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Flight and maintenance scheduling pose conflicting objectives: while maintenance is vital for ensuring aircraft
airworthiness, it comes at the cost of taking aircraft out of operation. In current operations, airlines manually
handle tail assignment and maintenance task scheduling separately, missing an opportunity to strike a
better balance. This division leads to wasted maintenance resources, restricted fleet availability for schedule
flexibility, inconsistent planning, and neglect of schedule resilience. This study presents a novel approach that
integrates tail assignment and maintenance scheduling into a unified decision-support framework. An integer
program, tailored to meet airline-specific requirements and constraints, is combined with an innovative time-
space network (TSN). The TSN incorporates two distinct spaces for maintenance and network activities. The
primary objective is to generate feasible plans that increase schedule efficiency (i.e., no cancellations, high fleet
availability, high fleet health, and optimal use of maintenance resources) and schedule stability (i.e., limited
number of late arrival disruptions during operations) the day before operation. Additionally, this framework
addresses overlooked aspects in the literature: it treats maintenance tasks as variable interval activities
based on aircraft-specific needs, departing from the traditional fixed interval approach. The performance of
the framework is tested with real-data provided by a major European single hub-to-spoke airline, with a
heterogeneous fleet of over 50 wide-body aircraft. Historical data from arrival delays is used to create robust
buffers that mitigate delay propagation. A 17% reduction in maintenance time was achieved compared to
the airline’s current plans, resulting in a 10% increase in fleet availability on the day of operations. This
improvement is attributed to higher labour and task interval utilization, indicating the framework’s superior
efficiency in scheduling maintenance tasks. Lastly, the framework produced plans more resilient to arrival
delays, reducing the number of disruptions and delay propagation over 40%. This framework can be used as
a decision-support tool for airlines, enabling the creation of schedules that are both robust against delays and
optimized for fleet utilization.

1. Introduction with conflicting interests. Tail assignment planners decide where each

available aircraft should fly, decreasing operating and cancellation

Airline schedules suffer from disruptions daily. Poor weather con-
ditions, airport congestion, unavailable personnel, and unplanned me-
chanical failures have led to 30.1% of flights not running on schedule
in Q2 of 2023 according to [1]. Consequently, the tasks of tail and
maintenance must constantly be adjusted to new information arriv-
ing. However, most airline planners still do this manually, which is

costs. In turn, maintenance schedulers guarantee the airworthiness
of the aircraft by removing it from operations. This inefficiency in
collaboration leads to sub-optimal plans, with increased variability in
schedule performance. Additionally, due to the complexity of the prob-

lem, involving a multitude of maintenance tasks, flights, and aircraft,

complex and time consuming. Airline operators manually mitigate dis-
ruptions by altering aircraft schedules, crew schedules, and passengers’
itineraries. For large airlines with extensive networks and complicated
schedules, an operator cannot find manually an optimal solution.
Additionally, neither tail assignment nor maintenance task schedul-
ing are static decisions. Instead, these are highly intertwined tasks
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all subject to stringent operational constraints, planners often end up
overlooking robustness.

Leading airlines are looking for fast operating tools that provide
robust and integrated decision support for tail and maintenance task
assignment, all with the aim of facilitating disruption management.
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However, despite growing interest, extensive modelling of simultane-
ous tail assignment and maintenance task scheduling is lacking in the
current literature. Predominantly, focus has been reserved for stable
and/or flexible network plans, however, often disregarding mainte-
nance constraints. Most advanced models, for example, [2,3], treat
maintenance as a fixed time, fixed interval, non-aircraft-specific ac-
tivity when creating stable plans. While robust maintenance planning
models, such as that presented by Sadjadi et al. [4], disregard network
operations altogether. In reality, network and maintenance are highly
intertwined activities that if integrated can potentially increase sched-
ule stability and efficiency. For instance, more efficient task planning
may decrease maintenance time, thereby increasing useful buffer time,
helpful for preventing disruptions from flight late arrivals.

Implementing a framework for simultaneous tail assignment and
maintenance task scheduling can support airline planners in the
decision-making process, improving the trade-off between useful buffer
time and maintenance time. A well-designed framework has the poten-
tial to create more efficient, stable plans that reduce operating costs and
disruptions on the day of operations. However, to be suitable for imple-
mentation, a decision support framework must comply with numerous
requirements set by the airline. It should have a short execution time,
allowing planners to make adjustments as new information arrives,
such as new maintenance tasks. The framework should create feasible
plans to ensure aircraft airworthiness and that adhere to the airline’s
tail restrictions, maintenance schedule, and resource availability. This
paper addresses these aspects. The innovative framework developed in
this work assigns tails and schedules maintenance tasks simultaneously.
At the core of the framework is an efficient linear programming (LP)
optimization model that follows a hierarchical structure set by airline
planners. It ensures continuous aircraft airworthiness and respects
airline-specific rules and schedules. The assignment of tasks is restricted
by the availability of material, machinery, method, and manpower
(4M). Unlike the literature and airline practices, maintenance slots
are modelled as tail-specific activities based on individual aircraft
needs, with the intention of improving schedule efficiency. Finally,
this study incorporates stability using historical flights’ arrival delay
data. Thereby, this study provides new insights into integrated tail
assignment and maintenance task scheduling, with the aim of creating
more efficient and stable plans in the process.

This paper follows the subsequent structure. The operational context
in this work is defined in Section 2. In Section 3, a literature overview
provides insights into network planning, maintenance planning, and
robust planning research. This is followed by the framework’s method-
ology, which includes the time-space network (TSN), slot generation
process, and LP model, in Section 5. Afterwards, the hypotheses for the
results in this framework are presented in Section 6. The case study
that the framework is applied is described in Section 7, alongside the
costs employed. Subsequently, Section 8 presents the results obtained
by implementing the framework in a real airline case study, critically
demonstrating its validity and benefits in practice. Validation of the
hypotheses are discussed in Section 9, alongside recommendations for
future research. Lastly, Section 10 concludes this work.

2. Operational context

This section presents the operational context for the framework
developed. Although this study focuses solely on the unification of
the tail assignment and maintenance task period before the day of
operations, these are part of a larger operational sequence which
defined the input and outputs of these phases. Thus, their definition is
of relevance to the understanding of this work. This section highlights
the fact that airline network and maintenance planning are complex
and multi-stage processes beginning months before the actual day of
operations, as shown in Fig. 1. Both are highly intertwined from the
start, and highly influence each other, but are often treated as separate
decision processes in the literature and by airlines.
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2.1. Network planning

Network planning starts with schedule design, which is the process
in which airline marketing and network divisions use demand forecasts
to decide which Origin-Destination (O-D) pairs to fly [5]. Schedule
design begins many months before the day of operation. Addition-
ally, due to the complexity and size of airline network planning, it
is created in sequential steps, both in practice and in the literature.
The next step, fleet assignment, assigns aircraft fleets to individual
flights according to passenger demands and operating costs such that
total profit is maximized [6,7]. Third, a few days before operations up
until the day of operations, tail assignment assigns flights to individual
registrations, ensuring that maintenance requirements are respected,
with often the objective of minimizing operating costs [8,9]. Finally,
on the day of operation disruption may lead to modifications to the
strategic schedule [10,11].

2.2. Maintenance planning

Maintenance planning is equally a multi-stage problem. It begins
with check scheduling in which long-term maintenance activities are
assigned to tails, often for multiple years [12,13]. Next, during the
flight schedule design phase, time slots, are reserved for maintenance.
A few days before the day of operations, along with tail assignment,
maintenance tasks are assigned to maintenance slots, while ensuring
the 4M constraints [14-16]. Lastly, on the day of operations, main-
tenance disruption management is performed to cope with new tasks,
missing resources, and/or sudden schedule changes [17].

Disruptions which become known on the day of operations may in-
clude: aircraft late arrival (e.g., weather conditions restrict the airport’s
landing capacity causing the aircraft’s inbound flight to be delayed
leading to delay propagation into its next planned job), an aircraft is
unavailable (e.g., a fault during the aircraft’s last flight may cause an
Aircraft on Ground (AOG) situation), slot schedule changes (e.g., un-
available towing services may cause late delivery of aircraft, shortening
the duration of the maintenance slot), maintenance resources may be
unavailable (e.g., due to decreases in workforce availability due to
unforeseen absence and/or unavailability of material results in lower
maintenance task execution rate). These disruptions require planners
to make changes to the original plans to guarantee smooth operations,
aircraft airworthiness, and minimal passenger inconvenience. They
may employ a range of solutions including aircraft swapping, delaying
flights or maintenance slots, postponing maintenance if the aircraft’s
health permits, deploying a reserve aircraft, and, as a last resort, can-
celling flights. When choosing which recovery strategy to implement,
planners aim to reduce recovery costs and minimize deviation from the
original plan. The result is a revised tail and task assignment.

3. Literature overview

This section presents the current state-of-the-art for the concepts
previously defined in Section 2. Given the fact that most of these
are treated separately in research, different sub-sections are presented
below.

3.1. Network planning

Has been covered extensively in literature, specifically the fleet as-
signment and tail assignment problems. The former has been typically
solved for maximum profits using Integer Programming (IP), as demon-
strated by Abara [6], Barnhart et al. [18]. The latter is often based on
a Line of Flight (LOF), where aircraft are assigned to predefined strings
of flight legs. The challenge is computing efficient and feasible LOFs -
a large solution space often requires authors to use methods to simplify
it. Barnhart et al. [8] used a Mixed Integer Linear Programming (MILP)
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Fig. 1. The general time frame of airlines’ operations planning processes. Maintenance and network planning time frames are represented in orange and blue,
respectively. On the day of operations, disruptions will directly affect maintenance and network planning (represented in grey).

model and a branch-and-price algorithm, while [9] used a similar MILP
model and a heuristic method to simplify the problem.

