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Abstract

Video support is becoming an indispensable tool in tennis practice sessions,
especially at the professional level. Cameras are used to record a player and
the current available software is used optimize the player's tennis technique, i.e.
the biomechanics. Unfortunately, the tactical side of tennis is underexposed in
terms of available software. Tennis can be seen as a spatial-temporal game. The
the dimensions of the court are �xed and the ball goes from player a to player b
in a �nite amount of time. The work presented in this thesis shows a method to
�exibly evaluate a tennis game based on the footage of a single mounted camera.
Software is used to extract spatial-temporal data from the tennis footage and
a spatial-temporal language based on �rst order logic is designed to query the
spatial-temporal data. The implemented prototype of this thesis' work provides
a graphical user interface in which the user is able to execute queries and to see
the movie fragments that meet the requirements of the spatial-temporal query.
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Chapter 1

Introduction

The support of visual aids in sports is still an emerging area of research. Using
videos in sports can have numerous advantages. Firstly, an important general
feature of video is that it can be watched over and over again. Secondly, mo-
tions in sports can occur too quick for the human eye to track. The human
eye is capable of accurately tracking an object that moves with a speed of 70
(rad/s). Higher radial velocities cause blur [19]. Using high-speed cameras or
simply replay the video in slow-motion can take away this human shortcoming.
When using a multiple camera setting one is able to view a sport scene from
di�erent angles and a sports coach is also able to keep track of multiple matches
simultaneously with the use of cameras.

The work presented in this thesis tries to further exploit the use of video cameras
in tennis practice sessions. The objective is to support and extend the tactical
insights of a tennis game for tennis players by means of a single video camera
and additional video analysis software.

The introduction is divided in two sections. In section 1.1 tennis background
information is provided in order to expose the possibilities to use video analysis.
Also the current methods of video analysis will be brie�y discussed as well as
the comparison to other sports in which video analysis is already used. Section
1.2 and 1.3 introduce respectively the problem description and the objective of
this work.

1.1 Background

This work will purely be concerned with the use of visual aids in tennis. Tennis
can be seen as a spatial-temporal game. Two players battle against each other
in which the ball travels from player one to player two in a limited amount of
time and space. Professional tennis is based on four pillars: technical, tactical,
physical and mental. The technical pillar is concerned with the biomechani-
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cal characteristics of tennis players. Optimizing the movement of body joints,
muscles and other tissues to hit as e�ectively as possible is the core subject
of biomechanics. The tactical pillar looks at the spatial-temporal characteris-
tic of the game. In general this comes down to the question: where should
player one hit the ball in order to make it player two as hard as possible. This
question is not as trivial as it seems since it depends on multiple apsects, e.g.:
player position, incoming ball, position relative to the court, etc. The physical
pillar tries to get the body in shape to avoid injuries and to enable the body
to perform the biomechanically most optimal movements throughout a tennis
match. The last pillar, mental, looks at the positive and negative emotions
that every tennis player faces. Analyzing physical and mental aspects by means
of video analysis is not probable and are therefore beyond the scope of this work.

The video analysis software currently available for tennis coaches focuses mainly
on the technical domain. The software enables the coach to record a player and
to analyze the player's movement. An example is shown in Figure 1.1 where the
trajectory of the player's racket is highlighted after a serve. Another package
frequently used by tennis coaches is called TimeWarp1. TimeWarp records a
player and replays it with an adjustable delay. The goal of this software is to
provide instant feedback to a player after a number of hits. The software is
intended for improving the player's tennis technique.

Figure 1.1: Analysis of the serve using biomechanical analysis soft-
ware

In tennis, compared to other ball-oriented sports, there is a lack of tactical
analysis software. In professional soccer the use of tactical software is more
and more embedded in practice sessions. The goal of the software is to analyze
the performance of the team with respect to tactical situations and to �nd
weaknesses in the tactics of the opponent. Hockey is another example of a sport
in which tactical analysis software has become an indispensable tool for the
coach.

1TimeWarp is a product of SiliconCoach. For more information http://www.

siliconcoach.com
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1.2 Problem Description

The lack of dedicated tactical software is a shortcoming for the tennis coach.
For the application to be successful, the following requirements should be met:

• Portability
The system should be able to be used at di�erent locations easily. The
problem encountered here is the number of cameras. To increase porta-
bility this number should be kept as low as possible. Furthermore, the
software needs to be �exible in terms of positioning the camera(s) behind
the tennis court. Footage originating from one or multiple camera(s) be-
hind the court, approximately in the center, should be su�cient for the
software to work with.

• Flexibility
Given a tennis video, the user of the system needs to be able to specify
exactly what he wants to see. A set of prede�ned functions should be
available in the system to extract the most common tennis events from
the video. On top of this set, the user should be able to easily indicate all
the tactical situations that he wants to extract from the video.

• User-friendly In order for the system to be used by tennis coaches, the
learning curve of the system should be as steep as possible and the number
of actions to be taken to produce the desired output should be kept as low
as possible. The system should therefore contain an user interface that is
intuitive, easy to understand and fast.

1.3 Objective of This Thesis

The objective will be to design and develop a prototype that is able to, given
a tennis video, automatically analyze and evaluate tactical tennis situation in a
portable, �exible and user-friendly way. The research questions that should be
answered are:

1. How to gather and save spatial-temporal data from tennis footage and
what is the optimal number of cameras taking the ratio portability/accuracy
into account?

2. How to give the user the �exibility to query the collected data in a quick
and easy way?

3. What requirements should the user interface meet in order to make the
input of the coach as easy as possible and at the same time produce useful
output?

Chapter 2 discusses research that is related this work. In this chapter the latest
research on tennis video analysis software is discussed. Linear Temporal Logic
will also be elaborated on since it is an acknowledged method to query temporal
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data. Chapter 3 thoroughly elaborates on the prototype. This chapter is divided
in three sections: the ball and player tracking software, the spatial-temporal
language and the user interface. In the next chapter the work is evaluated and
the thesis is ended with a chapter Discussion and Future Work.
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Chapter 2

Related Work

In this section research literature related to automated tennis video analysis
and temporal logic will be brie�y presented. Objective of this chapter, next to
positioning this thesis in the research �eld, is to show the alternative options
related to tennis video analysis software and query languages like temporal
logic. The �rst section will discuss current tennis video analysis software. As
mentioned in the introduction the emphasis of this work is not to come up
with new video analysis algorithms to optimize the tracking of balls and players
during a tennis match. Merely, the emphasis of this work is to build a layer on
top of this types of software to create software that can be used by professional
tennis coaches to analyze tactical situations. The tennis video analysis (TVA)
software used for building the prototype is called "Vampire" and is able to
track the ball and both players during a tennis match. However, TVA literature
will be discussed to see the bene�ts of Vampire compared to alternative TVA
software.
The next section discusses temporal logic since it is the most common method to
query spatial-temporal data. In this section temporal logic is brie�y explained
and Linear Temporal Logic (LTL) is compared to �rst-order logic in order to
see the di�erences and the similarities.

2.1 Tennis Video Analysis

For the TVA software to be usable it should output what, when and at which
location an event has occured. Where an event can either be an hit or a bounce
event. Other requirements that must be met by the TVA software are:

• Track the location of players based on single-camera footage

• Track the location of the tennis ball based on single-camera footage

• Generate 2-dimensional spatial-temporal data from the above data sources
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The TVA literature available can roughly be divided in three categories. Firstly,
the software that examines broadcast videos. The emphasis is mainly on dis-
tinguishing between camera shots (e.g. close-up, replay, game play, etc.) and
trying to extract the most fundamental events. Secondly, the software that ex-
amines tennis videos and tries to track both players. This software goes deeper
and tries to detect more speci�c events. For example: detecting when a serve is
hit or when a rally is played. The third category is concerned with player and
ball tracking. This is computationally the most heavy type of software and is
concerned with tracking both the players and the ball as it goes from location
a to location b. For this thesis only the last category is interesting, but for
comparison also the second category, player tracking, will be discussed.

2.1.1 Player Tracking Methods

Huang et al. [5] examined broadcast videos. Broadcast tennis videos always use
multiple cameras, but the camera position that records the game play is always
�xed. The di�culty of this type of footage is to distinguish the various types
of camera shots: game play, close-ups, replays, audiance shots, etc. By using a
combination of video and audio they are able to detect when a serve is hit and
when a rally is played with accuracies between the 84.9% and 94.1%.

