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Jensen–Shannon Distance-Based Filter and
Unsupervised Evaluation Metrics for

Polarimetric Weather Radar Processing
Cheng Chen , Christine M. H. Unal, and Albert C. P. Oude Nijhuis

Abstract— An effective filtering technique is required for1

rainfall rate measurement by weather radar. A Jensen–Shannon2

distance (JSD)-based thresholding filter is proposed to mitigate3

nonmeteorological signals, either in clear air or rain situations.4

This algorithm classifies range-Doppler bins into two classes,5

hydrometeors and nonhydrometeors, based on spectral polari-6

metric variable features. The result is a mask to be applied7

on the spectrograms. The variable selected here is the spectral8

co-polar correlation coefficient, available in dual-polarization9

and full polarimetric radars. The algorithm first does global10

thresholding by finding an optimized threshold value based on11

the averaged clear-air spectral polarimetric variable distribution.12

Next, classical filtering steps are carried out like a ground clutter13

notch filter around 0 ms−1, a mathematical morphology to fill14

gaps in the hydrometeor areas, and a removal of narrow Doppler15

power spectra. The second part of this article is the assessment of16

filtering techniques without ground truth. An assessment without17

ground truth is useful to select optimal algorithm configurations18

from a large solution space. Criteria of good filtering are defined19

both in the spectral and time domain. Based on those criteria,20

subjective and objective unsupervised evaluation metrics are21

derived, with a focus on the objective ones. Data, including22

clear air and rain collected from a full polarimetric Doppler23

X-band radar in the urban area, are used. With the proposed24

unsupervised evaluation metrics, the JSD-based thresholding25

filter is compared to two spectral polarimetric filters. Overall,26

the JSD-based filter performs very well considering both the27

subjective and the objective evaluation metrics.28

Index Terms— Adaptive thresholding, dual-polarization weat-29

her radar, spectral polarimetric filtering of nonhydrometeors,30

unsupervised evaluation metrics.31

I. INTRODUCTION32

EUROPE’s cities are facing increased risks due to severe33

precipitation driven by climate change combined with34

rapid urbanization and population growth [1]. Monitoring35

rainfall in the city at street level is an efficient way to36

improve urban weather resilience. The temporal and spatial37

resolutions of rainfall data required for urban applications38

exceed those needed for rural catchments. Nonetheless, current39
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monitoring systems are not adapted and often inaccurate at city 40

scale, making such rainfall information ineffective for urban 41

applications [2]. With X-band radars, the study of rainfall 42

mechanisms at high resolution can be performed on a regional 43

scale. Yet, the accurate estimation of rainfall data in real time 44

in dense urban areas using this sensor is challenging due to 45

clutter [2]. 46

Clutter can be decomposed into two types: stationary and 47

nonstationary. The stationary clutter is termed ground clutter 48

and is located at the 0-ms−1 Doppler velocity with variable 49

spectral widths. A classical technique uses a notch filter cen- 50

tered at 0 ms−1. To strengthen this technique, the Clutter Envi- 51

ronment Analysis using Adaptive Processing (CLEAN-AP), 52

which is based on the autocorrelation spectral density, was 53

proposed [3] to meet the Next Generation Weather Radar 54

(NEXRAD) clutter mitigation requirements. Good perfor- 55

mance is obtained in terms of ground clutter mitigation and 56

reduction in the variance of weather radar variables. However, 57

the nonstationary clutter, which is located at variable Doppler 58

velocity bins, stays. Therefore, methodologies, exploring the 59

use of spectral polarimetry only [4], [5] or combined with 60

fuzzy logic [6] or image processing techniques [7], [8], 61

were proposed to reduce both stationary and nonstationary 62

clutter and mitigate noise. The combination with fuzzy logic 63

or image processing was added for low elevation angle 64

atmospheric/weather radar measurements. 65

Using spectral polarimetry filtering, this article first focuses 66

on urban clutter (stationary and nonstationary) and noise 67

reduction, using the data of the Rijnmond radar in Rotterdam. 68

The techniques proposed in this article are meant to be 69

implemented in other X-band radars as well: MESEWI on 70

the campus of the Delft University of Technology (urban 71

area) and IDRA in Cabauw (polder area). These three X-band 72

radars are integrated within the National Ruisdael Observatory, 73

a research infrastructure to study atmospheric processes at 74

different spatial and temporal scales linking data and models 75

for climate change, weather, and air quality predictions. The 76

major steps of the clutter and noise mitigation, alternatively 77

labeled as “nonmeteorological echoes mitigation,” are made in 78

the range-Doppler domain. The strength of spectral polarimet- 79

ric processing is that it can remove nonmeteorological echoes 80

in the Doppler domain, while they overlap with precipitation 81

in the time domain. In addition, weak precipitation can be 82

retained because of a decrease in the noise level in the 83
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Fig. 1. Example of PPI plots of the radar reflectivity from the Rijnmond radar: (a) raw data and (b) and (c) use the OBSpol filtering method [8] with
different fixed thresholds on the spectral co-polar correlation coefficient (0.90 sρco-threshold and 0.95 sρco-threshold, respectively).