Network planning literature largely disregards maintenance. It is
often only considered at a strategic level in the tail assignment prob-
lem to ensure feasible plans, being treated as a fixed interval, fixed
duration activity, equal for each aircraft in the fleet. Barnhart et al.
[8] assign LOFs that start and end at maintenance stations. Alterna-
tively, [9] assumed overnight maintenance at maintenance stations
in their LOF-based MILP model. However, maintenance is aircraft-
specific, as each aircraft has different maintenance requirements and
tasks. Sarac et al. [19] proposed a route-building MILP model, matted
to a branch-and-price algorithm, that respects aircraft’s allotted flight
hours by routing aircraft with tasks due the next day to a maintenance
station. Nonetheless, detailed task assignment is still ignored.

3.2. Maintenance planning

Maintenance planning has been largely neglected from research,
with the only instances when its effect is considered in tail assignment
studies. A few works focus on maintenance task scheduling. Papakostas
et al. [16], Shaukat et al. [20], Witteman et al. [15] solve the task as-
signment problem in the strategic or operational phase considering the
uncertainty in the arrival of tasks, with the objectives of minimization
of costs and task interval waste. Van Kessel et al. [17] created a MILP
task rescheduling model that copes with disruptions. However, they all
disregard network considerations. Lagos et al. [21] integrates tail as-
signment and maintenance task scheduling with dynamic programming
and a Markov decision process to schedule LoFs and maintenance tasks
into nighttime slots. While this work prevents maintenance tasks from
going due, it disregard key aspects such as the availability of resources
and realistic tail assignment complexity.

A collection of airline operation planning research has been looking
at a relatively new concept i.e., robust planning, with the objective of
facilitating and alleviating pressure on schedule recovery on the day of
operation. Robust planning begins from the inception of network and
maintenance planning up until the day before operations. It has two
objectives: to increase schedule stability, by decreasing disruptions on
the day of operations; and/or increase schedule flexibility, by making
disruptions easier to recover. This concept has been divided into two
sub-concepts: proactive absorption and proactive recovery [22]. The
former has the goal of designing plans resistant to disruptions, ensuring
schedule stability. In the past, researchers have achieved schedule
stability in multiple ways, the most common being: time buffers, flight
retiming, and robust delay routing. Proactive recovery aims to design
plans that are easily adjusted when disruptions occur, and thus ensure
schedule flexibility. The most common method to promote schedule
flexibility has been increasing opportunities to swap aircraft. However,
in general, methods are few and not widely researched. The following
paragraphs present more information on the existing research.

3.3. Proactive absorption

AhmadBeygi et al. [23] proposed an IP model that assigns slack
with the objective of minimizing flight delay during the schedule design
phase. Later, a mathematical model for integrated fleet assignment and
flight retiming was developed, which determines flight departure times
by maximizing a surrogate robustness measure [24]. Most recently, [3]
built a two-stage model for robust multi-fleet aircraft routing. First,
a MILP finds optimal aircraft routes. Second, a heuristic approach
based on Monte Carlo simulation flights are re-timed with the aim of
maximizing on-time performance.

Robust delay routing often involves using historical delay data to
create more stable aircraft routes. Lan et al. [25] were among the
first to study this concept. Using a column generation algorithm, they
assigned LoFs to aircraft intending to minimize the expected propa-
gated delay, determined from historical airline data. Aircraft routing
was then followed by a MILP retiming model that minimizes passen-
gers’ misconnections. A similar model was developed by Liang et al.
[2], who also considered maintenance, planned overnight every three
days. Lastly, [26] proposed a novel approach to proactive absorption,
scenario-based recoverable robust routing. By using LP in tandem
with column generation and bender decomposition, aircraft routing
minimized recovery costs from a set of historical disruption scenarios.

Finally, researchers have created stability in maintenance plans
in comparable ways. Weide et al. [27] used a genetic algorithm for
robust check-scheduling, running ten scenarios with check duration
uncertainty, while [4] used Monte Carlo simulations to take uncer-
tainty samples from task duration sets in their robust maintenance
task scheduling e-Conservative model. However, in this field, detailed
maintenance and network planning are also solved separately.

3.4. Proactive recovery

Ageeva [28] pioneered the concept of using swapping opportuni-
ties to increase schedule flexibility, by creating a LOF-based column
generation aircraft routing model with the objective of maximizing
swapping opportunities. The method was re-proposed by Burke et al.
[29], who solved the tail assignment problem with a multi-meme
memetic algorithm by integrating multiple robustness strategies, for
both stability and flexibility. They re-timed flights to optimize stability,
given by the probability that each flight departs on time, and flexibility,
given by the probability that each flight involved in a swap departs on
time. Lastly, [30] presented an optimization algorithm that suggests the
best swapping opportunities between LoFs of aircraft. Their objective
was to maximize a novel measure called maintenance reachability, by
reducing aircraft requiring maintenance but assigned to an LOF with
no maintenance opportunities. Nonetheless, they treated maintenance
as a fixed-interval activity.

Few other methods for proactive recovery have been researched.
One is partitioning the schedule into sub-networks to safeguard high-
revenue itineraries [31]. Another is to promote station purity (i.e., re-
ducing the number of aircraft types visiting an airport) to facilitate
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Table 1

Overview of airline operations planning literature. Abbreviations in the table:
BD: Bender Decomposition; BP: Branch-and-Price Algorithm; CG: Column
Generation; DP: Dynamic Programming; DRR: Delay robust routing; e-C:
e-Conservative; FA: Fleet assignment; FR: Flight retiming; GA: Genetic Algo-
rithm; IP: Integer Programming; MA: Memetic Algorithm; MC: Monte Carlo
Simulations; MCDM: Multi-Criteria Decision Making; MILP: Mixed Integer
Linear Programming; MSU: Maintenance scheduling with uncertainty; PA:
Proactive absorption; PR: Proactive recovery; RRR: Recoverable robust routing;
SC: Short cycles; SD: Schedule design; SH: Search Heuristics; SN: Sub-networks;
SO: Swapping opportunities; SP: Station purity; TA: Tail assignment; WFD:
Worst-Fit Decreasing Algorithm.

Paper SD FA TA Method Maintenance PA PR
[6] v P

[8] v/ 1P &BP Fixed interval activity

[28] v IP & CG SO
[18] v 1P

[19] v IP & BP Aircraft specific need

[91 v IP & SH Fixed interval activity

[31] v v IP&SH SN
[33] v 1P SC
[25] v IP & CG FR & DRR

[32] v IP & CG SP
[23] v 1P FR

[24] 4 1P FR

[16] MCDM Task scheduling

[29] v MA Fixed interval activity FR & DRR SO
[30] v 1P Fixed interval activity SO
[35] v IP & CG FR & DRR

[26] v [P & CG & BD RRR

[2] v IP & CG Fixed interval activity FR & DRR

[3] v 1P & MC Fixed interval activity FR

[21] v DP Task scheduling

[20] 1P Task scheduling

[4] e-C & MC Task scheduling MSU

[15] WED Task scheduling

[27] GA Check scheduling MSU

[17] 1P Task rescheduling

[34] v 1P Fixed interval activity

[36] v MILP

This paper v 1P Task scheduling DRR

aircraft swapping [32]. Lastly, the idea behind short cycle scheduling
together with hub-isolation (i.e., LoFs with few flights which include
only one hub airport) is to prevent disruptions from spreading across
hubs and affecting many later flights [33]. Overall, most of these
methods are not applicable to all types of airline networks, are less
effective in creating flexibility, and still disregard maintenance.

3.5. Research gap

Based on this overview of the literature, it is concluded that robust
planning that integrates both tail assignment and maintenance task
scheduling is currently not addressed in the literature. An overview
is presented in Table 1. Building stable tail assignment plans, often
by re-timing flights and/or using historical delay data, has been the
focus. For the most part, maintenance in the tail assignment problem
has either been excluded or treated as a fixed time, fixed interval,
non-aircraft specific activity. However, maintenance is aircraft-specific.
Works such as [3,21], the more similar to the framework in this
study, perform tail assignment and maintenance scheduling without
considering the availability of resources, essential in a real operational
scenario. Recent studies [17,34] cover maintenance to a limited extent,
focusing on either task rescheduling when disruptions occur or treat-
ing maintenance tasks as fixed interval activities. Such falls short of
more dynamic decisions where maintenance tasks are scheduled with
dynamic intervals for the best balance with tail assignment.

To the best of the author’s knowledge this is first work where
(1) tail assignment and maintenance task scheduling are approached
simultaneously, (2) maintenance scheduling has the added complexity
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of being non-fixed and based on the needs of the specific tail, and
(3) scheduling takes into account resource availability and historical
delays. Simultaneous tail assignment and task scheduling has the poten-
tial decrease airlines’ operating costs (schedule efficiency) and recovery
costs (schedule stability). This research, therefore, aims to solve these
two processes simultaneously, by assigning tails considering aircraft-
specific, variable interval maintenance tasks. Finally, by considering
historical arrival delays, this framework will mitigate the propagation
of delays throughout rotations.

4. Tail assignment and maintenance tasks scheduling framework

The Tail Assignment and Maintenance Tasks Scheduling framework
developed in this study is structured as shown in Fig. 2. On the day
before operations, with the inputs shown on the left, airline planners
assign tails and schedule maintenance tasks. They do so often for the
upcoming two to three days. At the end of the day, planners deliver
their final plan to the operations control team. The latter will manage
disruptions and revise the tail and task assignments on the day of oper-
ations. As such, this framework is designed to support tail assignment
and maintenance task scheduling on the day prior to operations. The
remaining parts of this section will cover the framework’s formulation
in detail. Section 4.1 describes the inputs of the framework. Section 4.2
discusses the constraints for both tail assignment and maintenance
task scheduling. Definition of the maintenance slots is presented in
Section 4.3. Lastly, Section 4.4 shows the main objectives of this
framework.

