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Abstract. Glacier retreat presents significant environmental
and social challenges. Understanding the local impacts of cli-
matic drivers on glacier evolution is crucial, with mass bal-
ance being a central concept. This study introduces miniML-
MB, a new minimal machine-learning model designed to es-
timate annual point surface mass balance (PMB) for very
small datasets. Based on an eXtreme Gradient Boosting
(XGBoost) architecture, miniML-MB is applied to model
PMB at individual sites in the Swiss Alps, emphasising
the need for an appropriate training framework and dimen-
sionality reduction techniques. A substantial added value
of miniML-MB is its data-driven identification of key cli-
matic drivers of local mass balance. The best PMB predic-
tion performance was achieved with two predictors: mean air
temperature (May—August) and total precipitation (October—
February). miniML-MB models PMB accurately from 1961
to 2021, with a mean absolute error (MAE) of 0.417 m w.e.
across all sites. Notably, miniML-MB demonstrates simi-
lar and, in most cases, superior predictive capabilities com-
pared to a simple positive degree-day (PDD) model (MAE
of 0.541 mw.e.). Compared to the PDD model, miniML-MB
is less effective at reproducing extreme mass balance val-
ues (e.g. 2022) that fall outside its training range. As such,
miniML-MB shows promise as a gap-filling tool for sites
with incomplete PMB measurements as long as the missing
year’s climate conditions are within the training range. This

study underscores potential means for further refinement and
broader applications of data-driven approaches in glaciology.

1 Introduction

Glaciers in the European Alps are losing mass and retreating,
a phenomenon that has been accelerating since the 1980s be-
cause of human activity (Zemp et al., 2008; Marzeion et al.,
2014) and that is projected to continue in the future (e.g.
Rounce et al., 2023). The environmental and societal con-
sequences of this decline are substantial (IPCC, 2023), un-
derscoring the need for accurate representations of glacier
evolution through measurements and models.

A central concept for describing glacier evolution is mass
balance (MB), which quantifies the change in a glacier’s
mass over time (Cogley et al., 2011). In the European Alps,
with typically very limited frontal, basal, and internal MB
processes, the total glacier MB is driven by the surface mass
balance (SMB). SMB represents the net balance between
surface accumulation (through solid precipitation, refreez-
ing, wind-blown snow, and avalanches) and surface abla-
tion (mainly through surface melt and sublimation) (Benn
and Evans, 2014). In this work, we focus on point surface
mass balance (PMB), which is determined by local ablation
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and accumulation processes and thus provides a direct cli-
matic signal at a specific point on a glacier. PMB is essential
for improving our knowledge of the local impact of climatic
drivers of glacier change through accumulation and melting
(Vincent et al., 2004; Huss et al., 2009; Vincent et al., 2017).
Furthermore, PMB can also be used to calibrate and/or evalu-
ate numerical models, which, in turn, can be used to simulate
glacier evolution.

PMB can be measured through direct observations using
labour-intensive field measurements with stakes and snow
pits (Blake, 1993; Adams, 2011; Huss et al., 2015). In ad-
dition, PMB can be calculated with empirical or physically
based models (e.g. Kuhn et al., 1999; Huss et al., 2008), but
the necessary variables for complex numerical models, such
as energy balance models, are generally unavailable, e.g.
measurements of radiation and turbulent fluxes. New stud-
ies also propose techniques to retrieve PMB from elevation
change and the inversions of ice thickness and velocity, but
these PMB estimates carry considerable uncertainties (e.g.
Van Tricht et al., 2021; Miles et al., 2021; Vincent et al.,
2021; Cook et al., 2023b).

Recent studies have explored novel statistical methods
using machine learning (ML) to model glacier evolution
components, contrasting with conventional numerical ap-
proaches. For example, recent data-driven approaches have
modelled glacier ice dynamics, a key component along-
side MB for projecting glacier evolution (e.g. Jouvet et al.,
2022; Bolibar et al., 2023; Jouvet, 2023; Jouvet and Cor-
donnier, 2023; Cook et al., 2023a). For MB, Bolibar et al.
(2020, 2022) proposed an ML model of 21st-century glacier-
wide SMB coupled to a glacier evolution module to predict
glacier changes in the French Alps. However, this data-driven
MB model did not contain information on the distribution
of MB within a glacier (i.e. no local PMB information). A
recent study by Anilkumar et al. (2023) explored the simula-
tion of PMB based on World Glacier Monitoring Service data
over the European Alps (WGMS, 2023). They assessed vari-
ous ML architectures trained on an ensemble of glacier sites,
focusing on the generalisability and transferability of the
models across different sites. The study also investigated the
impact of dataset size on model performance, though their
smallest dataset (around 900 points) is relatively large in the
context of PMB records. While they demonstrated the ability
of tree-based models to identify relevant climatic drivers of
MB, they did not investigate the MB drivers at specific sites.

This study introduces miniML-MB, a new minimal ML
model designed to simulate annual PMB at individual glacier
sites using meteorological variables (air temperature and to-
tal precipitation). Based on eXtreme Gradient Boosting (XG-
Boost) (Chen and Guestrin, 2016), miniML-MB is trained
and evaluated separately at each site to account for site-
specific PMB variability. Our model thus predicts PMB for a
specific year based on measurements taken from the same
site in other years. In this particular setup, input data are
scarce, which is common in glaciology but challenging for
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data-driven ML applications. Here, we tackle this challenge
by relying on dimensionality reduction techniques to reduce
the input space in miniML-MB.

We rely on data collected at 28 individual MB mea-
surement sites across the Swiss Alps (Fig. 1). Switzer-
land stands out for its extensive long-term glacier measure-
ments compiled within the Glacier Monitoring in Switzer-
land (GLAMOS) programme, dating back to the early 20th
century, notably for glaciers like Clariden and Silvretta (Huss
etal., 2021).

We intentionally chose to model individual sites, thereby
optimising the model in relation to each site’s unique char-
acteristics. Compared to modelling of multiple sites at once
(e.g. Bolibar et al., 2020, 2022; Anilkumar et al., 2023), our
approach allows the following:

1. Capturing climatic drivers at local scales. To deter-
mine the optimal dimensionality reduction approach for
miniML-MB, we use feature-engineering techniques
and estimate feature importance, allowing us to quan-
tify the significance of individual climate features. This
methodology offers data-driven insights into the meteo-
rological variables that drive local PMB, e.g. highlight-
ing which months’ temperature and precipitation drive
the MB variability.

2. Tailoring ML models to small glaciological datasets.
Switzerland’s abundant MB measurements offer an
ideal platform for studying local data-driven PMB sim-
ulations at various sites. However, a key strength of our
approach is that limited data are needed to train the
model at each site, making it suitable for other regions
with scarcer data. For example, remote areas with re-
stricted field access, such as High Mountain Asia (Azam
et al., 2018; Wester al., 2019) or the Andes (Mernild
et al., 2015), have fewer individual glacier sites, hinder-
ing generalisation for a model trained on multiple sites.
Understanding how to tailor ML models to fit very small
datasets is crucial for effective local-scale modelling of
these sites.

