ ∑
sfast∈Sfast

c(sfast )
(2.1)

In this formulation, set S contains the routes s of a traffic demand on an area A. sfast denotes the fastest
route of a driver, while Sfast denotes the set of fastest routes for all vehicles in area A. c(s) denotes the CO2

emission of a route s. ρ represents the ratio between a route length and the length of the fastest route.
The set of routes must be calculated in such a way that the exceedance of the NOx threshold θ (Equa-

tion 2.2) is minimized. The set S of routes is used to construct a time-dependent emission map M for area A.
This is described further in Chapter 3. The emission map is partitioned into a grid with a granularity of 350
by 350 m2. The NOx concentration at grid point g at time t is denoted by NOx(g, t). For every timestep and
for every gridpoint g of the emission map M a summation is taken over the concentrations that exceed the
threshold θ (200 µg /m3).

h(A,S,θ) =∑
t

∑
g :M

{
0 if NOx(t , g ) ≤ θ

NOx(t , g )−θ otherwise
(2.2)

To encourage drivers to follow prescribed routes, it is essential to limit the length of potential detours.
Therefore, for every driver the additional travel time of l (s) may only be as large as ρ times the travel time of
its fastest possible route l (sfast ).

According to Section 2.1.2 the total emission of CO2 must be reduced. In this research is assumed that if
no routes are prescribed by a system, each driver will take its fastest possible route sfast . The calculation of
the set of routes S is therefore constrained by the requirement that the total CO2 emission of the routes of set
S must be less than the total CO2 emission of the set Sfast (denoted by c(Sfast )), which contains only the routes
with the minimum individual travel time.

2.3. ASSUMPTIONS
This research is intended to prove the benefit of the concept of collective routing. Therefore, some significant
assumptions have been made, mainly for the simulation model. These assumptions are reasonable, because
the assumptions are also applied to the original traffic distributions, before the comparison between the
several methods will be performed.

KNOWN ROUTE REQUESTS OF ALL DRIVERS IN THE AREA A
To be able to calculate a set of routes for area A, it is assumed that for every driver in area A the source,
the destination, the time of departure and the vehicle type are known. This set of route requests could for
instance be retrieved from in-vehicle navigation devices. In the experiment that is set up for this research, a
set of route requests is generated using statistical data.

MANAGEABILITY OF DRIVERS

For the methods in this research the assumption is made that drivers will follow the proposed route of the
navigation system strictly. This assumption is reasonable if we consider that inhabitants are willingly to par-
ticipate if they know what the risks are of long-time exposure to air pollutants. Drivers will follow the advice
of the routeplanner as long as the detour does not become too long, and as long as other drivers are also
participating in the project. This is similar to participating in waste separation programs. Waste processing
or recycling can be performed more effectively if it is separated in appropriate groups. Trust in the separation
system, the number of years that citizens are living in the community and the reciprocity in the model are the
three important incentives for citizens to participate in waste separation programs [19].

From this we may conclude that citizens would be willingly to participate in a project that improves the
environment clearly, as long as the additional effort is marginal and others in their surroundings do also par-
ticipate. The participation rate can be increased by introducing rewards for participants, or fines for citizens
that do not participate (reciprocity). As a consequence of traffic dispersion through collective routing, the
number of traffic jams can also be reduced, which makes it advantageous to participate in such a project.
Finally, it is important that the system is clearly explained and that the advantages of the system are put in
the spotlight.
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The assumption that is made in this research becomes even more feasible if it is considered that in the
future, vehicles will drive increasingly in an automated way. Route choices will be taken no longer by drivers
on run-time, but routes will be prescribed by the controlling software of the vehicle. As a result of this, the
choice to refuse to participate in the traffic routing program has to be made deliberately, and the routing
preferences must be configured in the controlling software of the car.

FIXED SPEED OF DRIVERS

It is also assumed that all drivers will keep at every road segment the corresponding maximum speed. With
this fixed speed the time that it would take to drive through edges can be approximated, such that the emis-
sion concentrations can be retrieved at a fixed timepoint of a route. This assumption is reasonable because
only small maps are taken into consideration. As a result of that, the travel time is maximally 1 hour – mea-
sured from one end of the map to the other end of the map. The emissions are stored in timeframes of
minutes, so the impact of divergent speeds to the maximum speed is marginal.

CONGESTION-FREE NETWORK

Traffic is not moving independent from each other, because the addition of an extra vehicle to an edge that is
already heavily occupied will limit the speed of all vehicles at that edge. After planning a route for one driver,
the routes of drivers that have already been planned must be re-evaluated. This has a large impact on the
run-time of the simulation.

Therefore, the precision of the simulation model is further reduced by assuming also a congestion free
network. That means that no matter how many vehicles are planned on the same edge at the same time,
the speed of vehicles will stay the same. The main objective of this research is not to reduce the number of
traffic jams, but to improve the local air quality by means of traffic routing. Although traffic jams can have an
adverse effect on the travel times and vehicle emissions, it is assumed that traffic jams will occur more often
in the base case where every driver optimizes its own travel time, than in the case where traffic is routed by
means of a method that uses a traffic dispersion algorithm. The actual travel times will therefore be larger
than the travel times that are presented in the simulation in this research.





3
EMISSION MODEL

This section describes the construction of an emission model that is used for the evaluation of models and
partially for the methods. First a description is given of the model that is used for the approximation of
vehicle emissions in Section 3.1. From this model the emission per road segment (edge) can be calculated
(Section 3.2). Furthermore, the construction of an accumulative emission map is described in Section 3.3.

3.1. EMISSION CHARACTERISTICS PER VEHICLE
The MEET project [20] formulated speed-dependent functions for the emissions per vehicle type, based on
measurement of the emissions on predetermined test cycles. Although more exact emission models are avail-
able, the fact that the emissions are expressed as speed-dependent functions suits the application in this
simulation model very well under the adjusted assumptions. Considering that the objective of this research
is not to construct extremely realistic predictions of the air quality, it is reasonable to use a model that makes
it possible to construct an accumulated emission map from a set of routes.

As described in Section 5.2 the traffic has been divided into four vehicle classes. For Petrol and Diesel
passenger cars the speed dependent model of the EURO I classes is used1. For the truck emissions a heavy
truck with 7.5 to 16 tonnes of gross is assumed. The assumption is made that electric cars have zero emis-
sion, although it could be the case that in the whole energy chain pollutants are exhausted during the energy
conversion to electricity. It is not necessarily needed to use fossil fuels as original energy sources, because
wind and sun power can also be used to generate electricity. Furthermore, in this research not the complete
energy chain has been considered for the other vehicle classes. The emissions are modelled as expressions
that express the concentration of the individual pollutants in g/km, dependent on the speed of the vehicle in
km/h (Table 3.1 and Figure 3.1).

3.2. EMISSION PER EDGE
From the estimation of the emission of a single vehicle the total emission of a vehicle on a certain edge on
a graph can be computed, by assuming an average speed on that edge. The speed- (v) and vehicle type (c)

1Recently, several scandals about the emission rates were in the news. In order to use more realistic emission rates, the old EURO I class
is used, although newer cars are complying to new standards.

Table 3.1: The speed-dependent emission model per vehicle type. Because the main objective of this research is to improve the air quality
locally, these equations do only contain the actual emissions of the vehicle. If the complete energy chain would be taken into account,
the emission characteristics would be higher, especially for electric vehicles that are charged by electricity that is generated using fossil
fuels.

Vehicle type CO2(v) [g/km] NOx(v) [g/km]
Petrol 231−3.62v +0.0263v2 + 2526

/ v 0.526−0.0085v +8.54∗10−5v2

Diesel Passenger Car 286−4.07v +0.0217v2 1.4435−0.026v +1.78∗10−4v2

Diesel Truck 871−16∗ v +0.143v2 + 32031
v2 2.59−6.65∗104v2 +8.56∗10−6v3 + 140

v
Electric 0 0

11
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(a) The speed dependent emission of CO2.
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(b) The speed dependent emission of NOx.

Figure 3.1: The estimation of emissions per vehicle type based on their speed in [g/km].

dependent emission characteristic (R(v,c)) is multiplied by the speed of the driver (v)[km/h] and the duration
(d)[h] that the vehicle spends at that edge, which results in a NOx and CO2 emission per edge (Equation 3.1).

Emission per edge = R(v,c)× v ×d (3.1)

Figure 3.2 shows the conversion from two routes to the occupation per edge. Figure 3.2a shows an ele-
mentary graph consisting of 5 nodes and 4 edges, which are labelled with bold numbers. In this graph, two
routes are displayed. The blue route is taken by a driver of a Petrol car, who enters edge 48 at 15:59. The driver
with the red route starts from edge 52 at 16:00, with a Diesel passenger car. The trajectories of both drivers
are abstracted per edge, which leads to Figure 3.2b.

(a) Graph with routes and arrival times. (b) Time-dependent edge occupation.

Figure 3.2: Conversion of routes to the time-dependent edge occupation rates. The blue route is driven by a petrol car, while the red
route is driven by a diesel passenger car.

From the occupation per edge (Figure 3.3a), the cumulative time that is spent per edge (Figure 3.3b) can be
calculated. Combining the vehicle emission rates, the maximum allowed speed per edge and the time spent
by each car the cumulative emission per edge can be calculated, using Equation 3.1. The results of these
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(a) Edge occupation at 16:00. (b) Duration per edge at 16:00.
(c) Emission per edge at
16:00

Figure 3.3: The conversion from edge occupations to the total emission of NOx and CO2 at 16:00.

(a) Edge occupation at 16:01. (b) Duration per edge at 16:01.
(c) Emission per edge at
16:01

Figure 3.4: The conversion from edge occupations to the total emission of NOx and CO2 at 16:01.

calculations is shown in Figure 3.3c. The concentrations are calculated and stored per timestep. Figure 3.4
shows therefore the same procedure for calculating the emissions per edge for the timeframe from 16:01 to
16:02.

