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Including robustness considerations in the search phase of 
Many-Objective Robust Decision Making

Highlights

 MORDM aims at developing robust solutions but identifies them only under a reference 
scenario.

 We propose an extension to the search phase of MORDM.
 We generate the candidate solutions under multiple scenarios. 
 We select these scenarios based on diversity and policy relevance.
 We obtain a wider variety of robustness tradeoffs compared to the reference case.

Abstract 
Many-Objective Robust Decision Making (MORDM) is a prominent model-based approach for dealing 
with deep uncertainty. MORDM has four phases: a systems analytical problem formulation, a search 
phase to generate candidate solutions, a trade-off analysis where different strategies are compared across 
many objectives, and a scenario discovery phase to identify the vulnerabilities. In its original inception, 
the search phase identifies optimal strategies for a single reference scenario for deep uncertainties, which 
may result in missing locally near-optimal, but globally more robust strategies. Recent work has 
addressed this issue by generating candidate strategies for multiple policy-relevant scenarios. In this 
paper, we incorporate a systematic scenario selection procedure in the search phase to consider both 
policy relevance and scenario diversity. The results demonstrate an increased tradeoff variety besides 
higher robustness, compared to the solutions found for a reference scenario. Future research can 
routinize multi-scenario search in MORDM with the aid of software packages.

Keywords: Robust decision making, multi-objective optimization, scenario selection, scenario 
diversity

1. Introduction
Environmental decision problems are often characterized by multiple conflicting objectives and deep 
uncertainties. Deep uncertainty refers to situations where decision makers and stakeholders do not know 
or cannot agree on a system delineation and description, the probability distributions of the uncertainties, 
and the valuation of alternative outcomes (Lempert et al., 2003; Walker et al., 2013). In other words, a 
variety of possibilities (e.g. futures, model formulations) can be enumerated for deep uncertainties, but 
they cannot be rank ordered or associated with probability distributions (Kwakkel et al., 2010). Robust 
Decision Making (Lempert et al., 2006) is an approach to decision making under deep uncertainty, where 
decision options are evaluated over a large set of scenarios. These scenarios are generated using analytic 
models for exploring future possibilities regardless of their likelihood, rather than relying on a best-
estimate future. RDM emphasizes the evaluation of decision options based on the trade-offs among 
them, and introduces an iterative stress-testing framework using scenario discovery (Bryant and 
Lempert, 2010; Kwakkel and Jaxa-Rozen, 2016) to enhance the robustness of decision options. 

As an extension to RDM, Many-Objective Robust Decision Making (MORDM) is a prominent model-
based framework developed to deal with multi-objective decision problems under deep uncertainty 
(Herman et al., 2014; Kasprzyk et al., 2013). MORDM extends RDM in terms of the generation of 
alternative strategies. While the latter relies on a set of discrete, pre-specified alternatives which are 
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iteratively refined, the former generates a large set of alternative decisions with computational search 
(Herman et al., 2015). Multi-objective evolutionary algorithms employed in the search phase of 
MORDM align with the emphasis of RDM on tradeoffs between the options.  MORDM has 4 iterative 
steps that incorporates various decision analytic methods: 

(i) Problem formulation: Formulating the problem based on a systems analytical problem definition 
framework such as a system diagram (Thissen, 2013; Van der Lei et al., 2011; Walker, 2000), or 
the XLRM framework (Lempert et al., 2006). In the XLRM problem formulation framework, the 
components of a decision problem are grouped as uncertainties (X), decision levers (L), 
relationships (R) that represent the system structure, e.g. a simulation model, and performance 
metrics (M) that relate to the policy goals and measure the success of a solution, e.g. outcome 
indicators or objectives in an optimization problem. 

(ii) Generating candidate solutions: Searching for candidate solutions that optimize multiple 
objectives by using multi-objective evolutionary algorithms (Coello et al., 2007; Reed et al., 2013). 

(iii) Tradeoff analysis: Generating an ensemble of scenarios to explore the effects of deep uncertainties 
(Bankes, 1993; Bankes et al., 2013) and evaluating the robustness tradeoffs among multiple 
objectives for each candidate solution across these scenarios. A ‘scenario’ in this context refers to 
a computational experiment with an analytical model, where an alternative representation of each 
uncertain model parameter or structure is taken into account in each experiment. ‘States of the 
world’ or ‘cases’ are alternative terms used in the literature to refer to these computational 
experiments.

(iv) Scenario discovery: Improving the candidate solutions by using scenario discovery to detect the 
vulnerabilities, i.e. the combinations of uncertainties which cause the candidate solutions to 
perform poorly (Bryant and Lempert, 2010; Kwakkel and Jaxa-Rozen, 2016; Lempert, 2013). 

In the original MORDM framework, candidate strategies are determined for a reference scenario, and 
the effect of deep uncertainties are taken into account later. In other words, deeply uncertain model 
elements are set to their reference values, and multi-objective optimization is run given this model 
parameterization in order to determine the candidate solutions. Hence, candidate solutions are identified 
for a baseline scenario without considering deep uncertainties. However, these candidate solutions are 
expected to be robust against uncertainties across a variety of scenarios. Therefore, searching for them 
only under a baseline scenario confines the potential to identify highly robust solutions.

To enhance the robustness of candidate solutions, it is promising to incorporate uncertainties in the 
search phase of MORDM and generate candidate solutions for a variety of scenarios. A recent study by 
Watson and Kasprzyk (2017) has drawn attention to this absence of uncertainty consideration in the 
search phase. Watson and Kasprzyk (2017) searched for candidate solutions in multiple scenarios, and 
demonstrated how the performance of candidate solutions depends on the scenario for which they were 
generated. Therefore, extending the search phase of MORDM with optimization for multiple scenarios 
has the potential to identify more robust solution alternatives. 