Section 3 provides an overview of the study site and the
climate input data of the ML model, outlines the architec-
ture, and introduces the training and evaluation frameworks.
This study’s core analysis focuses on PMB measurements up
to 2021, initially excluding the prediction of the extreme MB
years of 2022 and 2023 (SCNAT, 2023; Cremona et al., 2023;
Voordendag et al., 2023). Section 4 describes the implemen-
tation of the positive degree-day (PDD) model used as a base-
line for our ML model. In Sect. 5.1-5.3, we first compare
different dimensionality reduction frameworks of miniML-
MB before comparing the model’s performance with that of
the PDD baseline. Section 5.4 includes a separate analysis
of the extreme years of 2022 and 2023, allowing us to test
the model’s predictive capability in such circumstances. Sec-
tion 5.5 shows predictions made by miniML-MB when used

https://doi.org/10.5194/tc-19-805-2025
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Figure 1. Overview of sites (individual mass balance stakes) with annual point surface mass balance measurements in the Glacier Monitoring
in Switzerland (GLAMOS) network: 28 sites on 13 glaciers from 1961 to 2023. Each site is represented by a circle, coloured according to
the glacier it belongs to (annotated in grey). The circle size represents the total number of years with measurements (ranging from 21 to 62).
The background terrain map represents hill shading and natural vegetation colours by Stamen Design (2024).

as a gap-filling tool. Section 5.6 analyses the drivers of PMB
in miniML-MB. Sections 6 and 7 examine the outcomes of
these analyses and offer insights into both the broader appli-
cability of miniML-MB and the future use of ML for predict-
ing MB at various spatial and temporal scales.

2 Study site and data

2.1 Meteorological data

As predictors for our data-driven PMB model (see Sect. 3),
we use two monthly meteorological variables from the Me-
teoSwiss reanalysis: (i) 2m air temperature (7', in °C) and
(i1) total precipitation (P, inmw.e.), including rain and
snowfall. This gridded dataset has a 2 km spatial resolution,
covers the period from 1961 to present, and is derived from
80 stations for temperature and approximately 430 rain gauge
observations (MeteoSwiss, 2023b, a). In our approach, we
extract 7 and P data from the meteorological grid cell near-
est to the location of each individual PMB site.

2.2 Point surface mass balance data

For this study, we use PMB measurements from 28 stake lo-
cations on 13 glaciers in the Swiss Alps (Fig. 1) as provided
by the GLAMOS programme (GLAMOS, 2023a). The ele-
vation of these sites ranges from approximately 2000 ma.s.1.
(Aletsch-P1 site) to 3500 m a.s.l. (Aletsch-P5 site), but most
sites are within the range of 2500-3000 m a.s.l. (Fig. 2b).

https://doi.org/10.5194/tc-19-805-2025

The extensive spatio-temporal coverage of on-site PMB
measurements in Switzerland is unique on a global scale.
Over a century of continuous monitoring has been dedicated
to a subset of glaciers, with 20 glaciers having over 30 years
of data. Measurements are made with stakes relocated to
their initial position annually, recording their height above
the surface at specific intervals, supplemented with density
measurements (Huss and Bauder, 2009). These field obser-
vations are affected by inconsistent measurement dates due
to weather and other constraints. Typically, two surveys are
conducted annually: one close to maximum snow depth to
measure the winter MB around 30 April, with a standard de-
viation (SD) of 10 d, and one near the end of the melting sea-
son to determine the summer and annual PMB (30 Septem-
ber &= SD of 11 d). For detailed information on the dataset and
its collection, refer to Geibel et al. (2022).

Here, we rely on a curated PMB dataset for selected long-
term sites, with all observations homogenised to the hydro-
logical year from 1 October to 30 September of the following
year. For the homogenisation of raw field measurements, an
approach proposed by Huss and Bauder (2009) was used to
account for and correct for the differences between measure-
ment dates for winter and/or annual MB and the hydrologi-
cal year. A daily accumulation and positive degree-day melt
model (Hock, 1999) is fitted annually to the seasonal data of
each selected point measurement site (see also Huss et al.,
2021). This results in a daily dataset of modelled MB that
agrees with seasonal in situ observations and allows PMB to
be extracted for the hydrological year.

The Cryosphere, 19, 805-826, 2025
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Figure 2. (a) Annual point surface mass balance (PMB) measurements by the Glacier Monitoring in Switzerland (GLAMOS) network at
28 sites on 13 glaciers from 1961 to 2023. PMB measurements range from —12.3 to +4.49 mw.e.; the sites are selected to have at least

20 years of (possibly non-consecutive) measurements and are ordered from low (bottom row) to high (top row) elevation. (b) Elevation of
sites, ranging from sites Aletsch-P1 at 2089 ma.s.1 to Aletsch-P5 at 3526 ma.s.1.

For this study, we selected sites with a minimum of 20
years of non-consecutive measurements since 1961 (start of
the gridded meteorological MeteoSwiss dataset), resulting in
1145 PMB measurements in total (Fig. 2a). Five sites have
complete time series of PMB measurements from 1961 to
2023 (Clariden-P1 and P2, Allalin-P1, Gries-P1 and P2),
while the others either have shorter series spanning 20-30
years or contain gaps. Given that miniML-MB is trained on
individual sites, we train the ML model on datasets compris-
ing a maximum of 60 (62) points from 1961 to 2021 (2023),

depending on whether extreme MB years are included.

3 Machine-learning model

This study presents miniML-MB, a minimal ML model that
aims to predict annual PMB for a specific location i on
a glacier using information from meteorological variables.
miniML-MB is trained separately for each site and builds a
regression model that estimates the function f;, fulfilling

y=fi(X), ey

where y is the annual observed PMB covering N hydrologi-

cal years, and X is a predictor array made from temperature
and precipitation variables.

The Cryosphere, 19, 805-826, 2025

3.1 Experiments with the model’s input

miniML-MB faces the challenge of being trained on very
small datasets which reflect realistic conditions in glaciol-
ogy, with stake measurements in other parts of the world
typically containing even less data than Switzerland’s long-
term glacier record. Working with glacier PMB series for
single sites requires an ML setup tailored to handle such
small datasets. This data-limited scenario poses a difficulty
for ML models as their ability to discern patterns is typi-
cally correlated with the dataset size (Bottou and Bousquet,
2011). Additionally, ML models have to address the curse
of dimensionality (Peng et al., 2024). This refers to the phe-
nomenon where, as a model’s number of features (dimen-
sions) increases, the amount of data required to construct
reliable models grows exponentially. Mitigating this issue
typically involves reducing the dimensionality of the input
feature space, which, in our case, means that miniML-MB
should aim to capture most of the observed PMB variability
using as few predictor variables as possible. In our analy-
sis, we study the effect of relying on a varying number of
predictors and explore which options optimally represent the
meteorological information necessary to predict PMB.

To reduce the predictor space of miniML-MB, we rely on
temporal aggregations of monthly climatic data. Here, the in-
put features X of miniML-MB for a site are given as an ar-
ray of dimension N x n (Fig. 3b), where N is the number

https://doi.org/10.5194/tc-19-805-2025
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Figure 3. Conceptual overview of the training of miniML-MB, the point surface mass balance (PMB) machine-learning (ML) model. For
each PMB measurement site i, miniML-MB is trained to simulate PMB from meteorological variables. (a) Pre-processing of monthly air
temperature (7', in °C) and total precipitation (P, in mw.e.) from MeteoSwiss. (b) Meteorological variables are formed into X, an array of
N rows (number of annual PMB measurements at the site) and n columns (number of predictors). This example shows X during half-yearly
aggregation with four predictors (n = 4, summer and winter half-years). (¢) X is given as input to miniML-MB, which predicts PMB y

covering N years.

of annual PMB observations, and » is the number of predic-
tors made from aggregates of temperature and precipitation
(ranging between 2 and 24). These aggregates are computed
from monthly MeteoSwiss measurements using the mean for
temperature and the sum for precipitation. We explore four
levels of temporal aggregation (Fig. 3a):

1. Annual. The predictors are the mean annual temperature
and total annual precipitation over the hydrological year
(2 predictors, n = 2).

