Performance Assessment of libswift

Thomas Schaap

]
TUDelft

Delft University of Technology

Performance Assessment of libswift

Master’s Thesis in Computer Science

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Thomas Schaap

14th August 2012

Author
Thomas Schaap

Title
Performance Assessment of libswift

MSc presentation
August 30, 2012

Graduation Committee
prof. dr. ir. D.H.J. Epema (chair) Delft University of Technology

dr. ir. J.A. Pouwelse Delft University of Technology
dr. S.O. Dulman Delft University of Technology

Abstract

A performance comparison has been done between libswift and other P2P clients
to assess whether libswift can be made the fastest P2P client currently available. A
modular testing framework targeted at testing and measuring P2P clients has been
developed and has been succesfully used to run several experiments with the clients
and to debug and improve libswift.

The results mainly compare libswift and libtorrent; pTorrent has been found un-
reliable under Linux and HTTPS was only used as a baseline measurement. libswift
has also been compared to itself with different block sizes. Compared to libtor-
rent libswift performs quite well, but still suffers from two deficiencies: degrading
download performance when many peers try and download the same swarm and
large memory usage when confronted with very large files. libswift usually uses far
fewer resources than libtorrent, though, while giving similar performance. Espe-
cially for use on mobile and other constrained devices or for joining large amounts
of swarms libswift seems to be a good choice already.

During the assessment several problems in libswift were identified and resolved.
In particular a hard limit on the number of files libswift could handle was removed.

Making libswift the fastest P2P client can certainly be done in the near future:
only two deficiencies remain and libswift already shows several strong points.

v

Preface

My Master of Science thesis, which you are holding, has not come about naturally.
I have been passionate about several topics for quite some time and wanted to com-
bine them: networking, security and programming. The Tribler project seemed like
an excellent choice for this: I wanted to introduce server-less authentication into
Tribler, allowing for controlled communities with only authenticated members. It
was a perfect combination of networking and security and would surely require
good programming. Only one thing was lacking: the current status of Tribler sim-
ply had no need or place for such features. Exploring the project had caught my
attention, though, and work was needed on the new libswift protocol: a grand idea
of simple file hosting backed by libswift was to be explored — and combined all
my interests. Only one thing was lacking: the current status of libswift might not be
able to cope with such ambitions. An assessment of the performance was needed
before such ambitions could proceed. That assessment became my Master of Sci-
ence thesis and I have happily observed it included most of my interests. Only one
thing is now lacking: the next master student to further libswift’s ambitions.

I would like to extend my thanks to several people that have helped me a lot during
the project. Firstly, I would like to thank my supervisor dr. ir. Johan Pouwelse
for his support, enthusiasm and many ideas during this project. My thanks also
go to ir. Riccardo Petrocco for testing the testing framework and our discussion
about that framework and libswift, and to dr. Arno Bakker for answering all my
questions about libswift and his comments on this thesis. I would also like to thank
Margot Wehrmeijer for her support during the project and for proofreading this
thesis. Finally, I would like to thank prof. dr. ir. Epema and dr. Dulman for their
participation in my graduation committee.

Thomas Schaap

Delft, The Netherlands
14th August 2012

Vi

Contents

Preface
1 Introduction
1.1 libswift
1.2 Organization . .
2 Problem Description

2.1

2.2

Research Question
2.1.1 Performance Evaluation
2.1.2 GoodPerformance
Evaluation Framework
2.2.1 Requirements for the Framework
2.2.2 Existing Frameworks oL

Evaluation Framework

3.1 Decisions
3.2 Current Framework

3.2.1 Repeatability and Variance
33 Framework Usage

Experimental Setup

4.1 Environment.
42 Protocols
421 HTTPS
422 libswift
423 BitTorrent
43 Clients 0 e e e e e e
43.1 HTTPS —lighttpd /aria2
432 opentracker L oo
433 libswift
434 pTorrent
435 libtorrent

vii

NN

AN e Nie NNe RV, Y |

11
11
13
15
17

Experiment Results

5.1 DownloadingaPFile
5.1.1 Blocksize o
5,12 Comparison
5.2 Downloading Popular Files
52.1 ResourceUsage.
5.2.2 Sustained Download Speed
53 FlashCrowds
5.3.1 DownloadTime.
532 ResourceUsage.
5.3.3 Sustained Upload Speed
54 Large-scale Sharing
54.1 SharingManyFiles
54.2 SharingLargeFiles
Conclusions and Future Work
6.1 Conclusions
6.2 FutureWork

Framework Features

A.1 ExtensionPoints,

A2 Features

A.3 Important Default Modules

Example Experiment

B.1 Configuration
B.1.1 CampaignFile
B.1.2 Generic ScenarioFile
B.1.3 libswift ScenarioFile
B.1.4 libtorrent Scenario File

B2 Output
B2.1 Rawlogs
B22 ParsedlLogs.
B.2.3 ProcessedData
B24 Views e

Framework Documentation

C.1 README o
C2 HOWTO. oo e

Incremental Improvements to the Evaluation Framework

viii

31
32
32
33
33
34
35
37
37
39
39
40
41
45

49
49
50

55
55
56
56

59
59
59
60
62
63
64
64
66
66
70

73
73
83

97

Chapter 1

Introduction

Over the years the internet has seen more and more traffic and a shift from simple
textual information to more multimedia use. YouTube currently already serves
over 3 billion hours of video every month and sees its archive growing with 72
hours of video every minute [38]. In a study towards trends on IP traffic Cisco
foresees significant continuing growth of overal traffic, a majority of which is and
will remain video. Peer-to-peer (P2P) traffic is foreseen to fall behind in favour of
video streaming, but will still grow from 4.6 TB per month in 2011 to 10 TB per
month in 2016 [8] [7].

Petabytes per Month 29% CAGR 2011-2016

90,000 u VolP

M Online Gaming
M File Sharing
M Web/Data

23%
45,000 M Internet Video
l I :
0 .

2011 2012 2013 2014 2015 2016

22%

Online gaming and VolP forecast to be 0.73% of all consumer Internet traffic in 2016.
Source: Cisco VNI Global Forecast, 2011-2016

Figure 1.1: Current (2011) and projected traffic according to Cisco’s VNI Global
Forecast, 2011-2016 [8]

P2P technologies are used more and more to deliver video and other content.
During the 2006 FIFA World Cup, for example, measurements were made on sev-
eral P2P TV clients by Silverston and Fourmaux [27]. A rough combination of

their numbers ! indicates that at least 1000 peers were watching the same soc-
cer game on SOPCast during their measurements. Major companies also use P2P
technology to speed up distribution of content. Game companies like Blizzard, for
example, use BitTorrent clients to distribute patches [5].

A drawback of current P2P applications is that they require standalone clients.
To make use of a P2P protocol a user needs to install extra software, such as a plu-
gin or often a complete application. All those P2P protocols also build on top of the
existing protocols, which have not been designed for multiparty communication,
for their data transfers.

1.1 libswift

libswift [28] is a new P2P protocol that tries to bridge the gap between the current
infrastructure and the P2P paradigm. Unlike UDP and TCP, which are often used
as the basis to run P2P protocols on top of, libswift is designed for multiparty
communication. It can also run both on top of the existing infrastructure, using
UDP or TCP packets, or replace part of that infrastructure entirely to make the
P2P paradigm a core component of tomorrow’s internet. This also means it does
not have the disadvantage of protocols like multicast, which was developed for
multiparty communication but could not run on top of the existing infrastructure
and has hence never been widely adopted.

Currently, libswift aims to become an internet standard through the IETF and
is also being poised as the P2P technology to use for delivering streaming video
[1]. Being an internet standard will hopefuly mean that operating systems will
provide support for the protocol, which means no extra software is needed to use
libswift. In this vision any software on a computer can transparently utilize the
strength of a P2P network to transfer data. A webbrowser, for example, currently
always streams a YouTube video directly from YouTube’s servers, but in the future
it could just use libswift to retrieve the content. YouTube’s servers might become
a permanent node in the larger network of libswift nodes or they might even no
longer be needed.

Positioning libswift as the network to use will require it to perform at least as
good as alternative networks. Users cannot be expected to adopt technology with
inferior performance just because it has some nice potential future uses, with the
possible exception of early adopters. If libswift is to gain traction it needs to com-
pell users to switch. It needs to be the fastest P2P technology currently available.

1.2 Organization

The rest of this report is organized as follows. Chapter 2 details the main re-
search topic of this report and examines its implications. Chapter 3 describes the

!The average lifetime of a peer and the observed churn were used, assuming roughly half of the
churn to be arriving peers

evaluation framework that has been developed and used in the project. Chapter 4
describes the environment for the experiments and introduces all the clients that
have been evaluated. Chapter 5 describes the actual experiments and their results.
Chapter 6 finishes with conclusions, trying to answer the question whether libswift
can be made the fastest P2P client, and some recommendations for future work.

Chapter 2

Problem Description

This chapter describes the main research goal of this report. The first section in-
troduces the research question and explores its implications. The second section
explores the requirements for a testing framework that is needed during the project
and discusses some previously existing frameworks.

2.1 Research Question

Can libswift be made the fastest P2P client currently available?

Answering this question requires not only giving proof that libswift is faster
than other clients, but also requires identifying where libswift performs subopti-
mally and improving that. Both of these requirements mean that some way of
performance evaluation is needed, both for libswift, in order to find bottlenecks
and measure its performance, and for other P2P clients, to compare the results to
those of libswift. To improve the speed of libswift the results of the evaluation can
be analysed to identify bottlenecks, which can then be improved upon. This leads
to the following (idealized) development cycle:

e Performance evaluation
e Performance analysis

e Bottleneck identification
e Improvement

e Performance evaluation

The last performance evaluation not only verifies the improvement but will also be
used as input to the next cycle which can then directly continue with the perfor-
mance analysis.

This report focusses on the performance evaluation of libswift and the compari-
son with other clients. R. Petrocco et al have been using the results to go through

the complete development cycle, improving libswift’s performance. Their results
will be published in [23]. This report also does not include streaming video, but
focusses on basic file transfer.

For the comparative performance evaluation two important questions remain:
how to evaluate the performance of the clients, and what is “good performance” in
the first place?

2.1.1 Performance Evaluation

How to evaluate the performance of libswift and a P2P client in general?

Answering the latter part of this question means answering both, since not only is
libswift a P2P client, but any results of the performance evaluation of libswift need
to be comparable with the results of the performance evaluation of other clients,
which means they should be tested in the same way. A generic way of testing P2P
clients is required.

A generic framework that would allow repeating an automated test for different
clients and that reports detailed results would satisfy both the need to compare
different clients and the need to identify bottlenecks in libswift. Such a framework
would be the answer to this question.

Several existing frameworks for testing libswift and other P2P clients have been
reviewed and a new framework has been developed for performance evaluation.

2.1.2 Good Performance

What are the characteristics of a P2P client with good performance?

The naive answer would be: fast download speed. But a simple webbrowser
often gives better download speeds than P2P clients and yet people use P2P clients.

Exactly what is considered good performance depends on the usage scenario.
The time to deliver content is of course a major factor. But according to Cisco [7]
the amount of traffic coming from non-PC platforms will rise significantly. Such
devices often have more resource constraints than a PC, creating a preference for
software that uses resources sparingly. The vision of streaming all of YouTube via
a P2P network also requires the technology to work with vast amounts of data and
large networks.

The assessment in this report focusses on time to download, CPU usage, memory
usage, large amounts of data and large networks.

2.2 Evaluation Framework

This section describes an evaluation framework as would be required for testing
P2P clients. Section 2.2.1 details the requirements for the framework and in Section
2.2.2 existing frameworks are evaluated according to those requirements.

2.2.1 Requirements for the Framework

It was anticipated that a testing framework would either be chosen or (partially) de-
veloped. To support this choice a number of requirements for the framework have
been formulated. Each requirement is detailed below together with its rationale.

Simplicity. A testing framework is ideally usable by anyone. This means that it
must not be too complex. The framework has little dependencies and can be used
without much initial work. Good documentation, both in the form of documented
code or configuration and in the form of user manuals, is imperative.

Maintainability. The testing framework is going to be around longer than just
one project, hence it needs to be maintained. Since maintenance on messy or unin-
telligable code is very expensive, the framework should be clean and understand-
able. Documentation of the code is an important factor for this requirement.

Extendable. libswift is constantly being extended and it is anticipated that this
will be the case for some time. It is likely that new features will need to be tested
and possibly new features are needed in the testing framework. Having an ex-
tendable testing framework would help in testing such extensions. An extendable
framework would also facilitate a more heterogeneous setup of experiments.

Support both local and remote hosts. Initial debugging is often done on the
local machine for a number of reasons, while large tests require the use of multiple
remote hosts. Both should be supported.

Support for (bad) network conditions. Testing using an ideal network is nice,
but networks are not ideal. In order to test a client well one will need real world
conditions at some point, or at least an emulation of them. It should be possible to
introduce bandwidth limiting and some network errors.

Single command. The testing framework is ideally both idiot proof and strong.
This means that it can do a lot, but also that it works out of the box. A single
command such as “./doTest” would be an ideal start.

2.2.2 Existing Frameworks

At the start of the project a number of testing environments for libswift were avail-
able: manifold (and several incarnations of it), NAT traversal and the P2P testing
framework. Pioneer, a partner of the Tribler group in the P2P-Next project [21]
with whom a settopbox is being developed that runs libswift, has also developed
their own internal testing methods for libswift. Each of these will be discussed
briefly below.

manifold is the default testing framework for libswift. Manifold supports ac-
quiring the latest sources, automated setup of the environment, building the code,
running multiple libswift nodes, parsing their logs, rendering graphs using gnuplot
[16] and outputting the results in HTML format. It also supports netem [19] for
network emulation, given that the user has sudo [33] rights on the target machines.
As such, manifold supports almost all required functionality, handling everything
from source to analysis.

The manifold code is written using bash [14] scripts. It contains many hard-
coded decisions and parts of it were written for very specific situations. The code
has some modularity built in elegantly using filenames to match modules. It also
supports some configuration. Neither the modularity nor the configuration of man-
ifold are very extensive, though. Manifold supports all required functional features
but lacks non-functional features, in particular extendability.

NAT traversal is an extension written for libswift that allows automated NAT
traversal. A small testing framework was written for this extension, including a
number of custom parsers and other scripts. This framework is very specific, not
configurable, and uses many different languages. Although it has certainly had
its use in testing NAT traversal it meets almost none of the requirements for this
project.

The P2P testing framework is a framework developed at University Polytehnika
of Bucarest. This framework was developed after their paper [15] describing a
modular framework for testing P2P applications. That paper describes exactly what
is needed in this project. Their implementation supports running multiple (differ-
ent) clients on multiple nodes, parsing their logs, rendering graphs from those logs
using R [32] and outputting the results in HTML format. It also supports limited
traffic control using tc [2] to limit the network speed. Other features are support
for virtualized hosts, some form of churn emulation and the possibility to gather
external performance statistics, given that the user has sudo [33] rights on the target
machine.

The P2P testing framework is written in bash [14] script and has a modular setup
for the clients in that it has a large table switching on the client name and calling
different scripts from there. Tests using the framework are rather well configurable.
The P2P testing framework is a good start on implementing the ideas from [15], but
not everything that is described in the paper has been implemented. For example,
the authors of [15] have stated a common interface for nodes as a goal, but the
only common interface they implemented is SSH. Nonetheless, a lot of the paper’s
intentions have been implemented in the framework.

Given that what the paper describes comes very close to the requirements set
out for this project, the P2P testing framework is a good starting position for fur-
ther development. Using the current implementation directly is not viable, though:
the introduction of several new extension points, such as nodes, would require al-

most all the code to be rewritten. Writing a new framework based on this existing
framework would be faster.

Pioneer’s internal methods are very extensive, using among others MongoDB
as a document database and Python as the base language for the framework. Given
the extensive setup of the framework, however, it was deemed too complex as a
basis for a testing framework that can be used by anyone. No further investigation
has been done into Pioneer’s particular methods.

None of the frameworks discussed meets all the requirements. manifold misses
several non-functional features, in particular extendability; the NAT traversal test-
ing suite is far too specific; and Pioneer’s internal methods are too complex. The
P2P testing framework was implemented after the authors’ paper [15], which de-
scribes exactly what is needed in this project. The implementation itself, however,
is still lacking in extendability. The P2P testing framework has been used as the
basis for a newly developed testing framework that is described in Chapter 3.

10

Chapter 3

Evaluation Framework

The existing frameworks introduced in Section 2.2.2 do not sufficiently meet the
requirements for this project. A new evaluation framework was developed as part
of this project that is essentially an evolution of the P2P testing framework devel-
oped by Milescu et al. The choice to evolve that framework’s design and not to
start from scratch entirely is based on [15], which describes exactly what is needed
for this project. Contrary to this, the actual implementation has been written from
scratch, but has borrowed several ideas of the original.

“Evolution” has been a keyword in the development of this framework: the
framework has been used in parallel to its development, requiring many incremen-
tal improvements over the course of time. Section 3.1 summarizes the decisions
made in the course of the project concerning the framework’s development. The
current state of the framework is described in Section 3.2 and in Section 3.3 an
example is given to show how the framework is used in this project. An overview
of the incremental improvements is included in Appendix D.

3.1 Decisions

This section describes the decisions taken during the evolution of the framework.
Most decisions are based on practical needs and are a trade-off between different
requirements.

Note that two language choices are described below: one for the commanding
host, the platform language, and one for the nodes. The commanding host runs
the framework itself, which then contacts several other hosts, the nodes, where the
actual experiment is run. The commanding host is usually not part of the nodes
and only tells the nodes what to do and when.

The platform on which the framework runs is Python [24]. Initially bash [14]
was used, but it turned out to have too many limitations. This impacts the Simplic-
ity requirement since it requires Python to be available. This also heavily impacts

11

the Maintainability requirement since the Python code is much cleaner and clearer.
The framework as a whole is also much more robust.

Python was chosen after considering several alternatives, for a number of rea-
sons:

e Python is widely available nowadays. If it is not already pre-installed it is
easy to install for anyone with enough knowledge to use the framework;

e Python is a scripted language, meaning that the source code is also the code
that gets executed, eliminating a lot of potential problems;

e The framework does not need the best possible performance to be fast enough:
a few seconds extra delay for using a scripted language is no problem, as long
as the timing of the experiment is not affected;

e Python, when installed, is always available from the command line, contrary
to, for example, PHP [31];

e Python is a strong language with useful features for the testing framework’s
core (object oriented, strong set operations);

e Experience with Python was readily available.

Hosts on which clients are tested, the nodes in an experiment, can be very di-
verse. A common language is required, though, to write the commands to the
nodes in. Bash is commonly available on server platforms and is also available on
both the DAS4 system [34] and the hardware available within the Tribler group.
For this reason it was chosen as the common language for commands to the nodes,
requiring nodes on which tests are run to have bash available.

Simplicity was redefined. The testing framework allows one to describe a com-
plete real world test with clients, files, hosts, executions and more, all of which are
quite abstract. The definition language used to configure the testing framework is
also necessarily abstract. To be able to use the testing framework effectively one
has to be able to describe the scenario one wishes to test, or there is no point in
using the testing framework in the first place. Efforts to keep it simple enough
to run with almost no configuration were stopped: if the user cannot describe the
scenario they want to run, they should not be using the framework. Similarly, if
the user cannot get around with a couple of plaintext files, they will not be able to
get around with the results, either. Simplicity does not mean anyone can use the
framework, but means that anyone who can use the framework can do so without
much effort. This is mainly a requirement on the documentation and the declarative
configuration language.

12

Maintainability was divided in two parts. The core of the framework is rather
complex: everything is necessarily very abstract and dynamic. Although more
complexity is normally deemed less maintainable, it is not considered a problem.
The trade-off is between Maintainability and Extendability: in order to have the
required generic Extendability some Maintainability needs to be sacrificed. This is
compensated for as much as possible by extensive documentation. The modules,
on the other hand, cannot compromise on Maintainability: advanced users of the
framework are expected to write new modules to extend the framework to their
needs. Compromising on Maintainability in the modules means compromising on
those users’ ability to do so and hence means compromising on Extendability.

