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Self-assembly of capped nanocrystals �NC� attracted a lot of attention over the past decade. Despite
progress in manufacturing of NC superstructures, the current understanding of their mechanical and
thermodynamic stability is still limited. For further applications, it is crucial to find the origin and
the magnitude of the interactions that keep self-assembled NCs together, and it is desirable to find
a way to rationally manipulate these interactions. We report on molecular simulations of interacting
gold NCs protected by capping molecules. We computed the potential of mean force for pairs and
triplets of NCs of different size �1.8–3.7 nm� with varying ligand length �ethanethiol-dodecanethiol�
in vacuum. Pair interactions are strongly attractive due to attractive van der Waals interactions
between ligand molecules. Three-body interaction results in an energy penalty when the capping
layers overlap pairwise. This effect contributes up to 20% to the total energy for short ligands. For
longer ligands, the three-body effects are so large that formation of NC chains becomes
energetically more favorable than close packing of capped NCs at low concentrations, in line with
experimental observations. To explain the equilibrium distance for two or more NCs, the overlap
cone model is introduced. This model is based on relatively simple ligand packing arguments. In
particular, it can correctly explain why the equilibrium distance for a pair of capped NCs is always
�1.25 times the core diameter independently on the ligand length, as found in our previous work
�Schapotschnikow, R. Pool, and T. J. H. Vlugt, Nano Lett. 8, 2930 �2008��. We make predictions for
which ligands capped NCs self-assemble into highly stable three-dimensional structures, and for
which they form high-quality monolayers. © 2009 American Institute of Physics.
�doi:10.1063/1.3227043�

I. INTRODUCTION

Gold and semiconductor nanocrystals �NCs� with spe-
cific size and shape dependent optical and electrical behavior
are of growing importance in the fields of optics, electronics,
catalysis, magnetic storage, and biophysics.1 These NCs can
self-assemble in a range of different two-dimensional �2D�
and three-dimensional �3D� superstructures.2–5 NCs are usu-
ally protected by an organic capping layer that prevents ag-
gregation, e.g., gold NCs are often capped with alkyl thiol
molecules.6 These capping molecules �also referred to as sur-
factants or ligands� play an important role in the self-
assembly of NCs. The ratio between the core diameter �dc�
and surfactant chain length �L� determines the crystal struc-
ture of a Au NC superlattice.5,7 Capping exchange can alter
the crystal structure of a binary superlattice.8 Moreover, due
to the attractive interactions between capping molecules, in
binary NC systems, crystal structures with high coordination
form rather than the ones with a higher packing fraction.9

The attraction between capped NCs can be very strong; for
example, a monolayer of Au NCs can form a self-supported
membrane when dropcasted on a substrate with a hole up to
2 �m large.10 It is well known that this attraction is at least
one order of magnitude larger than the van der Waals �vdW�
attractions between Au NC cores.10–12

For the understanding of thermodynamic and kinetic
properties of NCs, knowledge of the free energy or, equiva-
lently, the potential of mean force �PMF� as a function of an
appropriate order parameter is of vital importance.13,14 This
would allow fabrication of novel materials and devices with
tailor-made structural, mechanical, and thermodynamic prop-
erties. The objective of this work is to study the effective
interactions between capped NCs in vacuum. Molecular
simulation techniques provide an excellent tool for the com-
putation of these, especially for nanoscale systems, as these
techniques do not suffer from experimental limitations or
from oversimplifications sometimes present in theories.15

The computed PMFs are useful for several purposes. First,
they provide direct insight in the mechanical and thermody-
namic stability of different self-assembled structures. Sec-
ond, these effective interactions can be used to model me-
chanical properties of NC superstructures. Third, the PMF in
vacuum can be used to describe capped NCs at the air-water
interface, as NCs capped by hydrophobic ligands are hardly
immersed in water at the surface. It is important to note,
however, that NC self-assembly is typically performed in
solution and is therefore governed by interactions different
from the ones presented in this paper. Therefore, the results
of the present work can only be used to make statements
about the properties of already formed NC superstructures.

Capped gold NCs are a convenient system for moleculara�Electronic mail: t.j.h.vlugt@tudelft.nl.
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simulation studies. The binding of thiol headgroups to Au
surfaces is better understood than for other NC-surfactant
systems.16 Several models have been successfully applied to
describe the structure and thermodynamics of alkyl thiol
monolayers on flat Au�111�-surfaces17–19 and Au-NCs.18–21 It
is important to note that the effective NC-NC interactions in
a solvent are very different from the ones in vacuum due to
solvent-capping layer interactions. The work of Patel and
Egorov22 focused on the PMF for very small capped NC
cores �Au38� for varying solvent quality, and it was found
that the PMF can be tuned from strongly attractive to fully
repulsive. In our previous work, we have shown for one sys-
tem that the interaction between alkylthiol capped NCs be-
comes purely repulsive in a good solvent �n-hexane�;23 we
are currently investigating in detail the NC-NC interactions
in different solvents at different conditions. Tay and
Bresme12 computed the PMF for only two selected systems
in vacuum so that no definitive conclusions could be drawn
concerning the general behavior of the PMF.

In our previous work,23 we systematically investigated
the dependence of the PMF on several crucial parameters,
such as capping length, NC size, and temperature. For all
systems we studied, we found that, surprisingly, the equilib-
rium distance �i.e., the minimum of the PMF� for a pair of
capped NCs is �1.25 times the NC core diameter, indepen-
dently on the chain length. In the present work, we study for
the first time triplet interactions between capped NCs. The
computed PMF between pairs or triplets of NCs can be un-
derstood quantitatively by the Overlap Cone Model, which
we will present here. This model is based on chain packing
arguments. Based on the computed PMFs, we develop a
coarse-grained NC-NC interaction potential.

The remainder of this paper is structured as following.
Section II contains a description of the model and methods
used in this work. In Sec. III, we briefly discuss our simula-
tion results for two-body interactions. Effective three-body
interactions are quantified in Sec. IV. The computed effective
interactions are parametrized in Secs. III A and IV A, so that
they can be used in future studies. In Sec. V, we will intro-
duce the OCM to understand the relation between chain
packing effects and the PMF for pairs and triplets of NCs. In
Sec. VI, we combine our findings to make a prediction which
ligand is appropriate for which NC structure. Section VII
summarizes the main results.

II. MODEL AND METHODS

In all simulations, we apply the united atom model for
SH, CH2, and CH3 groups. Alkylthiols are labeled as “SCn,”
where n is the number of alkyl chain segments in the linear
tail. Beads of different surfactant molecules interact with
each other and with gold atoms via truncated and shifted
Lennard-Jones �LJ� pair interactions; parameters are summa-
rized in Table I. Note that the Au–S interaction is much
stronger than other nonbonded interactions. We account for
intramolecular bond stretching, bond bending, and torsional
interactions.24,25 Additionally, we apply intramolecular LJ in-

teraction between segments that are separated by more than
three bonds. Electrostatic interactions are not taken into ac-
count explicitly in our model.