2. Half-yearly. The predictors are the winter (October—
March) and summer half-years (April-September) (n =
4).

3. Seasonal. The predictors are the four glaciological sea-
sons, namely April-June, July—September, October—
December, and January—March (n = 8).

4. Optimal seasonal. This is made up of two predictors
(n = 2), one for temperature and one for precipitation,
aggregated over consecutive months (max. 6), for ex-
ample, mean temperature from October to January and
total precipitation from February to April. The idea of
this setup is to use a flexible construction of seasons,
where the information of months driving PMB might
reside in intervals that overlap with seasons and/or are
smaller than half-years. We limited the maximum num-
ber of consecutive months to 6 because extending be-
yond this threshold risks diluting the relevant informa-
tion needed to predict PMB accurately.

5. Monthly temperature and precipitation (n = 24). This
setup has the largest number of predictors.

3.2 Architecture

The ML architecture used in miniML-MB is eXtreme Gra-
dient Boosting (XGBoost) (Chen and Guestrin, 2016). This

https://doi.org/10.5194/tc-19-805-2025

open-source supervised-learning model consists of an en-
semble of decision trees relying on two principal concepts:
(i) a regularised learning objective, which reduces overfit-
ting by penalising complex models, and (ii) gradient boost-
ing. Gradient boosting iteratively improves the model’s per-
formance by additively building trees during training to re-
construct the difference between observed and predicted data
(Friedman, 2001).

Our setup is one of sparse data consisting of heterogeneous
features with generally small sample sizes (maximum of 60
years of measurements per site), structured in a tabular for-
mat (Fig. 3b). For tabular data, tree-based models like XG-
Boost are among the best-performing approaches, particu-
larly for small- to medium-sized datasets, as demonstrated
in benchmarking studies (e.g. Grinsztajn et al., 2022; Xu
et al., 2021). Furthermore, since we aim to reconstruct PMB
through a simple and interpretable approach, XGBoost is an
ideal candidate as it is typically faster to train, needs less fea-
ture engineering, and is more interpretable than neural net-
works (Grinsztajn et al., 2022).

3.3 Training and testing

Determining the predictive performance of miniML-MB re-
quires an evaluation of the model’s predictions made on an
independent test dataset. For ML models, this is usually done
by splitting a dataset into training and testing sets. Given the
small dataset size per site, allocating more data points for
the test set risks reducing miniML-MB’s predictive power
by shrinking the training set, even though performance es-
timation improves. As a trade-off, we adopt a cross-testing
framework, sometimes referred to as nested cross-validation,
by using the entire dataset for both independent testing and
hyperparameter tuning. During this framework, in indepen-
dent testing, the dataset is shuffled and split into five folds
(subsets) (Fig. 4a). Each fold is used once as an independent
“test set”, unseen by miniML-MB during training, while the

The Cryosphere, 19, 805-826, 2025
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model is trained (or “fitted”’) on a “training set”, which is the
remaining aggregate of folds (hyperparameter tuning; see be-
low). This process is repeated five times until miniML-MB
has made predictions for each test set, and these are aggre-
gated to recreate a time series covering each year for which
PMB measurements were taken (Fig. 4b). The performance
of miniML-MB is evaluated by comparing its predicted PMB
time series to the observed PMB in terms of precision us-
ing the mean absolute error (MAE), root mean square error
(RMSE), and temporal synchronicity using Pearson’s corre-
lation.

The training process is controlled by different hyperpa-
rameters, i.e. external configuration variables manually set
before training a model. To find the ensemble that gives the
best model, we perform a randomised grid search based on
the following hyperparameters: learning rate € [0.01,0.2],
the number of estimators € [50,300], and the maximum
depth € [3, 10]. During the randomised grid search, a fixed
number of hyperparameter sets is sampled from the speci-
fied ranges, and each set is evaluated using cross-validation
in the independent testing component: the training set from
above (not the original or entire dataset) is randomly sepa-
rated into five folds. Five times, miniML-MB is trained on
four folds and validated based on the remaining fold (the
“validation set”), giving a validation loss. The optimal hy-
perparameters give the smallest average validation loss over
all folds. miniML-MB is then fitted to the training set us-
ing the optimal set of hyperparameters, and predictions are
made on the independent test set (see previous paragraph).
With cross-testing, the hyperparameter search is less likely
to overfit the dataset because it is only exposed to a subset
of the data from the independent testing component of the
cross-testing framework.

During miniML-MB’s fitting to the training set, the model
is configured to minimise its MAE loss function. We chose
the MAE because of strong intra-site variability in PMB, es-
pecially at sites with long measurement series and because
the MAE is more robust to outliers. Initially, we used the
MSE as the loss function, but switching to MAE resulted in
a slight performance improvement, though the change was
not drastic.

Fitting miniML-MB to the training dataset using a GPU
(NVIDIA GeForce RTX 2070) takes approximately 5 min for
all 28 sites or 10 s per site on average; predictions are virtu-
ally instantaneous.

4 Positive degree-day model baseline

Our PMB predictions with miniML-MB are compared with
those from a positive degree-day PMB model (PDD model
in the following). For the latter, we rely on a simplified ver-
sion of the SMB module from the Global Glacier Evolution
Model (GloGEM, Huss and Hock, 2015) that calculates the
mass balance for a given elevation band based on a PDD

The Cryosphere, 19, 805-826, 2025

implementation for melt and a simple temperature threshold
for accumulation. The equations and parameters below are
sourced from Huss and Hock (2015).

4.1 Implementation of the PDD model

For each PMB measurement site i, the steps below are re-
peated for every month m of a hydrological year.

1. Air temperature at the site 7; ,, (°C) is extrapolated from
the temperature of the MeteoSwiss reanalysis grid cell
that covers the site Teep m:

Ti,m = Tcell,m + (zi — Zeen) - dT/dZ, 2)

where z; and zceq1 are the elevation (m) of the site and the
mean elevation of the reanalysis grid cell, respectively,
and d7'/dz is a temperature gradient between —0.65 and
—0.5°C per 100m. This gradient depends on the site
and month and is calculated from ERAS5-Land air tem-
peratures at different pressure levels (not available for
MeteoSwiss).

2. Monthly PDD temperature at the site Tltn is calculated
from daily MeteoSwiss air temperature as follows:

T =Y "T%, 3)

deD

where D is the number of days in the month, and TlJ;l is
the mean daily temperature, extrapolated to the site’s el-
evation, for days d where the temperature was positive.
Tl";l = 0 for days with a mean temperature below 0.

3. Ablation at the site a; ,, (mw.e.) is calculated from TIJ:n

a; m = DDF- T,.fm, 4)
where DDF is the degree-day factor (md~!°C~!) to
be calibrated (see Sect. 4.2). DDF is dependent on the
current surface type (see step 6), with lower values for
snow-covered surfaces (DDFgpow) and higher values for
ice-covered surfaces (DDF;j¢.). The relation between the
two DDFs is fixed (DDFjce = 2 - DDFgpow) and is based
on the literature (e.g. Hock, 2003).