4.1. Inputs

Airline planners assign tails and schedule maintenance tasks using
generally three inputs: a network schedule, a maintenance schedule,
and a backlog of maintenance tasks. These same inputs are used by the
framework:

* Network schedule: Is composed of flights. In the framework, flights
have been combined in short sequences of flights (often just two)
starting and ending at the same airport called rotations. This suits
the network of hub-and-spoke carriers, with mostly only flights
from and to their hubs.

Maintenance schedule: Provides insight into the maintenance slot
schedule and fixed maintenance activities. Each is explained in
further detail below:

— Maintenance slot schedule: 1t is a plan, often one week long,
outlining maintenance scheduling opportunities. From it,
one can obtain maintenance slots start and end times, work
location (hangar or platform), assigned full time equivalents
(FTEs) per hour, duration, and suitable aircraft type.

- Fixed maintenance Activities: Include long-term letter checks,
modifications, and other maintenance activities scheduled
several weeks in advance. In the framework, all fixed main-
tenance activity must be scheduled, and tails cannot be
assigned to overlapping jobs during these checks.

Maintenance tasks backlog: A backlog of aircraft-specific main-
tenance tasks ready for scheduling. Following common airline
practice, maintenance tasks are subdivided into two categories:
preventive and corrective tasks. The differences are as follows:

— Preventive tasks: Recurring tasks executed following interval
requirements imposed by regulatory agencies (e.g., the Eu-
ropean Aviation Safety Agency (EASA)). Airlines also have
the opportunity to add additional preventive tasks. Once a
task is executed the due date is reset. An example is visual
inspection of aircraft brake wear, which repeats at a fixed
number of take-off and landing cycles.
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Fig. 2. Overview of the tail assignment and maintenance task scheduling framework.

Table 2
Common subdivision of maintenance tasks used in practice and in this mod-
elling framework.

Preventive Corrective
Mandatory Tasks with Requirements: Minimum Ad-hoc, Minimum
fixed due dates Required Item (MRI), Equipment List
Engineering Order (EO), (MEL)
and Structural Defect
Report (SDR)
Deferrable Tasks with soft Non Safety Related

due dates Equipment (NSRE)

— Corrective tasks: One-off tasks executed only once before
their due date. Corrective tasks also derive from regula-
tory agencies (e.g., Minimum Equipment List (MEL)) or the
airline (e.g., Non-Safety Related Equipment (NSRE)). The
replacement of brake pads after a preventive check is an
example of a MEL, while a broken tray table is an example
of an NSRE.

These tasks are further divided into mandatory and deferrable
tasks. This division is based on the type of task and the harshness
of its due date. Table 2 provides an overview of the task division.

4.2. Constraints

On the day prior to operations, the framework will perform the
tail assignment and maintenance task scheduling, complying with the
following constraints consequently defined.

Tail assignment: Involves assigning aircraft to rotations. It is con-
strained by airline-specific rules, aircraft airworthiness constraints, and
aircraft balance. Each airline has rules restricting certain registrations
from flying to certain destinations and/or limiting the number of
daily quick turnarounds. Airworthiness constraints connect the tail
assignment and task scheduling problems. These ensure that an aircraft
is assigned to a flight only if it has no outstanding maintenance task
expiring during the flight. Flow balance must be guaranteed as tails
cannot be assigned to two overlapping flights. Lastly, it is assumed that
the framework’s tail assignment is not restricted by decisions taken the
previous day. Every day, it can create a tail assignment from scratch.

Maintenance task scheduling: Involves assigning aircraft and their main-
tenance tasks to maintenance slots. The process of scheduling main-
tenance tasks is constrained by the 4M requirements. These include

scheduling a task before its due date, only when material becomes
available, and in a sufficiently long maintenance slot at the right loca-
tion (i.e., hangar or platform). The last 4M requirement, which regards
assigning the correct mechanics skills required to perform a task, is
not modelled in the framework. Hence it is assumed that the right
skills to perform tasks are always available. As only relatively simple
maintenance tasks, which require skills possessed by most mechanics,
are scheduled by the framework, this assumption is non-limiting. In
addition to 4M requirements, task scheduling is constrained by rules
that limit the assignment of aircraft to maintenance slots. As airline
mechanics are often certified for one aircraft type, maintenance sched-
ules are created per aircraft type (i.e., Boeing 787). Thus it is assumed
that maintenance slots are not interchangeable across aircraft types.
Moreover, like the tail assignment, the framework does not have to
respect the task assignment planned the previous day. Hence, it can
create a new assignment each day.

4.3 Maintenance slots

The framework creates its maintenance slots based on aircraft-
specific needs. This has advantages over current state-of-the-art ap-
proaches which make use of generic fixed times, fixed duration mainte-
nance slots from the airline’s maintenance schedule, often suitable for
the entire type fleet. For instance, the framework creates maintenance
slots specific to one registration, whose duration is based on the air-
craft’s individual maintenance needs. It is hypothesized that this will
result in higher labour utilization, less maintenance time, greater fleet
availability, and hence improved schedule efficiency. Nonetheless, this
methodology increases complexity of the model as it introduces addi-
tional decisions. Whereas in practice, it is based on the assumption that
towing services are available at any time, and it requires a revolution
in the current maintenance slot planning approach.

Maintenance slots in the framework are created using a two-step
process. First, on a given day, the model determines aircraft-specific
required maintenance time based on their task backlogs and a days-
clean target, i.e., the target aircraft health after a maintenance slot.
Subsequently, using the calculated maintenance time duration, the
framework creates maintenance slots that can only be assigned to
the corresponding registration. It ensures that slots are created within
the confines of the existing maintenance slot schedule to respect the
airline’s resource limitations.

On rare occasions, to prevent infeasibility, off-hour maintenance
slots are created. These do not abide by the airline’s maintenance
slot schedule, and thus in practice would require quick alterations to
mechanics’ work shifts. These slots are created when the aircraft has
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Fig. 3. Breakdown of the framework’s objectives into sub-objectives and decision levers.

tasks that are due the next day but there are no suitable maintenance
opportunities in the schedule. Otherwise, also when the aircraft’s re-
quired maintenance time is longer than the longest slot in the schedule.
Maintenance planners also create off-hour slots when similar issues
arise.

4.4 Main objectives

As previously mentioned, the unified flight and maintenance
scheduling framework developed in this study aims to improve sched-
ule efficiency and stability. However, some of the framework’s sub-
objectives need to be further defined, as shown in Fig. 3. Schedule
efficiency induces lower operating costs for an airline. It is character-
ized by no cancellations, high fleet availability, high fleet health, and
optimal use of maintenance resources. On the other hand, improved
schedule stability lowers disruptions recovery costs, reduces workload
on the day of operations, and leads to indirect revenue gains from more
satisfied passengers. In turn, schedule stability is defined by a reduction
in aircraft’s subsequent jobs starting late due to the late arrival of their
previous flight.

In the framework, six unique decision levers enable the achievement
of the sub-objectives. These levers will make up the objective func-
tion of the framework. Ground time, apart from time on the ground
for maintenance, is divided into fleet availability and ground time
waste. Fleet availability provides flexibility to the airline in the form
of potential aircraft-swapping opportunities. On the contrary, ground-
time waste, which is ground time before maintenance slots, offers no
flexibility. This is because aircraft often cannot be swapped before
planned maintenance. On a given day, the fleet health equals the
number of days before the first maintenance task of an aircraft goes
due, averaged over the entire fleet. When fleet health is high, most
of the fleet does not require maintenance in the next days, thereby
offering greater flexibility to the network. Lastly, an optimal use of re-
sources is characterized by improved task interval utilization, reduced
maintenance time, and higher labour utilization. This ought to reduce
airline maintenance costs.

5 Methodology

This section defines the methods employed to build the unified tail
assignment and maintenance tasks scheduling framework previously
described in Section 4. Sections 5.1 and 5.4 describe the time-space
networks (TSN) used to optimize scheduling and the LP which assigns
tails and schedules maintenance tasks, respectively.

5.1 Time-space network
To assign tails and schedule maintenance tasks simultaneously, the

framework uses parallel TSN. This is a modelling framework that allows
for the direction representation of movement of available resources

over time and locations. From this movement, the availability of re-
sources can be derived. As a result, time windows, location transitions,
and resource availability do not have to be defined explicitly. Addi-
tionally, the TSN construction enables the optimization of schedule
efficiency and stability. Advantages of parallel TSNs include individual
aircraft routing and ground time assignment. Parallel TSNs have been
commonly used in the literature for tail assignment, such as demon-
strated by Vink et al. [11]. However, the novelty stands in solving the
maintenance task assignment within the TSN.

Fig. 4 depicts a simplified example of an aircraft’s parallel TSN
employed by the framework, whereby each aircraft has a separate net-
work with independent ground arcs and maintenance slots. Coverage
constraints for rotations are used to connect all networks. To decrease
the network’s size, time is discretized in non-homogeneous time steps.
These steps depend on the start and end times of the aircraft’s potential
jobs (rotations, maintenance slots, and fixed maintenance slots). A Job’s
duration is rounded to the next nearest minimum time step defined by
the airline’s network and maintenance schedules. Moreover, rotation
arcs are extended to accommodate for a fixed minimum turnaround
time (TAT) before departure and after arrival. Maintenance slot arcs
are also elongated with the location-dependent fixed tow time before
the start and after the end of the slot.

