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1. Introduction
The Gravity Recovery and Climate Experiment (GRACE) satellite mission, which was launched in 
2002, allowed mass anomalies at the global and regional scale to be estimated until June 2017 (Tapley 
et al., 2004, 2019). Those estimates have become one of the most valuable data sources being used to under-
stand mass transport in the Earth system. Several research areas benefit from this information, including 
hydrology (e.g., Landerer & Swenson, 2012; Ramillien et al., 2008; Rodell et al., 2004; Scanlon et al., 2016; 

Abstract Mascon products derived from Gravity Recovery and Climate Experiment satellite 
gravimetry data are widely used to study the Greenland ice sheet mass balance. However, the products 
released by different research groups—JPL, CSR, and GSFC—show noticeable discrepancies. To 
understand them, we compare those mascon products with mascon solutions computed in-house using 
a varying regularization parameter. We show that the observed discrepancies are likely dominated by 
differences in the applied regularization. Furthermore, we present a numerical study aimed at an in-depth 
analysis of regularization-driven biases in the solutions. We demonstrate the ability of our simulations 
to reproduce 60%–80% of biases observed in real data, which proves that our simulations are sufficiently 
realistic. After that, we demonstrate that the quality of mascon-based estimates can be increased by a 
proper modification of the applied regularization: no correlation between mascons is assumed when 
they belong to different drainage systems. Using both simulations and real data analysis, we show that 
the improved regularization mitigates signal leakage between drainage systems by 11%–56%. Finally, 
we validate various mascon solutions over the SW drainage system, using trends from (i) the GOCO-
06S model and (ii) the Input-Output Method as control data. In general, the in-house computed trend 
estimates are consistent with the trends from CSR and JPL solutions and the trends from the control data.

Plain Language Summary The mass variations of Greenland ice sheet (GrIS) have been 
widely monitored by the satellite mission named Gravity Recovery and Climate Experiment (GRACE). 
Currently, there are different research groups (i.e., JPL, CSR, and GSFC), which produce various mascon 
products from the GRACE data. Noticeable discrepancies, however, are shown in these mascon products. 
In this study, we try to analyze the reasons that cause the discrepancies, by varying with different strengths 
of regularization when estimating the mascon products using our variant of the mascon approach. 
Using both real data and simulation, we show that the observed discrepancies are likely dominated by 
differences in the applied regularization. Thereafter, we find that by utilizing a proper modification of the 
spatial constraint, the quality of the mascon estimates in GrIS can be obviously improved by 11%–56%. 
Finally, the trend estimates of the SW drainage systems from the GOCO-06S model and the Input-Output 
Method are utilized as independent data, to validate the mascon-based solutions. It is found that the 
trends from CSR, JPL, and the estimates by the modified spatial constraints are in good agreement with 
the independent data.
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Schmidt et al., 2006; Syed et al., 2008; Wahr et al., 1998), cryosphere studies (e.g., Chen et al., 2006; Luthcke 
et al., 2013; Ran, Ditmar, Klees, et al., 2018; Schrama et al., 2014; Shepherd et al., 2012; Siemes et al., 2013; 
van den Broeke et al., 2009; Velicogna & Wahr, 2006; Velicogna et al., 2014, 2020; Wouters et al., 2008), and 
physics of the solid Earth (e.g., Chen et al., 2007; Han et al., 2006; Heki and Matsuo, 2010; Panet et al., 2007; 
W. Sun et al., 2009; Wang et al., 2012; etc.).

The GRACE-based mascon solutions offered by the Jet Propulsion Laboratory (JPL RL06 v01) (Watkins 
et al., 2015), the Goddard Space Flight Center (GSFC v2.4) (Luthcke et al., 2013; Rowlands et al., 2005), and 
the Center for Space Research (CSR RL06 v01) of The University of Texas at Austin (Save et al., 2016) are 
widely used. Compared to spherical harmonic solutions, they offer less signal leakage and a higher spatial 
resolution (Scanlon et al., 2016). The JPL mascon solutions used 3° × 3° mascons, whereas the CSR and 
GSFC mascon solutions used equal-area mascons with a size of 1° × 1° at the equator. Spatial and temporal 
constraints were used when computing the mascon solutions. For instance, GSFC used an exponential 
function describing correlations in time and space between mascon pairs (Luthcke et al., 2013), JPL used 
temporal and spatial constraints, which were extracted from geophysical and hydrological models (Watkins 
et al., 2015), and CSR used a temporally and spatially variable zero-order Tikhonov regularization, which 
implies no correlations in the spatial and time-domain (Save et al., 2016). From a mathematical point of view, 
all constraints can be considered as special variants of Tikhonov regularization (Tikhonov, 1963a, 1963b).

Overall, the mascon products from CSR, GSFC, and JPL show a good performance in observing the mass 
balance rate over the entire Greenland ice sheet(GrIS) (Ran, Ditmar, Klees, et al., 2018). However, there are 
significant differences at a drainage system scale. For instance, Figure 1 shows the mass anomaly time series 
for five different drainage systems of the GrIS. To avoid splitting individual mascons, each drainage system 
comprises an integer number of JPL mascons, because they have the largest size (i.e., 3° × 3°), as compared 
with other mascon products (∼1° × 1° for CSR and GSFC). Figure 1 reveals large temporal and spatial dis-
crepancies between the mascon solutions of the three analysis centers. For instance, discrepancies between 
mass anomalies accumulated from 2003 to 2014 range from 100 to 200 Gt depending on the drainage sys-
tem. In the southwest drainage system, the estimated mass balance rate over the years 2003–2006 is 7, 9, and 
−28 Gt/yr for CSR, JPL, and GSFC products, respectively.