spectral domain. Some of the mentioned spectral polarimetric84

filtering methods are based on radar variable thresholding such85

as the spectral linear depolarization ratio [5], [7], [8] and the86

spectral co-polar correlation coefficient [4], [8].87

Global thresholding plays an essential role in the reduction88

of nonmeteorological echoes. Such methods are based on89

thresholding with a fixed value, which provides fast processing90

for real-time applications. However, they may not be robust.91

As concluded from [9, p. 517], when polarimetric variables92

are used for classification, their magnitudes differ for various93

situations.94

Let us now consider the following three plan position95

indicators (PPIs) in Fig. 1. The first PPI represents raw data96

of precipitation, which are not filtered and thus still contain97

clutter and noise. With the choice of a threshold of 0.9598

[Fig. 1(c)] for the spectral co-polar correlation coefficient,99

a significant amount of precipitation disappears while being100

preserved for a threshold choice of 0.90 [Fig. 1(b)]. What is101

the meaning of these values, 0.90 and 0.95? This threshold102

choice depends on so many factors, such as the type of radar,103

the radar environment, the processing, and the signal-to-noise104

ratio (SNR). This article proposes a new spectral polarimetric105

filtering technique with a focus on the methodology and not106

on the actual threshold values.107

Coming back to Fig. 1, we can probably say that a threshold108

of 0.90 [Fig. 1(b)] is better than a threshold of 0.95 [Fig. 1(c)]109

based on a subjective evaluation. However, assessment criteria110

should be developed to quantitatively compare filtered PPIs111

or spectrograms without ground truth. This is the second112

objective of this article: evaluation by metrics without ground113

truth.114

There are no common standards for filtering assessment in115

the mentioned references where spectral polarimetric process-116

ing is used, which makes it challenging to define objective117

evaluation metrics. In addition, the used assessment meth-118

ods may not be suitable for testing large amounts of data119

(spectrograms and PPIs for at least several days). It is chal-120

lenging to always generate ground-truth data. This is the key121

issue: nonhydrometeor mitigation evaluation without ground122

truth.123

Some assessment studies are done in the field of image124

segmentation, but those methods still need to be validated125

for range-Doppler spectrograms. Another solution considers 126

time-series data corresponding to weather signal free of clutter 127

contamination, which can be added with that of clutter signal 128

obtained in clear-air conditions [10], [11]. This solution allows 129

the analysis of bias of radar variable estimates, which are 130

involved in rainfall rate estimators. For the Rijnmond radar, 131

it is possible to obtain IQ data of clear air without hydrometeor 132

presence. However, rain data with the certainty to measure 133

no clutter cannot be acquired at low elevation angles in an 134

urban environment with a limited maximum range. In addition, 135

such a methodology or external validation using a network 136

of rain gauges and/or disdrometers is only achievable for 137

a very small set of radar and algorithm configurations and 138

sufficient collection of data. This is due to the nature of 139

the raw weather radar IQ data. Their amount is very large 140

and hard to store and process for many different parameters 141

for a long period. Nonetheless, a long period is required to 142

obtain sufficient statistics for a valid comparison. If we have 143

weather radar processing algorithms that have a very large 144

solution space of configurations (combination of parameters 145

and different algorithms), it becomes very challenging to use 146

assessment adding hydrometeor and clutter data or external 147

validation for so many parameters. We need thus to signifi- 148

cantly reduce the solution space of radar processing algorithms 149

first. 150

For this objective, image segmentation assessment criteria 151

will be explored. They allow a first evaluation of filtering 152

techniques in the range-Doppler domain. With this approach, 153

a reduced set of techniques and possible configurations can be 154

obtained and finally assessed using the analysis of radar vari- 155

able bias and/or quantitative precipitation estimation (QPE) 156

validation techniques. 157

This article is structured as follows: Section II introduces 158

the data used in this article, the specifications of the radar, and 159

an overview of the default Rijnmond radar filtering algorithm, 160

presently implemented in the radar real-time processing. The 161

construction of the new filtering algorithm is presented in 162

Section III. In Section IV, the unsupervised evaluation metrics 163

to assess filtering techniques are explained. Section V assesses 164

the performance of three different filters and their results 165

are discussed in Section VI. Finally, Section VII draws the 166

conclusions. 167
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TABLE I

RJINMOND RADAR SPECIFICATIONS

II. RADAR SPECIFICATIONS AND DATASET168

A. Specifications of Rijnmond Radar169

Table I lists the specifications of the Rijnmond radar170

dataset that is used in this article. This frequency-modulated171

continuous-wave (FMCW) radar operates at X-band with a172

central frequency of 9.325 GHz. It is a full polarimetric radar173

with an alternate transmission simultaneous reception (ATSR)174

polarimetric configuration. Its default rotation speed is 6.0◦
175

s−1, so a whole PPI measurement needs 1 min.176

The high range resolution of 20 m is appropriate for177

urban applications. The maximum Doppler velocity equals178

26.36 ms−1. However, because horizontal and vertical polar-179

ization are alternated in transmission, the time between two180

consecutive samples with the same polarization becomes larger181

by a factor of 2, which decreases the maximum Doppler veloc-182

ity by a factor of 2, thus 13.18 ms−1. With 512 samples for183

the Doppler processing, a high Doppler velocity resolution of184

5.15 cm/s is obtained, which offers possibilities in mitigating185

noise and urban clutter using spectral processing.186

B. Dataset187

The dataset is classified in two scenarios, namely, clear air188

and rain. The clear air refers to all the signals from nonhy-189

drometeors and noise. The clear-air dataset contains two PPIs.190

The first PPI (reference) is used to develop the algorithm191

and the second PPI is considered for performance testing192

by different filtering techniques. Every rain case consists of193

one PPI. These different rain cases are selected to include194

light, moderate, and heavy precipitation with little, moderate,195

or heavy clutter. All of them are going to be used for obtaining196

the results of the objective evaluation metrics in Section V.197

Table II lists the start and end measurement time and198

characteristics of each PPI. The clear-air case consists of199

two PPIs. The term “variable rain” indicates that the PPI200

contains light, moderate, and heavy rain. These input data201

have the same radar specifications (Table I) except for the202

transmit power/ receiver gain reduction and elevation angle.203

In the case of automatic signal attenuation, the attenuation is204

increased on-the-fly to reduce signal saturation issues. A radar205

ray that is suffering from saturation can be recognized by a 206

radar ray line with very high reflectivity [see, e.g., Fig. 1(a)]. 207

C. Default Rijnmond Filtering 208

Presently, the filtering for noise and clutter mitigation is 209

carried out in the range-Doppler domain. It consists of a 210

narrow notch filter centered around 0 ms−1 (ground clutter 211

suppression) and spectral polarimetric filtering with fixed 212

thresholds. Furthermore, a spectral noise clipping technique 213

is implemented. It keeps the Doppler bins related to a spectral 214

power at least 3 dB above the spectral noise level (noise 215

suppression). Finally, Doppler spectra containing less than 2% 216

of valid Doppler bins are discarded. Therefore, it is expected to 217

retain the Doppler bins related to precipitation. Consequently, 218

the standard radar moments and polarimetric variables can 219

be calculated. This filtering technique is presently applied for 220

three X-band radars in The Netherlands: the Rijnmond radar 221

at Rotterdam, MESEWI at the TU Delft campus, and IDRA 222

at Cabauw. 223

III. JENSEN–SHANNON DISTANCE-BASED 224

THRESHOLDING FILTER 225

A. Spectral Polarimetric Variables 226

The complex spectrogram SXY is used in the calculation 227

of spectral polarimetric variables, with X and Y being the 228

polarization in reception and transmission, respectively [12]. 229

The corresponding spectral reflectivity is defined as 230

s Z XY (r, v) = CXY · |SXY (r, v)|2 · r2 = CXY · PXY (r, v) · r2
231

(1) 232

where CXY represents a constant depending on the polariza- 233

tions, r is the range, v is the Doppler velocity, and PXY (r, v) is 234

the received power for each range-Doppler bin. 235

The following four spectral polarimetric variables, s ZDR, 236

sLHH
DR, sLVV

DR, sρco are defined based on SXY and s Z XY : 237

s ZDR(r, v) = 10 log10

(
s ZHH(r, v)

s ZVV(r, v)

)
(2) 238

sLHH
DR(r, v) = 10 log10

(
s ZV H (r, v)

s ZHH(r, v)

)
(3) 239

sLVV
DR(r, v) = 10 log10

(
s Z H V (r, v)

s ZVV(r, v)

)
(4) 240

sρco(r, v) =
∣∣〈SHH(r, v)S∗

VV(r, v)
〉∣∣√〈|SHH(r, v)|2〉〈|SVV(r, v)|2〉 (5) 241

where �� is the 2-D averaging on consecutive range-Doppler 242

pixels. 243

In this work, the 2-D averaging for the cross correlation 244

calculation is done by using a square averaging kernel nk × nk 245

with a kernel of size nk = 7. The choice of nk = 7 leads 246

to a better estimate of the variables for filtering (more aver- 247

aged/smoothed) at the cost of the Doppler velocity resolution. 248

This will only impact the classification mask in the filtering 249

technique. Note that the estimation of the time-domain vari- 250

ables, such as reflectivity factor and co-polar correlation coeffi- 251

cient, is not impacted, as for such calculations, no (additional) 252

averaging is performed in the range-Doppler domain. 253
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TABLE II

INPUT DATA

Fig. 2. Histograms of four spectral polarimetric variables from three different situations. The full raw spectrogram is considered. In the case of rain, there
are thus range-Doppler bins with hydrometeors and nonhydrometeors.