3.3. CONSTRUCTION OF AN ACCUMULATIVE EMISSION MAP
The formulation of the emission per edge per timeframe (Equation 3.1) makes it possible to calculate the
contribution of a route to the NOx concentrations in the simulation area. A route is the concatenation of
edges with an arrival time per edge. The total NOx concentrations could be stored per edge at the right
timeframe. However, if two edges are close together, the NOx concentrations at these road segments are not
independent anymore. Therefore, it is needed to translate the emission characteristics of a set of routes to an
emission map with NOx concentrations. The area that is used in the simulation is divided into a grid with a
granularity of 350 by 350 m2, as required in Chapter 2.

For every edge the closest grid points are located. Figure 3.5 shows the mapping of edges to grid points.
The emission per edge is distributed over each surrounding grid point of the edge, and divided by the surface
area of each grid point, which results in an emission contribution [µg /m2]. It is assumed that the emission
of NOx stays within a height range of 1 meter during one timeframe. For short timeframes this assumption
is reasonable, if we also consider that the tailpipes of vehicles are located near the ground. This induces that
the contribution of a route to the NOx concentrations on every grid point that is near the route is stored as
[µg /m3].

Furthermore, it is assumed that the NOx concentration does not vaporize within one timeframe. As a con-
sequence of this assumption, the emission of multiple vehicles on the same grid point at the same timeframe
can be added independently. Moreover, the assumption is made that the cumulative NOx emission at a grid
point vaporizes completely at the end of a timeframe. As a consequence, the NOx emissions at one timeframe
do not have influence on the NOx concentrations of other timeframes.

In Figure 3.5a the closest grid points are located for edge 17 from the example of Figure 3.2. In this case,
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(a) Conversion from edge to grid points. (b) Conversion from edge to grid points at a part of an OSM.

Figure 3.5: The spatial conversion from emission on an edge to concentrations in grid points. The trajectory of the edge is converted
to a set of grid points (visualized as filled circles). The differences in colour display the difference of the NOx concentrations, where red
points represent higher concentrations than green points. When a grid point is located nearby multiple edges, the concentration at that
grid point is increased by multiple edges. That results in higher NOx concentrations on grid points that are near intersections.

the emission per edge is distributed over 3 grid points. Therefore, the contribution of edge 17 to the con-
centrations of the nearby grid points is equal to 163.6 µg /m3 at the timeframe from 16:01 to 16:02. This
concentration does only depend on the emission of the vehicles from 16:01 to 16:02. The emissions during
the timeframe 16:00 to 16:01 do not have influence on the concentration from 16:01 to 16:02.

The concentration per grid point might be higher than it is calculated in the example of Figure 3.5a, be-
cause some of the grid points may be located near other edges. The contributions to the NOx concentrations
of all routes are accumulated per grid point and per timeframe which results in an accumulated emission
model that is used for the evaluation of methods. This model is also used for the determination of optimal
routes.



4
METHODS AND ALGORITHMS

In this chapter is described how a set of routes S is calculated, such that the exceedance of the NOx threshold θ
is minimized, while the individual travel times of drivers are kept short. The total emission of CO2 of all routes
from set S together is also reduced. This is in less formal language the problem definition as described in
Chapter 2.

A route can be seen as the concatenation of roads and intersections on area A. These roads and intersec-
tions can be transformed to edges and nodes on a graph G. The construction of the graph G for the area A is
described in Section 4.1. After that, in Section 4.2 an algorithm is constructed for calculating the lowest-cost
paths from an arbitrary source to an arbitrary destination on graph G. In Section 4.3 is described how the
constructed algorithm for calculating one path can be applied to calculate the routes of a whole set of drivers,
which results in a set of routes S.

4.1. CONSTRUCTION OF TIME-DEPENDENT GRAPH G
The objective of this research is to calculate a set of routes S on an area A for a set of route requests. A route
request consists of a source, a destination, a start time and a vehicle type, like it is described in Chapter 2.

To calculate a route from a source to a destination, it is first necessary to transform a real-world area A
(Figure 4.1a) with roads and intersections to a graph G of edges and nodes (Figure 4.1b). In graphs, weights
are assigned to edges, such that the weight expresses the cost for traveling across that edge. The optimal path
from a source to a destination is the combination of edges in a graph which have together the lowest sum of
the weights. The feasibility (cost) of a path is determined by the costs of the individual edges that are part of
that path.

For routing problems which strive for the shortest routes of drivers, the weights of edges are defined as the
distance between the nodes on the two ends of the edge. If the objective of a routing problem is to find the
shortest travel time, the weight of an edge represents the distance of the edge, divided by the average speed
that can be driven across that edge (Figure 4.1c).

The objective of this research is to find routes for drivers, such that the exceedance of the NOx threshold
caused by the cumulative emission of vehicles is minimized. In addition to that, the travel time of routes is
bounded above, as well as the CO2 emission of all vehicles together. Therefore, in this research, the weight of
edges is expressed as a weighted combination of the travel time and the environmental impact.

One part of the weight of an edge is the travel time. The travel time is approximated by dividing the length
of the edge l [m] by the expected speed v [m/s] that a driver can drive across that edge (Equation 4.1 and
Figure 4.1c).

Travel time = l

v
(4.1)

An important part of the weight is a factor that represents the local NOx concentrations. Low concentra-
tions of NOx are permitted, so the weights of edges with low concentrations of NOx nearby should depend
mostly on the other factors (travel time and CO2 emission). Therefore, the share of NOx on the weight of an
edge is expressed as the cumulative exceedance of threshold θ of every grid point nearby an edge. In Sec-
tion 3.3 is described how it is determined which grid points are located nearby an edge. Grid points that have

15
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(a) Original map with origin and
destination.

(b) Translate map to graph of nodes
and edges.

(c) Calculate distance, speed and
travel time.

Figure 4.1: The conversion from an area A to a graph G, where the weights represent the travel time.

a NOx concentration lower than the threshold are not considered. If all the grid points around an edge have
a NOx concentration below the threshold, the NOx part of the weight of that edge is equal to zero. The NOx
concentrations fluctuate over time, like it is described in Section 3.3. The NOx concentrations around an edge
(NOx(t )) are therefore requested for a certain time period. At the corresponding time frame, the exceedance
of the threshold θ is calculated per grid point g of the set of points around edge E , and the summation over
all points is stored as φ(t ) (Equation 4.2). The cumulative exceedance is scaled by a factor Cnox , which leads
to Equation 4.3, which is visualized in Figure 4.2. A visualisation of the values for φ(t ) for different edges can
be found in Figure 4.3a.

φ(t ) = ∑
g∈E

max(0, NOx(t )−θ) (4.2)

NOx part = φ(t )

Cnox
(4.3)
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Figure 4.2: A plot of Equation 4.3, as a function of the cumulative concentrations φ(t ) at that edge. In this case the weighting factor Cnox
is set to 1 and the NOx threshold θ to 200 µg /m3.
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(a) Retrieve the exceedance φ(t)
[µg /m3] around every edge.

(b) Calculate own expected CO2
emission.

(c) Calculate the combined weight
of the edges.

Figure 4.3: A visualisation of the routing procedure for one driver who navigates in an existing traffic distribution. The NOx concentra-
tions are visualised as colored circles. Green colors represent low NOx concentrations, while orange colors represent high NOx concen-
trations. In Figure 4.3a φ(t ) is greater than zero for edges nearby orange grid points. In Figure 4.3c the total weight of the blue and the
red route is calculated, with α = 0.3, β =0.4 and γ=0.3. The red route is faster, but the blue route is preferred, to improve the air quality
near to the red route.

Another objective is to limit the total emission of CO2, so the expected CO2 emission of a vehicle (R(CO2) is
another part of the weight of an edge (Equation 4.4 and Figure 4.3b). The expected CO2 emission is calculated
according to the emission model that is described in Section 3.2. The expected CO2 emission is divided by a
scaling factor (Ceco), such that this part does not dominate the weight of an edge.

CO2 part = R(CO2)

Ceco
(4.4)

As we stated earlier, the weight of an edge is expressed as a weighted combination of travel time, the
nearby NOx concentrations and the expected emission of CO2 of a vehicle for that edge. The complete ex-
pression of the edge weights is formulated by Equation 4.5. The three different parts are weighted by factors
α,β and γ. Equation 4.6 states that the weighting factors of each part of the formula should be equal to one,
while they individually should have values between zero and one.

For vehicles with zero emissions, like electric vehicles, α is set to 1, and β and γ to zero. In this way,
vehicles which do not contribute to higher NOx concentrations or to a higher CO2 emission, are assigned the
fastest routes.

Figure 4.3 shows that this weighting procedure may lead to decide to take a small detour (the blue route)
in order to reduce the peak NOx concentrations nearby the red route.

W(t) =αT +β φ(t )

Cnox
+γR(CO2)

Ceco
(4.5)

α+β+γ= 1 (4.6)

4.2. CONSTRUCTION OF AN ALGORITHM FOR FINDING THE SHORTEST PATH IN

A TIME-DEPENDENT GRAPH
In Section 4.1 a time-dependent graph G = (V,E) is defined, where the weights of edges express the require-
ments on routes: minimal exceedance of the NOx threshold, with low travel times and reduced emissions.
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The weights of edges are time-dependent in this graph, so in this section a time-dependent algorithm is con-
structed that calculates a path from a source to a destination, with a certain time of departure. For the con-
struction of this algorithm, first some of the best-known algorithms for finding shortest paths in static graphs
are described in Section 4.2.1. We examine which algorithms can be transformed to time-dependent ver-
sions for the constructed graph G of Section 4.1. After that, the time-dependent algorithm that is constructed
is described in Section 4.2.2.

4.2.1. ALGORITHMS FOR FINDING THE SHORTEST PATH IN A STATIC GRAPH

Several algorithms have been developed that find a solution to the static point-to-point version of the shortest
path problem, of which one will be used for the construction of a time-dependent shortest path algorithm.

DIJKSTRA’S ALGORITHM

In 1959 Edsger Dijkstra [21] proposed a greedy algorithm to solve the single source shortest-path problem
(Algorithm 1). For a graph G=(V,E) the shortest route between start node source to destination node target
is calculated by the construction of a solution tree from the source node to all other nodes in the graph G,
until a path to the destination node is found. The path from the source node to the destination node can be
retrieved by traversing the solution tree from the destination node back to the source node.