Another player tracking algorithm based on broadcast video is developed by
Dang et al. [4]. They are able to track players and to detect the lines of the
court with an accuracy of respectively 97% and 87%. Their prototype is able to
detect serves, baseline rallies and net approaches. The extraction of this higher
semantic information is based on:

• Instant speed of the player to detect whether a player is still or running.

• Speed change of the player. Changes in action behavior occur simultane-
ously with acceleration and deceleration of a player.

• Relative position of the player on the court model. This is the main
source for the recognition of position-based events (i.e. serve, baseline
rally, approach). See Figure 2.1.

• Temporal relations among each event. In tennis there are strong temporal
correlations between events, e.g. a serve always happen before a rally
starts and net approaches can occur during a baseline rally.
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Figure 2.1: The detection of respectively a serve and a net approach
based on the relative positions of both players

This prototype recognizes global events, but is not capable of tracking ball tra-
jectories and detecting hit/bounce events.

The software of Tien et al. [21] characterizes events based on audiovisual fea-
tures and hence are able to detect more speci�c events. The �ve events it
recognizes are: fault, double fault, ace/unreturned serve, baseline rally and net
approach. Next to the relative position of the player on the court, this software
uses more audiovisual feature extractions to:

• Detect player movement. This is similar to the feature proposed in [5],
except that this software doesn't detect speed changes. Looking at Figure
2.2, the bottom player moves from one region into another and hence can
be categorized as a net approach.

• Applause/cheer sound e�ects. The use of audio features can help to detect
events, since audience tends to give applauses after an ace or a baseline
rally, but not when a double fault has been hit.

• Length of the play. Di�erent events have di�erent lengths. They take the
length of an event in account to, for example, distinguish an ace from a
baseline rally.

The use of audio to distinguish among events is for the application of tactical
software not practical since the software should also perform accurately without
an audience.
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Figure 2.2: Player movement detection. The mapping to the ho-
mography is depicted in the right bottom corner.

Shaeib et al. [20, 22] propose a methodology called TennisSense for au-
tomated processing of wireless sensor data1. The system requires eight video
cameras and six sensors around the court, one camera above the court and one
sensor attached to the body of the player. The obtained data, which is struc-
tured in XML �les, can be requested using a standard query language. The
bene�t of this approach is that queryable statistics can be provided to coaches
immediately after matches so that they can evaluate the sensed data and mod-
ify the behaviour of their athletes. The location of the players on the court is
recorded through sensors and the tennis court is mapped into 24 zones, each a
range of (x,y) coordinates corresponding to a section of the court. The court
location can be exploited to categorize the construction of generic queries and
the detection of similar patterns of play. The court mapping is a necessary step
to allow basic queries in XPath and XQuery following enrichment.
According to their test results the Ubisense network is computationally less ex-
pensive compared to approaches using video. The downside of the system is the
level of portability since a total of ten cameras and seven sensors is required.
Also, TennisSense is not able to track the ball. Attaching a sensor at the outside
of the ball is not possible and implementing a sensor within a ball goes at the
cost of portability. Bene�t of the system is the possible extension to the third
dimension (z-coordinate, height) in which it can track players.

Miyamori et al. [16] propose a method to detect di�erent actions. They dis-
tinguish between three di�erent actions: a stroke (forehand or backhand), the
volley and the serve. They have developed an appearance-based annotation sys-
tem based on silhouette transitions. Extracting silhouettes from a tennis video
and comparing it to a set of existing silhouettes (see Figure 2.3) can help to
categorize tennis actions.

1The sensor technique is provided by UbiSense (http://www.cdvp.dcu.ie/tennisireland/
(July -2010))

20



Figure 2.3: Typical silhouettes of an over-the-shoulder swing

The results of this method vary strongly among the di�erent tennis actions.
The retrieval result of stroke-detection, e.g. recognizing forehand or backhand,
has an error rate of 5% when the player is at the bottom-side of the screen and
an error rate of 26.4% when the player is at the top-side of the screen. This
discrepancy is due to occlusion that comes into play when single-camera video is
analyzed. Occlusion is the e�ect that objects tend to shrink when they are fur-
ther away in the screen due to perspective. In far-view frames, a player-object
can shrink to 30 pixels tall [26]. Separating objects from their environment gets
more di�cult when the occlusion increases.
By adding domain-based knowledge to the system, the succes rate increases.
For example, given the "over-the-shoulder-swing" both the smash and the serve
qualify. The distinction can be made by looking at the court position of the
player. When positioned close to the net the player hits a smash. When posi-
tioned around the baseline, the player is more likely to hit a serve. Miyamori et
al. improved their original method by integrating audio features and combining
player and ball positions [15]. Another detection and tracking algorithm that
focuses on complete player extraction is proposed by Jiang et al. [7] and shows
similar results.

2.1.2 Player and Ball Tracking Methods

Attempts to succesfully track a tennis ball have been performed by only a few
research groups [17, 25, 16, 11]. The most well-known method nowadays is
called "Hawk-Eye". It uses at least four high-speed cameras mounted around
the court and has a deviation of only 4 milimeters [14]. The attempt of Yu et
al. [25] tries to track the trajectory of the ball. It makes use of the location
relation between the players and the ball to improve the ball candidate quality
as the hitting player must be near to the ball in tennis. Secondly, to detect start
and end points of the ball trajectory it tries to determine hit events. To fur-
ther improve their results, they added domain knowledge to their application.
The success rate of the software sticks around the 96.6%. Disadvantage of the
method is that the software relies on multiple cameras.

Most existing tennis ball tracking algorithms for single-camera sequences fo-
cus on the estimation problem rather than the data association problem [23].
Yan et al. [18] propose a three-layered data association method to track a tennis
ball with a single-camera setup. The �rst layer is responsible for searching ball
candidates in the window. The second layer is concerned with constructing a

21



directed and weighted graph in which a shortest path is created that correspond
to the ball trajectory. The third layer deals with �ltering non-relevant ball tra-
jectories based on the assumption that there is only one ball to track and that
the �rst and last tracklets of this ball are known. The eventual result is shown
in Figure 2.4.

Figure 2.4: Eventual ball tracking result based on a three-layered
data association method

The results of the algorithm depend on the surface of the court. In Figure
2.5 two di�erent court surfaces are depicted. The success rate of the algorithm
executed on the left surface di�ers between the 90.6% and 91.3%. The succes
rate drops to 83.2% when the algorithm is exectued on the surface depicted in
the right image. This ball tracking method is the foundation for the Vampire
system.

Figure 2.5: Di�erent court surfaces turn out to have di�erent re-
sults in the layered data association method. Left image is the Aus-
tralian Open court (arti�cial, hard-court), the right image is Wimble-
don (grass).

2.1.3 Conclusion

In this section several methods to analyze tennis videos were discussed. The
most lightweighted methods are concerned with player tracking only. The suc-
cess rates are high and most of the methods can be executed in real-time. Most
of the methods examine broadcast videos in which the �rst task is to �lter the
various camera shots prior to examine the court and the players. A problem
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that pops up is occlusion. Player objects in the top half of the screen can be-
come too small to extract them from their environment. This gives problems
with tracking these player objects and results in a drop of the success rate.
The other methods discussed in this section are concerned with tracking both
the players and the ball. These methods are, with respect to computation power,
more heavy. For the methods discussed applies: the more cameras that are used,
the more accurate the ball trajectory can be determined. The most accurate
method known today is "Hawk-Eye" and uses at least four high-speed cameras
to track the ball trajectory.

Both methods use domain speci�c knowledge to increase their success rates.
Examples are: a serve is always hit by a player standing at the baseline, a rally
can't start before a serve has been hit and a net approach can be derived by look-
ing at the position of both players. For the application of a tactical tennis tool
there is no need for heavy real-time processing software. Single-camera footage
has troubles with accuracy both in tracking players and the ball. However,
smart �ltering techniques can, to a certain extent, overcome this problem and
hence will not lead to severe performance issues. The Vampire software turns
out to be the most suitable since it generates spatial-temporal data, it can cope
with single-camera footage and has an acceptable success rate with a su�cient
accuracy. In the next chapter Vampire is elaborated on more extensively.