B. Empirical Probability Functions of the Spectral254

Polarimetric Variables255

When filtering techniques based on thresholding are256

designed, normalized histograms or equivalently empirical257

probability functions are investigated for different situations258

such as clear air, rain, and saturation.259

Examples of saturation at some azimuthal directions260

(southeast) are shown in Fig. 1(a): a large signal, which is261

most likely caused by radio frequency interference (RFI),262

is measured by the FMCW radar. Because of the Fourier263

transform processing to get the backscattered power versus264

range, which is inherent to the FMCW radar, there is spectral265

leakage in all the range bins. Large power values are converted266

to reflectivity values using the weather equation [see (1)].267

Because of the multiplication by r2, the reflectivity values268

related to RFI increase with range.269

Fig. 2 shows the examples of normalized histograms of the270

four spectral polarimetric variables for three different cases271

(clear air, rain, and saturation). The values of s ZHH, s ZDR, and 272

sLDR vary between −50 and 50 dB with a bin width of 1 dB. 273

The values of sρco vary between 0 and 1 with a bin width 274

of 0.01. Each histogram relates to one raw spectrogram, which 275

represents one PPI ray. In the case of rain presence, the spectral 276

co-polar correlation coefficient probability function becomes 277

bimodal, which is an interesting feature. All the range-Doppler 278

bins are included in the histogram. For the rain case, there 279

are thus spectra of rain, clutter, and noise but no saturation. 280

Therefore, sρco histogram contains a significant amount of low 281

values. In the case of saturation, the histograms are shifted for 282

the spectral reflectivity, s ZHH, and for the linear depolarization 283

ratios, toward larger and smaller values, respectively. This is 284

not the case for sρco and s ZDR distributions, which allows 285

to group clear air and saturation together as nonhydrometeor 286

echoes. Next, a mathematical formulation, which uses proba- 287

bility functions, is used to design a new spectral polarimetric 288

filter and assessment criteria to compare filters. 289
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C. Shannon’s Entropy290

Information entropy or Shannon’s entropy [13] is defined291

as the average logarithm of the inverse of probability. There292

are many interpretations of information entropy depending on293

its application. Here, it is used as measuring the number of294

states of a system. A large number of states, n, lead to high295

entropy, H . In the spectral polarimetric image context, the296

random variable X denotes one of the spectral polarimetric297

variables with Pr (X = xi) being its probability when having298

the value xi , which is the i th possible value of X . This is299

mathematically formulated as300

H (X) =
n∑

i=1

P(xi) log2
1

P(xi )
(6)301

P(xi) = Pr(X = xi) (7)302

X ∈ {
s ZDR, sLHH

DR, sLVV
DR, sρco

}
(8)303

where the same discretization as for the histograms is used.304

The fundamental properties of Shannon’s entropy that will305

be used here are [14] given as follows.306

1) H (X) is a convex function and H (X) ≥ 0.307

2) H (X) reaches its maximum value, H (X)max = log2(n),308

when P(x1) = P(x2) = · · · = P(xn) = 1/n (the309

number of values for the spectral polarimetric variable310

is large and the distribution of values is uniform).311

3) H (X) reaches its minimum, H (X)min = 0, when there312

is only one value possible for the spectral polarimetric313

variable.314

4) For two statistical independent random variables X315

and Y , we have H (X, Y ) = H (X) + H (Y ).316

According to Properties 2 and 3, Shannon’s entropy can317

be considered as a function of the distribution of a spectral318

polarimetric variable. This distribution or probability den-319

sity function is estimated using the normalized histogram of320

spectral polarimetric variables. The properties of Shannon’s321

entropy function are used to build assessment criteria for322

filtering in Section IV.323

D. Jensen–Shannon Distance324

Jensen–Shannon distance (JSD) is an entropy-based para-325

meter, which is used to compare the similarity or discrepancy326

between distributions. Relatively low JSD values indicate327

similarity and thus less discrepancy between different distri-328

butions and vice versa. JSD is defined as the square root of329

Jensen–Shannon divergence [15]330

JSD(P�Q) =
√

1

2
DKL(P�M) + 1

2
DKL(Q�M) (9)331

DKL(P�M) =
∑
x∈X

P(x) log2

(
P(x)

M(x)

)
(10)332

DKL(Q�M) =
∑
x∈X

Q(x) log2

(
Q(x)

M(x)

)
(11)333

M = 1

2
(P + Q) (12)334

where P and Q are two different probability functions, M is335

the pointwise mean of P and Q, and DKL is defined as the336

Kullback–Leibler divergence.337

The advantage of using the Jensen–Shannon divergence in 338

comparison to other metrics for similarity between distribu- 339

tions is that it is finite and symmetric [16]. 340

E. Selection of the Spectral Polarimetric Variable 341

A sensitivity test is conducted to find the most sensitive 342

polarimetric spectrogram to the presence of hydrometeors. For 343

this purpose, the JSD is used to assess the difference between 344

two distributions, clear air and rain. The JSD is estimated for 345

four spectral polarimetric variable distributions (s ZDR, sLHH
DR, 346

sLVV
DR, and sρco), where the distribution with rain included is 347

compared to a clear-air reference distribution. The spectral 348

polarimetric distribution of clear air (Pcla(X)) is obtained from 349

the averaged distribution of a full PPI 350

Pcla(X) = 1

nr

2π∑
α=0

Pcla(X, α) (13) 351

X ∈ {s ZDR, sLHH
DR, sLVV

DR, sρco} (14) 352

α ∈ [0, 2π] (15) 353

where Pcla(X, α) is the distribution of one spectral polarimetric 354

variable X at azimuth angle α and nr is the total number of 355

radar rays per PPI. 356

Fig. 3(a) shows the results of JSD between polarimetric 357

spectrogram histograms with rain included and the averaged 358

clear-air reference for a complete PPI. This figure demon- 359

strates that sρco has the highest sensitivity for the presence 360

of rain. The fact that sρco has the highest sensitivity from 361

these variables is also consistent with characteristic change of 362

distribution shape when rain appears, going from a monomodal 363

to bimodal distribution in Fig. 2. For the other three variables, 364

no distinct sensitivity is found. With respect to the raw PPI of 365

rain [Fig. 3(b)], the JSD of sρco has a positive correlation 366

with the rain areas. For example, when the radar ray is 367

around 100◦, both the JSD and the nonfiltered reflectivity 368

decrease dramatically indicating the absence of rain. 369

F. Filter Description 370

A new filtering technique is proposed in this research, which 371

uses a clear-air spectral-polarimetric-variable distribution as 372

input. The filter is applied to range-Doppler data. Fig. 4 373

shows all the steps of this filtering method. The first step 374

consists of spectral polarimetric filtering using an optimized 375

sρco threshold value for each spectrogram. Then, the default 376

Rijnmond notch filter is implemented to mitigate the ground 377

clutter. Similar to the OBSpol filter, missing precipitation 378

range-Doppler bins are reconstructed by mathematical mor- 379

phology processing using the closing operator [8]. Finally, 380

when the percentage of hydrometeor Doppler bins is very 381

low, no data are attributed to the range bin. The following 382

paragraphs dive into details of step 1, which is the innovative 383

part, and this filtering technique is demonstrated for rain, clear- 384

air, and saturated cases. 385

The first step removes most of the nonhydrometeors 386

by giving a suitable threshold value. As concluded from 387

Section III-E, sρco is chosen to be the polarimetric spectro- 388

gram for thresholding. A square kernel (7 × 7) is used for 389
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Fig. 3. (a) JSD of different spectral polarimetric variables versus azimuth for rain case 2, which is represented by its nonfiltered reflectivity PPI in (b). Low
values of JSD indicate similarity of the spectral polarimetric variable distribution with the corresponding reference mean clear-air distribution.