The NC cores are modeled as rigid, close-packed icosa-
hedra exposing only �111�-facets.26 The maximal extent rmax

is defined as the center-to-corner distance, and the core di-
ameter dc is defined as twice the radius of gyration. Gold NC
cores are assumed to interact with each other via the Ha-
maker potential,27

UHam�r� = −
AHam

12
� dc

2

r2 − dc
2 +

dc
2

r2 + 2 ln�1 −
dc

2

r2 �� . �1�

The interaction constant AHam is 2 eV for gold in an apolar
hydrocarbon medium.28 It should be noted that various alter-
natives to Eq. �1� for the effective vdW interactions between
NC cores have been studied recently.29 These expressions
deviate at most by a factor 2 from the Hamaker potential. We
show at the beginning of Sec. III that such variations have no
impact on our results as these interactions are very weak
compared to the interactions between molecules in the cap-
ping layer.

In all simulations periodic boundary conditions are im-
posed. The simulation box is chosen sufficiently large, so
that capping layers of NCs do not interact with their periodic
images. Simulations are performed at constant temperature
T=300 K. An overview of all simulations including their
length is given in Table II.

A. Potential of mean force

Our aim is to determine the free energy, or, equivalently,
the PMF as a function of NC-NC separation. We use con-
straint Monte Carlo �MC� and molecular dynamics �MD�
methods for the computation of the PMF. Consider two NCs
at the fixed distance r. The mean force Fmean is defined as the
average force between the two particles in direction of their
connecting line:30,31

TABLE I. Force field parameters for the LJ interactions in our system. The
CHx–CHy interaction parameters are taken from Ref. 25. The S–CHx inter-
actions are taken from Ref. 17. Au–S and Au–CHx interactions are taken
from our previous work �Refs. 18 and 19� Interactions between rigid NC
cores are modeled via the Hamaker potential �Eq. �1��. LJ interactions are
truncated and shifted at 12 Å.

�ij /kB �K� CH3 CH2 SH Au

CH3 108 78 117 108
CH2 78 56 84 88
SH 117 84 126 2795
Au 108 88 2795 ¯

�ij �Å� CH3 CH2 SH Au

CH3 3.76 3.86 4.11 3.54
CH2 3.86 3.96 4.21 3.54
SH 4.11 4.21 4.45 2.65
Au 3.54 3.54 2.65 ¯

124705-2 P. Schapotschnikow and T. J. H. Vlugt J. Chem. Phys. 131, 124705 �2009�

Downloaded 06 Jan 2010 to 130.161.132.245. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Fmean�r� = 1
2 	�F� 2 − F� 1� · r�u
NVT;r, �2�

where F� 1 and F� 2 are the total forces acting on the first and
second NC core, respectively; r�u=r� /r is the unit vector con-
necting the two NCs, and angular brackets denote ensemble
averages in the canonical ensemble with the constraint NC
separation r. The PMF is defined as

�MF�r� = �
r

�

Fmean�s�ds . �3�

The mean force can be computed according to Eq. �2� using
either constraint MC or MD simulations in the canonical
ensemble. Equation �3� is then used to calculate the PMF. We
experienced that the two methods have similar efficiency for
simulations in vacuum, while MD is more efficient for simu-
lations with explicit solvent.23

Alternatively, the PMF can be computed from uncon-
strained equilibrium MD/MC simulations using, e.g., um-
brella sampling with multiple-histogram reweighting, see
Refs. 32–34 for recent examples. Steered molecular dynam-
ics is a nonequilibrium method for the calculation of the
PMF and it involves the averaging of nonreversible work
performed during MD trajectories.35–38 In our previous work,
we have shown that aggregates of capped NCs with interpen-
etrating capping layers feature shape memory: A transient
restoring force acts upon small displacements of NCs.23 As
transient forces do not influence thermodynamic �equilib-
rium� properties, they should not be accounted for in PMF
computations. However, in our systems of interest, these
forces act on time scales much longer than nanoseconds, so
that results from unconstraint simulations may be mislead-
ing. In Ref. 23 we showed that constraint simulations suffer
much less from this problem.

1. Monte Carlo and molecular dynamics simulations

In MC simulations, the degrees of freedom of surfactant
molecules are sampled using displacement,39 rotation,40 and
configurational-bias MC trial moves.41–44 The rotational de-
grees of freedom of the individual NCs are sampled using
rotations of the NC core or of the cluster defined as the NC
with ligands adsorbed on its surface. The centers of mass of
the NCs remain fixed during the simulation.

The MD simulations are performed using the velocity
Verlet �VV� algorithm.15,45 The only constraint on the system
was applied to the NC-NC center of mass separation using
the RATTLE algorithm,46 the VV version of SHAKE.47

Hereby, the NCs are “bonded” with a fixed length. The
NC-NC bond can translate and rotate freely. The rotation of
rigid NCs about their centers of mass is realized using
quaternion rigid body dynamics.48 The temperature is kept
constant using the Andersen thermostat.49

B. Three-body interactions

One of the difficulties in quantifying many-body effects
is the number of internal coordinates involved. For a pair of
�quasi-� isotropic objects �such as capped NCs in the present
work�, it is sufficient to consider the PMF as a function of
only one parameter �here, NC center-to-center distance�. In a
system of three isotropic objects, one already needs three
coordinates to describe all different configurations. If one
wishes to explore all degrees of freedom of this system, the
number of required simulations would increase cubically
compared to a similar parametrization study of the corre-
sponding two-body system. Without any additional informa-
tion about the system, the computational costs required to
parametrize three-body interactions are therefore much larger
compared to a parametrization of isotropic pair interactions.
If a three-body contribution to the total energy is necessary,
one has to find a suitable potential form to make the com-
puted interactions applicable in practice. This task is im-
mensely simplified when one knows the nature of the inter-
action a priori. For instance, the energy of three consecutive
beads in a chain molecule can be often decomposed into two
bond stretching and one bond bending potentials. Unfortu-
nately, such knowledge is not available for most soft-matter
systems. Currently, simulation and theoretical studies mainly
show presence or absence of many-body effects in one spe-
cific arrangement.50–53 In Refs. 50 and 53, e.g., the three-
body force in a triplet of star polymers and dendrimers, re-
spectively, was studied. The three objects were placed in an
equilateral triangle, and mean force was computed as a func-
tion of the side length. It was concluded in Refs. 50 and 53
that three-body interactions are repulsive and have a signifi-
cant contribution to the total energy. By contrast, an attrac-
tive three-body interaction was found for charged colloids in
Ref. 52.

