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Density functional theory based many-body analysis of electron transport through molecules
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We present a method which uses density functional theory (DFT) to treat transport through a single molecule
connected to two conducting leads for the weak and intermediate coupling. This case is not accessible to standard
nonequilibrium Green’s function calculations. Our method is based on a mapping of the Hamiltonian on the
molecule to a limited set of many-body eigenstates. This generates a many-body Hamiltonian with parameters
obtained from ground-state local (spin) density approximation-DFT calculations. We then calculate the transport
using many-body Green’s function theory. We compare our results with existing density matrix renormalization
group calculations for spinless and for spin-1/2 fermion chains and find good agreement.
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I. INTRODUCTION

The rapid development in the field of electrical transport
through molecules and quantum dots has induced a consid-
erable effort to investigate the physical mechanisms behind
it. For a conceptual understanding of these phenomena it is
indispensable to develop methods involving a minimal number
of approximations. Different schemes have been used for the
calculation of the conductance of such systems. The most
popular ones are ab initio methods based on density functional
theory (DFT)1 in connection with the nonequilibrium Green’s
function (NEGF) formalism which has been successfully used
for understanding coherent transport through molecules in
the strong coupling or off-resonant regime.2–4 Also DFT is
known to yield good results for ground-state calculations.
Although it has been argued by Stefanucci and Almbladh5 that
appropriate time-dependent functionals should also give good
results for transport, the currently available functionals are not
satisfactory for transport in the weak coupling regime where
the Coulomb interaction between the electrons dominates their
dynamics.6 Using the available ground states DFT functionals
in particular give a poor description of ionization, addition,
and excitation energies and these states play an important role
in transport.

To illustrate the failure of DFT, we consider the usual case
of nonferromagnetic leads which always yields a solution in
which spin up and down have the same occupation. Transport
through a single level through which one or two electrons
can flow is described by a single-level Anderson-type model.
The most general form of the density matrix (restricted to the
transport level) during transport is given by

ρ = |0〉〈0| + a|↑〉〈↑| + a|↓〉〈↓| + b|↑↓〉〈↑↓|. (1)

Local density approximation (LDA) in DFT yields, for this
case, a restricted solution, which does not distinguish between
the last three terms and it is well known it cannot produce
the correct step-like behavior of the current as a function of
voltage.7 Instead, for each level, the current rises gradually
with bias up to a maximum value. Part of the shortcoming of
DFT(LDA) may be corrected for by adding a self-interaction
correction (SIC) which first leads to a plateau corresponding to
a single conduction channel before it steps to the next plateau
at maximum current corresponding to the two conducting

channels.8,9 Although the SIC method is an improvement over
the standard DFT, it still gives the wrong results for the current
value through a single plateau: The SIC method predicts the
current value of the plateau to be half of the maximum current
while, as we will show in Sec. III, it should be 2/3 of the
maximum current.

These shortcomings have induced the development of
different methods for the weak coupling regime. As an
example, the many-body effects that are not captured by
DFT-NEGF can be obtained by the GW approximation method,
which, however, is very time consuming.10

Combining DFT with rate equations can be used to describe
the electron transport in the weak coupling regime,11,12 but
this technique requires fit parameters and cannot show the
broadening of the isolated levels due to the coupling (except
for the temperature broadening). However, DFT is a powerful
means to calculate the total ground-state energies and this leads
us to exploit this advantage of DFT in this regime. Thus our
purpose is to present a technique relying on the combination
of DFT and many-body NEGF approach which deals with
transport in the weak coupling regime. Our method combines
local spin density approximation (LSDA) for different num-
bers of electrons with many-body Green’s functions (GF) to
calculate the transport through a molecule, weakly connected
to two noninteracting leads. We illustrate our method using an
interacting hopping chain for particles with and without spin.
The latter case allows for a comparison with density matrix
renormalization group (DMRG) calculations.13,14 We not only
obtain excellent values for addition and ionization energies,
but also good agreement of the location and the line shapes
of these resonance levels when comparing with results based
on the DMRG method. The line shapes are the result of the
coupling between the states on the molecule to the leads, which
we also calculate using our DFT states. It is envisaged that the
method of the paper will be useful within ab initio quantum
chemistry calculations for electron transport.

The organization of this paper is as follows. In Sec. II the
model for spinless and spin-1/2 fermions is defined and then
our method is explained. The results for the single level inside
or near the bias window are discussed in Sec. III. Then the
results for the more complicated case with two levels inside
the bias window are presented in Sec. IV. The conclusions in
Sec. V briefly summarize our ideas. The appendexes include

035415-11098-0121/2011/83(3)/035415(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.035415


F. MIRJANI AND J. M. THIJSSEN PHYSICAL REVIEW B 83, 035415 (2011)

further details concerning the Bethe-Ansatz solution for spin-
less fermions (Appendix A), L(S)DA-DFT for the Hubbard
model (Appendix B), and calculating the transport through a
Coulomb island (Appendix C).

In this paper, we use the term “level” to indicate a
chemical potential corresponding to an energy resonance on
the molecule.

II. MODEL AND METHOD

A. Spinless fermions

The systems studied here consist of a small region where
Coulomb interactions are present, weakly coupled to two
noninteracting, semi-infinite leads (see Fig. 1). The interacting
region contains one or several quantum dots in a series. The
Hamiltonian of the entire system is

H = Hleads + Hcoupling + Hmolecule. (2)

The Hamiltonian for spinless fermions with interaction
reads15

Hmolecule = −t

NL−1∑
i=1

[d†
i di+1 + H.c.]

