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Ship unloader grabs are usually designed using the manufacturer’s in-house knowledge based on a tra-
ditional physical prototyping approach. The grab performance depends greatly on the properties of the
bulk material being handled. By considering the bulk cargo variability in the design process, the grab per-
formance can be improved significantly. A multi-objective simulation-based optimization framework is
therefore established to include bulk cargo variability in the design process of grabs. The primary objec-
tive is to reach a maximized and consistent performance in handling a variety of iron ore cargoes. First, a
range of bulk materials is created by varying levels of cohesive forces and plasticity in the elasto-plastic
adhesive DEM contact model. The sensitivity analysis of the grabbing process to the bulk variability
allowed three classes of iron ore materials to be selected that have significant influence on the product
performance. Second, 25 different grab designs are generated using a random sampling method, Latin
Hypercube Design, to be assessed as to their handling of the three classes of iron ore materials. Of this
range of grab designs, optimal solutions are found using surrogate modelling-based optimization and
the NSGA-II genetic algorithm. The optimization outcome is verified by comparing predictions of the
optimization algorithm and results of DEM-MBD co-simulation. The established optimization framework
offers a straightforward and reliable tool for designing grabs and other similar equipment.
© 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder
Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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1. Introduction capacity of 150 000 tonnes (DWT), approximately 5000 to 7500

grab cycles are required.

Iron ore products are transported from origin mines to cus-
tomers, mainly steel manufacturers. Due to the high demand for
iron ore products in the steel industry, iron ore products have
the largest dry bulk trading per year, more than that of coal and
grains [1]. The top 5 importing countries are located in Asia and
Europe, while the majority of iron ore mines are located in
Australia and Brazil. This fact necessitates the intercontinental
shipping of iron ore products. In 2018, a total of 3210 million ton-
nes of dry bulk solids were shipped, of which 46% was iron ore [1].

Grabs are extensively used to unload iron ore cargoes from bulk
carriers at destination. The general model of the grabbing process
(i.e. of an iron ore cargo) is illustrated in Fig. 1 schematically. A
grab is connected to a crane and a crane operator controls the grab
using the motion of winches and cables. In a grab cycle, the crane
operator transfers the grab to a cargo hold to collect the bulk mate-
rial. Next, the grab is lifted and transferred back to the quayside to
release the collected bulk solid. To unload a bulk carrier with a
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To minimize the costs of terminal operators and other stake-
holders the waiting time of bulk carriers needs to be as short as
possible. A time-efficient and reliable unloading process is there-
fore required at destination ports. Considering the increasing glo-
bal demand for iron ore [2], the unloading process could be
improved in terms of productivity to use available facilities, such
as cranes, in a sustainable way. In general, cranes have a signifi-
cantly higher total cost of ownership than grabs. Therefore, a
promising solution for improving the unloading process is to
enhance the design of grabs to allow bulk carriers to be unloaded
with a minimum number of grab cycles.

In addition to the grab design itself, dimensions of the ship’s
hold, properties of bulk cargo, crane operator, winches and cables
are the main contributing elements in the grabbing process. A
crane operator controls the grab by using winches and cables. Pre-
dicting performance of new design concepts is a challenge, as it
requires that interactions between multiple contributing elements
be considered. Assessment of a design concept involves modelling
its dynamics and kinematics as the grab interacts with a bulk solid
cargo.

0921-8831/© 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Model of the grabbing process, including research scope of this study.

Controllable inputs of the grabbing process are operation and
design parameters. Operation parameters (e.g. velocity of cables),
are controlled during the handling process. It is known that in gen-
eral, there is a positive correlation between skills of a crane oper-
ator and productivity. Design parameters (e.g. bucket dimensions
and length of opening span) can be adjusted when the grab is man-
ufactured. Design parameters are major controllable input prior to
manufacturing a grab as they eventually determine the perfor-
mance during operation.

Schott et al. [3] developed a novel design method for grabs
based on the Discrete Element Method (DEM) and MultiBody
Dynamics (MBD). They demonstrated how a grab design can be
improved systematically by creating various virtual prototypes in
interaction with a specific bulk cargo. In practice, however, there
is a variety of iron ore products that need to be unloaded at a des-
tination port. Mohajeri et al. [4] have used validated DEM-MBD co-
simulation setups to demonstrate how the grabbing process differs
between free-flowing and cohesive iron ore. The variability of bulk
solid properties influences the grabbing process considerably [16];
this is a major possible source of deviation from the desired grab
performance [4-6]. To design a sustainable product, a minimized
performance deviation should be achieved. There are numerous
DEM-based research articles on the design of equipment, including
the interaction with bulk material, such as [7-15]. However, bulk
cargo variability, as one of the main factors in the performance of
bulk handling equipment, has not been explicitly incorporated in
the design process. A grab is often used to handle a broad variety
of iron ore cargoes that differ as to their properties, such as mois-
ture content, shear strength and bulk density.