Single Command. This requirement was initially introduced to ease a transition
from testing with manifold, which does offer such a single command, to testing
using the new framework. However, a single command to just start a test turned
out to be very artificial: what test would it run? It is not clear to the user, nor is it
of any use since it is quite unlikely that the test that would be run by default is the
test the user wants to run. Documentation helps the user to set up tests quickly.

3.2 Current Framework

The current framework consists of a core script, several core modules and many
extensions to those core modules. Figure 3.1 shows an overview of the core.
The core script contains two important classes, the CampaignRunner and the
ScenarioRunner. The CampaignRunner holds one ScenarioRunner
for each scenario in that campaign, each of which are executed sequentially. A
ScenarioRunner holds a large dictionary of all coreOb jects in the scenario,
which are retrievable by subtype (builder, source, parser, ...) and their
unique name within that category. Apart from execution all coreObject
subclasses are abstract and have subclasses that are the actual modules. All of
those coreObjects know about the scenario they are in; this means each ob-
ject in the scenario can influence all of the scenario. Most modules interact with
multiple other modules. Each core module has a well defined interface for those
interactions. Shown in the diagram are the required cross references between mod-
ules that are always there:

1. host objects can have a tc (traffic control) object and know about file
and client objects that will be used on it;

2. client objects have a source and a builder, and can have a number
of parsers;

3. execution objects have a host and a client, can have a number of
files and can have a number of parsers;

4. A workload object knows which clients to apply itself to.

13

The static classes are always accessible and provide several utility functions, such
as logging and meta data generation.

Core script
Thread [threading.Thread |
implementation } |
that can run a iy iy
group of threads
in parallel or
seqguentially
: Helper classes
! BusyExecutionThread ! ClientRunnerHelperThread |
|
[Z‘XI |
[ClientRunner| [ClientKiller| [LogProcessor
I || I I
[CampaignRunner | ScenarioRunner |
[|
[1

, _ Core modules
Static class coreObject _
with builder
campaign PN]
i source
viewer
1
E host
[parser] client |
[| [|
—— tc
- workload
logging fle
facilities execution [connectionObject |
[|
1 L :
[logger|
[1 '
1 Static class for
_________ autornatic countedConnectionObject |
[meta] generation of } I
—— meta data

Figure 3.1: Overview of the core of the P2P testing framework.

The core scripts contain the logic to have everything work together and to run a
complete scenario from start to finish. The core modules have most functionality
that is usually required already built into them allowing their subclasses, the actual
modules, to focus on their specifics. Care was taken to have most situations where
objects of different types need to work together handled by the core scripts and

14

core modules.

Each of the abstract subclasses of coreObject is an extension point to the
framework. This means support can be added for, among others, new P2P clients
to be tested, different types of hosts to be tested on, data sources for the data to be
transferred in tests and anything from parsing to viewing the logs; just about every
aspect of the framework is described by modules. A new module can be written
with considerable ease with the exception of tc (traffic control) subclasses, due
to the hazardous nature of emulating (faulty) network conditions, and host sub-
classes, due to the complex nature of generic and transparent host communication.
Besides being easy to extend the framework includes a lot of modules by default,
providing both a framework that is usable out of the box as well as some good
examples for implementing new modules.

The framework includes many features that have been used directly or indirectly
during the project. See Appendix A for a complete list. For this report the most
important features are the accuracy of client timing — clients are started within
milliseconds of the time they are configured to start — and the generic support for
monitoring CPU and memory usage of a client.

3.2.1 Repeatability and Variance

The reasons a framework was required in the first place were the repeatability and
comparability of tests. The comparability is provided by running the same ex-
periment in the same environment using different clients of which the output is
processed to be in the same format. This is supported by the framework: just
replacing the client and parser module changes the client that is tested without af-
fecting anything else. The repeatability is provided by controlling all aspects of the
experiment and setting them up the same way every time an experiment is run.

To verify the repeatability provided by the framework a small experiment was
done where the libtorrent client (see Section 4.3.5) was used to download the DVD
image of Ubuntu 10.04.4 using the BitTorrent network. This experiment consists
of one seeder, one leecher and a BitTorrent tracker, all on different nodes inside
the local network in the DAS4 system (see Section 4.1). The experiment has been
repeated five times.

The download progress of the five runs is shown in Figure 3.2. The times that
were measured to download the DVD image inside the local network were 24, 25,
26, 25 and 22 seconds. The mean of these measurements is 24.4 seconds. The
mean absolute deviation in these measurements is 1.12 seconds, or 4.5% of the
mean time.

To compare this controlled experiment with the uncontrolled world outside the
DAS4 the same experiment was repeated, only without the seeder or BitTorrent
tracker inside the local network. This time the original BitTorrent trackers in the
torrent metadata file were used and hence the seeders were those that happened
to be present on the internet at that time. Note that the choice for the Ubuntu
DVD image was made because it is usually well-seeded: downloading the DVD

15

image with a regular BitTorrent client showed tens of seeders being active. This
experiment was also repeated five times.

300000 ‘
N
250000 | />
0
[an]
< 200000 |
el
Q
(]
2 150000 |
o
8
2 100000 |
z
[e]
2 50000 |
O L L L L
0 10 15 20 25 30
Time (s)

Figure 3.2: Progress of retrieving the Ubuntu 10.04.4 DVD within the local net-
work: 5 measurements with similar patterns.

The download progress of the five uncontrolled runs is shown in Figure 3.3. The
times measured to download the DVD image from the global internet were 264,
225, 171 and 169 seconds. The fifth measurement only received 9.47% of the file
in 300 seconds, showing a rather constant download speed all that time. This mea-
surement could be extrapolated to a downloading time of about 3000 seconds. Not
considering the extrapolated measurement the mean time to download is 207.25
seconds. The mean absolute deviation in these measurements is 37.25, or 18% of
the mean time. That is not taking the extrapolated measure into account.

60000

50000

40000

30000

20000

Download speed (KB/s)

10000

0

0 50 100 150 200 250 300

Figure 3.3: Progress of retrieving the Ubuntu 10.04.4 DVD from the internet: 5
measurements with rather different patterns.

Comparing the mean absolute deviation in the measurements yields only 4.5%

16

deviation for the controlled, internal experiment and 18% deviation for the uncon-
trolled experiment. This already shows the repeatability introduced by the con-
trolled environment. It should be noted that the libtorrent client only outputs data
every second, which means the resolution of the measurements is whole seconds.
Since the complete time of a single controlled run is only about 25 seconds that
resolution is quite large. However, even if the deviation of each measurement in
the controlled environment would be increased by one second the mean absolute
deviation increases to only 8.6%, which is still considerably better than 18%.

Another way to see the repeatability is by looking at the download progress over
time in the measurements. Figure 3.3 shows the measurements where the DVD is
retrieved from outside the internal network. Some of the downloads progress simi-
lar, downloading at constant high speeds, but others show decreasing speeds, speed
cut-offs or just low speeds. Figure 3.2, however, shows a similar pattern for each of
the downloads made from the internal network. The randomness introduced by the
P2P network is clearly visible, but the pattern is the same: high speeds revolving
around the same average speed.

Finally an aspect of repeatability needs mentioning that is not visible in the
above experiments: timing. Imagine an experiment using one seeder and twenty
leechers. The leechers start one by one, one each 20 seconds, the first 20 seconds
after the seeder started. Each leecher quits exactly 60 seconds after it started. The
seeder will also quit exactly 60 seconds after it started. The seeder has one file that
takes 30 seconds to transfer from one machine to another and each leecher will try
to download that file. Does the last leecher receive the complete file? It should be
obvious that by the time the last leecher starts, the seeder is long gone and, in fact,
any leecher should see at most three peers running at any given time. The timing
of such a scenario is of great importance — allowing a second more or less for the
seeder or any of the leechers could already severely skew the results. To ensure
such precise timing automation is required.

3.3 Framework Usage

To show how the framework functions for an end-user, and also to show how it
was used in this project, a small example experiment was done. The example
experiment consists of a single seeder with a single file (fake data, 10 GB) and
four leechers that are started 30 seconds after the seeder started. The leechers
are divided over 2 nodes and try and download the 10 GB file. The complete
experiment is set to stop after 60 seconds. The experiment was run once using
libswift with 8 KB blocks and once using libtorrent.

The input of an experiment using the framework consists of the modules needed
by the experiment and the configuration files. All modules used in this experiment
are available by default. The complete configuration is given in Appendix B. Plac-
ing the files described there in the Test Specs/ and TestSpecs/scenarios/
directories, one could run

17

./ControlScripts/run_campaign.py TestSpecs/example_experiment_campaign

This command runs the campaign, which consists of two scenarios, first check-
ing their configuration and then running them sequentially. After the campaign
is finished the framework will tell where the results are. This directory contains
a structure under which each scenario has its own directory with the complete
scenarioFile and subdirectories executions/,processed/ and views/.
Inside the executions/ directory are all the files for each individual execution,
which is a single execution of a single client on a single host. The example scenar-
ios each have six executions. Both raw logs as built while running the client and
parsed logs obtained by running the parsers on those raw logs are present in the
execution directories. The processed/ directory contains post-processed data,
such as graphs, statistics and other information. The views/ directory contains
any views, which are combinations of any raw and processed logs as well as post-
processed data that give a complete view of a scenario’s results. In the example
experiments the collection.html file and its accompanying thumbnails can
be found in the views/ directory.

The format of the raw logs depends entirely on the client but, in the case of the
default modules, always includes the upload speed, download speed and progress
of the files in one form or another. All the provided client specific parsers convert
this into a more usable format: relative time in seconds (starts at 0), progress in
percentage, upload speed in KB/s and download speed in KB/s. The CPU/memory
usage log contains very raw numbers. The provided cpulog parser converts these
into a more usable format: relative time in seconds (starts at 0), percentage CPU
usage, residential memory usage in bytes and virtual memory usage in bytes. The
cpulog parser also creates a file with peak data: the total CPU time in seconds and
the maximum of each memory usage.

These consistent output formats are used by the gnuplot post-processing to gen-
erate the graphs in processed/ and by the statistics post-processor to generate
statistics on the complete scenario, such as average resource usage, how many
leechers completed downloading the file and how long that took them on average.
All the data is finally taken together by the htmlcollection viewer to create a com-
plete overview of the scenario’s results in an HTML page. Some of the results of
the example experiment are included in Appendix B, which also includes excerpts
from the various intermediate data files.

For this report a few more steps were taken beyond what the framework does.
The framework gives an excellent insight into what happened inside a single run
and provides very detailed output that has been very useful in understanding what
is really happening with each client. What the framework does not provide is the
combination of data from several runs. The experiments in this report all cover a
number of runs with a single varying parameter, for different clients. To give an
insight into the behaviour of the client when that parameter changes, each run was
compressed into a few numbers of aggregated data. The compressed data of all runs
was then taken together and plotted against the varying parameter. Although this
is mostly a manual task, the framework does facilitate it by providing the statistics

18

and the uniform data formats, both of which are consistent, machine readable data.

A future extension of the framework could provide this functionality in an auto-
mated way. It would be great, for example, to be able to tell the framework to set
up a seeder and a number of leechers and to run that scenario ten times, each time
increasing the size of the file to be transferred. For this project such an extension
was not deemed worth the time: generating the scenarios with changing parame-
ters requires only a little scripting and the same goes for combining the data again.
Extending the framework in a generic way to allow for automation of such tasks
could take weeks.

19

20

Chapter 4

Experimental Setup

This chapter describes the clients and environment used to conduct the experi-
ments. Section 4.1 introduces the environment in which the experiments have been
run. Section 4.2 introduces the protocols that have been compared and Section 4.3
describes the clients that have been tested and their particular settings.

In this chapter several different networking paradigms are touched, which have
their own terminology. For consistency the terms “client”, “seeder”, “leecher” and
“peer” have been used to refer to, respectively, a software package, an instance of
a client that already has all the data and can upload it, an instance of a client that

wishes to download the data, and any instance of a client.

4.1 Environment

All experiments have been performed on the TU Delft cluster of the DAS4 dis-
tributed supercomputer [34]. Each node of this cluster has a dual quad-core CPU
at 2.4 GHz, 24 GB memory and more than enough local disk space for each exper-
iment. The cluster nodes are connected with each other via an internal Infiniband
[17] network running at 10 Gb/s. The internal network has been used for all ex-
periments, allowing the clients to use the full 10 Gb/s bandwidth. To make sure
no connectivity issues would arise the torrent tracker (see Section 4.3.2), for those
clients that need it, was run on a separate node inside the cluster: this ensures it
recognises every other node by its internal IP address on which it is reachable from
all other nodes.

During all experiments care has been taken not to mix leechers and seeders on
the same DAS4 node: a node contains either leechers or seeders. Except for their
specific configurations clients start as if they were being run for the first time. In
particular this means that any resume-seeding mechanisms are never used and the
data to be seeded is always checked for correctness before the actual seeding starts.
This leads to long initialization times for seeders when a lot of data is to be seeded.
Care has been taken not to start a leecher before the seeder’s initialization has
completely finished.

21

The torrent files needed for BitTorrent clients are generated with 1IMB chunk
sizes and are updated in each experiment run to include exactly one tracker: the
instance of the torrent tracker that will be run during the experiment. Smaller
chunk sizes have been tried to achieve a better comparison with libswift, but not all
torrent clients accept such low values. This gives the BitTorrent clients a distinct
advantage when looking at the time needed for checking the correctness of data —
the block size will be shown to have a severe impact on that.

Generated fake content is used to ensure real disk I/O while avoiding significant
data transfers between the commanding host and the DAS4 nodes during experi-
ment setup. The data is structured such that it is much cheaper to generate locally
than it is to transfer or even store, so it is highly unlikely the data would be shared
or requested by anyone outside these experiments. This minimizes the chance of
pollution from the outside world. The data is also structured such that the speed
of integrity verification is the same as with real data: the data is non-trivial and
non-repeating.

Swarms in the experiments have always been kept to the size of 1 file and hence
the terms “file” and “swarm” are completely interchangable in these experiments.
Swarms consisting of multiple files have no real impact on any of the P2P clients
under test: they all regard a swarm’s data as one large contiguous string of data
blocks. Whether these are stored in one or more files doesn’t matter much apart
from the time the OS needs to open or close a file. Since the latter is equal for all
clients the impact should also be equal for all clients.

Resource measurements in the testing environment have been restricted to CPU
and memory usage. Network usage is of course included, but since using the net-
work is the core business of these applications it is not included under resource
usage. Power consumption would be great to include, but the testing environment
has no way to measure that. Such a measurement would not yield relevant data,
anyway: power consumption matters most on mobile devices which contain very
different hardware from the high performance machines used in the experiments.

None of the experiments in this project have been repeated, due to time con-
straints. This means all datapoints have been collected only once and no averages
over multiple data points are shown.

4.2 Protocols

This section gives a short description of the protocols that have been used in the
experiments. First HTTPS is introduced, which is used for a base comparison,
followed by libswift and BitTorrent.

4.2.1 HTTPS

HTTPS [10], HyperText Transfer Protocol (HTTP, [12]) Secure, is widely used on
the internet for secure communications. Like unsecure HTTP the protocol is com-

22

pletely asymmetrical with completely different seeder and leecher! software. In
HTTPS the leecher software sends a connection request to a seeder which then re-
sponds by providing its certificate and public key. The certificate, which is usually
signed by a trusted certificate authority or other certificate holder, is checked for
validity and trustworthiness, after which some encrypted messages are exchanged
to decide on a symmetric encryption method to use during the rest of the session.
These initial messages are encrypted using asymmetric cryptography in which the
public key of the seeder plays an important role. Together this connection request,
certificate verification and key exchange form the connection setup.

After the connection setup the leecher can send a URI to the seeder to request
the document referred to by that URI to be sent. The seeder then proceeds with
sending the data over the connection, whether this data be the document or an error
describing why the seeder will not send the document. All communication over the
connection is encrypted, and hence also decrypted at the receiving side, with the
symmetrical encryption method and key that were decided on during the conection
setup.

Several optional parts of HTTPS are often used to further secure the communi-
cation, such as authentication methods and key changing algorithms, but these do
not change the basic way the protocol functions.

4.2.2 libswift

libswift considers the content it shares, usually a single file, to be a contiguous
stream of blocks of equal size, 1 KB in size by default. A Merkle Hash Tree (MHT)
[25] is constructed from these blocks using the SHA-1 [20] hashing function. The
MHT is constructed by hashing each block to form the leaf nodes of the tree, and by
having each non-leaf node be the hash of the concatenation of its children. Zero-
hashes, a 20 byte string of zero bytes, are used for leaf nodes that don’t have a
corresponding block in the data file (most data files do not have a size equal to a
power of 2) and the parent of two zero-hashes is also set to be a zero-hash. A file
in libswift is always identified by its root hash, the root of the MHT, which is also
the only metadata sent to a libswift peer to request (part of) that file.

The drawback of using an MHT is its significant size. It consists of a full binary
tree of hashes. That means 2 - n — 1 hashes of size h for n leaf nodes. The size of a
hash is constant in libswift: h = 20 bytes, the length of an SHA-1 hash. The num-
ber of leaf nodes n depends on the size of the file f and the size of a single block
b: n = 28 31 In other words: the closest power of 2 larger than the number of
blocks in the file. For the default block size of 1 KB and a 700 MB file, for exam-
ple, the number of blocks would be n = 9l*log FRE21 — 9[*log(700-1024)] _ 920 _
1048576 and the size of the MHT would be h-(2-n—1) = 20-(2-220—1) ~ 40-2%°
bytes or about 40 MB.

"When talking about HTTP and HTTPS one usually refers to the seeder and leecher as the server
and client, respectively

23

Connections are built in libswift by contacting another peer and by sending the
root hash the contacting peer is interested in. Both will assign a channel number
to the connection and tell each other about that; the channel number of the other
party is always included in packets sent to that party to tell them what the packet is
about. Data can be exchanged once the channel is established. This data can exist
of specific data blocks or small pieces of metadata that are required to verify the
integrity of received data blocks, such as a number of hashes from the MHT. All
data transfers are by design exactly one packet in size, which ideally includes the
packet sizes of underlying protocols. This restriction ensures that loosing a single
packet has no larger impact than just that single packet. If, for example, libswift
would run over a default ethernet network and would use 16 KB block sizes, each
ethernet packet would contain rougly 1 KB of a block. Loosing a single ethernet
packet would in that case mean loosing the whole 16 KB block which hence has to
be retransmitted entirely, wasting 15 KB of bandwidth.

When a libswift peer receives a data block it verifies the validity of that block.
This is done by reconstructing part of the MHT: the SHA-1 hash of the block
is calculated and is combined with hashes that are already known, such as the
hashes of nearby blocks and the hashes of inner nodes of the tree that were also
received from the sender. Only if the result of this block’s hash and all the known
hashes combined can be verified to yield the root hash of the file, the block will be
accepted.

libswift peers have the ability to inform their peers about other peers they com-
municate with, allowing those peers to contact each other as well.

4.2.3 BitTorrent

BitTorrent [6] also considers the content it shares to be a contiguous stream of
blocks of equal size, though usually block sizes are much larger than what libswift
uses: 256 KB, 512 KB, 1024 KB, etc. A metadata file is created, called a metainfo
file or .torrent file, which contains the names of the files, the size of a single block,
the tracker addresses and most importantly the SHA-1 [20] hash of each block.
A BitTorrent peer always has the full .torrent file available before transferring the
data, either as a seeder or as a leecher, so no metadata needs to be transferred
between BitTorrent clients. A torrent is identified by the SHA-1 hash of the critical
part of its metainfo file, also called the info-hash.

The size of a BitTorrent metainfo file depends mostly on the size of the collection
of hashes, which in turn depends on the size of the file f and the chosen size
of a block b. For each block in the file a single hash of 20 bytes is included,
leading to a total size for the collection of hashes of [%] - 20 bytes. For a block
size of 1 MB and a 700 MB file, for example, the collection of hashes would be

T00MBT - 20 = 700 - 20 = 14000 bytes.