4. Precipitation at the site P;, (mw.e.) is extrapolated
from the MeteoSwiss reanalysis grid cell that covers the
site Peell,m:

Pi,m = Fcell,m * Cprec * (1 + (zi — Zeell) dP/dZ): (5)
where cprec is a precipitation correction factor to be cali-

brated (see Sect. 4.2), and d P /dz is a precipitation lapse

rate setto 1 m w.e. m™—L.
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(a) Cross-testing for one site:
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(b) Assemble predictions of PMB for each fold:
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Figure 4. Testing framework of miniML-MB illustrated at site P2 on the Plattalva glacier. (a) At each point surface mass balance (PMB)
measurement site i, miniML-MB makes PMB predictions, which are then evaluated using a cross-testing framework. Input climate predictors
and observed PMB measurements are divided into five subsets. Five times, miniML-MB is trained on four of these subsets and makes
predictions on the remaining (unseen) test subset. (b) The predictions made on these five test subsets (one coloured dot per subset) are
aggregated to reconstruct a PMB time series for the site, covering all years with observed data. The accuracy of these predictions is assessed

against the observed PMB (grey line).

5. Accumulation at the site ¢; ,, (mw.e.) is computed from
monthly precipitation by applying a temperature thresh-
old of Tipresh = 1.5 °C and a gradual transition between
the solid and the liquid phase in the range of Tipresh
1°C.

Pim,

Pim - 1/2 - (Tiresh + 1 = Tim),

if Ti,m =< Tlhresh -1
if Tihresh — 1 < Ti,m < Tihresh + 1
if sz > Tthresh + 1

Ciom =

A

6. With regard to surface type and snow depth, the surface
is considered to be snow-covered as long as the snow
depth s; ,, (m) is above 0 m. Otherwise, the surface type
is bare ice. The snow depth is set to zero at the beginning
of each hydrological year and is updated each month us-
ing the difference between computed accumulation and
ablation:

Siym =max (0, Sim—1+4 Cim — dim) - (6)

7. With regard to the PMB update, monthly PMB at a stake
location b; ,, (mw.e.), set to zero at the beginning of
each hydrological year, is calculated as the difference
between accumulation and ablation:

bim =bim—1+cim )

—aim-
4.2 Calibration and evaluation of the PDD model

The PDD model needs a calibration of the parameters cprec
and DDFgpoy for each site and hydrological year. First, cprec
is calibrated against observed winter PMB using a predefined
value for DDFg;w. Then, DDFgy, is calibrated against the
observed annual PMB while using the value for cprec deter-
mined in the first step.

https://doi.org/10.5194/tc-19-805-2025

More precisely, for each year, the PDD model will first
predict cumulative PMB from October to April with all
Cprec € [0.8,4] and a fixed DDFgpqy of 3 mmw.e.d—1°C~!
(chosen based on the literature; Huss and Hock, 2015; Braith-
waite, 2008) until the model matches the observed winter
PMB. If there is no match, the parameter giving the clos-
est value to the observed winter PMB is chosen. In a sec-
ond step, the model predicts cumulative PMB from October
to September using the optimal cprec found in the first step
and varying DDFgpoy between 1 and 10 mm d=!eC—! until
a match with the annual observed PMB is achieved. In this
case, too, the parameter that gives the annual PMB closest to
the target is selected if no match is found.

This procedure is repeated for every year in the calibration
period, creating a yearly parameter set. These parameters are
then averaged when making predictions on the test dataset.
The PDD model is cross-tested like miniML-MB, meaning
that the calibration procedure is repeated five times for each
site (five independent test folds) to make predictions for the
whole dataset. The PDD model is evaluated following the
same metrics as miniML-MB (see Sect. 3.3).

5 Results
5.1 Variable selection for optimal-seasonal framework

A comprehensive analysis is conducted to find the best
combination of months for both temperature and precipi-
tation to run miniML-MB in the optimal-seasonal frame-
work (see Sect. 3.1). To this end, miniML-MB is run with
all possible combinations of up to 6 consecutive months
for temperature (7 [month; to month;]) and precipitation
(P[month,, to month,]), resulting in a total of 3249 combi-
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nations. An analysis of the distribution of average validation
MAE over all sites for each combination shows a left-skewed
pattern, with values ranging from 0.575 to 0.974mw.e.
(Fig. 5a). Here, we analyse the validation MAE calculated
in cross-testing — not the test MAE — to avoid overfitting and
because hyperparameters should not be selected based on the
independent test set. The combination yielding the lowest
MAE is T[April-August] and P[October—February], with
several other combinations having a relatively small valida-
tion MAE too. Following Zekollari and Huybrechts (2018),
we select the 1% (33) and 50 best combinations with the
lowest average MAE over all sites (purple and yellow panels
in Fig. 5a). Within this selection, we analyse the frequency
of occurrence of individual months (Fig. 5b—e), computed as
the number of times a month appears in the selection divided
by the number of combinations in the ensemble.

For temperature, the frequency of months in the 1 % and
50 best combinations are very similar (Fig. 5b, d). June ap-
pears in all combinations, while May, July, and August are
present in over half of the best combinations. April and
September are present in approximately one-third of the
combinations. The influence of temperature on PMB in other
months appears to be very small to negligible since these
months are rarely present in the combinations that yield low
MAE:s. Regarding precipitation, all months are represented
across the best combinations (Fig. 5c, e). However, the period
of October through January, which marks the onset of the
accumulation season, stands out, with frequencies surpass-
ing 0.5 (i.e. present in more than 50 % of all combinations).
February and March also exhibit high occurrence rates, while
precipitation during spring and summer seems to have less
impact on PMB.

Because of this result, for the optimal-seasonal frame-
work that relies on two predictors only, we select the aver-
age air temperature from May to August (T [May—August])
and the total precipitation from October to February
(P[October—February]).

5.2 Performance of miniML-MB with different
predictors

We trained miniML-MB with various temporal resolutions
of temperature and precipitation (see Sect. 3.1): (i) annual
(2 predictors), (ii) half-yearly (4 predictors), (iii) seasonal
(8 predictors), (iv) monthly (24 predictors), and (v) op-
timal seasonal (2 predictors, namely 7[May—August] and
P[October-February]). Here, we assess the impact of these
different predictors on miniML-MB’s ability to predict PMB
by comparing average test metrics across all sites (Fig. 6).
Increasing the number and temporal resolution of predic-
tors, e.g. going from annual to monthly predictors, does not
improve the model’s capability to predict PMB in terms of
both MAE and Pearson correlation. This contrasts with typi-
cal ML approaches, where a larger number of candidate fea-
tures is generally preferred, as the model automatically se-
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lects those with high explanatory power while disregarding
those with little impact. In our case, miniML-MB does not
seem to benefit from expanding the number of predictors.
We suspect that this outcome is linked to the relatively small
training dataset, which favours a low-complexity model with
few but relevant predictors capturing most of the observed
PMB variability. This is reflected in the fact that the optimal-
seasonal aggregate outperforms other temporal aggregations
for most sites, with a median MAE of 0.4 mw.e. and a me-
dian correlation of 0.8, while other aggregations have me-
dian MAEs of around 0.6-0.8 m w.e. and median correlations
below 0.6 (Fig. 6). Notably, the range of correlation values
across sites is narrower for the optimal-seasonal aggregate
than the other aggregations.