Fig. 4. JSD-based filtering algorithm.

the averaging in the estimation of sρco [see (5)]. After the390

threshold value is determined, a binary mask (Msρco(r, v)) is391

created392

Msρco(r, v) =
{

1, if sρco > Topt

0, otherwise
(16)393

where Topt refers to the optimized threshold value of sρco, 1 is394

the label for hydrometeors, and 0 is for nonhydrometeors. The395

threshold Topt is determined for each spectrogram.396

The critical part of this step is to determine the magnitude of397

sρco for thresholding. The optimized threshold magnitude Topt398

is determined by the sρco-distribution similarity and disparity399

between an input spectrogram and the averaged distribution400

of clear-air echo (Pcla(sρco)). The nonhydrometeor part of a401

spectrogram is similar to the spectrogram of clear-air echoes.402

As a result, the sρco-distribution of the nonhydrometeors403

is similar to the sρco-distribution of clear air. In addition,404

there is a disparity of this distribution between hydrometeors405

and clear air. Those similarities and disparities are measured406

by JSD407

JSDU = JSD(P(sρco)Msρco =0�Pcla(sρco)) (17)408

JSDH = JSD(P(sρco)Msρco =1�Pcla(sρco)) (18)409

JSDD = JSDH − JSDU (19)410

where JSDU denotes the JSD between the sρco-distribution 411

of the nonhydrometeor part of an input spectrogram 412

(P(sρco)Msρco =0) and the averaged sρco-distribution of clear- 413

air echo (Pcla(sρco)). Also, JSDH is the JSD between the 414

sρco distribution of the hydrometeor part (P(sρco)Msρco =1) 415

and Pcla(sρco). 416

As the binary mask is a function of the threshold T and 417

JSD is a function of the mask, the JSD corresponds to a 418

function of T . We expect that the extracted nonhydrometeor 419

sρco-distribution is similar to the clear-air echo one and thus 420

leads to a small JSDU . Similarly, a discrepancy between the 421

distributions of the extracted hydrometeor part and the clear-air 422

echo one leads to a large JSDH . Therefore, the optimized 423

threshold value Topt is selected when the difference (JSDD) 424

between the disparity (JSDH ) and similarity (JSDU ) reaches 425

the maximum. 426

The algorithm finds a suitable threshold value, Topt by max- 427

imizing the JSD difference (JSDD). As input to the algorithm, 428

a suitable range of sρco threshold values is given, based on 429

[9, p. 517]. Thus, the default lower bound of this range, Tb, 430

is set to be 0.8 and the maximum is 1. The increment, dT , 431

is a variable affecting the tolerance of the result as well as the 432

operation time, so it depends on the user’s demand. In this 433

work, a value of 0.01 is chosen for dT . Examples of this 434

algorithm implementation on rain and clear-air spectrograms 435

are shown next. 436

1) Rain Case: As can be seen in Fig. 5, both JSDH and 437

JSDU increase monotonically with the sρco threshold value 438

(T ) for a rain spectrogram. A higher T contributes to adding 439

more potential hydrometeor pixels to the nonhydrometeor 440

group. Meanwhile, the hydrometeor pixels are tending to be 441

purely hydrometeors. Therefore, larger T results in a decrease 442

of similarity between the nonhydrometeor part of this input 443

spectrogram and the clear-air echo spectrogram of reference 444

(larger JSDU ). Also, the hydrometeor group sρco-distribution 445

has substantially more disparity with the reference clear-air 446

echo distribution. 447

2) Clear Air (Including Saturation): Fig. 5 shows an 448

example of JSDH , JSDU and JSDD profiles for a clear-air 449

spectrogram (including saturation). Clear air and satura- 450

tion have similar spectral co-polar correlation coefficient 451
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Fig. 5. JSDH , JSDU , and JSDD profiles versus sρco threshold for Topt determination. The left figures relate to a spectrogram with partial rain, and the
right figures correspond to clear air (including saturation) only. For this rain spectrogram, the optimal value is Topt = 0.91. For the clear-air spectrogram, the
optimal value is Topt = 1.00. (a) Rain JSDH profile. (b) Clear-air JSDH profile. (c) Rain JSDU profile. (d) Clear-air JSDU profile. (e) Rain JSDD profile.
(f) Clear-air JSDD profile.

distributions (see Fig. 2) and lead to the same results in terms452

of JSDH , JSDU , and JSDD . As the characteristics of an input453

spectrogram are initially unknown, an input spectrogram is454

treated as a spectrogram with hydrometeors by the algorithm.455

As T increases, the JSDH values have the same tendency as a456

rain spectrogram. However, the similarity is high between the457

tested nonhydrometeor part and the reference clear-air spec-458

trogram (very low values of JSDU ). For JSDU , the minimum459

is reached when the whole spectrogram is labeled as nonhy-460

drometeors (T = 1). At the same time, JSDD has reached461

its maximum. Therefore, a clear-air (with/without saturation462

included) spectrogram is totally filtered by this algorithm.463

IV. HOW TO EVALUATE A FILTER464

WITHOUT GROUND TRUTH?465

Unsupervised evaluation metrics from image segmentation466

are used in this article for the first assessment of filtering467

without ground truth. With this methodology, the optimization 468

of filtering parameters can be performed. As a start, assessment 469

criteria should be defined. Without such assessment criteria, 470

it is hard to determine whether a filter performs well or not 471

when designing and testing different filters. The filtering of 472

nonhydrometeors occurs in the range-Doppler domain. There- 473

fore, criteria of good segmentation are defined in the spectral 474

domain. However, residual nonhydrometeor range-Doppler 475

bins may stay after this mitigation leading to badly estimated 476

radar moments data at some ranges, which may be misinter- 477

preted as rain. Consequently, it is necessary to define assess- 478

ment criteria for good segmentation in the time domain as 479

well. 480

To assess the filtering techniques, equivalently on the seg- 481

mented spectrogram, subjective and objective evaluations are 482

used. The difference between them consists of whether having 483

human evaluation involved or not. 484
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Fig. 6. Examples of three types of unwanted echoes (nonhydrometeors) in a badly filtered PPI of reflectivity.