To know other peers that take part in a torrent swarm a BitTorrent peer first
contacts one or more BitTorrent trackers to which it sends a request to receive a
number of peers for the torrent it is interested in. This request also registers the

24

peer at that BitTorrent tracker as partaking in that torrent swarm.

Connections are built in BitTorrent by contacting another peer and by sending
the info-hash the contacting peer is interested in. Both will exchange information
on their progress on the file and will then continue to keep each other informed
about whether they are interested in the other’s data and can exchange data by
requesting a part of the torrent which is then sent in return. The connections are
normal TCP connections, which include the usual protections against packet loss.

A BitTorrent peer usually verifies the data it receives by calculating the SHA-1
hash of a block and comparing that to the collection of hashes in the metainfo file.

BitTorrent peers do not exchange information about peers they communicate
with: all peers are expected to contact the trackers in the metainfo file, instead.

uTP

The pTorrent Transport Protocol, or TP [3], is a UDP implementation of the Bit-
Torrent protocol, designed to allow for better use of the network, while also com-
peting less aggressively with other network traffic. BitTorrent using (/TP works the
same as the normal BitTorrent protocol.

4.3 Clients

Several clients have been tested to not only assess the performance of libswift, but
also to compare it to the performance of other (P2P) clients.

4.3.1 HTTPS — lighttpd / aria2

As a baseline test for throughput performance the HTTP and HTTPS protocols
have been considered. HTTP was left out since HTTPS is known to be very effi-
cient already and HTTP completely lacks any type of cryptographic verification,
which would be unfair when compared to P2P clients. HTTPS does do some ver-
ification: during connection setup the identity of the server is verified and all data
after that is encrypted using symmetric encryption and hence has to be decrypted.
Where P2P clients use the same software for seeders and leechers, HTTPS is a
classic server/client oriented protocol and is completely asymmetric. Because of
this not one but two programs are used to run HTTPS experiments. lighttpd is a
stable, fast, small and easily configurable HTTP-server and aria2 is a fully featured
multi-protocol downloader with good performance and also easily configurable.
The choice for lighttpd [18] was made after considering the major HTTP servers.
While almost every HTTP server with a large install base supports HTTPS and
is considered very stable, most of those servers require full-fledged installs and
custom configuration, and are considered large pieces of software. These servers
perform excellent in their role of webserver, but they are hard to handle when build-
ing automatically deployed experiments. lighttpd is about the only one that meets
the requirements for the experiments: it is considered very stable (running websites

25

like YouTube and major torrent sites with thousands of hits per second [36]), it was
built to handle stress situations, it is fast, it is small, it is easily configurable, it does
not need installation and it needs only a few modules to run in the experiments.

Since the HTTPS test is set up as a competitor against P2P clients, it needs at
least support for multiple sources for the same leecher. Aria2 [29] is one of few
downloaders that can concurrently handle multiple HTTPS sources for the same
download. It is a command-line tool that can be run natively on Linux and can be
configured completely using the command line. It can also generate statistics on
its progress every second, which is very useful for gathering the required data.

The specific software packages used are lighttpd 1.4.29 and aria2 1.13.0, both
built from source with SSL support. For lighttpd the dirlisting, indexfile, staticfile
and status modules are included. Specific configuration: lighttpd listens to a port
configured in the test description. The openssl [30] program is used to generate
a self-signed certificate which is loaded in the SSL engine of lighttpd. A simple
loop is used to request the status page every second using wget [13] which cre-
ates running statistics of the server progress. Aria2 is configured to allow for as
much concurrent sources as available and to use those sources in order, basically
ensuring maximum concurrent use of sources, and to keep on trying. It is told to
output statistics every second in machine readable format. Aria2 will not check
certificates for HTTPS to prevent it from rejecting the self-signed certificates used
with lighttpd. None of the other downloading modules for Aria2 are activated. The
sources are passed directly to Aria2, which is a bit of an unavoidable cheat given
that HTTPS has nothing similar to a tracker: either you already know exactly where
to look, or you never will.

It should be obvious that, while lighttpd/aria2 will support multiple concurrent
sources for each downloader and multiple concurrent downloads from each source,
they will not exchange peer information, nor will the downloaders exchange infor-
mation like P2P clients do.

HTTPS is not included in all experiments. In those experiments where a com-
parison with HTTPS makes sense it has been included and this is explicitly noted
in the experiment description.

4.3.2 opentracker

While not really a client under consideration, opentracker [9] is used extensively
during the experiments to allow BitTorrent clients to function. It is a BitTorrent
tracker that is known to be small, reliable and stable. It can be configured to run on
a specific port and just runs out of the box. Opentracker does not have versioning,
but CVS revision 1.68 was used.

All torrent files used in the experiments are changed just before being sent to the
nodes to point to the tracker that is active for the current test, which points every
BitTorrent peer to the running opentracker instance.

26

4.3.3 libswift

The core client of the experiments, libswift is tested with default settings and dif-
ferent chunk sizes. The client used is a modification to the swift-like-ftp branch 2,
SVN revision 27030, which has been expanded to include a swarm manager that
can on-the-fly decide to deactive and reactivate swarms depending on which are
needed. The modified client is available on github 3 branch WIP, revision
34a2led4cfdde006ca73df89ee0a5e6969fa5fOb. When seeding libswift is passed
the directory to watch for data to seed. When leeching libswift is passed the hashes
of the files to retrieve along with the filenames to use for them. One seeder is al-
ways instructed to listen to a particular port and all other leechers and seeders are
given that primary seeder as the tracker to connect to.

The need for an actual seeder to be the tracker shows a current deficiency in the
implementation of libswift: a swift process will not do peer exchange for swarms
it is not part of. This is currently work in progress. It does give an advantage to
libswift in that libswift peers always know of at least one seeder.

4.3.4 ,Torrent

Among BitTorrent clients pTorrent (or uTorrent, as is usually written) [4] is a big
player. It is one of the most often used clients [11] and supports many features,
amongst which its own pTP [3] download protocol which takes care of improved
download speed.

uTorrent is a closed source client, but binaries are freely available. Two versions
have been used in the experiments: the Windows version (3.1.3 build 26837), using
Wine [37] as a compatibility layer, and the latest native 64-bit Linux client (build
27079). To interact with uTorrent the webui, an HTTP based remote interface for
controlling uTorrent, is included and activated — a python script runs the client and
communicates with the webui to instruct the client and gather statistics. Automated
bandwidth management is disabled, since the client can just go flat out, and both the
client and the webui are instructed to listen on specific ports which are determined
just before starting the client — uTorrent will not choose a random open port itself
and the port of the webui needs to be known to interact with it. Although uTorrent
is instructed to monitor a directory for torrent files to download, the torrent files for
the tests are actually added by interaction with the webui since there appear to be
race conditions with the monitoring function that cause it not to pick up all torrent
files.

The Windows version of uTorrent is a very feature rich graphical client which
tries to install itself and activates many addons. In order to keep it usable, and
not to have it distracted by other things than what it should do, it is kept in check
with specific configuration. Disabled are: local source discovery (not only are the
tests run on a local network, the tests should remain independent and not find each

“http://svn.tribler.org/libswift/branches/arno/swift-like-ftp/
3https://github.com/schaap/swift

27

other), DNA (a browser integration feature), automated NAT configuration (the
client should stay internal), any connections to websites or other services such as
updates, any automated installation or integration and automated restart on crash
(wrests away control from the framework and will break the test since the con-
nection with the framework is gone). Also all histories, external references and
internal caches have been cleared. The configuration of the Windows version is
done by taking a prebuilt uTorrent configuration file, stripping that of all unneeded
elements and checksums and changing it as needed when starting the run.

A last setting on uTorrent that requires attention is the use of the pTorrent dis-
tributed hash table (DHT). Using the DHT has an important advantage: it allows
the client to discover peers that are not returned by one of the trackers of a swarm.
In the experiments in this project, however, the tracker is always present and is set
up to return all peers in the swarm. Several important downsides to using the DHT
exist as well: connections can be made to the outside world, which might inject
data about the test into a network that survives until the next test begins, thus in-
fluencing later tests which should be independent. Using the DHT can also create
overhead. It is likely that with a large number of files the client might have some
noticeable overhead doing the necessary announces and administration. It has been
decided no to use the DHT, mainly to prevent pollution of the experiment.

uTorrent has been included in the experiments and some of the test results have
been included in this report, but mainly to show their unreliability. The perfor-
mance of uTorrent under Wine is such that it is assumed to underperform due to its
non-native environment. A known bug in the combination also breaks any severe
stress tests: with lots of data (about 3GB, maybe less) uTorrent crashes consis-
tently. A repeated run of transferring a 1GB file from 1 seeder to 24 leechers
showed the number of leechers that succesfully obtained the file to vary between
12 and 20. Although such results might just be a consequence of how the client
operates, that unfavourable conclusion cannot be drawn when the client is not run-
ning according to its own specifications (i.e. natively under Windows). The Linux
native versions are currently marked alpha status and rightfully so: they perform
very poorly.

4.3.5 libtorrent

libtorrent [26] is a BitTorrent library written in C++. Several clients are based on it
(they mention 31 public projects) and it supports most of the BitTorrent extensions
as well as pTorrent’s pTP.

libtorrent was used using a simple runner application, available at github 4,
which just starts the engine, adds the torrents to it and then proceeds to poll the
engine for statistics to output. Features such as DHT, local source discovery, UPnP
and NAT-PMP are not started. See Section 4.3.4 for the reasons not to include
them. The DHT has not been included to keep a level playing field. Including is

“https://github.com/schaap/p2p-clients

28

likely to increase the resource usage of libtorrent without additional benefits, but
might also pollute the experiments. Only the core engine is used, which also in-
cludes TP — the choice for classic TCP transfers or ¢ TP is internal to libtorrent’s
core. Specific configuration allows multiple connections per IP and removes limits
on the number of active torrents and the number of peers, both active and received
from trackers. The version of libtorrent used is 0.16.0.0 revision 4683.

29

30

Chapter 5

Experiment Results

Several experiments have been conducted using the P2P Testing Framework to
assess the performance of the clients, libswift in particular. This chapter presents
the experiments and their results. The environment in which the experiments were
run is described in Chapter 4 and the way the P2P Testing Framework was used is
described in Section 3.3.

A single download from one location to another is measured first in Section
5.1. This experiment also takes a look at an important parameter for libswift: the
block size. Section 5.2 focuses on a more realistic scenario where a popular file is
downloaded from many seeders. A flash crowd, an important phenomenon in P2P
networks, is created in Section 5.3. Finally two experiments regarding large-scale
sharing are discussed in Section 5.4.

The resolution of the data gathered during these experiments is limited. To keep
the data clear all data is rounded to the lowest resolution. Most timing data is
therefore rounded to whole seconds, the exception being total CPU time which was
always available with 0.01 second resolution. Transfer speeds have always been
rounded to kilobytes. It should also be noted that clients report their completion
as a percentage of data blocks. A 3 MB file, for example, would only contain 3
data blocks for the BitTorrent clients (block size 1 MB) and its completion in a
BitTorrent client would therefore have a granularity of about 33%.

A bug in the logic for measuring resource usage means no data on resource usage
is available for clients that are run using a wrapper script. The affected clients are
uTorrent (both native and under wine) and the seeder of HTTPS, lighttpd. As
explained in Section 4.3.4 the results of uTorrent cannot be trusted, which hence
also holds for any measurements on its resource usage. The absence of lighttpd’s
resource usage is too bad, but not a great problem: lighttpd is known for being
lightweight and efficient. Knowing that lighttpd was designed for efficiency and a
small memory footprint and knowing it runs heavy sites like YouTube and several
large torrent websites, it is assumed both the memory footprint and the CPU usage
of lighttpd is almost always lower than that of any P2P client’s.

31

5.1 Downloading a File

The most simple use of a P2P client is to transfer a file from one location to another.
This experiment uses a 1 GB file that is seeded by 1 seeder and downloaded by 1
leecher. HTTPS is included in this experiment as a baseline comparison.

5.1.1 Blocksize

libswift has an important parameter which can easily be modified: the blocksize.
This parameter is of severe impact, as can be seen in Figure 5.1. The transfer of a
single 1 GB file takes less time with larger blocksizes, and the resources used by
the leecher and seeder, both peak residential memory usage and total CPU time,
also become less with larger block sizes.

40 ‘ — ‘ 50000
Download time (s) —+—
35 Total CPU time leecher (s) —<— 4 45000
[Peak memory usage leecher (KB) —x—] 40000 @
Total CPU time seeder (s) —=— | >4
30 | Peak memory usage seeder (KB) 1 35000 o
(o)}
@©
{’C;’ 25 | | 30000 &
o) 4 25000 ¢
® 20 |] 2
0 1 20000 &
15 | | 15000 E
{ 10000 @
10 + .
5000
5 : : : : : : : 0
0 2 4 6 8 10 12 14 16

Block size (KB)

Figure 5.1: Download time and resource usage when downloading 1 GB using
libswift with different block sizes.

Block sizes larger than 16 KB have been tested as well, but they simply do not
work. Increasing the block size to only 17 KB simply causes the whole transfer
to fail consistently, just as it does with even larger block sizes. This limit is due
to an internal send buffer in libswift that is set to twice the maximum block size,
which is currently configured to be 8 KB. No efforts were made to increase this
buffer to allow testing larger block sizes. As explained in Section 4.2.2 increasing
the block size much beyond the maximum packet size could lead to a lot of wasted
bandwidth. See also the discussion regarding MTU below.

Because of the impact of the block size the rest of the experiments will focus on
three different block sizes for libswift: 1 KB, 8 KB and 16 KB. 1 KB, although it’s
the worst performing block size, is currently the standard block size for libswift and
is also the only block size that is smaller than the standard MTU on ethernet net-

32

work interfaces (1500 bytes). 8 KB is considered because it is the largest block size
smaller than 9000 bytes, which is the most often used MTU in networks allowing
jumbo frames [35]. 16 KB is considered since it is the best performing block size.
The MTU is deemed important in this choice because the design principles behind
libswift state that a single libswift packet should never be spanned over multiple
packets; and hence should be smaller than the MTU, since a packet larger than the
MTU is split in multiple packets before transmission.

5.1.2 Comparison

The basic performance of each client is visible in Figure 5.2. The difference be-
tween libswift with 1 KB blocks and libswift with larger blocks is distinct. Inter-
estingly, HTTPS is already slower than the P2P clients. In this simple experiment
libtorrent performs (slightly) better than the other clients.

Neither uTorrent client is shown in Figure 5.2 since both failed to transfer the
file.

100
80 +
2
Z 60 -
o
K
g 40 |
[S)
O libtorrent ——
20 | swift 16k —<— |
swift 8k —x—
https —=—
o swift 1k
0 5 10 15 20 25 30 35 40

Time (s)

Figure 5.2: Progress over time when downloading a 1 GB file from 1 seeder to 1
leecher.

5.2 Downloading Popular Files

Popular files tend to be well available with many people seeding the file. This
experiment uses a 1 GB file that is seeded by multiple seeders and downloaded by
1 leecher. This experiment illustrates how well clients behave with very popular
files and also gives a good measure on the download speed a leecher of a client can
sustain.

The seeders share the nodes they run on: 3 seeders per node up to 66 seeders,

33

divided over 22 nodes. For larger numbers of seeders they were equally divided
over 22 nodes, with up to 24 seeders per node for the runs with 528 seeders. The
impact of having 24 seeders running on one node with only 8 cores has been judged
by looking at the results and the resource usage of each seeder: none of the clients
show clear signs of slowing down due to sharing all the resources.

The number of seeders will grow from 3 to 528 with increasing intervals. HTTPS
is included in this experiment for a baseline comparison, but only partially since
larger experiments did not give any new information while still taking time to run.

5.2.1 Resource Usage

Unsurprisingly, most clients are faster when a few seeders are added, but beyond 6
seeders there’s no real difference. The only noticeable result is libswift with 1 KB
blocks actually becoming slightly slower with many seeders, which suggests some
overhead.

More interesting is the peak residential memory usage of the leecher when the
number of seeders increases. This is depicted in Figure 5.3. While the other clients
are stable in their memory usage, libtorrent needs more memory when increasing
the number of seeders but continues to drift between 30 MB and 60 MB with no
clear pattern when the amount of seeders increases further. The seeders in the runs
with hundreds of seeders, however, more often than not seem not to transmit any
significant amount of data. This drifting of libtorrent’s memory usage is probably
due to libtorrent’s leecher only contacting seeders at a maximum rate or even cap-
ping the amount of seeders it will contact for a single download. When looking
at the runs with lower numbers of seeders, where all seeders transfer significant
amounts of data, libtorrent’s leecher is estimated to use about 1.5 MB per seeder it
contacts.

libswift’s leechers show no visible increase in memory usage when the amount
of seeders increases. The constant memory usage is explained purely by the size
of the MHT for the data file. Using the formula from Section 4.2.2 and filling in a
file size of 1 GB and block sizes of 1 KB, 8 KB and 16 KB, the size of the MHT
is about 40 MB, 5 MB and 2.5 MB, respectively. Those number are a constant of
about 3 MB less than the ones depicted in Figure 5.3. This shows the significance
of the MHT’s size.

The peak virtual memory usage of the clients’ leechers show that libswift re-
quests only slightly more memory than it has resident, while both libtorrent and
aria2 reserve much more: about 250 MB and just over 100 MB, respectively.

34

70

= swift IK —a— swift 8K —x— ‘ https —
S 60 | libtorrent swift 16K —s—
2
o 50
0]
9 HAYE R e = = = = = = £]
g 40 |
©
5
> 30 ¢+
=
S 20 ¢
€
T 10— y y y y y .
[>e o N . . > . . o
9 AT
0 --------------- L 1 L L L
0 100 200 300 400 500 600

Number of seeders

Figure 5.3: Peak residential memory usage of the leecher for increasing numbers
of seeders.

5.2.2 Sustained Download Speed

From the tests run for this experiment the download speed a leecher of a client can
sustain has been estimated. For each client the data point with the lowest download
time was chosen, preferring larger numbers of seeders in case of a tie, and the
data on the leecher’s download speed during that run, gathered every second, was
analysed. To estimate the sustained download speed during a run the graph of
the download speed during that run was considered and a start and end point for
measurement was chosen, such that anything in between can be considered “high
speed downloading”. The typical pattern shown by a leecher is (1) being idle for
a few second, then (2) starting the download after which the speed increases until
it reaches (3) a high speed. It then continues downloading at high speeds, often
increasing the speed some more, until (4) the download is nearly done and the
speed drops sharply, followed finally by (5) being idle again. These points are
illustrated in Figure 5.4. Especially pinpointing (3) is rather subjective, but as
a rule of thumb the speed at (3) was required to be at least 50% percent of the
maximum speed achieved and near the average speed during the following seconds.
Pinpointing (4) is often very simple: the speed curve shows a very sharp drop to
0 at the end and (4) is the last point of high speed directly before that drop. All
speed measurements between (3) and (4) were considered, not including (3) and
(4) themselves. The average of these measurements was calculated and used as the
sustained download speed.

35

1) (2 (3 (4) (5)

100 50

45

80 | 40
35 _
o £
o 60 L 30 m
g =
S 25 >
v Lo}
o 40 + 20 o
o o
15 N

20 10

5

0 ‘ ‘ ‘ ‘ ‘ 0

0 10 20 30 40 50 60 70

Time (s)

Figure 5.4: Example of the area considered when calculating the average sustained
speed. Measurements between (3) and (4) are considered.

Figure 5.5 shows the resulting figures for the leecher’s sustained download speed.
The very high performance of libtorrent is immediately obvious: well over 1.5 gi-
gabit per second sustained downloading. libswift performs nicely with both 16 KB
and 8 KB blocks, almost 1 gigabit per second sustained. libswift with 1 KB blocks,
on the other hand, cannot outperform HTTPS.

240
220 -
200 -
180 +
160 +
140 +
120 +
100 +
80 -
60 -
40 -
20

Sustained download speed (MB/s)

libtorrent swift 16K swift 8K uTorrent/wine uTorrent https swift 1K

Figure 5.5: Estimated average sustained download speed.

