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a b s t r a c t

We consider the design of state feedback control laws for both the switching signal and the continuous
input of an unknown switched linear system, given past noisy input-state trajectories measurements.
Based on Lyapunov–Metzler inequalities and on a matrix S-lemma, we derive data-dependent bilinear
programs, whose solution directly returns a provably stabilizing controller and ensures H2 or H∞

performance. We further present relaxations that considerably reduce the computational cost, still
without requiring stabilizability of any of the switching modes. Finally, we showcase the flexibility
of our approach on the constrained stabilization problem for an unknown perturbed linear system.
We validate our theoretical findings numerically, demonstrating the favorable trade-off between
conservatism and tractability achieved by the proposed relaxations.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Direct data-driven control refers to the design of controllers
based only on observed trajectories generated by an unknown
dynamical system, without explicitly identifying its parameters
(De Persis & Tesi, 2020; Dörfler, Coulson, & Markovsky, 2023;
Krishnan & Pasqualetti, 2021). Bypassing the identification step
comes with important advantages. First, the computational com-
plexity of system identification is mitigated. Second, uncertainty
propagation is avoided. In fact, measurement noise can lead to
inaccurate models: while it is possible to bound the identification
error and resort to robust controllers, this two-step procedure
is typically conservative. Third, frequently control synthesis re-
quires less information on the system (and hence, less data) than
identification of its dynamics (van Waarde, Eising, Trentelman, &
Camlibel, 2020).

Literature review: Direct data-driven control traces back to the
ork of Ziegler and Nichols (1942) on PID controllers. Classi-
al methods are also virtual reference feedback tuning (Campi,
ecchini, & Savaresi, 2002), iterative feedback tuning (Hjalmars-
on, Gevers, Gunnarsson, & Lequin, 1998), reinforcement learn-
ng (Bradtke, 1993) and extremum seeking (Krstić & Wang, 2000).

✩ This work was partially supported by NWO, Netherlands (OMEGA
613.001.702), by the ERC (COSMOS 802348), by NSF Award, United States
of America (CMMI-2044900), and by ETH Zürich funds. The material in this
paper was not presented at any conference. This paper was recommended for
publication in revised form by Associate Editor Simone Formentin under the
direction of Editor Alessandro Chiuso.
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S. Grammatico), cortes@ucsd.edu (J. Cortés).
ttps://doi.org/10.1016/j.automatica.2024.111974
005-1098/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
Later alternatives include intelligent PID controllers (Fliess & Join,
2009) and model-free adaptive control (Hou & Jin, 2011); meth-
ods based on Willems’ fundamental lemma are currently enjoying
renewed popularity as well (Allibhoy & Cortés, 2021; Berberich,
Köhler, Müller, & Allgöwer, 2021; Breschi, Chiuso, & Formentin,
2023; Coulson, Lygeros, & Dörfler, 2019; De Persis & Tesi, 2020;
Markovsky, Prieto-Araujo, & Dörfler, 2023; Rueda-Escobedo &
Schiffer, 2020).

In this paper, we adopt instead a recent robust-control ap-
proach, whose strength is to provide non-asymptotic theoretical
guarantees (Bisoffi, De Persis, & Tesi, 2022; Dai & Sznaier, 2021;
van Waarde et al., 2020). In simple terms, when the true plant
is not known, the goal is to find a controller that provably
ensures closed-loop stability (or performance/optimality (van
Waarde, Camlibel, & Mesbahi, 2022), safety (Ahmadi, Israel, &
Topcu, 2020)) for all the systems compatible with (a) a few, finite,
open-loop measured trajectories, possibly corrupted by noise, and
(b) prior knowledge on the model class (e.g., LTI systems (van
Waarde et al., 2020), polynomial dynamics (Dai & Sznaier, 2021))
and noise bounds. The controller is typically built by solving
a data-dependent optimization problem, for instance a linear
matrix inequality (LMI) (van Waarde et al., 2020) or a polynomial
program (Dai & Sznaier, 2021). In this stream of literature, much
effort is devoted to providing tractable conditions for stabilization
of several classes of nonlinear systems and under various noise
bounds (Dai & Sznaier, 2018; De Persis, Rotulo, & Tesi, 2023;
Martin & Allgöwer, 2023; Rotulo, De Persis, & Tesi, 2022; Strässer,
Berberich, & Allgöwer, 2021). In particular, the works (Dai &
Sznaier, 2018, 2022; Eising, Liu, Martinez, & Cortés, 2022, 2023;
Rotulo et al., 2022) focus on the data-driven design of the continu-
ous input for switching linear systems (Liberzon, 2003), where the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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T[
ynamics switches freely among a set of LTI plants (also called
‘modes’’). In Dai and Sznaier (2018, 2022), the switching signal is
rbitrary but measured. The authors of Eising et al. (2022, 2023)
nd Rotulo et al. (2022) study the case of an unknown switching
ignal, with stability ensured under a sufficiently large dwell time.
oth cases require stabilizability of each subsystem.
On the contrary, in this paper, we consider switched linear

ystems — where the active mode is chosen by the controller.
n particular, we are interested in ‘‘stabilization by switching’’,
amely controlling the system by opportunely choosing the dis-
rete switching signal: famously, this can be achieved even when
ll the individual modes are unstable (Liberzon, 2003). Not only
witched dynamics naturally arise in prominent engineering ap-
lications (robotics, embedded systems, traffic control, power
lectronics (Baldi, Papachristodoulou, & Kosmatopoulos, 2018;
eaecto, Souza, & Geromel, 2015)), but even for a single plant
witching among different compensators can achieve otherwise
mpossible control goals (Blanchini & Miani, 2015, Ch. 9, Breschi
Formentin, 2020). For this reason, stabilization by switching

as been extensively investigated (for a known system) (Egidio &
eaecto, 2021; Fiacchini & Jungers, 2014; Liberzon, 2003; Morse,
995). The challenge remains finding good trade-offs between
omplexity and conservatism: for instance, tight conditions for
tabilizability of discrete-time (DT) switched linear systems are
nown, but computationally prohibitive (Fiacchini & Jungers,
014). In this spirit, the main tool is the LM inequalities, in-
roduced by Geromel and Colaneri (2006a, 2006b), that provide
ufficient conditions for stability in the form of a BMI.
In contrast, data-driven stabilization of linear dynamics with

ontrolled switching is essentially unexplored. To the best of our
nowledge, the only work to address this problem (under addi-
ional dwell-time constraints) is Kundu (2020). Yet, the design is
articularly restrictive (e.g., a specific class of linear systems is
onsidered, and at least one of the modes must be stable) and the
ssumption on the noiseless data implies that each subsystem can
e uniquely identified. Zhang, Gan, and Zhao (2019) also study
witched systems, but rather considers a finite-horizon control
ask via a reinforcement learning approach.

Contributions: In this paper, we consider the direct data-driven
tabilization of an unknown continuous-time switched linear sys-
em. We start by observations of finite input-state-derivative
ata generated by the system; differently from Kundu (2020),
he measurements are subject to noise, obeying an energy-type
ound. We provide a method to design a state-feedback con-
roller (for the discrete switching signal, and for the continuous
nput if present) that provably stabilizes the unknown dynamics,
ith guaranteed performance. Our results are complementary to
hose in Dai and Sznaier (2018, 2022), Eising et al. (2022) and
otulo et al. (2022) about stabilization of systems with uncon-
rolled switching. We build upon LM inequalities (Geromel &
olaneri, 2006a), and on a matrix S-lemma, developed in van
aarde et al. (2022) for data-driven control of linear discrete-

ime systems, but that found numerous other applications in the
ield (Guo, Persis, & Tesi, 2021; van Waarde, Camlibel, Eising, &
rentelman, 2023). Compared to Geromel and Colaneri (2006a),
e deal with the set of systems unfalsified by the data, rather
han with a well-known model. Unlike van Waarde et al. (2022),
e consider continuous-time switched systems, resulting in a
ubstantially different analysis. The technical novelties of our
ork are summarized as follows:

Data-driven LM inequalities: We derive a BMI, dependent only
on measurements and prior structural knowledge, whose so-
lution directly supplies a stabilizing controller. The condition is
obtained by applying the S-procedure (vanWaarde et al., 2022)
to a dual version of the LM inequalities of Geromel and Colaneri

(2006a). Under a Slater’s condition (as in van Waarde et al.

2

(2022)), our formulation is nonconservative, i.e., it is solvable
if and only if there exists a solution to the LM inequalities
common to all the systems that are compatible with the data.
Crucially, although this set of systems can be unbounded, we
prove that it is not restrictive to constraint some variables
to be strictly positive — in turn allowing for their inversion,
which is fundamental for the dualization of the LM inequalities
(Section 3);

• Relaxations: As for the model-based case, our data-driven LM
inequalities are nonconvex and challenging to solve. Thus, we
propose two relaxations that, at the price of some conser-
vatism, considerably reduce the computational burden. In par-
ticular, the second condition is an LMI when a scalar variable
is fixed (hence, it can be efficiently solved via semidefinite
programming (SDP) and line-search), and directly improves
on that in Geromel and Colaneri (2006a), by being both eas-
ier to solve and less restrictive. Importantly, we also provide
sufficient conditions for solvability of our relaxed inequalities,
directly in terms of the system properties (Section 4);
Performance: We derive data-dependent LM inequalities to
solve the H2 and H∞ control problems for unknown switched
linear systems (Section 5);
Safe stabilization: We show that the tools developed in this
paper are of interest even when the original system is LTI. In
particular, we design, solely based on data, a switched con-
troller and a robustly invariant set that guarantee not only
robust satisfaction of state (and input) constraints, but also
– differently from the results in Bisoffi, De Persis, and Tesi
(2023) and Luppi, Bisoffi, Persis, and Tesi (2023) – closed-loop
asymptotic stability (Section 6).

Some background on LM inequalities is provided in
ppendix A, where we also prove novel results on stabiliza-
ion of switched systems in the case of sliding motions: this is
n extension of general interest, that we then leverage in our
ata-driven formulation. Finally, in Section 7 we illustrate our
ata-driven methods via numerical examples, with attention to
he tractability/conservatism trade-off.

Notation: We use the compact notation P̃ := P−1 for the
nverse of a matrix P . We denote ∆ := {λ ∈ RN

≥0 | 1⊤

N λ = 1}
nd ∆+ := {λ ∈ RN

>0 | 1⊤

N λ = 1}; let S (S+) be the set of matrices
hose columns belong to ∆ (∆+). We define the sets of Metzler
atrices M := {Π ∈ RN×N

| πi,j ≥ 0 ∀i ̸= j,
∑N

i=1 πi,j = 0 ∀j}
nd M+ := {Π ∈ RN×N

| πi,j > 0 ∀i ̸= j,
∑N

i=1 πi,j = 0 ∀j},
here πi,j is the element of Π in row i and column j. For a signal

: R≥0 → Rm, its 2-norm is ∥s∥2 =
(∫

∞

t=0 s(t)
⊤s(t)dt

) 1
2 ; we

denote by L2 the set of signals with bounded 2-norm. ei ∈ Rm is
the ith column of the identity matrix I of appropriate dimension
m. δ(t) denotes the continuous-time unitary impulse. P ≻ 0 (≽
0) denotes a symmetric positive (semi-)definite matrix; λmin(P)
nd λmax(P) denote the minimum and maximum eigenvalue of
. We may replace the blocks of a matrix that can be deduced
y symmetry with the shorthand notation ‘‘⋆’’. ∥ · ∥F denotes the
robenius matrix norm.

emma 1 (Matrix S-lemma van Waarde et al., 2022, Th. 9). Let
,H ∈ R(k+n)×(k+n) be symmetric. Consider the following:

(a) ∃α ∈ R≥0 such that G − αH ≽ 0;

(b)
[
I
Z

]⊤
G
[
I
Z

]
≽0,∀Z ∈ Rn×k s.t.

