Construction of the Web Service for Smooth and
Fast Rendering of Large SSC Dataset and the
Preprocessing of Source Data

MSc Geomatics Thesis P3

Yueqgian Xu
April 2, 2017

1 Research questions

1.1 Objectives

The object of the research is to develop a web service for smooth vario-scale map
rendering during zooming and panning of large dataset.

1.2 Research questions

Main research question:
What is the architecture within the prototype that allow client to conduct repeti-
tive user interactions and how does it reflect on the format of input data?

1. Server side:

e In the existing OBJ files, vertices and triangles can be distinguished by
the starting character of each line. However, it has already been proved
that progressively comparing and splitting strings (decoding) of a static
file is slow under Javascript environment. How should the static files
be formatted? Is binary file a feasible format under this circumstance?

e How should the original dataset be structured and serialized so that it
can be directly loaded into GPU after binary encoding?

e During the octree dividing, what is the affiliation of a triangle with
the chunks it is intersecting with? What will the size change before and
after the binary formatting if the one triangle belongs to all intersecting
chunks?

e What will be difference between the preprocessed data size using ordi-
nary octree and other grouping methods?

2. Client side:

e What is the limitation of the web service? What will be the maximum
size of packages for one rendering process?

e If a user repetitively zooming in/out during a short period, will there
be overload? How to store loaded chunks in buffer? How to update
buffer data and verex number without the unloading of all chunks that
were requested by previous render request?

e If there is gap between the package(s) required before and after zooming,
how can the animated frames be generated? By loading all chunks in
between?

2 Methodology

The research framework contains two segments: (1) data preprocessing at server
side Figure 2.1 and, (2)client development.

2.1 Data preprocessing

The original OBJ file is composed as shown in Table 2.1. A line starts with a
capital “F” followed by object id (int) and the number of faces of the object (int)
indicates the beginning of an object. The following lines represent the triangles
that form the object; each line contains three integers which are references to the
vertices. The SSC dataset is then divided into eight octants; any triangle that
intersecting with more than one octant belongs to all the octants it intersects.
For example, as shown in Figure 2.2, the large triangles at the top of the model,
they belong to both chunk 1 and 2. An individual file is then generated for every
chunk. The content of the chunk file is shown in Table 2.2. Each line is composed
by three vertices of a triangle; the vertex reference is followed by a color id. The
color information can be obtained by Oid & 15; it returns an indicator to the color
list.

During the preprocessing, the coordinates of the upper right and lower left

vertices of bounding box of each chunk are detected and outputted to a new
binary file. The bounding box file contains eight lines; the first 24 bytes of each
line represent the bounding box of the corresponding octant produced after the
first division. Take the bandwidth into consideration, assume that most PC users
have a bandwith at 3-5 MB per second; the file size of each chunk should be limited
(around 3 MB in this case); therefore, the initial chunk file should be restricted to
around 1 MB (the final file size will be 3 times larger than the initial chunk file
after binary compiling hence the initial chunk file size should be one third of the
3 MB bandwidth limitation).
After the first division, the chunks which are over 1 MB should be subdivided.
The bounding box coordinates of the newly generated chunks are appended to the
line which represents the root octant. Recursively subdivide the dataset until all
leaf octants are smaller than 1 MB. Finally, write all leaf chunks to binary file
separately; the content of the binary file is shown in Table 2.3. The binary file
contains one line which is formed by x, y, z coordinates and their R, G, B value;
one followed by another, without any white space or end of line: [x1 y1 z1 R G B
x2y2z22RGB...].

Recursively

subdivide

OBJ File

Vertice float float float
Object F Qid face_number

Y

Color list
Cid

Face int int int |

Vertice File

—>|Ver‘tice

Octree
v
Chunk File i BBox File
float 8 X |Face index intintint cid '—) BBox of chunk 1
BBox of chunk 2
If chunk file i>1 MB & ??nogrgf”ﬁ;gnk 3
Ll (o

8 X

subdivide chunk i

Chunk File
Face index int int int cid

append BBox of
the octants to line i

For each chunk

Binary File
ArrayBuffer

Figure 2.1: The flowchart of data preprocess

BBox File

chunk j Xyzxyz xyzxyz...(24byte + 8x24 bytes)
chunk i +1 xyzxyz

v 93851.3255 463551.399 378
v 93848.358512 463548.100973 378
v 93853.1826667 463553.491 378
F 16099670 42

114803 114802 114801

114801 114804 114803

114807 114805 114806
F 16072661 4

87399 87398 87397

87397 87400 87399

87401 87399 87400

Table 1: Original OBJ file

Boundlng Box 1

Bounding Box 2

(a) Triangles intersecting with chunk 1 (b) Triangles intersecting with chunk 1

Figure 2.2: Larger triangle intersecting with more than one chunk

vl v2 v3 color id

3194 1277 1280 7
1280 34 3194 7
1899 752 5369 9

Table 2: Chunk file content

x1 yl zl R G B
93851.3 463551.4 378 1 0.5 0
12 bytes 12 bytes

Table 3: Binary file content

2.2 Octree

It is found that the size of the chunks in the top half is much larger than those
in the bottom half if the model is evenly divided into eight octants. It is mainly
caused by the plural affiliation of a large triangle with different chunks. Another
division method is then tested, as shown in Figure 2.3, the model is evenly divided
in the horizontal direction but unevenly divided in the vertical direction. The top
part is redefined as the part over the 1:4 plane.