The grab performance can be quantified by using the Key Per-
formance Indicators (KPIs) defined in [3]. The mass indicator
(Wmass) is the most important performance indicator that determi-
nes the efficiency of a grab cycle. W .5 is quantified by comparing
the collected mass with the weight of the grab using Eq. (1).

MDWT + Mspillage

"I'Imass = M
e

(1)

where Mpywr is the collected mass inside the grab, M, is the mass of
the grab, and Mgpiiiage is the mass of the bulk material spilled during
the grabbing process. Including the spilled material in the equations
allows for capturing the effectiveness of the grabbing process [17].
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For a specific hoisting capacity of a crane, maximized W ,.ss Values
are desired for handling a variety of iron ore products.

Fig. 2 shows an overview of how the bulk cargo properties con-
tribute to the grabbing process as an uncontrollable input variable.
Mohajeri et al. [5] measured grab-relevant bulk properties of a
broad range of iron ore fines. Cohesive forces (i.e. liquid bridge)
between iron ore particles are typically created when moisture is
introduced [18]. Cohesive forces may influence the bulk properties
of iron ore fines, such as shear strength and flowability [5]. Bulk
compressibility and moisture content are also correlated for cohe-
sive iron ore [5,19]. Pre-consolidation stress is another grab-
relevant bulk property of cohesive iron ore that varies over the
cargo depth during the unloading process [4]. Due to the increasing
overburden pressure, a more consolidated cargo is stored at greater
depths.

In this study, a novel optimization framework is developed to
incorporate the bulk cargo variability in the design process of
grabs. Discrete Element Method (DEM) is employed to first inves-
tigate how a virtual grab prototype can be tested considering the
bulk cargo variability, including various levels of cohesive forces
and bulk plastic compressibility. Such a sensitivity analysis allows
for selecting bulk material classes that create significant deviation
in the grab performance. This follows from optimizing a virtual
prototype to reach a maximized W,ss in handling a variety of sig-
nificant bulk cargo classes while the deviation of grab performance
is minimized. Multiple surrogate models are created to find opti-
mal design settings, which are evaluated in a verification step.

2. Multi-objective optimization framework for including bulk
cargo variability

This section describes the multi-optimization framework devel-
oped to incorporate the bulk cargo variability into the grab design
process. Both controllable and uncontrollable types of input are
included in the framework. A matrix, [\V], containing performance
indicator values can be quantified for a combination of uncontrol-
lable and controllable inputs, as shown in Fig. 3. The primary aim is
to minimize the undesirable effect of variability of X on Y. Thus, for
an optimal design configuration, Yop,, @ maximized performance,
W mean, iS reached on average, while its standard deviation, Wsp,
is minimized.

The optimization framework is designed in four sequential
steps where the output of each step is used in the next step as illus-
trated in Fig. 4. This allows grab designers to follow a straightfor-
ward procedure when a new concept is being developed. To
model grabs in interaction with bulk solids, the framework of
[20] is used to make a two-way coupling between a DEM solver
and a MBD solver. A coupling server communicates between two
solvers at each time interval; the geometry motion is calculated
using the MBD solver, and the reaction forces on the geometry
are calculated using the DEM solver. This allows for creating a
real-scale co-simulation between grab and bulk material [21],
which requires virtual crane operator, CAD model of grab, and bulk
material model as inputs.

2.1. Step 1. Sensitivity of the grab performance to bulk cargo
variability

2.1.1. Reference material model of the cohesive iron ore - X..f

A DEM material model of a cohesive iron ore cargo, named Cara-
jas Sinter Feed (CSF), has been validated for the grabbing process
by Mohajeri et al. [4]. In the current study, that validated material
model is used as a reference material model, Xy, to create a bulk
cargo variability. Main parameters of the reference material model
of the cohesive iron ore is presented in Table 1. To model
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Bulk cargo variability (uncontrollable input, X),

such as:
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Fig. 2. Contributing parameters in the grabbing process: controllable and uncontrollable inputs.

Uncontrollable inputs

anny

X
@11 Y

Ve
» lIll,mean ‘PI,SD

\PZ,mean lIIZ,SD max(leean)

P Yo

min(‘PSD)

\ 4

" )
3
'a k ST 55 Wone
o)
IS
o+
8 Yy WFnt o ... Prone )
Q

QPN’,mean lPN’,SD J

Fig. 3. Quantifying a performance indicator, [\W], for a combination of controllable, Y, and uncontrollable, X, types of input.

interaction between particles in the reference material model, an
elasto-plastic adhesive contact spring, named EEPA [22], is used.
Fig. 5 shows a schematic diagram of the non-linear mode of the
EEPA contact spring in the normal direction. For details of the EEPA
contact spring we refer to [18,22].