[
I
Z

]⊤

H
[
I
Z

]
≽ 0.

hen (a) ⇒ (b); if in addition ∃Z̄ ∈ Rn×k such that
[
I Z̄⊤

]
H

¯⊤
]⊤

≻ 0, then also (b) ⇒ (a). □
I Z
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. Problem statement

We consider a switched linear system

ẋ = Āσ x + B̄σu, (1)

where x ∈ Rn, u ∈ Rm is a controlled continuous input, σ ∈ I :=

{1, 2, . . . ,N} is a controlled discrete input (switching signal), and
{Āi}i∈I , {B̄i}i∈I are the system matrices. Here the bar indicates the
true system matrices, which are unknown.

Instead, we assume that some experimental data are available,
generated by applying inputs u and σ , measuring the state x and
btaining an estimate of the derivative, ẋ + w, for an unknown
isturbance w. In particular, Ti ≥ 0 samples have been collected
or each subsystem i ∈ I (at non switching instants {t ik}k=1,...,Ti ,
ot necessarily from a unique trajectory), and organized in the
ollowing matrices:

Xi :=
[
x(t i1) x(t i2) . . . x(t iTi )

]
Ẋi :=

[
ẋ(t i1)+w(t i1) ẋ(t i2)+w(t i2) . . . ẋ(t iTi )+w(t iTi )

]
W̄i :=

[
w(t i1) w(t i2) . . . w(t iTi )

]
Ui :=

[
u(t i1) u(t i2) . . . u(t iTi )

]
,

that satisfy

Ẋi = ĀiXi + B̄iUi + W̄i, (2)

where the matrix W̄i is unknown.

Assumption 1 (Disturbance Model). For each i ∈ I, W̄i ∈ Wi,
where

Wi :=

{
Wi ∈ Rn×Ti

⏐⏐ [ I
W⊤

i

]⊤
[
Φ i

1,1 Φ i
1,2

Φ i
1,2

⊤
Φ i

2,2

]
  

:=Φ i

[
I

W⊤

i

]
≽ 0

}

or known Φ i
1,1 = Φ i

1,1
⊤, Φ i

1,2, Φ
i
2,2 = Φ i

2,2
⊤

≺ 0. □

By replacing (2) in Assumption 1, we infer that, for any i ∈ I,
pair of matrices (Ai, Bi) is consistent with the experiments

i.e., can explain the data) if and only if⎡⎢⎣ I
A⊤

i

B⊤

i

⎤⎥⎦
⊤⎡⎢⎣ I Ẋi

0 −Xi

0 −Ui

⎤⎥⎦[ Φ i
1,1 Φ i

1,2

Φ i
1,2

⊤
Φ i

2,2

]⎡⎢⎣ I Ẋi

0 −Xi

0 −Ui

⎤⎥⎦
⊤

  
:=Hi

⎡⎢⎣ I
A⊤

i

B⊤

i

⎤⎥⎦ ≽ 0, (3)

where the matrix Hi depends on known quantities only. Let us
define, for each i ∈ I, the compatibility set

Ci := {(Ai, Bi) | ∃Wi ∈ Wi : Ẋi = AiXi + BiUi + Wi}

= {(Ai, Bi) | (3) holds}. (4)

Clearly, (Āi, B̄i) ∈ Ci; however, the true system matrices cannot
be discerned via the available data. Thus, to ensure stability of
the true system, we need to find a controller that would stabilize
every plausible plant.

Problem 1. Under Assumption 1, find state-feedback laws for
the input u and the switching signal σ that stabilize the system
in (1) (with Āσ , B̄σ replaced by Aσ , Bσ ) for any set of matrices
ompatible with the measured data in (2), i.e., for all (Ai, Bi)i∈I ∈

C := C1 × C2 × · · · × CN , with Ci given in (4). □

Remark 1 (On the Disturbance Model). The unknown-but-
bounded model in Assumption 1 is standard in the recent litera-
ture (Eising et al., 2023, Eq. 6, Persis, Postoyan, & Tesi, 2023, Asm.
3

2 Strässer et al., 2021, Asm. 1 van Waarde et al., 2022, Asm. 1). It
is an energy-like bound. The matrix Φ i is chosen by the designer
to encode (or overapproximate) the prior bounds available on
the disturbance, for instance bounds on the noise-to-signal ratio,
sample covariance or individual samples (see van Waarde et al.
(2023) for a detailed discussion). For instance, if the prior on the
disturbance is given by instantaneous bounds on the norm of wi,
.e., supt ∥wi(t)∥2

≤ wi, then Assumption 1 holds by choosing
Φ i

1,1 = TiwiI , Φ1
1,2 = 0, Φ i

2,2 = −I (a tighter upper bound on
the compatibility sets in the form (3), for some data-dependent
matrix Hi, could also be computed as in Luppi et al. (2023, Eq. 18),
by solving a data-dependent program). Moreover, Assumption 1
also comprises the case of zero disturbance, by choosing Φ i

1,1 and
Φ i

1,2 as zero matrices (in turn, C can be a singleton if the data
are rich enough, i.e., the system (1) is identifiable). Finally, we
interpretw as noise on the derivative estimate. First, this estimate
can be obtained without actually measuring the derivative, for
example by Euler approximation (with guaranteed error bound
satisfying Assumption 1 (Persis et al., 2023)); in fact, one can
also obtain data of the form (2) without numerical derivation,
via an integral form, see Persis et al. (2023, App. A). Second,
it is actually irrelevant how w is generated, as long as (2) and
Assumption 1 hold. On this basis, we can also account for process
disturbance (as in Section 5), or inaccuracy on the off-line state
measurement Xi, see Persis et al. (2023, Rem. 2) (although we
assume exact on-line state measurement for the implementation
of our controllers, as in the recent data-driven literature (Dai &
Sznaier, 2021; De Persis & Tesi, 2020; Persis et al., 2023); the
case of online noisy measurements remains challenging, even for
a perfectly known system). □

Remark 2 (State Measurement). We assume that measurements
are collected about the state, as in virtually all the data-driven
literature that takes the robust-control approach (Dai & Sznaier,
2021; De Persis et al., 2023; Strässer et al., 2021). Dealing with
input–output data is an important open problem, partially settled
only for discrete-time linear systems (De Persis & Tesi, 2020; van
Waarde et al., 2023). □

3. Data-driven stabilization

For the continuous input u, we restrict our attention to linear
controllers of the form u = Kσ x, where {Ki}i∈I are feedback gains
to be designed. For brevity, we define

Acl
i := Ai + BiKi. (5)

To solve Problem 1 in a data-driven fashion, we aim at leveraging
Proposition A.1 in Appendix A. In particular, if we can find {Ki}i∈I ,
{Pi ≻ 0}i∈I , Q ≽ 0 and Π ∈ M such that for all i ∈ I, for all
(Ai, Bi) ∈ Ci,

Acl
i

⊤
Pi + PiAcl

i +

∑
j∈I

πj,iPj + Q ≺ 0, (6)

then Proposition A.1 ensures that the controller

σ (x) = min
{
argmin

i∈I
x⊤Pix

}
, u(x) = Kσ (x)x, (7)

asymptotically stabilizes (1), with guaranteed performance∫
∞

0 x⊤Qx dt < mini∈I x(0)⊤Pix(0). Note that we look for a
common weight matrix Π for all the systems in the compatibility
set C, akin to most methods in the literature that seek a common
Lyapunov function (Strässer et al., 2021; van Waarde et al., 2022)
— instead, Ki and Pi must be common to all systems in Ci for (7)
to be implementable.

In place of (6), we consider the following related problem in
Problem 2, more suitable for our data-driven formulation because
of the strict conditions on Q and Π , as shown later.
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f

A

⎡⎢⎢⎢⎢⎢⎣
Q̃ 0 P̃i 0 0

0 π̃−iP̃−i (1 ⊗ I)P̃i 0 0

P̃i P̃i(1N−1 ⊗ In)⊤ −πi,iP̃i −P̃i −L⊤

i

0 0 −P̃i 0 0
0 0 −Li 0 0

⎤⎥⎥⎥⎥⎥⎦− αi

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

I Ẋi

0 −Xi

0 −Ui

⎤⎥⎥⎥⎥⎥⎦
[
Φ i

1,1 Φ i
1,2

Φ i
1,2

⊤
Φ i

2,2

]⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

I Ẋi

0 −Xi

0 −Ui

⎤⎥⎥⎥⎥⎥⎦

⊤

≽ 0 (C1)
t

P
b

i
i
t

R
m
d
W
A
t

R
(
Q
a
b
t
i
a

R
s
i
u
t

T
N
U
d
i
t
c

Problem 2. Find {Ki}i∈I , {Pi ≻ 0}i∈I , Q ≻ 0, Π ∈ M+ such that
or all i ∈ I, for all (Ai, Bi) ∈ Ci,
cl
i

⊤
Pi + PiAcl

i +

∑
j∈I

πj,iPj + Q ≼ 0. □ (8)

Note that a solution to (8) immediately provides a solution to
(6) (e.g., with Q = 0 in (6)). Thus implementing (7) with matrices
{Pi, Ki}i∈I that satisfy (8) does stabilize (1) and assures that∫

∞

0
x⊤Qx dt ≤ min

i∈I
x(0)⊤Pix(0). (9)

Conversely, we wonder if feasibility of (6) implies feasibility of
(8). When the compatibility set C is a singleton (i.e., if the real
system is known), or more generally when C is compact, this is
immediately true, due to the strict inequality in (6). The following
result shows that (8) is nonrestrictive (i.e., (6) can be bounded
away from zero) even in case of unbounded compatibility sets
Ci’s.