+U

NL−1∑
i=1

(
ni − 1

2

) (
ni+1 − 1

2

)
+ ε

NL∑
i=1

d
†
i di,

(3)

where ni = d
†
i di and NL is the length of the interacting

chain. The parameter t represents the hopping rate and U

describes the intersite Coulomb interaction. The creation and
annihilation operators d

†
i and di acting on site i satisfy the

usual anticommutation relations. In addition, the external gate
potential Vg can be applied to the interacting region, which is
included in the energy ε.

For the noninteracting leads

Hleads = −
∑

η=L,R

tc

NL−1∑
i=1

[c†i,ηci+1,η + H.c.], (4)

where tc is the hopping term in the contact part and the label
η = L,R for left (L) and right (R) lead. The eigenstates are
ψσ

n = e±ikan with energy16

E = E0 − 2tc cos ka, (5)

-V/2

+V/2

tR
t

U=0

tc
U> 0

t

Vg

L
tc

FIG. 1. (Color online) A short Hubbard chain connected to two
noninteracting leads.

where

eika = −q ±
√

q2 − 1, q = E − E0

2tc
. (6)

We take a ≡ 1. In addition, the bias voltage can be applied to
the contacts.

The coupling Hamiltonian reads

Hcoupling =
∑

η = L,R

j ∈ molecule

[tηc
†
i,ηdj + H.c.]. (7)

The Hamiltonian for the central part, Hmolecule, can be solved
exactly using the Bethe-Ansatz solution.17 For such a system,
Takahashi18 gave the equations which should be solved for the
density n. This is briefly explained in Appendix A.

B. Spin-1/2 fermions

Adding the spin as an extra degree of freedom, Hleads

and Hcoupling are similar to the described Hamiltonians for
the spinless case, but a spin index σ =↑ , ↓ is added to the
creation and annihilation operators

Hleads = −
∑

η=L,R

tc
∑

σ

NL−1∑
i=1

[c†i,η,σ ci+1,η,σ + H.c.]. (8)

The Hamiltonian of the interacting region reads

Hmolecule = −t
∑

σ

NL−1∑
i=1

[d†
i,σ di+1,σ + H.c.]

+U

NL∑
i=1

d
†
i↑di↑d

†
i↓di↓ + ε

∑
σ

NL∑
i=1

d
†
iσ diσ . (9)

In this case, the Coulomb energy is on-site (as two particles
may now occupy the same site) and we parametrize it again
by U .

C. Method

Our method for calculating fermion transport through
the interacting chains starts by expressing the molecular
Hamiltonian in terms of its (many-body) exact eigenstates |S〉

Hmolecule =
∑

S

|S〉ES〈S|. (10)

Because of the two-body character of the Coulomb potential,
we can formulate this Hamiltonian in terms of creation and
annihilation operators for (spin-) orbitals |α〉 with a Coulomb
interaction

Hmolecule =
∑

α

εαd†
αdα + 1

2

∑
α �=β

Uαβd†
αdαd

†
βdβ. (11)

Note that the quantum number α includes the spin (for
spin-1/2 particles). The eigenstates |S〉 are then the states
|nα〉, where nα = 0,1 represent the occupation of all (spin-)
orbitals |α〉. Note that Eq. (11) is a reformulation of the
original Hamiltonian [Eqs. (3) or (9)] in terms of an interacting
multilevel interacting Anderson model. Equation (10) is
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another reformulation of these Hamiltonians. We shall use
Eq. (11) to find the specific form of the many-body eigenstates
S appearing in Eq. (10).

Our method is based on a mapping of the Hamiltonian
on the molecule to a limited set of many-body eigenstates
(Fig. 2). We first find the set of parameters (εα,Uα,β ) from
DFT ground-state calculations. For the interacting chains used
in this paper, we use the LDA parametrization based on
the Bethe-Anstaz solution for interacting fermion chains.17–21

In the case of spin-1/2 particles, we have used an accu-
rate LSDA parametrization, given by França, Vieira, and
Capelle (FVC).22

We first consider particles without spin. DFT allows for
calculating ground-state energies for any number of particles.
For a chain of N sites as in Fig. 2(a), this number varies
between 0 and N , so DFT gives us N + 1 energies. Consid-
ering the system as in Fig. 2(b), we would need N chemical
potentials εα and N (N − 1)/2 Coulomb interactions between
these levels which adds up to N (N + 3)/2 parameters. It is
therefore clear that this parametrization is highly nonunique.
The situation is different in the case of spin-1/2 particles. For
particles with spin 1/2, we can vary the particle number M

between 0 and 2N and we can vary the polarization (M↑ − M↓)
between −Min(M,N ) and Min(M,N ) yielding N (N + 3)/2
different ground-state configurations precisely the number of
parameters needed in the Fig. 2(b).

For small bias voltage, the transport is dominated by a
single chemical potential, corresponding to a transition from
N to N + 1 particles. For this case, we can still apply our
method to spinless particles.

We calculate transport for the system consisting of a
molecule described by the Hamiltonian (11), coupled to the
noninteracting leads. It is therefore necessary to evaluate the
coupling for the different (spin) orbitals |α〉 to the leads. We do
this by projecting the original chain Hamiltonian (3) or (9) onto
two many-body states of the isolated central region, differing
by one particle. We call those states |SN−1〉 and |SN 〉. SN is
obtained from SN−1 by putting a particle into level α which is
empty in SN−1, |SN 〉 ≡ |SN−1,α〉. We explain the method for
the spinless case. The Hamiltonian, formulated in the space

tR
tttc

teff eff

L
tc

t
tR,

U> 0

U
U

L, 
εα

intra-level
inter-level

ctc

α α

(a)

(b)

FIG. 2. (Color online) The states of the interacting chain in
(a) are mapped onto a single dot which contains several interacting
levels (b). The coupling between these levels and the leads are defined
as t eff . The new model includes the intralevel Coulomb interaction
and the interlevel interaction between the states.