An alternative to MORDM that ensures a (Pareto) optimal robustness of the final solutions is multi-
objective robust optimization, where the objective functions are robustness metrics defined on a large 
set of scenarios similarly for each outcome indicator (Hamarat et al., 2014; Kwakkel et al., 2015), or 
heterogeneously by taking different characteristics of the objectives into account (Trindade et al., 2017). 
Yet, robust optimization is computationally intense since it generates a large number of scenarios at 
each step of the search process to calculate the robustness of each alternative solution. Therefore, the 
multi-scenario search extension to MORDM introduced by Watson and Kasprzyk (2017) is one step 
towards enhancing the robustness of final solutions with a lower computational requirement than robust 
optimization. 
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Using multiple scenarios in the search phase raises the question of how to determine these scenarios so 
that the robustness potential of alternatives can be increased. In Watson and Kasprzyk (2017)’s study, 
these scenarios are selected based on scenario discovery results. Namely, a set of parameter values is 
picked from the uncertainty ranges that constitute policy vulnerabilities. This approach to scenario 
selection is strong at identifying policy-relevant scenarios, and the candidate solutions generated under 
these scenarios have a high potential to address vulnerabilities. However, this approach also has some 
drawbacks. First, such a reduction of the uncertainty ranges to a few distinct values is rather subjective. 
Since scenario discovery results in a subset of multiple scenarios, indicated by particular ranges of 
uncertainties, selecting a discrete set of values from these ranges, and hence a certain number of 
scenarios, is not straightforward. Therefore, systematic approaches can rationalize this selection process. 
Second, scenario selection based on vulnerabilities focuses only on severe cases and ignores the 
diversity of scenarios. Optimization under these severe and policy relevant scenarios is expected to yield 
solutions that can mitigate vulnerabilities. However, since the solutions resulting from MORDM process 
are expected to be robust against a wide variety of alternative futures, accounting for this variety in the 
search phase can be beneficial, too. Third, different policies can have significantly different 
vulnerabilities. Therefore, selecting scenarios according to the vulnerabilities of only one policy can 
lead to a pitfall of overlooking highly robust candidate solutions.  

This paper follows Watson and Kasprzyk (2017) in generating the candidate solutions for multiple 
scenarios, yet presents an alternative scenario selection procedure to deal with the abovementioned 
drawbacks. In other words, this paper demonstrates a revised MORDM application with a formal 
scenario selection procedure that takes into account both diversity and policy relevance. This revised 
approach constitutes a sub-process in the search phase of MORDM, which results in the selection of a 
particular number of policy-relevant and diverse scenarios from a much larger ensemble. To investigate 
the added-value of this approach, the candidate solutions generated for systematically selected scenarios 
are compared to the solutions generated for randomly selected scenarios. An alternative way to 
demonstrate the added-value of this approach is to compare it to the scenario selection method of Watson 
and Kasprzyk (2017). This comparison, however, is not included in this study because selecting a 
particular number of scenarios from the scenario discovery results is rather arbitrary as mentioned 
before, therefore a solid common ground for comparison cannot be found.   

To demonstrate this approach to multi-scenario search in MORDM, we use a stylized and hypothetical 
environmental management problem known as the lake problem where the inhabitants of a city have to 
decide on the annual pollution amount they release into a lake (Carpenter et al., 1999). The lake problem 
is often used for the demonstration of the MORDM and related decision making under deep uncertainty 
tools and techniques (Hadka et al., 2015; Kwakkel, 2017; Quinn et al., 2017; Singh et al., 2015; Ward 
et al., 2015). Therefore, it provides a common ground for the demonstration of the multi-scenario 
approach to the search phase of MORDM.   

In the remainder of the paper, Section 2 elaborates on the Many-Objective Robust Decision Making 
approach, the revised MORDM procedure we follow in this study for multi-scenario search, and the 
scenario selection technique we used. Section 3 introduces the case study, namely the lake problem. 
Section 4 presents the results of scenario selection and robustness analyses of the candidate strategies 
found under these scenarios, as well as a comparison between systematically selected scenarios and 
randomly selected scenarios. Section 5 discusses the proposed approach and future research potential in 
light of the results. The paper ends with conclusions in Section 6.

2. Methods
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In this section, we elaborate on the scenario selection procedure we followed in light of various existing 
scenario selection approaches. We then describe the revised MORDM framework we adopted with 
multi-scenario search.  

2.1.  Scenario selection for multi-scenario search
Model-based scenario development enables the analysts to include a large number of uncertain factors 
and to explore a wide variety of future possibilities by systematic variation of uncertain model elements. 
This is one of the major advantages of model-based scenario development over intuitive approaches 
based on qualitative knowledge and expert insights (Van Notten et al., 2003). However, it is often 
necessary to prioritize a small number of these scenarios because (i) users can pay close attention only 
to a few, (ii) policy evaluation poses computational constraints (Carlsen et al., 2016b), and (iii) limited 
resources can be allocated more effectively for further scenario development (Comes et al., 2015). 

Possible criteria to select a small number of scenarios from a large set are internal consistency, diversity 
of outcome indicators, extremeness, and policy relevance (Trutnevyte et al., 2016). Existing studies 
often use a combination of these criteria, depending on the purpose of prioritizing a small number of 
scenarios. For instance, Tietje (2005) follows an optimization-based selection procedure where internal 
consistency and diversity of scenarios are maximized. Trutnevyte (2013) chooses a small set of energy-
mix scenarios by maximizing a diversity metric defined for each scenario as the Euclidean distance to a 
reference scenario. Comes et al. (2015) also focus on diversity and construct scenario equivalence 
classes where two scenarios are considered similar if the weighted average of differences between all 
outcome indicators (i.e. weighted Manhattan distance) is smaller than a certain threshold. They then 
select a representative from each class based on reliability. Carlsen et al. (2016a) also maximize diversity 
for scenario selection, yet they define the diversity of a scenario set, rather than an individual scenario. 
The diversity metric is then defined as the weighted sum of the minimum and mean values of pairwise 
distances within the set, where the distance between two scenarios is calculated as the weighted 
Manhattan distance. Alternatively, Auping et al. (2016) select a number of scenarios based on their 
extremeness, i.e. whether they result in extreme values, without following an optimization procedure. 
Carlsen et al. (2016b) combine diversity and policy relevance criteria in an optimization procedure 
similar to Carlsen et al. (2016a), where policy relevance refers to the extreme values of outcome 
indicators that make potential policies vulnerable. Watson and Kasprzyk (2017) focus on policy-relevant 
scenarios, and employ scenario discovery to identify the vulnerabilities of a policy and pick a few values 
from the uncertainty ranges that create these vulnerabilities.