A. Assessment Criteria in the Spectral Domain485

For image segmentation, widely used assessment criteria486

exist [17]. These general image segmentation criteria are487

adapted for the application of nonhydrometeor filtering in the488

radar spectral domain. Using the assumption of range-Doppler489

continuity of precipitation and the specificity of polarimetric490

spectrograms, the image segmentation criteria are defined as491

follows.492

1) Segmented hydrometeor and nonhydrometeor regions493

should be uniform and homogeneous concerning their494

spectral polarimetric features (e.g., intensity).495

2) Boundaries between hydrometeors and nonhydrometeors496

should not be ragged and should be spatially accurate.497

3) Hydrometeor region interiors should be without holes498

and with a spatial connection.499

B. Assessment Criteria in the Time Domain500

The above criteria are all for spectrogram images, which501

provide a radar variable versus range and Doppler velocity at502

a specific azimuth or time. However, the final representation of503

weather radar data, such as PPI, is in the time domain instead504

of the spectral domain. Here, the integrated variable is given505

versus range at a specific azimuth or time. The time-domain506

reflectivity (ZHH) at each range bin results from the summation507

on spectral bins. Therefore, if a few range-Doppler bins exist at508

one range, this will result in one echo bin in the time domain.509

Even with a high performance of the filters in clear-air echo510

suppression in the spectral domain, some PPI rays may thus511

still contain unwanted signals in the time domain.512

Assuming that rain bins are continuous, regardless of the513

spectral or time domain, isolated unconnected echo bins are514

accordingly considered as badly filtered. Furthermore, it can515

be assumed that ZHH values lower than 0 dBZ and larger516

than 70 dBZ can be classified as nonhydrometeors [9]. The517

relatively low occurrence of such echoes in range bins is an518

indicator of good filtering. Examples of isolated unconnected519

echoes, both for weak and strong reflection, are shown in 520

Fig. 6. Therefore, the following three criteria in the time 521

domain are formulated. 522

1) All echo bins should be removed in the time domain 523

when they relate to clear-air echoes. 524

2) The number of nonhydrometeor echoes should be zero 525

or minimal. 526

3) The number of nonconnected echoes should be zero or 527

minimal. 528

C. Subjective Evaluation 529

The application of subjective evaluation methods is limited. 530

The segmented results are qualitatively assessed by human 531

evaluation: for example, by only looking at a filtered spectro- 532

gram or PPI. Due to the necessary human intervention, this 533

method is time-consuming when the dataset is large and thus 534

excludes real-time assessment. 535

D. Objective Evaluation 536

Objective evaluation methods are those without human 537

evaluation [18]. From previous studies [7], [8], typically, the 538

used objective evaluation method is the supervised evaluation, 539

which compares the segmented results with given ground-truth 540

data. With radar-based precipitation spectrograms, there is no 541

reference to ground-truth pixels. In addition, artificially gener- 542

ating such reference data is challenging [8] and subjective to 543

errors. Such methods that use artificial reference data evaluate 544

a segmented image by a set of characteristics as desired by 545

humans [18]. Unsupervised methods are thus necessary to 546

develop. 547

Unsupervised methods matching the criteria in 548

Sections IV-A and IV-B are introduced in the following. 549

Each objective evaluation method will be matched with 550

each criterion. S and T refer to spectral and time domains, 551

respectively, and the accompanying number relates to the 552

criterion order. For example, S-1 means the number 1 criterion 553

in the spectral domain. 554
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TABLE III

OVERVIEW OF THE USED FILTER PARAMETERS

Two segmentation concepts will be used in this section:555

oversegmentation and undersegmentation. An oversegmented556

object has all its pixels correctly labeled, but it misses pixels,557

which are grouped in other objects. The undersegmented558

object has its pixels with correct and incorrect labels, which559

means that a part of its pixels should belong to other objects.560

1) Uniformity Measurement (Criterion S-1):561

1) Method: Criterion S-1 states that the segmented areas562

should be uniform with their own characteristics, such as563

the distribution of spectral polarimetric variables. More564

uniformity within an object is an indication of less565

contamination of unwanted echoes inside. The region566

Shannon’s entropy Hv [19] is used to assess the unifor-567

mity within each region and is defined as568

Hv(R, X) =
n∑

i=1

P(xi ) log2
1

P(xi )
(20)569

where Hv(R, X) denotes the region entropy for the570

region R, X represents the assessed spectral polarimetric571

variable, and n is the number of probability function572

bins P(xi ). The region entropy has been validated in573

studies and has shown good performance in classifying574

different objects in one image [18].575

Here, we consider two types of regions, hydrometeors576

and nonhydrometeors, for which the expected region577

entropy Hr [19] is defined by summing each region578

entropy Hv multiplied by the weight proportional to the579

pixel numbers of that area Sj580

Hr =
2∑

j=1

(
Sj

SI

)
Hv(R j) (21)581

R j ∈ {RC , RH } (22)582

Sj ∈ {SC , SH } (23)583

SI = Nrange × NDoppler (24)584

where R represents the label of the segmented regions585

and S is the area or pixel numbers of the region. The sub-586

scripts C and H of R j and Sj denote nonhydrometeor587

(clutter) and hydrometeor, respectively. SI is the total588

area of the whole range-Doppler spectrogram, which589

corresponds to the total pixel number. Hr represents the590

expected entropy across all regions, and its definition is591

based on Property 4 of Shannon’s entropy.592

A low entropy value corresponds to a limited number593

of spectral polarimetric variable values in the segmented594

region (Properties 2 and 3 of Shannon’s entropy) [14].595

A low entropy value is thus an indicator of uniformity 596

for the spectral polarimetric variable that is considered. 597

A larger entropy value refers to partial regions contam- 598

inated with pixels from unwanted echoes. As concluded 599

from Section III-E, the distribution of sρco has the most 600

sensitivity to the presence of rain in the spectrogram. 601

Therefore, sρco is the spectral parameter to be chosen 602

for the uniformity measurement. 603

As lower entropy values are considered better, the 604

assessment only with Hv may prefer solely overseg- 605

mented objects. This is the rationale to use Hr , which, 606

by definition, involves the entropy of all the considered 607

classes. However, the uniformity measurement by the 608

expected region entropy has also limitations. The area 609

of nonhydrometeor objects may be much larger than 610

the rain objects. In that case, the regional entropy from 611

nonhydrometeors (Hv(RC)) may be dominant in the 612

expected region entropy result (Hr ) and thus decrease 613

the impact of the hydrometeor part (Hv(RH )). 614

2) Illustration: Figs. 7–9 show the relations between a 615

segmented co-polar correlation coefficient spectrogram, 616

its distribution, its region entropy (Hv), and its expected 617

region entropy (Hr ) using two segmented results. 618

Fig. 7(a) shows the raw polarimetric spectrogram chosen 619

for segmentation. Two label masks [Fig. 7(b) and (c)] 620

result from two different methods, OBSpol and JSD 621

filters. Details of the filters are given in Table III. 622

Figs. 8 and 9 show the uniformity measurement for 623

these two masks. Although a fixed threshold for sρco 624

is used (fixed for mask A and retrieved for mask B), 625

lower/higher values of sρco are found in hydrome- 626

teor and nonhydrometeor histograms because of the 627

mathematical morphological pixel reconstruction. Fig. 8 628

shows the sρco histograms and spectrograms of extracted 629

hydrometeors and nonhydrometeors by mask A. On the 630

one hand, the extracted hydrometeor area by mask A in 631

Fig. 8(b) contains nonhydrometeor pixels that are ground 632

clutter around 0 ms−1 or have low sρco values along 633

the boundary of hydrometeor regions. This results in a 634

sρco distribution with a long left tail in Fig. 8(d) and 635

large Hv(RH , sρco). The segmented hydrometeor area 636

by mask B [Fig. 9(b)] does not show nonhydrometeor 637

pixels but lost some hydrometeor pixels. On the other 638

hand, the segmented nonhydrometeor area by mask A 639

[Fig. 8(a)] does not contain hydrometeor pixels, while 640

the segmented one by mask B [Fig. 9(a)] shows pixels 641
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Fig. 7. Data correspond to Fig. 1(a) (rain case 1) at the azimuth 82.51◦ . (a) Raw spectral co-polar correlation coefficient. (b) Mask A (Filter OBSpol).
(c) Mask B (Filter JSD).