With regard to libtorrent it should be noted that the data, reported by the library
itself, has been found to be slightly erroneous at times. At least with small amounts

36

of data to be transferred, the amount of data reported to have been received was
actually smaller than the complete data file that was completely downloaded —
that would only be possible if some compression was used, which libtorrent does
not do (both BitTorrent and pTP disallow compression). However, the numbers
never seem to be very far off and are, in this case, consistent with the measured
downloading time. Even so, the error introduced by the estimation is likely larger
than the error caused by this data.

5.3 Flash Crowds

Flash crowds are an important phenomenon in P2P networks that can significantly
degrade performance [39]. The clients have been stress-tested using an extreme
version of a flash crowd: a seeder is being idle and at once many leechers come
online and contact the seeder to download the same file. This experiment uses a 1
GB file that is seeded by 1 seeder. Multiple leechers are started at exactly the same
time and download the file. This experiment illustrates how well clients behave
in a flash crowd and also gives a good measure on the upload speed a seeder of a
client can sustain.

The leechers share the nodes they run on: 3 leechers per node up to 66 leech-
ers, divided over 22 nodes. For larger numbers of leechers they were equally di-
vided over 22 nodes, with up to 24 leechers per node for the runs with 528 leech-
ers. The impact of having 24 leechers running on one node with only 8 cores has
been judged by looking at the results and the resource usage of each leecher: only
libswift with 1 KB blocks uses too many resources to share them effectively in the
larger runs.

The number of leechers will grow from 3 to 528 with increasing intervals. HTTPS
is included in this experiment for a baseline comparison, but only partially since it
requires linearly more time when increasing the numbers of leechers.

5.3.1 Download Time

The most important measurement in a flash crowd is how long each leecher takes
to get the file. This is shown in Figure 5.6. HTTPS obviously needs linearly more
time to provide the file to more leechers. All P2P clients perform better than this.
libtorrent, in particular, shows very nice behaviour. The time needed to download
the file decreases until about 15 leechers, at which point it remains stable up to 66
leechers, from where it starts climbing again. libtorrent shows the true strength of
P2P networks: the leechers are helping each other to get the file. libswift performs
(much) better than HTTPS which means the leechers do help each other. However,
the time needed to download the file does increase when more leechers are started
at the same time, especially when only a small amount of leechers are involved.
This is still a deficiency of libswift. For very large numbers of leechers, however,
libswift’s and libtorrent’s download times seem to converge again, which means

37

they scale equally well for very large flash crowds.

uTorrent is not in Figure 5.6. The leechers of uTorrent native failed to retrieve
the file in this experiment, no matter the size of the flash crowd. uTorrent wine
was only partly tested since it also has many crashing leechers which inflate the
amount of time needed for the runs and give very unreliable data. uTorrent wine’s
performance, as far as leechers were succesful, was similar to libswift with 8 KB
blocks, only slightly slower.

Note that libswift’s performance, when using 1 KB blocks, is impacted by the
leechers sharing the nodes they run on, leading to a slightly degradation in perfor-
mance with more than 176 leechers.

1400 ‘ ;
https ——

swift 1K —a—
v 1200 - swift 8K —x—
o swift 16K —e—
£ 1000 t libtorrent
°
e 800 +
c
5 600
o
o
g 400 +
S
< 200 p

0F ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600

Number of leechers

Figure 5.6: Average download time of a leecher when increasing the number of
leechers.

Internally, libswift has been capped to a maximum number of connections each
peer may make to other peers. By default this number is 20. An initial investiga-
tion into the impact of this constant has been done by rerunning the flash crowd
scenario, with a flash crowd of 45 leechers, with a libswift client that had this con-
stant set between 5 and 45, with steps of 5. The result is shown in Figure 5.7. This
suggests that the choice of 20 is not bad at all: around 20 seems optimal for this
scenario. This suggests that the decreasing performance is not due to this constant.

38

240

220 -

200 -

180 +

160

140 +

Average download time (s)

120

5 10 15 20 25 30 35 40 45
Maximum number of connections

Figure 5.7: Average download time of a leecher in a flash crowd of size 45 when
varying the maximum number of connections for each peer.

5.3.2 Resource Usage

The peak residential memory used by the seeder shows that all clients’ seeders
keep some per-leecher data in memory. This is shown in Figure 5.8. In the case
of libswift the bulk of this data consists of several data structures that keep track
of the state of the leecher, including data like what parts of the file is requested
and what parts still need to be acknowledged. This data depends on the size of the
file and the block size. Indeed the memory used by libswift with 1 KB blocks is
approximately 8 times as large as the memory used by libswift with 8 KB blocks.

The peak virtual memory needs of the libswift processes is only slightly larger
than shown in Figure 5.8, but libtorrent consistently requests about 250 MB of total
virtual memory.

5.3.3 Sustained Upload Speed

From the tests run for this experiment the upload speed a seeder of a client can
sustain has been estimated. Choosing a single run to analyse is not trivial so a run
where all clients perform relatively well was chosen: 12 leechers. The calculation
is analog to the one for the sustained download speed, see Section 5.2.2.

Figure 5.9 shows the seeder’s sustained upload speed with 12 leechers. libtorrent
reaches well over 1 gigabit per second. HTTPS and libswift with 16 KB blocks and
8 KB blocks are very close while libswift with 1 KB blocks can sustain only about
half their upload.

39

500 ; ; ‘
libtorrent ——«— swift 1K —a—
450 - swift 8K —x— swift 16K —s— 2 1

400
350
300
250
200
150
100

50

0 ‘ . ‘ ‘ ‘
0 100 200 300 400 500 600

Number of leechers

Peak memory usage seeder (MB)

Figure 5.8: Peak residential memory usage of the seeder when increasing the num-
ber of leechers.

180

g 160]

S 140 |]

©

g 120]

>

@ 100 ¢]

3

S 8o |]

-

T 60]

£

s 40 |]

w0

-

A 20 L |
0

libtorrent swift 16K swift 8K https swift 1K uTorrent/wine uTorrent

Figure 5.9: Estimated average sustained upload speed.

5.4 Large-scale Sharing

An interesting use of P2P technology would be to provide access to a large archive.
Consider, for example, a YouTube replacement built using P2P: this would create a
very large archive to share. This section covers two aspects of such large archives:
the amount of files, tested using small files, and the size of the files, tested using a
set number of files.

40

5.4.1 Sharing Many Files

This experiment uses 1 seeder and 300 leechers. The seeder seeds an increasing
number of files, each 2.5 MB in size. 330 seconds after the seeder starts, the
first leecher is started. This period was set after testing how long each client’s
seeder needs to completely initialize itself and all its seeds; its purpose is to ensure
the seeder is always seeding idly when the first leecher arrives. The leechers are
started linearly spread over 300 seconds, which is one every % seconds, and are
expected to arrive at the seeder only seconds later. Each leecher downloads one 2.5
MB file at random from the seeder. The complete experiment lasts no longer than
1200 seconds and the seeder has a 10 second delay to make sure the tracker is up
and running, which means the leechers have 560 seconds to finish their downloads
from the moment the last leecher starts.

The number of files has been increased from 1000 to 10000 with steps of 1000.

To investigate the smaller numbers 10 and 100 files have also been used.

libswift Improvement

This experiment has uncovered a large deficiency in libswift: all required files
were kept open during the complete lifetime of the client. The operating system
imposes a limit on the amount of open files which caused libswift to crash during
this experiment due to opening more than 1024 files, the default limit under Linux.

During this project libswift was enhanced to allow it to close the files of swarms
that are not being actively used. For such swarms some metadata — root hash,
block size, total size, completion, sequential completion starting at byte 0, file
names and the primary tracker — is always kept in memory while the files them-
selves are being closed and the swarm is almost completely removed. The client
still recognizes requests for the swarm and can completely reactivate it when needed.
To the outside world this is completely transparent: a leecher can request data from
any of the swarms available on the seeder and the seeder can provide it, whether
the swarm is active or not.

libswift is still not entirely unlimited in the amount of swarms it can have active
at the same time. An active swarm has all its files opened, which is usually three
files per swarm: the data file itself, a file that contains a copy of the MHT and a
file that contains a bitmap of which blocks have already been received. This means
that with a limit of 1024 files per process a single libswift process can have roughly
300 concurrently active swarms. For safety the internal limit has been set to 256.

Resource Usage

In general, both libswift and libtorrent handle many files well. All leechers are able
to download the file they request and do so within 10 seconds. uTorrent, on the
other hand, cannot handle this experiment: uTorrent native only sees a few of the
leechers actually downloading the file and uTorrent wine performs well with only

41

a few files, but already has almost 90% of the leechers fail with 1000 files. With
more than 1000 files uTorrent wine crashes due to the amount of data.

200

10000 files
1000 files
150
S
o
g 100
35
)
o
(@]
50 ’ i
0 L L L L L L
0 100 200 300 400 500 600 700
Time (s)

Figure 5.10: CPU usage of libtorrent’s seeder for different numbers of files seeded.

200

10000 files
1000 files
150 |
S
o
g 1oo-l
35
)
o
(@]
50
o N R Y Y O N O N 0 A
0 100 200 300 400 500 600 700

Time (s)

Figure 5.11: CPU usage of the seeder of libswift with 1 KB blocks for different
numbers of files seeded.

When the number of files seeded increases every client’s seeder needs linearly
more time to initialize and also sees increased resource usage. The CPU usage of
each seeder increases approximately linearly, but libtorrent’s seeder shows much
more increase in CPU usage than libswift’s seeder. Figures 5.10 and 5.11 show the
profiles of CPU usage of libtorrent’s seeder and libswift’s seeder, respectively, for

42

1000 and 10000 files. The worst case for libswift has been taken for the compari-
son: 1 KB blocks. Note that the CPU usage is measured in percentage, with 100%
being full usage of 1 CPU core; the nodes of the DAS4 each have 8 CPU cores.

Both seeders use a lot of CPU in the beginning during their initialization: they
are verifying the correctness of the data they are to seed. Note that libtorrent utilizes
multiple cores for this task while libswift shows a rather constant 100% CPU usage,
which indicates it uses only 1 core. This is a deficiency in libswift that slows down
the initialization of swarms from data that has never before been loaded by the
client; data that has been loaded before can be initialized considerably faster since
the integrity check can be skipped if the metadata of the swarm was saved to disk.
Initializing the data can also be done offline, in a different process or even on
different hardware, and the data can then be offered to the seeder as if it had been
loaded before, thereby skipping the verification check in the seeder process.

libtorrent’s seeder reported 100% completed after 163 seconds, which means it
has completely initialized itself and all its seeds. libswift is done intializing when
its CPU usage drops, which is around 130 seconds. After the initialization has been
done the seeder is seeding idly. libtorrent’s seeder still uses a lot of CPU during
that time. Only at 330 seconds is the first leecher started. This is clearly visible in
libswift’s CPU profile.

Also clearly visible in the CPU profile of libswift are periodic spikes. These
spikes occur at the moment the seeder decides to check the directory with files it is
monitoring for new files. This is not implemented very efficiently and hence gives
this small spike, which is otherwise completely unrelated to the actual seeding
process. If another method of managing the files seeded by the seeder were to be
used, these spikes would not occur.

The average CPU utilization during initialization, idle seeding and active seeding
has been calculated for these runs and are summarized in Table 5.1. libtorrent
was found to have some increased CPU usage for some time after reporting 100%
complete. To make sure only real idle seeding is taken into account in the average,
the period between reporting 100% complete and 200 seconds after the seeder
started is not taken into account in any of the averages. The active seeding time
was taken to last from the first second to the last second where increased upload was
reported. Note that for libtorrent DHT was not activated, as explained in Section
4.3.5. It is expected that enabling DHT will increase the CPU usage while seeding
both idly and actively.

43

‘ Initialization ‘ Idle seeding ‘ Active seeding

liborrent 1000 files 109.29% 10.81% 14.43%
10000 files 90.04% 39.32% 46.14%

libswift 1000 files 93.21% 0.11% 5.53%
10000 files 96.30% 1.51% 4.42%

Table 5.1: CPU usage of the seeder during several phases while seeding 1000 or
10000 files.

Both the CPU profiles and the averages in the different phases show a clear
advantage of libswift: virtually no increase in CPU usage while seeding more files.
libtorrent already uses about 40% CPU while just being idle with 10000 files.

Figure 5.12 shows the peak residential memory usage of the clients’ seeders
when the number of files increase. The curves for libswift show an interesting and
advantageous side effect of the improvement made to support many files. When
confronted with many files some files will be deactivated on-the-fly, freeing their
memory for other files. This means that from a certain point the memory usage
will no longer grow a lot when adding more files. The amount of memory used by
the seeder is composed of the size of the MHT for all the active files and the size
of the metadata for all the inactive swarms.

The peak virtual memory usage for libswift is only slightly higher than its peak
residential memory usage, but libtorrent consistently requests between 250 MB
and 300 MB of virtual memory. This does not grow consistently with the amount
of files, though.

100 - ‘
—_ libtorrent
”EJ 90 + swift 1IK —a—
= 80 swift 8K —x—
g [swift 16K —s—
9 70 |
(N)
o 60 |
(o)}
5 50 |
35
> 40 ,
o _ _ = = = = 1! —
€ 30 | & = = - .
(0]
€ 20 ¥t
v
o kgl kgl *

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of files

Figure 5.12: Peak residential memory usage of the seeder when increasing the
number of files seeded.

44

5.4.2 Sharing Large Files

This experiment uses 1 seeder and 5 leechers. The seeder seeds 1024 files of in-
creasing size. After an, increasing, safe amount of time that ensures the seeder
and all its seeds are entirely initialized the first leecher starts. The 5 leechers are
started linearly spread over 300 seconds, which means one leecher every 75 sec-
onds. Each leecher tries to download a random file from the seeder. The leechers
are given enough time to finish the download. uTorrent has been considered in the
beginning of this experiment, but uTorrent native cannot finish a single download
with only 1 MB files and uTorrent wine crashes under the amounts of data in this
experiment.

Varying file sizes for this experiment have been used: 1 MB; 10 MB to 100 MB
with steps of 10 MB; 250 MB to 1000 MB with steps of 150 MB. The total file size
is 1024 times larger, since 1024 files of the chosen size are used. This means that
the smallest experiment uses a total file size of 1 GB and the largest experiment uses
a total file size of 1000 GB. The unusual increment of 150 MB between 100 MB
and 1000 MB is a trade-off between time and accuracy: increasing the accuracy
strongly increases the time needed on the DAS4 system to get the data. Since time
on the DAS4 was a scarse resource when this experiment was done this choice was
made.

Download Speed

While both libtorrent and libswift, with 8 KB or 16 KB blocks, can easily handle
the amounts of data in this experiment, libtorrent is a bit slower in transferring the
larger files. libswift with 1 KB blocks is about three times slower than when using
8 KB blocks. These download times are shown in Figure 5.13. Inspection of the
details of a libtorrent run with 1000 MB files shows no bottlenecks in the resource
usage of the seeder or the leechers. This suggest the slowdown is inherent to the
protocol, but no further investigation was done.

Resource usage

The CPU usage of all clients’ seeders grows linearly with the size of the files.
This is almost exclusively the CPU time needed during initialization and is ap-
proximately the same for each clients’ seeder except for libswift with 1 KB blocks,
which uses about 25% more. The peak residential memory usage of the seeders,
shown in Figure 5.14, gives a more interesting insight into how the clients handle
the large files. The most outstanding feature is the spike of libswift with 8§ KB
blocks. Multiple reruns have shown this is a rather random effect: it depends on
when the operating system decides to start swapping out the memory of the seeder.
This figure does not show the actual memory needs of the seeders, but rather the
largest amount of memory that was resident at any point during its run. The ac-
tual memory needs are much larger, anyway, but most of it is in virtual memory
with only small amounts of that virtual memory actually being resident. Figure

45

5.14 gives a skewed view on how much memory is actually needed by the client’s
seeder. In Figure 5.15 the profile of the memory usage is shown for libswift with 8
KB blocks and libtorrent, both seeding files of size 1000 MB.

45 — ; :
swift 1IK —a—

40 L swift 8K —x— J
v libtorrent
g 35 | swift 16K —s— .
= 30 -]
©
8 25}]
c
2 20 | 1
©
(U] 15 ¢t 3
(o)}
@©
§ 10 + J
< 5 @ |

0 L L L L L L L L L

0 100 200 300 400 500 600 700 800 900
File size (MB)

1000

Figure 5.13: Average time needed to download a single file for increasing file sizes.

1800
8 =
s 1600 &
@ 1400 i
ks
@ 1200 -
o swift 1K —e—
2 1000 swift 8K —x—]
> libtorrent
o
e 600 -
0]
€ 400 i
V4
3 200 *
o -
0 L L
0 100 200 300 400 500 600 700 800 900 1000

Total file size (GB)

Figure 5.14: Peak residential memory usage of the seeder when increasing the size

of the files seeded.

46

250

swift 8k ———
libtorrent
200
o
2
g 150 ¢
@©
()]
35
>
5 100
€
s
50 \ [
0 ‘ ‘ ‘ ‘ ‘ .
0 2000 4000 6000 8000 10000 12000 14000

Time (s)
Figure 5.15: Residential memory usage of two seeders for file size 1000 MB.

Figure 5.15 gives insight into how the memory is used by the seeders. libswift is
obviously very memory hungry during its initialization. Its virtual memory needs
are in fact much higher than shown here: the peak virtual memory usage of libswift
grows linear with the size of the files. During the initialization libswift with 8 KB
blocks, for example, builds about 1.3 GB of virtual memory and libswift with 1
KB blocks even requests 10.3 GB of virtual memory with 1000 MB files. Most
of that memory, however, is backed by files and is not kept resident most of the
time. libtorrent requires less virtual memory: it builds up only around 250 MB
of virtual memory during initialization, which is later expanded to about 320 MB
when it is actively seeding. libtorrent does need much more residential memory
then libswift while idly seeding: 45 MB versus only 15 MB. This shows that while
libswift is efficient with memory while seeding, it could be much more efficient
when initializing new swarms.

A workaround does exist for the initialization phase of libswift: the data can be
initialized in an offline process, which can run next to the seeder process or even
on different hardware, after which the data and its metadata are both offered to the
running seeder process. The presence of the metadata will allow the seeder process
to skip the verification of the data and to load the data almost instantly. This is a
workaround, however, that only moves the problem away from the seeder process
itself.

47

48

Chapter 6

Conclusions and Future Work

In this chapter some conclusions are drawn based on this report’s results. Some
future work is also recommended.

6.1 Conclusions

Can libswift be made the fastest P2P client currently available? To find the answer
to that question several experiments have been conducted to compare libswift with
other (P2P) clients and itself. libswift has been found to be a good competitor, but
one that is still lacking in some departments.

The most important deficiencies are the performance in flash crowds and the
memory usage when confronted with large amounts of data. Section 5.3 showed
that a flash crowd is not handled efficiently enough by libswift, leading to degrading
performance when more leechers arrive. Section 5.4 showed that when libswift is
confronted with a lot of data to initialize, it requires a lot of memory. The latter
can easily be worked around by having an offline process that initializes the data.

libswift also has some important advantages: when seeding data libswift requires
very little resources. This is especially noticeable when large amounts of data need
to be seeded: libswift needs a lot of resources to initialize, but once that is done it
requires only little CPU and residential memory.

It is important to use the right block size for libswift. Section 5.1 already con-
cluded that 1 KB blocks are not efficient and indeed libswift performs poorly com-
pared to others when using 1 KB block sizes. This means that for now 8 KB blocks
are probably the best choice, which also means using a block size that is likely to
be larger than the MTU when transmitting data across the internet. It will work,
but it breaks the design principles behind libswift.

Is libswift the fastest P2P client currently available? No. But this can certainly
come to be in the near future. The experiments conducted for this project have
shown only two remaining deficiencies in libswift and have also shown several
strong points.

49

6.2 Future Work

libswift still needs some work. A flash crowd is not handled efficiently enough and
memory consumption when confronted with large files is far too much. Tackling
these problems, in the order they were given here, should be the first priorities
when trying to get libswift ready for widespread use. Several optimizations are
also likely to be possible, such as using multiple CPU cores (see Section 5.4).
Apart from these problems and optimizations libswift is still very young and small
bugs have been found during this project time and time again. A lot of testing will
be needed to get libswift to similar maturity as other P2P clients.