In this study, our purpose for scenario selection is to find scenarios that potentially lead to solutions that 
are more robust when the search phase of MORDM is conducted for each of these scenarios. Therefore, 
among the possible scenario selection criteria listed above, we consider policy relevance and diversity 
as the relevant ones. Policy-relevance is a problem-specific concept that should reflect the decision-
making concerns and preferences. In this study, we choose to define policy-relevance with respect to 
undesirable scenario conditions specified by the median values of the scenario space. Dividing the 
scenario space at the median values focuses the diversity analysis on a smaller number of policy-relevant 
scenarios regardless of their distribution. However, we do not propose this as a general way to define 
policy relevance. For the diversity criterion, we propose to use the specific diversity maximization 
method introduced by Carlsen et al. (2016b). 

To combine these two selection criteria, we follow a two-step scenario selection procedure: First, we 
filter the policy-relevant scenarios from a large set based on the threshold conditions specified with the 
median values. This is similar to specifying scenarios of interest in scenario discovery. Equation 1 
denotes this filtering step, where SN is the entire set of N scenarios, SM is the subset with selected M 
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scenarios, s refers to scenario indices, fi,s is the value of outcome indicator i in scenario s, and mi is the 
threshold value for outcome indicator i that specifies the undesired region. Note that the undesired region 
is above the threshold if an outcome indicator is to be minimized, and below the threshold if it is to be 
maximized. Equation 1 denotes only the former case. 

(1)  ,M N i s iS s S i f m     

In the second step, we select a small number of scenarios from this subset SM following the diversity 
maximization approach of Carlsen et al. (2016b). Namely, from SM, we choose the subset SK

* of K 
scenarios, which has the maximum diversity value among all K-th combinations of the M scenarios as 

shown in Equation 2, where DK,l is the diversity measure of the subset l and  is the number of K-th (𝑀
𝐾)

combinations of M. We define diversity following Carlsen et al. (2016b) as in Equation 3, where w is 
the weight given to mean distance, mean function refers to the arithmetic mean of pairwise distances 
within set Kl, and dj,k is the distance between scenarios j and k in the set Kl. We use Euclidean distances 

between the normalized values of outcome indicators as Equation 4 shows, where  is the normalized ,i jf


value of fi,j, with respect to maximum and minimum values among all M scenarios. We employ an 

exhaustive search to find the set(s) of K scenarios with maximum diversity among  such sets.(𝑀
𝐾)

(2)
 

 *

1..
max lK K

Ml K

S D




(3)     , ,
, ,

1 minl

l l

K j k j k
j k K j k K

D w d w dmean
   

  

(4)
2

, , ,j k i j i k
i

d f f
    

 


2.2.  MORDM with multi-scenario search
In this study, to incorporate multiple scenarios in the search phase, we follow a modified version of the 
MORDM framework of Kasprzyk et al. (2013) of which the main steps are listed in Section 1. This 
modified version can be described as follows:

Step 1 - Problem formulation: This step involves structuring the decision problem with respect to the 
XLRM framework as in the original MORDM process.

Step 2 - Scenario selection: The scenario selection procedure described in Section 2.1 is performed in 
this step, which therefore comprises the following three sub-steps: 

2.1) Generate N scenarios with randomly sampled values of deep uncertainties and decision 
levers 
2.2) Filter M policy-relevant scenarios from the ensemble of N scenarios. In this study, we opt 
to divide the scenario space at medians, and filter the scenarios in which the value of each 
outcome indicator is in the undesired half of its range across all scenarios.
2.3) From M scenarios, select K maximally diverse scenarios

Step 3 – Generating candidate solutions: In this step, candidate solutions are identified for the reference 
scenario and for each of the K selected scenarios. The reference scenario is kept in the analysis for a 
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comparison to the selected scenarios. To search for the candidate solutions, any Multi-Objective 
Evolutionary Algorithm (MOEA) could be used. We particularly use the ε-NSGAII algorithm (Kollat 
and Reed, 2006) since it is shown to outperform many MOEA’s in terms of scalability, diversity of 
solutions, and convergence over function evaluations measured by e-indicator and hypervolume success 
(Reed et al., 2013).

Step 4 – Tradeoff analysis: In this step we examine the robustness tradeoffs of each candidate solution 
across a scenario ensemble of deep uncertainties and investigate if the candidates generated under 
different scenarios perform differently. Robustness can be operationalized by using many different 
metrics (Giuliani and Castelletti, 2016; Herman et al., 2015; Kwakkel et al., 2016a; McPhail et al., 2018), 
which represent different decision making preferences. For instance, statistical metrics compute a 
robustness value based on the distribution of the outcomes of interest over the set of scenarios, whereas 
regret-based metrics consider the regret in each possible scenario if a candidate solution is selected. 
These metrics can be computed separately for each objective variable, or can be aggregated across the 
objectives to obtain a single value for each candidate solution. 

In this study, to evaluate the robustness of candidate solutions, we use the fraction mean/standard 
deviation and maximum regret as the commonly used representatives of the abovementioned two metric 
groups. We avoid aggregation of the objectives and compute each metric for each objective variable, in 
alignment with the MORDM framework to explicitly demonstrate robustness tradeoffs between the 
objectives. 

The fraction mean/standard deviation represents the concept of a good average result with very limited 
dispersion around it. Inspired by the signal-to-noise ratio in control theory, the mathematical form of 

this metric is shown in Equation 5, where  is the mean over the set of scenarios for outcome  *
, ,i j sf

indicator  in the case of implementing the candidate solution j, and  is the standard deviation. The if 

formulation is converted into a multiplication for objectives to be minimized. In addition, to avoid 
division by zero, the two terms of the metric are increased by 1, as in previous studies (Hamarat et al., 
2014; Kwakkel et al., 2016a). 