Lemma 2 (Equivalent LM Conditions). The system of inequalities
in (6) is feasible if and only if the system of inequalities in (8) is
feasible. □

The proof of this result is given in Appendix B.1.
To impose (8) for all systems in the compatibility set, we

use the S-procedure (van Waarde et al., 2022). First, we need
to ‘‘dualize’’ (8) (to have Ai, Bi as factors on the left, and their
transpose on the right, as in (3)). By left- and right-multiplying
both sides of (8) by P̃i = P−1

i ≻ 0, we obtain the equivalent
inequality⎡⎢⎣ I

A⊤

i

B⊤

i

⎤⎥⎦
⊤
⎡⎢⎢⎣

−P̃i(Q +
∑
j∈I
πj,iPj)P̃i −P̃i −P̃iK⊤

i

−P̃i 0 0

−KiP̃i 0 0

⎤⎥⎥⎦
  

:=Gi

⎡⎢⎣ I
A⊤

i

B⊤

i

⎤⎥⎦≽ 0. (10)

Then Lemma 1 shows that (10) holds for all (Ai, Bi) satisfying (3)
if there is a scalar αi ≥ 0 such that

Gi − αiHi ≽ 0; (11)

necessity also holds under the mild Slater’s condition

∃Zi ∈ R(n+m)×n s.t.
[
I Z⊤

i

]⊤ Hi
[
I Z⊤

i

]⊤
≻ 0. (12)

Note that, in the top-left corner of Gi in (10), P̃i and Pj and πi,j
are all variables. To cope with this complication – that arises
due to the coupling in (A.3) and is absent in problems for LTI
systems (van Waarde et al., 2022) – we exploit Lemma 2 and a
Schur complement argument. The following is our main result of
this section; let us define, throughout the paper,

P−i := diag((Pj)j∈I\{i}), (13a)

π−i := diag((πj,iIn)j∈I\{i}). (13b)
4

Theorem 1 (Data-driven LM Inequalities). For all i ∈ I, let the
Slater’s condition in (12) hold. Then, ({Pi ≻ 0, Ki}i∈I,Π ∈ M+,Q ≻

0) solve Problem 2 if and only if there exist scalars {αi ≥ 0}i∈I such
that ({Pi, Li := KiP̃i}i∈I,Π,Q , {αi}i∈I) verify the inequality (C1) on
op of this page, for all i ∈ I. □

roof. By taking the Schur complement with respect to the 2-
y-2 block upper-left matrix in (C1), and by definition of Li, we

retrieve (11). ■

Sufficiency in Theorem 1 holds also without the assumption
in (12). Hence, since the unknown real system belongs to the
consistency set, we have the following.

Corollary 1 (Data-driven Stabilization). Assume that ({P̃i ≻

0}i∈I, {αi ≥ 0}i∈I, {Li}i∈I, Q̃ ≻ 0,Π ∈ M+) satisfy (C1), for all
∈ I. Then the controller in (7) with Ki = LiPi globally asymptot-
cally stabilizes the switched system in (1). Furthermore, (9) holds
rue. □

Some technical remarks are in order.

emark 3 (Batch Sizes). The number of variables and the di-
ension in (C1) grows with N , but does not depend on the
ataset lengths {Ti}i∈I , a convenient feature inherited from van
aarde et al. (2022). Depending on the disturbance model in
ssumption 1, a larger batch size can result in a smaller set Ci,
hus favoring solvability of (C1). □

emark 4 (Nonnegative Weight Matrix). Using (8) in place of
6) is crucial for Theorem 1 as it allows inversion of π−i and
. However, if Π is given and known a priori, it is easy to
ccommodate for Π ∈ M instead of Π ∈ M+ (i.e., πi,j might
e zero — note that stability of the closed-loop is not affected;
his case will be useful in the following, see Examples 1 and 2):
t is enough to remove in π−i, P−i any block j such that πj,i = 0
nd cancel the corresponding rows and columns in (C1). □

emark 5 (Unbounded C and Data Collection). If Ci is quadratically
tabilizable,1 then Problem 1 admits a trivial solution with σ (t) ≡

; yet, the system in (6) might still be unfeasible when Cj is
nbounded, for some j ̸= i. In fact, the proof of Lemma 2 shows
hat if (8) admits a solution, then, for all j ∈ I

rank(Xj) = n. (14)

his necessary condition on the data is well known for the case
= 1 (i.e., LTI systems) (van Waarde et al., 2020, Lem. 15).

nfortunately, except for the case of linear noiseless controllable
ynamics (Willems, Rapisarda, Markovsky, & De Moor, 2005), it
s a vastly open problem how to design the inputs of a system
o guarantee that the obtained trajectories are ‘‘persistently ex-
iting’’, e.g., satisfy (14) (De Persis & Tesi, 2020, Sec. V). Luckily,

1 Namely, if there are Ki , Pi ≻ 0 such that Acl
i

⊤Pi+PiAcl
i ≺ 0 for all (Ai, Bi) ∈ Ci;

this condition can be easily checked from data (van Waarde et al., 2022, Th. 14).
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⎡⎢⎢⎢⎢⎢⎢⎣
Q̃ 0 P̃i 0 0

0 P̃−i (1 ⊗ I)P̃i 0 0

P̃i P̃i(1 ⊗ I)⊤ (N − 1)P̃i −γ̃iP̃i −L⊤

i

0 0 −γ̃iP̃i 0 0
0 0 −L i 0 0

⎤⎥⎥⎥⎥⎥⎥⎦− αi

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

I Ẋi

0 −Xi

0 −Ui

⎤⎥⎥⎥⎥⎥⎦
[
Φ i

1,1 Φ i
1,2

Φ i
1,2

⊤
Φ i

2,2

]⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

I Ẋi

0 −Xi

0 −Ui

⎤⎥⎥⎥⎥⎥⎦

⊤

≽ 0 (C2)
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the rank condition can be easily checked a posteriori: if the data
collected do not verify (14) for some j, then that mode must
e ignored in the design (by removing j from I). This simple
xpedient automatically avoids pathological unfeasibility of (C1)
f the kind described above. Note that, even under (14), Cj can
till be unbounded. □

emark 6 (Linear Convergence). The proof of Proposition A.1 in
ppendix A shows that stability in Corollary 1 is exponential, with
ate λmin(Q )/maxi∈I{λmax(Pi)}. □

emark 7 (Computational Cost of (C1)). The inequalities (C1)
epend on experimental data and prior on the disturbance only;
ence, their solution provides a direct data-driven criterion to
eek a stabilizing controller for (1). The problem is nonconvex;
t is cast as a BMI in the variables ({P̃i, Li}i∈I, Q̃ ,Π, {π̃i,j}i,j∈I), via
he additional constraints

i,jπ̃i,j = 1, ∀i ∈ I,∀j ∈ I\{i}, (15)

hat enforce Π ∈ M+. Due to their ubiquity in control sys-
ems, significant effort has been devoted to the development of
lgorithms (Tran, Gumussoy, Michiels, & Diehl, 2012) and soft-
are (Kočvara & Stingl, 2005) for the solution of BMIs, typically
esorting to sequential convex (often, SDP) relaxations. These
ools can be readily used to solve (C1). Yet, the problem remains
omputationally expensive and poorly scalable. Let us recall that
he model-based condition in Geromel and Colaneri (2006a) (see
roposition A.1) is also a BMI; more recently, bilinear conditions
ave been also proposed in the context of data-driven control,
.g., Dai and Sznaier (2018, 2021) and Luppi et al. (2023). All these
ormulations suffer the same limitations. □

To address the issue in Remark 7, in Section 4 we propose
wo relaxations of (C1) that, at the price of some conservatism,
esult in substantial complexity reduction. However, first let us
ote that, if Π is fixed, then (C1) reduces to an LMI. This case is
till relevant, as illustrated in the following two examples.

xample 1 (LTI Systems). Consider the system ẋ = Ax+Bu (corre-
ponding to (1) for N = 1), setΠ = 0 (justified by Remark 4), and
ote that (6) recovers the standard Lyapunov inequality. Then,
nder (12), Theorem 1 proves that (C1) is necessary and sufficient
or quadratic stabilization of all the systems in C. As an advantage
ith respect to van Waarde et al. (2022, Th. 14) (formulated in
iscrete-time), we use the nonstrict version of the S-lemma in
ur derivation, as Lemma 2 already bounds (6) away from zero
ver C at a solution — in fact, Q ≻ 0 can be used to certify the
orst-case (linear) convergence rate. □.

xample 2 (Markov Jump Linear Systems). Consider the system
̇ = (Aσ + BσKσ )x, where σ (t) is an (uncontrolled, but mea-
ured) continuous-time Markov chain with known infinitesimal
ransition matrix Π⊤, Π ∈ M. The system is stochastically stable
i.e.,

∫
∞

0 (E(∥x∥2))dt < ∞ for any initial condition) if and only if
6) admits a solution (Costa, Fragoso, & Todorov, 2012, Th. 3.25).
5

n turn, the system of LMIs (C1) provides nonconservative con-
ditions for stabilization if the system matrices are unknown, but
open-loop experiments have been recorded. A numerical example
is in Section 7.1. □

4. Relaxations via structured weight matrix

In this section, we provide two matrix inequalities, that are
sufficient for the satisfaction of (C1): the first is still a BMI, but
of reduced dimension; the second is more conservative, but only
requires solving an LMI with line-search on a scalar parameter.
Both are obtained by assuming some extra structure on the
weight matrix Π .

4.1. BMI of reduced order

Let us impose, for all i ∈ I, the additional constraints

πj,i = γi, ∀j ̸= i; πi,i = −(N − 1)γi, (16)

where γi > 0 is a variable to be determined. To solve (8) more
efficiently under (16), we replace the variable Q ≻ 0 in (8) with
γiQ , Q ≻ 0; by dividing both sides by γi we obtain: for all i ∈ I,
for all (Ai, Bi) ∈ Ci,

Acl
i

⊤
(γ̃iPi) + (γ̃iPi)Acl

i +

∑
j∈I\{i}

(Pj − Pi) + Q ≼ 0. (17)

By repeating the derivation in Theorem 1, we can show that,
under the Slater’s condition (12), via the transformation L i =

˜iKiP̃i, (17) is equivalent to (C2), on top of this page.

heorem 2 (Relaxed Data-driven Stabilization). Assume that ({P̃i ≻

, αi ≥ 0, γ̃i > 0, L i}i∈I,Q ≻ 0) satisfy (C2) on top of this
age, for all i ∈ I. Then the controller in (7), with Ki = γiL iPi,
lobally asymptotically stabilizes (1). Furthermore, (9) holds with
= Q (mini∈I γi). □

emark 8 (Complexity Reduction). The relaxation (C2) is still a
MI, but computationally much easier to solve than (C1), where
he bilinearity involves significantly many more variables. For
nstance, (C2) could be solved via SDP and line-search over N
calar variables — instead of N(N − 1). As another example, let

= diag((Mi)i∈I),

i :=
[
1 γ̃i vec(P̃i)⊤

]⊤ [
1 γ̃i vec(P̃i)⊤

]
, (18)

nd note that (17) is an LMI in the elements of M and the
ariables {L i}i∈I , Q̃ , {αi}i∈I . Therefore, the problem can be recast
s the following rank constrained LMI: find Q̃ , {L i}i∈I , {αi}i∈I , M
uch that:{M ≽ 0, rank(M) = N,

∀i ∈ I : [Mi]1,1 = 1, (C2), P̃i ≻ 0, γ̃ i > 0
(19)

here the constraints on M enforce the structure in (18). This
roblem can be solved via recursive algorithms, where each iter-
tion requires solving an SDP in all the variables (see Recht, Fazel,
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nd Parrilo (2010) for an overview on the topic, or Section 7.2.2
or an example). In the case of (C2), the square matrix M has
(Nn4) nonzero entries (variables); the corresponding number for
he case of (C1) is O(N3n4). □