In this study, we systematically investigate the discrepancies between different mascon products over the 
GrIS. We analyze the causes of those discrepancies by reproducing different behavior of mass anomaly time 
series using the variant of the mascon approach by Ran, Ditmar, Klees, et al. (2018) and Ran, Ditmar, and 
Klees (2018). Furthermore, we demonstrate that the quality of mascon-based estimates can be increased by 
a proper modification of the applied spatial constraints. The major assumption behind the improved spatial 
constraints exploited in this study is that there are no correlations between mascons belonging to different 
drainage systems. This assumption is driven by the fact that there is a negligible mass exchange between 
neighboring drainage systems, which implies that the behavior of mass anomalies in neighboring drainage 
systems may be very different. The assumption of no correlations between mascons belonging to different 
drainage systems may reduce signal leakage. A similar idea was already considered in Sabaka et al. (2010) 
and Luthcke et al. (2013), where Greenland was divided into two regions separated by the 2,000 m elevation 
line. They assumed the absence of correlations between mass variations in the two regions. However, those 
constraints did not facilitate a reduction of signal leakage between neighboring drainage systems.

The study is organized as follows. In Section 2, we present the methodology, including the adopted mascon 
approach and the improved spatial constraints. The data utilized in this study are introduced in Section 3. 
In Section 4, the discrepancies between the CSR, JPL, and GSFC mascon products and the results obtained 
with the improved spatial constraints are quantified and analyzed. The discussion and conclusions are left 
for Sections 5 and 6, respectively.

2. Methods
To analyze the mass anomaly time series from the CSR, GSFC, and JPL mascon products, we compare them 
with the mass anomalies based on the variant of the mascon approach suggested in Ran, Ditmar, Klees, 
et al. (2018), Ran, Ditmar, and Klees (2018), and Ran, Vizcaino, et al. (2018). This approach is summarized 
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Figure 1. (a) The geometry of the drainage systems, aggregated from the JPL mascons. (b–f): Mass anomaly time series for five Greenland ice sheet drainage 
systems from CSR, JPL, and GSFC mascon solutions.
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in Section 2.1. Furthermore, we consider the mass anomaly estimates obtained with improved spatial con-
straints in Section 2.2.

2.1. Variant of the Mascon Approach Adopted to Estimate Mass Anomalies

The mascon approach of Ran, Ditmar, Klees, et al. (2018) is an extension of the techniques proposed by Fors-
berg and Reeh (2007) and Baur and Sneeuw (2011). Like many other post-processing schemes developed so 
far (e.g., Bonin & Chambers, 2013; Jacob et al., 2012; Sasgen et al., 2010; Schrama & Wouters, 2011; Wout-
ers et al., 2008), it uses GRACE Level-2 spherical harmonic solutions as starting point instead of GRACE 
Level-1B data, as used in the mascon solutions of GSFC (Luthcke et al., 2013), CSR (Save et al., 2016), and 
JPL (Watkins et al., 2015). The computations start from synthesizing “pseudo-observations”—gravity dis-
turbances at a mean satellite altitude—from the monthly set of spherical harmonic coefficients (SHCs). The 
unknown parameters (surface density variations in kg/m2 per mascon) are then estimated using weighted 
least square techniques. The solution is stabilized using first-order Tikhonov regularization. Finally, the 
estimated surface densities are converted into mass anomalies in units of Gt for visualization purposes 
(e.g., Figure 1). Note that opposite to Forsberg and Reeh (2007) and Baur and Sneeuw (2011), the full noise 
covariance matrices of monthly SHCs are propagated into the pseudo-observations using the law of covar-
iance propagation, and used as inverse weight matrix in the weighted least square approach. Moreover, 
the columns of the design matrix are low-pass filtered to make them spectrally consistent with the spatial 
resolution of the monthly spherical harmonic models.

2.2. Adopted Spatial Constraints

To suppress the amplification of data noise when computing the mascon surface densities, Tikhonov regu-
larization (Tikhonov, 1963a, 1963b) is used. The regularized least square solution is then given as

           
1argmin Φ ,ˆ T

x dx d Ax C d Ax x (1)

where  Φ x  is the Tikhonov regularization functional and   is the regularization parameter. The solution 
of Equation 1 can be written as

 
   

11 1 ,ˆ A C A R A CT T
d dx d (2)

where A is the design matrix, d is the vector of pseudo observations, Cd is the noise covariance matrix of d, 
and R  is the regularization matrix associated with the minimization functional  Φ x . There are different 
choices of  Φ x  (see Text S1). For instance, zero-order Tikhonov regularization minimizes the L2-norm of 
the surface density function, whereas first-order Tikhonov regularization minimizes the L2-norm of the 
gradient of that function. For the application at hand, we prefer to use first-order Tikhonov regulariza-
tion as zero-order Tikhonov regularization may heavily damp long-term trends and other strong signals 
(Ran, 2017).