2.2 Temporal Logic

The term temporal logic is used in the area of formal logic, to describe systems
for representing and reasoning about propositions and predicates whose truth
depends on time [3]. A temporal logic basically takes a classical propositional
or predicate logic and extends it with temporal quanti�ers. Classical logic deals
with timeless propositions, where temporal logic typically contain some refer-
ence to time [13]. The strength of temporal logic can be explained with an
example2. Take the statement "I am hungry". This statement can be expressed
in �rst-order logic and can either be true or false, but can't take both truth
values simultaneously. The strength of temporal logic comes into play when one
wants to add temporal constraints. Temporal logic makes it possible to make
statements like: "I am always hungry", "Eventually I will be hungry" and "I
am hungy, until I eat something". An important application of temporal logic
is formal veri�cation, where requirements of hardware of software systems can
be stated. A well-known formal veri�cation method is called linear temporal
logic and will be discussed next.

2.2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal logic over a linear frame and was
�rst proposed by Amir Pnueli in 1977. The initial goal was to verify computer

2The example originates from http://en.wikipedia.org/wiki/Temporal_logic
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programs [12]. A model of LTL is an in�nite sequence of states where each point
in time has a unique successor. The alphabet of LTL is composed of:

• atomic proposition symbols p, q, r, ...

• boolean connectives ¬, ∧, ∨, →, ⇐⇒

• temporal connectives ◦, @, �, U , R

LTL knows two main types of properties: safety properties (something bad nev-
ers happens) and liveness (something good eventually happens). Safety prop-
erties can be used to avoid deadlock or unreachable states in a system. With
liveness properties one is able to check whether there is still progress in the
system [3].
The atomic proposition symbols and the boolean connectives represent the same
symbols and meaning of the equivalent �rst-order logic symbols. The semantics
of the temporal connectives are commented in Table 2.1

◦ ◦ φ holds, if φ holds at the next state on the path

@ @ φ holds, if φ eventually occurs, i.e., φ holds at some state on the path

� � φ holds, if φ holds globally, i.e., at every state along the path

U
The formula φ U ψ holds, if ψ holds until φ occurs, i.e., there is a state
on the path at which φ holds, and at every state before ψ holds

R
The formula φ R ψ holds, if, whenever ¬ ψ occurs at a state on the
path, A occurs before. Or equivalently, either ψ holds globally on the
path, or φ occurs before the �rst state at which ψ is violated.

Table 2.1: Temporal connectives

The formulas of LTL are true or false on computation paths, that is, se-
quences of states s0, s1, ... as shown in Table 2.2.
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◦ φ k−→ φk−→ . . .

@ φ φk−→ φk−→ . . .−→ φk−→ φk−→ φk−→ . . .

� φ k−→ k−→ . . .−→ k−→ φk−→ k−→ . . .

φ U ψ φk−→ φk−→ . . .−→ φk−→ ψk−→ k−→ . . .

φ R ψ ψk−→ ψk−→ . . .−→ ψk−→ ψk−→ ψk−→ . . . or

ψk−→ ψk−→ . . .−→ ψk−→ φψ���−→ k−→ . . .

Table 2.2: Formulas with temporal connectives depicted in compu-
tation paths

2.2.2 Querying Temporal Data: First-Order Logic vs. LTL

There are two di�erent approaches to query a temporal database using a �rst-
order language [1]:

1. Using temporal logic. As discussed standard temporal logic is an exten-
sion of classical logic with the temporal operators since, until, next and
previous. A form of temporal logic is LTL discussed in section 2.2.1.

2. Using �rst-order logic or predicate logic, augmenting the database schema
with a "timestamp" column. This way one is able to query the records
using relational calculus with variables ranging either over data elements
or over timestamps.

First-order logic deals with temporal data by using its two quanti�ers: the
universal (∀) and the existential (∃). LTL and �rst-order logic can shown to be
equivalent over the relation FO[<] [10].

2.2.3 Conclusion

This section has brie�y outlined the concept of temporal logic. Advantage of
LTL is the �exibility and expressivity it o�ers. However, the syntax of LTL is
more complex compared to the syntax of predicate logic. Using predicate logic to
reason about temporal data results makes the mapping to a SQL query easier
and the user won't be limited in expressing his queries since the equivalence
relation FO[<] that exists between predicate logic and LTL.
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Chapter 3

Technical Architecture

The development and implementation of the prototype has been subject to sev-
eral design decisions during the process. This chapter elaborates on those design
decisions and tries to justify them against design alternatives.
Firstly, a global overview of the technical architecture is described. The system
has several steps that have to be walked through consecutively in order to an-
alyze and evaluate tennis footage. For that reason the system can also be seen
as a pipeline with a �xed number of stages. This pipeline is disucssed in section
3.1. Each next section discusses one stage of the pipeline. In the second sec-
tion the TVA software, Vampire, is comprehensively discussed. The operation
and the functionalities of Vampire, in terms of video analysis, data gathering
and data processing, is explained. In section 3.3 the developed spatial-temporal
language to query the data gathered by Vampire is proposed. This includes a
thorough description of the grammar, the way the grammar is parsed and how
the language fetches the spatial-temporal data. Section 3.4 is concerned with
elaborating on the graphical user interface. The decisions made to come up with
a user-friendly and usable interface are proposed here.

3.1 The Pipeline

The graphical overview of the several stages of the technical architecture is
depicted in Figure 3.1. Every step in the pipeline is included within a Graphical
User Interface (GUI). There are two paths in the pipeline. Looking at the
�gure, the top path is responsible for the tennis video analysis. A tennis video
is inserted in the system. It is analyzed by the Vampire software resulting in
a database �lled with spatial-temporal data. The bottom path in the �gure
makes it possible for the user to de�ne, with a de�nition expressed in space
and time, what fragments he wants to extract from the video. The �rst step in
this bottom path is to de�ne a de�nition. This de�nition is then analysed and
parsed in order to convert the de�nition to a SQL query. The eventual query
is exectued on the spatial-temporal database, where the top and bottom path
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come together, and the returned resultset contains the points in time that meet
the requirements of the de�nition. The moments in time that are returned by
the database are extracted from the tennis video and are o�ered to the user.

Figure 3.1: Graphical overview of the pipeline

3.2 Vampire: Visual Active Memory Processes

Interactive Retrieval

Visual Active Memory Processes and Interactive REtrieval, or 'Vampire', is the
software used by the protoype for the �rst analysis of a tennis video. The
Vampire system is intended for use with low-quality, o�-air video from a single
camera. It is able to, based on the ability to track both the players and the ball,
detect and annotate events in a tennis match. The events that can be detected
are, among others: serve, hit, bounce and the end of a point [9].
In order to succesfully detect events Vampire divides its system up into three
parts. The �rst part, consisting of the low level modules, is responsible for
deinterlacing the video and �ltering the coarse scenes of the video to eventually
�lter video into "non-play" and the useable "play" scenes. The second part is
responsible for both the ball tracking and the player tracking simultaneously
and the third part, which is comprised of the high-level modules, is concerned
with combining the results of the ball and player tracking to generate an anal-
ysis of each play shot.
This section explains the working of the higher-level modules of Vampire; how
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it is able to track the objects in a video, how the events of the video are distin-
guished and the way data is outputted by Vampire and how it is used in this
prototype.

3.2.1 Player Tracking

For player tracking, the players and the ball are the objects closest to the court
during play. Extracting the background, i.e. the court, from the foreground,
players and ball, the candidate player locations can quite exactly be determined
since players appear as objects of reasonable size (see Figure 3.2). Vampire
combines this candidate information with temporal tracking methods, apply-
ing standard techniques such as particle �lters, to more e�ciently track player
objects.

Figure 3.2: Left image: original game-play image. Right image:
background extracted from the game-play leaving the player objects
behind.

3.2.2 Ball Tracking

The ball tracking process in particular is a challenging task under standard
single-camera conditions: the movement of the tennis ball is so fast that some-
times it is blurred into the background, and is also subject to temporary oc-
clusion, sudden change of motion direction and distortion by other objects [8].
Three example frames are shown in Figure 3.3. In the left �gure, the space
between the ball and the player's head is about �ve pixels and the color of the
ball is strongly a�ected by the color of the background. The center �gure shows
an example of the e�ects of high ball velocities. The ball is almost completely
blurred into the background. In the right �gure is shown how a wristband can
look very similar to a ball, and can form also a plausible trajectory as the player
hits the ball.