spanned by |SN 〉 and |SN−1〉, is

H̃ = |SN−1〉EsN−1〈SN−1| + |SN 〉EsN
〈SN |. (12)

The coupling Hamiltonian describes the hopping of a particle
from or onto the left lead to the leftmost site of the central
region and a similar description can be used for the right lead.
We anticipate that the effective coupling of a level α to the
leads varies with the amplitude of that state on the leftmost
and rightmost sites, respectively. We calculate this effective
coupling using the projection operator

P = |SN−1〉〈SN−1| + |SN 〉〈SN |. (13)

The process in which a particle hops from the left lead onto
the leftmost site of the central region is described by the
following term of the coupling Hamiltonian (the calculation
for the hopping to the right lead is similar):

Ĥcoupling = tLd
†
1cL. (14)

The full Hamiltonian with the central region projected onto
the subspace spanned by SN−1 and SN , contains transitions
of the form Hcoupling = teff|SN 〉〈SN−1|cL. Projecting Ĥcoupling

onto the span of SN and SN−1 gives

P̂ †ĤcouplingP̂ = tL(|SN 〉〈SN |)d†
1cL(|SN−1〉〈SN−1|), (15)

using d
†
1 |SN−1〉 = |1; SN−1〉 leads to

P̂ †ĤcouplingP̂ = tL|SN 〉〈SN |1; SN−1〉〈SN−1|cL

= teff
L |SN 〉〈SN−1|cL, (16)

which requires teff
L = tL〈SN |1; SN−1〉. Here L is the site of the

left lead connected to the central region and |1; SN−1〉 denotes
an antisymmetrized state obtained by adding an electron on
site 1 to a central region containing N − 1 particles in state
|SN−1〉.

In DFT, the approximated eigenstate is given as

|SN 〉 = 1√
N !

∑
P

ηP

∣∣ϕN
P1

, . . . ,ϕN
PN

〉
, (17)

that is, a Slater determinant composed of the single-particle
DFT orbitals ϕN

k found within the N particle ground state
(
∑

P is a sum over permutations and ηP is the sign of the
permutation). Defining |ϕN−1

N 〉 ≡ |1〉, teff
L reduces to

teff
L,α = tL

∑
P

ηP

∏
n

〈
ϕN−1

Pn

∣∣ϕN
Pn

〉 = tL × det(S), (18)

where S is the “overlap matrix,” Skl = 〈ϕN−1
k |ϕN

l 〉, and α

denotes the highest orbital of SN . In the case of spin-1/2
particles, the calculation of the effective coupling depends
on ϕ↑, ϕ↓ which leads to teff = tL,R × det(S↑) × det(S↓).
The effective coupling mainly depends on the shape of the
orbitals, in particular their values on the outermost sites of the
molecule. However, this shape for an electron with spin-up
also depends on whether a spin-down electron occupies the
level. We account for this by writing, for the coupling of a
spin-up electron

teff
L,R

↑
(n↓) = (1 − n↓)teff

L,R

↑
(n↓ = 0) + n↓teff

L,R

↑
(n↓ = 1). (19)
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It turns out that the values of the coupling for the two
occupations n↓ = 0 and n↓ = 1 differ only slightly (less than
2%). We neglect the influence of the occupation of the other
orbitals.

Our method for calculating the transport now consists
of the following steps: (i) Calculate the ground states of
the molecule for different charge states N and polarizations
p = M↑ − M↓ using L(S)DA-DFT. (ii) Infer the values for
εα and Uαβ from these results. (iii) Calculate the effective
coupling for the (spin-) orbitals |α〉. (iv) Calculate the transport
for the Hamiltonian (11) coupled to noninteracting leads by an
α-dependent coupling obtained in step (iii).

The retarded and advanced GF’s, Gr and Ga , for the
transport calculation can be derived from the equation of
motion. To find the lesser GF, G<, we use the Kadanoff-Baym
equation

G−1
0 G< = �rG< + �<Ga. (20)

For details see Appendix C. Once these GF’s are known, the
current can be calculated from a Landauer type of equation

I = ie

h

∫
Tr

{
�L�R

�L + �R

(Gr − Ga)

}
× [f (ω,μL) − f (ω,μR)] dω, (21)

where �j = i(�r
j − �r†

j ) and �r
j is the retarded self-energy

and f (ω,μj ) is the Fermi distribution of lead j .
A few remarks are in order. In practice, we select only a

limited set of many-body states, notably those whose charge
additions and ionizations correspond to a chemical potential
inside or near the bias window. This means that we neglect the
low-lying (spin) orbitals (that are always occupied) and the
higher orbitals (that are never occupied). This enables us to
treat the spinless fermion transport with low bias, even though
we cannot find all the values εα and Uαβ in that case.

Calculating the transport is a standard problem for a single
orbital inside the bias window for spinless fermions. However,
approximations are necessary as soon as Coulomb interactions
become relevant. We follow the simplest approach, in which
correlation with the leads are neglected.23,24 This means
that we will not observe the Kondo resonance for spin-1/2
fermions. More elaborate schemes are possible, in particular,
slave-boson techniques which do take these correlations into
account.25

Even within our approach, transport through a single
orbital for spin-1/2 fermions is already nontrivial. For more
orbitals, several schemes based on further approximations
have been devised (see, e.g., B. Song et al.26). We treat the
full problem of spin-1/2 transport through two orbitals (four
spin-orbitals) neglecting only the correlation with the leads.
For details see Appendix C. This already allows for eight
transport channels (seven in the case of degenerate levels).
In molecular electronics, bias voltages are hardly ever high
enough to observe that many states, so we do not consider
larger systems.