with relatively high sρco values, which are potentially642

representing hydrometeors.643

Summarizing, the segmented hydrometeor region by644

mask A suffers from undersegmentation (contains non-645

hydrometeor pixels) and the nonhydrometeor area is646

oversegmented. This is contrary to the result of mask B647

with an oversegmented hydrometeor and underseg-648

mented nonhydrometeor regions. Their contamination649

levels are measured by Hr . For both masks, the regional650

entropy value is dominated by the large contribution of651

noise (part of nonhydrometeors) with a large area in the652

range-Doppler domain and a wide sρco distribution.653

Because the ground truth is not known, we cannot say654

whether Hr = 6.108 (mask A) or 6.051 (mask B)655

is a good or bad value. It is a metric to relatively656

measure segmentation results, which shows the overall657

segmentation result and can thus overlook some local658

segmentation details. Therefore, using only this metric659

is not sufficient and more metrics should be developed.660

2) Boundary Contrast (Criterion S-2): 661

1) Method: A local assessment based on Shannon’s entropy 662

is derived, to obtain a measure for boundary contrast. 663

The first step is to find the spectrogram, which has 664

a sharp boundary between the rain objects and non- 665

hydrometeors. The boundary to distinguish rain from 666

nonhydrometeors should exhibit a sharp change of 667

smoothness: the rain object is smooth, while the nonhy- 668

drometeor area at the rain boundaries is typically noisy 669

that translates into a large entropy. Based on subjective 670

evaluation, s ZDR is a suitable polarimetric spectrogram 671

to consider. 672

How to define a boundary in a range-Doppler spec- 673

trogram? We want to calculate the entropy gradient 674

through the boundary between the two objects. A high 675

entropy gradient corresponds to a sudden change. For the 676

rain object, we define the inner line as the pixel series 677

with one-unit pixel width along the boundary inside the 678

rain object. The outer line is the pixel series along the 679
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Fig. 8. Result of the segmentation of the co-polar correlation coefficient spectrogram by mask A. The regional entropy Hr equals 6.108. (a) sρco: extracted
nonhydrometeors by mask A. (b) sρco: extracted hydrometeors by mask A. (c) sρco distribution of nonhydrometeors (Hv(RC , sρco) = 6.192). (d) sρco
distribution of hydrometeors (Hv(RH , sρco) = 5.727).

boundary inside the nonhydrometeor object side.680

The expected entropy of each line is then defined as681

Hv(L j , s ZDR) =
L j∑

i=1

P(xi ) log2
1

P(xi )
(25)682

L j ∈ {L in, Lout} (26)683

where L is the pixel number of each line. The entropy684

gradient is the difference685

Hd = Hv(Lout) − Hv(L in). (27)686

There are two cases when the entropy gradient is687

lower, namely, oversegmented and undersegmented rain688

objects. In these cases, the boundary locates within the689

rain object or the nonhydrometeors, which leads to the690

inner and outer line to be in one object only. Con-691

sequently, the entropy gradient through the segmented692

boundary is small and points out a bad segmentation.693

2) Illustration: Fig. 10 shows an example schematic of694

boundary contrast with pixel labeling: the top left is a695

9 × 5 image that is part of the s ZDR on the right. The696

labeling of the inner and outer line region is shown.697

We can see those pixels from the outer line region having698

large variations in the s ZDR values, while the inner line699

pixels are more uniform (smoother).700

3) Connectivity Measurement (Criterion S-3):701

1) Method: Connectivity is defined by the ratio of the inner702

line pixel numbers, SL , to the total pixel number of703

the hydrometeor objects, SH . The inner line pixel is 704

defined as the pixel with at least one neighbor pixel 705

having a different label. If the connectivity is close 706

to 1, this implies that the hydrometeor objects lose their 707

spatial connectivity—more labeled hydrometeor pixels 708

are isolated with neighboring nonhydrometeor pixels. 709

The value of C ranges from 0 to 1 710

C = SL

SH
. (28) 711

2) Illustration: Fig. 11 shows two exemplary masks with 712

different connectivities and their corresponding inner 713

lines. All white or black pixels are connected in the 714

first label mask [Fig. 11(a)] without any hole inside, 715

so its connectivity value C is low. In the second mask 716

[Fig. 11(c)], there are some holes within the object, so its 717

connectivity value (C) is large. 718

4) Removal Percentage (Criterion T-1): A removal percent- 719

age (Rrm) is defined for each PPI ray. It is the key factor 720

to nonhydrometeor filtering assessment in the case of clear- 721

air measurement. Here, a qualitative ground truth is needed 722

because no hydrometeor signal should be present in the PPI 723

measurement. According to the first criterion in the time 724

domain, a high removal percentage suggests a strong nonhy- 725

drometeor removing ability since all the signals in the clear-air 726

are related to nonhydrometeors. The removal percentage is 727
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Fig. 9. Result of the segmentation of the co-polar correlation coefficient spectrogram by mask B. The regional entropy Hr equals 6.051. (a) sρco: extracted
nonhydrometeors by mask B. (b) sρco: extracted hydrometeors by mask B. (c) sρco distribution of nonhydrometeors (Hv(RC , sρco) = 6.298). (d) sρco
distribution of hydrometeors (Hv(RH , sρco) = 3.539).

Fig. 10. Example schematic of boundary contrast. (Right) Spectral differential reflectivity in dB is shown with (Left) zoomed panel to illustrate the boundary
contrast with pixel labeling.
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Fig. 11. Demonstration of connectivity measurement. (a) Mask 1
(C = 0.146). (b) Inner line of Mask 1. (c) Mask 2 (C = 0.703). (d) Inner
line of Mask 2.