 (5)

 
 
     

*
, ,

*
,,

*
, ,

1
; if is to be maximized; 1...

1

1 1 ; if is to be minimized; 1...

i j s
i

i j,si j

*
i, j,s i j s i

f
f s N

fR

f f f s N





 

 
   


   

The maximum regret of a candidate solution is the maximal difference across the scenarios between this 
candidate solution’s performance and the zero-regret option’s performance in each scenario. Equation 
6 shows the formulation of maximum regret for candidate solution j and outcome indicator i. In this 
formulation, Zi,s is the zero-regret value of outcome indicator i in scenario s, which is assumed to be the 
best value obtained in this scenario with the optimal policy.

 (6)

 
 
 

*
, , ,1...

*
, ,1...

, *
, ,1...

max

max ; is to be maximized

min ; is to be minimized

i j i, j s i ss N

i j s ij J
i s

i j s ij J

R f Z

f if f
Z

f if f







 


 

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The tradeoff analysis step is to be followed by scenario discovery to identify the vulnerabilities of 
candidate solutions in the applications of MORDM with multi-scenario search, too. However, we do not 
proceed with scenario discovery in this study, because the primary objective is to demonstrate an 
extension in the search phase and its effects on the robustness tradeoffs among candidate solutions. 
Scenario discovery does not directly contribute to this objective, yet it helps to investigate whether the 
solutions obtained in different scenarios have different vulnerabilities or not, as will be discussed later. 

Computational experiments of MORDM can be conducted with the aid of open source packages that 
support a variety of modelling techniques. In this study, we use Exploratory Modelling and Analysis 
(EMA) Workbench (Kwakkel, 2017) to generate and visualize the scenarios in Steps 2 and 4. We use 
the Platypus library (Hadka, 2017) to generate the candidate solutions with the ε-NSGAII algorithm in 
Step 3. For scenario selection and solution evaluation in Steps 2 and 4, we use our own Python scripts 
to which a link can be found in the Software and Data Availability section.

3. Case Study: The Lake Problem
We demonstrate our MORDM approach with multi-scenario search on the lake problem. The lake 
problem is a hypothetical decision problem developed by Carpenter et al. (1999). It has been used in 
several studies to showcase different ecosystem management approaches and MORDM applications 
(Hadka et al., 2015; Lempert and Collins, 2007; Peterson et al., 2003; Quinn et al., 2017; Singh et al., 
2015; Ward et al., 2015). In the lake problem, the inhabitants of a town decide on annual pollution 
control strategies. Polluting the lake, by releasing phosphorus in particular, leads to a higher economic 
utility, but it can also lead to irreversible eutrophication if a threshold is passed. The lake model 
formulates the phosphorus amount in the lake as in Equation 7, where Xt and at are the phosphorus level 
and the rate of anthropogenic pollution at time t respectively, and b and q are the parameters controlling 
the rate at which phosphorus is recycled from the sediment and lost from the lake. εt is the rate of natural 
pollution at time t, and following Singh et al. (2015) it is formulated as a log normal distribution with 
mean μ and standard deviation σ. 

(7)1 1

q
t

t t t t tq
t

XX X a bX
X

     


Aligning the lake problem with the XLRM framework for the problem formulation step of MORDM, 
four performance metrics (M) or outcome indicators can be listed. The first is the maximum phosphorus 
concentration in the lake over time, which is formulated as in Equation 8 where T is the number of time 
points. The objective of the inhabitants is to minimize this outcome indicator.  

(8) 
1..

maxpollution t
t T

f X




The second outcome indicator is the economic utility obtained from polluting the lake. This is defined 
as the discounted net present value of the benefits, as in Ward et al. (2015), without considering the costs 
of having a polluted lake. In Equation 9 that denotes this outcome indicator,  is the utility derived 𝛼𝑎𝑡

from polluting,  is the discount rate and  is constant at 0.04 (Ward et al., 2015). This outcome indicator 𝛿 𝛼
is to be maximized. 

(9)
1

T

utility
t

t
tf a 





The inertia of anthropogenic pollution is the third outcome indicator and it is defined as the fraction of 
years where the absolute annual change in anthropogenic pollution is greater than a threshold value. 
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This outcome indicator is formulated in Equation 10, where  is the threshold value and I is an indicator 𝜏
function which is equal to 1 when the statement is true, and 0 otherwise. Inertia indicator (finertia) is to 
be minimized, since rapid reductions in anthropogenic pollution require large infrastructure investments 
and the decision makers favor stability. We set τ to 0.02 following Ward et al. (2015).

(10) 1
1

1
1inertia t

T

t
t

f I a a
T




  
 

The fourth outcome indicator is reliability, defined as the fraction of years where the pollution in the 
lake is below the critical threshold. In Equation 11, Xcrit is the critical threshold of pollution and is a 
function of b and q,  is an indicator function that is equal to 1 if the statement is true, and 0 otherwise. 𝐼
The reliability objective is to be maximized. 

(11) 
1

1 T

reliability t crit
t

f I X X
T 

 

The lake problem involves both stochastic and deep uncertainties. As mentioned before, the natural 
pollution inflow (εt) involves stochastic uncertainty and is formulated with a lognormal distribution. 
Deep uncertainties are associated with the mean  and standard deviation  of the lognormal distribution 𝜇 𝜎
characterizing the natural inflow, the natural removal rate of the lake b, the natural recycling rate of the 
lake , and the discount rate . Table 1 specifies the ranges for these deeply uncertain factors as used 𝑞 𝛿
also in earlier work (Kwakkel, 2017; Quinn et al., 2017), as well as their best estimate or default values.  