The implementation of the first-order Tikhonov spatial constraints depends on the panelization of the GrIS 
with mascons and is similar to the one by Ran, Ditmar, Klees, et al. (2018) and Watkins et al. (2015). The 
territory of GrIS is covered by non-overlapping mascons, which are defined in two steps. First, the GrIS is 
subdivided into latitudinal bands. Second, each latitudinal band is subdivided into mascons along meridi-
ans to obtain mascons of similar areas. As shown in Figure 1a, the mascons do not form an equal-angular 
grid. This makes the implementation of the ordinary first-order Tikhonov regularization more intricate. To 
explain the implementation, we consider seven mascons with labels h, i, j, k, l, m, and n (see Figure 2a) and 
denote the corresponding surface mass densities as , , , , ,h i j k l mx x x x xx , and nx . To minimize the north-south 
component of the horizontal gradient, the mascons with indices h, i, k, m, and n, need to be formally divided 
into sub-mascons (cf., Figure 2b). The sub-mascons share the same surface density with the parent mascon, 
and only serve to implement the spatial constraint associated with the first-order Tikhonov regularization. 
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For instance,    1 2 3 4k k k k k
x x xx x . Therefore, the minimization condition that involves mascon k 

shown in Figure 2 can be written, in line with Equation S4, as:
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  2with area area / 2 / ,jk j k jkf d  where djk is the distance between the centers of mascons j and k; where-
as jarea  and karea  are the areas of mascon j and k, respectively. The non-zero elements of the first-order 
Tikhonov regularization matrix associated with the kth mascon are given in Table 1. Notice that all the 
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Figure 2. (a) Schematic mascon distribution in the inner part of Greenland, and (b) division of mascons into sub-mascons to compute the elements of the first-
order Tikhonov regularization matrix. h, i, j, l, m, and n are the indexes of the mascons that are neighbors of mascon k. Based on the boundaries of neighboring 
mascons, mascon k is virtually divided into k1, and k2, or k3 and k4. Similar divisions are also applied to the neighboring mascons h, i, m, and n.

patch ID h i j k l m n …

… … … … … … … … … …

h …  2 3h k
f …

i …  1 4i k
f …

j …  jkf …

k …  2 3h k
f  1 4i k

f  jkf  

  
2 3 1 4 1 2

2 1

h k i k k m

jk klk n

f f f
f f f

 klf  1 2k m
f  2 1k n

f …

l …  klf …

m …  1 2k m
f …

n …  2 1k n
f …

… … … … … … … … … …

Table 1 
First-Order Tikhonov Regularization Matrix Elements Associated With the k-th Mascon and Its Neighbors (cf., Figure 2)
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non-zero off-diagonal elements correspond to the neighbors of the kth mascons (i.e., the mascons that have 
a common side with the kth mascon).

The general expression for the elements kiR  can be written as follows:

 

 

 


 




if , has a common side with
if

0 otherwise

k i

ki j kj

f k i k i
R f k i (4)

where i′ is the part of the ith mascon that shares the border with mascon k, whereas k′ is the part of mas-
con k that shares the border with mascon i. Summation index j runs over the neighbors of the kth mascon 
(again, the “prime” symbol indicates the mascon parts in a given pair that have a common border). It is 
worth to stress that the sub-mascons are introduced only “virtually” (i.e., each mass anomaly is estimated 
as a single number for the entire mascon; mass anomalies in kg/m2 for all the sub-mascons within a given 
mascon are the same).

By now, we considered the “ordinary” first-order Tikhonov regularization, which covers all pairs of neigh-
boring masons. As far as the improved spatial constraint is concerned, the major assumption behind it is 
that there is no correlation between mascons that belong to different drainage systems. This is implemented 
as an update of the regularization matrix R of Equation 4. This update only considers pairs of mascons as 
neighbors if they belong to the same drainage system. Hence, correlations between pairs of mascons that 
belong to different drainage systems are set equal to zero, which reduces signal leakage between the corre-
sponding mascons.

3. Data
3.1. GRACE

As input, we use the CSR Release 6 (RL06) GRACE SHC solutions which are complete to degree 96 and pro-
vided with full noise covariance matrices. The time interval considered in this study covers the years from 
2003 to 2014. As no sets of SHCs are provided for 15 months, the data set comprises 141 monthly solutions. 
The monthly C2,0 coefficients are replaced by SLR-based ones (Loomis et al., 2020). The missing degree-one 
coefficients are taken from Y. Sun et al. (2016). For that reason, noise correlations between the degree-1 co-
efficients and the C2,0 coefficients on the one hand and all other coefficients on the other hand are assumed 
to be zero. The glacial isostatic adjustment is corrected for using the model from Peltier et al. (2015), which 
was also used when computing the mascon solutions of CSR RL06, JPL RL06, and GSFC v2.4.

3.2. RACMO2.3

To validate GRACE-based estimates of mass variations, we use RACMO2.3, a regional atmospheric climate 
model developed by the Royal Netherlands Meteorological Institute (KNMI) and the Institute for Marine 
and Atmospheric Research (IMAU) at Utrecht University (Noël et al., 2015). More specifically, we use Sur-
face Mass Balance (SMB) estimates over 11-by-11 km blocks with daily temporal resolution. The daily SMB 
estimates are time-integrated to provide cumulative SMB mass anomalies; averaging provides mean month-
ly mass anomalies.

4. Results
4.1. Understanding the Discrepancies Between the CSR, JPL, and GSFC Mascon Products

Figures 3 and S2 show the GrIS mass variations per drainage system from CSR, JPL, and GSFC mascon solu-
tions. Though differences are relatively small at the beginning of the period, they increase monotonically 
as function of time and attain several hundreds of Gts at the end of the period. To understand the cause 
of these discrepancies, we computed different sets of mascon-type estimates (referred as “TUD-SUSTech” 
in this study) using the mascon approach of Ran, Ditmar, Klees, et  al.  (2018) in combination with the 
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ordinary first-order Tikhonov regularization of Equation 4. On the one 
hand, the differences between the TUD-SUSTech solutions, and on the 
other hand, the CSR, JPL, and GSFC solutions depend on the choice of 
the regularization parameter of the TUD-SUSTech solution (cf., Figures 3 
and S2). In general, we find that by changing the regularization param-
eter of the TuD-SUSTech mascon solutions, we can mimic the mascon 
solutions from CSR, JPL, and GSFC reasonably well. This is done per 
drainage system.