The rationale behind the relaxation in (16) is that, in the
nown-model case, Geromel and Colaneri (2006a, Eq. 39) ensure
hat the LM inequalities in (6) admit a solution satisfying (16)
f there is a Hurwitz convex combination of the matrices Acl

i ’s.
nterestingly, an analogous result holds for the data-driven case
f the convex combination of the compatibility sets is quadrat-
cally stabilizable. The proof of the following result is given in
ppendix B.2.

emma 3 (A Condition for Solvability). Assume that there exist
λ := (λi)i∈I ∈ Λ+, {Ki}i∈I , P ≻ 0 such that(∑

i∈I

λiAcl
i

)⊤

P + P

(∑
i∈I

λiAcl
i

)
≺ 0 (20)

or all (Ai, Bi)i∈I ∈ C. Then, (8) is solvable with Π as in (16), with
i = µλ−1

i and large enough µ > 0. Furthermore, if (12) holds, then
C2) is feasible. □

The use of relaxations like (16) is predominant in the recent
ata-driven results for nonlinear systems, e.g., Dai and Sznaier
2021) and Guo et al. (2021), allowing for tractable design. While
uch relaxations are algebraically meaningful, a disadvantage is
hat it is usually not clear how restrictive they are, namely what
onditions they impose on the real system and on the data quality
or the existence of a solution. In contrast, Lemma 3 provides such
n insight for (16); this point is further illustrated in Section 7.

emark 9 (Comparison with Classical Conditions). A well-known
esult from Liberzon (2003) establishes that, if a solution to (20)
xists, then the controller

(x) = argmin
i∈I

x⊤(Ācl
i

⊤
P + Ācl

i P)x, (21)

ith Ācl
i := Āi + B̄iKi, stabilizes (1). Yet, (20) is more restrictive

han (17) and, most importantly, the controller (21) cannot be
mplemented in a data-driven fashion (in contrast to (7)), because
he true system matrices are not known. □

.2. LMI with line-search

Let us discuss a more conservative choice for the weight
atrix Π . For the structure in (16), we further assume the pa-

ameters γi’s to be identical, so that

Π = γ (1N1⊤

N − NIN ), (22)

or some scalar variable γ > 0. The advantage is computational:
or γ fixed, (C1) (or (C2)) reduces to an LMI. Thus, a solution can
e sought via standard convex solvers and line-search over one
calar variable γ .
Lemma 3 provides a sufficient condition for existence of a

olution to (C2) under (22), i.e., quadratic stabilizability of the
‘average’’ compatibility set. If a solution is found, then Theorem 2
rovides a stabilizing controller.

emark 10 (Comparison with a Known Relaxation). In Geromel
nd Colaneri (2006a, Th. 4) (see also Geromel, Colaneri, & Bolz-
rn, 2008; Geromel, Deaecto, & Daafouz, 2013) the following
elaxation to the (model-based) LM inequalities (6) is proposed:

cl⊤ cl

i Pi + PiAi + γ (Pj − Pi) + Q ≺ 0, ∀j ̸= i ∈ I, (23) d

6

ith γ > 0. These conditions are also LMIs for fixed γ . By
ultiplying both sides of (23) by πj,i/γ and summing over j, we
ee that any solution ({Pi, Ki}i∈I,Q , γ ) of (23) also solves (6) with
as in (22). Hence, our proposed relaxation (6)–(22) is (strictly,

ee an example in Section 7.2.1) less restrictive than (23) — as
ell as computationally convenient: the number of LMIs in (23)

s quadratic in N . □

. Performance specifications

In this section we study quantitative performance specifica-
ions. We consider a model like (1) with disturbances in the
ynamics and outputs,

ẋ = Āσ x + B̄σu + Eσψ (24a)

= Cσ x + Dσu + Fσψ, (24b)

where ψ(t) ∈ Rq is an exogenous disturbance and z ∈ Rp is
a performance output; {Ci,Di, Ei, Fi}i∈I are known matrices. The
matrices {Ci,Di, Fi}i∈I are chosen by the designer to define the
performance objective. The matrices {Ei}i∈I measure the influ-
ence of the disturbance signal on the state evolution, and can be
used to encode structural prior knowledge about the disturbance
(e.g., if ψ only acts on some state components; if no prior in-
formation is available, then Ei = I is chosen). Further, the only
information available on the matrices {Āi, B̄i}i∈I is a set of data
satisfying (2).

We next address the H2 and H∞ stabilization problems for
(24). We refer to Appendix A.2 for a formal description of the
performance indices J2 and J∞: in analogy to the LTI case, these
can be defined in terms of the system response to impulsive
and integrable disturbances, respectively. The problems are well
known to be hard to solve for switched linear systems, even
when a model is perfectly known, and thus tight formulation
are usually replaced by sufficient conditions (Antunes & Heemels,
2017; Deaecto & Geromel, 2010; Geromel et al., 2008); in par-
ticular, in this paper we rely on the LM inequalities reviewed in
Appendix A.2. For the continuous input, we again only focus on
linear switched controllers u = Kσ x.

Remark 11 (Refined Disturbance Model). Assume that the data (2)
are generated by (24a), where the quantities W̄i in (2) are due to
he unknown process disturbance ψ in (24a): in short, w(t ik) =

iψ(t ik). Then, if Ψ̄i :=
[
ψ(t i1) ψ(t i2) . . . ψ(t iTi )

]
satisfies

I
Ψ̄ ⊤

i

]⊤
[
Φ̂ i

1,1 Φ̂ i
1,2

Φ̂ i⊤
1,2 Φ̂ i

2,2

][
I
Ψ̄ ⊤

i

]
≽ 0,

ith Φ̂ i
2,2 ≺ 0 (e.g., an energy-type prior on the process noise

), then Assumption 1 is satisfied with Φ i
1,1 = EiΦ̂ i

1,1E
⊤

i , Φ i
1,2 =

EiΦ̂ i
1,1, Φ

i
2,2 = Φ̂ i

2,2 (see van Waarde et al. (2022, Rem. 2)), which
allows us to incorporate the prior knowledge on the matrix Ei.
Additional noise/estimate error can also be taken into account by
properly choosing Φi. □

5.1. Data-driven H2 control

Following Proposition A.2 in Appendix A, to design a controller
with guaranteed H2 performance, we impose: for all i ∈ I, for all
(Ai, Bi) ∈ Ci,

Acl
i

⊤
Pi + PiAcl

i +

∑
j∈I

πj,iPj + C cl
i

⊤
C cl
i ≺ 0, (25)

here C cl
i := Ci +DiKi. Ideally, we should introduce no additional

onlinearity with respect to (C1) (we recall that Ki is a variable,
nd further the matrix C cl

i
⊤C cl

i might be singular, thus not positive

efinite). This goal is achieved in the following result.
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π̃−iP̃−i (1 ⊗ I)P̃i 0 0

P̃i(1 ⊗ In)⊤ −πi,iP̃i − Yi −P̃i −L⊤

i
0 −P̃i 0 0
0 −Li 0 0

⎤⎥⎥⎥⎥⎦− αi

⎡⎢⎣0 0
I Ẋi
0 −Xi
0 −Ui

⎤⎥⎦Φ i

⎡⎢⎣0 0
I Ẋi
0 −Xi
0 −Ui

⎤⎥⎦
⊤

≽ 0,
[
I CiP̃i + DiLi
⋆ Yi

]
≻ 0 (H2)

⎡⎢⎢⎢⎢⎣
π̃−iP̃−i (1 ⊗ I)P̃i 0 0

P̃i(1 ⊗ In)⊤ −πi,iP̃i − Yi −P̃i −L⊤

i
0 −P̃i 0 0
0 −Li 0 0

⎤⎥⎥⎥⎥⎦− αi

⎡⎢⎣0 0
I Ẋi
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⎡⎢⎣0 0
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⎤⎥⎦
⊤

≽ 0,
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i
⋆ ⋆ I
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Theorem 3 (Data-driven H2 Stabilization). Let ({Pi ≻ 0, αi ≥

, Li, Yi ≻ 0}i∈I,Π ∈ M+) satisfy (H2), where the matrix Φi is
iven in Assumption 1, for all i ∈ I. Then the controller in (7) with
i = LiPi globally asymptotically stabilizes the switched system in
24). Furthermore, if Ei = E for all i ∈ I, then the closed-loop system
atisfies J2(σ , u) < min {tr(E⊤PiE), i ∈ I}. □

roof. By taking the Schur complement with respect to the
pper-left block and by Lemma 1, we deduce that (H2) implies:
or all i ∈ I, for all (Ai, Bi) ∈ Ci,

− P̃iAcl
i

⊤
− Acl

i P̃i −
∑
j∈I

πj,iP̃iPjP̃i − Yi ≽ 0, (26a)

Yi ≻ (CiP̃i + DiLi)⊤(CiP̃i + DiLi) (26b)

where Ki := LiPi. Multiplying both sides of (26a) by Pi and using
(26b), we retrieve (25), because CiP̃i+DiLi = C cl

i P̃i. The conclusion
follows by Proposition A.2. ■

5.2. Data-driven H∞ control

The following is the data-driven counterpart of Proposition A.3
in Appendix A.

Theorem 4 (Data-driven H∞ Stabilization). Let ({Pi ≻ 0, αi ≥

Li, Yi ≻ 0}i∈I,Π ∈ M+, ρ > 0) satisfy (H∞), where the matrix
i is given in Assumption 1, for all i ∈ I. Then the controller in (7)
ith Ki = LiPi globally asymptotically stabilizes the switched system

n (24). Furthermore, the closed-loop systems satisfies J∞(σ , u) <
. □

roof. By applying the Schur complement with respect to the
wo bottom-right blocks, the second inequality of (H∞) is equiv-
lent to

i ≻

[
E⊤

i

C cl
i P̃i

]⊤ [
ρI −F⊤

i

⋆ I

]−1
[

E⊤

i

C cl
i P̃i

]
here we used the definition CiP̃i +DiLi = C cl

i P̃i. By replacing the
revious inequality in (26a), by multiplying both sides by Pi, and
y a Schur complement argument, we obtain: for all i ∈ I, for all
Ai, Bi) ∈ Ci,

Acl
i

⊤Pi + PiAcl
i +

∑
j∈I πi,jPj PiEi C cl

i
⊤

⋆ −ρI F⊤

i
⋆ ⋆ −I

⎤⎦ ≺ 0.

The conclusion follows by Proposition A.3. ■

The relaxations in Section 4 can also be applied to reduce the
computational cost in (H2) and (H∞). We note that, for a fixed
matrix Π , optimizing the cost min tr(E⊤P E) over the solutions
i∈I i

7

of (H2) reduces to N SDP problems. Instead the upper bound
ρ in Theorem 4 is conveniently linear, thus its minimization
corresponds to only one SDP.