The algorithm can also easily be used to calculate the distance of one node to all the other nodes in the
graph. In that case the algorithm should stop only if the set of unvisited nodes Q is empty. Without further
modifications the worst-case runtime for connected graphs is O(|E | log(|V |)).

Because Dijkstra constructs the shortest path by computing a tree until the destination node is found, it
is relatively easy to obtain the edge weights at the correct expected time.

A* SEARCH ALGORITHM

An extension of Dijkstra’s algorithm is proposed by Peter Hart, Nils Nilsson and Bertram Raphael in 1968 [23]
(Algorithm 2). They have added a heuristic to Dijkstra’s algorithm. Dijkstra’s algorithm traverses the graph in
all directions, considering also nodes that will lead the traveller further away from his destination. Off course,
in advance it is not possible to know exactly which nodes should be considered. However, a estimations can
be made on the minimum distance between each node and the destination node (ĥ(n)). This estimation can
be based on the geographical distance between the nodes. Nodes that have the smallest minimal distance
to the destination will be evaluated first. If the function that estimates the minimal distance is admissible,
which means that it never overestimates the minimal distance, then the optimal path will be found by this
algorithm.

The time complexity of the algorithm depends on the chosen heuristic for the estimation of the distance
to the endpoint. If the search space is unbounded, the complexity is exponential in the depth d of the path
from node u to node v , equal to O(bd ), where b is the average number of succeeding nodes for each node [24].
Although the worst-case runtime of the A* search algorithm is worse than the complexity of the original Di-
jkstra algorithm, in most cases the A* search algorithm will outperform the algorithm of Dijkstra if a good
heuristic is chosen for the estimation of the minimal distance to the endpoint.

If the heuristic is consistent (also called monotone), each node will be evaluated at most once by the A*
algorithm. A consistent heuristic estimates the minimal distance from a node s to the destination always less
than or equal to the estimated distance from any neighboring vertex v to the destination, plus the distance
d(s, v) of reaching that neighbor (Equation 4.7). Then the complexity becomes linear in the number of ver-
tices (O(V)) [22]. Usually the solution trees of the A* algorithm are cut off earlier than the solution trees of
Dijkstra’s algorithm, such that the shortest route is found faster.

ĥ(s) ≤ ĥ(v)+d(s, v) (4.7)

Like Dijkstra’s algorithm, the A* algorithm constructs the shortest path as a tree with the source as the
root node. Therefore, the time at which an edge is traveled can be calculated using the distance from the
source node to the node that is connected to that edge. The strength of the A* algorithm is determined by the
strength of the heuristic. However, for the constructed graph G it is not worthwhile constructing a heuristic
that estimates the minimal cost to a destination, because the weights are dominated by the NOx concentra-
tions, which are not as predictable as geographical distances.
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Algorithm 1 Dijkstra’s algorithm for finding the shortest path between source and target in a graph G=(V,E).

Q = ;
for all v ∈ V do

d[v] ←∞
prev[v] ← null
add v to Q

end for

d[source] ← 0
while Q 6= ; and u 6= target do

u ← vertex in Q with min d[u]
remove u from Q
for all neighbours v of u do

dest i mated ←d[u] + c(u, v)
if dest i mated < d[v] then

d[v] ← dest i mated

prev[v] ← u
end if

end for
end while
return d[], prev[]

Algorithm 2 A* search algorithm for finding the shortest path between source and target in a graph G=(V,E)
according to the formulation of Martelli [22].

CLOSED = ;
OPEN = {source}
g(s) ← 0
f̂ (s) ← ĥ(s)

while OPEN 6= ; and current 6= target do
current = minn∈OPE N ( f̂ (n))
remove current from OPEN
add current to CLOSED

for all neighbours v of current do
g(v) ←g(current) + c(current, v)
if v ∉ OPEN and v ∉ CLOSED then

ĝ (v) ←g(v)
f̂ (v) ←g(v) + ĥ(v)

else
if ĝ (v) > g (v) then

ĝ (v) ← g (v)
f̂ (v) ← g(v) + ĥ(v)
if v ∈ CLOSED then

remove v from CLOSED
add v to OPEN

end if
end if

end if
end for

end while
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CONTRACTION HIERARCHY

For large graphs the Dijkstra and A* algorithms might be too slow to be used in practice. To decrease the
number of nodes that must be considered, a contraction hierarchy can be used. This technique as described
by Sanders, Schultes and Delling [25] will pre-process the graph, such that future requests of paths can be
treated faster. During this pre-processing stage, a hierarchy is constructed in the graph. Multiple edges will
be combined into one imaginary edge with a weight that is the sum of the contracted edges. The selection of
the edges is based on some predetermined nodes that will be considered as most important. After the pre-
processing stage the routing will be performed between the depart node to the destination node by searching
through the hierarchy. In this way route requests can be handled much faster.

For time-dependent graphs the implementation of this procedure is much more complicated. The pre-
processing of the graph must be performed for multiple time-frames. If after the pre-processing stage one
of the NOx concentrations would change, the whole pre-processing stage must be performed again. Trans-
forming this algorithm to a time-dependent version is therefore regarded as infeasible for this problem.

4.2.2. ALGORITHM FOR FINDING THE SHORTEST PATH IN A TIME-DEPENDENT GRAPH
In Section 4.2.1 is described that transforming the Contraction Hierarchy to a time-dependent algorithm is
regarded as infeasible. Furthermore, the run-time of the shortest-path algorithm can be reduced by using
the A* algorithm with a heuristic for the estimation of the minimal distance from a node to the destination
node. However, the construction of such a heuristic is considered meaningless for graph G, due to the strong
dependency of the weights of edges with the local NOx concentrations which are hard to predict. Therefore,
we choose to transform Dijkstra’s algorithm to a time-dependent version.

TIME-DEPENDENT VERSION OF DIJKSTRA’S ALGORITHM

The time-dependent version of Dijkstra’s algorithm is formulated in Algorithm 3. Off course, this formula-
tion is broadly the same as the original Dijkstra’s algorithm. The difference is that for each edge the weight
is requested at a specific time (described at Section 4.1). To be able to request weights at the correct time
(c(u, v ; t [u]), the travel time is stored separately as t [u]. The weight of an edge w[u] is used to calculate the
optimal route, in the same way as it is computed for static graphs. The travel time of an edge t [u] is used to
estimate the arrival time at the next edge, such that the weight of the next edge can be requested at the right
time frame.

EVALUATION OF CONSTRAINTS

Before calculating a route with the time-dependent Dijkstra’s algorithm, certain values are chosen for α, β
and γ, such that they sum up to 1, while they have individually a value between 0 and 1 (Equation 4.6). These
weighting factors determine the influence of the travel time, the local NOx concentrations and the expected
CO2 emission of a vehicle on the calculation of the path.

In Chapter 2 the problem of this research is formulated as a minimization problem with constraints. One
of the constraints is that the length of a route between a certain source and a destination must not be longer
than ρ% of the fastest possible route between that source and that destination. To satisfy this constraint, the
determination of a route is performed by Algorithm 4. As long as the constraint is not satisfied, the weighting
parameters are adjusted, until a short enough path is found. In the worst case, Algorithm 3 would be executed
10 times, because it would take 10 iterations to reduce β or γ from 1 to 0.

4.3. METHODS
Algorithm 4, which is constructed in Section 4.2, calculates an optimal route for one driver on a graph G that
is constructed in Section 4.1. The objective of this research is to calculate a set of routes, such that the ex-
ceedance of the NOx threshold is minimized locally. This can only be achieved with Algorithm 4 if the graph
G is an accurate reflection of the real distances and traffic densities. In order to achieve such accurate reflec-
tions of the actual NOx concentrations, two methods are constructed, which are described in Sections 4.3.1
and 4.3.2.

4.3.1. METHOD 1: FIRST COME, FIRST SERVED
One approach is to let the drivers calculate their optimal path in a ‘First come - first serve’ manner (Algo-
rithm 5). The set of drivers is stored as a list with random order. Each driver in this list has a certain source,
a destination, a time of departure and a vehicle type (Section 2.3). Then, after the list of drivers is retrieved,
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Algorithm 3 The time-dependent version of Dijkstra’s algorithm for finding the shortest path between source
and target in a graph G=(V,E).

Q = ;
for all v ∈ V do

w[v] ←∞
t[v] ←∞
prev[v] ← null
add v to Q

end for
w[source] ← 0
t[source] ← start time
while Q 6= ; and u 6= target do

u ← vertex in Q with min w[u]
remove u from Q
for all neighbours v of u do

west i mated ←w[u] + c(u, v ; t[u])
if west i mated < w[v] then

w[v] ← west i mated

t[v] ← t[u] + t(u, v)
prev[v] ← u

end if
end for

end while
return w[], t[], prev[]

Algorithm 4 The determination of a route between source and target in a graph G=(V,E), satisfying the maxi-
mum route length constraint.

α← 1
β← 0
γ← 0
t [source, target]base ← Algorithm 3 with α, β and γ.
t [source, target] ←∞
counter ← 0
0 ≤αor i g ≤ 1
0 ≤βor i g ≤ 1
0 ≤ γor i g ≤ 1
while t [source, target]− t [source, target]base > ρ× t [source, target]base do
α←αor i g + counter × 0.1
if α > 1 then
α←0

end if
β←βor i g - counter × 0.1
if β<0 then
β← 0

end if
γ← γor i g - counter × 0.1
if γ<0 then
γ← 0

end if

w[], t [source, target], pr ev[] ← Algorithm 3 with the adjusted α, β and γ

counter ← counter + 1
end while
return w[], t[], prev[]
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the routes for drivers are computed sequentially. After the computation of one route, the emission map is
updated according to the model that is described in Section 3.3, using Algorithm 6. The addition per grid
point is calculated by dividing the expected emission at that edge (NOx(t)) by the number of grid points (|P|)
times the surface area of a grid point (x2), where x denotes the granularity of the grid.