Table 1: Deeply uncertain parameters

Parameter Uncertainty range Default value

μ 0.01 – 0.05 0.02
σ 0.001 – 0.005 0.0017
b 0.1 – 0.45 0.42
q 2 – 4.5 2
δ 0.93 – 0.99 0.98

Each scenario we generate is a computational experiment with a combination of the values of deeply 
uncertain factors sampled from these ranges. To address the stochastic uncertainty in the rate of natural 
pollution, multiple replications are performed for each scenario, and the average values of outcome 
indicators over these replications are used. For instance, the outcome indicator reliability in each 
scenario is formulated as in Equation 12, where R is the number of replications and  is the 𝑓 𝑟

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

reliability value in each replication.

(12)*

1

1 R
r

reliability reliability
r

f f
R 

 

The lake problem is formulated with two alternative decision mechanisms in previous studies. In several 
applications (Hadka et al., 2015; Singh et al., 2015; Ward et al., 2015), it involves T decision levers 
corresponding to the amount of anthropogenic pollution at each time point, namely at. An alternative is 
presented by Quinn et al. (2017), where the control strategy is formulated as a closed loop, i.e. 
anthropogenic pollution is a function of  the current phosphorus level in the lake, leading to highly 
adaptive decision strategies. In this study, we use the former, non-adaptive version with independent T 
decision levers, since it is expected to better demonstrate the implications of multi-scenario search for 
the robustness of candidate solutions. 
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4. Results
Following the problem formulation in Section 3, this section presents the results of an MORDM 
application with multi-scenario search in the order of steps described in Section 2.2. 

4.1.  Step 2: Scenario selection 
For multi-scenario search, we first generate N=2500 scenarios, formed with 5 randomly formed policy 
strategies and the same 500 scenarios for each strategy. The scenarios are generated by Latin Hypercube 
Sampling over the ranges of deeply uncertain parameters listed in Table 1, and we perform 100 
replications in each scenario with 100 time series samples of the stochastic parameter natural pollution 
rate. From these 2500 scenarios, we select a subset of policy relevant scenarios, determined according 
to the median values of each outcome indicator across these 2500 scenarios, as formulated in Equation 
13. This subset contains M=206 scenarios.    

(13)

 
 
 

 

* *
, ,1...

* *
, ,1...

* *
, ,1...

* *
, ,1...

median

median

median

median

inertia s inertia ss N

pollution s pollution ss N
M N

reliability s reliability ss N

utility s utility ss N

and

and

and

f f

f f
S s S

f f

f f









 
 
    

 
 

 
 

From the set of M=206 policy relevant scenarios, we select K=4 maximally diverse ones in terms of 
their outcomes, with an Euclidean distance calculation and the weight w=0.5 given to the mean of 
pairwise distances in the diversity metric. As mentioned before, this selection is done by an exhaustive 
search procedure that evaluates around 72 million subsets with size 4 of these 206 scenarios in terms 
of the diversity within the subset.

The results of this selection procedure are illustrated in the pairwise scatter plots in Figure 1, where the 
entire scenario space of 2500 experiments, the subset of policy relevant scenarios and the selected four 
scenarios are distinctly shown. Each marker represents a scenario, and the histograms on the diagonal 
axis show how the density varies across the scenario space.  The four scenarios selected based on their 
pairwise distances and colored in red are indeed located in distant corners of the policy-relevant 
scenario space. In addition, Figure 10 shows the scenario space resulting from scenario discovery, 
when the scenarios of interest are defined as the policy-relevant failure scenarios with median 
thresholds. The scenarios in blue are the ones corresponding to the uncertainty ranges of a box found 
by the PRIM algorithm. This PRIM box covers the 98.5% of the 206 scenarios of interest, and 65% of 
the scenarios in this box are of interest. From this figure, it can be concluded that the four scenarios we 
select align with scenarios that could be selected via scenario discovery. Besides, a diversity-based 
selection is also complementary to a selection based on scenario discovery, since it allows identifying 
a certain number of scenarios within the uncertainty ranges obtained from PRIM.
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Figure 1: Scenario selection results with N=2500 scenarios in light grey, M=206 policy relevant scenarios in darker 
grey and K=4 diverse scenarios in red

Figure 2 provides an alternative visualization of the selected scenarios on a parallel coordinate plot, 
where the vertical axes belong to the five deep uncertainties and the four outcome indicators. Each line 
in this figure corresponds to a scenario and crosses the axes at the uncertainty values and the resulting 
outcome indicator values in that scenario. The four selected scenarios are highlighted with different 
colors, and they demonstrate various tradeoffs. Scenario A in green has the most favorable values in 
terms of maximum pollution and reliability, yet the worst ones in terms of inertia and utility. Such a low 
value for utility is attributed to the relatively low value of parameter delta, which is the discount rate 
that determines economic utility. Scenario B is favorable only in terms of utility. Scenario C is also an 
undesirable situation due to very low reliability and utility values, and a high maximum pollution. 
Scenario D in pink is the best case among these four, with a low inertia and maximum pollution, as well 
as a high reliability and utility. The parameters b and q, which control the recycling of phosphorus as in 
Equation 7, have high values in this scenario, as well as the parameter delta.. 
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Figure 2: The selected four scenarios among the policy-relevant scenarios shown in gray

4.2.  Step 3: Generating candidate solutions
In this step, we generate candidate solutions for each of the selected four scenarios and the reference 
scenario indicated by the default values of uncertainties listed in Table 1. These candidate solutions are 
the non-dominated tradeoffs in the Pareto fronts identified by the ε-NSGAII algorithm for each scenario. 
The values of the algorithm parameters used in these search processes can be found in Appendix I, as 
well as the convergence of the search process for each scenario with these parameters.

The search algorithm generated 105 candidate solutions under the reference scenario, and 96, 89, 88 and 
85 solutions for the scenarios A, B, C and D, respectively. We restrict this solution space by filtering the 
ones that result in reliability values greater than 80%, assuming that decision makers consider high 
values of reliability crucial and impose this constraint on the solutions. This brushing results in 13, 8, 
16, 7 and 6 candidate solutions for the reference scenario and scenarios A, B, C, D respectively.