Our approach is to decompose the total interaction be-
tween three NCs into a sum of effective pair interactions
computed for isolated NC pairs and a three-body correction
term. Our simulation setup is sketched in Fig. 1�a�. The cen-
ters NC1, NC2, and NC3 of three capped NCs are constraint
to the corners of an isosceles triangle, where the NC1-NC3

TABLE II. Overview of the PMF calculations in this work. Simulation
length is expressed in time �ns� for MD and the number of cycles for MC
simulations, respectively. A MC cycle consists of N+10 steps, where N is
the total number of �capping� molecules in the system. Numbers in brackets
denote simulations lengths for close NC-NC separations where capping lay-
ers strongly overlap. All simulations were carried out in the NVT ensemble
at T=300 K.

System Method Length

Au147�SC4�58 MD 5
Au147�SC8�58 MC 1.5�3��105

Au147�SC12�58 MD 10
Au561�SC4�136 MD 1 �3�
Au561�SC8�136 MC 1.5�3��105

Au561�SC12�136 MD 1 �3�
Au561�SC4�136–Au147�SC4�58 MC 1�5��105

Au561�SC8�136–Au147�SC8�58 MC 1�5��105

Au1415�SC2�242 MD 1
Au1415�SC3�242 MD 1
Au1415�SC6�242 MD 1 �3�
Au1415�SC12�242 MD 1
Au147�SC4�58 three-body MC 1.5�5��105

Au147�SC8�58 three-body MC 0.5�2��106
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and NC2-NC3 distances �denoted by r13 and r23, respec-
tively� are equal. The degrees of freedom of ligand mol-
ecules and rotational degrees of freedom of the NCs are
sampled using MC in the NVT ensemble. The mean force
Fmean�r3C� between NC3 and the NC1-NC2 midpoint C is
calculated from

Fmean�r3C� = 1
2 	�F� C − F� 3� · r�u
NVT;R12,r3C

, �4�

where F� C and F� 3 are the total forces acting on C and NC3,
respectively; r3C is the distance between these two points,
and r�u=r�3C /r3C is the unit vector between them. The angular
brackets denote an average in the canonical ensemble with
constraint NC distances. This force can be decomposed into
a vector sum of two forces, F� 13 and F� 23, acting between NC1
and NC3, and NC2 and NC3, respectively, see Fig. 1�b�. The
forces F� 13 and F� 23 are equal in magnitude by symmetry, so
that we can define the effective two-body force Feff�r13� in
the three-body system as

Feff�r13� = �F� 13��r13� = �F� 13��r23� =
Fmean�r3C�

2 cos �
, �5�

with r13=r3C /cos �. As shown in Fig. 1�b�, � is the angle
between the points C, NC3 and NC1 �or NC2�. We perform
a series of simulations in which the distance R12 between
NC1 and NC2 is kept constant, while r3C is different in each
simulation. Integrating the effective force Feff�r13� with re-
spect to the distance r13, we obtain the effective PMF
�MF

eff �r13�,

�MF
eff �r13� = �

r13

�

Feff�r��dr�. �6�

C. Sample preparation

The initial configurations for simulations in vacuum are
prepared by a procedure similar to the one proposed in Ref.
20. First, we generate a configuration with maximum surfac-
tant coverage by a grand-canonical simulation of ethanethiol
�SC2� on a pair of NCs. The MC procedure described in Ref.
19 is used. Next, we perform MC simulations in the canoni-
cal ensemble at temperatures between 250 and 450 K. Such
extensive equilibration is important due to the slow diffusion
of ligand headgroups on the NC surface. Finally, we ex-
change the SC2 ligand by the desired one using simulations
in the semigrand ensemble,54 and equilibrate further to allow
for relaxation of alkyl tails. A typical snapshot of an equili-
brated configuration is shown in Fig. 2. The headgroups are
adsorbed to the surface via the strong Au–S interaction. The
hydrocarbon tails form a soft corona. We find that the maxi-
mum coverage on Au147 �dc=1.8 nm�, Au561 �dc=2.7 nm�,
and Au1415 �dc=3.7 nm� is 58, 136, and 242 alkyl thiol mol-
ecules, respectively, in good agreement with experiments.55

III. PAIR INTERACTIONS

In this section, our results on pair interactions between
capped gold NCs are presented. As a typical result, the PMF
between two Au147�SC4�58 clusters is shown in Fig. 3. The
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FIG. 1. �a� The setup of a constraint simulation of three NCs. NC cores are
represented by shaded circles; the capping layers by gray rings. The centers
of mass of the three NCs are constraint at positions denoted by NC1, NC2,
and NC3, respectively. The midpoint between NC1 and NC2 is labeled as C.
In a series of simulations, the distance R=R12 between NC1 and NC2 is kept
constant, while the distance r=r3C between C and NC3 varies. �b� Forces in
the 3-NC system that are used to quantify the three-body effects. The mean
force between NC3 and C, �F� 3C�, is sampled from a constraint simulation.
The effective forces between NC3 and NC1 �NC2� are denoted by F� 31 �F� 32�.
If no three-body interactions are present in the system, then the magnitudes
of these effective forces are equal to the two-body mean force Fmean at the
corresponding distances.

(b)(a)

FIG. 2. �a� A pair of Au561 NCs at r=34 Å capped by 136 SC8 surfactant
molecules. Yellow spheres represent gold atoms, brown spheres represent
thiols headgroups, and blue lines represent alkyl tails. �b� Close-up of the
“bottleneck” between NC surfaces. Note that the thiol capping molecules
readily bend away from this bottleneck.
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FIG. 3. Mean force Fmean, PMF �MF and Hamaker interaction energy UHam

as functions of the center of mass separation r between two Au147 NCs
�dc=1.8 nm� capped by 58 butane-thiol molecules �SC4� each in vacuum,
computed using constraint MD. The left end of the horizontal axis corre-
sponds to the fusion distance �2rmax�: twice the center to corner distance of
a single NC.
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left end of the horizontal axis is chosen as twice the center to
corner distance rmax. We will call 2rmax the fusion distance.
Note that 2rmax�dc because the NC is not perfectly spherical
�for icosahedral NCs, 2rmax
1.1dc�. The PMF has a strong
repulsion at distances close to the fusion distance followed
by a very deep well of 
30kBT. The attraction ranges a few
angstroms beyond 2rmax plus twice the ligand length �which
is ca. 10 Å here�. The Hamaker interaction between the gold
cores is negligible compared to the total interaction as found
earlier.7,11,12,23 As the vdW interactions decay fast, the PMF
is dominated by interactions between the entities that are in
closest proximity, which are in our case the capping mol-
ecules.