The P2P testing framework that has been developed has shown its use and is
considered stable and effective. There are, however, still some bugs that should
be resolved as well as extensions that would be very useful. Support for Windows
nodes would be a major feature, just like support for virtual machines would be.

The experiments in this report compared just a few widely used P2P clients.
There are many more clients that could yield very interesting comparisons with
libswift; in particular getting valid results for uTorrent, the largest BitTorrent client,
would be very valuable. There have also been no constraints on the bandwidth
available during the experiments. With the P2P testing framework ready such ex-
periments are within arms reach and could give a broad overview of the perfor-
mance of currently available P2P technologies.

50

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

A. Bakker and R. Petrocco. Peer-to-Peer Streaming Peer Pro-
tocol (PPSPP). http://datatracker.ietf.org/doc/
draft-ietf-ppsp-peer—-protocol/, June 2012. (work in progress).

Bert Hubert. Linux Advanced Routing & Traffic Control. http://lartc.org/,
2012. Retrieved July 19, 2012.

BitTorrent, Inc. uTP. http://www.utorrent.com/help/
documentation/utp. Retrieved July 24, 2012.

BitTorrent, Inc. utorrent, a (very) tiny bittorrent client. http://www.
utorrent.com/, 2012. Retrieved July 19, 2012.

Blizzard Entertainment, Inc. Networking help for the Blizzard Down-
loader. http://eu.battle.net/support/en/article/
networking-help-for-the-blizzard-downloader, June 2012.
Retrieved July 27, 2012.

Bram Cohen. The BitTorrent Protocol Specification. http://www.
bittorrent.org/beps/bep_0003.html, June 2009. Retrieved August 6,
2012.

Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2011-2016.
http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_cl11-481360_ns827_
Networking_Solutions_White_Paper.html, May 2012.

Cisco. The Zettabyte Fra. http://www.cisco.com/en/US/
solutions/collateral/ns341/ns525/ns537/ns705/ns827/
VNI_Hyperconnectivity_ WP.html, May 2012.

Dirk Engling. opentracker - An open and free bittorrent tracker. http://
erdgeist.org/arts/software/opentracker/. Retrieved July 19, 2012.

E. Rescorla. HTTP Over TLS. http://tools.ietf.org/html/rfc2818,
May 2000.

Ernesto. uTorrent Keeps BitTorrent Lead, Bit-
Comet Fades Away. https://torrentfreak.com/

utorrent-keeps-bittorrent-lead-bitcomet-fades—away-110916/,
September 2011. Retrieved July 24, 2012.

Fielding and Gettys and Mogul and Frystyk and Masinter and Leach and Berners-
Lee. Hypertext Transfer Protocol — HTTP/1.1. http://www.w3.org/
Protocols/rfc2616/rfc2616.txt, June 1999,

Free Software Foundation. GNU wget. http://www.gnu.org/software/
wget/, August 2010. Retrieved July 24, 2012.

Free Software Foundation. GNU Bash. http://www.gnu.org/software/
bash/bash.html, June 2012. Retrieved July 19, 2012.

51

[15]

[16]
[17]

(18]

[19]

(20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]
[32]

[33]
[34]
[35]
[36]

[37]

George Milescu and Rdzvan Deaconescu and Nicolae Tédpus. Versatile Configuration
and Deployment of Realistic Peer-to-Peer Scenarios. In ICNS 2011, The Seventh
International Conference on Networking and Services, pages 262-267. IARIA, May
2011.

gnuplot. http://www.gnuplot.info/, March 2012. Retrieved July 19, 2012.
IBTA. About InfiniBand. http://www.infinibandta.org/, 2010. Re-
trieved August 11, 2012.

LIGHTTPD, fly light. http://www.lighttpd.net/, 2012. Retrieved July 19,
2012.

Linux Foundation. netem. http://www.linuxfoundation.org/
collaborate/workgroups/networking/netem, November 2009. Re-
trieved July 19, 2012.

National Institute of Standards and Technology (NIST). Secure Hash Stan-
dard. http://csrc.nist.gov/publications/fips/fipsl180-2/
fipsl80-2withchangenotice.pdf, August 2002.

P2P-Next Consortium. P2P-Next, sharing the next generation of internet TV. http:
//www.p2p—-next.org/, 2012. Retrieved August 11, 2012.

paramiko, SSH2 protocol for python. http://www.lag.net/paramiko/,
May 2011. Retrieved July 19, 2012.

Riccardo Petrocco, Johan Pouwelse, and Dick Epema. Performance analysis of the
libswift p2p streaming protocol. In 12-th IEEE International Conference on Peer-to-
Peer Computing (P2P12). IEEE, 2012. (to be published).

Python Software Foundation. Python Programming Language - Official Website.
http://www.python.org/, 2012. Retrieved July 19, 2012.

Ralph Merkle. A Digital Signature Based on a Conventional Encryption Function.
In Pomerance, Carl, editor, Advances in Cryptology CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 369-378. Springer Berlin / Heidelberg,
2006.

Rasterbar Software. libtorrent. http://www.rasterbar.com/products/
libtorrent/, 2005. Retrieved July 19, 2012.

Thomas Silverston and Olivier Fourmaux. P2P IPTV Measurement: A Comparison
Study. CoRR, abs/cs/0610133, 2006.

swift, the multipart transport protocol. http://libswift.org/, 2010. Re-
trieved July 27, 2012.

Tatsuhiro Tsujikawa. aria2, The Next Generation Download Utility. http://
aria2.sourceforge.net/, 2012. Retrieved July 19, 2012.

The OpenSSL Project. OpenSSL, Cryptography and SSL/TLS Toolkit. http:
//www.openssl.org/,2012. Retrieved July 24, 2012.

The PHP Group. PHP. http://www.php.net/, 2012. Retrieved July 19, 2012.
The R Foundation. The R Project. http://www.r—-project.org/, 2012. Re-
trieved July 19, 2012.

Todd C. Miller. Sudo Main Page. http://www.sudo.ws/,2012. Retrieved July
19, 2012.

Vrije Universiteit Amsterdam. Distributed ASCI Supercomputer - Version 4. http:
//www.cs.vu.nl/das4/,2012. Retrieved July 19, 2012.

Wikipedia. Jumbo frame. http://en.wikipedia.org/wiki/Jumbo_
Frames, July 2012. Retrieved July 25, 2012.

Wikipedia. lighttp. http://en.wikipedia.org/wiki/Lighttpd, July
2012. Retrieved July 24, 2012.

Wine HQ. http://www.winehqg.org/, 2012. Retrieved July 24, 2012.

52

[38] YouTube Statistics. http://www.youtube.com/t/press_statistics/.
Retrieved July 26, 2012.

[39] B. Zhang, A. Iosup, J. Pouwelse, and D. Epema. Identifying, analyzing, and model-
ing flashcrowds in bittorrent. In Peer-to-Peer Computing (P2P), 2011 IEEE Interna-
tional Conference on, pages 240-249. IEEE, 2011.

53

54

Appendix A

Framework Features

This appendix contains the complete lists of extension points, features and impor-
tant default modules provided by the framework.

A.1 Extension Points

e client, which defines how a client is to be run as a seeder or leecher
(examples: libswift, pTorrent);

e source, which defines how to retrieve the source code of a client (if any)
(examples: local directory, git);

e builder, which defines how to build the source code of a client (if not
binary) (examples: make, scons);

e file, which defines what data is to be transferred (examples: local file,
generated fake data);

e host, which defines what hosts to connect to and how to operate them (ex-
amples: ssh, das4);

e tc, which defines a method of traffic control for hosts to create/emulate
network conditions (examples: netem);

e workload, which defines a type of workload to generate for the clients
(examples: linear, poisson);

e parser, which defines a parser for logs (examples: libswift parser, CPU
profiling parser);

e processor, which defines postprocessing for logs and parsed logs (exam-
ples: saving the host name, gnuplot scripts);

e viewer, which combines logs, parsed logs and processed data into a single
view (example: html collection).

55

A2

A3

Features

High modularity — every aspect is modular and every module is loaded at
runtime;

Strong declarative configuration DSL — typical scenario declarations are
well under 100 short lines;

Highly accurate client timing — clients are started within milliseconds of
their precalculated start time;

Parallel or sequential — parallel tasks can be set to run sequentially without
losing accuracy with client timing;

Robust — in the advent of crashes the framework does the best it can not to
loose information and to clean up;

Extensive configuration checking — whenever something is not in order the
framework will help resolving it;

Extensive debugging facilities for writing new modules;

Support for locally or remotely retrieved and built source code at runtime;
Support for CPU and memory profiling of clients;

Support for runtime generation of .torrent files and root hashes;

Multiple connections per host — in particular dedicated connections to run
and monitor clients;

Possibility to asynchronously send commands to a host.

Important Default Modules

Client support for lighttpd/aria2 combination ([18],[29]), libtorrent [26], open-
tracker [9], libswift and pTorrent [4];

Support for local files, remote files and generated fake data;
Host support for SSH which can benefit from paramiko’s [22] features;

Host support for the DAS4 system [34] which can fully automate reserva-
tions and uses custom multiplexed connections to allow a very large number
of connections over the same head node (requires paramiko);

Support for gnuplot [16] post-processing, including default scripts to visual-
ize client progress and resource usage;

56

e Support for netem [19] (linux kernel module) traffic control;
o HTML collection output of scenario results;

e Several predefined workload generators.

57

58

Appendix B

Example Experiment

This appendix contains the configuration files and results of the example experi-
ment.

B.1 Configuration

B.1.1 Campaign File

The campaign file Test Specs/example_experiment_campaign describes
the campaign.

Two scenarios are described, both last at most 60
seconds, excluding preparation and cleanup time.

Both scenarios are described by the concatenation of two
files: the generic scenario configuration and the client
specific configuration. Note that those files are all
expected in TestSpecs/scenarios/.

S oS W e S S

[scenario]

name=example_using_swift
file=TestSpecs/scenarios/example_experiment_scenario
file=TestSpecs/scenarios/example_experiment_swift
timelimit=60

[scenario]
name=example_using_libtorrent
file=TestSpecs/scenarios/example_experiment_scenario
file=TestSpecs/scenarios/example_experiment_libtorrent
timelimit=60

59

B.1.2 Generic Scenario File

The generic scenario file Test Specs/scenarios/example_experiment_scenario
contains most scenario configuration. Only the client specific configuration is miss-
ing.

The configuration of the nodes to test on, all DAS4 nodes,
all to be reserved for 600 seconds:
1 node called tracker
1 node called seeder
2 nodes called leechers
Note that the reservation will be made as one on the local
DAS4 cluster

[host :das4]

name=tracker

nNodes=1

reserveTime=600

user=tschaap

[host :das4]
name=seeder
nNodes=1
reserveTime=600
user=tschaap

[host :das4]
name=leechers
nNodes=2
reserveTime=600
user=tschaap

The data that will be transferred: 10 GB of generated data
A .torrent file and root hash with 8 KB block size will be
generated. Both will be stored in caches: generating and

especially hashing 10 GB of data takes a lot of time. Make
sure the directories caches/ and caches/torrents/ exist.
[file:fakedata]

name=thedata

ksize=10485760

generateTorrent=yes

generateRootHash=8

torrentCache=caches/torrents

rootHashCache=caches/merkle

The BitTorrent tracker

60

The tracker is set up to listen on port 16000 and will
change the .torrent file of file object thedata (the
generated data above) to point to this tracker.
The client is already present remotely in my home
directory under ./opentracker/, so I can just use that
(remoteClient=yes and location=./opentracker/).
[client:opentracker]

name=tracker

remoteClient=yes

location=./opentracker/

port=16000

changeTracker=thedata

The executions bind it all together.
— The tracker client will run on the tracker host.

as a seeder and will transfer thedata.

The leecher client is run twice on the leechers host,
and will transfer thedata. This will end up as 4
independent execution: 2 nodes and multiplied by 2.

which is when the experiment begins. See the workload
below for how this is changed.

[execution]

host=tracker

client=tracker

S oS S e S SR S e e e
[

[execution]
host=seeder
client=seeder
file=thedata
seeder=yes

[execution]
host=leechers
client=leecher
file=thedata
multiply=2

— The seeder client will run on the seeder host, is marked

Note that each execution starts, by default, at 0 seconds,

The workload will be applied to all (4) executions of the

leecher client. It is configured to offset them by 30

interval. Combining they will start at (0x0)+30, (1%0)+30,

#
#
seconds and to spread them linearly using a 0 seconds
#
#

(2x0)+30 and (3x0)+30 seconds. Or: all will start 30

61

seconds after the experiment starts.
[workload:linear]

apply=leecher

offset=30

interval=0

These are some standard post-processors that save some
data about the executions.

[processor:savehostname]

[processor:saveisseeder]

[processor:savetimeout]

[processor:savefiles]

gnuplot post-processing: plots the data output by the
clients, after it was parsed, in some nice graphs. One for
the completion/upload/download graph and one for the

CPU/memory usage.

[processor:gnuplot]
script=TestSpecs/processors/simple_log_gnuplot
[processor:gnuplot]
script=TestSpecs/processors/simple_cpu_gnuplot

The statistics processor builds a single line of

statistics for the complete scenario. This is very

useful when combining the data of multiple scenarios.
[processor:statistics]

Finally a viewer: this will create an HTML page
displaying all the output in a user viewable fashion.
[viewer:htmlcollection]

Note the absence of clients other than the tracker: they
are configured in separate files.

B.1.3 libswift Scenario File

The libswift specific scenario file Test Specs/scenarios/example_experiment_swift
contains the configuration for the libswift clients.

The swift clients.

The clients will be have their CPU/memory usage monitored
(profile=yes).

By default only the swift parser would be used for a
client of type swift; since I use profiling I want that
log to be parsed as well, so I explicitly tell the
framework to use both the swift and cpulog parsers.

T

62

The client is readily available in my homedir in
./libswift—-git/, so use that.

The seeder will listen on port 15000 and wait for 60
seconds before quitting. The leecher is set to expect its
tracker on port 15000 of the seeder host.

Both use block size 8192, or 8 KB.

S oS W o S

[client:swift]
name=seeder
profile=yes
parser=swift
parser=cpulog
remoteClient=yes
location=./libswift-git/
listenPort=15000
wait=60

chunkSize=8192

[client:swift]
name=leecher
profile=yes
parser=swift
parser=cpulog
remoteClient=yes
location=./libswift—-git/
tracker=@seeder:15000
chunkSize=8192

B.1.4 libtorrent Scenario File

The libtorrent specific scenario file Test Specs/scenarios/example_experiment_libtorrent
contains the configuration for the libtorrent clients.

The libtorrent clients.

The clients will be have their CPU/memory usage monitored
(profile=yes).

By default only the libtorrent parser would be used for a
client of type libtorrent; since I use profiling I want

that log to be parsed as well, so I explicitly tell the

framework to use both the libtorrent and cpulog parsers.
The client is readily available in my homedir in

./libtorrent/, so use that.

[client:1libtorrent]

63

name=seeder
profile=yes
parser=libtorrent
parser=cpulog
remoteClient=yes
location=./libtorrent/

[client:libtorrent]
name=leecher
profile=yes
parser=libtorrent
parser=cpulog
remoteClient=yes
location=./libtorrent/

B.2 Output

Some of the output of running the example experiment will be shown here. Not
everything is shown: this example is meant only to illustrate how the framework
functions.

B.2.1 Raw Logs

The execution logs are built while the client is running. Some excerpts of the
interesting parts of these raw logs are presented below. They can contain any output
the client gives, including status information and debug information.

CPU and Memory Profiling Log

This is a very extensive log. Each log entry has three lines: a timestamp, the
contents of /proc/PID/stat (where PID is the process identifier of the running client
process) and the amount of virtual and residential memory used by that process.
See man proc! for interpreting the second line.

Presented are three entries from the raw CPU log of a running libtorrent client.
Each second line has been split into 5 lines due to space constraints.

12-08-01 13:06:34.849769874

9448 (libtorrent) S 1 9414 9414 0 -1 8192 1968 0 0 0 1198
160 0 0 20 0O 3 0 492156146 142876672 1750
18446744073709551615 4194304 4235572 140737488349280
140737488346240 140737327318301 0 0 6 O
18446744073709551615 0 0 17 0 0 0 0 O O

"http://linux.die.net/man/5/proc

64

139528 7000

12-08-01 13:06:35.870864063

9448 (libtorrent) S 1 9414 9414 0 -1 8192 1968 0 0 0 1293
168 0 0 20 0O 3 0 492156146 142876672 1750
18446744073709551615 4194304 4235572 140737488349280
140737488346240 140737327318301 0 0 6 O
18446744073709551615 0 0 17 0 0 0 0 O O

139528 7000

12-08-01 13:06:36.892029526

9448 (libtorrent) S 1 9414 9414 0 -1 8192 1971 0 0 0 1387
176 0 0 20 0O 3 0 492156146 142876672 1753
18446744073709551615 4194304 4235572 140737488349280
140737488346240 140737327318301 0 0 6 O
18446744073709551615 0 0 17 0 0 0 0 O O

139528 7012

libtorrent Client Log

Below the raw log as printed by a running libtorrent seeder is shown. The columns
are: relative time, percentage completion, bytes uploaded since last row was printed,
bytes downloaded since last row was printed.

43.997105 94.92 0 0

44.997025 98.52 0 0

45.996922 100.00 356 189

46.996464 100.00 9089857 329291
47.995964 100.00 25345086 792663
48.995850 100.00 5415460 157301

libswift Client Log

This log shows a not so very well functioning libswift seeder — the DONE line,
which is one line in the log, is split into two lines due to space constraints. The
AddData lines are debugging. The DONE line contains the information needed.
Its contents are:

DONE number of bytes completed o £ total number of bytes to download (seq num-
ber of bytes completed sequentially from byte 0) total number of datagrams sent
dgram total number of bytes sent bytes up, total number of datagrams re-
ceived dgram total number of bytes received bytes down

The starting DONE is written as done if not all data has been received or found,
yet.

AddData: retransmit of randomized chunk (0,140752)
AddData: retransmit of randomized chunk (0,140753)
DONE 10737418240 of 10737418240 (seqg 10737418240) 337857

65

dgram 2642173353 bytes up, 317270 dgram 7090088 bytes down
AddData: retransmit of randomized chunk (0,134023)
AddData: retransmit of randomized chunk (0,141824)
AddData: retransmit of randomized chunk (0,141825)

B.2.2 Parsed Logs

The wildly varying or very extensive raw logs are very inconvenient to work with.
The parsed logs provide a nicer — and consistent — view of the data.

Client Log

Any client supported by default has a parser that transforms the client specific
raw log into the format shown below. The columns are relative time, percentage
complete, upload speed in kilobytes per second and download speed in kilobytes
per second.

15 2.63679504395 257.041992188 28928.0087891
16 2.95097351074 5299.12597656 33416.4335938
17 3.23028564453 13523.0429688 29624.6806641
18 3.52279663086 100.864257812 31006.9257812
19 3.82133483887 22453.2216797 31824.6630859
20 4.10667419434 105.7109375 30349.7119141

CPU and Memory Profiling Log

The raw profiling log is parsed into the more usable format shown below. The
columns are relative time, CPU usage in percentage, residential memory usage in
bytes and virtual memory usage in bytes.

.158401832 0.0 1980 25100

.180806398 19.5617279745 6296 80400
.203550699 42.0437444217 6440 80400
9.227300194 63.4920948119 6632 80400
10.24871526 46.9936283472 6780 80400
11.282581429 44.4931862357 6952 80400

O J o

B.2.3 Processed Data

The logs from the clients, both raw and parsed, are combined or further processed
to better present them and give more insight into what happened during the run.
Also some metadata is saved by several post-processors that make it easy to iden-
tify the clients later on.