Figure  4 shows per drainage system the RMS difference between each 
of the JPL, CSR, and GSFC solutions and the TUD-SUSTech solutions 
as function of the regularization parameter for the latter solution. The 
smallest RMS difference is about 20 Gt. Depending on the solution and 
the drainage system, the minimum RMS difference is attained for differ-
ent regularization parameters.

In the SW drainage system (see Figures 3 and 4), the regularization pa-
rameters which provide the closest fit to the solutions of the analysis 
centers are 3 × 10−26 (JPL), 1 × 10−25 (CSR), and 1 × 10−24 (GSFC). The 
TUD-SUSTech solution without regularization shows a clear mass gain 
signal over the period 2004–2006, and provides the smallest mass loss 
trend over the full period. The mass gain over the period 2004–2006 be-
comes smaller with increasing regularization parameter and turns into 

a mass loss signal when the regularization parameter is large enough. We explain this behavior by signal 
leakage from the neighboring NW and SE drainage systems, which show large mass losses.

For the NW drainage system (see Figures 4 and S2), a regularization parameter of 3 × 10−26 gives the small-
est RMS difference to the JPL solutions: of about 20 Gt. A similar fit to the CSR solutions is obtained with 
a significantly larger regularization parameter of 3 × 10−25. The latter value of the regularization parameter 
also provides the best fit to the GSFC solutions, though the RMS difference is 30 Gt, that is, about 50% 
larger. For the SE drainage system (see Figures 4 and S2), the best fit of the TUD-SUSTech solutions to the 
solutions of the analysis centers is obtained for a regularization parameter of 1 × 10−25 (JPL) and 3 × 10−25 
(CSR and GSFC), respectively.

In the NE drainage system (see Figures 4 and S2), the dependence of the estimated mass variations on the 
regularization parameter shows a more complicated behavior. With increasing regularization parameter, 
the mass loss trend first becomes smaller but increases starting with a regularization parameter of 3 × 10−26. 
Minimum RMS differences are attained when choosing regularization parameters of 3 × 10−25 (JPL and 
CSR) and 1 × 10−24 (GSFC).

In the N drainage system (see Figures 4 and S2), no regularization applied to the TUD-SUSTech solution 
provides the best fit to the JPL and GSFC solutions, whereas a minor regularization of 3 × 10−26 is necessary 
to obtain the best possible fit to the CSR solutions.

Overall, the analysis shows that regularization has a significant impact on the estimated mass anomalies. 
The fit of the TUD-SUSTech solutions to the solutions from CSR, JPL, and GSFC can be optimized by choos-
ing an appropriate regularization parameter when computing the TUD-SUSTech solutions (see Figures 3 
and 4). To obtain the smallest RMS difference to the JPL solutions, the least regularization is needed in most 
cases, whereas a somehow larger amount of regularization is needed to obtain the smallest RMS fit to the 
CSR and GSFC solutions.

4.2. Numerical Study to Analyze Regularization-Driven Biases in Mascon-Type Estimates

The results of Section 4.1 indicate that the applied regularization is one of the contributors to the observed 
discrepancies between the CSR, JPL, and GSFC mascon solutions. To further investigate the impact of the 
regularization, we performed two numerical experiments.
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Figure 3. Mass anomaly time series for the SW drainage system based on 
the mascon products from CSR, JPL, and GSFC, as well on TUD-SUSTech 
mascon solutions produced with different regularization parameters (from 
0 to 10−24). For other drainage systems, please see Figure S2.
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In the first experiment, mass anomaly time series were computed from a combination of ICESat and RAC-
MO 2.3 data using the approach of Ran, Ditmar, Klees, et al. (2018) and Ran, Ditmar, and Klees (2018). The 
20-by-20 km ICESat-based trends were taken from Felikson et al.  (2017) and upscaled by a factor of 2.3 
to match the trend magnitudes from GRACE data over the period 2004–2014. The 11-by-11 km RACMO  
2.3 SMB data, which are available with a temporal resolution of 1 day, were resampled to the 20-by-20 km 
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Figure 4. RMS differences between the official (CSR, JPL, and GSFC) monthly solutions and the TUD-SUSTech monthly solutions as functions of the 
regularization parameter of the TUD-SUSTech solutions.
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ICESat cells, integrated in time, and time-averaged to provide monthly SMB-related mass anomaly time se-
ries. Then, these time series were de-trended, added to the ICESat trends, and spatially integrated to provide 
monthly mass anomalies per mascon. The mascon definition of JPL was used (cf., Figure 1a). The resulting 
monthly mass anomaly time series per mascon serves as the true signal. From this signal, pseudo-observa-
tions were generated and inverted into monthly mass anomalies using the TUD-SUSTech mascon approach. 
To investigate the bias caused by regularization, two scenarios were considered, which differ in the choice 
of the regularization parameter. One scenario uses a regularization parameter of 10−25. This value appeared 
to be the optimal one according to the L-curve method (Hansen, 1992) when inverting monthly GRACE 
level-2 data into mass anomalies. The second one was set equal to 10−24; this regularization parameter some-
times appeared to be the one that provided the smallest difference between the TUD-SUSTech solutions and 
the solutions of the GRACE analysis centers (cf., Section 4.1).

We investigated the bias in trends caused by signal leakage from a particular drainage system into another 
one. To that end, several runs were completed. In each run, the mass anomalies over all drainage systems 
except the one under consideration were assumed to be zero. In real data processing, an estimation of the 
bias triggered by a regularization is problematic. Therefore, to facilitate a comparison with the results of 
real data processing, we focus below on the differences in bias between the two choices of regularization 
parameters (referred to as the relative bias in this study). The obtained results are shown in Figure 5 and 
Tables S1–S5.