6. Switched data-driven compensators for robust constrained
stabilization of LTI systems

In this section, we build upon the design ideas, developed
above for switched systems, to design a switched controller for
a fixed linear plant. In particular, we study a robust constrained
ontrol problem, motivated by applications where it is paramount
o keep a plant in safe operating conditions, despite the presence
f disturbances. Let us consider the perturbed LTI system

̇ = Āx + B̄u + Eψ, (27)

x ∈ Rn, u ∈ Rm, where the (persistent) disturbance ψ(t) ∈ Rq

satisfies ψ(t)⊤ψ(t) ≤ 1 for all times, subject to polyhedral state
onstraints described by x ∈ X ,

:=
{
x | |c⊤

j x| ≤ 1,∀j ∈ J := {1, 2, . . . ,M}
}
, (28)

or some {cj ∈ Rn
}j∈J . One fundamental challenge is to find an (as

arge as possible) set X0 ⊆ X , together with a feedback controller
that makes the set X0 invariant for the closed-loop dynamics
27) – for any possible ψ – and ensures asymptotic stability
or the nominal system in the absence of disturbance. Here we
raw from Thibodeau, Tong, and Hu (2009), that leverages the
yapunov function v(x) = max{x⊤P0x, x⊤c1c⊤

1 x, . . . , x⊤cNc⊤

N x}
(for some P0 ≻ 0) for the estimation of maximal invariant sets.

e depart from Thibodeau et al. (2009) by designing a novel
witched controller, that further ensures asymptotic stability, and
ithout requiring identification of the system in (27).
In particular, we assume that the matrix E ∈ Rn×q is known,

ut the only information available on the matrices (Ā, B̄) is a set
f data satisfying (2).2 For each j ∈ J , we define

j := cjc⊤

j + νI ≻ 0, (29)

here ν > 0 is a fixed design regularization constant, and

max(x) := max
{
x⊤Pjx | j ∈ J0 := J ∪ {0}

}
, (30)

here P0 ≻ 0 is to be designed. Furthermore let X0 be the
-sublevel set of vmax, i.e.,

0 := {x ∈ Rn
| vmax(x) ≤ 1} ⊂ X . (31)

2 Since N = 1, we omit the subscript i = 1 in this section, see also (C4).
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⎡⎢⎢⎢⎢⎣
βjI E⊤ 0 0

E (πj,j − βj)P̃j + P̃j
(∑

k̸=j πk,jPk
)
P̃j −P̃j −L⊤

j

0 −P̃j 0 0
0 −Lj 0 0

⎤⎥⎥⎥⎥⎦− αj

⎡⎢⎢⎢⎣
0 0

I Ẋ
0 −X
0 −U

⎤⎥⎥⎥⎦
[
Φ1,1 Φ1,2

Φ1,2
⊤ Φ2,2

]⎡⎢⎢⎢⎣
0 0

I Ẋ
0 −X
0 −U

⎤⎥⎥⎥⎦
⊤

≽ 0 (C4)

⎡⎢⎢⎢⎢⎣
βjI E⊤ 0 0

E −(M + βj)P̃j + P̃j
(∑

k̸=j Pk
)
P̃j −γ̃jP̃j −L⊤

j

0 −γ̃jP̃j 0 0
0 −L j 0 0

⎤⎥⎥⎥⎥⎦− αj

⎡⎢⎢⎢⎣
0 0

I Ẋ
0 −X
0 −U

⎤⎥⎥⎥⎦
[
Φ1,1 Φ1,2

Φ1,2
⊤ Φ2,2

]⎡⎢⎢⎢⎣
0 0

I Ẋ
0 −X
0 −U

⎤⎥⎥⎥⎦
⊤

≽ 0 (C5)
Theorem 5 (Data-driven Safe Stabilization). Let ({Pj ≻ 0, Lj, βj ≥

, αj ≥ 0}j∈J0 ,Π = [πj,k]j,k∈J0 ∈ M+) satisfy (C4), for all j ∈ J0.
onsider the controller

(x) = min{argmaxj∈J0
x⊤Pjx}, u(x) = Kσ (x)x, (32)

here Kj := LjPj. Then, any Carathéodory solution x : R≥0 → Rn of
he closed-loop system (27), (32), with x(0) ∈ X0, satisfies x(t) ∈ X0
or all t ≥ 0. Further, if βj > 0 for all j ∈ J0 and ψ(t) → 0 for
→ ∞, then also x(t) → 0. □

roof. By taking the Schur complement with respect to the top-
eft block and by Lemma 1, we deduce that (C4) implies: for all
∈ J0, for all (A, B) ∈ C,

P̃jAcl
j

⊤
− Acl

j P̃j − βjP̃j − β̃jEE⊤
+

∑
k∈J0

πk,jP̃jPkP̃j ≽ 0,

here Acl
j := A + BKj. Multiplying both sides by Pj, we obtain via

chur complement that[
Acl
j

⊤Pj + PjAcl
j + βjPj −

∑
k∈J0

πj,kPk ⋆

E⊤Pj −βjI

]
≼ 0 (33)

or all j ∈ J0. We recall that the directional derivative of vmax
long ζ is v̇max(x, ζ ) = max{2x⊤Pjζ | j ∈ Imax(x)}, where Imax(x) =

rgmaxj∈J0
x⊤Pjx (Thibodeau et al., 2009, Eq. 5). By multiplying

(33) on the left by any [x⊤ ψ⊤
] and on the right by its transpose,

we have for some j ∈ Imax(x) that

2v̇max(x, Acl
j x + Eψ) = 2x⊤Pj(Acl

j x + Eψ)

≤

∑
k∈J0

πj,k x⊤Pkx + βj(ψ⊤ψ − x⊤Pjx) (34)

Note that
∑

k∈J0
πj,k x⊤Pkx ≤ 0 (because j ∈ Imax(x) and Π ∈ M).

The conclusion follows because the second addend in (34) is:
nonpositive, for each x on the boundary of X0 (as x⊤Pjx = 1 and
ψ⊤ψ ≤ 1); negative, for any x ̸= 0 and small enough disturbance
ψ , if βj > 0. ■

If we further impose the structure in (16) for the weight
matrix Π , (C4) simplifies as in (C5) (via the changes of variable
βj = γ̃jβj > 0, Lj = γ̃jLj, αj = γ̃jαj > 0), which is a BMI. Besides
being easier to solve (see Section 7.2), an advantage of (C5) is that
the number of bilinear terms does not depend on the number of
constraints M (note that the matrices {Pj}j∈J are fixed a priori —
they are not variables).

Remark 12 (Maximizing X0). To maximize the volume of the
invariant set X0, we can fit inside X0 an ellipsoid XQ := {x ∈ Rn

|

x⊤Qx ≤ 1} of maximal volume (by imposing Q̃ ≼ P̃j for all j ∈ J0,
and minimizing the convex cost − log(det(Q̃ )), where Q̃ ≻ 0 is a
8

new variable). Similarly, X0 can be maximized with respect to a
reference shape (Thibodeau et al., 2009, Eq. 20). Note that in (29)
we include a positive regularization weighted by ν, which allows
for the inversion of Pj. A smaller value of ν reduces conservatism
and can result in a larger guaranteed invariant set X0. □

Remark 13 (Input Saturation). Input constraints can be included
in the design via additional sufficient LMIs. For instance, we can
enforce ∥u∥∞ ≤ 1 by imposing, for each j ∈ J0, with Lj,l being
the lth row of Lj,[

1 Lj,l
L⊤

j,l P̃j

]
≽ 0, ∀l ∈ {1, 2 . . . ,m}. (35)

These inequalities ensure ∥Kjx∥∞ ≤ 1 for any x ∈ EPj := {x |

x⊤Pjx ≤ 1} ⊇ X0. Interestingly, for j ̸= 0, this condition is more
conservative if ν is small. □

Remark 14 (On Chattering). While the results in Sections 3–5
are based on the Lyapunov function vmin in (A.9) (Appendix A),
Theorem 5 leverages vmax in (30). An important difference, noted
in Liberzon (2003, p. 71), is that the switching rule (32) cannot
guarantee invariance or stability if sliding mode occurs — in fact,
Theorem 5 only considers Carathéodory solutions. This is not
a problem if m = 0, i.e., the goal is to estimate a maximal
invariant set, in the spirit of Thibodeau et al. (2009). Otherwise,
chattering can be avoided by using a linear controller. However,
imposing Kj = K for all j’s in (C4) results in nonlinear con-
straints (efficiently enforcing this condition is an interesting topic
for future research). Furthermore, a switched controller is much
more powerful than a linear gain in achieving set invariance. Al-
ternatively, Hu (2007, Th. 6) constructs a nonlinear (continuous)
controller, by solving the following BMIs: find {Qj ≻ 0}j∈J , β > 0,
Π ∈ M such that for all j ∈ J , AclQj+QjAcl

+βQj−
∑

j̸=k πk,j(Qk−

Qj) ≼ 0. with c⊤

ℓ Qjcℓ ≤ 1 for all ℓ ∈ J . This inequality is already
in ‘‘dual’’ form, hence a data-driven version can be obtained via
Lemma 1 without introducing additional nonlinearities; on the
other hand, it has more variables than (C4), as the matrices Qj’s
are not fixed. □

7. Numerical examples

We illustrate our results in the data-driven control of Markov
jump, switched, and constrained linear systems.

7.1. Data-driven control of Markov jump linear systems

We consider a Markov jump linear system (MJLS) as in Exam-
ple 2, with N = 3, n = 3, m = 2,

Ā =

[
0.5 0.5 0.3
0.1 0.5 0

]
, Ā =

[
0.3 0.2 0
0 0 0

]
, Ā =

[
0 0.1 0.2
0.1 0.5 0

]
,
1

0 0.4 0.3
2

0 0.2 0.5
3

0 0.1 0.3
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Fig. 1. Data-driven stabilization of a Markov jump linear system. The results
are obtained by simulating 100 stochastic trajectories with the same initial
condition.

B̄1 =

[
1 0
0 1
0 0

]
, B̄2 =

[
0 0
0 0
0 0

]
, B̄3 =

[
1 0
0 1
0 0

]
,Π =

[
−3 4 5
3 −7 0
0 3 −5

]
.

It is easily proven that the stochastic system is open-loop unsta-
ble (cf. red plot in Fig. 1). We assume that the system matrices
are unknown; we simulate a trajectory with random input u
and measure 20 data points for each subsystem, as in (2), with
disturbance generated to satisfy Assumption 1 with Φ i

1,1 = ϵI ,
Φ i

1,2 = 0, Φ i
2,2 = −I for all i ∈ I. We want to find a switching

controller u = Kσ x that stabilizes the system by solving the LMIs
in (C1); we use MATLAB equipped with YALMIP (Löfberg, 2004)
(with solver Mosek). Note that the subsystem i = 2 is not affected
by the continuous input, and we assume that this information is
available by first principles. To incorporate the prior knowledge in
the design, we allow for different input dimensions for the modes,
i.e., m1 = m3 = 2, m2 = 0 (this simply corresponds to changing
the dimension of Li with i in (C1)). For ϵ = 10 (corresponding
to signal to noise ratio SNR = 10 log10(∥Ẋi∥

2
F/∥Wi∥

2
F) ≈ 25 dB),

the program returns two stabilizing gains K1, K3; Fig. 1 shows the
resulting closed-loop behavior. For ϵ = 20 (SNR ≈ 23 dB), the
program is unfeasible: as (C1) provides necessary and sufficient
conditions (see Example 2), this means that there exists no linear
switched controller that can quadratically stabilize all the systems
unfalsified by the collected data.