A similar approach has been proposed by Yeganeh
et al.27 based on quantum chemistry calculations for ground
states and excited states. Also a time-dependent version of
LDA functional for a similar model has been used by Kurth
et al.28 to investigate the transport within time-dependent DFT.
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FIG. 3. (Color online) Linear conductance of seven noninteract-
ing dots, U = 0. (a) Our results and (b) the results from Ref. 15
(copyright Wiley-VCH Verlag GmbH and Co. KGaA. Reproduced
with permission). Vb = 2 · 10−4, tL,R = 0.5, tc = 1, t = 0.8.

Other approaches to describing transport in the weak coupling
limit were based on the configuration interaction method for
the central region, in combination with rate equations29,30 and
with integration over scattering states constructed through a
Wigner transform.31

III. RESULTS FOR A SINGLE LEVEL INSIDE
THE BIAS WINDOW

In this section we first present the results for the spinless
fermions and compare them with DMRG results obtained
by other groups.15 Then we discuss the result for spin-1/2
particles. We consider a small bias, so that at most one level
lies inside or near the bias window. Energies and parameters
with the dimension of the energy can, from now on, always
be assumed to be given in Volts (V) and the current and
conductance units are e/h and e2/h, respectively.

U / t = 3

0 1 2 3 4
V

g
 [t]

0.0

0.5

1.0

g 
 [

e2 / h
]

U/t
S
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U/t
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(b)
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1 (a)

L
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1 2 3 4

FIG. 4. (Color online) Linear conductance of seven interacting
dots for weak (squares) and strong (circles) interaction. (a) Our results
and (b) the results from Ref. 15 (reproduced with permission). Vb =
2 · 10−4, tL,R = 0.5, tc = 1, t = 0.8.
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εσ2ε+Uσ

FIG. 5. Two different situations to extract εσ , U by FVC
parametrization.

A. Spinless fermions

We first consider the results for U = 0. The linear conduc-
tance versus the gate voltage in the case of spinless fermions
is shown in Fig. 3(a) for seven noninteracting sites compared
to the Fig. 3(b) obtained from Ref. 15 based on the DMRG
method. The gate voltage is applied to shift different resonant
levels across the narrow bias window. For this case, the peak
locations are easy to get at the right position [i.e., −2t cos(ka),
where t is the interdot coupling and k is the wave vector
that fits on an isolated chain of seven dots]. The agreement
between peak widths in the two figures shows that our way
of calculating the effective coupling seems correct. The last
peak is higher in our simulation than in the DMRG result,
due probably to a limited number of Vg values used in the
latter. The linear conductance versus the gate voltage for seven
interacting sites in the cases of weak (U/t = 1) and strong
(U/t = 3) interactions are shown in Fig. 4(a). Since this is also
in agreement with DMRG results in Fig. 4(b), we conclude
that our method is reliable. In both Figs. 3 and 4, applying
the negative gate voltage will show three peaks for the linear
conductance in that region.

B. Spin-1/2 fermions

For spin-1/2 particles, the ground-state energies for one
site containing one and two electrons have been calculated
using the FVC parametrization which gives the values for
ε and U (Fig. 5). The many-body approach described here
can then be applied to calculate the current through one or
several quantum dots. The result for one dot is shown in Fig. 6
for EF = 0, ε = 0.5 and U = 0.2. Our hybrid method gives
two steps at the expected positions V = 2|ε − EF | = 1.0 and
V = 2|ε − EF + U | = 1.4. We compare this calculation with

0 0.5 1 1.5 2
Vbias

0

0.02

0.04

0.06

C
ur

re
nt

LDA-DFT-NEGF
LSDA-many-body 

FIG. 6. (Color online) Current through one quantum dot for LDA-
DFT-NEGF method and for the many-body method combined with
LSDA (FVC parametrization) for μR,L = EF ± V/2, EF = 0, ε =
0.5, tL,R = 0.1, tc = 1, and U = 0.2.

-3 -2 -1 0 1 2
Vg / U

0

0.5

1
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C
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du
ct
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ce

Our results
ECA

FIG. 7. (Color online) Conductance of the three quantum dots
system compared to the results of the ECA of Ref. 33. U = 1, tL,R =
0.3, tc = 1, t = 1, and Vbias = 0.006.

the LDA-DFT-NEGF method, using the LDA parametrization
by Capelle et al.20,21 (see Appendix B). The LDA curve
gradually increases from V = 2|ε − EF | till about 1.2V where
it reaches a level corresponding to transport through both
channels. We see that the results obtained with our many-body
method deviate substantially from the mean-field type standard
LDA-NEGF method.

As we explained in the introduction, the SIC predicts the
value of half of the maximum before it steps up to its maximum
value,8 while the correct value of the current in the weak
coupling limit at this region is 2/3 of the maximum current.
This can be found using rate equation calculations32 and it can
be understood from the fact that there are two one-electron
channels (corresponding to spin up and down), but only one
two-electron channel.

The negative slope after the second step is due to the fact
that the density of states in the leads is not constant. Therefore,
at different biases, the leads supply a different number of
electrons. Indeed, in the case of wide band limit (where
self-energies are independent of energy and bias voltage) the
negative slope disappears.

We have also compared our results for three coupled
dots with DMRG in combination with the embedded-cluster
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FIG. 8. (Color online) Left: Five coupled dots system. EF =
2.4, U = 1.0, tL,R = 0.4, tc = 2, and t = 1.0. Extracted values are
εσ = 2.54, U = 0.18, t eff

L,RN→N+1
= 0.1, t eff

L,RN+1→N+2
= 0.1. Right:

Differential conductance for five quantum dots. EF = εσ = 2.5479,
U = 1.0, tL,R = 0.5, and tc = 1. Extracted values for coupling are
t eff
L,RN→N+1

= t eff
L,RN+1→N+2

= 0.1433 75 and U = 0.184. The shape of
the curve is in agreement with DMRG results (Ref. 15).
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22
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FIG. 9. (Color online) Schematical model for a two-level system.

approximation (ECA) of Ref. 33 in Fig. 7. The resonance peak
position is precisely in agreement with Fig. 12(c) of Ref. 33
and also the general line shapes of the peaks are very similar
to that where two central peaks are wider and four peaks at
two sides are narrower than the central ones but the lowest
values between peaks are different. Figure 12(c) of Ref. 33
is made assuming even numbers of electrons in the contacts
and hence neglects the correlations held responsible for the
Kondo resonance. Although the difference with Fig. 12(a) of
Ref. 33, which is believed to be correct, seems significant,
we expect them to be much less pronounced at higher bias.
As it is, the agreement shows that within the approximation
made in our Green’s function approach, our method gives
the correct prediction. An improvement which would include
these correlations will be considered in future work.