These results illustrate the need for dimensionality reduc-
tion when dealing with small PMB datasets. The best results
are achieved using two predictors based on temperature and
precipitation after reducing the predictor space to include
only the most relevant months. Interestingly, these predictors
mimic the input data of a PDD model, which is generally
suitable to operate under these types of conditions.

5.3 Benchmarking miniML-MB against a PDD model

In this section, we compare miniML-MB in the optimal-
seasonal framework with the PDD model presented in
Sect. 4.

The PMB predicted for 1961-2021 by miniML-MB
is generally closer to observations than the PDD model
(Fig. 7a), with notable differences in average MAE
(0.417mw.e. for miniML-MB versus 0.541 mw.e. for the
PDD model) and RMSE (0.604 m w.e. versus 0.687 mw.e.).
The models’ performances are almost identical in terms of
correlation, with average Pearson’s correlations of 0.72 and
0.73.

More precisely, the PMB predicted by miniML-MB is
closer to the observed PMB than the PDD model for 22
out of 28 sites (Fig. 7b, d). These differences are relatively
marked, with six sites having a difference in MAE larger
than 30 % of the SD of the observed PMB, nine sites hav-
ing differences above 20 %, and 17 sites having differences
above 10 %. This is illustrated with five examples of time se-
ries with various temporal patterns: Plattalva-P2, Silvretta-
P2, Clariden-P2, Aletsch-P4, and Hohlaub-P1 (Fig. 8a—e).
For each of these five sites, except for a few single years,
miniML-MB comes very close to reproducing the temporal
patterns of the observed PMB series in terms of both accu-
racy (MAE around 0.2-0.3 mw.e., except for Hohlaub-P1,
with 0.5 mw.e.) and temporal synchronicity (Pearson’s cor-
relation from 0.8 to 0.9). For these sites, miniML-MB also
strongly outperforms the PDD model in terms of MAE (dif-
ference in MAE of 20 % to 30 % w.r.t. the SD of the observed
PMB).

Regarding temporal synchronicity, the Pearson’s corre-
lation varies depending on the site, but, on average, both
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Figure 5. Feature importance of miniML-MB. (a) Histogram of validation MAE by miniML-MB averaged over all 28 sites and calculated
for all possible combinations of contiguous (max. 6) months. The purple and yellow areas indicate, respectively, the 1 % (33) and 50 best
combinations, i.e. the lowest average validation MAE over all sites. The dashed grey line shows the average MAE over all sites (0.7 mw.e.)
obtained if miniML-MB predicted, for each year, the average PMB measured at each site. Frequency of temperature and precipitation in the
(b—c) 1 % best and (d—e) 50 best combinations. The frequency is calculated as the number of times a month is present divided by the number

of combinations in the best ensemble.
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Figure 6. Performance of miniML-MB assessed with different
temporal resolutions of predictors. The predictors consist of var-
ious temporal aggregates of temperature 7 and precipitation P:
(from left to right) annual, half-yearly, seasonal, optimal sea-
sonal (T[May—August] and P[October—February]), and monthly
(see Sect. 2.1). (a) Mean absolute error (MAE) and (b) Pearson’s
correlation coefficient p are calculated between predicted and ob-
served point surface mass balance with cross-testing (see Sect. 3.3).
The boxplots represent the distribution of these evaluation metrics
across all sites. The boxes show the quartiles, while the whiskers ex-
tend to the rest of the distribution (black line for median and white
triangle for mean), excluding outliers (crosses).
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miniML-MB and the PDD model exhibit similar perfor-
mances (Fig. 7c, e). Roughly half of the sites have a higher
correlation with observed PMB for miniML-MB compared
to the PDD model and vice versa. This is also reflected in
the sites’ year-to-year variabilities (Fig. A1l in the Appendix):
miniML-MB’s predictions have a smaller SD than the one of
observed PMB, while the PDD model tends to overestimate
variability.

One site stands out due to its low Pearson’s correlation
and high MAE: the low-altitude site Aletsch-P1, with ex-
tremely negative annual PMB (Fig. 8f and dots in the lower
quadrant of Fig. 7a). For this site, both miniML-MB and the
PDD model struggle to accurately fit the observed PMB, with
MAE:s of 0.71 and 1.05mw.e., respectively. miniML-MB
predicts almost constant PMB values around —10 m w.e. for
all years. The combination of very negative PMB and a short
time series (20 years) might mean insufficient data for the
models to learn the site’s characteristics. Since the months of
the optimal-seasonal framework are chosen based on results
averaged over all stakes, it is also possible that they may not
capture the most relevant PMB drivers for this particular out-
lier site. To accurately model Aletsch-P1, more data, differ-
ent feature engineering, or additional meteorological features
(like albedo, for example) may be required.

5.4 Prediction of extreme years

So far, the extreme years of 2022 and 2023 were excluded
from the analyses. During these years, Swiss glaciers lost
10 % of their total volume (6 % in 2022 and 4 % in 2023)
(GLAMOS, 2023b) due to low-accumulation winters and ex-
ceptionally high spring and summer temperatures (SCNAT,
2023; Cremona et al., 2023). In 2022 (2023), 18 (10) out of
the 20 sites had a PMB that was lower than in any other year
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Figure 7. Performance of miniML-MB (blue dots) and PDD model (pink square) compared to observed point surface mass balance (PMB)
time series. miniML-MB is trained within the optimal-seasonal framework using two predictors from temperature 7 [May—August] and
precipitation P[October—February]. (a) Observed versus predicted PMB by both models for all 28 glacier sites. Average evaluation metrics
over all sites are calculated between predicted and observed PMB time series (see Sect. 3.3): mean absolute error (MAE), root-mean-square
error (RMSE), and Pearson’s correlation p. (b, ¢) Evaluation metrics for both models for each site. Every site in (b) also contains the standard
deviation (SD) of the observed PMB time series (horizontal grey lines). (d, e) The difference in evaluation metrics between both models for
each site. For (d), the difference in MAE is expressed in terms of percentage with respect to the SD of the observed PMB.

before 2021. These sites with extreme mass loss are high-
lighted in purple in Fig. 9.

Here, we evaluate miniML-MB’s ability to predict the
PMB of extreme years. First, we assess if miniML-MB,
trained with data up to 2021, could predict the PMB for 2022
and 2023 (Figs. 9a and A2). Then, we trained the model
with data up to 2022 to predict the PMB for 2023, assess-
ing the impact of including one extreme year in the train-
ing dataset (Fig. 9b). Both miniML-MB and the PDD model
were trained and tested with data from 2022 and/or 2023
without cross-testing.

miniML-MB is not able to correctly predict 2022’s PMB.
PDD model’s predictions are closer to the observed PMB for
all sites (Fig. 9a), with a difference in MAE above 50 % with
respect to the SD of the observed PMB, except for Aletsch-
P1, where 2022 was not an extreme event. In contrast, for
2023, miniML-MB trained with data until 2021 predicts a
PMB closer to observed values than the PDD for 11 of the
20 sites (Fig. 9b), with differences above 50 % with respect to
the SD of the observed PMB. For these 11 sites, only Gries-
P1 and Gries-P2 had an extreme 2023 year. Including 2022
in the training dataset improves miniML-MB’s 2023 predic-
tions for all sites where 2023 was an extreme year (Fig. 9b).