7.2. Data-driven stabilization of switched linear systems

7.2.1. Stable average: solvability and computation time
We consider a switched linear system as (1), with N = 3,

n = 2, m = 0,

Ā1 =
[

2 0.1
0.1 −0.2

]
, Ā2 =

[
−10 0.1
0.1 0

]
, Ā3 =

[
0.1 0
0 0.1

]
.

Each mode is unstable. We note that, even in the case of perfectly
known model, the inequality in (23) (i.e., the relaxation proposed
in Geromel and Colaneri (2006a)) does not admit a solution.3 Yet,
1
3 (Ā1 + Ā2 + Ā3) is Hurwitz; thus, the LM inequalities (6) are
olvable with Π as in (22), and so must be (C1) for sufficiently
nformative data/small disturbances, by Lemma 3.

We perform simulations for several noise bounds; let
i
1,1 = ϵI, Φ i

1,2 = 0, Φ i
2,2 = −I, (∀i ∈ I), (36)

or different values of ϵ ∈ {0.1, 1, 10, 20, 40, 80}. For each dis-
urbance level, we generate 100 datasets satisfying (2) (where
isturbances are randomly generated and normalized such that
W̄iW̄⊤

i ∥ = υϵ, υ uniformly drawn in [0, 1], to satisfy Assump-
ion 1), with Ti = 20, for all i,; the Slater’s condition (12) is
erified for all datasets. Our goal is to find suitable matrices Pi’s
o implement the stabilizing controller (7); in particular, we in-
estigate feasibility of (C2) forΠ restricted to be as in (22) and as

3 In fact, due to the particular form of Ā3 , for i = 3 and j = 1, (23) would
imply that (Pj −Pi) is negative definite; in turn, (23) for i = 1 and j = 3 reduces
o the Lyapunov inequality and would imply that A is Hurwitz, which is false.
1

9

able 1
ercentage of solutions found and total computation time of (C2), for the two
elaxations (16) and (22), for several noise levels ϵ, and employing either
ine-search (LS) or rank-minimization (RM) in the solver.
ϵ Solvability of (C2) (%) Average solver time (s)

(22) LS (16) LS (16) RM (22) LS (16) LS (16) RM

0.1 100 100 100 0.67 3.64 0.25
1 100 100 100 0.60 3.45 0.25
10 100 100 100 0.68 12.31 0.44
20 71 100 100 0.92 21.81 0.30
40 0 100 100 – 47.57 0.53
80 0 69 57 – 102.14 3.45

in (16), respectively. In both cases, we solve (C2) on Matlab, using
Yalmip (solver Mosek) and line-search (over one scalar γ in the
irst case, over three scalars {γi}i∈I in the second; in both cases,
etween 1 and 100). We record the percentage of experiments
or which we could find a solution, and the corresponding solver
ime on a commercial laptop. The results are shown in Table 1
excluding the fourth and seventh columns).

As expected, both conditions admit a solution in all the ex-
eriments, for small noise levels. The second condition is by far
omputationally more expensive, but also less restrictive. In fact,
or larger noise bounds (i.e., larger compatibility set) imposing
22) becomes too conservative, resulting in unfeasibility — even
hough the average of the true system matrices is Hurwitz. In-
uitively, the gap between the two conditions, in terms of both
omplexity and conservatism, is bound to further grow if the
umber of modes N (equivalently, the number of free parameters
n (16)) increases. This is a fundamental trade-off, which also
rises in the model-based case.
Alternatively, we also seek a solution to (C2) under (16) via a

ank-minimization (RM) heuristic that, while giving up on theo-
etical guarantees, exhibits good empirical performance. In par-
icular, we exploit the reformulation (14), and we attempt to
olve it via the reweighted nuclear norm iteration in Fazell, Hindi,
nd Boyd (2003) — recently successfully employed in the con-
ext of data-driven control in Dai and Sznaier (2018, 2021); the
lgorithm consists of a sequence of SDPs, which we solve with
ALMIP (Löfberg, 2004) and Mosek. Note that, although com-
uting a solution to (C2) is hard in general, verifying a solution
from data only) is straightforward. The results are shown in the
emaining columns of Table 1. The average solver time improves
emarkably with respect to the brute-force line-search approach
even if we compare it with the more conservative case (22)).
owever, for the largest noise level, the RMmethod fails to return
solution for some experiments where line-search succeeds.

.2.2. Stable convex combination and H∞ performance
We consider a switched system with disturbances in the form

24), with N = 3, n = 3, m = 0,

Ā1 =

[
−1 −0.1 0.1
0.1 0.1 0.1

−0.1 −0.1 0.1

]
, E1 =

[
0 0
1 0
0 1

]
Ā2 =

[ 0.1 −0.1 0.1
0.1 −0.1 0

−0.1 0 0.1

]
, E2 =

[
1 0
0 0
0 1

]
Ā3 =

[
0.1 0.1 0.1

−0.1 0.1 −0.1
−0.1 0.1 −1

]
, E3 =

[
1 0
0 1
0 0

]
,

and, for all i ∈ I, Fi = 0 and Ci = diag(1, 3, 1), corresponding to a
larger penalization for the second state. We collect 100 datasets
from open-loop experiments, with Ti = 20 for all i ∈ I, and
the samples of the disturbance ψ satisfying an energy bound as
in (36); the corresponding compatibility sets and matrices Φi’s
are computed as in Remark 11. For each dataset, we aim at
designing a controller to optimize the H∞ performance of the
system, by solving the data-driven program (H ). Note that each
∞
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Fig. 2. H∞ data-driven stabilization of a switched linear system with distur-
bances: state evolution (top), and switching signal (bottom-left, and a detail,
bottom-right). Importantly, Theorem 4 guarantees the H∞ performance of the
real unknown system even when chattering occurs, as in this example.

Āi is unstable and so is 1
3 (Ā1 + Ā2 + Ā3); moreover, even in the

case of known model, the condition (22) results in unfeasibility
of the LM inequalities (6) — and similarly of (H∞). However, with
an oracle of the system matrices, feasibility of (H∞) under (16) is
expected when the compatibility sets are small enough, based on
Lemma 3 and the fact that the matrix 0.2Ā1 + 0.6Ā2 + 0.2Ā3 is
Hurwitz.

In fact, for small noise bounds, we are able to find a solution
to (H∞) for all the datasets, via line-search over {γi}i∈I . For any
fixed value of these parameters, minimizing ρ subject to (16) is an
SDP. The average optimal value obtained for disturbance bound
ϵ = 0.001, 0.01, 0.1 (i.e., SNR ≈ 63dB, 54dB, 38dB, respectively)
is ρ = 45.2, 55.4, 150.4, respectively. For ϵ = 1 (SNR ≈ 33dB),
the problem is unfeasible; the optimal value assuming perfect
knowledge of the model is 41.6. Finally, to evaluate the impact on
performance when the noise bound is overapproximated, we gen-
erate datasets with disturbance model in (36) and ϵ = 0.001, but
solve (H∞) by using the conservative bound Φ i

1,1 = ϵ̂I , for some
ϵ̂ > ϵ. The average guaranteed H∞ performance for ϵ̂ = 0.01, 0.1,
0.2, 0.3 is ρ = 54.3, 131.1, 612.6, 1462.3, respectively; for ϵ̂ = 1
the problem is always infeasible. As expected, the performance
deteriorates, both with larger disturbances and coarser bounds.

Fig. 2 shows one closed-loop trajectory under the controller
(7), with disturbance ψ(t) =

1
t col(sin(t), sin(t−

2
3π ), sin(t−

4
3π )).

he bottom-right plot shows part of the switching signal: after a
ransitory where mode i = 2 is active, the trajectory hits a sliding
urface and starts chattering between modes 2 and 3 (a case we
ccounted for in our analysis, see Proposition A.3 in Appendix A).

.3. Data-driven robust constrained stabilization

Consider an LTI system as in (27), with n = 3, m = 1,

Ā =

[
−1 0 0
1 −2 −1
0 1 0

]
, B̄ =

[
0
0
1

]
, E = I3,

where the disturbance ψ satisfies the instantaneous bound ψ(t)⊤
ψ(t) ≤ η, subject to the state constraints x ∈ X := {x | ∥x∥∞ ≤ 1}
(i.e., Thibodeau et al. (2009, Ex. 4)).

The system matrices Ā, B̄ are unknown, but an open-loop ex-
periment is recorded, of length T = 20; the data collected satisfy
Assumption 1 withΦ = Φ1 as in (36), ϵ = Tη (see Remark 1). We
everage Theorem 5 to solve the robust constrained stabilization
roblem, by additionally imposing the input constraints ∥u∥∞ ≤

, via the conditions in (35).
We fix ν = 0.1 in (29). To maximize the invariant set X0, we

ook for the smallest θ > 0 such that θ−
1
2 X ⊆ X0; the latter

ondition is enforced via the LMIs v⊤P v ≤ θ , for each j ∈ J
k j k 0

10
Fig. 3. Data-driven constrained robust stabilization of a disturbed LTI system,
via a switched compensator (with active mode σ ).

and each vertex vk of X (Thibodeau et al., 2009). We also note
that the data-driven inequalities (C5) can be recast as a rank-
constrained LMI (similarly to (19)), by imposing rank(M) = 1,
here M = hh⊤ and h =

[
γ̃0 β0 vec(P̃0)⊤ vec(P0)⊤

]
. We

then solve the resulting data-driven problem via the algorithm
in Fazell et al. (2003) and bisection over θ , to design the switched
controller (32) and the invariant set X0.

Fig. 3 show a closed-loop simulation for the case η = 0.1
SNR ≈ 32dB), with randomly generated disturbances. The top
lot shows that the closed-loop system achieves safety, while
he uncontrolled system violates the constraints (here, x(0) =

ol(0.8, 0.8, 0.8) ∈ X0). The volume of the obtained set X0 is 75%
f the volume of X . For comparison, the percentage obtained with
= 1 and ν = 0.01 are 24% and 77%, respectively; for ν = 0.001,

the problem is unfeasible (see Remark 13).
Next, in Fig. 4, for different values of the disturbance bound

η, we compare the volume of the guaranteed invariant set X0
obtained with our switched controller, in (32), with that obtained
via:

(1) a data-driven linear controller u = Kx, designed as in Sec-
tion 6, by replacing the definition of the Lyapunov function
vmax in (30) with the quadratic vmax = x⊤P0x, where X0 ⊆ X
as in (31) is imposed via the additional constraints P̃0 ≼ P̃j, for
all j ∈ J , and the volume of X0 is maximized as in Remark 12;

(2) the data-driven polynomial controller in Luppi et al. (2023).