Figure 8 shows the occupation of the Hubbard site (n↑ +
n↓) versus applied bias voltage for five coupled dots with EF =
2.4. We find ε = 2.54 and U = 0.18 and we see the steps at
V = 2|ε − EF | = 0.14 and V = 2|ε − EF + U | = 1.1. The
density of the level at zero bias is nonzero, which is due to
the broadening of the lowest-unoccupied molecular orbital
(LUMO) that contributes in the transport. We have shown the
differential conductance ∂I

∂V
as well for five dots which can be

compared with DMRG results for the spinless case.15

IV. RESULTS FOR TWO LEVELS INSIDE
THE BIAS WINDOW

For most experimentally relevant situations, the single-level
problem with interaction will be adequate. However, if the
molecule possesses a symmetry (which is not destroyed by
an imbalance in the contact geometry) molecular orbitals may
become degenerate. Indeed, for chains with more than one
site, we find degeneracies in the spectrum of the isolated
molecule.

In this section we therefore consider a problem with
two degenerate levels (see Fig. 9) which may lie inside the
bias window. For this case, we do not know of reliable

ε
ε

1

2

FIG. 10. Five proposed configurations to extract the values of ε1,
ε2, U11, U22, and U12.
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FIG. 11. (Color online) Occupation of a two quantum dot chain
with t = 1, tc = 6, tL,R = 0.3, Vg = 1.4, and intial U = 1 which
lead to ε1 = 0.4, ε2 = 1.86, U11,22 = 0.46, and U12 = 0.53. t eff

0→1↑ =
t eff
1↑→1↓ = t eff

1↓→2↑ = t eff
2↑→2↓ = 0.212 132. The (red) “x” curve shows

the occupation of the first level while the (green) triangle one shows
the occupation of the second level. The (blue) circles one is the sum
of the occupations. The six steps shown in this curve correspond to
different transfer process presented in Fig. 12.

calculations to compare our results with. However, in view of
the good agreement with DMRG for the single (interacting)
orbitals, we expect the results presented here to be reliable.
We label the four states for two levels 1↑, 1↓, 2↑, and 2↓,
respectively. We map our system (shown in Fig. 1) to a
model with two orbitals with a chemical potential that may
be degenerate and include the intralevel Coulomb interaction
(U11 and U22) and the interlevel Coulomb interaction (U12).
We assume that the interlevel interaction does not depend on
spin (Fig. 9). In this case we should calculate ε1, ε2, U11,
U22, and U12. For this purpose, we calculate the ground-state

 0  --->  0.4

V=2(0.4)=0.8

0  --->  1.86

V=2(1.86)=3.72

Change of 
Ground state energy

Required bias voltage

0.4  --->  1.26

V=2(0.86)=1.72

(a) (b)

(c)

1.26  --->  4.18

V=2(2.92)=5.84

(e)

(d1)

4.18  --->  7.56

V=2(3.38)=6.76

(f )

1.86  --->  4.18

V=2(2.32)=4.68

(d2)

0.4  --->  2.79

V=2(2.39)=4.78

FIG. 12. (Color online) Different transfer process of electrons
corresponding to six consecutive steps shown in Fig. 11. Panel (a)
shows the transport of the first step in density curve, panel (b) shows
the second step, and so on. Other processes play a role but they do
not show up as separate steps in this graph.
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ε
ε

1

2

ε3

FIG. 13. Nine proposed situations to extract the values of ε1, ε2,
ε3, U11,22,33, and U12,23,13.

energy by FVC parametrization in the five cases shown in
Fig. 10. Thus by having these energy values we can calculate
the previously mentioned energy levels and the Coulomb
interactions. From these values, we can then investigate the
transport (see Appendix C for details about the method). An
important feature of our method is that it can produce I–V
characteristics for rather high bias voltages.

We start with a chain consisting of two dots. As explained
in Sec. II C, we first map the spectrum of this chain onto two
one-electron levels that can be occupied by spin-up and/or
spin-down electrons (see Fig. 9). This is done by calculating
the ground-state energies for all the configurations shown in
Fig. 10. From these, we find the appropriate ε and U values.
The results are shown in Fig. 11 for a chain with parameters
given in the caption of that figure. The transitions seen in
the curve of Fig. 11 are displayed in Fig. 12, together with
the predicted energies for these steps based on the parameters
of the two-level model of Fig. 9. The first and second steps
(a) and (b), will take place when the bias voltage is not high
enough to encompass both levels, but is high enough to cross
the first level. As this level can be occupied by two electrons,
we see two steps between Vb = 0 and Vb = 3. A higher bias
voltage enables the occupation of the second level. The third
step shows the addition of an electron to the second level.

We also have mapped a Hubbard chain of three interacting
dots onto the three-level model. To extract the nine values
of ε1, ε2, ε3, U11,22,33, and U12,23,13, we considered the nine
ground-state configurations shown in Fig. 13. Here we take
the two lowest levels to be inside or near the bias window. The
result is shown in Fig. 14.