Algorithm 5 Approach where routes are calculated one after another

for all Drivers do
Compute route by Algorithm 4
Store emission trace of computed route at collective map (Algorithm 6)

end for

Algorithm 6 Procedure for increasing NOx concentrations around the computed route

prev[], t[] from Algorithm 4
u ← destination
while prev[u] 6= ; do

v ← prev[u]
for t:=t[v] to t[u] step 1 do

P ← grid points around edge (v,u)
for all p ∈ P do

p(NOx(t)) ← p(NOx(t)) + R(NOx)
|P |x2

end for
end for
u ← v

end while

Algorithm 4 returns a set of connected nodes from the destination to the source (prev[]). This set is the
optimal path between the source and the destination. In addition to that, Algorithm 4 does also return a set
of arrival times for every node, relative to the start time at the source. These two sets are used to store an
estimation of the emission trace of a vehicle in the graph G. For every edge between any nodes between the
source and the destination, the NOx concentrations are updated for every grid point nearby that edge (as
described in Section 3.3). The next driver in the list has therefore a slightly different graph compared to the
previous drivers.

The emission map that is updated by the last driver of the list of drivers is an estimation of the actual
emission map that is present due to the constructed set of routes of all drivers in the list.

The advantage of this method is that a set of routes can be constructed by calculating for every driver
one route sequentially. In this way, the peak NOx concentrations and the total CO2 emission will be reduced,
while the routes of individual drivers are bounded above.

Another advantage is that this method would accept additions to the list of drivers during run-time, be-
cause the routes are computed sequentially, with graph updates in between.

A drawback of this approach is that a driver that computes his route can not take into account the emis-
sion traces of successive drivers. As a result of that, his route may lead through areas that have already large
exceedances of the NOx threshold θ, while he possibly has an alternative route at his disposal through an area
with low NOx concentrations which would take only slightly longer travel time.

4.3.2. METHOD 2: ROUTING WITH RESCHEDULING
Another approach is to allow drivers to recompute their route, after all other drivers have stored their routes
(Algorithm 8). This procedure is roughly the same as for method 1 (Section 4.3.1), but the difference is that the
calculation of the set of routes S is performed in iterations. In the first method, the first drivers of the list have
computed their routes on a graph that did not contain the estimated emissions of the routes of the successive
drivers of the list. Potentially, the routes of the first drivers of the list are no longer optimal. Therefore, in
this method the set of routes is constructed using multiple iterations. Before a driver computes its route, he
removes his former emission trace from the graph, according to Algorithm 7. Then, after the determination
of his optimal route by Algorithm 4, he stores his new emission trace according to Algorithm 6.

After several iterations this approach would lead to a user equilibrium, where no driver has the advantage
to change its route. This is equivalent to Wardrop’s principle [12], that if each driver in a traffic network seeks
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Algorithm 7 Procedure for reducing NOx concentrations around the former route

prev[], t[] from Algorithm 4
u ← destination
while prev[u] 6= ; do

v ← prev[u]
for t:=t[v] to t[u] step 1 do

P ← grid points around edge (v,u)
for all p ∈ P do

p(NOx(t)) ← p(NOx(t)) - R(NOx)
|P |x2

end for
end for
u ← v

end while

Algorithm 8 Approach where recomputing routes is permitted

for all Iterations do
for all Drivers do

Remove (if present) old emission trace from collective map (Algorithm 7)
Compute route by Algorithm 4
Store emission trace of computed route at collective map (Algorithm 6)

end for
end for

routes to benefit himself most, the User Equilibrium (UE) state is reached when no driver has the incentive
to change his current route. In Wardrop’s UE every driver optimized his route on the travel time only, while in
this method the local NOx concentrations are incorporated in the edge cost function of the graph.

One of the drawbacks of this method is that the run-time can be too large for large areas. Due to the
addition of iterations, the run-time is scaled up linearly. Although this would normally not be considered
as a problem, in this case the linear growth of the run-time would make the algorithm infeasible for the
application in metropolitan areas. The number of nodes, edges and vehicles is large in metropolitan areas.
Due to the sequential computation of a set of routes, the run-time of one iteration would already take quite
some run-time.





5
EXPERIMENTAL SETUP

In this chapter the setup of the experiment is described. Figure 5.1 shows the components of the system, and
the relation between them. According to Chapter 2 the set of routes must be calculated for a certain area. For
a certain area A both a map and a corresponding set of route requests is retrieved. For this traffic demand a set
of routes must be constructed, which lead to certain emissions. In this research, the emissions are modeled
by the emission model that is described in Chapter 3. After the set of routes is calculated, the total travel
time, the total CO2 emission and the time-dependent NOx concentrations can be retrieved, which are used
to compare different methods and configurations with each other.

Figure 5.1: The relation between the input and output of the problem.

The selection of areas and the acquisition of maps is described in Section 5.1. Based on the selection of
the area, a traffic demand is generated, which is described further in Section 5.2. For the constructed traffic
demand on an area, a set of routes is sequentially calculated, according to the methods that are described in
Section 4.3, using a time-dependent algorithm. The software implementation of these methods is described
in Section 5.3. Section 5.4 describes in which way the methods will be evaluated.

5.1. AREA SELECTION
The methods are evaluated in the two largest cities in the Netherlands, which are Amsterdam and Rotterdam.
Amsterdam and Rotterdam are situated in the western part of the Netherlands, where the traffic densities are
high. Due to the high traffic densities, the air quality is poor in these cities. This makes it an interesting area
to explore the effect of traffic management on the air quality. Figure 5.2 shows the areas that are selected for
this experiment.

The maps which are used for both cities are generated by the OpenStreetMap (OSM) project1. The maps

1OSM files can be retrieved from http://extract.bbbike.org/ by specifying the geographical corners of the area.
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(a) Amsterdam, lower left corner: (4.54,52.21), upper
right corner: (5.21,52.53)

(b) Rotterdam, lower left corner: (4.29,51.74), upper
right corner: (4.84,52.08)

Figure 5.2: The areas which are used for the evaluation of the methods are indicated with orangle rectangles, with the corresponding
geographic coordinates of the corners in the description.

that are generated by this project are freely available, and can be downloaded for offline use.

5.2. GENERATION OF THE TRAFFIC DEMAND
The traffic demand consists of multiple individual drivers that want to travel from a certain source to a cer-
tain destination, with a vehicle type and a desired time of departure. The traffic demand can therefore be
modelled as a list of driver profiles, where every driver profile consists of a point of departure, a destination, a
vehicle type and a start time. The list of driver profiles are constructed in such a way that together the fastest
routes for each driver profile result in traffic distributions that are similar to real traffic distributions.

The list of driver profiles is constructed using the output of a survey that has been performed by Cen-
traal Bureau Statistiek (CBS), a Dutch office for statistical analysis in 2014. The research is called ‘Onderzoek
Verplaatsingen in Nederland’ (OViN), which is loosely translated to ‘Study to displacements in the Nether-
lands’ [26]. In this survey 0.3% of the Dutch inhabitants keep track of their movements for one day in the
year. The survey consisted of more than 100 questions, but for the construction of driver profiles only a part
of the questionnaire is needed.

GENERATION OF ORIGIN-DESTINATION COUPLES

One of the main components of the OViN survey [26] was the tracking of movements. The participants noted
the numerical part of the postal codes of their point of departure and their destination, together with their
means of transportation. For the construction of driver profiles only the origin-destination postal codes of
participants that drive by car are used.

The participants of the survey are inhabitants originating from all regions of the Netherlands. In this
research maps are used that contain only a part of the map of the Netherlands. The participants of the OVIN
survey can be categorized into four groups. The first group of driver profiles consists of participants with both
their point of departure and their destination postal code within the map that is used. The second group has
either its origin, or its destination inside the map. The position outside the map is mapped to the border
of the map, by computing the intersection between the border of the map and a straight line between the
original point of departure and the destination point. The nearest main road to this intersection point is
regarded as the point of departure (or destination) of this driver profile. The third group of driver profiles
consists of participants that have their point of departure and their destination outside the map that is used
for this research, but the straight line between those points intersects with the map. The fourth group of
driver profiles does not have a point of departure or destination within the map, and a straight line from the
point of departure to the destination does not cross the borders of the area that is considered. This group of
driver profiles is ignored for the creation of a traffic model.

In reality, some drivers from the third group of driver profiles do not drive through the considered area,
while some drivers from the fourth group will drive through it. These dissimilarities with the reality will most
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likely occur on and near the borders of the map. The dissimilarity of the traffic model with the reality could
be kept small by choosing the borders of the area at regions with a small road density, for instance at the
countryside around cities.

For the privacy of the participants of the OViN survey 4-digit postal codes are used for the points of depar-
ture and destinations. In the Netherlands the 4-digit postal codes represent usually large districts of munic-
ipalities. Therefore postal services often make use of a 6-token postal code that consists of the 4-digit postal
code, enhanced by two characters from the alphabet. These postal codes are usually unique for every street.
This precision is needed for the driver profiles to be able to analyse the effects of traffic dispersion within city
districts. The list of driver profiles is created by selecting each time the point of departure and destination
pair of a random participant of the OViN survey, enhancing the source and destination postal code with two
‘random’ characters, but the combination must be an existing postal code.

This procedure is repeated until the size of the list is equal to the desired number of driver profiles. The
desired number of driver profiles can be estimated by expanding the group of OViN driver profiles according
to the participation rate of the OViN survey (0.3% of the Dutch inhabitants took part). The survey has been
performed in a broader area than the areas that are concerned in this research. Therefore the number of
participants of the OViN survey is too low to select a specific day of all replies. Instead, the movements of
a whole year are collected and used for the construction of a list of driver profiles for one day. Merging the
movements of week days, with a lot of traffic between homes and work places, and days in the weekend, with
more private trips, is the main drawback of this measure. However, a set of driver profiles that is extensively
spread out over the map is preferred over the correctness of origin-destination couples.

From the responses to the OViN survey, 3618 movements have one or more endpoints in the area of Am-
sterdam. We extrapolate from this number that the number of driver profiles in one day should be around
1200000, by considering the fact that 0.3% of the Dutch inhabitants took part in the survey. By applying the
same reasoning for Rotterdam, we extrapolate that the number of drivers per day should be around 1750000
in that area.