These and previous results show that miniML-MB seems
to have good generalisation abilities, meaning that the model
can adapt to unseen data drawn from a similar distribution
as the training data (Figs. 7 and 9b for non-extreme years).
However, for both extreme years, miniML-MB’s predictions
saturate by converging to an almost constant value, within
the range of observed PMB, that follows the site’s trend of
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the last decade (Fig. A2). Since tree-based models split value
ranges into different segments, when an extreme value is en-
countered, it falls into the outermost leaf of the tree, there-
fore saturating the response. Thus, while tree-based models
excel at interpolation, they cannot produce values beyond
those seen in the training dataset. Because 2023 was not a
strong outlier for Gries-P1 and Gries-P2, this also explains
why miniML-MB can forecast PMB values relatively accu-
rately for these sites. Providing one extreme year in its train-
ing dataset already improves miniML-MB’s performance in
generalising to extreme years, highlighting its potential abil-
ity to learn rapidly. Our findings underscore the necessity for
ML models to encounter temporal analogues in their train-
ing data in a climate that will exhibit increasingly extreme
events. Once this is the case, miniML-MB shows promis-
ing abilities in making accurate PMB predictions for extreme
years.

5.5 Gap filling with miniML-MB

We have shown that miniML-MB is capable of reconstruct-
ing PMB and of generating accurate predictions as long as
predictions are made within a range of meteorological con-
ditions seen in the training set. Here, we used miniML-MB
to predict PMB for 17 sites with measurement gaps and to
extend the tail or head of time series for years that have
T[May—August] and P[October—February] within the site’s
observed range (Fig. 10). For example, Pers-P1 was extended
from 1990 to 2001 because these years’ temperature and pre-
cipitation predictors were within the range of MeteoSwiss
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Figure 8. Examples of point surface mass balance (PMB) predictions made by miniML-MB (blue dots) and PDD model (pink square) for six
sites: (a) Plattalva-P2, (b) Silvretta-P2, (¢) Clariden-P2, (d) Aletsch-P4, (e) Hohlaub-P1, and (f) Aletsch-P1. Each panel shows a scatterplot
of (left) modelled vs. predicted PMB and (right) a time series compared to observed PMB (grey lines). Evaluation metrics of mean absolute
error (MAE), Pearson’s correlation p, and standard deviation (SD) are calculated between predicted and observed PMB time series.

values from 2002 to 2023. The values predicted for the filled
gaps seem to follow the temporal trend of PMB for each site.
As such, miniML-MB is a promising tool for filling gaps in
PMB records. We do not recommend using the model to ex-
trapolate outside the site’s observed predictor values (e.g.
filling Limmern-P2 from 1992 to the present) due to sig-
nificantly different meteorological conditions compared to
miniML-MB’s training set.
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5.6 Drivers of point surface mass balance

Through our custom dimensionality reduction framework,
May to August (summer) temperatures and October to Febru-
ary (winter) precipitation are singled out as the main drivers
for PMB (Fig. 5). The ability to identify key climatic drivers
of PMB is an interesting feature of this ML approach. While
predictors in a PDD model are grounded in established phys-
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Figure 9. Predictions of 2022 and 2023 extreme years by miniML-
MB compared to the PDD model for 20 sites. In (a), the models are
trained with time series that end in 2021 and are tested on 2022.
In (b), the models are trained with time series that end in 2021
(no hash) or 2022 (diagonal hash) and are tested on 2023. Sites for
which 2022 or 2023 were extreme, i.e. where observed PMB values
had not been observed before 2021, are coloured in purple.

ical principles, statistical models like ML adopt an inverted
approach. Instead of pre-selecting predictors and then sim-
ulating PMB, ML models work by directly identifying the
most effective predictors from the available observations and
data. Our results illustrate that this approach enhances perfor-
mance by identifying the predictors that most effectively ex-
plain PMB observations in Switzerland. Consequently, these
findings not only demonstrate the utility of this ML method
but also help validate the climatic drivers of glacier MB com-
monly identified by glaciological studies (e.g. Braithwaite
and Olesen, 1990; Chen and Funk, 1990; Greuell, 1992;
Ohmura, 2001; Torinesi et al., 2002; Pellicciotti et al., 2005).
The majority of studies investigating the relationship be-
tween temperature, precipitation, and SMB variations have
consistently identified summer temperatures as the critical
component. For instance, Oerlemans and Reichert (2000)
quantified the climate sensitivity of a sample of glaciers
worldwide and determined that summer temperature is the
primary factor driving glacier-wide mass balance. In Switzer-
land, Zekollari and Huybrechts (2018) performed a regres-
sion study for PMB on the Morteratsch glacier complex (not
included in our dataset) and found that the mean temperature
from May to July and the total precipitation from October to
February account for up to 85 % of the observed PMB vari-
ance.
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Analysing the weights attributed to individual predictors
in the optimal-seasonal framework for each site allows for
a site-specific investigation of the monthly meteorological
drivers of PMB. To this effect, we use a k-means++ cluster-
ing algorithm (Arthur and Vassilvitskii, 2007) to group sites
according to the local importance of temperature and precip-
itation. Local feature importance is calculated for each site
by taking the 50 combinations with the smallest MAE when
running miniML-MB with all possible combinations of up to
6 months of temperature and precipitation (see Sect. 5.1).

The k-means++ clustering algorithm partitions the sites
into three clusters. This number is chosen using the elbow
method, i.e. by plotting the within-cluster sum of squares for
various numbers of clusters and identifying the point of in-
flection of the resulting graph (Fig. A3). k-means++ sepa-
rates the majority of sites (18) into one cluster (C1; Fig. 11a,
d) and the remaining sites into two smaller clusters, each
with five sites: C2 (Limmern-P1, Limmern-P2, Limmern-P3,
Plattalva-P1, Plattalva-P2; Fig. 11b, e) and C3 (Aletsch-P4,
Gietro-P1, Gietro-P2, Gietro-P3, Pers-P1; Fig. 11c, f). Com-
pared to C1, which seems to be an ensemble of sites with
diverse properties, C2 and C3 contain more specific features.
C2 generally contains lower-elevation sites that are typically
located close to the equilibrium line altitude, with mean PMB
values around Omw.e. (Fig. 11i). These sites also have a
shorter series of PMB observations, stopping in the 1980s
(Fig. 11k, 1). In contrast, C3 contains some higher-elevation
sites, with PMB time series that span over longer periods
and/or have more recent observations.

The frequency of “driving” temperature months has ap-
proximately the same pattern across all clusters (Fig. 11a—c).
June and/or July emerge as the most important months, ac-
companied by a high frequency of occurrence for May and
August. C1 seems to be dominated by the importance of tem-
perature, with precipitation months having approximately the
same weights (Fig. 11d). We suspect that this cluster re-
groups sites for which k-means++ found no distinguishing
pattern in the importance of precipitation months. Therefore,
we focus our analysis on C2 and C3. In C2, winter and spring
temperatures also have some weight, which is not the case
for C3 (Fig. 11b, c). There is also a strong contrast in the fre-
quency of precipitation months (Fig. 11e, f). For C2, early-
winter precipitation (October—January) determines the PMB,
with frequencies > 0.6. For C3, late-winter and spring pre-
cipitation (February—June) have a higher weight.