Table S1 contains the result for the NW drainage system, which has the largest (negative) trend of −148 Gt/
yr. It turns out that the bias is negligible (about 1%) for a regularization parameter of 10−25, but increases to 
about 8% when choosing a regularization parameter of 10−24. Signal from the NW drainage system mostly 
leaks into the neighboring NE drainage system, whereas leakage to the other drainage systems is a factor of 
2–3 smaller. This relative bias is maximum in the NW drainage system itself (−9.9 Gt/yr), followed by the 
NE drainage system (6.4 Gt/yr). The relative biases in the other drainage systems are much smaller.

The results for the other drainage systems are shown in Figure 5 and Tables S2–S5. To summarize, one 
could find that signal from the SW drainage system mainly leaks into the SE, whereas there is a negligible 
leakage to NW, N, and NE. The signal from the SE drainage system mostly leaks into the SW; relative biases 
in NE and N are small. Signal from NE mostly leaks into NW. Leakage from N is small and mostly goes into 
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Figure 5. Analysis of relative biases due to signal leakage from one drainage system to the others due to regularization. 
Note that for every scenario considered, the mass change signal is confined to the drainage system, whereas no mass 
change is assumed in all other drainage systems. The relative bias is the difference between the solutions computed 
with regularization parameters of 10−25 and 10−24, respectively.
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NW. Thus, the signal mostly leaks into the eastern/western neighbor of the current drainage system. This is 
consistent with the well-known fact that the spatial resolution of GRACE in the east-west direction is poorer 
than that in the north-south direction.

The relative biases computed in the simulation experiment can be easily compared to the relative biases in 
real data solutions. To that end, we computed the relative bias per drainage system caused by signal leakage 
from all other drainage systems. We did so by summing up the relative biases shown in Tables S1–S5 (cf., the 
fourth row in Table 2). The relative biases obtained in the real data processing are shown in the third row 
in Table 2. The latter were directly computed as the difference between the solutions with regularization 
parameters 10−25 and 10−24, respectively. We notice a reasonable agreement between the relative biases ob-
served in the simulations and in real data processing. For most drainage systems, the relative bias observed 
in the simulations can explain 50%–70% of the relative bias in the real data case. Furthermore, the signs of 
relative biases are consistent for all drainage systems. The remaining discrepancies between the simulations 
and the real data case are likely caused by the combined effect of noise in real data (which manifests itself 
as north-south stripes), parameterization (i.e., model) errors, and leakage of signal from outside Greenland.

To support the previous statement, we performed a second numerical experiment, where the pseudo-ob-
servations in the ICESat/RACMO simulation were contaminated with realistic errors from various sources: 
parameterization errors, random noise, errors in the Atmosphere and Ocean De-aliasing model, and leak-
age of signals from outside Greenland. For details of how to compute these errors, we refer to Ran, Ditmar, 
Klees, et al. (2018) and Ran, Ditmar, and Klees (2018).

As shown in Table 3, the relative biases in the scenario when noisy data are considered to match the relative 
biases in the real data case even better than before, except for the N drainage system. In the NW, SW, and SE 
drainage systems, the relative bias observed in the simulations now explains 60%–80% of the relative bias 
in the real data case. In the NE, the difference of relative biases between the simulation and real data is just 
6%. The large difference in N may be caused by signal leakage from the Canadian Arctic in the simulations.

4.3. Improved Spatial Constraints

4.3.1. Performance Analysis Based on Simulated Data

The analysis of Section 4.2 showed that there is a strong signal leakage between neighboring drainage sys-
tems. In reality, there is little correlation between mass variations in different drainage systems. This fact 
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N NW NE SW SE

Trend recovered with α = 10−25 (real data) −11.24 −119.99 −3.28 −29.36 −101.99

Trend recovered with α = 10−24 (real data) −10.94 −97.86 −17.49 −40.08 −84.81

Relative bias (real data) 0.29 22.13 −14.21 −10.72 17.18

Total relative bias (simulations) 5.43 10.55 −10.29 −5.67 8.86

Note. The units are Gt/yr.

Table 2 
The Trend Estimates and Relative Biases Observed in Real Data Processing and in the Numerical Simulations Based on 
Noise-Free Data

N NW NE SW SE

Trend recovered with α = 10−25 (simulation) −20.30 −155.20 35.66 −15.76 −118.01

Trend recovered with α = 10−24 (simulation) −11.48 −141.50 20.56 −23.66 −104.50

Relative bias (simulation) 8.83 13.69 −15.09 −7.90 13.52

Note. An ordinary first-order Tikhonov regularization is applied in this study. The units are Gt/yr.

Table 3 
The Trends Estimates and Relative Biases Obtained for Regularization Parameters 10−25 and 10−24 in the Simulation 
Where Noisy Data are Considered
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was used in the improved first-order Tikhonov regularization approach (cf., Section 2.2). It was expected 
that it reduces signal leakage between different drainage systems significantly.

To analyze the performance of the data inversion scheme after incorporating the improved first-order Tik-
honov regularization, another numerical study is performed. Apart from the improved spatial constraints, 
the scenarios analyzed correspond to the noise-free synthetic data case of Section 4.2. Our goal is to compare 
the spatial patterns of the biases caused by the ordinary and improved first-order Tikhonov regularization 
when the same regularization parameters are used in the two cases. We remind that the term “ordinary” 
regularization refers to the one that assumes the presence of correlations between neighboring mascons 
which belong to different drainage system, whereas the term “improved” regularization refers to the case 
that these correlations are absent.