Figure 3 visualizes these brushed candidate solutions. Each line in this figure corresponds to a candidate 
solution, and the color refers to the scenario under which it is generated. The four vertical axes show the 
four objectives. There are considerable differences between the solution sets that can be related to the 
differences in scenarios under which they are generated, although they are not in the completely distinct 
regions of the solution space. For instance, in almost all solutions generated under Scenario D, which is 
considered the best case among the four selected scenarios, very low pollution, very high reliability, and 
relatively favorable inertia and utility values are obtained. Many candidate solutions generated in the 
reference scenario lead to relatively undesired inertia, pollution and reliability values. Yet, there are still 
a few solutions generated in this scenario with favorable values of these objectives. Scenario B was a 
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compromise between the four objectives, with moderate values of all, and the candidate solutions 
generated in this scenario reflect this characteristic, too. However, the candidates generated under 
Scenario C, which is an undesirable scenario, are highly similar to those generated under Scenario D, 
which was considered the best among the selected scenarios. 

Figure 3: Candidate solutions generated under each selected scenario

Following these observations, we conclude that searching for candidate solutions under multiple 
scenarios generate a wider variety of tradeoffs than searching only under a reference scenario. Since the 
goal of the search phase in MORDM is to inform the decision-making debate about potentially good 
solutions and their consequences, a wider variety of candidate solutions provide a room for maneuver 
in this debate, for instance to prioritize the objectives or to agree on an acceptable degree of tradeoffs.  
Therefore, it provides more insight and more options to the decision makers. A direct relationship, 
however, cannot be drawn between the tradeoffs and the scenario under which they are generated, based 
only on the results of this case study.   

4.3.  Step 4: Tradeoff analysis
In Step 4, the candidate solutions generated under the reference scenario and the four selected scenarios 
are evaluated in terms of their robustness against deep uncertainties. For this purpose, firstly the 
performance of each candidate solution is explored across a variety of scenarios. Namely, N=1000 
scenarios are generated for each candidate solution, by sampling for the alternative values of the five 
deep uncertainties listed in Table 1.Then, the robustness of each candidate solution is evaluated based 
on this ensemble of 1000 scenarios. Appendix II demonstrates the densities of these scenarios, which 
can support understanding the robustness performance of the candidate solutions.

Figure 4 show the robustness tradeoffs of the candidate solutions evaluated across 1000 scenarios, with 
respect to the mean/std. deviation metric. The candidates generated under multiple scenarios result in a 
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wider variety of robustness tradeoffs and better robustness values than the ones generated under the 
reference scenario. Higher values of the mean/std. deviation metric are preferred for utility and 
reliability, but lower values for inertia and maximum pollution. Therefore, the first two axes are inverted 
to indicate that the higher a line on each axis, the higher the robustness of the corresponding solution.  
Considering these preferences, many solutions generated under the 4 scenarios outperform the solutions 
generated under the reference scenario, except for the maximum pollution objective. Besides, most of 
the solutions highlight a tradeoff between the maximum pollution and reliability robustness objectives. 
Still, some candidate solutions, especially the ones found under scenarios C and D, balance this tradeoff 
and offer more favorable robustness values both for reliability and maximum pollution. The extent of 
tradeoffs generated under Scenario D is low, indicating that solutions generated under this scenario offer 
compromises between the robustness values for all objectives.    

Figure 4: The robustness tradeoffs of the candidate solutions generated under each selected scenario with the 
mean/standard deviation metric (arrows indicate the preferred direction of values)

When the candidate solutions’ robustness is evaluated by the maximum regret metric, the results are 
similar in terms of leading to a wider variety of tradeoffs and higher number of robustness values as 
Figure 5 illustrates. Considering that the solutions with a low maximum regret are preferred for any 
outcome indicator, most solutions generated for the reference scenario show a tradeoff similar to the 
results of the mean/std. deviation metric, with low robustness for inertia and high robustness for 
maximum pollution. The candidates generated for Scenario B also result in highly unfavorable 
robustness values for the inertia and pollution objectives. With relatively low values for almost all 
objectives, the candidates generated for Scenarios A and D present compromise solutions with relatively 
low maximum regret values for all objectives. 
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Figure 5: The robustness tradeoffs of the candidate solutions generated under each selected scenario with the 
maximum regret metric (arrows indicate the preferred direction of values)

Given that multi-scenario search has resulted in various robustness tradeoffs, and MORDM application 
can proceed with a subset of these candidate solutions. This subset can be chosen depending on decision-
making preferences, for instance the compromise solutions, or the solutions that enhance the prioritized 
objectives. These candidate solutions can then be improved according to their vulnerabilities identified 
by scenario discovery.

4.4.  Comparison of using systematically selected scenarios to using randomly 
selected scenarios in the search phase

This paper introduced a systematic scenario selection procedure to be incorporated into the search phase 
of MORDM to enhance the robustness potential of the candidate solutions. In this section, we investigate 
whether using systematically selected scenarios in the search phase of MORDM differs from using 
randomly selected scenarios in terms of the robustness of the candidate solutions the two scenario groups 
lead to. Namely, we repeat the MORDM process with multi-scenario search using four randomly 
selected scenarios instead of the four policy relevant and maximally diverse scenarios identified in 
Section 4.1. We compare the robustness tradeoffs of the candidate solutions generated for these 
randomly selected scenarios to those resulted from the systematically selected scenarios presented in 
Section 4.3.

An arbitrary set of four scenarios is selected from the initial ensemble of 2500 scenarios (See Section 
4.1) Figure 11 and 11 in Appendix III show these four randomly selected scenarios. The search phase 
under these four scenarios yielded 399 candidate solutions in total, which are reduced to 53 after 
brushing according to the reliability criterion. The performance of each of these candidate solutions is 
explored in 1000 scenarios, and their robustness scores are calculated. Figure 6 below compares the 
robustness tradeoffs of these 53 candidate solutions to the 37 candidate solutions generated for the four 
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systematically selected scenarios (namely the scenarios A, B, C, D), in terms of the robustness metric 
mean/standard deviation. Note that the results shown in the ‘systematic’ group of the candidate solutions 
are an aggregation of those shown in Figure 5, whereas the ones in the ‘random’ group are newly 
obtained. A similar comparison between the systematically selected and random scenarios is illustrated 
in Figure 7 using the maximum regret robustness metric. 