In our site-specific analysis, early-winter precipitation
emerges as a significant influence for sites with PMB data
spanning from the 1960s to the 1980s and for data with PMB
values close to zero. We suspect that accumulation had an
important effect on annual PMB for these older and shorter
records, explaining why winter precipitation stands out in
cluster C2. On the other hand, summer temperatures are the
predominant driver for PMB sites with longer and more re-
cent data (C3). This might be due to steadily increasing sum-
mer temperatures, which outweigh the influence of precipi-
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tation and have lead to increasing glacier mass loss since the
1980s.

6 Discussion
6.1 Source of meteorological data

We opted to utilise MeteoSwiss’ reanalysis data instead of
weather station data for several reasons. First, using a grid-
ded product avoids the difficulty of selecting the most rep-
resentative station for each site, thereby removing potential
ambiguity. Second, gridded products reproduce the atmo-
spheric conditions at any location, removing the need for spa-
tial interpolation. Lastly, when considering potential appli-
cations to other regions, accessing gridded products is gen-
erally easier than obtaining representative station data. This
flexibility also allows us to compare the effects of using a
high-resolution dataset (such as MeteoSwiss) versus coarse-
resolution climate reanalysis data (e.g. ERAS5-Land; see be-
low), providing insights into the generalisation to other re-
gions. The gridded data by MeteoSwiss are available from
1961, meaning that some older PMB data cannot be included
in the analysis. The effect is minor, though: 1476 PMB mea-
surements are available from 1914 versus 1145 PMB mea-
surements available from 1961.

The MeteoSwiss reanalysis data come in a high resolu-
tion (2km), a level of detail not available in most other re-
gions where miniML-MB could be applied. To assess the im-
pact of utilising our detailed meteorological dataset, we repli-
cated our analysis with ERA5-Land data (9 km resolution)
for both miniML-MB with the optimal-seasonal framework
and the PDD model (Fig. A4). While the overall performance
is slightly superior with MeteoSwiss data, miniML-MB can
still accurately predict PMB for most sites. Specifically, with
ERAS5-Land, miniML-MB outperforms the PDD model for
20 out of 28 sites (compared to 23 with MeteoSwiss), and
15 sites have a difference in MAE above 20 % with respect
to the SD of observed PMB. This performance implies that
miniML-MB could be readily employed with gridded prod-
ucts such as ERAS or ERAS5-Land for any other site globally.

6.2 Choice of meteorological variables and
post-processing

We chose air temperature and total precipitation to drive
miniML-MB for two main reasons: they are easily acces-
sible and are typically used to describe PMB in numerical
models. Glacier ablation is primarily influenced by longwave
radiation and sensible heat flux, both of which are closely
tied to air temperature variations (Hock, 2003). On the other
hand, glacier accumulation generally happens in the form
of solid precipitation (Huss and Bauder, 2009; Huss and
Hock, 2015). More precisely, numerous studies have identi-
fied summer temperature and winter precipitation as the most
important predictors of PMB (see Sect. 5.6). Furthermore,
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since miniML-MB can only utilise limited but concentrated
information (see the optimal-seasonal framework designed
for dimensionality reduction), we do not expect model im-
provement when adding additional meteorological variables
such as shortwave or longwave radiation.

Initially, one might expect improved model performance
when using predictors that are more deeply rooted in phys-
ical knowledge or that are less simple. To address this, we
conducted additional evaluations of the model by incorpo-
rating more refined representations of temperature and pre-
cipitation. First, we used the sum of daily average tempera-
tures above 0 °C in a month (PDD sums) instead of monthly
average temperature, given how PDD sums are often more
indicative of snowmelt and ice melt (Hock, 2003; Woul
and Hock, 2005). However, the performance improvement
in miniML-MB with the PDD sums was minimal to non-
existent (Fig. AS5a). It seems that miniML-MB is capable
of effectively extracting relevant information related to melt
processes by directly identifying patterns from the monthly
input temperatures. Then, we used weighted mean air tem-
peratures and precipitation totals, using weights based on the
importance of months identified in Sect. 5.6: 0.58, 1.0, 0.56,
and 0.52 for May to August temperatures and 0.52, 0.46, 0.6,
0.58, and 0.42 for October to February precipitation. Again,
no performance improvement was observed (Fig. ASb). Our
results demonstrate that more complex aggregations of tem-
perature and precipitation offer limited to no added value in
our minimal ML framework and support the need for dimen-
sionality reduction instead. These findings suggest that the
model acts as an “information compressor”, efficiently ex-
tracting the necessary information directly from the temper-
ature and precipitation variables. This simplicity is, in fact,
a key advantage, making the method more flexible and less
reliant on extensive data.

6.3 Comparison with the PDD model

We have shown that, using just two predictors obtained
through dimensionality reduction techniques, miniML-MB
can closely match the PMB for individual glacier sites, sur-
passing the performance of the PDD model for most sites
(see Sect. 5.3). Here, we discuss the question of whether
comparing the two models is fair, given their essential dif-
ferences and reliance on different predictors.

A fundamental difference between miniML-MB and the
PDD model lies in their approach to modelling and under-
standing processes. ML methods are data-driven, relying on
observational data to identify patterns and relationships with-
out requiring physical principles or predefined rules (e.g.
melt or snow threshold temperatures). These ML models
are open-ended and flexible, adapting as more data become
available, without a fixed structure or assumptions about the
system. Importantly, they can still provide physically mean-
ingful results, as shown in this study. In contrast, PDD mod-
els are mechanistic models based on established physical
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within the optimal-seasonal framework.
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principles in glaciology. They have a fixed structure derived
from these principles, making them less adaptable to data
outside of their theoretical framework.

A natural consequence of their differing methodologies is
that the models use different predictors. However, we believe
that the validity of the comparison lies in ensuring that both
models are tested on an independent dataset and calibrated
under the same conditions (e.g. cross-testing). Under these
criteria, the comparison remains robust and meaningful.

6.4 Limitations of miniML-MB

While data-driven methods for modelling PMB, such as
miniML-MB, may complement traditional PDD models, the
minimal ML approach we introduced also has important lim-
itations.

While miniML-MB is generally able to accurately match
the observed PMB and outperform the PDD model in terms
of MAE for most sites, miniML-MB’s year-to-year vari-
ability is generally much smaller than the observed one
(Fig. Al). The reduced variability of miniML-MB could
come from its loss function (MAE), which is not designed
to account for temporal trends. The PDD model instead ex-
hibits higher year-to-year variabilities, sometimes exceeding
the observed one. As noted in other studies (e.g. Ismail et al.,
2023; Bolibar et al., 2023), this may be because of the use of
a fixed degree-day factor, which forces linearity. When val-
ues deviate from the main observations, non-linearities be-
come more significant, potentially leading to overestimation
or underestimation of the year-to-year variabilities. The un-
derestimation by miniML-MB and the overestimation by the
PDD model are respective drawbacks of the models.