We summarize the computed PMFs for different NC
cores and ligands in Fig. 4. In this figure, we plot �MF as
function of the scaled distance 	=r /dc. The potential minima
of all PMFs lie, surprisingly, in the narrow range 	
=1.25
0.04 and do not depend significantly on the length L
of the capping molecule. Note that the ratio �=2L /dc varies
in this figure between 0.27 and 1.67, which is an order of
magnitude larger than the variation of 	. The separation be-
tween NC surfaces at the equilibrium distance is for most
systems less than the length of a single capping molecule in
a stretched conformation. Figure 2�b� shows that this is pos-
sible because of the flexibility of aliphatic tails: The capping
molecules located close to the NC-NC axis point in the di-
rection perpendicular to this. Therefore, the alkyl tail length
is not necessarily a restriction for NC spacing. We will come
back to this issue in Sec. V where we will show that 	

1.25 is the distance at which the ligands of any length are
packed very efficiently in the space between two NCs. We
extended the evidence for universal scaling by computing the
PMF between a pair of NCs with different sizes dc

�1� and dc
�2�

capped by the same ligand: Au561�SCn�136–Au147�SCn�58,
with n=4 and 8. For such a dimer, it is natural to define an

effective NC diameter d̄c= �1 /2��dc
�1�+dc

�2��. As can be seen
from Fig. 4, the location of the minimum again does not
change with increasing chain length, and still the ratio is 	

1.25.

This scaling result allowed us to formulate a golden
rule:23 “NC superstructures with 	 close to 1.25 have an en-
hanced robustness and thermodynamic stability due to the
large energetic contribution of the capping molecules.” NC
separations with 	
1.25 are expected when capped NCs
self-assemble into one-dimensional �1D� structures such as
rings or chains. Distances between adjacent capped NCs that
are significantly smaller than twice the average surfactant
length are often observed experimentally for thin NC films,
with the ratio 	 between 1.2 and 1.33.4,10,56–61 In Ref. 10, a
monolayer of Au NCs with dc=6 nm capped by SC12 was
shown to form a self-supported membrane when dropcasted
on a substrate with an up to 2 �m large hole. The spacing
between adjacent NCs was found to be 1.4 nm, which is less
than a single surfactant chain length. This corresponds to 	
=1.23, and this is an excellent example of a robust mono-
layer obeying the golden rule. In 3D structures on the other
hand, the typical distance between adjacent NCs depends on
the ligand length due to the limited available volume, and
our golden rule does not apply.5,62

The universal equilibrium distance of 1.25dc only makes
sense if the ligand is sufficiently long; if L�1.25dc−dc /2,
then the capping layers are not in contact when the NCs are
at distance r=1.25dc. We computed the PMFs for a larger
NC Au1415 �dc=3.7 nm� capped by very short ligands SC2

and SC3 and compared them to the ones for longer SC6 and
SC12 capping molecules, see Fig. 5. Both SC2 and SC3 are
significantly shorter than 1.25dc−dc /2=4.63 Å, and the
spacing between the two NCs at the equilibrium distance for
these short thiols equals 5.0 and 6.8 Å, respectively, which is
in both cases approximately twice the ligand length. In con-
trast with this, the equilibrium distances for SC6 and SC12

�46.0 and 47.5 Å, respectively� are close to 1.25dc=46.9 Å
and show a much weaker dependence on the chain length.

Figure 4 indicates that the PMF well depth is mainly
determined by the ligand length alone, and not by the NC
size �and thus not by the number of capping molecules at full
coverage�. The only exception is Au147�SC12�58. The values
Umin of the potential well depth for different ligands SCn can
be fitted to the empirical formula Umin /kBT=−u0�n+1�2, and
the parameter u0
1.15 is in first approximation NC size
independent, see Fig. 6. In particular, the effective attraction
scales quadratically with the number of beads in the capping
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molecule. We have shown earlier that the
prefactor u0 decreases significantly with increasing
temperature.23 A close comparison of the PMFs between two
NCs of different size capped by the same surfactant yields
that for larger NCs, the repulsion is steeper compared to
smaller ones, and the potential well is deeper and more
narrow.23 These observations can be explained by the smaller
surface curvature for the larger NC, yielding a smaller angle
between adjacent surfactants and therefore a denser capping
layer. For the same reason, the PMF well depth for
Au147�SC12�58 is much lower than for Au561�SC12�136 or
Au1415�SC12�242, see Fig. 4.

A. Parameterization of effective NC pair interactions

To make the computed pair interactions applicable in
further studies, it is desirable to develop an interaction model
for capped Au NCs that depends on the core diameter dc and
the number of carbon atoms in the alkyl tail n. One can
estimate the ligand length L by applying the commonly used
empirical formula L
�n+1��1.2 Å.5,7 In this section, we
present a potential form that captures the basic properties of
the effective interactions computed in Sec. III. Note that we
do not try to make a collective fit of all PMFs. We only
consider here the case that the ligand is not too short:
L
 �1.25dc−dc� /2 and the temperature is T=300 K.

We suggest the following potential form for the two-
body interactions:

�MF
2body�r� = fsm�r��a�r − rcut� + b exp�− c�r − rmin��� , �7a�

where rcut=1.2dc+2L is the cutoff radius, the parameter c
determines the repulsion steepness, the parameters a and b
can be expressed in terms of c, the location rmin=1.25dc, and
the value Umin of the potential minimum by

a =
Umin

rmin − rcut + 1/c
, b =

a

c
=

Umin

�rmin − rcut�c + 1
. �7b�

The smoothing cutoff function is given by

fsm�r� = �exp�0.05
dc�rmin − r�

�r − rcut��rmin − rcut�
� r � rcut

0 r 
 rcut.
�

�7c�

When choosing c=0.55 Å−1, rmin=1.25dc, and Umin /kBT
=−1.15�n+1�2, the potential Eq. �7� reproduces the follow-
ing properties observed in Sec. III:

• The equilibrium distance is for any ligand at rmin

=1.25dc.

• The interaction ranges a few angstroms beyond rovrl
2b

=dc+2L, which is the NC diameter plus twice the
ligand length; for r�rovrl

2b the PMF smoothly
approaches 0.

• The potential well depth is Umin /kBT=−1.15�n+1�2.

• The attractive part of the two-body PMF is almost
linear.

• The repulsion is steep in the range 1.1dc�r�1.25dc.

Moreover, both the potential and its derivative are con-
tinuous at the cutoff owing to the smoothing function fsm.
Three typical PMFs from Fig. 4 with different NC cores and
ligands are compared to the potentials from Eq. �7� in Fig. 7.
The agreement is reasonable when taking into account that
we did not perform a collective fit. It can be seen on the
example of Au561�SC8� that the differences are mainly due to
the small deviations of the imposed values for rmin and Umin

from the computed ones.

IV. THREE-BODY EFFECTS

In the previous section, we have studied interactions be-
tween pairs of capped NCs. The crucial question is in which
cases are these pair potentials sufficient to reasonably model
large NC superstructures. We found that, surprisingly, the
equilibrium distance of NC dimers is independent from the
ligand length L and is 
1.25dc, where dc is the NC core
diameter �see Fig. 4�. By contrast, experiments show that the
spacing between NCs in a 3D-superlattice systematically in-
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FIG. 6. Potential well depths Umin from Fig. 4 plotted against the number n
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creases with increasing length of the capping molecules at
constant core diameter.5,62,63 This indicates that pair interac-
tions alone may not be appropriate to describe 3D super-
structures built from NCs with long capping molecules. On
the other hand, pair potentials are sufficient to describe the
energy of 1D superstructures �chains or rings� of capped
NCs. In a similar fashion, a study of three-body interactions
would allow us to apply the computed effective interactions
to simulate 2D NC superstructures �monolayers�. We are not
aware of systematic experimental studies of monolayers
made from Au NCs with constant core size and varying
ligand length. In Ref. 64 it was shown that the spacing be-
tween 5.8 nm Ag2S NCs increases nonlinearly with L, and
the spacing was almost the same for SC12 and SC14. This
indicates that three-body effects may determine the spacing
between NCs in a nontrivial way.