The “true” trend signal for the NW drainage system is shown in Figure 6a, whereas the estimates obtained 
with the ordinary and improved spatial constraints and two different regularization parameters (i.e., 10−24 
and 10−25) are plotted in Figures 6b–6e. In addition, the differences between the estimates and the true 
trends are shown in Figure 7. We see that the biases when using ordinary spatial constraints are signifi-
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Figure 6. True (panel a) versus estimated trends (panels b–e) for ordinary and improved first-order Tikhonov regularization with two regularization 
parameters.
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cantly larger than those when using the improved spatial constraints, especially when the regularization 
parameter increases from 10−25 to 10−24. When the regularization parameter is set equal to 10−25, the RMS 

of the residuals between the estimated and the true signal per DS de-
creases by a factor of 15% (namely, from 1.3 to 1.1 Gt/yr) after switching 
from the ordinary spatial constraints to the improved ones. The reduction 
becomes even larger when the regularization parameter is increased to 
10−24 (namely, from 6.4 to 2.8 Gt/yr, i.e., by 56%).

The results for the other drainage systems are similar (Table 4). In each 
case, the true signal is limited to only one drainage system, as indicated 
by the name of the corresponding column. The bias reduction caused by 
the improved spatial constraints is shown in percentages. The bias reduc-
tion stays in most cases at the level of 11%–25%, though may reach 56% 
when the regularization parameter of 10−24 is considered. Note that in the 
SE, the bias reduction is negligible when the regularization parameter is 
set to 10−25. This is because the trend estimate obtained with the ordinary 
regularization (99.03 Gt/yr, see Table 4) is good enough, compared with 
the true value (99  Gt/yr), and thereby limits the space for further im-
provements. Besides, the NE shows less accurate trend estimates in the 
case of the improved spatial constraint under the regularization param-
eter of 10−24. This is likely caused by an increased mutual compensation 
of the mass gain signal in the inner NE and the mass loss signal in the 
coastal NE (see Figure S3). The reason why the other drainage systems do 
not show such compensation is a homogenous mass loss signal in all the 
mascons inside those drainage systems.
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Figure 7. Trend signal of spectral leakage from the NW drainage system for ordinary and first-order Tikhonov regularization with two regularization 
parameters. The units are Gt/yr.

N NW NE SW SE

Ordinary RMS for α = 10−25 0.4 1.3 1.9 0.9 2.3

Regularization RMS for α = 10−24 1.5 6.4 3.3 3.1 6.6

Improved RMS for α = 10−25 0.3 1.1 1.7 0.8 2.3

Regularization RMS for α = 10−24 1.2 2.8 4.2 2.4 3.7

Bias For α = 10−25 25% 15% 11% 11% 0%

Reduction For α = 10−24 20% 56% −27% 23% 44%

Note. The RMS differences are computed per drainage system. In each 
case, the true signal is limited to only one drainage system, as indicated 
by the name of the corresponding column. The first and second rows 
show the RMS biases after the ordinary spatial regularization for the 
two regularization parameters under consideration. The third and fourth 
rows present similar information in the case of the improved spatial 
regularization. The fifth and sixth rows refer to the reduction of these 
RMS differences when the improved regularization is compared with the 
ordinary one (a negative number corresponds to an increase in the RMS 
difference). The unit is Gt/yr.

Table 4 
RMS Differences Between the Estimated and True Trends-per-Mascon, 
Reflecting the Biases Caused by the Ordinary and Improved Spatial 
Regularization
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4.3.2. Performance Analysis Based on Real Data

In this section, the performance of the improved spatial constraints is 
investigated in the context of the real GRACE data. In Figures 8 and S4, 
which are similar to Figures  3 and  S2 addressed above, the estimates 
of mass variations per drainage system derived from different mascon 
products are shown again. This time, the improved Tikhonov regulariza-
tion was adopted in the TUD-SUSTech mascon solutions. Note that the 
considered set of regularization parameters is the same as in the analy-
sis based on the ordinary spatial constraints (cf., Figure 3). The optimal 
regularization parameter found with the L-curve method is 10−25 (see 
Figure S5).

When comparing Figure 8 with Figure 3, we notice that the improved 
spatial constraints make the estimated mass variations more robust 
against the choice of the regularization parameter compared to ordinary 
regularization; that is, the relative biases become much smaller. This 
is a direct consequence of the reduced signal leakage when using the 
improved first-order Tikhonov regularization. For instance, in the NW 
drainage system, the cumulative mass variations from 2003 to 2014 ob-
tained with the smallest (0) and largest (10−24) regularization parameters 
differ only by about 100 Gt. In contrast, when using the ordinary spatial 
constraints, the difference was about 230 Gt. Reductions of the relative 
biases were also found for the other drainage systems.

The trend estimates over 2003–2014 from the CSR, JPL, and GSFC time series, as well as from the TUD-SUS-
Tech time series (computed with both ordinary and improved spatial constraints) are shown in Table 5. The 
reduced signal leakage of the improved spatial constraints increases the rates of the mass loss in the SE and 
NW drainage systems with 8 Gt/yr and 4 Gt/yr, respectively, compared with the ordinary spatial constraints. 
It is also worth noting that the trend estimate for the NE strongly depends on the regularization parameter. 
In general, the long-term trend estimates for the DSs with the largest mass losses (i.e., NW and SE) are 
larger in the case of the improved spatial constraints, as compared with those obtained with the ordinary 
constraints. On the other hand, the former show similar or smaller trend estimates in the other drainage 
systems, where mass losses are relatively small (i.e., N, SW, and NE). We explain this by the fact that the 
improved spatial constraints mitigate signal leakage from the drainage systems with the largest mass losses 
into the drainage systems with small mass losses.