For ball tracking, the ball appears as a single, very small region of a certain
color. From the frame di�erences, one can extract blobs that have the appear-
ance expected of a tennis ball in such a context - that is, a very small, elliptical
blob of relatively bright color. These are considered as ball candidates. How-
ever, it is clear that not all of these candidates indeed correspond to the ball;
some blobs generated by image noise or actual patches within the �eld di�erence
image that are visually similar to the ball be misleading when trying to detect
where the ball is in each �eld [9]. Assembling a feature vector containing the
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properties of all objects that can be seen as 'ball' at a given frame support the
tracking process. Since the ball has an expected �ight path, the real ball can be
extracted from all the ball candidates. The extensive details of the ball tracking
process are beyond the scope of this work, but are comprehensively discussed
in [24].

Figure 3.3: Left image: far player serving. Center image: fast moving
tennis ball. Right image: Wristband that could easily be confused with
a tennis ball.

3.2.3 Event Detection

Based on the tracking results of both the players and the ball-trajectory, Vam-
pire tries to distinguish between events. An important factor in detecting events
is an abrupt change in the observed scene. An example is a player who suddenly
changes his position. Recognizing interactions between two objects enables one
to de�ne which of the scene objects is responsible for a speci�c event and track
them accordingly. For example, when a players hits, the ball changes its direc-
tion.
Vampire uses its high-level modules to analyze the data orginating from the
ball and player tracking process. The �rst step is to detect ball events. The
ball events that can be distinguished are: tennis ball being hit, bouncing on
the court or a collision with the net. Whenever a point on the ball trajectory
exceeds speci�c thresholds in both orientation and motion magnitude, the point
is marked as an event. Higher level modules take care of the events in the ball
trajectory that are not recognized.
Detecting the player's serves is left to the 'serveDetection' module. To detect a
serve, three operations on each player are performed. Firstly, check if one of the
players is located in a possible serving position. If a potential serve, based on
player position, is detected create a contour of each player. Secondly, check if
the body pose of one of the player matches the body pose one would normally
associate with a serve hit (see Figure 2.3). The last step in the serve detection
is to verify that the tennis ball is directly above the serving player. The serve
detection process terminates if, for any of the players all of the above hold.
The two parameters that need to be recorded are which player served and from
where.
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The collected data is reinterpreted in 3D space to further increase the quality
of the event detection. The module '3DCues' performs several action:

• All the events that are detected by the ball tracking module are interpreted
again. The position of the player and the location of the ball are compared.
If a player is close to the ball and the ball is located where a hit can
reasonably be made, the event is labelled as a hit. Otherwise it is labelled
as a bounce.

• Projecting the court coordinates of the players and the ball on the court
surface model. A ball is hit when the ball is approximately near the
player's feet.

• No event labels are permitted within 3 frames from each other, to avoid
multiple instances of the same event in close succession.

To fully annotate a tennis match one extra module is required. The module looks
at tennis speci�c rules in order to track the evolution of a tennis match. This
module, called 'highLevel', uses a model to award a point in a tennis match. In
the model are possible paths de�ned that specify the sequence of a point. Every
path starts with a serve and ends with granting the point to one of both players.
This module also has to take into account that the system deals with ambiguous
and noisy data. Encountering and coping with event detection errors, next to
false input events, is also the responsibility of this module. The solution that
is used is based on a Hidden Markov Model (HMM) with a look-ahead decision
mechanism. This algorithm enables the module to take events into account that
occur after the current one. The length of the look-ahead window is set to one
event resulting in the correction of only isolated errors. Making the window too
large can result in the wrong interpretation of short shots. Another reason to
keep the window bound to one event is the fact that ball bounces are the most
susceptible to errors. Since a ball bounce can only occur between two successive
hits (if the ball in still in play), detecting a player hit automatically means the
point can not be awarded yet even if the bounce point is wrongly detected or
not detected at all.

3.2.4 Data Handling

Vampire uses XML log �les to collect and analyze the video data. In order to
gather coordinates of the events the video images need to be transformed to
two-dimensional coordinates by means of an homography. In a homograpy the
real projective plane is transformed to the projective plane and straight lines are
mapped to straight lines. Since the geometry of a tennis court is standardized
a model court can be used to detect a court in a given scene. Figure 3.4 and
3.5 show the results of the transformation process.
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Figure 3.4: Example video image

Figure 3.5: Resulting projection after matching the observed court
lines to the model court ones

XML Output

Given the possibility to collect coordinates in the projective plane, Vampire is
able to write the spatial-temporal data and the associated events to log �les. For
this thesis' work, the data collected in the 3DCues module is interesting. The
log �le uses abbreviations for labeling the di�erent events. In the abbreviations
every letter contains a chunk of information. The letters that are used are:
S (serve), H (hit), B (bounce), I (in), O (out), N (near) , F (far), L (left), R
(right). By means of these letters one can annotate the events of a tennis match.
A possible seqeunce of letters describing a rally is:

• SNR: Serve Near Right - A serve is hit at the bottom half of the screen
at the right side of the center.

• BIFSL: Bounce In Far Serve Left - The ball bounces in the serve box in
the top half of the screen.
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• HF: Hit Far - Top player hits the ball, BN Bounce Near, HN Hit Near,
etc.

• NET (optional) - The ball hits the net.

• TimeOut

One may notice in the items above the TimeOut at the end of the sequence.
Vampire denotes the end of a rally with the TimeOut label. Also the NET
label corresponds to the end of a rally. In the XML log �le the location of the
event is also recorded. The location is recorded by means of coordinates in the
two dimensional plane. The top left corner of the model court is (50,100) and
the right bottom corner is located at (316,518). One pixel on the model court
corresponds to two inch distance on the real tennis court. In Figure 3.6 a part
of the 3DCues XML log �le is printed in which a possible sequence of events is
displayed.

<item>

<time beg="169" end="169" framerate="50" start="00:00:03:19">

<data topPlayer="21 143" event="SNR" bottomPlayer="500 247">

</item>

<item>

<time beg="190" end="190" framerate="50" start="00:00:03:40">

<data topPlayer="6 142" ball="191 171" event="BIFSL"

bottomPlayer="510 245>

</item>

<item>

<time beg="209" end="209" framerate="50" start="00:00:04:09">

<data multiInterpretation="0 1 HF 0.9 BOF 0.1" topPlayer="12

143" ball="12 125" event="HF" bottomPlayer="514 238">

</item>

appendix

Figure 3.6: Example of the 3DCues XML log �le

Looking closely at the XML log �le, one may notice the extra elements and
attribute-value pairs. Every event starts with an element <item>. The element
<time> contains the temporal information. The attributes "beg" and "end"
denote the framenumbers in which the event occurs. The attribute "framerate"
denotes the frames per second of the movie and the "start"-attribute gives a
representation of time in hundreds of a second. The spatial information is stored
in the next element. This element contains the coordinates of both the players
and the ball. The �rst number de�nes the y -coordinate and the second number
represents the x coordinate. The �rst three elements of this log �le represent the
beginning of a rally in which the bottom player hits a serve from the right side
(deuce side). The ball bounces in the left far serve box and then the notation
of the third event contains something interesting. The temporal information
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in this element is the same as the two above. Something divergent occurs at
the event recognition. The 3DCues module is not totally sure what kind of
event has occurred. The solution here is to add a multiInterpretation attribute
in which possible events are recorded with their corresponding chance. In this
example it is far more likely to assume that the event HF has occurred since it
is awarded with a 0.9 chance compared to the 0.1 of the BOF event.

Data conversion

To quickly search through the spatial-temporal data stored in the XML �le,
the data is converted and stored into a relational database. A tennis match
generates vast amounts of spatial-temporal data and the bigger the amount of
data becomes the more a relational database becomes a suitable solution.
By means of a XML parser and a small script the full XML �le is read and
converted to SQL INSERT queries. For the purpose of this work the following
events are distinguished: SPB (Serve Player Bottom), SPT (Serve Player Top),
HPB (Hit Player Bottom), HPT (Hit Player Top), BB (Ball Bounce). Every
record represents one event. An example of a XML �le converted to a relational
database is shown in Figure 3.7.

Figure 3.7: XML log �le converted to relational database records

MySQL is chosen for the implementation of the RDBMS. In the database
dump the column "id" is the primary key. Since only one event can occur at a
time, the time column could also ful�ll as the primary key index. When building
a tactical tennis application one needs to know where a player is located at any
time. Every record in the table contains the location of the players and the ball
even if the player is not involved in the event, i.e. it is important to know where
the top player is located at the moment the bottom player hits the ball.