We consider two systems with the same NC �dc

=18 Å� capped by butane and octanethiol: Au147�SC4�58 and
Au147�SC8�58. A typical simulation snapshot is shown in Fig.
8. The geometric properties of the two systems are charac-
terized by the following distances, which are summarized in
Table III:

• Ligand length L.

• NC core diameter dc=18 Å.

• Interpenetration distance rovrl
2b =dc+2L between two NC

centers, which is the center-to-center distance for a NC
pair at which the two capping layers touch each other.

• Triplet interpenetration distance rovrl
3b = � dc

2 +L��3 be-
tween two NC centers: If three NCs are arranged in a
equilateral triangle, this would be the maximum side
length at which the three capping layers overlap in the
triangle midpoint �see Fig. 9�.

• Equilibrium distance of the two-body PMF req
2body, taken

from Fig. 4.

• Equilibrium distance of the effective two-body PMF in
the three-body system, req

eff.

The SC4 ligand is relatively short ��5 Å�, and the inter-
penetration range at the well depth of the associated PMF is
slightly smaller than one capping molecule. The second
ligand �SC8� is two times longer than SC4 and has a very
large interpenetration range of more than 1.5 capping mol-
ecules, see Fig. 4. For the SC4 ligand, we chose R12 separa-
tions of 23.5 and 24.5 Å, which are both close to the dimer
equilibrium distance req

2body. For the longer SC8 ligand, we
computed the effective pair interaction �MF

eff for R12=23.5,
24.5, 26.0, and 30.0 Å.

The calculated effective forces Feff and pair interactions
�MF

eff for the two systems are shown in Figs. 10 and 11, re-
spectively. If no three-body effects were present, �MF

eff would
be identical to the two-body PMF �MF

2body from Sec. III. The
difference between �MF

eff and �MF
2body is in all cases very small

for r�rovrl
2b , i.e., when the capping layer of NC3 does not

overlap with the other two capping layers. For smaller r13

distances, the three-body interaction becomes increasingly
repulsive. In all cases, the equilibrium distance shifts toward
larger separations.

In a Au147�SC4�58 triplet, the effective interaction be-
tween NC pairs becomes 20% less attractive compared to the
two-body case. The location of the �MF

eff well depth decreases
by 1 Å �4.2%� compared to �MF

2body. The effective interactions
�MF

eff computed for two different R12 separations lie within
statistical accuracy. When a Au147�SC4�58 triplet is arranged
in an equilateral triangle with side length equal to req

eff


24.7 Å, the distance from each NC center to the midpoint
of the triangle is req

eff /�3=14.3 Å. This is slightly larger than
the distance dc /2+L from a NC center to the capping layer
layer boundary, so that there the three capping layers only
overlap pairwise. On the other hand, in a triangle with side
equal to req

2body
23.7 Å, the distance to the triangle midpoint

FIG. 8. A simulation snapshot of a Au147�SC4�58 triplet with R12=24.5 Å
and r3C=27 Å. Representations are the same as in Fig. 2.

TABLE III. Geometric data of the two NC systems described in the text. All
distances are reported in angstrom.

L rovrl
2b rovrl

3b req
2body

Formula dc+2L
�3

2
rovrl

2b

Au147�SC4�58 4.8 27.6 23.9 23.7
Au147�SC8�58 9.6 37.2 32.2 21.6

� � � � � �
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FIG. 9. Representation of the triplet overlap distance rovrl
3b . The capping layer

boundaries of the three NCs, represented by gray lines, intersect in the
midpoint M of the equilateral triangle with corners in NC1, NC2, and NC3.
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would be 13.7 Å, which is slightly smaller than dc /2+L.
This would allow an overlap of the three capping layers.
Thus, for the short ligand the shift of the equilibrium dis-
tance can be rationalized as avoiding a triplet overlap.

For a Au147�SC8�58 system, the effective interactions cor-
responding to R12=23.5, 24.5, and 26.0 Å are very similar.
As expected, �MF

eff corresponding to R12=30.0 Å lies be-
tween the one for R12=26.0 Å and the two-body PMF
�MF

2body, as the three-body effects become weaker for increas-
ing separation R12 between NC1 and NC2. The location of
the �MF

eff well depth is decreased by 3 Å �14%� compared to
�MF

2body. The effective pair interaction �MF
eff is up to �40% less

attractive than �MF
2body. This may have a strong consequence

for the formation of Au147�SC8�58 aggregates at the air-water
interface. In the pioneering study of Heath et al. it was ob-
served that NCs capped by long ligands organize into linear
structures at the air-water interface at low surface pressures,
while foamlike structures form at higher surface pressures.3

The authors of this study already speculated that effective
three-NC interactions are responsible for such behavior. Our
work provides direct evidence for this speculation. This can
be seen as follows. Consider two possible configurations for
a triplet of Au147�SC8�58 clusters: Three in a row and equi-
lateral triangle, each with energetically most favorable dis-
tances, see Fig. 12. In the first case, three-body interactions
are absent, and the total energy of this configuration is twice
the well depth of �MF

2body, which is Uchain /kBT
−165. In the
second case, the energy of the triplet is three times the well
depth of �MF

eff . From the three PMFs corresponding to R12

=23.5, 24.5, and 26.0 Å, we can make an estimate
Utriangle /kBT=−150
5. Once a triangle is formed, it can eas-
ily “straighten,” as shown in Fig. 12. To see this, consider a
triangle with R12=30 Å, and r13=r23=24 Å, which is a pos-
sible intermediate configuration between an equilateral tri-
angle and a chain. From the effective interactions in Fig. 11,
we can estimate the energy of this configuration as 

−155kBT �assuming a NC1-NC2 contribution of 35kBT�.
Therefore, the linear arrangement of the triplet is energeti-
cally preferred over the triangle for long capping molecules.
This is an interesting example of a spontaneous anisotropic
assembly of isotropic entities.

Interestingly, req
eff is the same for the two ligands despite

the difference in length by 5 Å. The question whether this
agreement is coincidental or systematic cannot be answered
with the available data; further investigation is necessary us-
ing both experiments and simulations. On one hand, the
separation between SC4-capped NCs can be explained in
terms of the avoiding of a triple overlap �see above�. Inde-
pendently from this argument, we will show in Sec. V that
the three-body equilibrium distance for SC8-capped NCs can
be understood as the densest possible packing of ligand
chains. By contrast, a “ligand-independent” three-body equi-
librium distance would be a possible continuation of the uni-
versal scaling of the two-body interactions found in Sec. III.