4.3.3. Validation

After the application of the improved spatial constraints to real GRACE 
data, we validated the obtained estimates with independent data, which 
is the subject of this section. In general, the absence of knowledge about 
the true signals makes it difficult to validate GRACE-based monthly esti-
mates. However, it is known that the most reliable way to derive the line-
ar rates of mass variations is to combine many years of GRACE Level 1B 
data, because this significantly improves the spatial resolution and signal 
recovery and reduces signal leakage (Loomis, Richey, et al., 2019). There-
fore, we use for validating the trend estimates from the GOCO-06S mod-
el, which was produced by combining about 15 years (i.e., April 2002 to 
August 2016) of GRACE data and data from other 19 satellites, including 
GOCE and SWARM (Kvas et al., 2021). Note that the GOCO-06S trend 
estimates were determined from GRACE and SLR data only. The other 
satellite data sets only contributed to the estimation of the static portion 
of the solution. In addition, the GOCO solution was regularized at high 
degrees.
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Figure 8. Mass anomaly time series for SW from different mascon 
solutions. It is similar to Figure 3, but after applying improved first-order 
Tikhonov regularization, which helps reducing signal leakage from a 
drainage system to its neighbors.
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TuD-SUSTech regularized by 3.0E-25
TuD-SUSTech regularized by 1.0E-24

CSR JPL GSFC

TUD-SUSTech TUD-SUSTech

Improved 
regularization

Ordinary 
regularization

N −19 −23 −23 −17 −16

NW −102 −114 −103 −120 −116

NE −15 −10 −16 1 −5

SW −32 −27 −44 −27 −31

SE −95 −103 −105 −118 −110

GrIS −268 −276 −291 −280 −277

Note. TUD-SUSTech solutions are produced with both ordinary and 
improved spatial constraints under the optimal regularization factor (i.e., 
10−25) determined by the L-curve method.

Table 5 
Estimated Trends Over 2003–2014 in Gt/yr From Different Mascon 
Products
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In this study, the SW drainage basin is chosen for validation. Among others, this is because there is a rap-
id mass loss signal in its neighbors, SE and NW. Mass loss estimates in the SW are sensitive to a proper 
choice of regularization, since they are substantially distorted by signal leakage from its neighbors (see the 
discussion in Section 4.2). We compute the long-term trend in SW by considering the GOCO-06S SHCs up 
to different degrees: 60, 96, 120, and 200. A 120-km buffer is introduced to capture the signal leakage into 
the ocean. The total GOCO-06S based trend in SW decreases from −36 to −32 Gt/yr, when the maximum 
considered spherical harmonic degree increases from 60 to 200 (see Table 6 and Figure S6). The estimated 
trend decreases with increasing spatial resolution due to a reduction of signal leakage from the neighboring 
drainage systems. Note also that the time intervals of GOCO-06S (April 2002 to August 2016) and of the 
mascon products (January 2003 to July 2016) are slightly different. Therefore, we made an additional test 
by adjusting the considered time interval of CSR and JPL mascon products to make it exactly the same as 
the time interval of GOCO-06S. It is found that the inconsistency caused by the differences in time-intervals 
(January 2003 to July 2016 vs. April 2002 to August 2016) is negligible, that is, at the level of 1 Gt/yr. By 
comparing different trend estimates, we find that the SW trend from GOCO-06S, CSR, JPL, and TUD-SUS-
Tech are all similar, that is, about −30 Gt/yr, whereas the GSFC trend estimate is much larger: −43 Gt/yr.

The mass balance of the SW drainage system can also be estimated by the Input and Output Method (IOM) 
as SMB minus Ice Discharge (ID). In SW, the contribution of the latter is relatively small, which implies that 
errors in ID estimates (e.g., due to unaccounted temporal variations of ice flow velocities) are small as well. 
This was another reason to select the SW drainage system as the test area. In our study, we combine the SMB 
trend estimate from the RACMO2.3p2 model, which offers a 1-km spatial resolution at the daily temporal 
scale (Noël et al., 2021), and the ice discharge estimate from King et al. (2020). The SMB trend in SW over 
January 2003 to July 2016 is −20 Gt/yr, whereas the ice discharge over the same time interval is 12 Gt/yr. 
The latter estimate is consistent with that of Mankoff et al. (2020) and Bevis et al. (2019), even though the 
latter considered a slightly different geometry of SW. Then, based on the IOM, the total mass balance in SW 
is −32 Gt/yr (see Table 6). This estimate is consistent with those based on CSR, JPL, TuD-SUSTech, and 
GOCO-06S.

5. Discussion
5.1. Global Mass Conservation

The mascon approach exploited by GSFC, CSR, and JPL, which deals with the GRACE Level-1B data, en-
sures a global mass conservation during the estimation of a global set of mascons with the relevant con-
straint equation that the sum of all mascons is equal to zero. The variants of the mascon approach using 
Level 2 data comply with a global mass conservation implicitly, by assuming that temporal variations of the 
C00 coefficient are equal to 0. As far as the computed mass anomalies are concerned, they are regional solu-
tions by definition. A mass conservation in a regional solution is neither ensured nor needed. For instance, a 
solution ensuring a mass conservation in a region that covers only Greenland and surrounding areas would 
be totally unphysical. It would be fair to explicitly apply the mass conservation condition only if the mass 
anomalies were estimated from Level-2 data globally.