defined as728

Rrm = Ne

Nrange
(29)729

where Ne denotes the number of echo bins in a radar ray and730

Nrange is the total number of radar resolution volumes in the731

whole ray.732

5) Weak and Strong Echo Ratio (Criterion T-2): The fol-733

lowing defined factor relates to very low and high equivalent734

reflectivity factor values that are still present in the PPI ray735

after the filtering. These values are expected to correspond736

to nonhydrometeors. In particular, a PPI ray with reflectivity737

values above 70 dBZ may indicate saturation. The ratio related738

to the amount of weak and strong echoes in the whole radar739

ray is defined as740

Rws = Nws

Nrange
(30)741

where Nws denotes the number of echo bins whose ZHH is742

lower than 0 dBZ or larger than 70 dBZ.743

6) Isolated Unconnected Echo Bin Ratio (Criterion T-3):744

According to the third criterion, a large number of isolated745

unconnected echo bins is considered as a bad filtering result.746

Here, we define the isolated unconnected echo bin ratio (Rsu)747

as748

Rsu = Nsu

Nrange
(31)749

where Nsu denotes the number of isolated unconnected range750

bins in the considered ray.751

Summarizing, criteria T-1–T-3 relate to the evaluation of one752

ray in the PPI and criteria S-1–S-3 relate to the assessment of753

the corresponding polarimetric spectrograms, sρco or s ZDR.754

V. RESULTS755

Subjective and objective methods are used to assess three756

filtering techniques, namely, the default Rijnmond filter757

(Section II-C) and JSD-based and OBSpol filter [8]. A sum- 758

mary of their parameters is given in Table III. Different scenar- 759

ios given in Table II, clear-air echo and rain cases, are tested. 760

For the evaluation result of each case and filter, one full PPI 761

consisting of 196 rays is considered. The subjective method 762

consists of plotting and visually assessing the filtered PPI. 763

In the case of objective methods, the use of assessing variables 764

depends on the tested scenarios. For example, considering 765

clear air, the removal percentage, Rrm, is the appropriate 766

assessing variable to test the filtering performance. Because 767

of the lack of ground-truth data, objective evaluation variables 768

in the spectral domain (Hr , Hd , C) can only give a relative 769

assessment, which is, however, very useful for comparing 770

different filters. The optimized results of these three spectral 771

domain assessment variables can only be obtained with the 772

ground truth. On the other hand, all time-domain evaluations 773

(Rrm, Rws, and Rsu) can show an absolute assessment as we 774

expect that the value of 0 is the best. One PPI has 196 rays, 775

so every study case provides 196 test results by each filter for 776

all assessment variables. The distribution of each assessment 777

variable is visualized by a boxplot [20]. When analyzing the 778

boxplot, the median (Q2 or the 50th percentile), interquartile 779

range (IQR), and potential outliers (qout) are considered. The 780

IQR is defined as 781

IQR = Q3 − Q1 (32) 782

where Q3 and Q1 denote the 75th percentile and 25th per- 783

centile, respectively. Outliers (qout) are those values that fulfill 784

the conditions 785

qout ∈ {q|q > Q3 + 1.5 × IQR} (33) 786

qout ∈ {q|q < Q1 − 1.5 × IQR} (34) 787

where q denotes any value of one assessment variable among 788

the 196 results for clear air (one test case) and 196 × 6 for 789

rain (six test cases). Both IQR and number of potential 790

outliers characterize the performance of the different filtering 791

techniques. 792

A. Subjective Evaluation 793

The subjective evaluation method is used according to 794

the criteria for time-domain radar profiles in Section IV-B. 795

Besides, some radar rays suffer from saturation, so the ability 796

of removing those saturation radar rays should also be consid- 797

ered. Figs. 12 and 13 show the raw data and filtered reflectivity 798

results for two rain cases. Overall, all filters succeed in remov- 799

ing radar rays with saturation. Filter JSD retains the most radar 800

bins with precipitation. Coming back to case 1, the optimized 801

threshold, Topt, of the spectral co-polar correlation coefficient 802

(JSD-based filter) is plotted versus azimuth in Fig. 14. These 803

values of Topt explain that the fixed threshold of 0.95 is too 804

high for this event and why so many precipitation bins are 805

discarded by the default Rijnmond and OBSpol filter. 806

B. Objective Evaluation 807

1) Clear-Air Case: For the clear-air case evaluation, just 808

the removal percentage (Rrm) in the time domain is consid- 809

ered. Fig. 15 shows the boxplots quantifying the statistical 810
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Fig. 12. Reflectivity PPIs (raw and filtered) for rain case 1. (a) Raw PPI. (b) PPI using the default Rijnmond filter. (c) PPI using the JSD-based filter. (d) PPI
using the OBSpol filter.

Fig. 13. Reflectivity PPIs (raw and filtered) for rain case 4. (a) Raw PPI. (b) PPI using the default Rijnmond filter. (c) PPI using the JSD-based filter. (d) PPI
using the OBSpol filter.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 15,2022 at 07:13:12 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: JENSEN–SHANNON DISTANCE-BASED FILTER AND UNSUPERVISED EVALUATION METRICS 5117018

Fig. 14. Optimized threshold (Topt) value as function of azimuth [for the
PPI in case 1, Fig. 12(c)].

Fig. 15. Removal percentage results for the three filtering techniques. This
parameter is only relevant for clear-air assessment.

performance of the three filters in removing nonhydrometeors.811

JSD and OBSpol filters can filter most of the clear-air echoes.812

Nonetheless, Filter JSD has the best performance because few813

outliers remain in the distribution. This result can be expected814

because JSD has as input a mean distribution of clear air.815

Consequently, if the clear-air distribution is quite stable in816

time and space, this is an efficient way to remove clear-air817

echoes.818

2) Rain Cases Evaluation: Except for the removal percent-819

age assessment, all evaluation methods in the spectral and820

time domain are considered and applied to all rain cases821

from Table II.822

1) Spectral Domain Evaluation Results: Fig. 16 shows the823

regional entropy Hr distribution of the three filters. Filter824

JSD has the lowest median and a larger portion of825

radar rays distributed in lower Hr . The distributions826

of the other two filters are comparable. A lower Hr827

value suggests less contamination of unwanted echoes,828

either in the hydrometeor part or in the nonhydrom-829

eteor region. Therefore, filter JSD performs better in830

the classification with regard to the other two filters.831

However, the magnitude of Hr resulting from the three832

filters is comparable. This is due to the fact that Hr833

is dominated by Hv(RC ) for each spectrogram. Coming834

back to Fig. 7, Hv(RH ) of mask A is much larger than835

that of mask B, as the segmented hydrometeor region836

by mask A is more contaminated than that of mask B.837

Nonetheless, their nonhydrometeor regions show a simi-838

lar level of uniformity, leading to comparable Hr values839

due to the large weight of the nonhydrometeor part.840

Fig. 16. Regional entropy results.

Fig. 17. Boundary contrast results.

Fig. 18. Connectivity results.

For the boundary contrast (Hd) and spectral connectiv- 841

ity (C) assessment in Figs. 17 and 18, Filter JSD takes 842

the highest values, while the performance between the 843

other two filters is still similar. Higher Hd values show 844

that the boundary position between hydrometeors and 845

nonhydrometeors is more spatially correct, and higher 846

C values refer to poorer connectivity. Because the JSD 847

filter retains more precipitation, also weak precipitation 848

in the form of isolated range-Doppler bins passes the 849

filter, which increases the connectivity. 850

Summarizing, comparing the three filters, the JSD-based 851

filter has better performances in terms of regional unifor- 852

mity for hydrometeors and nonhydrometeors and bound- 853

ary position between hydrometeor and nonhydrometeor 854

areas. Nonetheless, it keeps a bit more isolated hydrom- 855

eteor regions in the spectrograms. 856

2) Time-Domain Evaluation Results: For the time-domain 857

evaluation, the three filters perform well and rather 858

similar in terms of removal of weak and strong echoes 859
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Fig. 19. Time-domain evaluation results of the three filtering techniques.
(a) Ratio of weak and strong echoes results. (b) Ratio of isolated unconnected
bins results.