A. Parametrization of triplet interactions

In Sec. IV we have seen that three-body effects are not
very large for a relatively short ligand 2L�0.5dc. We feel
that in this range they can either be neglected completely or
considered implicitly by making the two-body interactions
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from Sec. III A slightly less attractive. However, three-body
effects for a long ligand are much larger than for a short one.
If one either neglects them or replaces them by an effective
pair interaction, it is expected that several important proper-
ties of the system will not be reproduced correctly. In this
section, we present a model for effective interactions in a
Au147�SC8�58 triplet that captures our main findings from
Sec. IV on this system.

We propose the following correction term for each of the
pair interactions �MF:

�MF
eff �rij� − �MF

2body�rij�

= ��rovrl
2b − rij�3�rovrl

2b − rik�2�rovrl
2b − rjk�2

��rovrl
2b − rij���rovrl

2b − rik���rovrl
2b − rjk� , �8�

where the indices i , j , k run over 1, 2, and 3. The Heavi-
side step function � is defined as

��x� = �1 x � 0

0 x � 0
� , �9�

and the parameter � /kBT
3�10−7 Å−7 for the
Au147�SC8�58 system that we studied in Sec. IV. This poten-
tial reproduces the following properties of the effective in-
teraction in a Au147�SC8�58 triplet:

• The three-body correction vanishes if any distance in a
triplet becomes larger than rovrl

2b =dc+2L, which is guar-
anteed by the �-functions.

• The correction term becomes larger when each of the
three distances becomes shorter.

• The equilibrium distance in an equilateral triangle in-
creases by 4 Å; the potential well becomes 40% higher.

Moreover, the resulting potential and its derivatives are
continuous. The distance rij is given a stronger weight
through the cubic power. Note that the correction term Eq.
�8� should be added for each of the three sides of a triangle,
and not one time per triplet as it is the case in several many-
body models.

A typical potential energy surface for the Au147�SC8�58

triplet computed using Eq. �7� for �MF
2body and Eq. �8� for the

three-body correction is shown in Fig. 13. Note that the
three-body correction term not only weakens the attraction,
but also strongly deforms the low-energy regions. The
minimum-energy region is parallel to the NC1-NC2 pair
when the three-body correction is added �see Fig. 13�a��,
which is not the case without the correction term �see
Fig. 13�b��.

V. EQUILIBRIUM DISTANCE BY OPTIMAL PACKING
OF LIGANDS

In this section we will rationalize the scaling results for
the equilibrium distance between capped NCs found in Secs.
III and IV. The variables of interest are the center to center
distance r between a pair of NCs with diameter dc and ligand
length L. Here, NC cores are considered as spheres of diam-
eter dc. It is convenient to introduce scaled variables 	

=r /dc and �=2L /dc. The goal of this section is to establish a
relation for the equilibrium distance 	eq of the form 	eq

=	eq���.
The equilibrium distance between a pair of interacting

capped NCs is the separation at which the total force on each
NC vanishes. Given the strong vdW-attraction between cap-
ping layers in vacuum, the repulsive forces must also be-
come very large at the equilibrium distance. This happens if
one or more ligand molecules are overcompressed, as an
alkane chain requires a certain minimum volume. If a cap-
ping molecule is confined into a too small volume, it exerts a
large repulsive force. This observation suggests the follow-
ing constituting equation for all packing models:

Vlig�	eq,�� = Vavail�	eq,�� , �10�

where Vlig is the volume required for a certain set of ligand
molecules, and Vavail is the volume available to this set. This
approach was originally introduced in Ref. 3 and elaborated
further in Ref. 7. First, one has to specify a relevant set of
ligands and the volume available to them. This task is highly
nontrivial and not unambiguous. We will show in the sequel
that this choice affects the prediction of a packing model,
especially for �
0.5. Second, one has to formulate the two
volumes in Eq. �10� as functions of 	 and �. This can be done
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FIG. 13. Potential energy surface of a Au147�SC8�58 triplet as a function of
position of the center of the third NC. The distance between the first and the
second NC �NC1 and NC2� is fixed at R12=26 Å. The energy in units of
kBT is computed �a� using the pair potential Eq. �7� with the three-body
correction of Eq. �8� and �b� using only the pair potential Eq. �7�. The unit
of distance is angstrom. The inner white circles represent the cores of NC1
and NC2; the white rings around them are the regions that are not accessible
to the center of the third NC due to core-core overlap. These regions should
not be confused with the capping layers.
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either analytically or numerically. Finally, by solving Eq.
�10� with respect to 	, we obtain 	eq���.

We start with general considerations concerning Vlig. The
number of ligand molecules on a metallic NC is limited by
the repulsion between headgroups. Therefore, one introduces
the ligand footprint A0, which is the area on the NC surface
occupied by one ligand. The volume V1

0 of one single linear
ligand is then V1

0=LA0. In an ideal situation �denoted by
“ 0”�, the total number of ligands Nlig

0 on a fully capped NC is
the surface area of the NC sphere divided by the footprint:

Nlig
0 =

�dc
2

A0
. �11�

The volume Vlig
0 of the ligands whose headgroups are ad-

sorbed on a specific area Alig is then given by

Vlig
0 =

Alig

A0
V1

0 = AligL . �12�

To adapt the model to more general systems, one has to
introduce the density parameter �, which is the product of the
relative grafting density and relative ligand volume:

� =
Nlig

Nlig
0

V1

V1
0 , �13�

where Nlig is the actual number of capping molecules and V1

is the actual ligand volume. Note that the inclusion of the
parameter � is essential for branched ligands, as V1 /V1

0�1 in
this case. The ligand volume Vlig is related to the ideal ligand
volume Vlig

0 by

Vlig = �Vlig
0 . �14�

Figure 2 shows the situation that ligands are relatively
flexible, and that they are able to bend away from the
“bottlenecks” between NC surfaces. The thiol headgroups,
on the other hand, remain immobile as they are strongly
adsorbed to the NC surface. We therefore propose the model
sketched in Fig. 14. A pair of overlapping capping layers
defines a circle in the intersection plane, which is the full
contact area between the two capped NCs. By connecting
this circle to each NC center, we obtain two overlap cones
with volume Vcone each. Obviously, a part of each cone with
volume Vcone

core belongs to the corresponding NC core. The
remaining volume Vcone−Vcone

core is then available to capping
molecules. The area of the NC surface inside each cone is

denoted by Acone
core . Our main assumption is that the ligands

adsorbed on this surface lie inside an overlap cone. We will
refer to this assumption as OCM. Equation �10� then be-
comes

Vlig = �Acone
core L = Vcone − Vcone

core = Vavail. �15�

It is important to note that both sides of this equation depend
on the ligand length and the distance between NCs. More-
over, due to symmetry the OCM does not distinguish
whether the ligand molecules belonging to one NC stay com-
pletely inside the corresponding cone or lie partly in the
other cone.