3.3 Spatial Temporal Language

In order to derive useful tactical information from the spatial-temporal data a
query language need to be constructed. Obtaining high-level information from
a database containing spatial-temporal data can eventually result in large SQL
queries. Next to the large queries, you can not expect a tennis coach to learn
a complex language like SQL �rst before he can use the software. For those
two reasons a language is developed in which the tennis coach can express what
he wants to see. The �rst subsection elaborates extensively on the developed
language and its associated context free grammar. The next subsections explain

33



how a relatively simple de�nition de�ned in this language can be transformed
to a complex SQL query.

3.3.1 The Context Free Grammar (CFG)

A context free grammar (CFG) is a quadruple < S, N , A, R >, where S is
the start symbol, N is the set of non-terminals, A the alphabet and R the set
of rules. A CFG de�nes a formal language, i.e. the set of all sentences (strings
of words) that can be derived by the grammar. The CFG should de�ne a �rst
order logic programming language that can derive information about a set of
the quintuples < F , E , LP layerBottom(x,y), LP layerT op(x,y), LBall(x,y) >,
where F is the frame number, E is the event occurred (serve, hit or bounce),
L is respectively the location of the bottom player, the top player and the ball
expressed in (x,y) coordinates. The most important elements of the CFG are
discussed in this section. For a complete overview of the CFG, the reader is
referred to Appendix A.
The alphabet A is made up of a set of characters, which can be combined to
form a string of symbols. In this grammar the alphabet consists of 83 terminal
symbols. Next to these symbols, the language distinguishes certain combination
of symbols. These combinations are called keywords and are treated as single
entities. For the understanding of this section it su�ces to know that the alpha-
bet contains symbols and keywords. Section 3.3.3 discusses in more detail how
both types are recognized, analyzed and processed by the system. The alphabet
containing the symbols is de�ned as:

Asymbol = { ∀ ∃ ¬ ∧ ∨ < ≤ > ≥ == + - * / ( ) , $ : := ?

0. . . 9 A. . . Z a. . . z }

The alphabet can roughly be divided in three parts. The �rst part contains
the logic operator to express logic formulas. The second part consists of the
computation symbols in order to make computations on the spatial-temporal
data. The last part of the alpabet contains the alphanumerical symbols in order
to construct formula names and variables.
The alphabet containing the keywords is de�ned as:

Akeyword = { LPAREN, RPAREN, FDEF, NEGATION, NUMBER,

TIMEPARAMETER, TIMEFRAMEPARAMETER, ...}

Note that this alphabet only contains a subset of the keywords. The com-
plete representation of keywords can be found in Appendix A. The alphabet
containing the symbols, Asymbol, can also be called the abstract mathematical
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alphabet. It contains symbols that can be found directly back in the grammar
(e.g. the digits and the parentheses), but it also contains mathemetical symbols
that should be rewritten to keywords �rst, before they can actually be used (e.g.
∀ should be rewritten to FOR_ALL).
From the set of production rules, R, the most important are discussed in the
boxes below.

<definitions> ::= <definitions> <function_definition> |
<function_definition>

Every program written in the spatial-temporal language consists of a list of
de�nitions. This production rule de�nes that a list of <definitions> consists
of one or multiple <function_definition>s.

<function_definition> ::= <definition_name> LPAREN

<definition_argument_list> RPAREN

FDEF <definition_formula>

The production rule <function_definition> describes how a function def-
inition should look like. Every function de�nition starts with a name to label
the de�nition. The function name is a unique string consisting of the characters
A-Z. After the <definition_name> a left parenthesis, indicated by the terminal
character LPAREN, is placed to indicate the beginning of the argument list. The
argument list is either empty or is made up of a list of parameters separated by a
comma. The argument list is ended with a right parenthesis. The terminal FDEF
is used to separate the function header from the function body - the formula.
The terminal FDEF corresponds with the symbol :=.

<definition_formula> ::= <formula> | <term>

The <definition_formula> consists of two production rules. The produc-
tion rule <formula> is mainly concerned with the construction of logic formulas,
the <term> rule is mostly concerned with the computational formulas.
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<formula> ::= LPAREN <formula> RPAREN |

NEGATION <formula> |

<formula> <logic_operator> <formula> |

<formula> <logic_operator> <term> |

<standard_formula> |

<quantifier> |

<definition_inner_definition> |

. . .

<term> ::= <term> <computation_operator> <term> |

NUMBER |

TIMEPARAMETER |

TIMEFRAMEPARAMETER |

. . .

The production rule <formula> is an extensive one. Every possible combi-
nation of operators, terms, quanti�ers, standard formulas and inner de�nitions
is described here. The production rule starts with the possibility to embrace a
<formula> with parentheses. This comes in useful when dealing with formulas
in which the sequence of parsing can be ambiguous. A <formula> can also be
preceded with a logical negation in which the truth value is inverted. The next
two statements make it possible to interconnect <formula>s with the logic op-
erators AND and OR. The sequence of <term>s and <formula>s can be mutually
switched without consequences. In the rule <standard_formula> the user is
enabled to ask the system if one of the �ve events has occured on a particular
point in time. It also o�ers the possibility to request a coordinate of an event.
An example of the use of standard formulas is given in Table 3.1.
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Standard formula Semantics Result

SPB(t1,$,$,$,$) Has the bottom player hit

a serve at time t1?

True/False

SPB(t1,?,$,$,$) Request respectively the

x and y coordinate of the

bottom player at time t1

and event SPB

Integer

SPB(t1,$,?,$,$)

SPB(t1,$,$,?,$) Request respectively the x

and y coordinate of the top

player at time t1 and event

SPB

Integer

SPB(t1,$,$,$,?)

BB(t1,?,$) Request respectively the

x and y coordinate of the

ball at time t1 and event

BB

Integer

BB(t1,$,?)

Table 3.1: Standard formula examples. The use of SPT, HPB and
HPT are analogous to the use of SPB.

The <quantifier> makes it possible to reason about complete sets. First
order predicate logic knows two quanti�ers: the existential and the universal.
The existential quanti�cation is used to indicate that a predicate is true for at
least one member of the domain. The existential quanti�cation is distinct from
universal quanti�cation, which asserts that a predicate is true for any mem-
ber of the domain. The <definition_inner_definition> makes it possible
to use a de�nition within another de�nition. The production rule <formula>

is further explained with examples in Table 3.2. The <formula> rules also
deal with the compare operators. Replacing the <logic_operator> with a
<compare_operator> makes it possible to compare <standard_formula>s -
given that the outcome of the <standard_formula> is a coordinate not a thruth
value - and <term>s in every possible sequence.
The production rule <term> enables the user to add, subtract, divide and mul-
tiply integers. The outcome of a computation is always an integer. The other
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elements in this production rule are mostly terminal characters. A NUMBER cor-
responds to a digit ranging from 0 to 9. A TIMEPARAMETER is used to label a
point in time. It can be used as an argument in a <function_definition>,
<definition_inner_definition>, <standard_formula> and in a <quantifier>.
The TIMEFRAMEPARAMETER is a special terminal character that gives the user the
possibility to indicate a point in time in terms of seconds. A possible application
for this feature is:

• t2 - t1 < s(2), meaning that the time between t2 and t1 is less than
2 seconds.

s(2) is converted to the corresponding number of frames. The argument in the
TIMEPARAMETER is multiplied by the framerate, which can be determined when
the video �le is uploaded in the software.

<formula> Example

LPAREN <formula> RPAREN ( 1+2 < 4 )

NEGATION <formula> ! (3 < 2)

<formula> <logic_operator>

<formula>

(3 + HPT(t1,?,$,$,$,$) <

6) && (HPB(t1,?,$,$,$,$)

- 1 > 0)

<formula> <logic_operator> <term> (3 + 2 < 6) && (2 > 1)

<quantfier> FOR_ALL:t1(100 >

BB(t1,$,?))

<definition_innner_definition> IN(4,5) || RALLY(t1,5)

Table 3.2: Syntax examples of the production rule <formula>

3.3.2 Spatial-Temporal De�nitions Based on the CFG

Having discussed the most important features of the grammar, this section shows
examples of the powerful possibilities this language o�ers. In the �rst example
is showed how a 'rally' can be de�ned. A rally in tennis always starts with a
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serve, followed by a number of hit events from both players - possibly alternated
with ball bounces - and the rally always ends with either a fault or a winner
from both players.