[Rws in Fig. 19(a)]. The values of this assessment para-860

meter are very low with a median value of about 0.0025,861

and thus, 0.25% of weak and strong echoes are left in the862

PPI. Filter OBSpol has more radar rays with high Rws863

than the other two filters. Although the Rsu values are864

very low, the performance difference becomes larger for865

the time-domain connectivity, Rsu, in Fig. 19(b), where866

the JSD filter has the most isolated unconnected echo867

bins and OBSpol filter the least. Rsu is highly correlated868

with the spectral domain connectivity measurement, C .869

Summarizing, the JSD-based filter performs a bit less870

in terms of weak and strong echoes as well as isolated871

range bins removal. This is the price to pay for keeping872

as much precipitation as possible while mitigating a873

large quantity of nonhydrometeors.874

VI. DISCUSSION875

In this section, we summarize and discuss the three filter876

performances from the subjective and objective evaluation877

results given in Section V.878

As shown in Figs. 12 and 13, all three filters succeed in879

removing radar bins with saturation issues, which suggests880

that sρco = 0.95 is sufficient for tackling this problem.881

However, sρco = 0.95 is not enough to remove all unwanted882

echoes in the clear-air case and may discard precipitation areas883

in the rain cases. The default Rijnmond filter retains more884

clear-air radar bins than the other two filters (Fig. 15) since885

both the JSD and OBSpol filters benefit from morphological886

image processing. The JSD filter performs even better than887

the OBSpol filter because the JSD filter makes use of the sρco888

distribution of clear air. In terms of clear-air echoes, it means889

that this distribution is rather stable.890

Fig. 20. Scatter density plot of reflectivity. The intensity shows the relative
occurrence for all the study cases. The x-axis represents reflectivity values
for the default Rijnmond filtering, and the y-axis represents reflectivity values
for the JSD filtering.

In the rain case results, the default Rijnmond filter and 891

OBSpol filter perform similarly considering either the subjec- 892

tive or objective results. Better results of regional entropy, Hr , 893

and boundary contrast, Hd , verify that the JSD filter provides 894

an improved separation between hydrometeors and nonhy- 895

drometeors in the spectrograms. One possible drawback of 896

the Filter JSD is to keep narrow Doppler spectra or wider 897

gaps in the spectra, which increases the connectivity para- 898

meter, both in the spectral and time domain. Overall, the 899

JSD filter keeps more precipitation bins than the other two 900

filters. Looking at the PPI of Fig. 12, we clearly see that 901

a significant part of the precipitation with high reflectivity 902

values is recovered while applying the JSD filter. Fig. 14, 903

which relates to Fig. 12(c), shows that most of the threshold 904

values are lower than 0.95. The same recovery happens in 905

Fig. 13 for precipitation behind the largest reflectivity rain, 906

where the values of spectral co-polar correlation coefficient are 907

decreased because of the lowering in SNR due to attenuation. 908

Such a precipitation recovery is mainly due to the fact that the 909

JSD filter uses optimized threshold values. Again, providing a 910

fixed threshold value for a radar measurement is somewhat 911

tricky because the threshold depends on so many things, 912

such as radar system, processing, measured hydrometeors 913

(rain, melting layer, and so on), SNR, and environment 914

around the radar. In this article, it is shown that adaptive 915

thresholding within reasonable boundaries overcomes this 916

issue. 917

One possible limitation of the JSD filter is the prerequisite 918

of clear-air echo database. From February to October 2020, 919

the same reference PPI of clear-air echo was used for the first 920

tests of the JSD filter. However, the time variability of the 921

clear-air echo database should be examined. The measurement 922

of the raw data PPI is simple and the acquisition of the spectral 923

co-polar correlation coefficient histrogram is straightforward. 924

In the case of a radar network, a clear-air echo database is 925

necessary for each radar. 926

One concern with the upgrade to the JSD filtering technique 927

is whether the radar moments, such as reflectivity, are affected. 928
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Fig. 20 shows a scatter density plot of the reflectivity with929

the JSD filter versus the original reflectivity using the default930

Rijnmond filter. This plot shows that an upgrade to the JSD931

filter does not change the estimation of the radar reflectivity932

for the majority of the radar range bins. Only for a minor933

portion of the range bins (e.g. clutter bins), the estimation is934

changed. The high reflectivity pixels, suspected to be clutter935

pixels, range from 55 to nearly 70 dBZ and appear in the936

scatter density plot for the default Rijnmond filter. These high937

reflectivity pixels are significantly reduced using the JSD filter938

and, as a result of this filter, range from 20 to 40 dBZ. This939

scatter plot also shows that the chosen case studies have a940

wide variety in reflectivity values (0–50 dBZ), which proves941

that sufficient statistics have been collected for a first good942

evaluation of the JSD filter.943

VII. CONCLUSION944

This article proposes a new filtering technique to extract945

hydrometeors and new unsupervised evaluation methods to946

assess filtering technique performance. This new filtering947

technique makes use of spectral polarimetry. Because of its948

bimodal distribution in the range-Doppler spectrogram when949

hydrometeors are present, the spectral co-polar correlation950

coefficient, sρco, is selected. First, global thresholding is per-951

formed by an optimized threshold value, which is determined952

from the comparison of sρco distribution of the input spectro-953

gram with the averaged sρco distribution of clear-air echoes.954

The methodology uses the JSD, which compares the similarity955

and discrepancy between distributions. After thresholding,956

a binary mask classifying hydrometeors and nonhydrometeors957

is obtained and the following steps are conducted sequentially958

to improve this classification result: notch filtering at 0 ms−1,959

mathematical morphological processing, and narrow Doppler960

spectra filtering.961

The new unsupervised evaluation metrics are derived from962

insights from emerging image segmentation techniques. For963

example, spectral polarimetric pixel labeling is similar to964

image segmentation. Before designing evaluation metrics,965

six criteria are defined in two domains, spectral and time,966

which are involved in the weather radar data processing967

pipeline. Accordingly, six unsupervised evaluation metrics are968

developed.969

The performance of the new filter was compared with two970

other filters. Results show filtering improvement with the new971

filter both for clear-air and rain cases. Consequently, these972

new ideas are being implemented in the real-time software973

SkyTorque, which is used for three X-band radars (Rijnmond,974

MESEWI, and IDRA).975

The discussed metrics allow a first assessment of filtering976

techniques in the range-Doppler and time domain. Conse-977

quently, several techniques with different parameterizations978

can be investigated in the context of urban clutter. This results979

in the preselection of one or a group of filtering techniques.980

The proposed methodology does not replace radar variable bias981

analysis using clutter data and rain data free of clutter and/or982

a QPE validation technique such as the validation of weather983

radar data with rain gauges, which has still to be carried out984

afterward.985

This research was performed in the context of X-band radars 986

having high spatial resolution and a limited maximum range. 987

It would be worthwhile to investigate the proposed method- 988

ology for S- or C-band weather radars with large resolution 989

volumes and maximum ranges. In addition, a high Doppler 990

resolution was used, where 512 time samples were collected 991

for Doppler processing. This number can be decreased by 992

a factor of 2 while achieving the same performance. It is 993

clear that spectral processing takes advantages of high Doppler 994

resolution to disentangle in the time-domain signal, hydrome- 995

teors, clutter, and noise. Therefore, there is a tradeoff between 996

fast-scanning weather radars with a low Doppler resolution 997

and weather radars with a high Doppler resolution (scanning 998

slower). 999
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