GENERATION OF START TIMES

Together with the point of departure and destination postal code, participants have also submitted a time
of departure, in the remainder of this report called ‘start time’. If the driver profile has its point of departure
outside the map, the start time of the OViN participant is delayed with the distance [km] of a straight line
from source to the border of the map divided by a constant speed of 70 [km/h]. A histogram of the start times
of the OViN participants is shown in Figure 5.3. The start times are collected from the responses of every day
of the year. It can be observed that most people rounded their start times to the nearest half hour, because
these bins have the highest frequency.
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Figure 5.3: Histogram of the original start times, with a bin size of 0:15.
The start times are collected from every participant in 2014 in the area
of Amsterdam.

Although participants to the OViN
survey submitted a start time corre-
sponding to their displacement, this start
time should not be adopted directly for
the start times of driver profiles in this
research, because it is not realistic to
assume that a large number of drivers
would start from exactly the same time
from the same point of departure to the
same destination. Therefore, the start
times of driver profiles in this model
should be constructed using statistical
methods. Two methods have been con-
sidered for constructing start times for
the driver profiles, namely by kernelisa-
tion of the OViN entries, or by Gaussian
randomization per OViN entry.

Kernelisation of all OViN entries From
the OViN start times two peaks can be recognized, corresponding to the morning and afternoon rush hours.
Based on the OViN start times an estimation of the probability density function (PDF) can be made, using a
mixture of Gaussians procedure. Because we can identify two peaks for the corresponding rush hours, the
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PDF of the data can be represented by a mixture of two Gaussians. The resulting estimation of the PDF can
be found in Figure 5.4. This PDF can be constructed by two separate normal distributions, with two different
means and variances. Each distribution gets a prior that determines the likelihood that a sample is taken
from that distribution. In this case the start times of the list of driver profiles is constructed by a normal
distribution centered at 9:39, with a variance of 2 hours and 11 minutes, and a normal distribution with its
center at 17:22 and a variance of 2 hours and 38 minutes. The probability that a random sample is taken
from the first normal distribution is equal to 0.4169, while the probability that it is taken from the second
distribution is equal to 0.5831. A histogram of the generated start times is shown at Figure 5.5a.

This method for the generation of start times has two main drawbacks. The driver profiles of the OViN
instance are combinations of origin-destination information and a corresponding start time. This method
removes the relation between place and time. For instance, assume that in the original set of OViN driver
profiles most people would drive from South to North in the morning, and in the afternoon from North to
South. Since in this method the start times of the driver profiles are selected randomly from the generated
PDF, it is presumably the case that both in the evening and the morning the same number of drivers drive
from North to South as there drive from South to North.

Another drawback is that the traffic density appears to be very smooth over different quarters of an hour,
as a consequence of the choice for a Gaussian distribution with two means. The behaviour of people is much
more complicated than a Gaussian distribution with two or slightly more means. If we were to assume in this
research that all traffic is generated as a smooth Gaussian distribution, we would remove the effect of peaks,
and we would already assume a better spreading of the traffic for the base case.
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Figure 5.4: In red the Probability Density Function estimation of the
OViN start times, with means 9:39 and 17:22, and variances 2:11
and 2:38, and the priors equal to 0.4169 and 0.5831 (time notation
[hours:minutes]). The blue bins represent the original start times,
which are the same as in Figure 5.3.

Gaussian randomization per OViN
entry A better method is to save
the connection between the naviga-
tion data and the start time. However,
it is not realistic to generate more than
100 drivers that drive from the same
city districts to the same destination
districts at exactly the same second.
Instead, a Gaussian noise is added to
the original start time of the OViN in-
stance. So, the start times of drivers
with the same point of departure and
destination are generated based on a
Gaussian distribution with the mean
equal to the start time of the OViN in-
stance, and a variance of 15 minutes.
95% of the driver profiles based on
one OViN entry have a start time with
a maximum difference of 30 minutes
from the original OViN entry, as a con-
sequence of the Gaussian distribution. Together, the distribution of the start times of the generated list of
driver profiles is similar to distribution of the original start times from the OViN survey (Compare Figures 5.3
and 5.5b). Therefore, this method is used for the generation of start times for the list of driver profiles.

DETERMINATION OF VEHICLE TYPES

The emissions vary between different vehicle types. In the Netherlands all vehicles with a license plate are
registered at the ‘Rijksdienst voor Wegverkeer’ (RDW). The RDW shares information about all the registered
vehicles through online databases [27]. From this database the vehicle fleet can be divided into three fuel
classes: Petrol, Diesel and a remaining group of vehicles that are mostly powered by sources that have little
or no influence on the environment. For this model the fleet of vehicles is separated into four groups: Petrol
cars, Diesel cars for passengers (<2500kg), Diesel trucks and electric cars. The shares of each vehicle type that
is used in this research are shown at Table 5.1. The shares of the fleet are based on the information about
the fuel use from the database from the RDW [27]. Approximately 74% of the vehicles uses a Petrol engine as
power source. The central statistic agency of the Netherlands (CBS) states that the part of the kilometres that
is driven by trucks, is approximately 6% [28]. In this simulation also a part of the vans are classified as ‘truck’,



5.3. SOFTWARE IMPLEMENTATION 29

0:00 6:00 12:00 18:00 0:00
0

0.5

1

1.5

2

2.5

3
x 10

4

Start time [h]

F
re

q
u

e
n

c
y

(a) With Mixture of Gaussians

0:00 6:00 12:00 18:00 0:00
0

0.5

1

1.5

2

2.5

3
x 10

4

Start time [h]

F
re

q
u

e
n

c
y

(b) With Gaussian Noise on samples

Figure 5.5: Histograms of generated start times per method, with a bin size equal to 15 minutes.

such that we arrive at a part of 8% for the trucks. The assumption is made that almost all trucks are propeled
by Diesel engines. From the RDW it is known that 23% of the vehicles uses Diesel as their fuel. This means
that 15% of the vehicles can be classified as a passenger car that is propelled by a Diesel engine. The fourth
group in this experiment is the group of electric vehicles. Currently only 2% of the vehicles in the Netherlands
is actually powered by electricity. However, the remaining vehicle types have in common that they have lower
or even zero emissions. Also, a large part of the vehicle fleet is powered by hybrid sources. Therefore this
group is represented by an electric car with zero emissions. Although it is known that the number of driven
kilometres is larger for vehicles that are propelled by Diesel engines compared to the driven kilometres of
Petrol cars, the shares the vehicle fleet of each vehicle type will approximately be equal to the distribution of
the registered vehicles.

Table 5.1: The shares for each vehicle type of the total fleet of vehicles that is used in this experiment.

Vehicle type Part of fleet [%]
Petrol 74
Diesel Passenger Car 15
Diesel Truck 8
Electric 3

As stated in Section 2.3, the speed of vehicles at edges is fixed to the maximum speed of that road section.
However, some vehicles are not able to drive that speed. On top of that, for some vehicle categories additional
constraints apply for the maximum speed. In this model, the speed of drivers is limited to the maximum
speed they are allowed to drive. For Petrol, Diesel and Electric cars the speed is limited at 130 km/h. For
trucks, the speed limit is set to 90 km/h.

5.3. SOFTWARE IMPLEMENTATION
For the implementation of the routing algorithms and methods we do not have to start from scratch. A lot
of software projects exist that have implemented routing algorithms. One of such projects will be used to
implement the methods and algorithms that have been constructed in Chapter 4. Section 5.3.1 describes
several available routing machines. Once a suitable project is chosen as a basis, the implementation of the
methods is described.

5.3.1. DETERMINATION OF BASE ROUTING SOFTWARE PROJECT
In this section a choice will be made on which software the implementation of the simulation model and the
methods will be based. The requirements on which the different routing software projects will be compared
are as follows.

• The routing software must translate Open Street Maps to graphs of nodes and edges.

• It must be possible to adjust weights of edges dynamically, during the routing process.
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• The software project must be well documented, and the code must be easily adaptable.

• Preferred are projects that are used for broader application than only shortest path routing, because it
is more likely that these projects provide more adaptability to the needs of this project.

A lot of routers have been published and deployed on the web that can be modified to implement the
algorithms described at Chapter 4. This section describes different existing routing machines. One of the
main requirements of this project is that the cartography data that will be used is in the OpenStreetMap
(OSM) format. Out of many available routing machines2, three systems make it possible to perform routing
around the whole globe, have been intended for multiple vehicle types (cars,bicycles etc.), and have their
code published and managed on GitHub.

YOURS YOURS is an Openstreetmap Routing Service of which the actual routing part is performed by the
subsystem Gosmore. Although the code of Gosmore is available online via svn and on GitHub.com, it is not
actively managed online and little documentation about the code is available. This makes it hard to analyse
the software, and most presumably it will be hard to modify the software for the needs of this project.

Open Source Routing Machine (OSRM) A project that is managed much better is the Open Source Routing
Machine (OSRM) project3. The system is written in C++, and divided in classes, so the code is easily adaptable.
The routing server can be deployed locally or online, and is also available as an external server. Before the
server is able to handle requests, several steps must be performed. First the OSM data is extracted into OSRM-
data that is used by the system to handle route requests. The final step is to prepare for route requests. In order
to speed up the response times of routing queries, the routing algorithm is based on Contraction Hierarchies.
The weights of the edges are based on a profile that must be fed to the program before extracting the OSM
data. In order to be able to handle traffic data, the system can be started differently, by making it possible to
change the weights of some edges later on. The weight changes of particular edges can be supplied. However,
the server startup procedure must be performed again after the changes have been made.

Because of the use of Contraction Hierarchies the weights of edges can not be adjusted during the routing
process. Therefore OSRM seems not a good choice to be used for this project.

GraphHopper GraphHopper is a routing machine that is written in Java. It is actively managed online by
means of GitHub4, where several contributions of external developers have been accepted. The repository
contains a local web server that can be queried via a web-based GUI, or directly. The system is designed to
handle different routing algorithms. Among others Dijkstra’s algorithm, the A* search algorithm and Con-
traction Hierarchies have been implemented. The weights can be modified during runtime of the server.
Individual edges can be found by using geographical coordinates. The software is used by other researchers
which design a smart route planning system [29], a multi-modal employee scheduling system [30] or a real-
world employee scheduling and routing application [31]. Therefore, GraphHopper has been chosen as the
starting point for the development of the traffic simulator.