1 RALLY(t1,t2) := (SPB(t1,$,$,$,$) || SPT(t1,$,$,$,$) &&

2 (

3 OUT(BB(t2,?,$),BB(t2,$,?)) ||

4 NET(BB(t2,$,?)) || WINNER(t2)

5 ) &&

6 t1 < t2 &&

7 !EXISTS:t3((SPB(t3,$,$,$,$) ||

8 SPT(t3,$,$,$,$) &&

9 t1 < t3 && t2 > t3)

10

11 OUT(x,y) := x < 127 || x > 289 || y < 50 || y > 518

12

13 NET(y) := y == 208

Line 1 holds the <function_definition> RALLY which comes with two
TIMEPARAMETERs. The �rst TIMEPARAMETER, t1, is used to indicate a point
in time where a serve is hit by either the bottom or the top player. In lines 2-5
the stop condition of the rally is de�ned. A rally ends when a ball is hit wide or
long, when a ball collides with the net or when one of both players hits a winner.
Checking if a ball is in or out, if it hits the net or determining a winner are con-
stantly recurrent functions, therefore they are de�ned as independent functions
de�nitions (line 11 and 13) and used as <definition_inner_definition>s. By
saying that t1 has to occur before t2, line 6, only rallies starting with a serve
event are selected. Line 7 de�nes a quanti�er with a bounded variable t3. It
says: "there doesn't exist a t3 where a serve is hit while the rally is not �nished
yet. Since t1 is a serve event and t2 the end condition of the rally, there can't
exist a t3 between t1 and t2 ".
The function de�nition of OUT and NET need a bit more explanation with respect
to the numbers used to compare x and y with. These numbers correspond to
the coordinates of the court used by Vampire when an image is mapped from
the real projection to the 2D projection. In the 2D projection, one pixel on
the screen matches to 2 inches on the real court. The resulting coordinates can
be found back in Figure 3.8. The x and y coordinates of the OUT function for-
mula are respectively based on the coordinates of the single sidelines and both
baselines. The y coordinate of the NET function formula corresponds with the y
coordinate of the net in the scaled court. A bounce event at this coordinate can
be twofold. On the one hand the ball can can actually be hit in the net resulting
in the end of a point. On the other hand the ball can also touch the net. When
the ball touches the net the rally is not necessarily �nished instantly. When
the ball touches the net and bounces on the opponent's half the rally continues.
Though, it's not always evident for the system to see where the ball bounces
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since it can drop just behind the net. This inaccuracies can be partly solved by
looking at the next event. If the next event is a HPB or HPT, the ball evidently
has touched the net and dropped on the opponent's half. If the next event is
a SPB or SPT the ball touched the net and either landed untenable in the op-
ponent's half or the ball touched the net and bounced on the same half of the
court. This ambiguity currently can't be solved.

Figure 3.8: Coordinates of the scaled tennis court used by Vampire

In the next example the system is going to look for double faults hit by the
bottom player from the deuce side. A double fault is hit when the serving player
misses his �rst serve as well as his second serve. In this case the point is directly
awarded to the opponent. In terms of tennis, a player serves from the deuce
side if the player is serving at the right of the center mark.

1 DOU_FAU(t1,t2,t3,t4) := SPB(t1,$,$,$,$) && BB(t2,$,$) &&

2 SPB(t3,$,$,$,$) && BB(t4,$,$) &&

3 t1 < t2 && t2 < t3 && t3 < t4 &&

4 t2-t1 < s(2) && t4-t3 < s(2) &&

5 t4-t1 < s(20) &&

6 !INLFSBOX(BB(t2,?,$),BB(t2,$,?))

7 &&

8 !INLFSBOX(BB(t4,?,$),BB(t4,$,?))

In pseudo language, this de�nition reasons over four points in time and it
says: "At t1 a serve is hit by the bottom player, at time t2 the ball has bounced,
at time t3 a serve is hit by the bottom player and at time t4 the ball has bounced
(line 1 and 2), such that the ball doesn't bounce in the left far serve box after both
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the �rst serve and the second serve (line 6-8)." The lines that are not mentioned
in the pseudo sentence are used to control the sequence of events. Line 3 restricts
the sequence that �rst a serve should be hit before it can bounce. The second
serve can only occur after the �rst serve has been hit and the second bounce
can only occur after the second serve has been hit. Line 4 restricts the system
not to search for arbitrary serve and bounce events but only the serve-bounce
events that occur within two seconds from each other. Line 5 de�nes another
time restriction and indicates that the whole double fault has to happen within
20 seconds.

3.3.3 Parsing De�nitions

For the understanding of the de�nitions the system has to syntactically ana-
lyze, i.e. parse, the string of symbols that make up a de�nition. Before the
parser can do its job, the string of symbols has to be examined by the lexical
analyzer in order to generate understandable bits of data, i.e. tokens, for the
parser. The objective of the parser is to create the concrete syntax tree (CST),
or just parse tree. A parse tree is an ordered, rooted tree that represents the
syntactic structure of a string according to a formal grammar. From the parse
tree, the abstract syntax tree (AST), or just syntax tree, is derived. The syntax
is 'abstract' in the sense that it does not represent every detail that appears in
the real syntax. The usefulness of the syntax tree will become clear in the next
subsection.
Having de�ned the grammar of the developed spatial-temporal language and
elaborated on two sample de�nitions of the language in the previous two sub-
sections (3.3.1 and 3.3.2), this section shows how the de�nitions are further
processed by the lexical analyzer and the parser.

Lexical Analyzer

The input to the lexical analyzer is a string of symbols, i.e. the de�nitions, from
an alphabet of characters. The lexical analyzer groups together certain terminal
characters into single syntactic entities, called tokens. A token is a string of ter-
minal symbols, with which we associate a lexical structure consisting of a pair
of the form (token type, data). The �rst component, the token type, is a syn-
tactic category such as "constant" or "identi�er," and the second component,
the data, is a pointer to data that has been accumulated about this particular
token. For a given language the number of token types will be presumed �nite
[2].

The implementation of the lexical analyzer is done with JLex. JLex is a lexical
analyzer generator, written for Java, in Java and is based on the well known
LEX analyzer which was written for the UNIX operating system. The following
example elaborates on the working of JLex. Consider the string of symbols:

• s(2)
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When this string is o�ered to JLex it is examined one symbol at a time. When
a potential pattern is recognized JLex is able to look further ahead in order to
see whether a string of symbols matches a pattern.

• s\(([0-9]+)\) { return new Symbol(sym.TIMEFRAMEPARAMETER,

new ParameterToken(new String(yytext()))); }

In this example, JLex recognizes an s followed by a left parentheses, followed by
one or more digits varying from 0 till 9, followed by a right parentheses. When
the pattern is matched JLex exectues the code between the accolades. The code
between the accolades contains the output of JLex. As said before, the output
of the lexical analyzer serves as the input for the parser. The interface between
the lexical analyzer and the parser is implemented using the class sym. The sym
class is generated by CUP. CUP is a system for generating parsers from simple
speci�cations and will be discussed in detail next.

Parser

Parsing, or syntax analysis, is a process in which the string of tokens (which
is the output from the lexical analyzer) is examined to determine whether the
string obeys certain structural conventions explicit in the syntactic de�nition of
the language. It is also essential in the code generation process to know what the
syntactic structure of a given string is. For example, the syntactic structure of
the expression A + B * C must re�ect the fact that B and C are �rst multiplied
and that then the result is added to A. No other ordering of the operations
will produce the desired calculation. From a set of syntactic rules it is possible
to automatically construct parsers which will make sure that a source program
obeys the syntactic structure de�ned by these syntactic rules [2].
CUP (Constructor of Useful Parsers) is chosen for generating the parser. CUP
is written in Java and produces parsers which are implemented in Java [6]. For
CUP to produce a parser, the CFG described in Section 3.3.1 should be rewritten
to the speci�c CUP syntax. Table 3.3 shows an example of this conversion. One
can notice the similarity between the CFG and the CUP syntax. In CUP labels
can be placed on various symbols in the right hand side of productions. In Table
3.3 the definitions symbol is labeled with d and the function_definition

is labeled with fd. Labeling symbols makes it possible to dynamically execute
JAVA code between the accolades.
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CFG <definitions> ::= <definitions> <function_definition> |
<function_definition>

CUP definitions ::= definitions:d function_definition:fd

{:

RESULT = d.addDefinitionNode(fd);

:} |

function_definition:fd

{:

RESULT = new Definitions(fd);

:};