In the EEPA contact spring, the cohesive forces can be adjusted
by varying the constant pull-off force (fp) and surface energy (Avy).
Sensitivity studies on the dependency of bulk behaviour (e.g. angle
of repose, shear strength, bulk density) on the variation of fy and
Ay have been documented in [23-25]. For f; and Ay, reference val-
ues of —0.2 N and 100 J/m? are used respectively.

The plasticity ratio (Ap) controls the contact stiffness during
unloading and reloading of the spring and, thus, this parameter
controls the bulk compressibility. The plasticity ratio, Ap, controls
the ratio between stiffness in branch II (k;) and stiffness in branch
I (kq), which shows the influence of plasticity ratio at contact scale.
This means that by increasing the plasticity ratio, a higher level of
plastic overlap occurs during contact and, thus, a higher level of
bulk compressibility. For Ap, a reference value of 0.2 is used.

The EEPA contact spring is able to capture a stress-history-
dependent behaviour [4,26,27] and, therefore, no input parameters
need to be adjusted in the material model for this purpose. A pre-
consolidated situation can be simulated by applying a specific

amount of pressure on the bulk surface and then releasing that
pressure, as described in [25]. The reference material model has
been validated in operational conditions for two different levels
of pre-consolidation: 65 and 300 kPa. The grabbing process of
the cohesive iron ore, for various levels of pre-consolidation, has
been investigated in [4], which showed the negative effect of
pre-consolidation on the grab performance.

2.1.2. Bulk cargo variability - [x]

This sensitivity analysis evaluates whether the variability of
cohesive forces and bulk compressibility influences the grabbing
process or not. The effect of a variable is considered significant if
it creates +5% deviation in the mass indicator. As displayed in
Table 2, a bulk variability, [X], based on the reference material
model is created.

The relative cohesion term, as defined in [23], is used to vary the
level of cohesive forces when the EEPA contact spring is applied.
The relative cohesion, Cpyy, distinguishes between the expected
levels of bulk cohesion in a qualitative way. For example, when
using a lower relative cohesion, a lower angle of repose is expected
compared to the reference material model. To create a low relative
cohesion, fy and Ay are decreased by 50% compared to the refer-
ence material model. An increase of 100% is also applied to create

1725
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Step I. Sensitivity of the grab performance to bulk cargo variability

e A specific grab, Yo, is used. Operational

parameters are fixed.

e Output is a set of bulk materials that have

significant influence on the inconsistency of

the grab performance.

Step II. Random sampling from design space

e Performance of random design samples
is evaluated on significant bulk material

classes. [X*].

Step III. Multi-objective optimization using surrogate modelling

e A surrogate model is created to

map

relationships between grab design parameters

and the mass indicator.

e An optimal grab design is selected that
performs adequately when bulk material

variability is included.

Step IV. Verifying the optimal design

e The performance of the optimal grab design is

considered as satisfactory if the difference

between predicted value of the surrogate

model and the simulated value is < 5% in

average.

Yo= ¥1 - Vng
Define a grab design

Y=y, Vg
. . Evaluate performance of grabs
Generate grab design |—[V] [Wpned] for [Y]in [X]
samples
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X= X1 ..., XNp
Define variation of material

properties
T
[X]: bulk cargo variability

v

Sensitivity evaluation of grab,
Y, to bulk cargo variability [X]

T
[X ]: significant material classes

f(Y): map relationship between
Y [X‘] and Wy,

y
For I:N’
Find
maxX(Wiass mean)
No min(Wmasssp)

T
Y’: predicted optimal grab design

Is the
performance of Y’
satisfactory?

Yes

v

Verified optimal grab design:
Yop

Fig. 4. A systematic optimization framework to include the bulk variability in the grab design procedure.

Table 1

Validated DEM material models of the cohesive iron ore (CSF) [4].
Particle-particle interaction parameter Symbol Unit Value
Contact spring - - EEPA [22]
Particle density Pp kg/m* 4500
Particle radius Ip mm 27.5
Particle shear modulus G MPa 7.5
Coefficient of restitution CoRp.p - 0.01
Coefficient of static friction Ms.p-p - 0.30
Constant pull-off force —fo N -0.2
Surface energy Ay J/m? 100
Plasticity ratio Ap - 0.2

a high relative cohesion. Cpy is set to “non” in bulk materials 1, 2,
and 3, by setting both f; and Ay to 0.