66

Statistics

Taking the data of all leechers and the data of all seeders together, the statistics
post-processor gives a summary of the run. This data is very useful when quickly
comparing several runs, for example in a plot. The statistics on the leechers in the
libtorrent scenario, for example:

4 17536 15689 2.21 0 0.0 0.7175 227912 193414

The columns are: (1) number of leechers, (2) maximum and (3) average of the
peak residential memory usage in bytes of all leechers, (4) average of final cu-
mulative CPU time in seconds used by each leecher, (5) number of leechers that
completed their downloads, (6) average time in seconds those leechers needed to
complete the download, (7) average of the final percentage of completion of all
leechers, (8) maximum and (9) average of the peak virtual memory usage in bytes
of all leechers. Similar statistics are provided for the seeders.

Graphs

The parsed client logs and profiling logs can be plotted using gnuplot. The results
give a good insight into the progress of a client. Figures B.1 and B.2 show the
graphs for one of the libswift leechers. They are not very well readable when
printed, but very clear when viewed on a screen.

The X axis in both Figures is the time in seconds, running from 0 to 30. In
Figure B.1 the red line is the completion in percentage (scaled 0% to 100%) and
the green and blue lines are the upload and download speeds, respectively (scaled
0 to 35000 KB/s). In Figure B.2 the red line is the CPU usage (scaled 0% to 100%)
and the green line is the residential memory usage (scaled 0 to 10000 KB).

The graphs are most effective in conveying the information from the logs very
quickly: the client did not finish the download and it looks like it simply did not
have enough time to download it — downloading about 30000 KB per second is
not very bad but the progress does not reach 10%. CPU and memory usage do not
look like they are a problem for this leecher.

67

89

Percentage

100

Completion

Upload speed
Download speed

5 10 15 20

Time (s}

Figure B.1: Client log in graph form — one of the libswift leechers.

25

30

35000

30000

25000

20000

15000

10000

5000

Speed (kB/s)

69

Fercentage

100

CPU usage (%) ——
Memory usage (K

Time (s)

Figure B.2: Profiling log in graph form — one of the libswift leechers.

30

10000

9000

8000

000

6000

5000

4000

3000

2000

1000

Memary (KBytes)

B.2.4 Views

The last and most complete pieces of output are the views. By default the HTML
collection is provided, which was also used for the example experiment.

HTML Collection

The HTML Collection gives an overview of all the clients running in a scenario,
presenting their results in a table. A screenshot of the table is shown in Figure B.3.

The overview gives direct insight into all clients. With a bit of experience on
reading the graphs one can see in a glance that none of the clients made it, while
the seeder has been uploading constantly. An interesting bit of information that is
also directly visible is that the CPU usage is not the bottleneck for the seeders nor
the leechers.

The graphs on the table are just thumbnails, which link to their fully sized ver-
sions for further investigation, just like any file encountered that the viewer does
not understand itself is included as a link. Not shown in Figure B.3 are the index
into the table and the section with data that does not fit into the table, such as the
statistics files which cannot be linked to a specific execution.

70

IL

Executions

Execution number Host name graph X.png cpu_graph X.png timeout X files XisSeeder X
1 seeder Os files 1 YES

2 leechersl!l 30.0s files 2 NO

3 leechersl!l 30.0s files 3 NO

4 leechers 30.0s files 4 NO

5 leechers 30.0s files 5 NO

Figure B.3: HTML collection — the table of all executions in a single scenario run.

72

Appendix C

Framework Documentation

This appendix contains the main documentation of the evaluation framework. Sec-
tion C.1 contains the main README file and Section C.2 contains the HOWTO
file. The REFERENCE file has been ommitted.

C.1 README

73

13/08/12 README 1

The P2P Testing Framework is a framework for automated running of peer to peer clients.
It supports different clients, different types of host and several ways of processing
the output. Most importantly it is easily extended to include your needs. Campaign and
scenario files decribe how a test is to be run (which client, which hosts, how to
connect, how to process data, etc) in a simple declarative language. Python modules,
subclasses of the core modules, are loaded to handle most of the specific parts, all
glued together by the core of the framework.

This document contains the general documentation, including a version history, the
design of the framework and the parameters to the core modules. The HOWTO document gives
a more introductory description of how to use the framework and how to extend it, both
including examples. For a complete documentation of the framework, please run 'doxygen
doxy' inside the Docs directory.

= Version History =
See CHANGES for details.
2.4.0
- Support for desktop notifications
- Multiple instances of the same execution
- Multiple root hashes per file
- Fixes in the way multiple files are handled
2.3.0
- Multiplexed connections on host:das4
- Multiple file support
- Argument selectors are supported when specifying references to hosts, files or
clients
2.2.0
- Changed connection setups for stability
2.1.0
- Important extensions to the framework, including much better host support and
multiple parser support
- New workload module type
- Strongly improved performance
- client:libtorrent module added
- file:remote module added
- parser:cpulog module added, along with client CPU logging
- processor:savetimeout module added
- Logs will be salvaged on unsuccesfull runs

- Complete port of the framework to python
- Many changes in the internal structure, campaign and scenario files should still
work

= Framework design =

The python framework consists of the core script (ControlScripts/run_campaign.py), the
core modules (ControlScripts/core/) and the extension modules (ControlScripts/modules).
The core script parses the settings on the command line as well as campaign and scenario
files in order to create the CampaignRunner and ScenarioRunner objects. This includes
loading all necessary core modules and extension modules. The ScenarioRunner object
knows how to run a full scenario, which is basically just stepping through all stages
and instructing the loaded objects on what to do for each stage.

== Core script ==

The core script initializes everything and glues the parts together. Its ScenarioRunner
class is of interest to extension modules, since it contains all the objects in an
execution. Those objects are managed using the addObject(...), getObjects(...),
getObjectsDict(...) and resolveObjectName(...) methods.

The general flow of the framework is documented below in the Stages section.
== Core modules ==

The core modules are always available. Most of them are the parent classes for the
extension modules and will be described below. The other core modules provide global

13/08/12 README 2

services.

See the description of the extension modules below or the HOWTO document for more
information on using parameters. The REFERENCE contains a full reference of parameters.

=== core.campaign.Campaign ===

A static class with global properties that hold for all campaigns being executed.
Elements such as loggers and paths to important local directories are found here, but
also a reference to the campaign currently being executed. An important service provided
by the Campaign class is the ability to load modules. Using the loadModule(...) and
loadCoreModule(...) functions all core and extension modules can be dynamically loaded.

=== core.coreObject.coreObject ===

The parent class of all extension modules and hence the parent class of all extension
module parent classes. This class provides a few basic functions, such as naming and
cleanup.

=== core.debuglogger.debuglogger ===

An instance of this class is always available through
core.campaign.Campaign.debuglogger. It is used for logging communication between the
commanding host (the host running the framework) and the hosts doing the actual work.
Host modules use this object for logging their communications.

=== core.execution ===

The core of the P2P Testing Framework revolves around executions of clients on hosts
operating on files. The execution object contains that combination: host, client and
file. It also knows whether the execution is a seeder or a leecher and has a unique
number across the campaign and hence across the scenario.

Execution objects are declared along with the other objects and have the following

parameters:

- host The name of the host object on which the execution should run. Required
- client The name of the client object which should be executed. Required

- file The name of a file object which is to be transferred. Optional, may be
specified muliple times

- parser The name of the parser object which should parse the logs of this

execution. Optional, can be specified multiple times. See the description of client
extension modules for how parsers are selected.

- seeder Set to anything but '' to mark this execution as a seeding execution.
Optional, defaults to ''
- timeout A non-negative floating point number that indicates a number of seconds

to wait before actually starting the client after the scenario starts. Optional,
defaults to 0

- keepSeeding Set to anything but '' to make sure this seeding execution has to end by
itself before the scenario ends; normally seeders are killed when all leechers have
finished

- multiply Specify a positive integer number of copies to be created of this
execution. Optional, defaults to 1.

The host and file parameters of an execution are the most important places for use of
argument selectors.

=== core.logger.logger ===

The generic scenario logger object. An instance is always available through
core.campaign.Campaign.logger. It is used for logging about anything that needs logging.
Several convenience functions are provided to handle exceptions and tracebacks.

=== core.meta.meta ===
Contains a few static functions that allow creation of meta data, such as Merkle root
hashes or torrent files.

=== core.parsing ===
This module provides several functions that make it easier to parse arguments in the

13/08/12 README 3

scenario files. Often used are isPositiveInt(...) and isPositiveFloat(...).

== Extension modules ==

The extension modules provide all the actual functionality. Described here are the
parent classes to the extension modules and their parameters. For the parameters of the
specific extension modules see the documentation of their classes.

To get a better idea of how to use the parameters in the configuration of the framework,
please see the HOWTO document.

=== host ===

Host modules provide the connection to a host and the services to run commands on that
host and to send or retrieve files. Each host modules keeps track of, usually, a number
of connections to the host which can be used to send commands and send or retrieve
files.

Host objects also include information about traffic control that needs to be put on the
host. Such traffic control is defined using parameters to the host object, but is
implemented by the tc extension modules.

Parameters:

- name The name of the host object. This name is used to refer to the host
object in throughout the scenario. Usually required (particular extension modules
sometimes provide a default)

- remoteDirectory The path to a directory on the remote host which can be used to
store temporary files in during the scenario. Optional, a temporary directory will be
created by default (in /tmp usually)

By default the following host modules are provided:

- host:local Uses the local host, mainly for testing. If you wish to use the
local host for serious scenarios consider using host:ssh to 127.0.0.1.

- host:ssh Uses a host that can be approached via SSH. This is the preferred
way of contacting hosts.

- host:das4 Special handler for those with access to the DAS4 system.

==== {C ====

TC modules provide traffic control to a host. They probably have special requirements on
the host and your access to it, so be sure to always check that. Traffic control can be
used to simulate a different networking environment, e.g. with lower speeds and lossy
connections.

TC modules don't have parameters of themselves, but use the parameters set on the host
object they operate on. The following parameters are therefor set on the host object,
but used by the TC module.

Parameters:

- tc The name of the TC module to load, without any prefixes. E.g.
tc=netem to load the tc:netem module on the host. Optional, empty by default which
disables TC

- tcInterface The name of the interface on which traffic control is to be
applied. This should be an existing networking interface on the remote host. Optional,
defaults to ethO

- tcMaxDownSpeed Maximum download speed to allow. To be specified in bits per
second, possibly postfixed by kbit or mbit. E.g. tcMaxDownSpeed=10mbit for 10 mbit
speeds. Optional, defaults to 0 meaning no restrictions

- tcMaxDownBurst Maximum burst in the download speed. Not allowed if
tcMaxDownSpeed is not set. To be specified in bits per second. Optional, defaults to
equal to tcMaxDownSpeed

- tcMaxUpSpeed Like tcMaxDownSpeed, but for upload speed.
- tcMaxUpBurst Like tcMaxDownBurst, but for upload speed.
- tclLossChance Chance to drop a packet. A floating point number between 0.0 and

100.0 inclusive, specifying the chance as a percentage. Optional, defaults to 0.0
- tcDuplicationChance Chance that a packet will be duplicated. A floating point number

13/08/12 README 4

between 0.0 and 100.0 inclusive, specifying the chance as a percentage. Optional,
defaults to 0.0

- tcCorruptionChance Chance that a packet will be corrupted. A floating point number
between 0.0 and 100.0 inclusive, specifying the chance as a percentage. Optional,
defaults to 0.0

- tcDelay The delay to introduce on each packet in ms, given as a positive
integer. Optional, defaults to O
- tcJitter The maximum deviation on the introduced delay, as set by

tcDelay, in ms. Optional, defaults to O

By default the following tc modules are provided:
- tc:netem Uses the netem kernel module with the tc utility

File modules describe data to be transferred. Usually this will consist of one or more
files. Also includes metadata for the file, such as Merkle root hashes or torrent files.

Parameters:

- name The name of the file object. This name is used to refer to the file
object in throughout the scenario. Required.

- rootHash[xx] A Merkle root hash of the file. Consists of 40 hexadecimal digits.

Replace xx in the parameter name with the chunksize in kbytes upon which the root hash
is based (that is the size of the data from which
each leaf hash is calculated). Postfix this by L if you wish to have
legacy root hashes, i.e. where the root is always the 63rd level in
the tree. Examples of parameter names: rootHash[1]=...

rootHash[8L]=...
Optional, may be specified multiple times but not for the same
chunksize.

- metaFile A file with metadata, such as a torrent file. This file will be made

available to all client executions, both seeders and leechers. Should be a path to a
file on the command machine. Optional.

By default the following file modules are provided:

- file:local Specifies a local file or directory to use as data.
- file:remote Specifies a remote file or directory to use as data.
- file:fakedata Creates fake data on the remote host that is always the same, non-

trivial, of configurable size and real.

The file:none module exists, but is deprecated: just don't pass any file parameters to
the execution.

=== client ===

Client modules run the client application that are to be tested. To run this they use
the services and information from all parts of the execution. The client module is
responsible for everything regarding the client, from downloading and compiling via
running to killing and retrieving logs. This burden is partly offloaded to the builder
and source extension modules, and mostly present in the parent class.

Client objects also include information about where they are located and how they are to
be built. Such information is defined using parameters to the client object, but is used
by the source and builder extension modules.

On parser selection: each execution runs one or more parsers after all the raw logs have
been retrieved. The first set of parsers in the following list is used:

1) All parsers specified in the execution object

2) All parsers specified in the client object

3) The declared parser object with the same name as the client module subtype (i.e. a
parser object named 'swift' for [client:swift], no matter the type of the parser object
or the name of the client object)

4) A new parser of the same subtype as the client (i.e. a new [parser:swift] for a
[client:swift])

For steps 1 and 2 the actual parser objects are looked up by first looking at the

13/08/12 README 5

declared parser objects. If the name is among the declared parser object's names, that
one is used. However, if no parser object is declared with that name, but the name is
the same as a parser module subtype that subtype will be loaded. So to run a
parser:cpulog with no parameters on a given client just specifying parser=cpulog with
the client is enough.

Parameters:

- name The name of the client object. This name is used to refer to
the client object in throughout the scenario. Optional, defaults to the name of the
extension module used

- extraParameters Extra parameters to be appended on the command line to the
client. Client specific. Optional, defaults to "'
- parser The name of the parser object to be used to parse logs from this

client. Optional, defaults to a new parser with the same name as the name of the
extension module used; may be specified multiple times

- profile Set this to anything but "" to include external profiling code
that will inspect CPU and memory usage every second, which will be captured in the raw
cpu.log. Optional, defaults to "'

- logStart Set this to anything but "" to log the starting time of the
client, which will be captured in the raw starttime.log. Note that this uses the local
clock of the remote host. Optional, defaults to ''

By default the following client modules are provided:

- client:http Uses lighttpd and aria2 to provided HTTP(S) downloads

- client:opentracker Allows running the opentracker BitTorrent tracker software,
useful in combination with other BitTorrent clients

- client:utorrent Uses the uTorrent binary clients with the webui

- client:swift Uses the libswift command line client

- client:libtorrent Uses the libtorrent mini command line client distributed via

https://github.com/schaap/p2p-clients

=—=== Source ====
source modules instruct the framework how to retrieve the source or binaries of the
client.

source modules do not have parameters of themselves, but use the parameters set on the
client object they operate on. The following parameters are therefor set on the client
object, but used by the source module.

Parameters:

- source The name of the source module to load, e.g. source=local to use
source:local. Optional, defaults to source:directory

- remoteClient Set to anything but '' to signal that the sources are to be loaded,
or found, on the remote host instead of the commanding host. Optional, defaults to ''

- location The location of the sources. The contents of this parameter depends

on the source module used. Required.

By default the following source modules are provided:

- source:directory Assumes the sources or binaries to be present in the directory
pointed to by location; if remoteClient is set this is a directory on the remote host,
otherwise on the commanding host

- source:local Assumes the sources or binaries to be present in the directory on
the commanding host pointed to by location; if remoteClient is set this means the local
sources are first uploaded before the builder starts

- source:git The location is a valid git repository that can be cloned

builder modules know how to compile the sources of a client.

builder modules do not have parameters of themselves, but use the parameters set on the
client object they operate on. The following parameters are therefor set on the client
object, but used by the builder module.

13/08/12 README 6

Parameters:
- builder The name of the builder module to load, e.g. builder=make to use
builder:make. Optional, default to builder:none

By default the following builder modules are provided:

- builder:none The client has already been built. Compilation is skipped.
- builder :make Uses (GNU) make to build the client

- builder:scons Calls the scons building program to build the client

=== workload ===

workload generator modules can change the executions such that the arrival times of the
clients simulate specific workloads.

Parameters:

- apply Specifies the name of a client object to apply the workload to; this
means every execution of that client (but see applyToSeeders) will be changed to be
included in the generated workload. Optional and may be specified multiple times. If
apply is enver specified then all clients that are part of a (non-seeding) execution are
added as soon as all objects have been loaded.

- applyToSeeders By default a workload generator will only change non-seeding
executions. Set this to 'yes' to have it change seeding executions as well. Optional
- offset Starting time of the simulated workload from the start of the

scenario in seconds. Optional, floating point
Please note that workloads do not accept parameters with argument selectors.

By default the following workload generator modules are provided:
- workload:linear Creates a division of the clients to arrive at a linear rate
- workload:poisson Creates a division of the clients to arrive like a poisson process

parser modules know how to parse the output of a client. They are specified per
execution or per client. A parser module takes as input the raw logs as retrieved from
the remote host and outputs parsed logs.

Parameters:

- name The name of the parser object. This name will be used to refer
to the parser object throughout the scenario. Optional, defaults to the name of the
extension module used

By default the following parser modules are provided:

- parser:none A dummy implementation parsing nothing

- parser:http A copy of parser:none for easier use with client:http

- parser:aria2 The parser for logs from aria2 as retrieved by client:http
- parser:lighttpd The parser for logs from lighttpd as retrieved by client:http
- parser:opentracker A copy of parser:none for easier use of client:opentracker
- parser:utorrent The parser for logs from utorrent as retrieved by
client:utorrent

- parser:swift The parser for logs from swift as retrieved by client:swift
- parser:cpulog A parser for CPU logs as generated by having the profile
parameter set on a client

- parser:libtorrent The parser for logs from libtorrent as retrieved by

client:libtorrent

All parsers that are provided by default, except for parser:cpulog, parser:none and its
clones, provide the same output format. It is not required to use this format: any
format is fine as long as it's documented.

=== processor ===
processor modules can process raw and/or parsed logs into nicer datasets or
visualizations or whatever.

processor modules do not have generic parameters: just declaring their object to be

13/08/12 README 7

present is usually enough. Do look at the particular extension module you use for
parameters it might need, though.

By default the following processor modules are provided:

- processor:savehostname Creates a simple text file for each execution with the
name of the host object the execution ran on.

- processor:saveisseeder Creates a simple text file for each execution with "YES"
in it if the execution was a seeder; "NO" is in it otherwise.

- processor:savetimeout Creates a simple text file for each execution with the
timeout in seconds (float) before the client was launched.

- processor:gnuplot Runs a given gnuplot script for each parsed log in an

attempt to create nice graphs.

For the processor:gnuplot two scripts are provided as well:

- TestSpecs/processors/simple_log_gnuplot Generates a graph for the output of the
provided parsers for client logs
- TestSpecs/processors/simple_cpu_gnuplot Generates a graph for the output of

parser:cpulog

=== viewer ===
viewer modules take all the data together and provide a nice view of the data.

viewer modules do not have generic parameters: just declaring their object to be present
is usually enough. Do look at the particular extension module you use for parameters it
might need, though.

By default the following viewer modules are provided:
- viewer:htmlcollection Creates an HTML page that describes the whole scenario.

= Stages =
This section described the workflow inside the testing framework for each scenario. The
code below is pseudocode that matches what the ScenarioRunner does.