Table 3.3: Transforming the CFG to CUP syntax: <definitions>

By means of an example with the <standard_formula> HPT the total �ow
of the parsing process is depicted in Table 3.4. An HPT formula is used to request
whether a serve has been hit at time t1. This string of symbols is analyzed by
JLex and it recognized the HPT pre�x. It then turns the definition into a token
using the sym interface. CUP then analyzes the token according to its de�nition
about how a HIT_PLAYER_TOP should look like. If the de�nition adheres to the
syntax, the JAVA code between the accolades is executed.

definition HPT(t1,$,$,$,$)

JLex "HPT" {return new Symbol(sym.HIT_PLAYER_TOP);}

CUP HIT_PLAYER_TOP LPAREN

definition_standard_formula_arg:p1 COMMA

definition_standard_formula_arg:p2 COMMA

definition_standard_formula_arg:p3 COMMA

definition_standard_formula_arg:p4 COMMA

definition_standard_formula_arg:p5 RPAREN

{:

RESULT = new DefinitionStandardFormulaNode

("HPT",p1,p2,p3,p4,p5);

:}

Table 3.4: The interpretation of a standard_formula by JLex and
CUP
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In the introduction of this section the issue of ambiguity was mentioned that
all parsers have to cope with. CUP has the ability to specify PRECEDENCE rules
in which one can indicate to precede, e.g. an add operation before a multiply
operation. Also the code between the accolades needs a bit more explanation.
The objective of the code is to build up the parse tree. Every token generates
a node that is connected to a previous node and hence a directed and rooted
graph evolves. This subsection ends with a part of the eventual syntax tree (see
Figure 3.9) of the RALLY de�nition as given in Section 3.3.2 that is generated
after the lexical analyzer and the parser have done their jobs.

Figure 3.9: Syntax tree of the RALLY de�nition including the
definition_inner_definitions OUT and NET.

3.3.4 Database Query Conversion

The importance of the syntax tree that is generated by the parser will become
clear in this section. This section explains how the system converts a de�nition
to a SQL query by means of the syntax tree. First, the conversion from a formula
to a SQL query is formally presented using the abstract mathematical alphabet
Asymbol as introduced in section 3.3.1. By using the Asymbol alphabet one can
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get a grasp more easily of the mappings in a single overview. The second part
of this section shows the implementation details and examples.

Formal Conversion Rules

Mapping is the essential part of the conversion step. Every production rule of
the grammar has to be correctly mapped to the corresponding SQL statement.
In the table below the formal mappings of the most common production rules
are given to show how de�nition formulas should be mapped to SQL.

Formula SQL Mapping Formula SQL Mapping

φ M(φ) ( φ ) ( M(φ) )

¬ φ NOT ( M(φ) )

∀ ( φ ) NOT EXISTS NOT ( M(φ) ) ∃ ( φ ) EXISTS ( M(φ) )

φ && ψ M(φ) AND M(ψ) φ || ψ M(φ) OR M(ψ)

Table 3.5: Formally mapping production rules to SQL

Since SQL is able to do basic mathematic operations like adding, subtracting,
mulitplying and dividing, computations from the grammar can be mapped one-
to-one to a SQL statement.
The mapping of the production rule <standard_formula> is more complex since
multiple arguments are involved. First of all, the <standard_formula> has to
be examined on its return type (see Table 3.1). When the return type is an
truth value, the database has to be searched to see if the event has occured on
a speci�ed point in time. When the return type is an integer, the user requests
a coordinate. To obtain this request an additional statement has to be included
with the desired column (e.g. playerBottomX, ballY, etc.). The implementation
of the mapping of standard_formulas will be discussed in more detail later.

Implementing the Conversion Rules

When converting a de�nition to a SQL query, the two most vital parts are
the syntax tree and the conversion rules. The former speci�es what should be
converted, the latter speci�es how it should be converted. The advantage of the
syntax tree is the possibility to use recursion in the SQL query implementation.
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The implementation of every SQL query is initiated with a SELECT clause. Since
the user is able to specify one or more timeparameters (e.g. t1 and t2) in a
de�nition, the SELECT clause always retrieves the time column(s) from the rows
�ltered by the WHERE clause.
An example of the mapping of the ¬ statement is shown below. When a negation
is recognized by the run method, it adds the SQL NOT statement to the query.
The next step is to go deeper and to decompose the rest of the formula. The
result of this decomposition will be placed between the parentheses of the NOT

clause.

¬ φ NOT ( M(φ) ) if(formula.negation)

return "NOT ( " + run(formula) + " ) ";

Table 3.6: Left column: mathematical representation. Center col-
umn: mathemetical conversion to SQL. Right column: mapping to
SQL implementation

The next example shows how a sample de�nition formula is transformed to
a valid SQL query. Suppose the following de�nition:

OUTSIDESINGLELINE(t1) := HPT(t1,?,$,$,$) < 130 ||

HPB(t1,?,$,$,$) > 289

The purpose of this de�nition is to �nd all HIT events by either the top or
the bottom player that occured beyond the right single side lines. Since this
de�nition has one timeparameter, the SQL statement to start with is:

SELECT t1.time AS t1 FROM events AS t1 WHERE

The box below shows the implementation steps that are taken when the
formula part of this de�nition is transformed to SQL.
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1 SELECT t1.time AS t1 FROM events AS t1 WHERE

2 SELECT t1.time AS t1 FROM events AS t1 WHERE (

M(HPT(t1,?,$,$,$) < 130) OR

M(HPB(t1,?,$,$,$) > 289) )

3 SELECT t1.time AS t1 FROM events AS t1 WHERE (

(t1.event = 'HPT' AND t1.topPlayerX < 130) OR

M(HPB(t1,?,$,$,$) > 289))

4 SELECT t1.time AS t1 FROM events AS t1 WHERE (

(t1.event = 'HPT' AND t1.topPlayerX < 130) OR

(t1.event = 'HPB' AND t1.bottomPlayerX > 289))

A de�nition containing a quanti�er is VOLLEY. It shows all the moments in
the video where a volley has been hit by the bottom player. A volley is de�ned
as an HIT event with the condition that the previous event was an HIT event by
the opposite player. In other words, a volley is a stroke that does not precede a
ball bounce. The de�nition is showed in the box below:

VOLLEY(t1,t2) := HPT(t1,$,$,$,$) &&

HPB(t2,$,$,$,$) &&

t1 < t2 &&

!EXISTS:t3(BB(t3,$,$) && t1 < t3 && t2 > t3)

The transformation to SQL is given as:

SELECT t1.time AS t1, t2.time AS t2 FROM events AS t1, events

AS t2 WHERE ((t1.event = 'HPT' AND (t2.event = 'HPB' AND

((t1.time < t2.time) AND NOT ( EXISTS ( SELECT t3.time FROM

events AS t3 WHERE ((t3.event = 'BB' AND ((t1.time < t3.time)

AND (t2.time > t3.time))))))))))

Interesting to see is the transformation e�ciency. From a relatively simple
and short de�nition a relatively complex and large SQL query is automatically
produced.
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3.4 Graphical User Interface

A Graphical User Interface (GUI) is built around the pipeline to integrate the
video processing features together with the editing and execution of de�nitions
in one system. The initial screen of the GUI is depicted in Figure 3.10.

Figure 3.10: Initial screen of the GUI

The labeled boxes will be explained to show how the pipeline is integrated
in the GUI:

1. Console a terminal screen in which the user is being informed about the
status of the system.

2. Video preview showing a preview image of the selected video.

3. De�nitions box used to list all the de�nitions that are either prede�ned
by the system or added by the user

4. De�nition formula box used for editing de�nitions.

5. De�nition description box used for writing an informal description of
the de�nition.

6. Query output box used to show the SQL query and a list of fragments
that meet the query's requirement.

7. Video box box used as media player to play the video from the list of
fragments.
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A few items on the GUI screen are left undiscussed yet. The buttons in the
top half of the screen are used to respectively load a video in the system (Load
video), analyze the inserted video (Analyze) and to reset the whole system to
its start state (Reset). The two buttons located at the center of the screen are
used to save the edited de�nition (Save) and to execute the de�nition (Execute).

In Figure 3.11 the GUI is showed when a video is loaded. The user has written
a de�nition that �lters out all the double faults hit at the deuce side of the court
of the tennis video. The eventual query together with the points in time that
matches the requirements of the de�nition are showed in the bottom left corner
of the screen. The extraction of the movie fragment from the tennis video may
need a little more explanation.
When Vampire analyzes a tennis video, the video is decomposed in single frames
resulting in a set of JPG images. The pictures matching the points in time, and
all the pictures in between, are concatenated and the resulting �le is decoded
with an AVI codec. For the playback framerate the framerate of the original
tennis video is used.