The EEPA model behaves like an elastic spring if the plasticity
ratio is set to 0, while using values close to 1 the model behaves
like a plastic spring. In an elastic spring there is no residual overlap
once the force drops to zero. Any values between 0 and 1 result in a
certain level of plastic compressibility in the contact spring. The
reference material has a plasticity ratio of 0.2, which we corre-
spond to low relative plastic compressibility, Apuk. Medium and
high levels of relative plastic compressibility are defined by using
0.55 and 0.9 for &p respectively. If Ap, fo and Ay are all set to zero,
then the material model behaves like a non-cohesive elastic bulk
solid. The grabbing process of non-cohesive elastic iron ore has

1726
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Fig. 5. The relationships of the EEPA contact spring in the normal direction [18].

v

been already investigated in [3,4] and is, therefore, excluded from
the current sensitivity analysis.

2.1.3. Simulation setups
Grab-relevant behaviour of all 12 bulk materials are evaluated
in the following simulation setups:

¢ Angle of repose
e Uni-axial consolidation
e Penetration test

These preliminary simulations are executed to verify that the cre-
ated virtual bulk variability represents various states of bulk cohe-
sion and compressibility. Next, the grabbing process is simulated
at full-scale, which allows the influence of bulk variability on the
process to be investigated. The particle diameter of the validated
material model is relatively large (55 mm in diameter), compared
to particle sizes used in typical laboratory scale DEM simulations.
Therefore, relatively large domains are also created to fit enough
numbers of particles without undesirable boundary effects.

The angle of repose is simulated by pouring particles from a
specific height. The simulation setup is shown in Fig. 6. Particles
are created in a factory that is located 1.5 m above the bottom
plate; due to the force of gravity, particles drop on the bottom plate
to form an angle of repose over time. 2500 particles are created
with a total mass of around 800 kg. Once the simulation is finished,
a stable angle of repose is formed, and the position of particles that

Advanced Powder Technology 32 (2021) 1723-1734

are on the slope is analyzed. A linear regression is then fit on the
data points to determine the angle of repose. The angle of repose,
oy, is therefore the measurement objective of the simulation.

The uni-axial consolidation process, including loading and
unloading, is simulated in four stages to evaluate the bulk com-
pressibility as well as bulk density. The simulation domain is
1x1x2 meter. A block of material is created using a particle factory
that moves upward. This kind of technique minimizes the impact
force during the particle generation (Fig. 7a). Next, the particles
are allowed to settle for 2 s, and a low Kkinetic energy in the bulk
material (<1e—4 J) is reached (Fig. 7b). Next, the bulk material is
consolidated by applying a uniform pressure (i.e. 65 kPa) on its sur-
face by means of a geometry plate for 2 s (Fig. 7c). The pressure is
unloaded by moving the geometry plate upward with a velocity of
1 cm/s (Fig. 7d).

The initial bulk density, ppo is quantified when the particles
relax in the second stage. The compressed bulk density, pp  is mea-
sured at the end of loading in the third stage. The final bulk density,
Pbend iS quantified when the unloading is finished and a pre-
consolidated situation is created.

The penetration resistance of the bulk material is the third grab-
relevant property that is investigated here. The penetration resis-
tance is an influential bulk property in the grabbing process [5],
as a lower resistance to penetration of grabs into the bulk solids
results in a higher payload generally. The penetration process is
simulated for a material block that is pre-consolidated with a ver-
tical pressure of 65 kPa, as shown in Fig. 8a. A cube-shaped geom-
etry with the volume of 8 m? is used to contain the material block.

In general, ship unloader grabs have wedge-shaped knives with
a blunt tip to trade-off between the penetration resistance and
amount of wear. The wedge-shaped penetration tool has a width
of 40 mm and its tip is 20 mm wide. That makes the cross-
section of the penetration tool similar to the setups used in
[5,25,27] that focused on the grab application too. This tool (I) is
driven into the pre-consolidated bulk material (II) with a constant
velocity of 0.1 m/s. A plane contact 2000 mm in length is created
during the penetration, which replicates the grab dimensions ade-
quately. The reaction force on the penetration tool is quantified as
the measurement objective.

Once the outcome of preliminary simulations confirms that an
adequate bulk variability is achieved, the grabbing process can be
simulated for the 12 bulk materials. The DEM simulation of the
grabbing process is run on a combination of CPU and GPU. This
allows for reducing the computation time of a MBD-DEM co-
simulation by around 6 times, compared to a CPU-based co-
simulation. NVIDIA Quadro GP100 is used as the graphics card in
this study.

Once the co-simulation is finished, the grab performance is
quantified for the 12 different bulk materials. The mass indicator,

Table 2

Simulation plan to analyse the grabbing process for a virtual bulk variability, [X]
Bulk material MpuikRelative plastic compressibility Cpulk fo Ay

Relative cohesion [N] [J/m?]

1 Low . Non 0 0
2 Medium 0.55
3 High
4 Low . Low —0.05 50
5 Medium 0.55
6 High
7 Low . Medium -0.1 100
8 Medium 0.55
9 High
10 Low . High -0.2 200
11 Medium 0.55

12 High
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Particle factory

im

Fig. 6. A simulation setup to measure the angle of repose.