5.2 Schedule efficiency

Part of the TSN’s novelty lies in its utilization of two distinct spaces:
the air space and the maintenance space. The assignment of rotations
takes place at the air space, while scheduling maintenance tasks and
maintenance slots is confined to the maintenance space. This dual-space
approach serves the purpose of distinguishing between fleet availability
and ground time waste. All air space ground arcs account for fleet
availability, whereas all those of the maintenance space contribute to
ground time waste.

Using connection arcs, aircraft can travel between the two spaces.
Aircraft can travel to the maintenance space at their source node or
only directly after the rotation they just flew. While aircraft can connect
back to the air space at the end of all maintenance slots, including
fixed maintenance slots. A side effect of the TSN formulation is that
it results in a trade-off between schedule efficiency and schedule sta-
bility. Reducing ground time waste before a maintenance slot increases
schedule efficiency. However, it also degrades schedule stability as the
chances of the previous rotation’s arrival delay propagating into the
slot increase. Next, it is explained how schedule stability is optimized
in the TSN.

5.3 Schedule stability
Stability is incorporated by using additional, non-mandatory ground

arcs in the TSN, referred to as robust ground arcs. These are based
only on rotations’ historical arrival delays, excluding other sources of
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Maintenance space

Fig. 4. Parallel time-space network used in the framework, representing the network for an aircraft. Rectangular nodes represent the aircraft’s source and
sink nodes, thus the start and end of the aircraft’s path. The nodes in the Air Space represent the possible landing and departure moments. The nodes in the
Maintenance Space represent maintenance slots and fixed maintenance activities. In light blue, a single rotation is defined, representing the two legs of the rotation.
The departure of the second leg can be delayed to defend against potential arrival delays — the corresponding robust ground arc is represented in green. The
aircraft may enter and exit maintenance opportunities — this path is represented by the connection arcs in black.

90t Percentile of
Arrival Time

Airport

Timescal

Fig. 5. Example of different percentiles of historical arrival delays to construct robust ground arcs. Selecting a higher percentile shifts the planned departure
time of the next leg to a later time, as it accounts for larger historical delays and thus provides greater protection against disruption propagation.

disruptions. The objective of robust ground arcs is to reduce the chances
of rotations’ arrival delay from propagating into the aircraft’s next jobs.
However, delay mitigation should not compromise the framework’s
other objectives. This approach enables to simultaneously optimize
schedule stability and efficiency, thereby enabling a trade-off between
the two.

Every rotation has an air space and a maintenance space robust
ground arc. Each starts at the node corresponding to the rotation’s
end time at the respective space. The duration of both arcs is set
using a delay mitigation parameter that represents the rotation’s Nth
percentile arrival delay determined from historical airline delay data.
For instance, a delay mitigation parameter of 90% implies that 90%
of the rotation’s historical delays are mitigated if the robust ground
arc were to be used. Fig. 5 displays the difference between using the
50th and the 90th percentiles. Utilizing the 90th percentile results in
the departure of the second leg of the rotation to planed for later. This
mitigates larger values of arrival delay.

A trade-off analysis to determine the delay mitigation parameter
will follow in Section 7. Lastly, a rotation’s robust ground arc can only
be assigned to the same aircraft assigned to fly the rotation. This is
enforced by constraints in the LP model.

This approach allows the framework to make strategic decisions
regarding the assignment of buffer time, based on historical delays,
maintenance needs, and network assignment completion. It was chosen
over other techniques due to its implementation simplicity and flexi-
bility: the airline can directly control how conservative the model is
by selecting the Nth percentile of arrival times. This parameter can
be quickly adjusted, allowing the airline to compare multiple output
scenarios from the framework. Responsibility is then shifted to the net-
work planning team to determine how conservative the schedule should
be. However, it is worth noting that alternative approaches could be
explored to automatically select the most appropriate percentile based
on the network schedule and the costs of cancellations [37].

5.4 Linear programming optimization model formulation

Core to the modelling framework, is the LP optimization model
that simultaneously assigns tails and schedules maintenance tasks to
optimize schedule efficiency and stability. LP was selected due to its
explainability and optimality. However, scalability of the model is an is-
sue for binary linear problems, which is the case of our framework (see
Table 5). The computation time of the framework and its compatibility
as a decision support tool will be discussed in Section 9.

The following sections present the characteristics of the LP model.
Section 5.4.1 introduces the LP model’s sets, parameters, and decision
variables. The objective function is defined in Section 5.4.2. Finally, the
constraints are discussed in Section 5.4.3.

5.4.1 Notations

The LP model’s notation is introduced first. First, definitions for all
the model’s indices and sets can be found in Table 3. Then, the model’s
parameters are presented in Table 4, and can have either values that are
fixed or dependent on the properties of model sets. Lastly, the model’s
decision variables are found in Table 5.

Tail assignment is characterized by two decision variable types,
one to assign tails to arcs and the other to cancel rotations. Similarly,
maintenance task scheduling is possible through two variables, one to
assign tasks to maintenance slots and the other to defer tasks.

5.4.2 Objective function

The objective function is formulated as a cost-minimization
weighted sum objective as shown in Eq. (1). It takes inspiration from
common airline objectives preferences. An explanation of the formula-
tion of weight functions will follow in Section 7. The LP mathematical
formulation of the objective function is given by Fig. 3. It is composed
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Table 3 Table 4
Definitions of the LP model’s sets and indices. Definitions of the LP model’s parameters.

Set Definition Parameter Unit Definition
ses Set of all TSN arcs s (rotations, maintenance slots, ground arcs, Sfora [-] Quick turn around copy of rotation f

etcetera) FB,, [-1 Flow balance at node n for aircraft a: 1 at source
feEFcS Set of rotations f nodes, —1 at sink nodes, and O at intermediate nodes
meMcsS Set of maintenance slots m FTE, [/h] FTE required for maintenance slot m
uelcs Set of fixed maintenance slots u FTE, [/h] FTE available at node n at location / for aircraft type
geGcS Set of ground arcs g k
beBCG Set of air space ground arcs (fleet availability) b MaxMy [-] Maximum number of slots at location / and suitable
weWcG Set of maintenance space ground arcs (ground time waste) w for aircraft type k that can be assigned on day d
ceCccsS Set of connection arcs ¢ MaxQT A [-] Maximum number of daily quick turnaround rotations
deD Set of days d in the planning window L, [hr] Labour hours required to complete task ¢
pd € PD, c D  Set of days preceding day d including day d Lyiem [hr] Maximum labour hours that can be assigned in
seS; cs Set of arcs s on day d maintenance slot m
ke K Set of aircraft types k (e.g. Boeing 777) BigM [-] A relatively large number
aeA Set of aircraft a Can [-] Connection arc ¢ originating from air space node n for
aeA;CA Set of aircraft a that can be assigned to arc s aircraft a
a€A,CA Set of aircraft a of type k [ [-] Air space ground arc b terminating at air space node
ses,csS Set of arcs s that can be assigned to aircraft a n for aircraft a
teT Set of tasks s open at the start of the planning time DL, [days] Number of days remaining from day d until task 7 is
teTp,cT Set of open mandatory tasks s due on the first day of the plan due

(i.e., day of operation) H, [days] Minimum required aircraft health to operate rotation
teT,cT Set of open tasks ¢ of aircraft a f (e.g., for a rotation leaving today and returning
teT,cT Set of open tasks ¢ that can be scheduled in maintenance slot m tomorrow H, = 1)
teT,cT Set of open mandatory tasks ¢ going due on or after day d Cryper [-] Task type criticality coefficient of task ¢
neN Set of nodes n W, [-] Cost of assigning aircraft a to rotation f
n€MNCN Set of maintenance space nodes n Wym [-] Cost of assigning aircraft « to maintenance slot m
ne AN,CN Set of air space nodes n with a terminating air space ground arc W [-] Cost of assigning aircraft a to ground arc g

¢ and an originating connection arc ¢ for aircraft a Weanx.y [-] Cost of cancelling rotation f
leL Set of maintenance locations / (hangar and platform) W, [-] Cost of assigning task ¢ to maintenance slot m
meM,CM Set of maintenance slots m in which task 7 can be scheduled Whefers [-] Cost of deferring task ¢
meM,, CM Set of non-off-hours maintenance slots m at maintenance

location / on day d
meM,,;, CM Set of non-off-hours maintenance slots m suitable for aircraft Table 5

subtype k at maintenance location / passing through Definitions of the LP model’s decision variables.

maintenance node » Decision variable Definition
meM,CcM Set of maintenance slots m that can be assigned to aircraft a
meG,cG Set of ground arcs g that can be assigned to aircraft a By Binary variable equal to 1 if aircraft a is assigned to arc s, 0
g§ERG,, CG Set of robust ground arcs g of rotation f that can be assigned to otherwise

aircraft a B anx.s Binary variable equal to 1 if rotation f is cancelled, O
s€0,,CS Set of arcs s originating from node n that can be assigned to otherwise

aircraft a [ Binary variable equal to 1 if task ¢ is assigned to
seT,,cS Set of arcs s terminating at node n that can be assigned to maintenance slot m, 0 otherwise

aircraft a S pefers Binary variable equal to 1 if task ¢ is deferred, O otherwise
fE€QTA, Set of quick turnaround rotations on day d

of six terms, one for each decision lever presented in Section 4.

Rotation Cancellation

Rotation Assignment

Min : Z 5Canx,fWCanx,f + 2 Z 5a,fVVa,f

feF

fEF agA;

Maintenance Task Deferral

r

+ Z 5Defer,t WDefer,t CType,t +
teT-Tpy,,

2 Z Sa.mWa,m+ Z z St,mVVr,mCType,t+ 2 Z ﬁa,gWa,g

acEAmeM,

meM teT,, acA geG,
I IoL J

Maintenance Time AssignmentMaintenance Task Interval Ground Time Assignment

In more detail, the objective function terms are:

(€Y

* Rotation Cancellation: Network planners can decide to cancel a
rotation if it cannot be operated or to safeguard the future sched-
ule. However, this induces high costs to the airline and is often
a remedy of last resort. This severity is represented in the model
with the highest weight, W, -

Rotation Assignment: In practice, and in the LP model, this decision
depends on the aircraft’s fuel efficiency and the rotation’s block
time.