Note that a larger disturbance bound affects not only the quality
of data, but also the problem itself (i.e., ensuring robust invariance
is more challenging; mathematically, the matrix E in (C5) is
scaled).

We first compare the results obtained by neglecting the input
constraints (top axes). For the switched and the linear controller,
we choose the regularization parameter ν = 10−3. For the small
disturbance bound η = 0.01, the switched controller achieves a
guaranteed invariant set X0 with volume 97% of the volume of
X , namely almost all constraint set is guaranteed to be invariant
under the switched controller in (32). We also remark that the
polynomial controller only ensures nominal invariance, i.e., in-
variance in the absence of closed-loop disturbance, hence the size
of the obtained X0 decreases less for increasing η (the condition
in Luppi et al. (2023, Rem.1), which could be used to enforce
robust invariance, resulted in infeasibility in our simulations).

In the bottom plot of Fig. 3 we instead also consider input
constraints. For the largest noise bound η = 2, the program (C5)–
(35) fails to return a solution. For the polynomial controller, the
input constraints imposed as in Luppi et al. (2023, Rem. 4) always
result in infeasibility in our experiments.
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Fig. 4. Volume of the safe invariant set X0 obtained with data-driven compen-
sators: we compare the proposed switched controller versus a linear controller
and the polynomial controller in Luppi et al. (2023). The input is unconstrained
in the top plot and constrained as ∥u∥∞ ≤ 1 in the bottom plot. Missing
data-point represent infeasibility of the corresponding data-based programs.
The linear and switched controllers ensure stability and robust invariance; the
polynomial controller guarantees nominal invariance.

7.4. Data-driven viral escape mitigation

Here, we focus on treatment scheduling for viral escape miti-
gation. We consider the switched linear virus mutation dynamics
of Middleton, Colaneri, Hernandez-Vargas, and Blanchini (2010).
The virus has n different genotypes; xℓ := [x]ℓ is the viral popula-
tion of the ℓth genotype. At time t , the drug σ (t) ∈ {1 2, . . . ,N} is
administered, chosen among N different therapies, more or less
effective against each genotype: drug i results in the proliferation
rate [R]ℓ,i for genotype ℓ. The resulting dynamics are

ẋℓ =
(
[R]ℓ,σ − δ

)
xℓ + µ

∑
j∈I,j̸=ℓ

[M]ℓ,jxj, (37)

here δ > 0 is the clearing rate, µ > 0 the mutation rate, and
M]ℓ,j = 1 if genotype j can mutate into genotype ℓ, 0 otherwise.
ere, µ = 10−4, δ = 0.24, n = 5, N = 4,

=

[
0.05 0.05 0.37 0.25
0.39 0.05 0.21 0.14
0.05 0.39 0.05 0.23
0.30 0.14 0.21 0.22
0.27 0.09 0.21 0.04

]
, M =

[
0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 1 1 1 0

]
. (38)

The system in (37) is an instance of (1) with m = 0. We
assume that the system is unknown, but data on the effectiveness
of each therapy have been recorded in the form of (2), with
Ti = T for all i ∈ I. The data are affected by a disturbance with
ounded sample covariance, namely, for all i, 1

T

∑T
τ=1(w(t iτ ) −

i
avg)(w(t iτ ) − wi

avg)
⊤

≤ 0.02I , with wi
avg =

1
T

∑T
τ=1w(t iτ ). Equiv-

alently, Assumption 1 is satisfied with Φ i
1,2 = 0, Φ i

1,1 = 0.02I ,
2,2 = I −

1
T 11

⊤. The objective is to choose the discrete input
σ to overcome the infection as quickly as possible. Thus, we look
for a switched controller as in (7), by imposing the data-driven
condition in (C2), and by maximizing the worst-case closed-loop
convergence rate as per Remark 6.4

Fig. 5 shows the rates obtained for different values of T (SNR ≈

32dB in all cases; for T smaller than 50, no solution is found),

4 A drug-resistant genotype could also be studied (Middleton et al., 2010).
n this case, the system would be nonstabilizable, meaning that one can only
ope to slow down the infection as much as possible. The latter problem can be
ast in terms of data by modifying (C2) via an exponential discounted change
f coordinates (Middleton et al., 2010).
 v

11
Fig. 5. Guaranteed convergence rate for different dataset sizes.

Fig. 6. Viral load, with drug therapy scheduling chosen based on the current
state or in open-loop according to a Markov chain.

and highlights the benefit of having larger datasets, see Remark 3.
We remark that the implementation of the controller (7) could
result in chattering, which might be undesirable in some cases.
One way to avoid this issue is to choose σ according to a Markov
chain with transition matrix Π⊤ (Π as in (C2)). This open-loop
ontroller still-ensures (stochastic) stability (see Example 2) and
urther does not require state measurement, possibly at the cost
f some performance, as illustrated in Fig. 6.

. Conclusion

We have considered the stabilization of an unknown switched
inear systems by solving data-driven Lyapunov–Metzler inequal-
ties, parameterized by the set of available noisy experimental
ata. Since the problem is computationally expensive even for
known system, it is crucial to massage the matrix conditions

o allow for efficient solution. We have presented various relax-
tions that significantly reduce the computational cost. Our tech-
iques find application beyond control of switched systems, for
nstance in data-driven constrained stabilization. More generally,
hey can be used to recast in a data-driven fashion (without intro-
ucing conservatism nor additional computational complexity) a
arge class of coupled-Lyapunov inequalities, pervasive in prob-
ems related to switching systems and stabilization of differential
nclusions (Hu & Blanchini, 2010; Hu, Ma, & Lin, 2008).

As future work, it would be valuable to address the data-
ased design of mode-independent continuous compensators, for
witched or Markov jump systems. Nonconservative design of
stabilizing controllers based on input-output data is also a promi-
nent open challenge. The extension of our results to discrete-time
switched linear systems is left for future research.

Appendix A. LM inequalities and sliding motion

We consider a continuous-time switched linear system

̇(t) = Aσ (t)x(t), (A.1)

where x ∈ Rn, σ (t) ∈ I = {1, 2, . . . ,N} is a controlled switching
signal, {Ai}i∈I are the system matrices. We are interested in the
in-switching feedback law

(x) = min
{
argmin

i∈I
x⊤Pix

}
, (A.2)

the min selects the minimum index when the argmin is set-

alued; any other selection rule can also be chosen), where the
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atrices {Pi ∈ Rn×n
}i∈I solve the following LM inequalities

roblem (Geromel & Colaneri, 2006a): find {Pi ≻ 0}i∈I , {Qi ≽
}i∈I , Π = [πi,j]i,j ∈ M such that

∈ I, A⊤

i Pi + PiAi +
∑
j∈I

πj,iPj + Qi ≺ 0. (A.3)

.1. Solution concept and stability

It was shown in Geromel and Colaneri (2006a) that matri-
es {Pi}i∈I satisfying (A.3) ensure asymptotic stability for all
arathéodory solutions of the closed loop system (A.1)–(A.2).
owever, the switching rule (A.2) can results in chattering. For
his reason, we instead consider the Filippov5 solutions of (A.1),
amely absolutely continuous trajectories x : R≥0 → Rn such
hat, for almost all t ,

̇(t) =

∑
i∈I(x)

αi(x)Aix, (A.4)

or some {αi(x)}i∈I(x) ∈ ∆, where

(x) := {i ∈ I | ∀V ∈ N (x), ∃y ∈ V s.t. y ∈ Xi} (A.5)

Xi := {x ∈ Rn
| σ (x) = i}, (A.6)

here N (x) is the set of neighborhoods of x (i.e., the set of all
pen subsets of Rn containing x). When x ∈ int(Xi), I(x) = {i} is
singleton and ẋ = Aixi. A solution can also cross the boundary
etween two regions Xi and Xj. Finally, x(t) can evolve along the
oundaries between two or more regions, in a direction specified
ot by one of the modes i ∈ I, but by a convex combination of
he matrices Ai with i ∈ I(x): in this case we talk about ‘‘sliding
ode’’. Although ideal sliding mode would not happen in practice

due to discretized controllers, hysteresis, time-delay), it provides
close approximation of the behavior of the real system under

ast switching.
It is known that the LM inequalities do not ensure stability

or all closed-loop Filippov solutions: in fact, repulsive sliding
otion (Filippov, 1988) can cause instability (Heemels & Weiland,
008, Ex. 1.1, Heemels, Kundu, & Daafouz, 2017, Rem. 6). On the
ther hand, repulsive sliding mode would not appear in practice,
.g., if the controller is discretized, (and further implies the ex-
stence of alternative solutions to (A.1)). For the case of N = 2,
symptotic stability of all solutions with attractive sliding mode
as shown in Liberzon (2003, p. 70). The result was generalized

n Geromel and Colaneri (2006a, Rem. 2) and Geromel, Colaneri,
nd Hsu (2018) to all Filippov solutions such that,6 for almost all

̇σ (x)

⎛⎝x,
∑
i∈I(x)

αi(x)Aix

⎞⎠ ≤

∑
i∈I(x)

v̇i(x, αi(x)Aix) (A.7)

ith (possibly zero) αi’s as in (A.4), and

̇ i(x, ξ ) := x⊤Piξ + ξ⊤Pix (A.8)

s the directional derivative of vi(x) := x⊤Pix at x along ξ ;
evertheless, these results do not take into account performance
pecifications. We remedy this in the following, by restricting our
ttention to the same class of trajectories: throughout the paper,
y solution of (A.1) we mean a trajectory satisfying (A.4)–(A.7).7

5 (A.4) actually defines a superset of the Filippov solutions, as we do not
xclude sets of measure zero (which would require I(x) := {i ∈ I | ∀V ∈

(x), ∃U ⊆ V ∩Xi s.t. µ(U) > 0}); in this way we also include all Carathéodory
olutions.
6 Geromel and Colaneri (2006a) and Geromel et al. (2018) actually assume

he stronger condition v̇σ (x)(x, αi(x)Aix) ≤ v̇i(x, αi(x)Aix) ∀i ∈ I(x).
7 With analogous definition when considering systems with input or dis-

urbances: if (A.1) is replaced by ẋ(t) = ξσ (x)(x, t) for some (time dependent)
appings {ξi}i∈I , then the term Aix shall be replaced by ξi(x, t) in (A.4) and

A.7). The considerations in Remark 15 are still valid.
 c

12
emark 15 (On the Solution Concept). Condition (A.7) virtually
lways holds in practice: for example, it is verified for any at-
ractive sliding motion involving only two modes (Liberzon, 2003,
q. 3.22) — the most relevant case and often the only consid-
red (Filippov, 1988; Liberzon, 2003). Indeed, the proof of Hu
t al. (2008, Prop. 1) argues that (A.7) is necessary for the oc-
urrence of chattering if (A.2) is discretized with arbitrarily small
ampling time. Nonetheless, examples can be constructed where
he continuous-time system (A.1) does not admit any solution
atisfying (A.7) (at the boundary between three or more regions
i). These pathological cases are excluded from our analysis:
ike the related literature (Geromel & Colaneri, 2006a; Hu et al.,
008), we assume throughout existence of a solution satisfying
A.4)–(A.7), wherever needed. □