W nass, 1S used to evaluate the sensitivity of the grab performance to
the bulk variability. The outcome of step 1 is [X*], bulk material
classes with significant influence on the grab performance.

2.2. Step 2. Random sampling from design space (LHD)

Once the significant bulk material classes are created, a para-
metric variation of the grab design can be investigated. In step 2
of the optimization framework, design space is searched effectively
to create randomized variations of grab configurations. If all the
possible combinations of variables with the design space are con-
sidered, a full factorial design is thus created. For each parameter,
a series of levels, or values, Ns, is defined. When every possible
combination is tested, the total number of samples, N’, is given
by Eq. (2).

N' =N (2)

where N, is the number of parameters. Even with a small number of
parameters and levels, the number of samples can result in an
extreme computation time. For example, if five design parameters
are tested, each at three different levels, a total number of 3> sam-

b)

Tme:23.

Fig. 7. Uni-axial consolidation simulation consists of four stages: a) stage 1, particle generation,

unloading. (The arrow indicates the direction of geometry kinematics).

Tone:
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b)

L.

I: penetration tool
II: pre-consolidated bulk material

‘EDEM”

— "
40
20|

Fig. 8. a) Simulation setup of the penetration test, b) Cross-section of the
penetration tool (I).

ples need to be simulated. With an average computation time of
3.5 h per grab simulation, this would result in about 35 days of
computing for each bulk material.

Fractional factorial designs can offer more effective sampling
methods compared to a full design, in terms of offering an afford-
able computation time [25]. The Latin Hypercube Design (LHD)
method is selected in this study, as it allows for searching a param-
eter space effectively using a minimum number of sampling points
[28]. A set of sampling points is constructed in such a way that
each of the parameters is divided into p equal levels, where p is
the number of samples. This is illustrated in Fig. 9 using two exam-
ples and for two parameters. In example 1, the samples are con-
structed with an extremely poor space filling quality, while
example 2 has a better filling quality with a fine filling of the
design space.

The LHD is constructed according to the algorithm developed in
[29]. The @p criterion was defined, as shown in Eq. (3), to measure
the performance of a LHD-based sampling.

p

np—1 1/p
= [Z Zd.«,-"}

i=1 j=i+1

(3)

where p is a positive integer, dj; is the inter-point distance. In the
current study, p = 50 is used following the recommendation of Jin
et al. [30]. By minimizing the @®p criterion [31], the location of levels
for each parameter is randomly, simultaneously, and evenly dis-
tributed over the parameter space. Maintaining a maximized dis-
tance between each two points allows for satisfying the &p
criterion.

In total, five design variables are included in the optimization,
referred here as D1, D2, D3, D4, D5. The variables and the range

555 Tme: 1038

d)

t

b) stage 2, particles relaxing, c) stage 3, uni-axial loading, d) stage 4,
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Fig. 9. Examples of LHD including two parameters: a) poor filling of a design space,
and b) reasonable quality of filling a design space.

of variations are selected based on a previous parametric study [3]
as well as in consultation with grab designers. For example, Schott
et al. [3] demonstrated that the length of the grab bucket, D1, plays
an important role in the grab performance. Also, the radius of a
bucket, D2, is a significant design parameter as it influences the
bucket shape, and, thus, its volume.

The construction of the LHD-based samples for D1 and D2 is
visualized in Fig. 10. Samples for three other design variables are
randomly created in a similar way, thus, minimizing & for five
variables. A range of 1650-2000 mm is considered for D1, as it is
a typical range for such a grab prototype. For the same reason,
D2 is also varied between 1200 mm and 2000 mm. Therefore, 25
different grab designs, N' = 25, are created, including 5 variables,
Ng.

2.3. Step 3. Multi-objective optimization using surrogate modelling

A surrogate model is a computationally affordable mathemati-
cal model that can replace the actual simulation or experiment.
Surrogate models approximate a function based on a set of avail-
able data points and can then predict the function at new points
[13]. A surrogate model offers a faster computation time, compared
to the actual DEM-MBD co-simulation, to predict performance of a
new grab configuration. Surrogate models can be also used to
obtain trends and identify the influence of specific parameters on
the grab performance. Three different types of regression-based
surrogate models are tested in the current study:

e Linear regression
e Linear Support Vector Machine Kernel
e Polynomial Support Vector Machine Kernel

2000 T @ T °
°
®
. ®
1800
o ° e
= )
E 1600} @ ®
a o
®
. °
1400 | 5
®
°
®
°
1200 . —@ :
1600 1700 1800 1900 2000
D1 [mm]

Fig. 10. Sampling randomly generated for design variables D1 and D2 using Latin
Hypercube Design.
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The linear regression model is the most widely used regression
model. In general, this type of regression model is a linear function
between variables, response of the system, and constant coeffi-
cients [32], as shown in Eq. (4).