* Maintenance Task Deferral: Maintenance resources are limited
and/or performing maintenance may mean cancelling a flight.
Therefore sometimes the best choice is to defer a task. This

decision depends on the task hierarchy, implemented with Cr,,,
as done by Van Kessel et al. [17], and on the interval utilization
(i.e., the moment in time a task is executed relative to its due
date). Regarding the latter, the following two distinctions are
made:

- For mandatory tasks, the deferring cost increases close to
the due date, as diminishing scheduling opportunities lead
to a higher risk of grounding the aircraft.

— For deferrable tasks, the deferring cost is constant, as there
is no risk of grounding the aircraft as the task can be
postponed.

Maintenance Time Assignment: The assignment of maintenance
slots is penalized with W, . The cost of maintenance depends on
the slot’s duration. Additionally, extra costs are incurred for off-
hours maintenance slots, as these require changes to mechanics
rosters.

Maintenance Task Interval Utilization: Maintenance tasks schedul-
ing should optimize maintenance resources, specifically interval
utilization and fleet health. Maintenance planners can schedule
a task in multiple maintenance slots. Choosing the most suitable
slot is a decision that depends on the task hierarchy and inter-
val utilization. Hierarchy between tasks is achieved again with
Crypes» While, when it comes to interval utilization, the following
two distinctions are made:
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— Preventive tasks should be scheduled as close as possible to
their due date to minimize interval waste.

— Corrective tasks should be scheduled as soon as possible to
not hinder future maintenance plans.

» Ground Time Assignment: Fleet availability is maximized, while
ground time waste is minimized through W, ,. The importance
given to fleet availability as opposed to ground time waste is
airline-specific. Moreover, using W,,, robust ground arcs are
assigned with the intent of improving schedule stability.

5.4.3 Constraints

The constraints of the LP model are formulated as follows. Con-
straints (2) is a coverage constraint that ensures that either rotation f
or its quick turnaround copy f,r, are assigned to at most one aircraft
or cancelled. No other coverage constraints are required because all
other arc types are aircraft-specific, i.e., can be assigned only to one
tail. Constraints (3) ensure that all fixed maintenance slots are assigned.
Flow balance is guaranteed with constraints (4) at every node and for
every aircraft.

Z 6a,f + Z 5a,fQTA +5Canx,f =1, VfEeF (2)
aeAf HEAfQTA
Y bu=1 YueU 3)
a€A,
Y bus- D 6,,=FB,, VneN.acA Q)
€0, , S€T, 4

Using constraints (5) the model guarantees that a task is scheduled
to a maintenance slot only if the corresponding aircraft is assigned
to that same slot. Constraints (6) prohibit empty slots from being
assigned, while constraints (7) prohibit the number of scheduled labour
hours in a slot from exceeding that slot’s maximum allowed. Tasks
with due dates not on the first day of the plan should be scheduled
in a maintenance slot or deferred, while tasks going due have to be
scheduled. The model enforces the former with constraints (8) and the
latter with constraints (9).

Y 8 < Bigyb,,, Va€AmeM, )
teT,nT,
Y bum < Y by YmEM ©)
a€A,, teT,,
Z Ltét,m S Lmaxﬂm’ Vm € M (7)
teT,,
Y St Opesers =1, VIET 1t &Tp, ®
meM,
Y bm=1, Vt€Tp, 9

meM,

The following two constraints ensure that the airline’s maintenance
schedule is respected. Constraints (10) ensure that the available FTE
for an aircraft type at a given maintenance location and node is never
exceeded. Constraints (11)guarantee that on any given day the number
of assigned maintenance slots at a given maintenance location for a
particular aircraft type do not exceed that maximum in the schedule.

Z Z FTE,8,,, < FTE, .

meM,, |, a€EA,,

Vke K,ne MN,l € L (10)

Oqm < MaxM .,
a€A meM,NMy

Vke K,de D,l e L 11

The next constraints, constraints (12), prohibit aircraft from being
assigned to more than one maintenance slot per day. Constraints (13)
ensures that the number of rotations assigned to each aircraft does not
exceed the maximum number of daily quick turnarounds. Constraints
(14) and constraints (15) prevent certain movements in the TSN. The
former makes sure that aircraft can travel to the maintenance space
only directly after the end of rotations they were assigned to, meaning
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that an aircraft can only go into maintenance after completing all the
flights to which it is assigned. The latter ensures aircraft continuity,
i.e. the robust ground arc of a rotation can only be assigned to the air-
craft that is assigned to the rotation. Note that, as previously mentioned
in Section 5.3, robust ground arcs are based rotations’ historical arrival
delays. The objective is to allocate enough ground time to compensate
for commonly seen delays.

Y 6m<l, VdeDacA (12)
meM,NM,
Y Y 6.y <MaxQTA, VdeD (13)
fEQT A, a€A;
bac,, t0ap,, <1, Va€AneAN, a4
S4g <0,y VfEF,a€A;g€RG,, (15)

Lastly, aircraft airworthiness is guaranteed with constraints (16).
For every day and every tail, it checks that the days left in the intervals
of all the tail’s open mandatory tasks going due on or after the day
in question are higher than the aircraft health required to operate a
given rotation. Each task that does not satisfy this requirement should
be scheduled in a maintenance slot before the rotation, otherwise,
that rotation cannot be operated by the tail in question. Constraints
(17)—(20) define the decision variables as binary. Finally, the LP model
is solved using a commercial tool.

1 Z 2 ,
(1+ BigM$é,,)DL, ;> H 6, ;,
M, N M,;¥pd € PD,| pd€PDy meMNM

Vd € D,ae A,teT,NnT;,f €EF,NF,

(16)

8,s €{0,1}, VseS,ae A an
6Canx,f € {O’ 1}’ Vf EF (18)
6m €1{0,1}, VmeM,teT, 19)
6Defer,t € {O’ 1}9 VieT : t¢ TDue (20)

6 Hypotheses

The following hypotheses are defined regarding the performance of
the unified tail assignment and maintenance tasks scheduling frame-
work developed in this work:

Hypothesis 1: Instead of using aircraft generic fixed duration main-
tenance slots, the unified framework creates tail-specific slots, tai-
lored to aircraft maintenance needs. This is expected to reduce total
maintenance time and, in turn, increase fleet availability.
Hypothesis 2: Rather than allocating tails and scheduling mainte-
nance jobs separately, the framework uses its unique TSN formulation
to do both simultaneously. It is expected that this will maximize fleet
availability over ground time waste, hence optimizing the ground time
assignment.

Hypothesis 3: The framework’s computation capabilities are
expected to improve the utilization of maintenance resources, specif-
ically task interval and labour utilization, compared to the airline’s
manual approach.

Hypothesis 4: The LP model provides consistency in the decision-
making process for assigning maintenance tasks and tails, which
would otherwise be unattainable in two large planning teams with
conflicting goals. This is expected to reduce variance in planning
performance, especially regarding planned fleet health.

Hypothesis 5: Delay robust routing using rotation’s historical arrival
delay data, as integrated into the framework’s TSN, will decrease
unexpected disruptions, resulting in easier-to-recover plans.

These hypotheses will be validated with the results shown in the
following Section 7, and will be further discussed in Section 9.



L. Pescio et al.

Table 6
Overview of the dataset use to evaluate the framework developed in this study.

Planning date Rotations Open tasks Fixed maintenance slots
31/10/2023 77 379 9

01/11/2023 90 379 8

02/11/2023 92 374 9

03/11/2023 93 344 12

04/11/2023 126 345 13

06/11/2023 94 363 12

07/11/2023 82 387 9

7 Case study

A case study is performed to understand whether the framework
can provide realistic and real-time decision support to airline planners
the day before operations. Moreover, by comparing the framework’s
plans with those of the airline, it is assessed if the model can contribute
to improved schedule efficiency and stability. Although planning is
performed manually by the airline, the framework models the same
method currently adopted in practice, thereby it can be a solid bench-
mark for comparison. This section follows the subsequent structure. The
training data is defined in Section 7.1. Section 7.2 determines the model
parameters with the help of trade-offs.

7.1 Test procedure

The objective of the case study is to assess if the framework can
create realistic plans in real time that improve schedule efficiency and
stability. The evaluation focuses on plans crafted for seven consecutive
planning dates, spanning from October 31st, 2023 to November 6th,
2023. For each day within this timeframe, the framework generates
stand-alone tail and task assignments for a predetermined number of
subsequent days. All models employ identical input information as the
airline’s planners have available at 5 PM of each day, as shown in Table
6. To ensure a fair comparison, only rotations planned by the airline’s
planners are scheduled, using the same tail restriction rules. Note that
each rotation corresponds to two flights, with the aircraft departing and
returning to the hub. Additionally, maintenance is planned seven days
ahead of the planned date considered, mirroring the practices of the
airline’s maintenance planners.

The case study airline is a major European single hub-to-spoke
airline with a fleet of 54 wide-body aircraft of four subtypes and two
types. The fleet assignment has been solved in advance and provided as
an input. Therefore, type and subtype swaps are not allowed, meaning
that rotations can only be assigned to the subtype fleet decided during
the fleet assignment. Not all maintenance tasks are part of the case
study. Short-interval turnaround maintenance is excluded and assumed
to be scheduled during the aircraft’s TAT, even if the aircraft’s following
job is a maintenance slot. Long-interval letter-check maintenance tasks
are also excluded. These are planned in fixed maintenance slots, which
are forcefully assigned by the LP model. Moreover, fixed maintenance
slots are assumed to be full, hence prohibiting the assignment of any
further maintenance task in these slots. These decisions align with
practices at the case study airline. Lastly, the maintenance schedule is
also provided by the airline.