We have implemented our method for, at most, two levels
inside or near the bias window. However, it is possible to use
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FIG. 14. (Color online) Occupation of a three quantum dot chain
with Vg = 1.6, U = 1.2, tL,R = 0.4, and tc = 6, t = 1. Extracted
effective couplings are t eff

L,R0→1↑,1↑→1↓ = 0.2, t eff
L,R1↓→2↑ = 0.275279,

t eff
L,R2↑→2↓ = 0.282 842.

the method for more than two levels inside the bias window,
which makes the computation time-consuming due to the
larger dimension of matrices.

V. CONCLUSION

In conclusion, we have proposed a method based on DFT
which can accurately predict the transport in the weak coupling
regime through an interacting chain. In our approach, we
map the interacting part of the system to several interacting
energy levels and take the Coulomb interactions into account.
The dot occupations show different steps corresponding to
different transfer processes of electrons from the leads to the
interacting region. Our method is a new opening for using DFT
first-principle calculations to investigate the transport through
molecules in the weak and intermediate coupling limit. We
do not have the observation of Kondo in our method, but it
can be included using more advanced approximations. We
plan to implement our method into a quantum chemical DFT
code to calculate transport through experimentally relevant
devices. As ground-state DFT can predict excitation energies
reasonably well (provided a separate self-consistent calcula-
tion is performed for each particle number and polarization) we
should be able to reveal several energy levels. Furthermore, the
good results for the peak broadenings in our model system are
promising, although the coupling strengths in experimental
devices suffer from sample-to-sample variation. The same
holds for the dielectric environment which may affect the
location of the levels substantially. For this, and for the
alignment of the levels to the Fermi energies of the contacts, a
constrained DFT approach may be useful.
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APPENDIX A: BETHE-ANSATZ SOLUTION
FOR SPINLESS FERMIONS

Here we briefly describe the numerical approach for finding
the exact ground-state energy. Takahashi18 gave the equations
which should be solved for the density n, the “quasi-momenta”
k and the integer limit B. These equations are

n =
∫ B

−B

ρ(k) dk, (A1)

and

1 = 2πρ(k) −
∫ B

−B

T (k,q)ρ(q) dq, (A2)

where

T (k,q) = ∂

∂k
θ (k,q), (A3)
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and

θ (k,q) = 2 tan−1

[
U
2t

sin
(

k−q

2

)
cos

(
k+q

2

) − U
2t

cos
(

k−q

2

)
]

. (A4)

E is then given as

E = −U

4
− 2t

∫ B

−B

(
cos k + U

2t

)
dk, (A5)

and the exchange-correlation energy is then defined as

Exc = E − E(U = 0) − U
(
n − 1

2

)2
. (A6)

Since the function θ depends on the momenta, the problem
has to be solved self-consistently.

APPENDIX B: L(S)DA-DFT FOR THE HUBBARD MODEL

To construct a DFT Hamiltonian with parameteres U , t

for a Hubbard chain based on L(S)DA, an expression for
the exchange-correlation potential is needed. This potential is
based on the exact ground-state energy. The exact ground-state
energy e(n,m,t,U ) (for density n = n↑ + n↓ and magnetiza-
tion m = n↑ − n↓) of the Hubbard model can be obtained
using the Bethe-Ansatz.19,34,35 An approximate analytical
expression for the unpolarized case (m = 0) was proposed
by K. Capelle et al.20,21. This reads

e(n � 1,m = 0,t,U ) = −2tβ(U/t)

π
sin

[
π

β(U/t)
n

]
, (B1)

where n = N/L is the Hubbard site occupation, N , L are the
number of electrons and Hubbard sites, respectively, and β

is a function of the ratio U/t . It can be determined from the
implicit equation

−2tβ(U/t)

π
sin

(
π

β(U/t)

)
= −4t

∫ ∞

0

J0(x)J1(x)

x
[
1 + exp

(
xU
2t

)] dx,

(B2)

here Ji=0,1(x) are the Bessel functions of the first kind.20,21 For
n > 1, the energy is found from the particle-hole symmetry

e(n > 1,m = 0,t,U ) = e(2 − n,m = 0,t,U ) + U (n − 1).

(B3)

From the energy, we can obtain an analytical expression for
the exchange-correlation potential which, in the unpolarized
case, is

Vxc(n,m = 0,t,U ) = δexc

δn
= δ

δn
[e(n,m = 0,t,U )

− e(n,m = 0,t,0) − eH (n,U )], (B4)

where the Hartree energy is

eH (n,U ) = Un2/4. (B5)

In the case of nonzero magnetization, the energy expression
e(n,m,t,U ) has been constructed by FVC.22 The linear
Hamiltonian matrix dimension for the polarized case with

polarization M , is ( L

(N+M)/2 )( L

(N−M)/2 ), while in the LDA case
has the dimension L

H =

⎛
⎜⎜⎜⎜⎝

U
2 n1 + Vxc1 −t 0 . . . 0 0

−t U
2 n2 + Vxc2 −t . . . 0 0

...
...

...
...

...
...

0 0 0 . . . −t U
2 nL + VxcL

⎞
⎟⎟⎟⎟⎠ .

(B6)

This LDA-based Hamiltonian replaces the actual potential felt
by an electron when it enters into a site by a time average of
electron occupation at that site. In the LSDA Hamiltonian, this
potential is a function of the two spin densities (n↑, n↓).