Ne
fk = Z ﬁj.yj
=

where fis the regression model, B is a constant coefficient, and y is a
(design) variable. A surrogate model can be created by fitting a
regression function, fi, for each bulk material. Therefore, f(Y) maps
the relationship between the grab design variables, bulk materials,
and the selected response of the system, which is the mass indica-
tor, Wmass, in the current study.

Kernel models transform variables using kernels. The trans-
formed variables are measures for similarity or correlation
between the data points. Multiplying the transformed variables
with weights (constant coefficients), as with the linear models,
gives an estimate of the output. The predictor function for a
kernel-based regression is given by:

(4)

p
fr= Z/fi‘b(y, —y)+b (5)
i-1
where B; is the weight factor corresponding to data point i, and y’
indicates a vector of variable (at its new location) and y; is an avail-
able data point. b is a constant to minimize the fitting error, €. One
difference between a linear regression model and a kernel model is
that the latter has a number of coefficients, Bi, corresponding to
data points rather than variables. ® is the kernel function that
transforms data points into another space to handle the non-
linearity. Linear and polynomial functions are used for @ in the cur-
rent study.

The support vector machine (SVM) regression uses a kernel
function to first estimate the correlation between data points
before fitting coefficients (Fig. 11). The advantage of SVM is that
it allows for an error between observations and predictions [33].
The cost function is not increased until the specified amount of
error, € between observation and prediction is reached, which
forms an e-tube around the prediction function. Outside the tube,
the cost function increases and forces the prediction function to a
specific range of data points.

As discussed earlier, two objectives are considered in the cur-
rent optimization: a maximized average mass indicator (Wpass,
mean) and a minimized standard deviation for mass indicator
(Wmass.sp) measured in different bulk materials. The unloading fre-
quency of a certain cargo is also considered in the optimization. For
example, if a grab unloads a specific cargo 20% of time, and another
cargo 80% of time, the second cargo should have a higher weighting
factor in the optimization for maintaining an adequate productiv-
ity. The distance between origin mine and customer, production
capacity of mine, and technical demands of customer are among
the influencing factors on the frequency of receiving a specific bulk
cargo at destination. The unloading frequency can usually be
obtained by analyzing available databases of customers. Therefore,
to consider the frequency distribution of bulk variability, weight-

ing factors with S}, w; = 1 are defined. w is the weighting factor
of material k in the optimization.

Once different grab samples, Y, are simulated, one can select a
design configuration that may jointly satisfy the optimization
objectives. However, a response optimizer can find better design
configurations, compared to the simulated samples, by using the
surrogate models. Creating surrogate models allows for predicting
the response of the system without the necessity of running a
DEM-MBD co-simulation. Once a surrogate model is created, the
optimal design can be found by selecting a combination of design
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Fig. 11. A tube with the radius of ¢ is fitted to data points in the SVM regression model [34].

variables that jointly satisfy the optimization objectives [25]. The
NSGA-II genetic algorithm [35] is a proper tool to solve DEM-
based optimization problems [36-39], and is therefore used in
the current study to search for the optimal solution within the
design range.

2.4. Step 4. Verifying the optimal design

The selected optimal design is verified by running conforming
simulations. This allows for quantifying the error of surrogate
models as well. The prediction error is quantified using Eq. (6).

fk
E 100
‘e|mean ’f f

where |e|nean is the mean of absolute relative differences for the
grabbing process in N* different bulk materials. f is the prediction
for system response, Wnass in the current study. f;’ is the simulated
response of the optimal design solution for bulk material k. The
acceptable error of |e|meqn iS considered to be 5% multiplied by N*
In other words, on average a prediction error of 5% for each bulk
material is considered to be adequate. If the prediction error is
not acceptable, the number of data points in step 2 can be increased
to improve the accuracy. Additionally, based on the prediction error,
the performance of the different surrogate models can be compared.
The optimization ends with a verified optimal design configuration,
Yope.

(6)

3. Results and discussion

This section presents and discusses the outcome of four steps of
the optimization in a sequential manner.

3.1. Results of step 1, sensitivity to cargo variability

Step 1 aims to identify a bulk material variability that has a sig-
nificant influence on the grab performance. First, results of prelim-
inary simulations are discussed. Second, the grab performance in
handling the 12 different material models is analyzed. Third, a
matrix, [X*], containing the significant bulk material classes is
created.

3.1.1. Angle of repose

Fig. 12 shows the angle of repose results including two vari-
ables; relative cohesion (Cpyy) and relative plastic compressibility
(Zpuik)- The angle of repose depends on the relative cohesion signif-
icantly. Increasing cohesive force values, f, and A7, results in a
higher angle of repose. The relative plastic compressibility, also
influences o. When a non-cohesive material is used, the relative
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Fig. 12. Angle of repose results including two variables: relative cohesion and
relative plastic compressibility.

plastic compressibility has a positive correlation with oy How-
ever, when the cohesive forces are present, the relative plastic
compressibility has a negative correlation with oy.