7.2 Parameter definitions

As the case study involves comparing the airline’s manual plan
against that of the framework, parameters and weight functions are
defined according to the airline’s preferences. Section 7.2.1 explains the
rules used to create a hierarchy between weights. Sections 7.2.2 to 7.2.4
outline the definition and fine-tuning process of the objective weights,
which were formulated as cost functions. An overview of the weights
is provided in Table 7.
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Table 7
Overview of the framework parameters, defined
according to the airline’s preferences.

Parameter Value
MaxQT A 2

Weanx.s 107

W06 100

Cruel 1 /kg
Crre 100 /hour
Pora 2

Pyt hours FTE 2

H,;, 3 days
Days-clean target, & 10 days

Delay mitigation parameter 95%

7.2.1 Objective function hierarchy

To reflect the airline planners’ priorities, the framework’s objectives
are characterized by four hierarchies or rules found in practice. These
hierarchies help set the weights’ orders of magnitude relative to each
other. First, airlines aim to cancel as few rotations as possible. Thus
cancelling a rotation is much more expensive than flying one. Second,
deferring a task is more expensive than scheduling it in a mainte-
nance slot, as continuous deferral of maintenance tasks can result in
unplanned maintenance and/or too large task backlogs in the long
run. The third rule reflects the trade-off between flying and performing
maintenance. It states that cancelling a flight is worse than deferring
tasks. Lastly, ground time is never prioritized over rotations, mainte-
nance activity, and task interval utilization, and is the by-product of the
planners’ tail and task assignments. These rules as graphically shown in
Fig. 6 and detailed in the following sections.

7.2.2 Network planning costs

Costs associated with network planning are the cost of operating
a rotation, and the cost of cancelling a rotation. The cost of flying
W, s is based on the rotation’s block time BT, in hours, the aircraft
fuel consumption FE, in kg/hour, and the cost of fuel C,,,, in /kg, as

follows:

W,

a.

S = BTfFEquuel’ (21

Where both the fuel cost and the aircraft-specific fuel consumptions
are provided by the case study airline. Given the airline’s data and
rotations, flying a long-haul rotation typically costs around 10°. All
aircraft within a subtype fleet are assumed to have the same fuel
efficiency, as planners ignore individual registration fuel efficiencies.
For quick TA rotations, W, , is multiplied by a penalty, Pyr,. The
case study airline allows for a maximum of two quick TAs per day by
removing 60 min of turnaround time at the start of the rotation. The
selected penalty value ensures that the additional cost of the rotation
is significantly higher than the benefit of scheduling an extra 60 min of
maintenance or fleet availability. Thus, quick TA is only used to prevent
cancellations, as it is in practice.

Cancelling a rotation is the last resort decision taken by planers.
To represent this in the framework, the cost of cancelling a rotation,
Weanx,r> €quals 107 or around 100 times higher than the rotation’s
operating cost. Wc,,,  is the same for all rotations, as the goal is to
prevent cancellations, rather than optimally selecting which rotations
to cancel.

WCanx,f = 107 (22)

7.2.3 Maintenance planning costs

Maintenance planning consists of three parts: task deferral, task
scheduling, and maintenance time assignment. The cost of deferring
a task, Wp, /., is directly linked to the cost of cancelling a flight,
Weanx,- This relation dictates the magnitude of Wp,,,,. It is ensured
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Wag

Ground time
assignment

Task interval
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Fig. 6. Objective function hierarchy based on airline planning priorities (image inspired by the work of Van Kessel et al. [17]). The order of greatness of the
different weights is shown in decreasing order of magnitude. The highest and lowest importances are given to Rotation cancellation and Ground time assignment,

respectively.

that the framework will always prefer task deferral over flight can-
cellation. Only if operating the rotation would lead to more than 100
maintenance tasks being deferred does flight cancellation become the
more viable option. However, this is a highly unlikely situation.

Moreover, deferring a task becomes more expensive as its due date
approaches. This is because fewer opportunities to schedule it will arise
and the risk of AOG increases. Therefore, Wp, ., is assumed to follow
a linear function that increases with decreasing days left to the task’s
due date (DL) given by Eq. (23). When the days until the task’s due
date are more than the days-clean target (5) the deferral cost is zero,
to prevent early scheduling of preventive tasks. Afterwards, Wp, .,
increases linearly, with the deferral cost drastically increasing when
the remaining days are less than the minimum health target (H,,,) to
ensure that the task is scheduled.

105 — U0=10HDL if DL < H,,;, and t is mandatory

if H

min

Hyiy
104 — (10°=10°)(DL—H,,;,))

p—T < DL <6 and t is mandatory

WDafar,t =

min

0 otherwise

(23)

The cost of scheduling a task has two components: the cost of task
interval utilization (W, ,) and the cost of maintenance time (W, ,,).
The formulation of the former is inspired by the work of Van Kessel
et al. [17]. It depends on the task’s type and due date (Due,) and the
maintenance slot’s start date (Start,). W,, is defined by a linearly
decreasing function for preventive tasks, while a linearly increasing
function for corrective tasks. This is to optimize the task interval (I,)
utilization. Following hierarchical rules, weights range from 10 to 0
for preventive tasks and from —10 to O for corrective tasks. The weight
functions are given, respectively, in Table 8 and Eq. (25). Moreover,
maintenance planners prefer not to schedule tasks too close to their due
date (Due,). Thus, a penalty (W) is implemented when the days left
in the task’s interval are less than the minimum health target. Finally,
Table 8 presents the values of Cr,,,, which define the hierarchy
between task types. These are taken from the work of Van Kessel et al.
[17] and are determined based on the impact on airworthiness of the
type of task.

Due,—St —H, .
10 =222 Tin if Start,, > H,;,

_ I—-H,,
WPreuemive tm — ! 'ln)lzer—Smrtm : 24

Wyiog(1 — ——2) otherwise

Hmm
Due,—Start,,—H,,; .

—IOW if Startm > Hmin
WCorrective tm = ! D;;néln—smrtm . (25)

Waog(1 — ———"——=) otherwise

min

The cost of assigning a maintenance slot depends on the slot’s sched-
uled duration, D,,, and FTE, FTE,,, as well as the cost of one FTE hour.
This is the same in the framework, where W, , is given by Eq. (26). The
cost of one FTE hour Cpyf; is a sum of labour, opportunity, and material
costs. Off-hours maintenance slots are penalized by multiplying W, ,, by

11

Table 8
Task type weighting factor [17].

Task type Crypes

Requirements
MEL

Adhoc

NSRE

Other

== N AN

P,/ r_pours rre- The value of the penalty is chosen to ensure that task
deferral remains more expensive.

Wom = FTE,D,Crrp (26)

The choice of the days-clean target significantly influences task
deferral costs, maintenance time, and, consequently, fleet availability.
To justify the selection of a days-clean target that optimizes schedule
efficiency, a trade-off analysis was conducted. The results are presented
in Fig. 7. This trade-off analysis used a rolling horizon technique to sim-
ulate scenarios spanning five weeks (from July 31st, 2023 to September
4th, 2023) while varying the days-clean target. This approach allowed
for an assessment of the long-term impact of scheduling with a spe-
cific target. As anticipated, the choice of the days-clean target affects
schedule efficiency, as it influences fleet health, maintenance time, and
fleet availability. A decrease in the days-clean target results in lower
fleet health due to reduced aircraft health after a maintenance slot. In
the long term, lower fleet health corresponds to an increase in weekly
maintenance time, as aircraft require maintenance more frequently.
This, in turn, translates into a decrease in overall fleet availability.

Conversely, higher fleet health in the long term results in more
maintenance time. This is driven by fewer task deferrals, a higher
number of scheduled tasks, and poorer task interval utilization, as
illustrated in Fig. 8. This leads to a higher maintenance frequency
necessary to achieve the demanding days-clean target. It is important
to note that the utilization of corrective tasks’ intervals remains largely
unaffected. This is because they are typically scheduled well before the
days to their the due date become fewer than the days-clean target.
Thereby, the days-clean target has little effect on corrective task’s
interval utilization. Schedule efficiency is optimized when planning
between 10 and 14 days clean based on fleet health, maintenance time,
and fleet availability. For the case study, the days-clean target is set
to 10 days, as this falls within the optimal range and aligns with the
airline’s days-clean target.

7.2.4 Ground time costs

Airline planners are indifferent to where and when ground time is
assigned as they prioritize flying and maintenance. Consequently, to
reflect its low priority, ground time is associated with the lowest weight
(W, ). However, unlike airline planners, the model optimizes ground
time allocation, by maximizing fleet availability and schedule stability.
Thus, a distinction is made between air space ground arcs (ground
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parameters.

time waste) and maintenance space ground arcs (fleet availability),
respectively costing 0/h and 1/h of ground time.