APPENDIX C: CALCULATING THE TRANSPORT
THROUGH A COULOMB ISLAND

A. Single level inside the bias window

We start with one level inside the bias window and we
explain how the GF for the spinless case and for the case
with spin can be derived from the equation of motion (EOM).
The time derivative of the d operator (for molecule) and the c

operator (for contacts) are (see Ref. 23)

iḋα = εαdα +
∑
β �=α

Uαβdαnβ +
∑

η = L/Rq

t∗ηkαcηkσα
, (C1)

iċηkσα
= εηkcηkα +

∑
α′

tηkαdα′ . (C2)

Here, α denotes the spin-orbital α and σα is the spin for this
α. k labels the traveling-wave states in the leads η = L,R

where L and R stand for left and right. If we consider only
one orbital and neglect the spin, the term with Uαβ drops out
of the problem. To find the current, we use nonequilibrium GF
theory, which focuses on the one-particle GF on the molecule,
defined as

Gαβ = −i〈T {dα(t)d†
β(t ′)}〉, (C3)

where T is the time-ordering operator

T {A(t)B(t ′)} = θ (t − t ′)A(t)B(t ′) ∓ θ (t ′ − t)B(t ′)A(t).

(C4)

T always moves the operators with earlier time argument to
the right.

After Fourier transformation of the time domain, taking the
time ordering carefully into account, the following equation
for the GF is found:23

(ω − εα)Gαβ(ω) = δαβ +
∑
ηk

tη�
αβ

ηk (ω), (C5)

where

�
αβ

ηk (t − t ′) = −i〈T cηkσα
(t)d†

β(t ′)〉. (C6)

Using the EOM for cηkσα
(t), an equation for �

αβ

ηk is found

(ω − εηk)�αβ

ηk (t − t ′) = tηGαβ(ω). (C7)
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Using the second equation to eliminate �
αβ

ηk , we arrive at

[ω − εα − �0(ω)]Gαβ = δαβ, (C8)

where

�0(ω) =
∑
ηk

|tη|2
ω − εηk

, (C9)

is the self-energy. The self-energy has a real (Hermitian) part
which has the effect of shifting the resonant energies and which
reflects the asymmetries of the densities of states near those
resonances. The imaginary (non-Hermitian) part broadens the
resonances, reflecting the hybridization of the states of the
central region with those of the leads.

Taking α = β and writing �r
0(ω) = �(ω) + i�/2, we can

write

Gr
αα(ω) = 1

εα − ω − � − i�/2
, (C10)

which is a Lorentzian function.
Next, we consider an interacting dot for spin-1/2 fermions.

In that case, the EOM leads to the following equation for the
GF:

(ω − εα)Gαβ(ω) = δαβ +
∑
γ �=α

Uαγ G
(2)
αγβ(ω) +

∑
ηk

tη�
αβ

ηk (ω),

(C11)

while the equation for �
αβ

ηk remains the same. We

have introduced a new GF G
(2)
αγβ , which is defined as

G
(2)
αγβ = −i〈T {dα(t)nγ (t)d†

β(t ′)}〉 with nγ (t) = dγ (t)d†
γ (t).

This GF satisfies an EOM

(ω − εα − Uαγ )G(2)
αγβ

= 〈nγ 〉δαβ+
∑
ηk

(
t∗η�

(2)αβ

1,ηk + tη�
(2)αβ

2,ηk − t∗η�
(2)αβ

3,ηk

)
, (C12)

where

�
(2)αβ

1,ηk = −i〈T {cηkσα
(t)nγ (t)d†

β(t ′)}〉, (C13)

�
(2)αβ

2,ηk = −i〈T {cηkσγ
(t)dα(t)dγ (t)d†

β(t ′)}〉, (C14)

�
(2)αβ

3,ηk = −i〈T {cηkσγ
(t)d†

γ (t)dα(t)d†
β(t ′)}〉. (C15)

We now neglect the correlation between the central region
and the leads by keeping only �

(2)αβ

1,ηk , which we approximate

as �
(2)αβ

1,ηk = 〈nγ 〉�αβ

ηk . Note that this mean-field approximation
only concerns the coupling between the central region and
the leads, but not the Coulomb correlations within the central
region. Thus by substituting G(2) from Eqs. (C12) to (C11)
and eliminating � by an equation like (C7), it yields

Gαα(ω)

= ω − εα − (1 − 〈nβ〉)U
(ω − εα − U )(ω − εα) − �r [ω − εα − (1 − 〈nβ〉)U ]

,

(C16)

where �r = �r
L + �r

R and

�r
j (ω) = −t2

j

tc
zj (ω), (C17)

and Im(zj ) > 0, zj = −qj ±√
q2

j −1, qj = ω−EF ±V/2
2tc

, and EF is
the Fermi energy of the grounded lead.

To calculate the density self-consistently, the calculation of
the lesser GF is also required

〈nα〉 =
∫

G<
αα(ω)

2πi
dω, (C18)

which can be found from the Keldysh equation (C19)

G<
αα(ω) = Gr

αα(ω)�<
0 (ω)Ga

αα(ω). (C19)

Ga is the advanced GF and the lesser self-energy is

�<
0 (ω) = 2

∑
j=L,R

t2
j

tc
f (ω,μj )

√
1 − ω2

(4tc)2
. (C20)

Once the retarded and advanced GF are known, the current
can be calculated from a Landauer type of equation

I = ie

h

∫
Tr

{
�L�R

�L + �R

(Gr − Ga)

}
× [f (ω,μL) − f (ω,μR)] dω, (C21)

where �j = i(�r
j − �r†

j ).