For a pair of NCs with equal size, the three terms in Eq.
�15� can be calculated using the formulae for solids of revo-
lution:

�Acone
core L =

�dc
3

4
���1 −

	

1 + �
� , �16a�

Vcone =
�dc

3

24
	��1 + ��2 − 	2� , �16b�

Vcone
core =

�dc
3

12
�1 −

	

1 + �
� . �16c�

After dividing both sides by �dc
3 /8, Eq. �15� becomes

2���1 −
	

1 + �
� =

1

3
	��1 + ��2 − 	2� −

2

3
+

2

3

	

1 + �
. �17�

This is a cubic equation in 	 and it always has a trivial
solution 	=1+�, i.e., when the two capping layers just touch
each other. Indeed, in this case both the cone volume Vcone

and the corresponding surface area Acone
core vanish. The relevant

solution is

	eq = −
1 + �

2
+��1 + �

2
�2

+
6�� + 2

1 + �
, �18�

while the third root of Eq. �17� is negative.
An important feature of the OCM is that it can account

for many-body effects. When a capping layer of NC1 over-
laps with capping layers of two other NCs, it may occur that
the two overlap cones on NC1 intersect as in Fig. 15. In this

� � � � � � � �
� � � � � � � �
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d /2C

FIG. 14. A sketch illustrating the OCM �present work�. By connecting the
intersection plane �represented by the vertical dashed line� with a NC center,
one obtains a cone. Truncation of this cone at the NC surface yields the
overlap cone. It is then assumed that the ligands whose headgroups are
adsorbed inside the overlap cone �represented by bold curved lines� lie
completely inside the overlap cone.

� � � �
� � � �
� � � �
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FIG. 15. Three-body effects in the OCM. The three NCs are represented by
shaded circles, their capping layers by the corresponding dashed circles. The
overlap cones between NC1 and NC2 and between NC2 and NC3 are rep-
resented by green and red lines, respectively. In �a�, these two overlap cones
do not intersect and they can be treated separately. In �b�, the two overlap
cones do intersect, so that both the intersection volume and the intersection
NC surface area must be accounted for in Eq. �15�. For clarity, the overlap
cone between NC1 and NC3 as well as ligand molecules is not shown.
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case, some ligands on NC1 lie in two overlap cones simul-
taneously. Four-body effects arise in the same manner when
four NCs are arranged in a tetrahedron. If one now wishes to
express the volumes on both sides of Eq. �15� by combining
expressions of Eq. �16�, one has to subtract the double-
counted intersection volume of the two cones on the right
side and the double-counted surface area on the left side of
Eq. �17�. Unlike the two-NC case, we were not able to cal-
culate the corresponding integrals analytically. We solved
Eq. �15� numerically for a NC triplet arranged in an equilat-
eral triangle and for four NCs arranged in a regular tetrahe-
dron. This numerical solution is shown in Fig. 16. The solu-
tion is identical to Eq. �18� for ��0.39, and then the
aforementioned intersection of overlap cones occurs. For a
tetrahedron, it is useful to consider the case when the ligands
fill the whole space between NC cores �which holds for �

0.54�. The solution of Eq. �15� is then

	eq = �3 �tetr�1 + 3��� , �19�

where �tetr
0.780 is the atomic packing factor of a tetrahe-
dron. Note that Eq. �19� is also a good �lower� approximation
for 	eq in the interval 0.39���0.54 with the maximum de-
viation from the exact solution being less than 0.01.

The optimal packing model �OPM� of Landman and
Luedtke7 makes different assumptions regarding the flexibil-
ity of ligand tails. First, the ligand cone is introduced: A cone
with the vertex in the NC center through the ligand footprint.
Second, the OPM assumes that in a dense 3D many-body
superlattice the tail of a ligand molecule occupies some vol-
ume mainly inside this cone. Third, the ligand lying on the
NC-NC line is considered. Its ligand cone is truncated be-
tween the NC surface and the intersection plane of the two
capping layers. Finally, the OPM postulates that the optimal
packing is achieved when the volume of this truncated cone
equals the volume V1 of a single ligand. Thus, the OPM
considers the central part of the contact region between two

NCs and makes a prediction for its density, whereas the
OCM models the density of the entire contact region. In our
notation, we can apply Eq. �10� to a part of the contact zone,
resulting in

Vlig = V1 = �A0L =
dc

6
A0�	3 − 1� = Vavail, �20�

which is identical to Eqs. �1� and �2� of Ref. 7. The right part
of this equation is the volume of the aforementioned trun-
cated ligand cone. The only real solution of Eq. �20� is7

	eq = �3 1 + 3�� . �21�

It should be noted that OPM reproduces very well experi-
mental data on 3D-superlattices of capped Au NCs from Ref.
5. It is not clear, however, whether it is applicable to mono-
layers or small clusters of NCs. Coincidentally, Eq. �21� is
identical to Eq. �19� with atomic packing factor of �=1.

In Fig. 16, we plotted our results from Secs. III and IV
together with available experimental data on monolayers of
capped gold and silver NCs, and we compare them to pre-
dictions of OCM and OPM. For both models, we consider
the generic case �=1. Both packing models predict equilib-
rium distances between NCs significantly smaller than 1+�,
implying a large interpenetration of capping layers. Consider
first the two-body OCM: 	eq increases up to �1.25 until �

0.75 and then very slowly decreases. In particular, in the
region 0.4���1.5 the value of 	eq remains in the very
narrow interval 1.2�	�1.25. This explains the golden rule
�	
1.25� that we established in Sec. III. The values of 	eq

predicted by the three-body OCM become significantly
higher than the ones predicted by the two-body OCM for �
�0.65, although they differ already for ��0.39. For a three-
body system, the OCM predicts a systematic increase in 	eq

up to �
1.3. The four-body effects are even more pro-
nounced. Overall, Fig. 16 demonstrates a systematic progres-
sion from two-body, three-body over four-body systems
�OCM� to 3D many-body systems �OPM�.

The OCM reproduces both experimental and simulation
data very well in the region 0.35���0.6. For ��0.65, the
difference between two-body and three-body interactions be-
comes significant; this explains the discrepancies between
our two-body simulation results and experiments in this re-
gion. Apart from very small values of � �Au1415SC2,
Au1415SC3, and Au561SC4�, the OPM systematically overes-
timates the nearest-neighbor distance. The OPM also predicts
a strong monotonic increase in the equilibrium distance with
ligand length, which was only found to be correct for 3D
structures5 �for which the OPM was developed�. However,
the OPM provides no qualitative explanation for our numeri-
cal results on lower dimensional structures from Secs. III and
IV.