5.3.2. IMPLEMENTATION OF USER-BASED SYSTEM
Weighting and Time division The calculation of edge weights is done by extending the Weighting class
incorporated in the GraphHopper project. An additional function is added which makes it possible to retrieve
the weight of an edge on a specific time. The time is divided into periods of 60 seconds. It is possible to vary
the parameters α, β, γ, Cnox and Ceco .

Dijkstra’s time-dependent algorithm Dijkstra’s time-dependent algorithm is implemented by adjusting
the implementation of the original static Dijkstra’s algorithm. A time-dependent weight is requested from the
weighting class, while also the expected duration in seconds of that edge is returned. The time-dependent
weight is used for finding a minimum-weight solution, while the time is stored in the edge-tree, such that the
weight of the successive edge can be retrieved at the correct time. Also, once the algorithm has found the
optimal path, it must be able to retrieve the expected travel time of a route, because it has to be compared to
the base case, where only the travel time is part of the weighting.

2An overview of the available routing software for OSM can be found at http://wiki.openstreetmap.org/wiki/Routing/online_
routers.

3http://project-osrm.org/
4https://github.com/graphhopper/graphhopper/

http://wiki.openstreetmap.org/wiki/Routing/online_routers
http://wiki.openstreetmap.org/wiki/Routing/online_routers
http://project-osrm.org/
https://github.com/graphhopper/graphhopper/


5.4. CONFIGURATION AND TEST CASES 31

Updating NOx concentrations When Dijkstra’s time-dependent algorithm has finished, the NOx concen-
trations in the grid are increased. Starting from the destination node, the concentrations are increased at
the correct times, where the travel time of each edge is used to estimate the time at which the car will drive
through that edge. The concentrations of NOx are stored at time periods of 60 seconds. The addition of the
concentrations of NOx on grid points on a certain edge at a certain time is given by Equation 5.1, where v rep-
resents the expected speed of the vehicle, pt the expected time at that edge in that time period and NOx(v)
the expected emission of NOx, based on the vehicle type and expected speed. The traveled distance is multi-
plied with the emission characteristic for the right vehicle type (Table 3.1). φ(t) is computed by summing up
the additions of all drivers. If a driver is expected to drive multiple time periods at the same edge, the NOx
concentrations are increased at the corresponding time points, although no distinction is made between grid
points on the one end of the edge to the other end.

Addition = v × tp ×NOx(v) (5.1)

Updating total CO2 emission In the same way the total CO2 emission is stored. Each time that a route is
found, the emission per edge per timeframe is calculated by Equation 5.2. The traveled distance is multiplied
with the emission characteristic for the right vehicle type (Table 3.1). All these additions are summed and
stored as the total CO2 emission.

Addition = v × tp ×CO2(v) (5.2)

5.4. CONFIGURATION AND TEST CASES
Because of the many different free parameters in the determination of the weight of edges, the solution space
is large. Therefore, in this section different configurations are described that will be used to evaluate the
outcome of the methods. In all configurations, the exceedance of the NOx threshold (Equation 2.2) is calcu-
lated from 30 minutes after the start of the simulation, because at the first 30 minutes of the simulation the
traffic distribution is not a good representation of the real life traffic distribution. These 30 minutes are part
of the initialisation phase of the simulation, because the trajectories of drivers that have started before the
timeframe of the simulation are not contained in the simulation. In all configurations the timeframe is set
to 60 seconds. First, in Section 5.4.1 is described how an optimal parameter setting can be achieved. Then,
in Section 5.4.2 some corner cases are constructed, and the expected outcome is described. In Section 5.4.3
is described how the influence of ρ on the outcome of the constructed method is evaluated. Therefore, in
Section 5.4.4 is an experiment constructed which will reveal the impact of lower participation rates on the
outcomes. Finally, a comparison between method 1 and 2 is constructed in Section 5.4.5. For every configu-
ration is described what the expected outcome of the experiments would be.

5.4.1. PARAMETER TUNING
Many different free parameters determine the weight of edges, which will lead to a lot of different solutions.
In Section 5.4.2 is described which cases we will compare with each other. In this section is described how
a case is constructed that has a balance between travel times, the avoidance of NOx exceedances and the
emission of CO2. Therefore, we fix the parameters α to 0.4, β to 0.5 and γ to 0.1. By performing route requests
for short time periods, a suitable value for the scaling factor Ceco is chosen, such that the unweighted CO2

part is roughly as big as the travel time part.
Once values have been chosen for Ceco , α,β and γ, we will explore which value is the most suitable for

Cnox . The value for Cnox that results in the lowest NOx exceedance of the threshold θ will be chosen for the
following experiments.

We expect that for large values of Cnox the weight is dominated by the travel time, while for small Cnox

values the weight will be dominated by the NOx part of the equation. If the weight is dominated by the travel
time, we expect similar results as for the case that every driver would optimize its travel time, thus a small
total travel time, a large exceedance of the NOx threshold and a large total emission of CO2. If the weight is
dominated by the NOx part, a route choice is based with a strong local focus, resulting in longer travel times,
but less exceedance of the NOx threshold. If the influence of the NOx part is too large, routes become that
long that the total emission of NOx will grow, leading eventually to larger exceedances of the NOx threshold.

The parameter tuning is performed in the area of Amsterdam, on the timeframe from 16:40 to 18:10, when
the traffic densities are the highest.
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Table 5.2: Parameter configuration of different cases

Configuration name α β γ Cnox ρ [%] Ceco

Base 1.0 0.0 0.0 1 120 10
Balanced 0.4 0.5 0.1 1 120 10
Eco 0.0 0.0 1.0 1 120 10

5.4.2. COMPARISON OF DIFFERENT CASES
The parameter configuration that leads to the lowest total exceedance of the NOx thresholds in Section 5.4.1
is regarded as the ‘balanced’ case. This case is compared to two other cases: the extreme configurations of α
and γ. We have tuned this case in the area of Amsterdam in such a way that the NOx exceedance is minimal.
Therefore, we expect that this case has a minimal NOx exceedance, compared to the other two cases.

Table 5.2 shows the exact configurations per case.
The extreme case whereα is equal to 1 and β and γ to 0 is considered as the base case. This case is how we

consider that the set of routes would be without the methods in this research. In such a configuration every
driver tries to optimize its own travel time. We expect the lowest total travel time, the greatest exceedance of
the NOx threshold and the highest total CO2 emission for this configuration.

The extreme case with γ= 1.0 corresponds to the situation where every driver tries to minimize the emis-
sion of its own route. In some navigation devices such an objective is called ‘Eco’, therefore in this research
this configuration is also labelled by that name. This is somewhat similar to the methods of Patil [11] and
others, although in this experiment no congestion is taken into account. We expect that this configuration
will lead to longer travel times and the lowest possible total CO2 emission. Furthermore, because the emis-
sion characteristics for CO2 and NOx have a similar shape, we expect also a reduced exceedance of the NOx
threshold, because the total emission of NOx would also be reduced by this method.

The simulations will be performed from 16:40 to 18:10, both for the area of Amsterdam and for Rotterdam.
In all cases the maximum detour (ρ) of individual drivers is kept at 20% of the shortest travel time. We expect
that the balanced case can be less optimal for the area of Rotterdam, because the configuration of the weights
is optimized for the area of Amsterdam.

5.4.3. INFLUENCE OF ρ
Another parameter that is interesting to explore is ρ, which determines the maximum length of the detour of
an individual driver. For the balanced case, ρ is set to 10, 20, 50 and 100%, with the same values for α, β, γ
and Cnox as in Table 5.2. The simulation is performed in the area of Amsterdam from 16:40 to 18:10.

We expect that for small values of ρ the outcome is similar to the base case. For large values of ρ the
exceedances of the NOx threshold can grow, because a long detour will lead to larger total NOx emissions. A
large ρ will therefore also lead to a higher total emission of CO2 and a larger total travel time.

5.4.4. INFLUENCE OF THE SHARE OF PARTICIPATING DRIVERS
We expect that not all drivers would be willingly to participate in a collective routing system. Therefore, one of
the research questions was to explore the impact of lower participation rates to the project. This is measured
by configuring the weighting function for every driver to either the balanced case or the base case, based on
the participation rate. The routes of the part of the drivers that participate in the project are calculated first
with the parameters for the balanced case. For the remaining part of the drivers the base case is configured.

We expect that the impact of small participation rates on the NOx exceedance is very small. From a certain
amount of participants this effect will grow fast.

Because the configuration of the balanced case has a large influence on the travel time of individual
drivers, we expect that the total travel time will grow linearly with the participation rates.

5.4.5. COMPARISON BETWEEN METHOD 1 AND 2: INFLUENCE OF ITERATIONS
In this setup we will analyze what the effect is of performing the balanced case with multiple iterations. The
simulations will be performed for the area of Amsterdam, from 16:40 to 17:40. Due to the longer run-times
for multiple iterations the time duration of the simulation is reduced to one hour.

For method 1 and for method 2, we will analyze the percentual growth of the individual travel times com-
pared to the fastest possible travel time. Is is necessary to apply an averaging filter over this data, because
otherwise it would not be possible to analyze a plot of this data.
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We expect that for method 1 the average percentual growth will grow with the position in the list, due
to the fact that the first drivers in the list have no emission traces from the successive drivers in the list. For
method 2 we expect that the percentual detour for all drivers in the list will be the same on average, regardless
of the position in the list, because a user equilibrium would be reached.

Furthermore, we will explore the effect of the number of iterations on the NOx exceedance, the total CO2

emission and the total travel time.
We expect that the NOx exceedance will be reduced for increasing number of iterations, until the user

equilibrium would be reached. The travel times will increase with the number of iterations, until the user
equilibrium is reached. The total emission of CO2 will stay roughly the same for larger number of iterations,
because the reduction of the own CO2 emission is not influenced by the order in which the routes are com-
puted for the list of drivers.
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RESULTS

In this chapter the results are presented for the experiment which is described in Chapter 5.

6.1. PARAMETER TUNING

Figure 6.1 shows the effect of Cnox on the total exceedance of the NOx threshold that is set to 200 µg /m3,
measured according to Equation 2.2 from the Problem description at Chapter 2. Like we expected, for large
values of Cnox the NOx exceedance is large and the travel time short, while for small values of Cnox the NOx
exceedance is low and the travel time long. For large values of Cnox the total CO2 emission is large, as we
expected, but for average values of Cnox the reduction of the CO2 emission is the largest.