In case of non-cohesive materials, a higher contact plasticity
results in a larger contact area upon unloading, thus increasing
the required sliding distance of particles relative to each other.
However, when cohesive forces are active, a higher relative plastic
compressibility results in a denser pile of material. Since the parti-
cle density is constant, a denser packing of material results in a
heavier failure wedge in the slope, thus a lower angle of repose
could be expected with increasing the contact plasticity. The effect
of contact plasticity on the packing is discussed further in the uni-
axial consolidation simulation setup.

3.1.2. Uni-axial consolidation

Fig. 13 displays initial, compressed, and final bulk density val-
ues that are quantified for the 12 different bulk materials under
65 kPa pre-consolidation pressure. Results are presented in three
separate graphs, each showing the outcome for a certain level of
Apuik- All bulk density parameters decrease when cohesive forces
increase, independent of the contact plasticity value.

The higher the cohesive forces, the larger the restrictive forces
between particles to fill the voids; consequently, a lower bulk den-
sity is created. Furthermore, by increasing the contact plasticity,
the residual overlap in contact spring increases [18], thus a smaller
difference between p,. and ppeng might be expected. Therefore,
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Fig. 13. Bulk density values in the uni-axial consolidation simulation, including two variables: relative cohesion (Cpyy) and relative plastic compressibility (Apu)-

both variables, /., and Cpyy, have significant influence on the bulk
compressibility and the bulk density.

3.1.3. Penetration resistance

Wisg0, the accumulative reaction force (in Joules) on the wedge-
shape tool is quantified at the penetration depth of 500 mm. That is
similar to the penetration depth that occurs in the grabbing pro-
cess of the CSF cargo under 65 kPa pre-consolidation pressure
[4]. The outcome of the penetration test simulations is shown in
Fig. 14, including two variables: Ap, and Cpyy.

There is a positive correlation between the relative plastic com-
pressibility, Apur, and Wisge. A higher contact plasticity results in a
denser packing, thus, a higher resistance against the penetration
of the wedge-shaped tool. There is no clear relationship between
the relative cohesion and the penetration resistance. Therefore,
only /py is a significant bulk variable influencing the penetration
resistance.

The influence of each variable on the grab-relevant bulk proper-
ties is shown above. The relative cohesion has a significant influ-
ence on the angle of repose and bulk density, while the relative
plastic compressibility plays a significant role in the angle of
repose, bulk compressibility, and the penetration resistance.

3.1.4. Grabbing process

Fig. 15 displays the influence of /p, and Cpyy on the grab per-
formance. The influence of relative plastic compressibility on the
grab performance is significant. That could be expected, based on
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Fig. 14. Effect of bulk variability on the penetration resistance.
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the penetration simulations. The relative cohesion also plays a role
in the grabbing process, especially when a low A, is used.

Although the effect of the pre-consolidation pressure is not
investigated in the current analysis, it is known that the pre-
consolidation plays a significant role in the grabbing process of
cohesive iron ore [4]. Three different bulk materials are selected
for further optimization of the grab design, as presented in Table 3.
Material 1* is a non-cohesive iron ore with no relative plastic com-
pressibility, the material model of which is developed in [21]. Due
to lack of compressibility, no pre-consolidation is applied on mate-
rial 1*. Material 2* is a cohesive iron ore with a low Cp, and a high
Jpuie that is pre-consolidated with a relative high pressure of
200 kPa. By contrast, material 3* has a high Cp, and a low Apy,
that is pre-consolidated with a relative low pressure of 40 kPa.
Such pressure is expected at a cargo depth of around 1.5 m to
2 m. By analysing an available database of a grab customer, the
weighting factors are selected for each bulk material. Summarising,
three different bulk material classes with significant variability for
the grabbing process are selected as the outcome of step 1.

3.2. Performance indicators of random design samples

25 different grab design samples are tested in handling [X*],
thus, 75 simulations are executed. The performance of grabs are
analyzed using the mass indicator ¥,,.ss, and the outcome is illus-
trated in Fig. 16. The horizontal axis represents the mean value of
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Fig. 15. The grab performance under variation of relative cohesion and relative
plastic compressibility.
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Table 3
[X*]: three different bulk material classes with significant influence on the grabbing process.
Bulk material Abulk Chulk Opre [kPa] w
Relative plastic compressibility Relative cohesion Pre-consolidation stress Weighting factor of the unloading frequency
1* Non Non Not applicable 0.1
2* Low High 40 0.4
3* High Low 200 0.5

Y ass for a grab handling the three significant material classes,
thus showing the performance of a design sample on average.
The vertical axis represents the standard deviation value of ¥ 4
in handling [X*], thus an indication for the performance
consistency.