5.2. “Improved” Regularization Versus Regularizations Applied to Other Mascon Solutions

The CSR mascon products are estimated by a temporally and spatially variable zero-order Tikhonov regu-
larization. It means that no correlation between mascons is considered in the CSR mascon products. In this 
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CSR JPL GSFC

TUD-SUSTech GOCO-06S IOM

Improved regularization Ordinary regularization 60 96 120 200 SMB-ID

−32 −27 −43 −27 −31 −36 −34 −33 −32 −32

Note. The unit is Gt/yr.

Table 6 
Comparison of Mass Trend Estimates of the SW Drainage System From Different Mascon Solutions (CSR, JPL, GSFC, 
and TUD-SUSTech) With Those Based on GOCO-06S Model and the Estimates From Input-Output Method
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study, we cutoff the correlations for mascons in different drainage systems, but consider the correlations 
between mascons within the same drainage system. Thereby, our method of regularization is in-between 
the approach of CSR on the one hand and the approaches of JPL and GSFC on the other hand.

5.3. Added Value of the “Improved” Regularization

Our study shows an added value of the improved Tikhonov regularization, which assumes no signal cor-
relations between pairs of mascons belonging to different drainage basins. Using a set of simulations, we 
show that the improved regularization mitigates signal leakage between drainage systems by 11%–56%. 
Then, in the real data analysis, it is also found that for the ordinary Tikhonov regularization, the estimates 
are quite sensitive to the choice of regularization parameter (see Figure  3), whereas they become more 
robust if the improved regularization is applied (see Figure 8). For instance, for the improved Tikhonov 
regularization, the difference between trends over 2003 and 2016 obtained with the smallest regularization 
factor in Figure 8 (i.e., 3.0E−26) and the largest regularization factor (i.e., 1.0E−24), it is at the level of 7 Gt/
yr; for ordinary Tikhonov regularization, the same difference is about 18 Gt/yr.

Our findings somewhat contradict earlier findings in the context of mass anomalies of hydrological origin 
for small river basins (Croteau et al., 2014). We explain this inconsistency by a relatively high level of ran-
dom noise in the case of small river basins. Then, a positive effect of a reduced signal leakage is counteract-
ed by an amplification of random noise, which takes place when the available data are insufficiently sen-
sitive to the mass anomalies to be estimated. In other words, when cutting the signal correlations between 
mascons in different drainage systems, one has to watch a balance between the reduction of signal leakage 
and an increase in random noise.

6. Conclusions
In this study, the CSR RL06, JPL RL06, and GSFC v2.4 mascon products are investigated in the context of 
the ice mass balance of individual drainage basins of the GrIS. From the analysis, significant discrepan-
cies between the mass variations accumulated from 2003 to 2014 are found, which reach values of up to 
200 Gt depending on the drainage system. To better understand these discrepancies, a set of alternative 
mascon-type estimates was derived using the mascon approach of Ran, Ditmar, Klees, et al. (2018). These 
estimates are constrained with a first-order Tikhonov type regularization to suppress noise. It is found that 
the mass anomalies at the drainage system scale based on CSR RL06, JPL RL06, and GSFC v2.4 mascon 
products could be well reproduced by the alternative mascon solutions when choosing an appropriate reg-
ularization parameter. Thereby, the discrepancies between the CSR RL06, JPL RL06, and GSFC mascon 
products may the explained by differences in the spatial constraints applied by the analysis centers. The 
optimal fit to the JPL solutions requires the least amount of regularization.

A numerical study has been performed to investigate the regularization-driven biases (i.e., signal leakage) 
in trend estimates for GrIS drainage systems. We compare the simulated biases with those observed in our 
mascon solutions based on real GRACE data. Since the true signal in the context of real data is not known, 
we propose to evaluate “relative biases,” that is, the differences between the estimates obtained with two 
different regularization parameters. By comparing the relative biases obtained in the simulations and in 
real data processing, we find that they match each other reasonably well: the former explain in most cases 
50%–70% of the latter ones.

To mitigate the bias caused by the regularization, improved spatial constraints have been implemented. The 
major assumption behind the improved spatial constraints is that there is no correlation between mascons 
in different drainage systems. Thereby, the mass anomaly estimates obtained with the improved spatial con-
straints benefit from less signal leakage. Using simulated and real data, we show that the improved spatial 
constraints mitigate the signal leakage between drainage systems: the reduction is typically at the level of 
11%–25%, though may reach 56% when a relatively large regularization parameter is considered.

In addition, trend estimates in the SW drainage system derived from different mascon products are validat-
ed using the GOCO-06S model and the IOM (i.e., as SMB-ID). We found (cf., Table 6) that our estimates 
match well with the values from both alternative data sets.
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Remarkably, long-term trend estimates in the DSs with the largest mass losses (i.e., NW and SE) are larger 
in the case of the improved spatial constraints, as compared with those obtained with the ordinary spatial 
constraints. On the other hand, the former show smaller trend estimates in the areas of small mass losses 
(i.e., N, SW, and NE). This is another evidence that the improved spatial constraints mitigate signal leakage 
from the DSs with large mass losses outwards and thereby reduce distortions of signals in the areas with 
small mass losses.

It is worth adding that for the latest GSFC RL06 product, temporal constraints are not applied and the 
regularization matrices are determined from the pre-fit range-acceleration residuals (Loomis, Luthcke, 
et al., 2019). JPL and CSR processing centers have recently released new variants of the mascon products as 
well. We will further analyze all these products in a follow-up study.

Data Availability Statement
Data used in this study were requested from the CSR (http://www2.csr.utexas.edu/grace; last accessed: 
1 January 2020), NASA JPL (http://grace.jpl.nasa.gov; last accessed: 1 January 2020), and NASA GSFC 
(https://earth.gsfc.nasa.gov/geo/data/grace-mascons; last accessed: 1 January 2020).
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