The schedule stability is implemented by assigning robust ground
arcs. These arcs, when assigned, can help reduce disruptions. Hence,
they have a cost of —1/h of ground time, such that the framework
actively seeks to assign them whenever possible. This cost formula-
tion prioritizes scheduling stability over fleet availability. The delay
mitigation parameter has a direct implication on schedule stability.
It affects the length and number of robust ground arcs. As the delay
mitigation parameter increases, robust ground arcs are expected to
become longer and more. The trade-off results presented in Fig. 9
illustrate this dynamic. Nevertheless, there exists a threshold beyond
which the arcs become excessively long, resulting in a reduction in their
assignment. Ideally, to increase schedule stability, one should maximize
the number of used robust ground arcs. Hence, the delay mitigation
parameter is set to 95%. Note that this analysis is specific to the case
study airline and its delay distributions. Hence, maximum stability is
not always achieved with a 95% delay mitigation parameter.
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8 Results

This section shows the final results with the application of the
framework to this case study. Section 8.1 assesses schedule efficiency.
Lastly, Section 8.2 evaluates schedule stability on aircraft late arrivals
from late rotations through stochastically generated disruption scenar-
ios. The unified framework created realistic plans, validated by the
airline’s planers. To benchmark the framework’s performance, four
different reference models are used:

» Airline: The schedule is produced manually by planners at a
major European airline. The planners use the same inputs as the
framework. However, they do not consider historical delays when
defining the ground time between rotations. Commonly used turn
around times are employed. Used as baseline comparison to test
the efficiency and stability of the framework.

Fixed Tail Assignment (TA): The schedule produced by the LP
model when scheduling maintenance tasks only and fixing the tail
assignment to the one created by the airline’s planners.
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Fig. 10. Planned fleet availability and maintenance time for T-1, T-2, and T-3 for all four models.

» Fixed Task Scheduling (TS): The schedule produced by the LP
model when assigning tails only and fixing the task assignment
to the one created by the airline’s planners.

+ Framework: the schedule provided by the LP model considering
that both tail assignment and maintenance task scheduling are
optimized together.

The purpose of the TA and TS models is to assess the benefits, if
any, of integrating tail assignment and maintenance task scheduling.
Although airline planners assign tails and schedule tasks in separate
teams, they still occasionally communicate and collaborate. Thus, in
this respect, the airline model is not the perfect benchmark. The Fixed
TS and Fixed TA models are constructed by forcing decision variables
based on the airline’s decisions. Therefore, the LP model only solves
the other part of the problem. For example, for the fixed TA model,
the airline tail assignment is enforced by restricting decision variables,
thereby only allowing the LP model to change the maintenance task
scheduling. The following subsections cover the performance of the
sub-objectives of the framework.

8.1 Schedule efficiency analysis

The framework increases fleet availability by reducing maintenance
time. Fig. 10 summarizes the fleet availability and maintenance time
planned in the subsequent one, two, and three days of a plan, re-
spectively, denoted by T-1, T-2 and T-3. Thanks to the framework’s
aircraft-specific maintenance slots, the average maintenance labour
utilization increases from the airline’s 67% to 81%, reducing wasted
maintenance time. Consequently, compared to the airline, the frame-
work plans on average 15 additional hours of fleet availability on the
day of operations, or an increase of 10%. Notably, the minimum fleet
availability planned by the framework is significantly higher than that
of the airline. Thus, the framework proves especially beneficial in dense
plans, when fleet availability is limited, but highly desired. However,
there are operational constraints, such as mechanics skills assignment
and sudden labour and/or towing services shortages, that are outside
the scope of the framework. These could increase maintenance time
and consequently decrease fleet availability.

The framework’s ability to integrate tail assignment and mainte-
nance task scheduling helps reduce maintenance time and increase
fleet availability. Fixing the tail assignment restricts maintenance task
scheduling in the Fixed TA model, resulting in additional ground time
waste. As a result, average fleet availability falls even when mainte-
nance time is decreased. The Fixed TS model implements the same task
and slot assignment as the airline, and hence plans the same amount of
maintenance time. But compared to the airline, it significantly increases
fleet availability. This highlights the advantages of employing the
optimization model for the tail assignment. Additionally, compared to
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Table 9
Distribution of the ground time waste divided into short ((0, 21),
medium ((2, 12]), and long (>12) duration in hours for all four

models.
Ground time waste Short Medium Long
Airline 40.9% 36.4% 22.7%
Fixed TA 42.4% 31.8% 25.8%
Fixed TS 45.6% 35.3% 19.1%
Framework 39.5% 39.5% 21.0%
Table 10

Distribution of the ground time planned after
rotations in hours for all four models.

Ground time planned (h) 2, 8] > 2

Airline 23.7% 45.2%
Fixed TA 21.8% 47.7%
Fixed TS 32.4% 54.9%
Framework 32.4% 55.9%

the framework, it manages to slightly increase average fleet availabil-
ity. Given that the Fixed TS approach plans more maintenance time,
this may appear counterintuitive. But because in the framework task
interval utilization is given priority over ground time assignment, the
framework wastes more ground time in order to optimize task interval
utilization. Consequently, this decreases the availability of the fleet.
Nonetheless, the framework’s emphasis on task interval utilization will
in the long term save maintenance time, increase fleet availability, and
ultimately boost schedule efficiency.

The location of fleet availability within the schedule is just as
crucial as its quantity. Table 9 displays the distribution of ground
time waste divided into short, medium and long duration based on
the airline’s preferences. The framework increases medium duration
ground time waste because it prioritizes robust ground arcs and task
interval utilization over minimizing ground-time waste. This explains
why the Fixed TS model, which reduced medium and long duration
ground time waste, manages to increase fleet availability over the
framework. Still, the framework reduced long duration ground time
waste in comparison to the airline. This is particularly advantageous
as long duration ground time waste represents the largest loss of flexi-
bility. Moreover, Table 10 shows that the framework improves ground
time allocation after rotations. The framework allocates ground time
more evenly, represented by increased rotations followed by ground
time between 2 and 8 h. Additionally, it increases rotations followed
by more than 2 h of ground time, which is useful to mitigate arrival
delays. Both are preferences of the airline’s planners.

Although the model plans on average 17% less maintenance time
than the airline, it schedules a similar amount of maintenance tasks
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Fig. 12. Planned fleet health for the seven days from the planning date.

each planning day. This indicates that the framework is more effi-
cient at scheduling maintenance tasks. Indeed, it improves slot labour
utilization and schedules preventive tasks closer to their due date,
improving their interval utilization, as shown in Fig. 11. However,
no interval improvements are obtained for corrective tasks. This is
likely due to their lower priority set with Cr,,,,,. The model’s resulting
improvements in the utilization of maintenance resources lower airline
operating maintenance costs. However, the framework’s higher labour
utilization could harm work packages’ completion rate, resulting in
more spilt tasks and additional unplanned maintenance time and costs.

Fig. 12 displays the fleet health planned by each model for seven
days from the planning date. The framework and the airline planers
plan an almost identical average fleet health from D1 to D3. How-
ever, after D3 the framework plans more health. This becomes even
more evident when comparing the framework to the fixed TA model.
Fixing tail assignment greatly restricts maintenance task scheduling,
deteriorating fleet health. A healthier fleet offers more flexibility to
network operations as it means less maintenance time is needed in the
subsequent days. Moreover, the decrease in the range between max
and min planned fleet health, suggests that the framework is more
consistent with the task assignment.

8.2 Schedule stability analysis

This subsection evaluates the impact of the framework on schedule
stability. To dive into schedule stability, the plans of all four models are
subject to aircraft late arrival disruptions. These disruptions are derived
from historical rotation arrival delay data, including early arrivals, from
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August 2014 to November 2023 provided by the case study airline. The
data set contains only instances of rotations inbound to the airline’s
hub. Rotations instances are grouped based on their departure airport
and season (winter or summer), excluding flight numbers and/or flown
aircraft subtypes as differentiators.

Each plan is tested with 100 different disruption scenarios. For each
scenario, all planned rotations have a unique arrival delay randomly
generated from their corresponding arrival delay distributions. On a
given planning date, all four models are assessed with the same 100
disruption scenarios. To ensure a fair comparison, no maintenance
disruptions are introduced, as the framework does not account for
maintenance uncertainty while planning. The aim is to reduce disrup-
tions arising from late arrivals, subsequently reducing the necessity for
schedule adjustments. Additionally, minimizing propagated delay is a
critical factor in schedule stability.

Fig. 13 summarizes the number of disrupted LoFs and propagated
delay in T-1 and T-2 for all four models. A LoF is disrupted when the
arrival delay extends into the aircraft’s subsequent job, be it a rotation
or a maintenance slot. On average, the framework creates plans that
result in fewer disruptions and less propagated delay. Compared to
the airline, average disrupted LoFs are reduced by 42% on the day of
operations, while 43% in the subsequent two days. Importantly, the
maximum number of disruptions is lower, thereby reducing planners’
maximum recovery workload. Moreover, the average propagated delay
is decreased by 48 and 88 min in T-1 and T-2 respectively. The Fixed
TS model comes closer to the framework’s performance as it still
has significant freedom in the ground time allocation. On the other
hand, fixing the tail assignment, done in the Fixed TA model, greatly
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Fig. 13. Disrupted LOFs and propagated delay in the subsequent day (T-1) and subsequent two days (T-2) for all four models.

Table 11
Percentage of jobs that suffer delay in regard to the amount of delay in minutes.
>0 (0, 30] (30, 60] (60, 90] > 90

Airline 8.96% 5.46% 1.40% 1.82% 0.28%
Fixed TA 7.56% 4.18% 1.75% 1.08% 0.54%
Fixed TS 6.42% 3.35% 1.40% 1.40% 0.28%
Framework 5.43% 2.38% 1.59% 1.19% 0.26%

Table 12

Distribution of the expected propagated delay (EPD) when disruptions occur
in minutes.

(0, 15] (15, 30] (30, 60] > 60 avg. EPD
Airline 75.3% 16.9% 3.4% 4.9% 13.6 min
Fixed TA 75.3% 16.4% 2.7% 5.5% 13.9 min
Fixed TS 81.3% 14.6% 2.1% 2.1% 10.2 min
Framework 86.5% 13.5% 0% 0% 8.4 min

degrades stability. This is because most buffer time is pre-assigned.
Lastly, although the framework’s minimum number of disruptions is
higher, the minimum propagated delay is lower. This hints at the model
having shorter delays.