Following Geromel and Colaneri (2006a), we study the sta-
ility of (A.1) via the non-convex, non-differentiable Lyapunov
unction

min(x) := min
i∈I

x⊤Pix = min
i∈I

vi(x), (A.9)

ith matrices {Pi}i∈I solving (A.3).

roposition A.1 (Switched Stabilization). If there exist {Pi ≻ 0,Qi ≽
}i∈I and Π = [πi,j]i,j∈I ∈ M satisfying the Lyapunov–Metzler
nequalities (A.3), then the switched feedback control law (A.2)
akes x∗

= 0 globally asymptotically stable for the system (A.1).
oreover, it holds that∫
∞

0
x⊤Qα(x)x dt < min

i∈I
x(0)⊤Pix(0), (A.10)

ith Qα(x) :=
∑

i∈I(x) αi(x)Qi, {αi}i∈I satisfying (A.4).8 □

roof. For any ξ ∈ Rn, it holds that v̇min(x, ξ ) := limh→0+

vmin(x+hξ )−vmin(x)
h = mini∈I(x) v̇i(x, ξ ) ≤ v̇σ (x)(x, ξ ) (Hu et al., 2008,

Lem. 2); therefore, by (A.7), along any solution satisfying (A.4), it
holds, for almost all t , that

v̇min (x, ẋ) ≤

∑
i∈I(x)

αi(x)x⊤(A⊤

i Pi + PiAi)x (A.11)

< −

∑
i∈I(x)

αi(x)x⊤Qix, (A.12)

where the last inequality follows by (A.3), because x⊤Pix ≤ x⊤Pjx
for i ∈ I(x), j ∈ I, and thus x⊤(

∑
j∈I πj,iPj)x ≤ 0 for all i ∈ I(x).

Stability follows by (A.12) because vmin is radially unbounded;
the inequality (A.10) holds by integrating (A.12) over time, since
vmin(x(t)) → 0 as t → ∞. ■

While the stability in Proposition A.1 was established in
Geromel et al. (2018) and Geromel et al. (2008), with respect
to Geromel et al. (2008, Th. 1) we refined the guarantee (A.10)
to cope with the possible occurrence of sliding motions. We next
leverage the result to review H2 and H∞ problems for switched
linear systems.

Remark 16 (Solvability of LM Inequalities). A sufficient condition
for (A.3) to admit a solution is that a convex combination of the
matrices {Ai}i∈I is Hurwitz (Geromel & Colaneri, 2006a), meet-
ing the classical stabilizability condition given, e.g., in Liberzon
(2003). Yet, finding a solution is not easy, as the problem is
nonconvex — due to the bilinear terms in {Pi}i∈I and Π . In
fact, in practice relaxations are usually employed to reduce the
computational load, e.g., Geromel and Colaneri (2006a, Th. 4). □

8 Without loss of generality, we can take t ↦→ αi(x(t)) almost everywhere
ontinuous (because ẋ in (A.1) is), which ensures integrability in (A.10).
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.2. H2 And H∞ control

Let us consider a switched linear system

ẋ = Aσ x + Eσψ, z = Cσ x + Fσψ (A.13)

here ψ(t) ∈ Rq is an exogenous disturbance, z ∈ Rp is a
performance output, and the matrices {Ei}i∈I and {Fi}i∈I measure
the influence of the disturbance signal on the state evolution and
output, respectively. To cope with sliding motions, let us define
the modified output

zα =

∑
i∈I(x)

αi(x)zi, (A.14)

with weights αi as in (A.4); note that zα coincides with z in the
absence of sliding mode. We argue that our definition of zα is very
natural to deal with Filippov solutions: as ideal sliding motion
approximates fast switching, the performance evaluation should
represent all modes involved (contrarily, σ (x) in (A.2) would be
constant along any sliding trajectory, which is not representative
of the behavior of a real system when chattering occurs).

We study the performance of (24) with respect to the channel
(ψ, zα). In particular, assuming that σ (x) is a stabilizing state-
feedback controller and that x(0) = 0, we consider the following
performance indices:

• H2 index: Let Fi = 0, Ei = E for all i ∈ I; denote by xk : R≥0 →

Rn and zkα : R≥0 → Rp state and modified output trajectories
generated with the disturbance ψk(t) := ekδ(t) (i.e., with zero
disturbance and x(0) = Eek). Then

J2 :=

q∑
k=1

∥zkα∥
2
2 ; (A.15)

• H∞ index: Let x̄ : R≥0 → Rn and z̄α : R≥0 → Rp state
and modified output trajectories generated with an arbitrary
disturbance ψ̄ ∈ L2. We define

J∞ = sup
0̸=ψ̄∈L2

∥z̄α∥2
2

∥ψ̄∥
2
2

. (A.16)

ntuitively, if N = 1, the definitions recover the standard H2
nd H∞ performance indices for LTI systems. For switched linear

systems, the quantities J2 and J∞ were defined analogously in
he literature, but in terms of the output z (Deaecto & Geromel,
010; Geromel et al., 2008). In fact, these works only consider
arathéodory solutions. The following two propositions fill this
ap, by considering the modified output zα and by refining the
roof of Deaecto and Geromel (2010, Th. 2) and Geromel et al.
2008, Th. 3) to account for the presence of sliding motions.

roposition A.2 (H2 Control). If there exist {Pi ≻ 0}i∈I and Π =

πi,j]i,j∈I ∈ M satisfying the Lyapunov–Metzler inequalities (A.3)
ith {Qi = C⊤

i Ci}i∈I , then the switched feedback control law (A.2)
akes x∗

= 0 globally asymptotically stable for the system (A.13)
ith Ei = E for all i ∈ I, and ensures that J2 < mini∈I tr(E⊤PiE). □

roof. Proposition A.1 implies stability and that J2 =
∑q

k=1

∫
∞

t=0
⊤

k Qαxk dt <
∑q

k=1 mini∈I(Eek)⊤Pi(Eek) ≤ mini∈I
∑q

k=1(Eek)
⊤

i(Eek); the conclusion follows by definition of ek. ■

roposition A.3 (H∞ Control). If there exist {Pi ≻ 0}i∈I , a scalar
> 0 and Π = [πi,j]i,j∈I ∈ M such that⎡⎣A⊤

i Pi + PiAi +
∑

j∈I πi,jPj PiEi C⊤

i
⋆ −ρI F⊤

i

⎤⎦ ≺ 0, (A.17)

⋆ ⋆ −I

13
hen the switched feedback control law (A.2) makes x∗
= 0 globally

asymptotically stable for the system (A.13) and ensures that J∞ <
. □

roof. Stability holds by Proposition A.1 and negative definite-
ess of the upper-left block. As in the proof of Proposition A.1,
e have for almost all t ≥ 0

̇min(x, ẋ) ≤ v̇σ (x)

(
x,
∑
i∈I

αi(x)(Aix + Eiψ)

)
(a)
≤

∑
i∈I(x)

αi(x)v̇i(x, Aix + Eiψ)

(b)
<
∑
i∈I(x)

αi(x)
(
−z⊤

i zi + ρψ⊤ψ
)

here (a) is the analogous of condition (A.7) (see Footnote 7)
nd (b) follows via a Schur complement argument by (A.17) (see
eaecto and Geromel (2010, Eq. 14)). The result follows by in-
egrating, since vmin(x(0)) = 0 and vmin(x(t)) → 0 as t →

. ■

ppendix B. Proofs

.1. Proof of Lemma 2

We only need to show that feasibility of (6) implies feasibility
f (8). Let S̄ = ({P̄i}i∈I, {K̄i}i∈I, Π̄, Q̄ ) be a solution for (6). We
rove that, for all i ∈ I, the set Ccl

i := {(Ai+BiK̄i)⊤ | (Ai, Bi) ∈ Ci} is
ompact; then there exists a solution to (8) in any neighborhood
f S̄ due to the strict inequality in (6).
Since the equation in (4) is affine, we can write Ci = {(Ai, Bi) |

Ai Bi
]⊤

= E+

i Vi +
[
A0
i B0

i

]⊤
, Vi ∈ Vi, (Ā0

i , B̄
0
i ) ∈ C0

i }, with

i :=
[
X⊤

i U⊤

i

]
, E+ its pseudoinverse, Vi := ({Ẋ⊤

i }+W⊤

i )∩{Eiα |

∈ R(n+m)×n
}, C0

i = {(A0
i , B

0
i ) | A0

i Xi + B0
i Ui = 0} (in simple

erms, E+

i Vi is a particular solution and C0
i are the – disturbance

independent – homogeneous solutions).
Consider any (Ā0

i , B̄
0
i ) ∈ C0

i . We define Ā′

i := (Ā0
i + B̄0

i K̄i)⊤Ā0
i ,

B̄′

i := (Ā0
i + B̄0

i K̄i)⊤B̄0
i and note that (Ā′

i, B̄
′

i) ∈ C0
i . We claim that the

symmetric matrix M := ((Ā′

i + B̄′

iK̄i)⊤P̄i + P̄i(Ā′

i + B̄′

iK̄i)) is nilpotent,
ence equals 0. If not, take any Vi ∈ Vi, let

[
Aβi Bβi

]⊤
:=

E+

i Vi + β
[
Ā′

i B̄′

i

]⊤, and note that (Aβi , B
β

i ) ∈ Ci for all β ∈ R;
yet this pair violates (6) for β > 0 or β < 0 large enough,
providing a contradiction. This also means that the symmetric
matrix Ā′

i + B̄′

iK̄i = (Ā0
i + B̄0

i K̄i)⊤(Ā0
i + B̄0

i K̄i) is nilpotent, hence
quals 0 (if not, let R ∋ λ ̸= 0 and Rn

∋ m ̸= 0 be an eigenvalue–
eigenvector couple, and note that m⊤Mm = 2λm⊤Pim = 0
contradicts Pi ≻ 0). Therefore, we finally have Ā0

i + B̄0
i K̄i = 0.

We conclude that Ccl
i = {

[
I K̄⊤

i

]
E+

i Vi | Vi ∈ Vi}. The proof
follows because Wi is compact (due to Φ i

2,2 ≺ 0 in Assumption 1),
and so must be Vi and in turn Ccl

i . ■

B.2. Proof of Lemma 3

Let Mi := Acl
i

⊤P + PAcl
i . With Π as in the statement, Pi =

NP + µ−1λiMi, Q = 0, and recalling that
∑

j∈I πj,iP = 0, the
left-hand side of (6) is

Acl
i

⊤
(NP + µ̃λiMi) + ⋆+

∑
j∈I\{i}

λ̃i(λjMj − λiMi),

(⋆ is the transpose of the first addend, and we recall that λ̃ = λ−1,
µ̃ = µ−1), which is negative definite for µ large enough, as taking
its limit µ → ∞ gives

Acl
i

⊤
P + PAcl

i + λ−1
i

∑
λjMj ≺ 0 (B.1)
j∈I\{i}
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here the inequality is (20). Thus we constructed a solution to
6) based on (20); a solution to (8) with the same Π , Pi’s, and
ome Q ≻ 0 then exists as per Lemma 2. ■
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