Figure 3.11: Sample screenshot of the GUI when a tennis video is
analyzed and evaluated.
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Chapter 4

Evaluation

To evaluate the system and to get a 'succes' indication, measurable conditions
have to be speci�ed. As mentioned in the introduction, three requirements were
important for this system. The system should be portable, �exible and user-
friendly. Each requirement will be brie�y discussed to see to what extent they
have been met.

Portability

The starting requirement was to develop a system that could perform its tasks
with only the video data from one camera behind the tennis court. Having
tried multiple footage, the accuracy of the video analysis software (Vampire) can
only be guaranteed using broadcast tennis footage. When using amature video
footage the accuracy rate drops drastically to, at most, 30%. The reason for this
seems to lie in the use of professional cameras resulting in higher quality video
footage. Also the angle of projection plays a role in the accuracy. Broadcast
videos are generally recorded from a greater height. The e�ect of perspective
and hence the occlusion e�ect is diminished.
Right now the system runs on Linux Ubuntu and can not easily distributed to
another workstation, let alone another operating system. The reason for this is
the Vampire software that runs on RAVL (Recognition Audio Video Library).
In order to use the system, a workstation �rst have to be equipped with the
RAVL libraries which , at the moment, have trouble working under Microsoft
Windows operating systems.

Flexibility

The user should be able to specify what moments he wants to extract from
a tennis video. The developed spatial-temporal language is �exible enough to
enable the user to de�ne formulas with a certain degree of freedom. However,
looking at both the developed spatial-temporal language and the SQL query
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language there is still space left for further improvements. SQL has the ability
to de�ne queries in which the number of a condition is counted (using the SUM()
clause). This gives more freedom to the user, e.g., right now it is possible to
de�ne a query saying show all rallies where the ball has been hit two times cross
and the next ball is hit down the line. However, currently it is not possible to
express queries that say show all rallies where the ball is at least hit two times
cross and then down the line.

User-friendly

To measure the usability of the system the system should be be used by a group
of tennis coaches. This method, panel testing, exposes the vulnerabilities of the
system. During the project the system has not been subject to a formal panel
testing method, however the system has been presented to tennis coaches. The
returned faadback was:

• Complex spatial-temporal language De�ning formulas in the devel-
oped language is too complex for the average tennis coach.

• Vampire's processing time After a video has been loaded in the system,
the analyzing step of Vampire takes a long time. A one minute tennis
video takes about half an hour to be fully processed on an Intel dual-core
machine.

• User interface The graphical user interface was experienced as organized
and intuitive.

In conclusion, what is achieved by the research and the developed prototype?
The main objective was to develop tactical tennis software that supports the
tennis coach in practice sessions. The prototype has been developed and can
be, to a certain extent, be used in practice sessions.
The developed spatial-temporal language and the conversion to SQL has shown
to be e�ective. A relatively short and easy to understand formula in the spatial-
temporal language can be successfully converted to a rather large and complex
SQL query.
As discussed the system has also downsides. For the system to become more
�exible, the language should be extended to give the tennis coach the possibility
to express whatever he wants. Also the input of de�nitions must be made easier
to make it understandable for every tennis coach. Next to the language, the
processing time of the tennis video analysis software must improve to make the
system widely applicable.
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Chapter 5

Discussion and Future Work

When this project started the main objective was to design a system that en-
ables the tennis coach to analyze tennis matches using the footage of only one
video camera. Having developed the system's prototype and after some exten-
sive discussions with authorities in the tennis sport the system might be better
o� when it is equipped with the possibility to use the data of multiple cameras.
Since the system is intended for players at the professional level, a setup using
multiple cameras with the possibility to replay situations from multiple angles
and to increase the accuracy of the spatial-temporal data is preferred.
For a tennis coach to specify what he or see wants to extract from the tennis
footage an additional layer must be made on top of the language. The objective
of this layer is to guide the user in expressing a de�nition in the language. A
possibility is to create a graphical wizard with a number of steps in which the
user can graphically express the situation he wants to extract. This wizard must
be capable of converting the user input to a de�nition in the spatial-temporal
language. To increase the portability and usability of the system, further work
can be done in making the system work on portable tablet devices with a touch
screen.
The video analysis software might be rewritten to deal with data from multiple
cameras. The main bottleneck right now is the processing time. The time to
convert a tennis video to a database �lled with spatial-temporal data takes too
long. The revision of Vampire or writing new tennis video analysis software
should reduce the processing time drastically.

The work of this thesis started in february 2010. With a global overview of
the desired outcome and a set of requirements the design and implementation
started. Every two weeks there was a discussion with the supervisor in which
the prototype was discussed. June 30, the prototype �nished and the writing of
the thesis began. The planning was tight, but certainly achievable. After this
Master's thesis project the project might be continued since there is interest
from national and international tennis federations.
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Appendix A

Context Free Grammar

The full Context Free Grammar (CFG) of the designed spatial-temporal lan-
guage is provided in this appendix. A context free grammar (CFG) is a quadru-
ple < S, N , A, R >, where S is the start symbol, N is the set of non-terminals,
A the alphabet and R the set of rules. A CFG de�nes a formal language, i.e.
the set of all sentences (strings of words) that can be derived by the grammar.

A = FOR_ALL, EXISTS, NEGATION, AND, OR, LESS, GREATER,

LESSOREQUAL, GREATEROREQUAL, EQUALS, PLUS,

MINUS, TIMES, DIVISION, LPAREN, RPAREN, FDEF,

COLON, COMMA, HIT_PLAYER_BOTTOM, HIT_PLAYER_TOP,

SERVE_PLAYER_BOTTOM, SERVE_PLAYER_TOP, BOUNCE_BALL,

QUESTION_MARK, WILDCARD, NUMBER, STRING, PARAMETER,

TIMEPARAMETER, TIMEFRAMEPARAMETER

P =

startParser ::= start_def

start_def ::= definitions

start_def ::= definitions

definitions ::= definitions function_definition |

function_definition

function_definition ::= definition_name LPAREN

definition_arg_list RPAREN FDEF

definition_formula

definition_name ::= STRING

definition_arg_list ::= definition_arg_list COMMA

definition_argument |

definition_argument

definition_argument ::= PARAMETER | TIMEPARAMETER
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def_std_form_arg ::= WILDCARD | QUESTION_MARK |

TIMEPARAMETER

definition_formula ::= formula | term

formula ::= LPAREN formula RPAREN |

NEGATION formula |

formula logic_operator formula |

formula logic_operator term |

term logic_operator formula |

term compare_operator term |

quantifier |

standard_formula compare_operator

standard_formula |

standard_formula compare_operator

term

term compare_operator

standard_formula

term logic_operator term

standard_formula

def_inner_def

def_inner_def ::= definition_name:dn LPAREN

def_arg_list_id RPAREN

def_arg_list_id ::= def_arg_list_id COMMA def_arg_id |

def_arg_id

def_arg_id ::= standard_formula |

TIMEPARAMETER |

PARAMETER |

NUMBER |

standard_formula ::= HIT_PLAYER_BOTTOM LPAREN

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg RPAREN |

HIT_PLAYER_TOP LPAREN

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg RPAREN |

SERVE_PLAYER_BOTTOM LPAREN

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg RPAREN |
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SERVE_PLAYER_TOP LPAREN

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg COMMA

def_std_form_arg RPAREN |

BOUNCE_BALL LPAREN def_std_form_arg

COMMA def_std_form_arg COMMA

def_std_form_arg RPAREN

quantifier ::= FOR_ALL COLON TIMEPARAMETER LPAREN

formula RPAREN |

FOR_ALL COLON TIMEPARAMETER LPAREN

term RPAREN |

EXISTS COLON TIMEPARAMETER LPAREN

formula RPAREN |

EXISTS COLON TIMEPARAMETER LPAREN

term RPAREN

term ::= standard_formula

computation_operator

standard_formula |

term computation_operator term |

LPAREN term:t RPAREN |

NUMBER |

TIMEPARAMETER |

PARAMETER |

TIMEFRAMEPARAMETER

logic_operator ::= AND | OR

compare_operator ::= GREATER | LESS |

GREATEROREQUAL | LESSOREQUAL |

EQUALS

computation_operator ::= PLUS | MINUS |

TIMES | DIVISION

S = start_def
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