From the visual comparison in Figures 7 and 8, it can be concluded that, regardless of the robustness 
metric used, systematically selected scenarios and randomly selected scenarios lead to different 
robustness tradeoffs. However, there are candidate solutions that are generated for randomly selected 
scenarios that still lead to very favorable robustness outcomes. Similarly, there are candidate solutions 
from the systematic group that underperform the ones from the random group. 

These two solutions groups can be compared, for instance, in terms of the number of solutions that lead 
to favorable results, specifically above or below the median objective values within the group. Such 
favorable results correspond to the upper half of the solution space for the mean/std. deviation metric in 
Figure 6, and the lower half for the maximum regret metric in Figure 7. Considering the former, there is 
only one such solution both in the systematic and random group, i.e. a solution curve which is in the 
upper half of Figure 6 for all four objectives. Similarly, there are only two such solutions in both groups 
when the robustness metric maximum regret is considered. Allowing one tradeoff and considering only 
three of the four objectives, the two solutions groups have again similar numbers of solutions that lead 
to favorable results. However, considering the total number of solutions in the two groups, a higher 
portion leads to such favorable groups in the systematic group. Still, the solutions in the two groups do 
not cover mutually exclusive regions of the solution space. Therefore, in the case of the lake model, 
selecting the scenarios based on policy relevance and diversity does not lead to significantly more 
favorable results in terms of robustness or variety of robustness tradeoffs, compared to an arbitrary set 
of scenarios.  
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Figure 6: The robustness tradeoffs of the candidate solutions generated under the systematically and randomly 
selected scenarios, with the mean/std. deviation metric (arrows indicate the preferred direction of values)

Figure 7: The robustness tradeoffs of the candidate solutions generated under the systematically and randomly 
selected scenarios, with the maximum regret metric (arrows indicate the preferred direction of values)

5. Discussion
This paper incorporated a systematic scenario selection mechanism into the search phase of MORDM 
in order to optimize a decision problem for many different scenarios and to find potentially more robust 
solutions. The results show that optimization for different scenarios indeed lead to a wider variety of 
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trade-offs both for the performance indicator values and for their robustness scores compared to 
optimization only for a reference scenario, and provide the decision makers with more options that can 
be aligned with different decision-making preferences. Below, we discuss these results and the proposed 
approach with respect to the scenario selection method and the extended MORDM approach.

5.1.  Scenario selection
As discussed in Section 2.1, scenario selection can be based on different criteria such as consistency, 
extremeness, diversity or policy relevance, and these criteria can be operationalized in various ways. In 
this study, we combined two of these criteria, policy relevance and diversity. These two criteria are 
important in a robust decision making context, because they refer to the undesired conditions that pose 
vulnerabilities for policies and to the variety of conditions that can be encountered due to deep 
uncertainties.  

The selection procedure we choose to use involves an exhaustive search process from maximum 
diversity with over 70 million evaluations, which is computationally intense. This computational 
requirement is expected to be higher when the search is conducted on a larger ensemble of scenarios. 
Therefore, to reduce the computation time and make this approach more accessible, heuristic search 
algorithms can be used in future applications. In particular, evolutionary algorithms used for multi-
objective optimization (Reed et al., 2013) can also be used for finding a maximally diverse set of 
scenarios. A possible formulation of this maximization problem can include a single objective function, 
namely the diversity metric, and decision variables corresponding to scenario indices. 

In this study, as a part of an MORDM application, scenario selection had the purpose of identifying 
multiple scenarios under which candidate solutions could be generated. However, scenario selection can 
be motivated by various other reasons, such as computational constraints, narrative elaboration or policy 
evaluation as discussed in Section 2.1. Therefore, systematic scenario selection tools based on diversity 
can support future studies on decision making under deep uncertainty beyond the purpose of a multi-
scenario search in MORDM. Thus, it is potentially beneficial to incorporate such tools, in addition to 
the current scenario discovery tools, in the software packages that are developed for decision making 
under deep uncertainty, such as the Exploratory Modelling Workbench (Kwakkel, 2017), open 
MORDM (Hadka et al., 2015) and Project Platypus (Hadka, 2017).

5.2.  MORDM with multi-scenario search
Generating candidate solutions under multiple scenarios led to a wider variety of Pareto optimal 
tradeoffs for the multi-objective decision problem in this study, and provided more decision options 
compared to optimization only for a reference scenario. Besides, in Section 4.2, we discussed the relation 
between each scenario and the characteristics of the solution set generated under it. For instance, 
Scenario D has a low inertia, relatively low maximum pollution and high reliability and utility values. 
The solutions obtained in this scenario result also in very low pollution, very high reliability, and 
relatively favorable inertia and utility values. However, such observations cannot be generalized for all 
outcome indicators and for all scenarios. Therefore, based only on the results of this study, we cannot 
derive a direct relation between the scenarios and the solution sets generated under them. This can be 
attributed to the nonlinearity in the lake model, and to a stronger influence of anthropogenic pollution 
(policy lever) than the uncertainties (external factors) on the lake problem’s objectives. Furthermore, 
relating the scenarios and the candidate solutions can help to investigate the sensitivity of outcome 
indicators to the scenarios for which they are optimized. In other words, it reveals whether particular 
objective values can ever be achieved or not, if the starting point of optimization is a particular scenario. 
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Future applications can benefit from such an analysis, which is not demonstrated in this study since it is 
beyond the steps of the MORDM framework.