0) Read the combined scenario file
a) Create the new object, call parseSetting(...) on it for each parameter and
finally call checkSettings() on it
b) With each host object: call .doPreprocessing() on it
c) With each file object: call .doPreprocessing() on it
d) With each object: call .resolveNames() on it
e) With each execution:
I) Add the client object in the execution to the execution's host's client set
IT) Add the file objects in the execution to the execution's host's files and,
if needed, seedingFiles sets
1) Collect all hosts that are part of an execution in a set executionHosts
2) Call host.prepare() on each host in executionHosts, this prepares that hosts and sets
up connections to them
3) Collect all hosts that are part of an execution in a set executionHosts
4) With each workload generator
a) Call workload.applyWorkload(), which changes the executions
5) On all client object, call client.prepare(), this will prepare the client binaries,
including up/downloading source and compilations
6) With each host in executionHosts
a) If the host requests TC
I) Analyse the hosts and clients to see which TC (inbound/outbound) (port
restricted/fully restricted)
is needed
II) Load the tc module for this host
IIT) Check to see that the TC option needed can actually be loaded (calls
tc.check(host))
0) If not, try and fall back to more restrictive TC
0) If including fallbacks nothing is possible, fail the scenario
IV) Save the way TC is to be done in the host
b) Call client.prepareHost(host) for each client in host.clients,

13/08/12 README 8

which contains all clients that will run on the host

7) With each host in executionHosts

a) Call file.sendToHost(host) for each file in host.files,

which contains all the files that will be seeded from or leeched to the host
b) Call file.sendToSeedingHost(host) for each file in host.seedingFiles,

which contains all the files that will be seeded from the host

8) With each execution

a) Call execution.client.prepareExecution(execution)

9) With each host in executionHosts

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

a) If the host regests TC
I) Install the TC (calls tc.install(host))
With each execution
a) Prepare an execution specific connection to the host of the execution
With each execution, in parallel (with each other and with step 12)
a) Wait the specified timeout
b) Call execution.client.start(execution) to start the client on the host
While the timelimit has not been reached
a) Sleep at most 5 seconds
b) With each execution that is not a side service
I) Call execution.client.isRunning(execution) to see if the client is still
running
0) If so, stop checking the other executions and continue with 12
With each execution, in parallel
a) Call execution.client.isRunning(execution) to see if the client is still running
I) If so, call execution.client.kill(execution) to have the client killed
With each host in executionHost
a) If the host requests TC
I) Remote the TC (call tc.remove(host))
With each execution for which the client is not a side service, in parallel
a) Call execution.client.retrievelLogs(execution) to retrieve the client logs for the
execution
b) Call execution.runParsers(...)
I) If parsers were set for the execution
0) Call execution.parser.parselLogs(...)
II) Otherwise
0) Retrieve a number of parsers plist by calling
execution.client.loadDefaultParsers(execution)
0) Call p.parseLogs(...) for each p in plist
With each host
a) Create a new connection to the host to use for cleanup
With each execution
a) Call execution.client.hasStarted(execution) and
execution.client.isRunning(execution)
to find out if the client is running
I) If so, call execution.client.kill(execution) to kill the client
With each file
a) Call file.cleanup()
With each host
a) With each client in host.clients, which contains all the clients that will/have
run on the host
I) Call client.cleanupHost(host)
With each client
a) Call client.cleanup()
With each host
a) If the host requests TC
I) Try and remove TC (calls tc.remote(host))
b) Call host.cleanup(), which also cleans up the connections, including the cleanup
connection
With each processor
a) Call processor.processLogs(...)
With each viewer
a) Call viewer.createView(...)

13/08/12 README 9

Steps 16 through 21 are the cleanup, which is at each call guarded against errors and
will run always. Note that it can also run at any moment in time, e.g. due to an
Exception being raised. So from any step before 16 one can always jump straight into 16.
In case of such a jump the scenario stops after step 21. A particular jump is after step
6a: if the run is just a testrun step 6b will not be executed and once step 6 is done
the jump to cleanup will be taken.

Step 15 exists in two different versions: at any point during steps 1 through 15 an
error might occur; in that case a specially guarded version of 15 is ran before cleanup
is started. During normal execution, step 15 is not guarded.

Please note the peculiar collections of executionHost: once before and once after
preparing the hosts. The framework explicitly allows for the collection of objects to be
changed by the preparation of the hosts, as long as any host that is added is guaranteed
to have been prepared if it's also part of an execution. This is for example exploited
by host:das4 which creates a host object for every node in its preparation phase.

C.2 HOWTO

83

13/08/12 HOWTO 1

This HOWTO will introduce you into the usage of the P2P testing framework. Topics
covered are building tests, running tests, reviewing results and extending the
framework. Throughout this HOWTO commands and files will be assumed to be run in the
root of the P2P test framework, which is the directory that contains the ControlScripts
directory. This is the working directory that is assumed throughout all documentation of
the framework.

During the first parts of this HOWTO an example will be cosntructed that will instruct
the framework to connect to some hosts using SSH, run the swift client to transfer a
file, to plot some statistics on that and finally to present the results in HTML.

The last part of this HOWTO will demonstrate how to develop a new module for the
framework by example of the development of the file:fakedata module.

=== BUILDING TESTS ===

To run a test you first have to build the scenario and campaign files. In the scenario
files you define which hosts will run which clients to send which files. As an example
we will build a test that sends a single file from host1 to host2, both accessable over
ssh, using the swift client. We will use one scenario file to define the file object,
one file to define the hosts and one to define the clients and put it all together. The
separation into multiple files is just an example: you could just as well use one file
or a different separation.

One thing we will not explicitly do here, but what you should do when writing your own
scenarios (and what I did when writing this), is referring to the documentation. The
base entry point is the README file, which documents the parameters to all the generic
objects. Apart from that you should always open the file of every module you use: module
specific documentation is placed at the beginning of the module file. Finding these
files is simple: as an example module file:local is located in
ControlScripts/modules/file/local . This is actually the very reason the module 1is
called file:local. This is, by the way, also the way that is used throughout the
framework to refer to specific files.

Once you got the hang of the basic syntax the REFERENCE becomes very useful. I found
going through it every time I wrote a test was actually the fastest way not to miss
anything. The REFERENCE, of course, only contains the documentation for the modules
delivered with the framework.

= file: TestSpecs/files/my_file =

[file:local]

name=myfile

path=/home/me/someNiceFileToTransfer
rootHash=0123456789012345678901234567890123456789

This creates a single file object named 'myfile'. It points to the local file given by
path=. Since we'll be transferring this file using swift it is useful to also give the
rootHash. Of course the root hash here is bogus ;).

= file: TestSpecs/hosts/my_hosts =

[host:ssh]
name=my_seeder
hostname=myseederhost.foo.bar

[host:ssh]

name=my_leecher
hostname=myleecherhost.foo.bar
user=my_alter_ego

This creates two host objects named 'my_seeder' and 'my_leecher'. They instruct the
framework to use SSH to connect to the hosts under the given hostnames (this can also be
an IP). In case of the leecher a different username than the logged in user is to be

13/08/12 HOWTO 2

used.
= file: TestSpecs/scenarios/my_scenario =

[client:swift]

name=seedingswift
location=git://github.com/gritzko/swift.git
source=git

builder=make

remoteClient=yes

listenPort=15000

wait=300

[client:swift]

name=leechingswift
location=/home/me/prebuilt_swift_dir
tracker=myseederhost.foo.bar:15000

[execution]
host=my_seeder
file=myfile
client=seedingswift
seeder=yes

[execution]
host=my_leecher
file=myfile
client=leechingswift

[processor:gnuplot]
script=TestSpecs/processors/simple_log_gnuplot
[processor:savehostname]

[viewer:htmlcollection]

This first creates two client objects named 'seedingswift' and 'leechingswift'. The
seedingswift client is instructed to have its source pulled using git (source=git) from
the given repository (location=). It is to be built remotely (remoteClient=yes) using
make (builder=make). Two swift specific parameters for the seedingswift client are given
to instruct the client to listen on port 15000 and to wait for 300 seconds before
terminating. The leechingswift client uses a locally prebuilt binary swift located in
/home/me/prebuilt_swift_dir/. This client will be uploaded to the leeching host and
executed. It is instructed to use myseederhost.foo.bar:15000 as its tracker.

Then the file proceeds with declaring two executions. Executions are the combination of
host, client and file. The first execution instructs the framework to run the
seedingswift client on the my_seeder host to transfer myfile and it tells the framework
that that host will be a seeder (seeder=yes). The latter is important to do correct:
only seeding executions will have the actual files needed to seed uploaded, non-seeding
executions will only upload the meta data. The second execution runs the leechingswift
client on the my_leecher host to transfer myfile again.

The last lines instruct the framework to run two postprocessors: gnuplot and
savehostname. The former runs gnuplot on the gathered data with a supplied script, the
simple_log_gnuplot script in this case, and the latter just saves the hostname as given
above in single files. The output of both of these will be used by the htmlcollection
viewer which will be run in the end. That viewer will generate an HTML overview of what
has been going on.

= file: TestSpecs/my_campaign =

[scenario]
name=scenario1

13/08/12 HOWTO 3

file=TestSpecs/files/my_file
file=TestSpecs/hosts/my_hosts
file=TestSpecs/scenarios/my_scenario
timelimit=60

[scenario]

name=scenario2
file=TestSpecs/hosts/my_hosts
file=TestSpecs/files/my_file
file=TestSpecs/scenarios/my_scenario

This is the campaign file. The campaign file is the complete description of the
campaign, using indirections into the scenario files. It can't contain other objects
than scenario objects and just instructs the framework which files to concatenate in
order to create a full scenario file. It also gives the scenarios a name and optionally
a time limit (in seconds). Note that the order of the file parameters is important: the
files are simply concatenated in the order they are given and if an object is declared
before it is used, the framework will simply complain. For example, if we would specify
the my_file scenario file after the my_scenario scenario file, the framework will
complain after parsing the first execution: it can't find file object myfile.

=== RUNNING TESTS ===
Now that your very interesting and elaborate test suite has been built, it is time to
run it. The most easy way is:

./ControlScripts/run_campaign.py TestSpecs/my_campaign

This will run the scenarios in your campaign file. You can instruct the framework to
check your campaign instead, without actually running everything:

./ControlScripts/run_campaign.py --check TestSpecs/my_campaign

Note that the syntax and sanity checks will be run during the actual run as well: a
check run simply stops before any uploading and executing is done. When developing
campaigns it is advisable to do a check run first, for example to establish whether your
hosts are reachable without user interaction.

Several more options are available, mainly for debugging. Just run
./ControlScripts/run_campaign.py

without any other options to get a list of them.

And that's all there is to it. Just run it.

= Access to hosts =

One important note on access to hosts: this needs to be done without user interaction!
This goes for everything in the framework, but accessing hosts is the most important
example. Usually you will access some hosts over SSH. Make sure you can access those
hosts without having to type anything! Create a key for your own identity and use ssh-
agent to make sure you don't need to enter the passwords for your private keys. (You do
have passwords on your private keys, right?)

A typical session for me goes like this:
ssh-agent bash
ssh-add
[Type password to private key]
./ControlScript/run_campaign.py TestSpecs/my_campaign
exit

The host:ssh module will check whether your hosts are reachable, but you can do so by
hand yourself:

13/08/12 HOWTO 4

ssh yourhost "date"
This should connect to the host, print the date, and fall back to your local prompt. If
anything happens in between, such as extra output or user interaction, the framework
will not work. Of course, you should add those parameters you also give to the
framework, such as a different username or extra parameters.

=== REVIEWING RESULTS ===

After your tests have run, or failed, you should always review some results. The results
can by default be found in the Results/ directory. Say you have just ran the above
campaign my_campaign, and it was 17:00:00 on the 24th of November 2011. The results will
then be in Results/my_campaign-2011.11.24-17.00.00/. In this directory you will first
find err.log. Always review this: it is extra output from the scenarios. This file is
especially important when something failed (the output of the framework will direct you
here, as well).

Apart from the err.log file there is the scenarios directory which holds one directory
for each scenario. Inside each scenario's directory are all the logs and results of that
scenario. Firstly there is the scenarioFile file, which is the concatenation of scenario
files used to initialize the scenario. This is useful for debugging and also
automatically documents the setup of your tests. Note that when line numbers are
mentioned in error lines, they always refer to this file.

The executions directory contains one directory for each execution, numbered exec_0,
exec_1, etc. Inside these you will find the logs and parsedlLogs directories, which
contains the raw logs from the clients and the interpreted logs after a parser has been
run on them (for using other parsers than the default ones: consult the full
documentation). You can of course use these logs to do your own extended analyses.

Next to the executions directory are the processed and views directories, which
respectively contain post-processed data, such as graphs or formatted logs, and views,
such as the HTML overview.

When everything from your my_campaign campaign went well, you should usually first check
the actual output. The htmlcollection view was defined, which takes together all
processed data and puts it into an HTML page. To view this, you could run:
firefox
Results/my_campaign-2011.11.24-17.00.00/scenarios/scenariol/views/collection.html

=== EXTENDING THE FRAMEWORK ===
The framework is built with extensions in mind. There are several categories of
extensions you can make:

- host modules

- file modules

- client modules

- parser modules

- processor modules

- viewer modules

- tc modules

- builder modules

- source modules

- workload modules
Those are quite some extension points. This HOWTO doesn't even use all of them and no
effort will be made to discuss each extension in detail. For a particular extension's
details, please refer to the README and other documentation.

The general process of creating a new module is this:
1) Read up on the API the module should implement;
2) Copy the skeleton file to your own module;
3) Read your new module (which is just the skeleton) and read up on any mentioned
APIs you can use, as well as the global API;
4) Write your implementation in the skeleton that is currently your module, be sure
to document and check all places where it says TODO;
5) Thoroughly test your implementation and adjust as needed.

13/08/12 HOWTO 5

That looks a lot like generic software development and in fact it is. But due to the use
of the skeleton a lot of the hard labor is taken out of it. Every module is also based
on a generic parent class that does most of the heavy lifting and administration. This
leaves just the particular details for your module to be filled in. For example, if you
would like to add a new client (probably the most commonly made extension) you need to
define the layout on disk of your client (so it can be moved/uploaded), tell the
framework how to run it and instruct how to retrieve the logs. And that's it. For a
simple client with only one binary and logging on stderr this would take a total of 5
lines of code. Most effort would probably be in reading through all the comments in the
skeleton implementation.

As an example of this process the development of file:fakedata is documented below.

= 1) Read up on the API the module should implement =
As a first step, let's run the doxygen tool to get our documentation.

cd Docs/
doxygen doxy

With the documentation in place, we'll take a look at the API of the file object.
firefox html/index.html

click on Classes
click on core::file:file%

Read through the class' methods to get an idea of what functionality the file:fakedata
class will have to offer.

Based on everything we can read here one could build an implementation. But let's make
life easy on ourselves.

= 2) Copy the skeleton file to your own module =
cp ControlScripts/modules/file/_skeleton_.py ControlScripts/modules/file/fakedata.py

Check.

= 3) Read your new module and read up on any mentioned APIs and the global API =

There's a number of TODOs in the skeleton file and a lot of comments. Most comments give
examples on possible implementations, as well. In fact the examples show you the
complete implementation of an empty file.

With each method defined there are descriptions of how to implement that method. It's a
good idea to also have a look at the types of the arguments passed to the methods we
will be implementing. Going over all methods one could note we really only deal with
host objects in this module. So let's look up the host class in our firefox: *click on
Classes* and *click on core::host::host*. Read through the methods to know what services
a host can provide. Interesting bits are:

- getTestDir
- sendCommand
- sendFile

- sendFiles

Also important is the static Campaign class. *Click on classes* and *click on
core::campaign::Campaign* to read the documentation on that. Since we need a utility
provided with the framework for file:fakedata, the testEnvDir property might be useful.

Now that we've read up on our supporting code and have an idea of what to do, we can get
to implementing the module.

= 4) Write the implementation of your module =
When implementing a module there are two important points to take into account, next to

13/08/12 HOWTO 6

building your complete implementation:

- Go over all places where it says 'TODO' (search for it)

- Document what you're doing and how your module works
The TODOs are there to make sure you touch all points you should, either because they
need some administrative touches, or you should carefully consider whether to implement
and/or extend the function. The documentation is obviously needed to make sure others
can use your module. The most important documentation comes at the top of your class:
there it should say what the module does, how to use it, and other important things
about it.

A full contextual diff will be placed at the end of this file, so the exact
implementation won't be discussed here, just a number of specific ways of getting there.
As such, the documentation and administrative changes can be reviewed in the diff.

sendToSeedingHost is where the really interesting stuff happens. Note that the binary
parameter tells us to use an already existing binary on the remote host (and which
binary), so we should check whether it is set before trying to compile the binary
remotely. Uploading and compiling the files involves some interaction with the rest of
the framework and for that reason its development is detailed below. The following
thoughts are relevant:

- The fakedata utility is in Utils/fakedata/ and consists of all .cpp and .h files

there;

- On the remote host the source should have its own (temporary) directory;

- There are many compilers out there and we can't easily take all of them into

account;

- Errors might occur and we should handle those.

The first thought touches on finding those files locally. In the Campaign object the
testEnvDir property tells us where the testing environment is located. From there we can
get to the fakedata utility: "{0}/Utils/fakedata/".format(Campaign.testEnvDir) should
be the directory holding the files.

The second thought has to do with making sure we don't overwrite other files and at the
same time don't pollute the remote host with our stuff. A remote temporary directory
would be ideal for that, as long as it is removed again when we stop. We'll create a
remote temporary directory using the mktemp command. As for the base path we can give to
mktemp: is there a good way to place this temporary directory? In fact you'll find there
is: whenever a host is initialized a temporary directory is made available on it where
temporary files for the testing framework can be placed. host.getTestDir()
host.getPersistentTestDir() will tell you about this. The question is which to use. Will
these files be needed after cleanup? Certainly not, only log files and similar output is
needed after cleanup and this utility can be thrown away again. So host.getTestDir() is
the right function to call.

Many compilers are available and we could write some very complex code trying to find
out which compiler is supported, etc, etc. We might as well go for autoconf for that. Or
we could just choose one. g++ is often available and for if it isn't: just let the user
specify a manually compiled binary. This is a tradeoff between usability and complexity.
In this case the complexity will grow far too much if we'd try and support many
compilers. Those hosts lacking the g++ compiler are covered by the binary parameter.

The last thought, the occurence of errors, becomes more important with the choice for
just one compiler. It's also a though that fall into two parts: finding problems and
acting on them. Any problems that could occur in this case are during calls to remote
commands. Luckily the host.sendCommand() function, which we'll use for running commands
remotely, will return the output of the command. As such it is possible to just include
some simple bash to always output, say, "OK" when everything went fine. Catch the output
in a variable, check that the last line says "OK", and problems can be found. What to
do, then, when a problem occurs? Raising an exception usually does it, they get logged
and kill the current scenario.

Having thought about these things we can write most of the code for compiling the
utility remotely. For running it one important question still arises: where to store the

13/08/12 HOWTO 7

file? A convention that is used throughout the framework is that each module claims its
own directory in a temporary directory's substructure: module_type/module_subtype/ . Or
in this case: self.getFileDir(host). Wait, where did that come from? It's documented in
the file parent object and will just return the complete path to the directory specific
for your file module on the passed host. With this information it becomes a matter of
filling in the blanks and just writing the code. See the diff for the results.

= 5) Test and adjust =

Testing your module should be done using your usual software testing techniques: cover
all code, test corner cases, special parameters, etc. Make sure it works. It is usually
easiest to write a small campaign in which to test a module you develop. I have a few
around, for example, in which I can just plug a new client and have that client run on a
few machines to send some files around. It is this one I also changed to use
file:fakedata in order to test that.

When first developed the file:fakedata was not implemented correctly. Some typos, some
small mistakes, the usual. The reason you test. More interestingly it turned out that no
files were transmitted at all when using file:fakedata, even though the files were
created as intended. An error in the design was found: torrents (which were used for its
testing) name specific files, but file:fakedata chooses its own name. This led to the
file being generated, but never being recognized by the seeder. The filename parameter
was introduced because of this.

= Diff =
Below is the full contextual diff from file:_skeleton_ to file:fakedata. Note that the
current version of file:fakedata is quite different, since it supports multiple files.

Note that this is actually the ported python version instead of the original bash
version (for which this, now adapted, HOWTO was originally written).