Table 11 presents the percentage of jobs that suffer delays in regard
to the delay duration. The number of delayed subsequent jobs (i.e., job
with a delay duration larger than 0 min) is reduced from the airline’s
8.96% to less than 5.43%. Moreover, delays are reduced in each
possible delay range, with the slight exception of delays between 30
and 60 min which increase from 1.40% to 1.59%. This is a result of
some of the larger delay cases moving down to this bracket range.
Especially beneficial is the reduction of delays longer than 60 min
from 1.85% to 1.19%, which are the most detrimental and the hardest
to recover. Thus, framework plans require fewer adjustments, due to
fewer disruptions, and are easier to recover, due to shorter delays.
This reduces recovery costs and has indirect revenue benefits from
more satisfied passengers. Importantly, these advantages are not only
obtained over the airline, but also over the Fixed TS and Fixed TA
models. Hence, this justifies the benefits of integrating tail and task
assignment from a literature perspective.

Table 12 presents a distribution of the expected propagated delay
(EPD). EPD is not influenced by the disruptions scenarios — it is solely
based on the arrival delay distribution of rotations and the sched-
uled ground time following them. The framework never suffers a EPD
greater than 30 min, contrasting with the other three models. However,
we consider that the reduction in the average EPD by 5.2 min obtained
by the framework, 38% lower than the airline’s, is not significant.
Further testing of the model in a denser network with a higher potential
for delay propagation is warranted.
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Table 13

Average deferred new faults for the subsequent day (T-1)

and subsequent two days (T-2).
T-1 deferred faults

T-2 deferred faults

Airline 15 25
Fixed TA 15 25
Fixed TS 15 25
Framework 15 26

The previous results show that the framework improves network
stability. However, these improvements must not compromise mainte-
nance stability. Table 13 displays the number of new faults arriving
in T-1 and T-2 that are deferred, i.e. not performed and postponed
in time. These deferrals occur when the faults cannot be scheduled
within the current plan. This may happen either because the aircraft
was not assigned a maintenance slot before the fault’s due date or
because the assigned slot/slots is/are already full. Unlike network
stability, the framework does not incorporate any forms of robustness
in the task assignment, such as additional maintenance time buffers
for unexpected non-routine work during the slot. Thus, the primary
objective is not to outperform the other models. Rather, it is to achieve
a similar number of deferrals. This is indeed the case, as average new
fault deferrals are the same in T-1 and only one additional fault is
deferred in T-2.

9 Discussion

The case study has shown that the framework improves the ef-
ficiency of the airline schedule. Firstly, like the airline, it does not
cancel any rotation. Higher fleet availability increases useful buffer
time for aircraft swapping, making the framework’s plans easier to
recover. Moreover, improved labour utilization reduces wasted main-
tenance time and wasted labour resources, reducing costs in the long
term. Maintenance time, and thereby costs, are further reduced by the
framework’s higher fleet health and preventive task interval utilization.
The efficiency gains of the framework are attributable to the integration
of tail assignment and maintenance task scheduling.

Additionally, the schedule created by the framework increases sta-
bility by actively assigning ground time when possible. In case of
disruptions, the framework uses this ground time to better mitigate
delay compared to the airline’s plans. As a result, a schedule produced
by the framework would require fewer modifications in the event of
disruptions.

Finally, when presented with the framework’s plans alongside their
own, without knowledge of which plan belonged to whom, the airline
planners found it difficult to distinguish between the two. Furthermore,
the average solution time of the framework is around 250 s for each day
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analysed. Arguably less than what an airline planner takes to assign
tails and schedule maintenance tasks. Therefore, the model could be
used in an operational environment.

The following subsections further drill into the validation of the
proposed hypotheses in Section 6 and potential directions for improve-
ment.

9.1 Hypotheses verification

Given the results for the presented use-case, the following can be
stated regarding the hypotheses previously defined in Section 6:

Hypothesis 1: Thanks to maintenance slots tailored to each aircraft’s
specific needs, maintenance time waste is reduced, contributing to
higher average labour utilization, specifically 81% compared to 67%.
In turn, the framework reduced the total planned maintenance time
on average by 17% and increased fleet availability, offering the airline
more flexibility.

Hypothesis 2: Increased fleet availability (10% more on the day of
operation), a decrease in long-duration ground time waste (22.7%
down to 21.0%), and a more evenly distributed ground time after
rotations (23.7% up to 32.4% of rotations followed by ground time
between 2 and 8 h) are all indicators of the improved ground time
allocation achieved by simultaneous tail assignment and maintenance
task scheduling. Improved allocation of ground time provides airlines
with increased flexibility and prospects for schedule recovery.
Hypothesis 3: The computational capabilities of the framework pro-
vide a more efficient use of maintenance resources than the manual
approach used by the airline. Its better labour utilization allowed
it to schedule an equivalent number of jobs in a shorter amount of
maintenance time. It also increased the interval use of preventive tasks
by scheduling them closer to their due date. This results in decreased
maintenance operating costs for an airline. The interval utilization for
corrective jobs was somewhat worse, though.

Hypothesis 4: Across the seven planning dates, the framework’s
plans showed less variation among each other -considering
planned maintenance time, fleet availability, and fleet health. The
LP model has this benefit over a team of several planers with dif-
fering opinions, aims, and skill levels. As a result, the framework
creates plans that enable more consistent operations under less dire
circumstances, making operations simpler and more affordable.
Hypothesis 5: Schedule stability was enhanced by the framework.
On the day of operations, it decreased the number of disruptions
and the propagation delay by 42% and 48 min, respectively. It also
significantly decreased the likelihood of long delays. As a result, the
framework’s plans not only require fewer modifications but are also
simpler to recover, which lowers recovery costs and raises passenger
satisfaction. This was attributable to simultaneous task and tail assign-
ment (as opposed to the fixed TS model) and delay-robust routing (as
opposed to the Airline and fixed TA models).

9.2 Future work

Although the framework’s results are promising, the case study had
limitations. The case study involved only the airline’s long-haul single
hub-to-spoke network. However, small adaptations can be made to the
framework to accommodate short-haul operations and different types
of networks, such as point-to-point. The latter would require a slight
modification of the TSN by adding an additional air space per airport
and an additional maintenance space per airport at which maintenance
can be performed. Additionally, only short-term maintenance checks
and tasks were considered. A valuable improvement would be to treat
fixed maintenance slots as additional maintenance opportunities for
task assignment, given that space permits it, and add minor flexibility
to their start times.
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Further improvements can be made to the framework itself. Cur-
rently, the duration of robust arcs that add buffer time between rota-
tions is fixed, representing the Nth percentile arrival delay determined
from historical airline delay data. Note that the airline may choose to
run the framework for scenarios representing different values of this
percentile. The results of all scenarios may be aggregated for decision-
support. Another possibility is a stochastic programming approach,
where a second state decision considers the outcome of several uncer-
tainty realization scenarios. The final cost should then be minimized
across these scenarios [38]. Finally, Monte Carlo simulations may be
used to sample from historical delay data. The method used in this
study reflects airlines’ emphasis on simplicity of implementation. How-
ever, it is valuable to compare these approaches with more advanced
techniques capable of accounting for multiple uncertainty scenarios.

Additionally, the research focused exclusively on arrival delays,
neglecting other potential sources of uncertainty, such as unexpected
labour within maintenance slots and AOG situations. The former could
be especially problematic, as the model leads to densely packed slots,
increasing the risk of delayed slots. Consequently, there is a need
to incorporate robustness against late maintenance slots, potentially
through the use of similar robust ground arcs based on historical task
duration data. This would require the addition of an input element
defining the likelihood of labour shortages. Once again, the impact
of the stochasticity on this element can be evaluated by simulating
multiple scenarios with varying degrees of uncertainty. This approach
allows the framework to assess how different realizations of labour
availability affect operational outcomes.

Finally, fleet health is modelled indirectly. Considering its impor-
tance as an indicator of airline maintenance planning efficiency, it
would be worthwhile to model it with unique decision variables and
a specific term in the objective function of the LP model.

10 Conclusion

This paper presents a first example of a robust framework that
unifies tail assignment and maintenance task scheduling on the day
before operations. Simultaneous optimization of schedule efficiency
and stability was made possible by modelling the schedule with an
innovative TSN, using two distinct spaces, one dedicated to network
and the other to maintenance activities. Additionally, instead of us-
ing generic fixed duration maintenance slots, suitable for the entire
fleet, the framework creates tail-specific slots, tailored to aircraft’s
maintenance needs.

Testing the framework within a major European airline case study
proved that it is able of providing real-time decision support in an oper-
ational environment. Evaluating the framework’s plans against those of
the airline, showed the framework can improve schedule efficiency and
stability. Maintenance time was reduced by 17% as a result of labour
utilization increasing from on average 67% to 81%. Consequently, this
benefited fleet availability, which on average increased by 10% on
the day of operation. Additionally, the framework reduced late arrival
disruptions by 42% and propagated delay by 48 min on the day of
operations.

This research provides value not only to research but also industry.
The computational capabilities of the framework offer an alternative
to airline’s manual and separate tail and task assignment approach.
The framework takes around 250 s for each day analysed. Therefore,
the model may be used in an operational environment and serve as
a decision-support tool to create schedules that are robust to varying
levels of uncertainty and delay. This information can be used to create
informed scheduling plans that are robust against delays and maximize
fleet utilization. Considering that delays cost airlines on average EUR
0.30 per minute per passenger. Assuming an average of 300 passengers
on long-haul flights, the framework can save the airline more than EUR
1.5 millions per year.
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