We now consider the dependence of 	eq on the capping
density �. In our previous work,23 we have shown that when
the capping layer is partially degraded due to ligand evapo-
ration ��=0.85�, then the effective interaction becomes even
more attractive and the equilibrium distance shifts very close
to the fusion distance 	 f. The latter is defined as the distance
at which two NC cores touch each other; if the NC cores are
not perfect spheres, 	 f is slightly larger than 1. For icosahe-

0 0.5 1 1.5 2
λ

1

1.25

1.5

1.75

2

2.25
τ

Simulation (2-body)
Simulation (3-body)
Experiment
OCM (2-body)
OCM (3-body)
OCM (4-body)
OPM
τ = 1+λ

FIG. 16. Scaled equilibrium distance 	 vs scaled ligand length �. Results of
our two-body �Sec. III� and three-body �Sec. IV� simulations together with
experimental data from Refs. 2, 10, 56–59, 61, and 64 are compared with
predictions of OCM �present work� and OPM �Ref. 7�. The OCM data for
two NCs were calculated using Eq. �18�; the OCM data for three and four
NCs were obtained by solving Eq. �15� numerically. The OPM data
were calculated using Eq. �21�. When the capping layers do not overlap,
	=1+�.
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dral NCs, 	 f 
1.1. We considered the systems Au147SC4

��=0.56� and Au561SC4 ��=0.37�. The OCM yields for �
=0.85 the equilibrium distances in these systems 	eq=1.15
and 	eq=1.13, respectively, both alarmingly close to 	 f, in
very good qualitative agreement with our simulation results.
The estimates from the OPM �1.34 and 1.25�, on the other
hand, do not point to possible NC sintering.

In summary, the OCM quantitatively reproduces simula-
tion and experimental data on monolayers in the region
0.35���0.6 and it explains why the equilibrium distance
in a NC dimer is almost ligand length independent over a
large range of �. Moreover, the OCM explains the split
between two-body simulation results and experiments for
��0.65. Therefore, the OCM is the model of choice to
describe low-dimensional NC superstructures, while for 3D
superlattices the OPM can be applied.

VI. DISCUSSION

We aim to combine the results of Secs. III–V with regard
to ligand design for potential applications. Although the
OCM is a purely geometric model, its results can be inter-
preted in terms of many-body interactions. We have seen in
Sec. IV that the shift of the equilibrium distance in a 3-NC
system compared to a 2-NC case is correlated with the
strength of the repulsive three-body interaction. Thus, we can
consider the difference between the 2-NC and 3-NC or 4-NC
OCM predictions as a qualitative measure for an energetic
penalty associated with formation of 2D or 3D structures,
respectively. This loss should of course be compared to the
energetic gain due to a large number of contacts between
NCs. Figure 12 shows that for long capping molecules the
penalty may even overbalance the gain, so that self-assembly
in 1D structures becomes energetically preferred over 2D
close-packed ones, as found experimentally.3 In this section,
we consider monodisperse NCs with �=1 �linear ligands, full
capping� capped by a surfactant with scaled length �. To give
also a concrete example, we will write in brackets the corre-
sponding range of alkylthiol ligands for a NC with dc

=5 nm.
First, consider short ligands ��0.39 �SC8 and shorter�.

The OCM predicts then the same equilibrium distance 	eq

�Eq. �18�� in 1D, 2D, and 3D assemblies, and thus no sig-
nificant many-body effects are present. In this range, the NC
superstructures with maximum coordination are very stable
energetically, and the golden rule applies. Superlattices may
readily precipitate from NC dispersion even without solvent
evaporation. These superlattices are expected to form via the
classical nucleation and growth mechanisms.

Next, consider ligands with intermediate length 0.39
���0.65 �SC9-SC12�. In this regime, the OCM equilibrium
distances between NCs in 1D and 2D aggregates are similar,
while the spacing in 3D NC aggregates is predicted to be
larger and to increase systematically with ligand length. In
particular, for ��0.54 �SC11 and longer�, the entire space
between NC cores is filled by ligand chains and NC-NC
spacing 	eq in 3D structures is predicted according to Eq.
�19� with the suitable space filling factor �. The large differ-
ence between 2D and 3D allows us to estimate small to mod-

erate three-NC interactions and large repulsive four-NC
forces in this range of �. Thus, the golden rule applies only
to monolayers in this case, and they are energetically very
stable.10 Due to the repulsive four-body interactions, the
nucleation of 3D superlattices is expected to be hindered in
one direction and their formation is predicted to occur via a
layer-by-layer assembly. This may lead to a lattice distortion
perpendicular to the substrate.

Finally, consider long ligands 0.65���1.5
�SC12-SC30�. In this case, the dependence of 	eq on � in 1D
and 2D structures is nonmonotonic. In 1D structures, the
golden rule 	eq
1.25 is still obeyed. In 2D structures, on the
other hand, the spacing between NCs is larger; in particular,
the values of 	eq remain in the interval 1.3�	�1.35 over a
relatively broad range of ligand lengths 0.8���1.5
�SC16-SC30�. This implies strong repulsive three-body inter-
actions; as we have shown in Sec. IV, open 1D aggregates of
NCs may even become energetically more favorable than 2D
closed packed structures in this range of �. This effect will
inevitably introduce strain in NC superlattices, making the
self-assembly into close-packed structures less favorable
than more open and less ordered ones.3 Note that these long
ligands form ordered bundles on the NC surface, especially
at low temperatures.7,11,20 In our earlier work23 we have
shown that the equilibrium distance hardly changes upon
transition through the melting temperature of these bundles.
Therefore, the golden rule is still applicable.

We conclude that the capping molecules with ��0.39
are particularly suitable for formation of stable, robust 3D
structures. Ligands with intermediate length 0.39���0.65
are suited for creating stable close-packed monolayers. Long
ligands can be used for spontaneous formation of open 1D
structures such as chains, rings, or foams.

VII. CONCLUSIONS

In summary, we computed and parameterized the PMF
between alkylthiol capped gold NCs using atomistic simula-
tions. The potential well depth is of the order of tens to
hundreds kBT. The minimum of the two-body PMF lies at

1.25dc, suggesting a strong thermodynamic stability of NC
structures with the ratio 	 between the center-to-center dis-
tance and core diameter close to this value. We also investi-
gated three-body effects on interactions between capped NCs
in vacuum. If the capping layers of three NCs overlap pair-
wise, a repulsive three-body interaction is always present.
Due to this interaction, the equilibrium distance in the two
systems we studied shifted to 
1.36dc. The contribution of
three-body effects to the total interaction energy is 20% for a
short ligand and 40% for a long one. For long ligands, 1D
�rings or chains� or fractal aggregates of capped NCs at the
air-water interface are energetically more favorable than 2D
ones �islands or close-packed monolayers�. We introduced
the OCM to explain our findings. This model considers the
equilibrium distance between capped NCs as effective pack-
ing of flexible alkylthiol ligand tails. The OCM agrees well
with our simulation results as well as with available experi-
mental data on monolayers of capped NCs. We conclude that
packing of ligands determines the spacing between NCs in
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aggregates, and interactions between capping layers play a
crucial role in thermodynamic behavior and self-assembly of
capped NC.
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