*%% ControlScripts/modules/file/_skeleton_.py 2012-03-09 13:27:03.546043891 +0100

--- ControlScripts/modules/file/fakedata.py 2012-03-09 13:27:03.572055429 +0100
LR o o o o o o

k 1’59 *kk*%

| # These imports are needed to access the parsing functions (which you're likely to use
in parameter parsing),
! # the Campaign data object and the file parent class.
! from core.parsing import *
from core.campaign import Campaign
import core.file

! # NOTE: The last import above (import core.file) is different from usual. This is done
to prevent trouble with python's

! # builtin file type. The import

! # from core.file import file

! # works perfectly, but hides the normal file type. The tradeoff is between a bit more
typing (core.file.file instead of file)

! # and possible errors with regard to file and file (??).

|

! # You can define anything you like in the scope of your own module: the only thing
that will be imported from it

! # is the actual object you're creating, which, incidentally, must be named equal to
the module it is in. For example:

! # suppose you copy this file to modules/file/empty.py then the name of your class
would be empty.

def parseError(msg):

A simple helper function to make parsing a lot of parameters a bit nicer.

raise Exception("Parse error for file object on line {0}: {1}".format(
Campaign.currentLineNumber, msg))

13/08/12 HOWTO

I # TODO: Change the name of the class. See the remark above about the names of the
module and the class. Example:

! #

| # class empty(core.file.file):

class _skeleton_(core.file.file):

A skeleton implementation of a file subclass.

Please use this file as a basis for your subclasses but DO NOT actually

instantiate it.

It will fail.

Look at the TODO in this file to know where you come in.

TODO: Update the description above. Example:

An empty file object.

To be used just to create an empty file.

Extra parameters:
- filename The name of the file to be created.

FH o oH o H R H R

def __init__(self, scenario):

[TRTRT]

Initialization of a generic file object.

@param scenario The ScenarioRunner object this client object is part
of.

core.file.file. _init__ (self, scenario)

TODO: Your initialization, if any (not likely). Oh, and remove the next

%1ne. raise Exception("DO NOT instantiate the skeleton implementation")
def EﬁzseSetting(self, key, value):
Parse a single setting for this object.
--- 1,44 ----

from core.parsing import isPositivelnt
from core.campaign import Campaign
import core.file

import os

def parseError(msg):

A simple helper function to make parsing a lot of parameters a bit nicer.

raise Exception("Parse error for file object on line {0}: {1}".format(
Campaign.currentLineNumber, msg))

The list of files needed for the fakedata utility
fakedataGeneratorFiles = ['compat.h', 'fakedata.h', 'fakedata.cpp', 'genfakedata.cpp'l]

class fakedata(core.file.file):

A file implementation for generated, fake data.

This module uses Utils/fakedata to generate the data for the files.

13/08/12 HOWTO 9
! Extra parameters:

! - size A positive integer, divisible by 4096, that denotes the size of the
generated file in bytes. Required.

! - binary The path of the remote binary to use. This might be needed when g++
does not work on one of the hosts

! this file is used on. Optional, defaults to "" which will have the

b1nary compiled on the fly.
- filename The name of the file that will be created. Optional, defaults to

"fakedata"

|

! size = None # The size of the file in bytes

! binary = None # Path to the remote binary to use

! filename = None # The filename the resulting file should have
def __init__(self, scenario):

def

[TRTRT]

Initialization of a generic file object.

@param scenario The ScenarioRunner object this client object is part
of.

core.file.file. _init__ (self, scenario)

parseSetting(self, key, value):

nun

Parse a single setting for this object.

kkkkkhkkkkkhkhkkkk*

*** 68,90

L LT LT TS R P U

def

--- 53,80

*k*k*
generic settings parsed and to have any unknown settings raise an Exception.

@param key The name of the parameter, i.e. the key from the key=value
pair.

@param value The value of the parameter, i.e. the value from the key=value
pair.

TODO: Parse your settings. Example:

#

if key == 'filename'

if self.filename:

parseError("Really? Two names? ... No.")

self.filename = value

else:

core.file.file.parseSetting(self, key, value)

#

#

#

#

Do not forget that last case!

The following implementation assumes you have no parameters specific to your
core.file.file.parseSetting(self, key, value)
checkSettings(self):

Check the sanity of the settings in this object.

generic settings parsed and to have any unknown settings raise an Exception.

@param key The name of the parameter, i.e. the key from the key=value
pair.
@param value The value of the parameter, i.e. the value from the key=value

13/08/12 HOWTO 10
pair.

nun

if key == 'size':
if not isPositiveInt(value, True):
parseError("The size must be a positive, non-zero integer")
if self.size:
parseError("Size already set: {0}".format(self.size))
self.size = int(value)
elif key == 'binary':
if self.binary:
parseError("The path to the fakedata binary has already been set:

0}".format(self.binary))
self.binary = value

elif key == 'filename' or key == 'fileName':
! Campaign.logger.log("Warning: the parameter fileName to file:fakedata
as been deprecated. Use filename instead.")
! if self.filename:
! parseError("The filename has already been set: {0}".format(
elf.filename))

|

!

|

|

|

|

!

|

!

{

!

1

! if key == 'fileName':
|

h

!

|

s

! self.filename = value
! else:

! core.file.file.parseSetting(self, key, value)

def checkSettings(self):

nun

Check the sanity of the settings in this object.

*khkkkkkhkkkkhkkikk*x
k 92 105 *kk*
I

Any defaults may be set here as well.

An Exception is raised in the case of insanity.

core.file.file.checkSettings(self)
TODO: Check your settings. Example:

!

! #

! # if not self.filename:

! # raise Exception("A dummy file still needs a filename, dummy.")

def sendToHost(self, host):

Send any required file to the host.

--- 82,102 ----
Any defaults may be set here as well.

An Exception is raised in the case of insanity.

core.file.file.checkSettings(self)

if not self.size:
raise Exception("The size parameter to file {0} is not optional”.format(

|

!

!

self.name))

! if not self.filename:

! self.filename = 'fakedata'

! if not self.binary:

! if not os.path.exists(os.path.join(Campaign.testEnvDir, 'Utils',
'fakedata')):

! raise Exception("The Utils/fakedata directory is required to build a
fakedata file")

! for f in fakedataGeneratorFiles:
! if not os.path.exists(os.path.join(Campaign.testEnvDir, 'Utils"',

13/08/12 HOWTO 11

'fakedata', f)):
! raise Exception("A file seems to be missing from Utils/fakedata:
{0} is required to build the fakedata utility.".format(f))

def sendToHost(self, host):

Send any required file to the host.

*khkkkkkhkkkkhkkhkk*x

k 115'128 *khk**
change the name overriding that method is enough.

@param host The host to which to send the files.
core.file.file.sendToHost(self, host)
- # TODO: Send any extra files here. These are the files that are required by
all executions, whether they're seeding or leeching.
- # Seeding specific files are to be sent in sendToSeedingHost(...).
- #
- # Just having the default implementation send the meta file is usually enough.

def sendToSeedingHost(self, host):

Send any files required for seeding hosts.

--- 112,121 ----
*khkkkkkhkkhkkhkkhkk*x
k 133'146 *kk*
The default implementation does nothing.

@param host The host to which to send the files.
core.file.file.sendToSeedingHost(self, host)
! # TODO: Send the actual files to a seeding host. sendToHost(...) has already
been called.
! # Note that self.getFileDir(...) is not guaranteed to exist yet. Example:
! #
! # host.sendCommand('mkdir -p "{0}/files/"; touch "{0}/files/{1}"'.format(
self.getFileDir(host), self.filename))

def getFile(self, host):

Returns the path to the files on the remote seeding host.

--- 126,160 ----
The default implementation does nothing.

@param host The host to which to send the files.

core.file.file.sendToSeedingHost(self, host)

res = host.sendCommand('mkdir -p "{0}/files"'.format(self.getFileDir(host))

|
1
)
1
! binaryCommand = None

! if not self.binary:

! remoteBaseDir = '{0}/fakedata-source'.format(self.getFileDir(host))

! host.sendCommand('mkdir -p "{0}"'.format(remoteBaseDir))

! for f in fakedataGeneratorFiles:

! host.sendFile(os.path.join(Campaign.testEnvDir, 'Utils', 'fakedata'’
f), '{0}/{1}'.format(remoteBaseDir, f), True)

! res = host.sendCommand('(cd "{0}"; g++ *.cpp -o genfakedata && echo &&
echo "OK")'.format(remoteBaseDir))

13/08/12 HOWTO 12

! if len(res) < 2:

! raise Exceptlon("Too short a response when trying to build
genfakedata for file {0} in directory {1} on host {2}: {3}".format(self.name,
remoteBaseDir, host.name, res))

! if res[-2:] != "OK":

! raise Exception("Could not build genfakedata for file {0} in
directory {1} on host {2}. Reponse: {3}".format(self.name, remoteBaseDir, host.name,
res))

binaryCommand = self.binary
! res = host.sendCommand('"{0}" "{1}/files/{2}" {3} && echo && echo
"OK"'.format(binaryCommand, self.getFileDir(host), self.filename, self.size))
! if len(res) < 2:
! raise Exception("Too short a response when trying to generate the fake
data file {0} on host {1}: {2}".format(self.name, host.name, res))

if res[-2:] != "OK":

! raise Exception("Could not generate fake data file {0} on host {1}:
{2}".format(self.name, host.name, res))

! binaryCommand = '{0}/genfakedata'.format(remoteBaseDir)

! else:

! res = host.sendCommand('[-e "{0}" -a -x "{0}"] &% echo "Y" || echo "N"'
)

! if res = 'Y':

! raise Exception("Binary {0} for file {1} does not exist on host
{2}".format(self.binary, self.name, host.name))

|

|

def getFile(self, host):

nun

Returns the path to the files on the remote seeding host.

kkkkkhkkkkkhkhkkkk*
k 155,174 *kk*k
r

@param host The host on which to find the file(s).

@return The path to the (root of) the file(s) on the remote host, or None if
they are not (yet) available.
! # Note that this is the new name of getName(...), which made no sense in
naming
! #
TODO: Send the path to the file uploaded to a seeding host. Example:
#
#

|

|

! "{0}/files/{1}".format(self.getFileDir(host), self.filename)

! #

! # This implementation assumes you don't really have files, which is unlikely
but possible:

! return None

|

|

TODO: More methods exist, but they are pretty standard and you're unlikely to
want to change them. Look at core.file for more details.

@staticmethod
def APIVersion():
- # TODO: Make sure this is correct. You don't want to run the risk of running
against the wrong API version
return "2.0.0"
--- 169,178 ----

@param host The host on which to find the file(s).

@return The path to the (root of) the file(s) on the remote host, or None if
they are not (yet) available.

nun

13/08/12

HOWTO

13

return "{0}/files/{1}".format(self.getFileDir(host), self.filename)

@staticmethod
def APIVersion():

return "2.0.0"

Appendix D

Incremental Improvements to the
Evaluation Framework

Table D.1 gives an overview of the improvements made to the evaluation frame-
work during the project. The columns show four different versions of the frame-
work. The rows contain the requirements for the framework and the most important
feature sets.

The table shows a constant improvement over time in most fields, indicating the
constantly increasing needs that has to be met by framework. The most recent
version has not been included, since the benchmarking of each version is a time
consuming process. The most important changes have been under the hood or
extensions to already available features (such as executions containing multiple
files). The impact on the table can be summarized as a slightly more complex core,
mainly due to more lines of code, but also more and better documentation due
to some undocumented parts having been documented and certain steps having
been changed to be more logical. Furthermore the documentation in general has
improved.

97

86

Bash Python
1.0.0 1.0.5 2.0.0 2.1.0

Simplicity (0) Technical documentation (+) Technical documentation (+) Technical documentation (+) Technical documentation
g HOWTO HOWTO HOWTO & reference
g Maintainability Simple core, 9.3k / 44% Complex core, 14.0k / 41% Simple core, 12.6k / 55% Complex core, 14.8k / 55%
£ | Extendable 163 167 87 88
% Host support - Local does not function well | 0 Local does not function well + Supports DAS4 + Supports DAS4
~ Supports DAS4

Network conditions

+ netem support

+ netem support

+ netem support

+ netem support

Feature sets

Source locations

Local directory
Remote directory

Local directory
Remote directory

Local directory
Remote directory

Local directory
Remote directory

GIT repository GIT repository GIT repository GIT repository
Subversion repository Subversion repository
None None None None
Builders make make make make
scons scons scons scons
Local file Local file Local file Local file
No data No data No data
Data files Generated fake data Generated fake data Generated fake data
Remote file
libswift libswift libswift libswift
pTorrent pTorrent pTorrent
Clients opentracker opentracker opentracker
lighttpd / Aria 2 lighttpd / Aria 2 lighttpd / Aria 2
libtorrent
libswift libswift libswift libswift
lighttpd lighttpd lighttpd
Parsers aria2 aria2 aria2
pTorrent pTorrent pTorrent
libtorrent
CPU logging
Local host (flaky) Local host (flaky) Local host Local host
Hosts SSH SSH SSH SSH
DAS4 DAS4 DAS4
Post-processors GNU plot GNU plot GNU plot GNU plot
Viewers HTML overview HTML overview HTML overview HTML overview
Manual timeout
Workloads Linear workload
Poisson workload
Logfile Logfile Logfile Logfile
Debug Partial stacktraces on errors | Complete stacktraces on errors/request | Complete stacktraces on errors/request
Full connection logging Full connection logging
Other Optimized relative starting time of peers

External CPU and memory profiling

Table D.1: Overview of the evolution of the P2P Testing Framework.

Simplicity. All versions have simple dependencies and require the user to build
a configuration file before they can run a test. What remains is the documentation,
which will be used as the sole characteristic to judge the Simplicity. The following
scale is used, depending on the available documentation:

1. (--) No documentation; one has to understand everything before starting;

2. (-) Some, but bad documentation; one will have to look up things in code
and figure out details before being able to start;

3. (0) Complete technical documentation; one can get started without reading
code or figuring out things but all the documentation needs reading and is
not written towards the goal of just getting started;

4. (+) Complete technical documentation and extra guidance, such as Howto’s
or a full reference; one can get started without figuring out things on their
own and besides the complete documentation there are guides to get started
quickly;

5. (++) Complete technical documentation, clear extra guidances and readily
usable examples; everything is there: full documentation, guides and the
really fast copy-paste-and-run examples to get started.

Maintainability. Maintainability is hard to measure, but the original requirement
gives some guidance. “The framework should be clean and understandable”, which
means the structures and techniques used should be easy to understand. In this
regard, more code is less easy to understand. The complexity of the core has been
noted to be “simple” or “complex”, which is both subjective and relative; one could
equaly well argue that the core in any version is simple or complex, but compared
to each other some versions of the framework are certainly more complex than
others. The size of the codebase is a more objective indication of complexity and
is given in lines of code (LOC). Tests and external packages were not included in
this measurement.

“Documentation of the code is an important factor for this requirement” gives
another guide to measuring Maintainability. Although the quality of documenta-
tion is very hard to measure care has been taken to document at least each function
and each argument. An indication of how well documented the code is can be given
by the ratio of code to documentation. All files of each version were copied and
stripped of all documentation; counting the lines of code in this stripped version
yields the number of lines of real code. Dividing this by the size of the complete
codebase and multiplying by 100% gives the percentage of real code. Presented
here is the inverse: the percentage of documentation. The following parts of docu-
mentation were stripped and are, hence, included in the presented percentage:

1. Comment lines;

99

2. Docstrings;

3. Whitespace between comments that were obviously added for the purpose
of commenting;

4. Methods that could be left out without affecting operation, i.e. overriding
methods that just pass on the call to their parent, since they are basically just
there to document their existence in the superclass;

5. Skeleton files, since they are basically a form a documentation on how to
implement a particular subclass;

6. The declaration of object fields that are also initialized in __init__ in Python,
since declaring them has no function in Python and is hence purely docu-
mentary.

The table indicates the core of the newest Python version to be complex. This
is due to the number of features in the core: the Python code of the core is much
cleaner and easier to comprehend, but the latest core simply has more features than
the bash versions could have supported. This can also be seen from the core of the
last bash version and the core of the first Python version: the featureset of these
cores is about the same, but the bash core is indicated to be complex while the
Python core is indicated to be simple.

Extendable. Extending the framework should be easy. This means that an ex-
tension requires only a small effort to firstly be implemented and secondly work
well. The amount of extension points or the documentation of those will not be
taken into account here, although better documentation generally lowers the effort
to create an extension.

Measuring the amount of effort for a first implementation is done by creating a
minimal implementation of the libswift client module, supporting four simple pa-
rameters, for each version with the exact same features based on the (documentary)
skeleton modules. All documentation apart from error messages and functional
whitelines have been stripped from these versions. The length in lines of code
(LOC) of each is presented as a relative benchmark of amount of effort required
for a first implementation of a module.

The amount of effort to get a module to work well cannot be measured, but good
debugging facilities really help lower the effort by finding and pinpointing bugs
quickly. The feature list lower on the table includes a list of debugging facilities,
giving a hint as to how easy a bug can be hunted down. It should be noted here that
stack traces work very well under Python while they are unreliable at best under
bash.

Host support. The requirement stated that both local and remote hosts had to be
supported, and preferrably more. A simple scale was derived from this description:

100

1. (-) Baseline not met: either local or remote hosts over SSH do not function
(well);

2. (0) Baseline: both local and remote hosts over SSH function, but other sup-
port is included;

3. (+) Baseline is met and extra remote hosts are supported.

A (--) has been left out since that would basically mean the framework is not
worthy of being called “functioning” and (++) has been left out since the difference
with (+) would be arbitrary.

Network conditions. The requirement states that support for non-ideal network
conditions is needed. This can be done in several ways and are categorized in
increasing order of usefulness:

1. (--) None; no network conditions can be controlled

2. (-) Bandwidth limiting by the client itself; relies on the client to do the work
and possibly influences the test results in unexpected ways

3. (0) External bandwidth limiting without other network conditions; allows
minimal control over the network conditions but does not directly influence
the client

4. (+) External bandwidth limiting and other network conditions; allows full
control over the network conditions, but with restrictions such as the need to
have root access to the remote host

5. (++) External bandwidth limiting and other network conditiong without re-
strictions; full control without any questions asked

It has been assumed that a client will not be able to go beyond bandwidth limiting
as far as traffic control goes.

Single command. This requirement is absent from the table, since it is basically
included in Simplicity.

Features. The table also holds all the feature sets of the different versions. Apart
from improving in its core the testing framework also kept growing in the number
of features it supports. Below is a small description of what each feature comprises.
Note that, even when the same supported feature is present in each version, it is rare
for them not to have improved in between versions.

1. Source locations: the source code of a client can be automatically retrieved
and built by the testing framework. These are the locations the framework
can retrieve the source from;

101

2. Builders: the source code of a client can be automatically built by the testing
framework, but building is never trivial. These are the supported methods for
building the source. None is mentioned explicitly to make clear the source
code is not required: the testing framework can handle binaries just as well;

3. Data files: these are the data files the testing framework can use to give to
the clients to transfer for a test;

4. Clients: the clients that are supported. Note that libtorrent is supported using
a special-purpose wrapper program, only;

5. Parsers: while a client is running it usually generates a log in a client-specific
format, the parsers are used to interpret these logs and rewrite them to more
standardized formats. The dummy parsers are not mentioned;

6. Hosts: the types of hosts the testing framework can use to run experiments
on;

7. Post-processors: after all data has been gathered and parsed any post-processors
can be run to process them further. Post-processors that simply save some
data about the execution are not mentioned;

8. Viewers: after all data has been processed viewers can make an overview of
it all;

9. Workloads: control the timing of when executions are started on the remote
hosts relative to the beginning of the experiment;

10. Debug: facilities provided for debugging;

11. Other: other features that are not mentioned under the above categories.

Not mentioned in the table are automated .torrent generation, automated Merkle
root hash calculation and .torrent file mangling to support dynamically created
trackers using the opentracker client. The .torrent creation has been available in
all versions, where the other two were available in all but the first bash implemen-
tation. All these automated tasks were severely restricted in their operation and
performance under the bash implementation.

102