ML models are highly specific, with their training datasets
strongly determining their applicability. This is evident when
using miniML-MB to predict extreme years (see Sect. 5.4).
Our model struggles to extrapolate to values outside the
range of the training data, such as those observed in 2022
and 2023. One reason for this is an inherent limitation of
tree-based models as they rely on decision boundaries de-
rived from the training data (Hengl et al., 2018). Another ex-
planation might be that the drivers of PMB extracted through
feature engineering might not be the same for a changing cli-
mate, meaning that the selection of optimal months might
need to be repeated. However, our analysis shows that in-
corporating even 1 extreme year into the training dataset
already enhances miniML-MB’s predictive performance for
most sites. While this finding is promising, training the ML
model on an ensemble of sites could be an alternative by
identifying extreme cases at other locations (i.e. capturing
spatio-temporal analogues). Nonetheless, applying miniML-
MB for future scenarios with extreme values will likely re-
main challenging.

https://doi.org/10.5194/tc-19-805-2025

While miniML-MB is designed for very small datasets
through feature engineering, the requirement of 20 years of
data per site is relatively long from a glacier monitoring per-
spective. Even though the framework does not require con-
tinuous PMB records, many glaciers worldwide lack such
extensive records. This is a challenge for both miniML-MB
and the PDD model, limiting the models’ applicability to
other sites. One advantage of miniML-MB is that it relies
only on annual PMB. This is in contrast to the PDD model,
which also needs seasonal PMB measurements, which are
not readily available in many parts of the world. Calibrating
both models with less data could be explored, but it would
likely result in a biased calibration, impacting predictions
(not tested here). ML could address this problem by using an
ensemble of sites to train the model, where spatial analogues
could be used. For example, grouping two or three nearby
sites to create a dataset of at least 20 points could transfer
some spatial properties while maintaining a relatively homo-
geneous dataset.

Due to the non-deterministic nature of XGBoost (and other
ML algorithms), reproducibility depends on using the exact
same settings (e.g. random seed provided as part of the code
and data). This randomness primarily influences how the data
are split into different folds during cross-testing. If this split
is “unlucky”, the distribution of the validation or test folds
might significantly differ from the training folds, resulting in
a model that cannot learn the correct PMB relationship for a
site.

7 Conclusions

This study developed miniML-MB, a novel data-driven ap-
proach to modelling PMB at stake locations. Based on the
XGBoost architecture, the miniML-MB model was trained
at individual PMB stake locations in the Swiss Alps, and its
performance was compared to that of a PDD model.
miniML-MB is a highly computationally efficient ML
model, making PMB predictions almost instantaneously. The
model is streamlined for ease of use, with just three hyper-
parameters to adjust in its XGBoost architecture. Our data-
driven approach is tailored to small observation datasets, a
realistic context in glaciology but a technical challenge in
ML. To ensure the best model performance, we implemented
dimensionality reduction techniques to minimise the number
of predictors. The best prediction performance of PMB was
achieved through feature engineering by reducing the num-
ber of predictors of miniML-MB to two variables: mean air
temperature from May to August and total precipitation from
October to February. With these two predictors, miniML-MB
can closely match the PMB for individual glacier sites, sur-
passing the PDD model for most sites as long as predictions
are made within a range of meteorological conditions similar
to the training set. While we have shown that a PDD model
performs better for outliers such as the extreme years of 2022
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and 2023, including just 1 extreme year in miniML-MB’s
training dataset already improves the model’s predictive ac-
curacy for most sites. While miniML-MB would ideally be
exposed to multiple extreme cases to make predictions of fu-
ture extreme years, this experiment highlights the model’s
potential for rapid learning.

Through our custom feature importance implementation,
we quantify the significance of individual climate features.
miniML-MB offered data-driven insights into the meteoro-
logical variables that drive local PMB, singling out mean
air temperatures from May to August and total precipitation
from October to February. More precisely, our site-specific
analysis suggests that early-winter precipitation controlled
PMB for sites with data from the 1960s to the 1980s and
with PMB values close to equilibrium. For sites with longer
and more recent data, summer air temperatures emerge as the
predominant drivers of PMB. These findings align with the
drivers of PMB identified in previous studies.

miniML-MB is tailored specifically to predict PMB and
captures the characteristics of individual sites, enabling a
site-by-site application. The model is a promising tool for
efficiently providing local-scale information about PMB and
its drivers and for filling gaps in the time series of measured
PMB. At present, it is, however, unsuited for applications
at the glacier-wide scale or for unseen sites. This would re-
quire training on an ensemble of sites to capture inter-site
variability and is the focus of an ongoing follow-up study.
While such a multi-site approach does not allow for site-
specific optimisation, it has the potential to capture general
trends across locations. Such an expansion to modelling an
ensemble of sites will also come with new challenges, par-
ticularly as learning from small amounts of data and transfer-
ring knowledge to new domains remain difficult in machine
learning (Dube et al., 2020).

In conclusion, this study introduces an innovative ap-
proach to PMB modelling while also underscoring potential
improvements and more general applications for data-driven
approaches in glaciology.
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Figure Al. Standard deviations of point surface mass balance
(PMB) predicted by miniML-MB (blue dots), trained within the
optimal-seasonal framework and with a positive degree-day (PDD)
baseline (pink square) compared to the standard deviation of ob-
served PMB (grey lines) for 28 sites on 13 glaciers without 2022
and 2023 extreme years.
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Figure A2. Predictions of extreme years (2022 and 2023) by miniML-MB (blue dots), trained within the optimal-seasonal framework,
compared to the positive degree-day (PDD) baseline (pink square) for 28 sites on 13 glaciers. Both miniML-MB and the PDD model are
trained with a time series that stops in 2021 and is tested based on 2022 and 2023. The mean absolute error (MAE) and root-mean-squared
error (RMSE) are calculated between, respectively, the predictions of miniML-MB or the PDD model and the observed PMB (grey lines)
over all test years.
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Figure A4. Comparison of the performance of miniML-MB, trained within the optimal-seasonal framework, when given MeteoSwiss (grey)
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Figure AS. Comparison of the performance of miniML-MB when given different nuances of predictors based on air temperature (7') and
total precipitation (P). (a) T and P (in grey) versus positive-degree-day temperatures (pdd) and P (in pink). (b) T and P (in grey) versus
weighted T (Tw) and weighted P (Pyw) (in pink). miniML-MB is trained within the optimal-seasonal framework using two predictors: mean
T or pdd from May to August and P from October to February. The weights in (b) are [0.58, 1.0, 0.56, and 0.52] for T and [0.46, 0.6, 0.58,
and 0.4] for P, i.e. the frequency of climate months in the 50 best combinations (Fig. 5). miniML-MB is compared to the positive-degree-day
(PDD) baseline for all sites. The bars are the difference in the mean absolute error (MAE), expressed in terms of percentage with respect to
the standard deviation (SD) of the observed PMB, between the miniML-MB and PDD models.

Code and data availability. The point surface mass bal-
ance data were obtained from the GLAMOS programme
(https://doi.org/10.18750/massbalance.point.2023.r2023,
GLAMOS, 2023a). ERAS5-Land gridded data (hourly and
monthly) were extracted from the Copernicus website:
https://doi.org/10.24381/cds.68d2bb30 (Mufioz Sabater, 2018).
Gridded MeteoSwiss products are available upon request from
the MeteoSwiss office under a general license. The miniML-MB
architecture was implemented in Python 3.8.16, and the machine-
learning training was done on a GPU (NVIDIA GeForce RTX
2070). The up-to-date working versions of these experiments and
the source code are licensed under MIT and are available on Zen-
odo (https://doi.org/10.5281/zenodo.12905503, van der Meer et al.,
2024). All scripts needed to obtain and process input data, as well as
to train and evaluate miniML-MB and the PDD model, are located
in the (src/) directory. Additional information about the code and
data is also available via email (vandermeer @vaw.baug.ethz.ch).
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