For the value of Cnox with the lowest exceedance of the NOx threshold, the reduction of the total CO2

emission is less. Apparantly, if the weight is dominated by the travel time more routes contain more highways
at which the emission per km is higher. If the weight is dominated by the NOx part, some routes take such
a long detour that the number of driven kilometers is increased that much that the total emission of CO2

grows. For the reduction of the total emission of CO2 a balance between travel time and the local NOx focus
is optimal.

For the remaining experiments, the optimal configuration for Cnox is 1.0, because that configuration has
the lowest exceedance of the NOx threshold and a reduced total emission of CO2.

6.2. COMPARISON OF DIFFERENT CASES
Comparing the three cases as described in Section 5.4.2, we see that the base case has indeed the lowest
travel time, the greatest exceedance of the NOx threshold, and the greatest total CO2 emission. We express
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Figure 6.1: Determination of the optimal setting for Cnox .
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the results of the two other cases therefore as percentual differences with this base case in Figure 6.2 for the
area of Amsterdam.
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Figure 6.2: Results for the different cases on the map of Amsterdam from 16:40 to 18:10. All cases do have an exceedance of the NOx
threshold, so the results are presented as percentual differences with the base case.

In the balanced case the exceedance of the NOx threshold can be reduced by 56.3% for the area of Ams-
terdam, while the total travel time increases by 2.9%. Meanwhile, the total CO2 emission is reduced by 1.8%.
Note that the individual travel times are maximally increased by 20%. We see that the exceedance of the NOx
threshold is minimal, compared to the base case and the eco case.

The eco configuration leads also to lower NOx exceedances, the lowest total CO2 emission, with the cost
of increased travel times. This is like we expected.

Figure 6.3 shows the distribution of the NOx concentrations across the whole area of Amsterdam, with a
simulation time of an hour. The reduction of the total NOx exceedance of the balanced case compared to the
base case leads to an increased number of grid points that have a concentration between 50 and 100 µg /m3,
which is far below the threshold of 200 µg /m3. The greatest reduction is the number of grid points that have
a concentration above 400 µg /m3. Grid points with such a large exceedance have a large influence on the
total exceedance.
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Figure 6.3: Overview of the distribution of the NOx concentrations across the whole area. In the balanced case, the number of grid points
that have a concentration between 10 and 50 µg /m3 is increased, while the number of grid points that have concentrations above the
threshold is reduced, compared to the base case.

Figure 6.4 shows the NOx concentrations of the centre of Amsterdam at 17:36. Corresponding to the
legend in the lower right corner, red dots correspond to high NOx concentrations, while green dots represent
low NOx concentrations. The NOx concentrations are to a large extent lower than 200 µg /m3, especially on
the western side of the ring road around Amsterdam.
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(a) Base case. (b) Balanced case.

Figure 6.4: Rendition of the NOx concentrations at 17:36 for the area of Amsterdam. The NOx concentrations are to a large extent lower
than 200 µg /m3, especially on the western side of the ring road around Amsterdam.

The same simulation setup has been applied to the area of Rotterdam. Figure 6.5 shows that the ex-
ceedance of the NOx threshold is reduced by 43.0% for the balanced case, compared to the base case. The
total CO2 emission is reduced by 2.1%, while the total travel time is increased by 2.9%. The total travel time
in the eco case is even more increased, as well as the reduction of the NOx exceedance. Furthermore, the
reduction of the total CO2 emission is greater.

The balanced case has only a reduction of 43.0% of the exceedance of the NOx threshold for Rotterdam,
while this was 56.3% for Amsterdam. An explanation for this behaviour could be that the same configuration
from the parameter tuning for Amsterdam has been used for the area of Rotterdam. A different tuning for
Rotterdam may result in a greater impact of the NOx part of the weight, leading possibly to better results.
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Figure 6.5: Results for the different cases on the map of Rotterdam from 16:40 to 18:10. The differences are expressed as percentual
differences with the base case.

Figure 6.6 shows the NOx concentrations of the centre of Rotterdam at 17:26. Corresponding to the legend
in the lower right corner, red dots correspond to high NOx concentrations, while green dots represent low NOx
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concentrations. In the balanced case, the number of points that have a concentration above the threshold θ

is less. At this timeframe, still at a lot of points the concentrations are above threshold θ, which is due to the
large traffic demand at this timeframe, and the requirement to offer short routes for individual drivers.

(a) Base case. (b) Balanced case.

Figure 6.6: Rendition of the NOx concentrations at 17:26 for the area of Rotterdam for the base case and the balanced case.

6.3. INFLUENCE OF ρ
Figure 6.7 shows the impact of maximum length of the detour on the exceedance of the NOx threshold, the
total CO2 emission and the travel time. Like we expected, for small values of ρ the outcome is similar to the
base case: short travel times, large exceedances of θ and a large total CO2 emission. The travel time grows
with the length of the detour between 10 and 100%. We see that the exceedance of θ is still reduced if the
detour of individual drivers is increased to 100%, which is different from what we expected. Apparantly, the
tuning process has yielded an optimal balance between reducing the NOx exceedance and the travel time.

0 50 100
0

0.5

1

1.5

ρ [%]

E
x
c
e

e
d

a
n

c
e

 o
f 

θ
 [

g
]

(a) The total NOx exceedance of θ.
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(c) The total travel time.

Figure 6.7: The influence of the maximal length of the detour.

We can derive from Figure 6.7 that for the reduction of CO2 a balance exists between short and longer
travel times. Presumably, forcing drivers to roads with a maximum speed close to 80 km/h leads to the lowest
total emission of CO2. Such roads take a slightly longer travel time than highways with a speed limit of 130
km/h. But, if a larger detour is allowed, drivers are forced by the NOx part of the weight to roads with even
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lower speed limits, which have a larger emission characteristic per driven km. In that case, the total emission
of CO2 is increased.

6.4. INFLUENCE OF THE SHARE OF PARTICIPATING DRIVERS
Figure 6.8 shows the influence of the number of participants on the outcome of the problem. Like we ex-
pected, the effect of the system with small participation rates is very small. However, the effect of the method
on exceedance of θ grows approximately linear with the number of participants after 40% of the participants
takes part.

Other than we expected, the total travel time does not grow linearly with the number of participants. We
can derive that there is a direct relation between the exceedance of θ and the travel time. The lower the
exceedance of θ, the higher the travel time.
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Figure 6.8: The influence of the participation rate of the project.

6.5. COMPARISON BETWEEN METHOD 1 AND 2: INFLUENCE OF ITERATIONS
Figure 6.9a shows that for method 1, which is equivalent to method 2 with one iteration, the routes that are
calculated last, are longer than the routes that are planned first. The first routes are calculated on an graph
with almost no stored emissions, which results in an average detour of 0% for the first 20000 routes. After
half of the routes have been planned, the increase of the travel times converges to 5%. This is similar to what
we expected, because the first drivers in the list has no emission traces from the successive drivers in the list
at his disposal. Figure 6.9b shows that the advantage of drivers that route as first is removed after multiple
iterations. Drivers do not get shorter routes if they route earlier, because their route is reconsidered at new
iterations.
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(a) After one iteration.
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(b) After four iterations.

Figure 6.9: The increase of the travel times against the number of drivers increases. Drivers who calculate their route later, have generally
longer travel times after one iteration. This effect is removed by multiple iterations. In order to be able to view a trend, the travel time
increases are shown as a moving average over 1000 samples. These travel times are of routes that are calculated using α = 0.4, β = 0.5,
γ= 0.1 and Cnox = 1. The peaks at the right side of the figure is caused by the fact that at the end of the list the input of time differences
to the moving average filter is too small to remove peaks.

Figure 6.10 shows the effect of multiple iterations on the exceedance of the NOx threshold, the total CO2

emission and the total travel time, for a simulation for the area of Amsterdam from 16:40 to 17:40. The ex-
ceedance of the NOx threshold decreases with the number of iterations, until 2 iterations. After two iterations
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the NOx exceedance does not further decrease with the number of additional iterations. The total CO2 emis-
sion seems to increase a little with the number of iterations, while the travel time increases. Compared to
the base case, after one iteration the NOx exceedance is reduced by 56.3%, while after 4 iterations the NOx
exceedance is reduced by 69.3%.
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Figure 6.10: The effect of the number of iterations.



7
FUTURE WORK AND RECOMMENDATIONS

Although the methods that are constructed in this research are able to assign routes to drivers such that the
exceedance of NOx concentrations and the emission of CO2 are reduced while low travel times for drivers are
preserved, several enhancements can be made to this research. Furthermore, other methods can be explored
that satisfy the requirements of the problem description, which we will show in this section.

7.1. ENHANCEMENTS TO THE SIMULATION
The simulation model consists of two parts, namely the traffic demand and the emission model. Improve-
ments to these models will presumably lead to more accurate simulation results. This section will therefore
suggest some possible enhancements.

7.1.1. ENHANCEMENTS TO THE TRAFFIC DEMAND MODEL

Although the traffic model in this research supplied a diverse traffic demand model to the methods, some
enhancements can be made to represent the real-life traffic distributions better.

VEHICLE TYPES

In this research only 4 vehicle types are used. In practice the fleet of vehicles is way more diverse. Also, buses
are not specifically regarded, while bus routes of regular buses can not be changed dynamically. Furthermore,
the routes of trucks are in this research based on displacements of passenger cars. In reality, trucks will have
different sources and destinations, like harbours and industrial areas.

VARIABLE SPEED OF DRIVERS

One strong assumption in this research was to assume per edge a fixed speed of the drivers. This would
mean that all drivers would keep the maximum allowed speed and have zero acceleration time. Furthermore,
waiting times at intersections are removed as well. These factors have a large impact on the travel times of
drivers, so for an accurate traffic model these factors must be considered.