Another dividing method is applied to the dataset as well; Figure 2.4 shows a
separate binary file for triangles intersecting with more than one chunk. By using
this dividing method, duplicated rendering of those triangles can be avoided. The
comparison of file size among three dividing methods is listed in Table 2.4. It can
be indicated that the wide gap between the file size of upper and lower chunks is
not caused by the plural affiliated triangles. The output file sizes are more bal-
anced using the second dividing method (1:4 octree).

/ = / = — e 3
1 2 Top half - :
/=
Bottom half
7
5 6 F . 5 &
(a) Evenly divided octree (b) 1:4 divided octree

Figure 2.3: Octree model

1

$

." . - 0”

o

(.‘ .

20%

80%

Figure 2.4: A sepatare file for triangles belonging to multiple chunks

Chunk Size (1:1 octree)(KB) Size (1:1 octree) Size (1:4 octree)

1 2940 2660 1827
2 2953 2664 1739
3 4155 3875 2340
4 3858 3587 2640
) 208 186 1320
6 175 157 1389
7 463 408 2278
8 T 718 2010
upper intersecting 557
lower intersecting 75
Total 15529 14887 15543

Table 4: Comparison of bianry file size

2.3 JavaScript side

The process before the scene is rendered at the client GPU is shown in Figure 2.5.
Once the client passes a request for specific chunk(s), the corresponding binary
file(s) will be loaded by an XMLHttpRequest. The response to the XMLHttpRe-
quest is an ArrayBuffer from which the attributes needed for rendering such as
the number of vertices and the buffer size can be acquired. Push the ArrayBuffer
to the buffer list then it can be used for other XMLHttpRequest. Add number of
vertices and the buffer size of this chunk to the total vertices number and total
buffer size respectively. By knowing the buffer size, an empty buffer with correct
size is generated. Data is given to the empty buffer by BufferSubData function,
with an offset equals to the total buffer size. Therefore, the buffer to be rendered
and the number of vertices to be render are extended after each XMLHttpRequest
is conducted. If all required chunks are loaded and ready to be rendered, the buffer
will be send to the client GPU along with the total number of vertices.

Load chunksi, j, k ...]

Binary File i

Type: ArrayBuffer XMLHttpRequest

Vertice number: buffer.L engrh Get File |

BufferSize: buffer.ByteLength

If loaded
Fo T o e o e e e e e e e e e e mm b e e e o
1 Total Buffer Size = BufferSize :
]
. +=
T Totoal Vertices | I Vertice number | :
] i
Buffers List
1 utters His o Ad10 I ArrayBuffer | 1
1 1
1]
1]
1 Create empty butfer of size = total buffer size Empty Buffer 1
1]
1]
1 Append data to empty buffer (offset = total buffer size) 1 :
T > 1 Repeat until all
1 1 requested chunks
are loaded
: BufferSubData :
1 1
Laie S oreireys s e St Sepisn: = _____I‘_
If finished
Binary File j Get File New
> | XMLHtpRequest
v
Buffer Send to client GPU Render

|

Figure 2.5: The process at JavaScript side before the scene is rendered

3 Time planning

3.1 Activities

It sets up a series of activities that are needed to achieve the research objectives.
Literature study of the SSC model and the development of a testing prototype are
done before P2. Some important dates are listed in Table 4. The schedule between
P3 and P4 are listed in Table 6. Here listed some important date:

Date Activity
3 April P3
13 April Final application dates for P4
11-24 May P4
24 May Final application dates for P5 (the draft should be finished before)
26 June-7 July P5 (report should be finalized before)

Table 5: Important dates

Activity date
Dividing data into chunks based on Octree Done
Format data into binary and viewport position determination Done
Load and unload multiple packages at client side Done
Pass mouse events after one rendering to Javascript side 10-17 April
Try to store unwanted chunks in memory 18-25 April

once they are loaded instead of
reloading them when requested again
Generate slices inbetween two interactions 1-7 May
Enrich user interactions and final report after P4

Table 6: Activities after P3

10

	
	Objectives
	Research questions

	Methodology
	Data preprocessing
	Octree
	JavaScript side

	Time planning
	Activities