W mass,mean Values of samples are distributed between 2.05 and
2.54, thus a variation of around 24% in the performance of different
design samples is captured. That confirms the adequacy of the ran-
dom sampling approach that is based on LHD. Next, surrogate
models are fitted on the 25 data points.

3.3. Optimal solutions

Three different surrogate models are fitted on the available data
points: linear regression, linear SVM kernel, and polynomial SVM
kernel. Next, optimal solutions using the NSGA-II genetic algorithm
are found for each surrogate model. The outcome is illustrated in
Fig. 17, indicating that different optimal solutions (red line) are
found using different surrogate models. The available data points
are shown in blue. The polynomial SVM kernel predicts optimal
solutions that are better than the predictions of two other surro-
gate models. The non-linear relationships between optimization
objectives and design variable could be captured well using the
polynomial SVM kernel.

3.4. Verified optimal design

It needs to be verified whether the predications of the surrogate
models and the optimization algorithm are sufficiently accurate.
Therefore, the “knee-point” in the line presenting optimal solu-
tions is selected, as recommended in [40]. Co-simulations are exe-
cuted for each optimal solution in three significant bulk material
classes, [X*]; the outcome is shown in Table 4.
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Fig. 16. Performance of random grab design samples in three different bulk
materials, [X*].
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All three surrogate models have a prediction error smaller than
5% for W massmean- The polynomial SVM kernel shows the highest
grab performance as well as the lowest prediction error, while
the linear regression model shows the opposite. Therefore, the
polynomial SVM kernel can be recommended as a surrogate model
to find design configurations of an optimal grab, including the bulk
cargo variability.

4. Conclusion

In this study, a sequential multi-objective optimization frame-
work was established to include multiple grab design variables
as well as a variety of bulk material properties in the design
process. A wide range of bulk material properties was used in the
optimization, from a non-cohesive incompressible iron ore to a
pre-consolidated cohesive compressible cargo. By executing the
optimization analysis, a maximized grab performance, ¥ assmeans
was achieved, while a minimized value for the performance devia-
tion was maintained. The established optimization framework
offers a straightforward and reliable tool for designing grabs and
other similar equipment, including the bulk cargo variability.

e A virtual bulk variability was created to consider various levels
of cohesion and compressibility of iron ore products. Three pre-
liminary simulations were performed to verify that a realistic
bulk variability is replicated using DEM. The outcome of simu-
lations show that the relative cohesion has a significant influ-
ence on the angle of repose and bulk density, while the
relative plastic compressibility plays an important role in the
angle of repose, bulk compressibility, and the penetration resis-
tance. The simulations of the grabbing process, in which a range
of virtual bulk materials is used, showed that the relative plastic
compressibility has a larger influence on the product perfor-
mance, compared to the relative cohesion.

25 different random grab designs were created using the Latin
Hypercube Design sampling method, including 5 different geo-
metrical variables. A variation of 24% in the grab performance
was captured using the random design samples, indicating the
adequacy of the sampling method. Comparing the average mass
indicator values, ¥ nassmean, @S Well the corresponding standard
deviation values allows for assessing performance of different
grab designs.

Three different surrogate models were created using linear
regression, linear support vector machine kernel and polyno-
mial supper vector machine kernel models. The outcome of
the optimization was most promising and accurate when the
surrogate model is constructed using a polynomial SVM kernel
model, as it captures the non-linear relationships between vari-
ables and objectives.

By following steps II, Il and IV of the optimization framework,
design concepts can be enhanced by including the bulk cargo vari-
ability. If a design concept needs to be optimized for a different
type of cargo (e.g. coal), it is recommended that all steps of the
optimization framework are followed in a sequential manner.
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Fig. 17. Optimal solutions are compared

Table 4
Comparing simulated ¥ ,qss in [X*] with predictions of the optimization algorithm.

Bulk Linear Linear SVM Polynomial SVM
material regression kernel kernel

1* 2.50 2.52 2.51

2* 2.65 2.70 2.76

3* 231 2.32 239

W mass,mean 2.49 2.51 2.56

|€|mean [%] 4.7 1.6 1.1

In the current study, the virtual bulk variability was created by
changing levels of cohesion and compressibility, which are domi-
nant sources of bulk variability for fine and moist iron ore cargoes.
In future studies, other possible sources of bulk variability can also
be investigated, such as adhesion between geometry and particles,
particle shape and size distribution.

Future research should focus on finding a design solution to cre-
ate an impact-less grab that is entirely insensitive to uncontrol-
lable factors. Although the grab operation is a controllable input
of the process, an ideal design solution would also be insensitive
to operational parameters. This can be achieved by creating a
robust control system for grabs.
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