Since optimization for multiple different scenarios led to different results than the optimization for the 
reference scenario, the selection of these scenarios is indeed important for the eventual outcomes. When 
compared to randomly selected scenarios, a higher percentage of the solutions generated for 
systematically selected scenarios resulted in favorable robustness tradeoffs than the ones generated for 
randomly selected scenarios. Still, the solutions generated for policy-relevant and diverse scenarios did 
not all result in a higher robustness performance than the solutions generated for randomly selected 
scenarios. In other words, randomly selected scenarios covered the variety in the scenario space 
reasonably (see Figure 10 in Appendix III) and resulted in similarly favorable outcomes as the 
systematically selected scenarios. We suggest that this observation is due to the features of the lake 
model, i.e. the scenarios not considerably affecting the characteristics of the solutions found, 
nonlinearities in the model, or the extent of tradeoffs between the objectives, as well as the ability of 4 
scenarios to capture the variety of such tradeoffs. Future research can investigate a suitable number of 
scenarios to be included in a multi-scenario search, with respect to the number of objectives in the 
problem and the nature of tradeoffs between them.      

In this study, we treated the solutions generated under different scenarios independently and we did not 
compare them to each other in terms of dominance. The motivation behind this choice was to 
demonstrate how the performance of candidate solutions generated under different scenarios differ from 
each other. However, a solution found under one of the scenarios can be dominated by a solution found 
under another scenario, if the latter results in equal or better values for all objectives in the second 
scenario. Therefore, further analysis can investigate how a solution generated for a particular scenario 
performs if re-evaluated in another scenario, i.e. whether it would be dominated or not. This type of 
analysis strays from the general MORDM framework, since the robustness analysis we presented in this 
study already covers the performance of a solution in other scenarios. Still, this additional analysis can 
provide disaggregated insights for particular scenarios of interest if needed. 

Furthermore, as robust decision making, MORDM focuses on static robustness, and does not consider 
the dynamic nature of uncertainties and dynamic decision responses to their realizations (Kwakkel et 
al., 2016b). In the lake problem example used in this study, we optimized a dynamic decision strategy, 
yet did not consider adaptation pathways, i.e. switches between different policy options over time 
according to the realizations of uncertainties. To enhance the robustness of final solutions, MORDM 
can also benefit from considering dynamic adaptation in future studies.

The method proposed in this study is an extension to MORDM in order to generate candidate solutions 
that are more robust without the expense of computational power required by many objective robust 
optimization. This method also inherits the usability and ease of interpretation of the original MORDM 
framework, since the multi-scenario search is only a repetition of the original search step, and once a 
combined set of candidate solutions is generated for multiple scenarios, the rest of the MORDM 
application proceeds as in the original framework. Whether scenario selection is performed as proposed 
in this study or differently, an MORDM application with multi-scenario search is a promising extension 
in order to provide solutions with enhanced robustness and a wider variety of tradeoffs to a decision-
making debate. Therefore, for the problems where robustness is important, and a wider variety of 
alternative solutions is required to reach a consensus on the conflicting objectives, it is recommended to 
use MORDM with multi-scenario search.   
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6. Conclusions
Many objective robust decision making (MORDM) is one of several model-based decision support 
approaches for designing strategies with robust performance over a large ensemble of scenarios. 
MORDM generates candidate solutions using many objective optimization given a reference scenario, 
and subsequently evaluates the robustness of these solutions, i.e. how well they perform under a variety 
of scenarios. However, there is no guarantee that solutions that are optimal in the reference scenario will 
have good robustness over a larger set of scenarios. A recent extension to MORDM sought to address 
this by performing many objective optimization for a number of scenarios, and select these scenarios 
from that part of the uncertainty space that most clearly negatively influences plan performance (Watson 
and Kasprzyk, 2017). In this paper, we sought to further improve upon this, by putting forward a 
systematic approach for scenario selection. 

The particular MORDM extension proposed in this paper is to systematically select the scenarios under 
which the search step is repeated. Scenario selection is based on diversity and policy relevance. Diversity 
refers to how these scenarios differ from each other in terms of the outcome indicator values, and policy-
relevance refers to whether these scenarios are undesirable for decision makers. These two criteria of 
scenario selection align with the purpose of generating candidate solutions that can perform well under 
a variety of conditions to which potential solutions are vulnerable. 

The results show that, compared to the candidate generation only under a reference scenario, searching 
for candidate solutions under the selected scenarios not only increases the variety of robustness tradeoffs 
between the objectives and provide more decision options, but also lead to more robust solutions. In the 
case of the lake model, the results did not demonstrate considerable differences between using policy 
relevant and diverse scenarios and using randomly selected scenarios in the search phase. The 
comparison did, however, highlight that the robustness of candidate strategies is sensitive to the scenario 
for which it was found to be optimal. 

In future MORDM applications, the importance of a systematic scenario selection can be investigated 
on different cases. The computational expense of the scenario selection procedure described in this paper 
can be reduced by using heuristic search algorithms for diversity maximization. The software packages 
developed for decision making under deep uncertainty can benefit from incorporating systematic 
scenario selection tools either for multi-scenario search in MORDM or for other purposes such as policy 
evaluation or narrative elaboration. Another departure point for future research is a detailed investigation 
of the sensitivity of robustness outcomes to the initial scenarios for which optimization is performed. 
Furthermore, a comparison of multi-scenario MORDM to multi-objective robust optimization helps 
elaborate on advantages and disadvantages of the two methods.   
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Appendix I: Operator parameters and the convergence of ε-NSGAII
Table 2: Operator parameters of the search algorithm (ε-NSGAII)

Parameter Value
NFE 10000
Epsilons (for maximum pollution, utility, inertia 
and reliability, respectively )

0.05, 0.01, 0.005, 0.005

Initial population size 100
Simulated binary crossover (SBX) rate 1
SBX Distribution Index 15
Polynomial Mutation (PM) rate 1
PM Distribution Index 20
Injection rate 0.25

Figure 8: Convergence of the search process under each selected scenario
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Appendix II: Density distributions of the 1000 scenarios generated for each candidate 
solution 

Figure 9: Densities of the scenario ensembles generated with each candidate solution
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Appendix III: Scenario selection
 

Figure 10: Scenario selection results with N=2500 scenarios in light grey, M=206 policy relevant scenarios in darker 
grey and K=4 diverse scenarios in red, and 4 randomly selected scenarios in purple
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Figure 11: The randomly selected four scenarios among all scenarios shown in gray
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