INCLUDE CONGESTION

In this research for every edge a free-flow speed is assumed. However, in reality many traffic jams occur,
which has an adverse effect on travel times and vehicle emissions. In this research methods are explored that
reduce the exceedance of NOx thresholds locally by means of a traffic dispersion algorithm. As a consequence
of the traffic dispersion, it could be the case that too large a part of the traffic is routed through one-lane
edges, which would lead to large traffic jams at these sections. Traffic congestion causes lower speeds which
will presumably lead to higher vehicle emissions. The methods that are developed in this research lead to
traffic dispersion. Traffic dispersion will generally lead to fewer traffic congestion. It can be the case that the
methods of this research lead to higher improvements of the air quality, relative to the base case. It would be
interesting to measure this, so that this theory can be proven.
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IMPROVE ORIGIN-DESTINATION INFORMATION

The list of driver profiles in this research has been constructed using survey data and assumptions on the
generality of this survey. However, the resulting traffic distribution is not compared to vehicle counts in real
life. Rijkswaterstaat, a Dutch governmental organisation that is responsible for managing traffic flows, has
performed such a research. This resulted in a more realistic and a more accurate Origin-Destination model.
This model gives more certainty about the regions where the traffic yields NOx concentrations above the
thresholds. For the objectives of this research the OViN survey was sufficient.

7.1.2. ENHANCEMENTS TO THE EMISSION MODEL
The emission model that is used in this research is very basic, so before this system can be introduced in
cities, several extensions to this model are needed in order to be able to guarantee that the air quality will be
improved by the methods that are explored in this research.

INCLUDE OTHER SOURCES OF NOX EMISSION

In this research only NOx emissions stemming from traffic are used for the construction of a map with NOx
concentrations. However, there are other sources of NOx that have a large impact on the local NOx concen-
trations. For instance, the contribution of the aviation and the shipping industry to the NOx concentrations
is substantial. In order to improve the health of citizens in cities, also other contributors to high NOx concen-
trations must be modelled. In this way, the traffic is further reduced at areas with high NOx concentrations,
for instance areas nearby airports, ports, and plants.

INTRODUCE FADING OF EMISSIONS

The emission map in this research does only contain records of vehicle emissions per time and place. Emis-
sions at one timeframe have no influence on the NOx concentrations at the subsequent timeframe. Also,
emissions at one grid point are stored independently from surrounding grid points. It would be better to
translate the emission model to a concentration model, by assuming spatial and temporal fading. Vehicle
emissions at a certain grid point at a certain timeframe would then contribute to the concentration of sur-
rounding grid points, as well as to the concentration of future timeframes.

7.2. INDIVIDUAL APPROACH: ROUTE WITH A PREDICTION OF THE AIR QUAL-
ITY

The method in this research is based on the communication of drivers via an emission map. Although it
is possible to construct such a system where every driver stores his route in a collective database, a more
elementary emission map can be used that is no longer directly dependent on the routes that other drivers
store. Such an emission map can be constructed using a prediction of the traffic densities per edge, the
emission of other sources of air pollution, like plants. The emission map can even be updated according to
the current weather conditions.

In such a method the calculation of routes is almost the same as for the method that is used in this re-
search. However, the cumulative emission function φ(t) is replaced by a prediction of this value. In this way,
drivers can calculate their routes fully distributed, such that sequential routing is not longer needed.

Another advantage of such a system is that the thresholds can be adjusted locally. If a local government
requires that the air quality must be improved at a certain area, for instance around a hospital, the thresholds
for that area could be lowered, such that the area is avoided as much as possible by traffic.

7.3. ROUTE CHOICES IN A SEQUENTIAL MULTI-OBJECTIVE APPROACH
The methods that are explored in this research construct solution trees with a weighted combination of travel
time and emissions. If the resulting paths have a travel time that exceeds the bound on the maximal travel
time, the solution is recomputed with a higher weight for the travel time. This leads to larger execution times.
Also, the routes that are computed by this method can be less convenient for drivers, because small detours
can be part of the route.

It is possible to construct another method that finds routes with low travel times that together reduce
the peak NOx concentrations and also the total CO2 emission, which does not direct drivers through less
preferable routes. In this method the route choices are made in a layered fashion. First a set of routes is
constructed that have travel times below ρ% of the optimal travel time (Section 7.3.1). For each route in
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this set the total CO2 emission weight and the NOx concentration weight can be calculated. By weighted
minimization the most suitable routes can be determined per driver.

7.3.1. CALCULATE ALTERNATIVE ROUTES
The Cambridge Vehicle Information Technology Ltd. (CAMVIT) group [32] introduced an algorithm that finds
a set of alternative routes in polynomial time. A good set of alternative routes is formed by routes that an ex-
pert would also deliver. The shortest path must be contained, as well as routes that are slightly longer, but
with a not too large overlapping part of the route. The researchers from CAMVIT constructed the alternative
routes by performing a bi-directional Dijkstra search. By looking for so-called ‘plateaus’, via-points v that are
contained in the shortest paths from both the source s and the destination t , alternative routes can be con-
structed by combining the paths s−v and v−t . But unfortunately, this approach is not fully documented and
is not fast enough for continental-sized networks. Therefore Abraham et al. [33] refined the problem, and pre-
sented a faster solution, by pruning the Dijkstra search tree. Another way of constructing alternative routes
is called the ‘Penalty’ method. The weights of the edges of the optimal route are increased iteratively, where
each iteration a new search for the shortest route can be performed. Both methods deliver good alternatives
to the shortest route. The methods have been described and improved further by [34], [35] and [36]. In this
research use can be made of the implementation of the plateau method by Peter Karich in the GraphHopper
project1.

7.4. CENTRAL APPROACH: FIND SYSTEM OPTIMUM
The methods that are presented in this research work in a distributed way. The emission map is shared,
but all route choices can be made in a distributed fashion. This leads to solutions that are not necessarily a
System Optimum. This section describes a system that would find a System Optimum for the same problem.
A central decision system makes it possible to find a System Wide Optimum. From a set of short routes for
each driver a route can be selected such that a global objective is optimized. The problem is formulated as a
minimization problem with constraints.

For every car a route must be chosen of the set of alternative routes that is obtained by the way it is
described in section 7.3.1. The decision between these routes is made by formulating the routing problem as
a Linear Program (LP) (equation 7.1). The objective is to find the minimal sum of the routes z ∈ Z j of all cars J .
The binary variable X j x is equal to one if route z ∈ Z j is chosen for car j ∈ J , otherwise equal to zero. Exactly
one route must be chosen for every car j ∈ J , so this is added as a constraint. The optimal solution is bounded
by constraints of the air pollution at predetermined nodes. The contribution to the concentration of NOx by
a route z at a certain node N at time t is denoted as I (z, N , t ). The maximum allowed concentration of NOx
at node N at time t is denoted as B(N , t ).

Minimize
∑
j∈J

∑
z∈Z j

l (z)×X j x

Subject to
∑
j∈J

∑
z∈Z j

I (z, N , t )×X j z ≤B(N , t ) ∀(N ,t )∑
z∈Z j

X j z =1 ∀ j

(7.1)

The input to the problem must be gathered in advance, so drivers must request a route some time before
they start their journey. The system could be implemented such that it calculates every half an hour a set
of routes for the drivers that are present at that timeframe, such that this time period can be kept small.
However, even with smaller timeframes this method is still not flexible, so the application of this system in
practice will not be very straightforward.

The main drawback of this method is that the routes are computed by one central system. It is very costly
to deploy a system that is able to construct an optimal set of routes in very short time periods. Moreover, if
this system would malfunction, no routes would be available for the vehicles.

However, this sytem finds the optimal set of routes, which can be compared with the sets of routes of
other (more flexible) methods. This system could function as an indicator for the quality of other methods.

1https://github.com/graphhopper/graphhopper/





8
CONCLUSION

The approximation of the emissions of a vehicle [20] is used to construct an emission map of all vehicles to-
gether. In this research NOx and CO2 are chosen to represent vehicle emissions. Based on an emission map,
an algorithm and corresponding methods are constructed that find routes that reduce the peak concentra-
tions of air pollutants, while the travel times of individual drivers are kept short. The scientific contribution
of this project is described at Section 8.1, followed by Section 8.2, which will summarize how this research
relates to the application of a load balancing system in practice.

8.1. SCIENTIFIC CONTRIBUTION
The results of this method are compared to a case were each driver has the incentive to find the fastest route
for himself. Compared to this situation, the local exceedance of the thresholds on NOx concentrations is
reduced by 56.3%, the total emission of CO2 is reduced by 1.8%, while the total travel time is increased by
2.9% for the area of Amsterdam. For the area of Rotterdam the total exceedance of the NOx threshold is even
reduced by 43.0%, the total CO2 is reduced by 2.1%, with the cost of an increase of 2.9% of the total travel time.
Therefore, it can be concluded that the collective traffic assignment method of this research can improve the
air quality in cities, while low travel times for individual drivers are preserved.

In this research, a congestion-free network is assumed. Therefore, individual minimization of CO2 emis-
sions leads to a lower total CO2 emission, in contrast to what Patil observed for his environmental user equi-
librium (E-UE) [11]. However, for the balanced case it can be assumed that the total congestion in the network
will not be increased, because high local NOx concentrations are avoided. Therefore, the total CO2 emission
can be reduced by this method, even if congestion is present in the network.

Sequential calculation of routes makes it advantageous for drivers to request their route as early as pos-
sible. Rescheduling removes that unfair effect, and it improves the air quality with approximately 13%. The
execution time of this method scales up linearly with the number of iterations, so this method is not preferred.

The simulation model that is constructed in this research can be used for other objectives as well. For
instance, this simulation model can also be used to construct methods that keep noise disturbance below
acceptable bounds. However, in most cases it would be essential to include congestion in the model, because
nowadays congestion is one of the most crucial problems in the field of traffic assignment.

8.2. APPLICATION OF TRAFFIC LOAD BALANCING IN PRACTICE
This research has shown that the emission reductions scale up with the number of participants. So, even with
lower number of participants, the air quality can be improved by a smart traffic load balancing method.

The research on this subject is not yet far enough to be applied directly in practice, but this research has
shown that combining global optimization criteria as travel time and CO2 emission with local optimization
criteria, such as NOx concentrations, can lead to substantial improvements of the air quality.

The constructed simulation model in this research visualizes the impact of traffic distributions on the air
quality locally. This simulation model could therefore serve as a basis for research to find solutions for local
problems, like air quality and noise disturbance.
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