B. Two levels inside the bias window

Here we explain the transport calculation for the case where
we have two levels inside the bias window. Once we have
calculated the energy values and Coulomb interaction by FVC
parametrization, we can use a many-body approach which is
a generalization of the technique described previously. For the
one-particle GF, we find the same equation as earlier

(ω − εα)Gαβ = δαβ +
∑
γ �=α

Uαγ G
(2)
αγβ +

∑
α′

�αα′Gα′β,

(C22)

where �αα′ is the self-energy

�αα′ =
∑
ηk

tηkα′ t∗ηkα

ω − εηk

. (C23)

For G(2) we obtain the EOM

(ω − εα − Uαγ )G(2)
αγβ

= 〈nγ 〉δαβ +
∑

δ �=α,γ

UαδG
(3)
αγ δβ +

∑
α′

�αα′G
(2)
α′γβ . (C24)

Equation (C24) is not closed as a new GF, G
(3)
αγ δβ , is generated

in deriving the equation for G
(2)
αγβ . The new GF, G

(3)
αγ δβ , is

G
(3)
αγ δβ = −i〈T {dα(t)nγ (t)nδ(t)d†

β(t ′)}〉. (C25)

The EOM for G
(3)
αγ δβ reads

(ω − εα − Uαγ − Uαδ)G(3)
αγ δβ

= 〈nγ nδ〉δαβ +
∑

ε �=α,γ

UαεG
(4)
αγ δεβ +

∑
α′

�αα′G
(3)
α′γ δβ, (C26)
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which introduces another new GF, G
(4)
αγ δεβ

G
(4)
αγ δεβ = −i〈T {dα(t)nγ (t)nδ(t)nε(t)d†

β(t ′)}〉, (C27)

for which the EOM is

(ω − εα − Uαγ − Uαδ − Uαε)G(4)
αγ δεβ

= 〈nγ nδnε〉δαβ +
∑
α′

�αα′G
(4)
α′γ δεβ . (C28)

At this stage, the process of generating new GF stops, as the
EOM for G(4) does not generate higher-order GF’s.

We now must solve the set of equations (C22), (C24), (C26),
and (C28) for the GF’s Gαβ to G

(4)
αγ δεβ . We organize these GF’s

into a 340 × 4 array

G�β = (
Gαβ,G

(2)
α′γβ,G

(3)
α′′γ ′δβ,G

(4)
α′′′γ ′′δ′εβ

)T
. (C29)

As all indices α,β, . . . run over four states, it is easy to see that
the first index of this array runs over 4 + 16 + 64 + 256 = 340
values. The equation for G can be written in the form

G−1
0 G = 〈ñ〉 + �G. (C30)

Here, G−1
0 is a 340 × 340 matrix, which, in the frequency

domain, assumes the form

G−1
0 (ω) =

⎛
⎜⎜⎜⎝

ω − εα

ω − εα′ − Uα′γ

ω − εα′′ − Uα′′γ ′ − Uα′′δ

ω − εα′′′ − Uα′′′γ ′′ − Uα′′′δ′ − Uα′′′ε

⎞
⎟⎟⎟⎠ , (C31)

and 〈ñ〉 is a 340 × 4 array

(δαβ,〈nγ 〉δα′β,〈nγ ′nδ〉δα′′β,〈nγ ′′nδ′nε〉δα′′′β)T , (C32)

and � is the 340 × 340 array with elements �α�,α�′ , where
α� denotes the index α of the composed index � =
(α,α′γ,α′′γ ′δ,α′′′γ ′′δ′ε).

To find the lesser GF G<, from which 〈ñ〉 can be found,
we should use a Keldysh or Kadanoff-Baym equation. These
equations are conveniently derived from the Langreth rules.36

These rules apply to the GF G, which is found from Eq. (C30).
Therefore, using the notation of that equation, the Kadanoff-
Baym equation can be written as

G−1
0 G< = �rG< + �<Ga, (C33)

where Ga is found as

Ga = (
G−1

0 − �a
)−1〈ñ〉. (C34)

In electron transport theory, the Keldysh equation

G< = (〈ñ〉 + Gr�r )G<
0 (〈ñ〉 + Ga�a) + Gr�<Ga, (C35)

is often used, with only the last term on the right-hand side,
as it can be shown for transport through a single channel, the
first term vanishes for the single particle GF Gαβ . However,
this is not the case when the “higher” GF’s G(2) and so on
are included (this was also pointed out by Song et al.26).
For the calculation of the integration in Eq. (C18), one has
to calculate the inverse of G0 many times (depending on
the number of the integration points and the number of the
required iterations to solve the problem self-consistently),
making the computation time-consuming. Therefore one could
think of using the following approximations which cause
reduction of the matrix dimension to 84 × 84 and 20 × 20,
respectively:

G
(4)
αγ δεβ = −i〈T {dα(t)nγ (t)nδ(t)nε(t)d†

β(t ′)}〉
� 1

3

[〈nγ 〉G(3)
αδεβ + 〈nδ〉G(3)

αγ εβ + 〈nε〉G(3)
αγ δβ

]
,

(C36)

G
(3)
αγ δβ = −i〈T {dα(t)nγ (t)nδ(t)d†

β(t ′)}〉
� 1

2

[〈nδ〉G(2)
αγβ + 〈nγ 〉G(2)

αδβ

]
. (C37)

Figure 15 shows the effect of the approximations on the
occupation. The curve corresponding to dimension 20 × 20
shows four steps in agreement with the full GF while the
one based on dimension 84 × 84 depicts five correct steps,
and finally six steps have been gained from the exact solution
(dimension 340 × 340), as we discussed. However, for the
lower biases the results based on approximations are still valid.

As we can see in Fig. 15 the density does not exceed 2
while in Fig. 11 the occupation exceeds 2 and this can be
explained by the difference between the self-energies used
in these two figures. The wide band limit has been used in
Fig. 15, which supplies constant self-energies, while in Fig. 11
the self-energy reflects the density of states in the leads not
being constant. Therefore, at different biases the leads supply
a different number of electrons.

0 2 4 6
Vbias

0

0.5

1

1.5

2

O
cc

up
at

io
n

Dim 20
Dim 84
Dim 340

FIG. 15. (Color online) Occupation of a two quantum dot
chain. The chosen parameters are ε1 = 0.4, ε2 = 1.8, Uintra−level =
Uinter−level = 0.5, �L,R = 0.05, using wide band limit.
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